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ABSTRACT: Characterizing the elemental composition provides useful information about the weathering 
degree of soils. In Miandoab County, Northern Iran, this characterization was missing, and thus the objectives 
of this work were to evaluate the weathering degrees for the most typical soils in the area from their elemental 
compositions, and to estimate this elemental composition using Fourier transform infrared spectroscopy 
and Random Forest models. Five soil profiles, including Aridisols and Inceptisols, were selected as the 
most representative of the area. Major elemental oxides were determined in each genetic horizon by X-ray 
fluorescence, showing that these soils were at early developmental stages. Only Al2O3 and CaO were accurately 
estimated, with R2 values of 0.8, and out-of-bag mean square errors of 0.2 and 1.1, respectively. The other 
oxides were not predicted satisfactorily, probably due to small differences in their elemental compositions. 
Random Forest provided the important spectral bands related to the content of each element. For Al2O3, these bands were between 500 and 650 cm-1, which represent out-of-plane OH bending vibrations and Al–O 
gibbsite and alumino-silicate vibrations. For CaO, the most important bands are related to carbonate content. 
A combination of Fourier transform infrared spectra and Random Forest models can be used as a rapid 
and low-cost technique to estimate the elemental composition of arid and semi-arid soils of Northern Iran.
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Estimativa da composição elementar de solos do Azerbaijão oeste,
Irã, utilizando-se modelos espectrais de infravermelho

RESUMO: A caracterização da composição elementar fornece informações úteis para caracterizar o grau de 
alteração dos solos. Em Miandoab, norte do Irã, esta caracterização não existe. Os objetivos deste trabalho 
foram avaliar o grau de intemperismo dos solos típicos da região usando a sua composição elementar e estimar 
esta composição usando espectroscopia infravermelha com transformada de Fourier (FTIR) e modelos 
Random Forest (RF). Foram selecionados cinco perfis de solo, incluindo Aridisolos e Inceptisolos, como 
os mais representativos da área. Os principais óxidos elementares foram determinados por fluorescência 
de raios-X em cada horizonte genético, mostrando que estes solos estavam em um estágio de baixo grau de 
desenvolvimento. Apenas o Al2O3 e o CaO foram estimados com precisão, com valores de R2 de 0,8 e erro 
quadrático médio nos dados utilizados para validação de 0,2 e 1,1, respectivamente, enquanto os outros óxidos 
não foram preditos satisfatoriamente, provavelmente devido às pequenas diferenças na sua composição. 
O modelo Random Forest forneceu importantes bandas espectrais relacionadas com o conteúdo de cada 
elemento. Para o Al2O3, estes atingiram a região 500 a 650 cm-1, o que foi atribuído a vibrações de flexão de 
OH e vibrações de Al-O de gibbsita e alumino-silicatos. Para o CaO, as bandas mais importantes estavam 
relacionadas ao teor de carbonatos. Os resultados indicam que uma combinação de espectros infravermelha 
de transformada de Fourier e modelos Random Forest pode ser usada como uma técnica rápida e de baixo 
custo para estimar a composição elementar de solos do norte do Irã.
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Introduction

Weathering is defined as the alteration of parent materials 
by physical, chemical and biotic processes (Osat et al., 
2016). The most important processes are those related to the 
chemical transformation of existing minerals, which leads to 
their depletion (e.g., by hydrolysis, oxidation, hydration or 
dissolution) and the formation of secondary minerals and 
hydrous oxides (Jeleńska et al., 2008).

The determination of elemental composition is commonly 
used to assess the weathering intensity of soils, and it is usually 
performed using X-ray fluorescence (XRF) spectroscopy. 
However, this technique is expensive and the sample 
preparation is time-consuming. 

An alternative is to predict the elemental composition 
from information obtained by other spectroscopic methods 
like Fourier transform infrared (FTIR), near infrared (NIR) 
or Raman spectroscopy, which allow spectral measurements 
of large numbers of samples at a lower cost and with minimal 
sample processing (Robertson et al., 2016).

The combination of spectral data and multivariate analysis 
techniques has gained popularity for quantifying soil properties 
(Rial et al., 2016). These include statistical methods such as 
multiple linear regression, principal component regression, 
partial least squares regression (PLSR), and Random Forest 
(RF). There are some studies relating FTIR spectra and 
elemental soil compositions using PLSR (e.g., Mohanty et al., 
2016), but the potential use of RF for this purpose has not 
been analysed.

In the last years, several researchers have described the 
mineralogy and properties of the soils in Northern Iran 
(Moradi et al., 2012; Saraskanroud et al., 2017). However, the 
study of their elemental composition has not yet been done. 
Thus, the main objective of this study was to investigate the 
composition of the most representative soils in Miandoab 
County (West Azerbaijan, Northern Iran) and to predict 
their elemental composition using a combination of FTIR 
spectroscopy and RF.

Material and Methods

The studied area is located in Miandoab County, West 
Azerbaijan, northern Iran (36° 55' 37° 0' N and 46° 0' 46° 10' E), 
at an altitude that ranges from 1283 to 1308 m. Soil moisture 
and temperature regimes are aridic and mesic, respectively. The 
mean annual rainfall and evaporation are 272.3 and 753.3 mm, 
respectively, with a mean annual air temperature of 12.8 °C. 
The main land use in this area is agriculture, and the dominant 
crops are fruits and nuts such as apples, grapes and walnuts.

A number of 17 soil profiles were characterized in order to 
study the soils in the area. As a result, the following taxons were 
identified according to the USDA soil classification system (Soil 
Survey Staff, 2014): two soil orders (Aridisol and Inceptisol), 
four suborders (Calcids, Cambids, Argids and Xerepts), four 
great groups (Haplocalcids, Haplocambids, Haplargids and 
Haploxerepts) and four subgroups (Typic Haplocalcids, Typic 
Haplocambids, Typic Haplargids and Typic Haploxerepts).

In each profile, genetic soil horizons were identified and 
described, and composite samples of each horizon were 

obtained. In total, the number of samples collected was 44. 
The samples were transported to the laboratory, air-dried and 
ground to pass through a 2-mm mesh sieve and analysed for 
general soil properties. 

Physical and chemical analyses of the fine-earth fraction 
were performed using standard methods. These included 
particle size distribution by the hydrometer method (Gee & 
Bauder, 1986), organic carbon content using a Flash EA 1112 
elemental analyser (ThermoQuest, USA) after carbonate 
removal with HCl, calcium carbonate equivalent (CCE) using 
a titration method (Nelson & Sommers, 1996) and cation 
exchange capacity (CEC) by the Bower method (Bower et al., 
1952).

Saturated paste extracts were prepared to measure soil pH 
using a pH meter (AZ-86502), electrical conductivity (EC) 
using an EC meter (AZ-8301), and soluble cations and anions 
by atomic absorption spectrophotometry using a Shimadzu 
AA-670 spectrophotometer (Shimadzu, Japan). The sodium 
adsorption ratio (SAR) was then calculated using Eq. 1 (Soil 
Survey Staff, 2014).

SAR Na

Ca Mg
=

+

+

+ +2 2

The 44 air-dried samples were ground in an Agatha mortar, 
and 1 mg of soil was combined with 200 mg of potassium 
bromide, mixed and ground together before being pressed to 
produce a pellet. Absorbance of the pellets was measured in 
the MIR region (wavenumber range from 400 to 4000 cm-1, 
with a resolution of 2 cm-1) using a FTIR Bruker Vector 22 
spectrophotometer (Bruker, USA) in transmission mode. The 
obtained spectra were baseline corrected and normalized using 
the extended multiplicative signal correction method (EMSC) 
(Kohler et al., 2005).

Based on the results of the physical and chemical analyses of 
all samples, five profiles were selected as the most representative 
of the study area, which included a total number of 19 samples. 
Total elemental compositions were determined by X-ray 
flourescence (XRF) for these samples using a S4 Pioneer XRF 
spectrometer (Bruker, USA).

Random Forest (RF) was used to find relationships between 
elemental composition as dependent variables and FTIR 
spectra as predictor variables, as well as to identify the spectral 
bands most relevant to elemental composition. Random Forest 
is a machine learning algorithm based on the calculation of 
multiple randomized regression trees (e.g., 500 to 2000 trees). 
It is becoming very popular because of its good modelling 
characteristics: 1) it is a non-parametric method; 2) it can be 
applied to datasets with a low number of observations and 
many predictors; 3) it can be applied to two and multi-class 
problems; 4) it does not overfit; 5) it ranks the most important 
variables for prediction and 6) it has good performance, low 
bias, low variance, and has low correlations between the 
classification trees (Wiesmeier et al., 2011).

For the construction of the RF model, the original data (n = 
19) was split through bootstrapping into two sets: a training set 
that included 75% of the data, which was used to fit the model 
and a test set that comprised the remaining 25%, which was 

(1)
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used for validation of the fitted model. The non-sampled data in 
the training set was replaced until its size was the same as that 
of the original dataset. Then, a regression tree was constructed 
with the training set, and the non-sampled data, or “out-of-bag” 
(OOB) data, was used to estimate the prediction error. This 
process was repeated 500 times, and the final model parameters 
were selected averaging the results of all fitted regression trees.

To evaluate the performance of each RF model, the root 
mean square errors (RMSE), coefficients of determination 
(R2), and OOB mean square errors (MSEOOB) were calculated 
according to the following equations (Eqs. 2, 3, and 4):
where: 

yp  - estimated value; 
SSerror - sum of squared errors between estimated and 

observed values; and,
SStotal - sum of squared deviations of each response variable 

from its mean.

All data manipulations and analyses were performed in 
the R-Studio environment (R Core Team, 2017). Baseline 
removal and spectral corrections were performed using the 
EMSC R package (Liland, 2017), and Random Forest models 
were constructed using the randomForest R package (Liaw & 
Wiener, 2002).

Results and Discussion

Some of the general properties of the five representative 
profiles are presented in Table 1. Calcium carbonate contents 
were high, which was common in both arid and semi-arid 
areas, and generally increased with depth, most probably 
because of mobilization from the upper horizons during wet 
periods and re-deposition in deeper parts of the profiles.

There were higher EC values in P1 and P4 and SAR values in 
P1, P3, and especially in P4, when compared to the other profiles 
because of the presence of a shallow water table near the surface. 
Soil reaction in all horizons ranged from moderately basic to 
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aSiL - Silty loam, L - Loam, S - Sandy, C - Clay, CL - Clay loam, SiC - Silty clay, SL - Sandy loam;
b1 - Weak; 2 - Moderate; 3 - Strong; vf - Very fine; f - Fine; m - Medium; c - Coarse; gr - Granular; abk - Angular blocky; ma - Massive; 
cEC - Electrical conductivity; CEC - Cation exchange capacity; SAR - Sodium adsorption ratio; CCE - Calcium carbonate equivalent; OC - Organic carbon

Table 1. General properties of the five reference profiles

n  - total number of samples;
yi  - observed value;

(2)

(3)

(4)



Estimation of elemental composition of agricultural soils from West Azerbaijan, Iran, using mid-infrared spectral models 463

R. Bras. Eng. Agríc. Ambiental, v.23, n.6, p.460-466, 2019.

slightly alkaline, as expected from the presence of CaCO3, with 
pH values between 7.5 and 9.0. The pH increased with depth, 
except for the transition between the Bk2 and C horizons of 
P1, because of the accumulation of carbonates in subsurface 
horizons. Considering their pH, EC, SAR and CaCO3 contents, 
P2, P3 and P5 were classified as non-saline-non-alkali, P1 was 
classified as saline and P4 was classified as saline-alkali.

The amount of organic carbon (OC) was low in all soils 
(< 20 g kg-1), with the highest values being observed in the A 
horizon of P1. Clay contents were also low, except in P3 and 
P4. In P4, the translocation of clay from the surface formed 
argillic horizons that were the diagnostic feature of the soil.

Cation exchange capacity was low (< 25 cmolc kg-1), 
except in P3, A and in general decreased with depth, even 
in the Haploargid profile, which indicated that the CEC was 
controlled mainly by the presence of organic matter.

The XRF elemental analyses included 10 elements (Si, Al, 
Ca, Fe, Mg, K, Na, Ti, P and Mn). SiO2 was the most abundant 
oxide, with values varying between 483.0-528.0 g kg-1, followed 
by Al2O3, with values between 128.0 and 159.0 g kg-1, as well 
as Ca, Fe and Mg in decreasing order (Table 2).

The amounts of Al were higher than those that were 
reported for other soils in the country (Broomandi et al., 2017), 
which were found to be depleted in this element. The relatively 
high amounts of Ca and Mg were most likely a result of the 
presence of carbonates in all horizons of these soils.

The low coefficient of variation of the contents of major 
elements (Si and Al), which are the building blocks of silicate 
minerals, suggests that all these soils, despite belonging 
to different soil orders, had a very homogeneous silicate 
composition, and that variations with depth should not be 

expected to be pronounced.
Higher variability was observed for Ca and Mg composition, 

which was most likely a consequence of carbonate variations 
among soil profiles and horizons. A relatively high Na 
variability (Table 2) was also observed, which was attributed 
to the differences in soil sodicity shown in Table 1.

The FTIR spectra of the 19 reference samples after baseline 
and EMSC corrections are presented in Figure 1. In this figure, 
the spectra are shifted along the y-axis to avoid overlapping 
for illustrative purposes. Compared to other spectral regions, 
such as Vis-NIR, mid-infrared is considered better for the 
identification of inorganic and organic functional groups in 
soils, and therefore of soil constituents, due to their distinctive 
peaks (Hunt & Salisbury, 1970).

The spectra showed the characteristic bands of carbonates, 
as expected from the values for the general soil properties: 
a broad band around 1400-1500 cm-1 with a peak at 
approximately 1440 cm-1, and two smaller bands at 875 and 
712 cm-1 (Müller et al., 2014). This last band indicated the 
presence of calcite instead of dolomite.

The bands between 3600-4000 and 1000-1200 cm-1, were 
mainly caused by silicates. The peak at 1030 cm-1 corresponded 
to the Si-O-Si stretch vibration typical of these minerals 
(Madejová, 2003). However, the identification of silicates in 
a complex mixture, such as soil, is not straightforward, since 
characteristic peaks of different minerals often overlap. 

Nevertheless, the presence of peaks at 3692 and 3627 cm-1 
are characteristic of 1:1 clays, which together with the 
absence of the typical combination of kaolinite peaks in the 
900-1100 cm-1 region, indicated that the dominant clay in these 
samples was likely halloysite (Joussein et al., 2005).

Figure 1. Mid-infrared spectra of the analysed soil samples 

Table 2. Maximums, minimums, means, standard deviations and coefficients of variation (CV) of the elemental compositions 
measured by XRF
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The band at 3682 cm-1 was also characteristic of smectites, 
which are typical in arid and semi-arid soils, and thus very 
likely to be present in these samples. In addition, bands at 
2850 and 2920 cm-1 were characteristic of C-H aliphatic chain 
vibrations, which are well known to be related to organic matter 
in the soil (Calderón et al., 2011).

The interpretation of bands below 900 cm-1 is complicated, 
especially in mixtures, such as soils, since the absorbances of 
many organic and inorganic compounds overlap in this region 
(Calderón et al., 2011). However, some of the peaks described 
in the literature, such as those at 800 and 780 cm-1, have been 
identified as symmetric stretching vibrations of Si-O bonds, 
typical of silica and quartz (Müller et al., 2014).

Using the spectra from Figure 2 as independent variables, 
RF models were adjusted to the major oxides described in 
Table 2. The R2, MSE and RMSE for each oxide are presented 
in Table 3. Only Al2O3 and CaO were accurately estimated, 
with R2 values of 0.8 and MSE of 0.2 and 1.1, respectively. TiO2 
was predicted with moderate accuracy, but all of the remaining 
oxides, including MgO, SiO2, P2O5, MnO, Na2O, K2O and Fe2O3, 
were poorly predicted.

These results could be considered less satisfactory than 
those that were found by other authors, like Mohanty et al. 

(2016), who had an R2 of 0.9 when modelling oxide contents 
in soils from different regions of India using mid-infrared 
data and PLSR.

Possible reasons for the weaker performance of the models 
in this study include the limited amount of samples compared 
to those of Mohanty et al. (2016). However, PLSR is a statistical 
method that requires a large number of samples for modelling, 
and thus its use was not possible for our dataset. Another 
reason was the narrow range of values for most oxides, which 
is well known to be a limitation for statistical models. In any 
case, RF was probably the best option for modelling element 
contents despite its limited performance.

The oxides contents that were satisfactorily modelled (Al2O3 
and CaO) were predicted using the RF models in the remaining 
48 soil samples. The results for the 17 sampled profiles, both 
measured and predicted, are presented in Figure 2.

Weathering processes in the soils lead to the depletion of 
elements that are considered mobile, such as Si, Ca or Mg, and 
an enrichment of those that are not mobile, such as Al, Ti, or 
Fe. Thus, the comparison of the behaviour of these elements 
can be used as an indication of the weathering and leaching 
of the soil (Bahlburg & Dobrzinski, 2011).

The CaO content gradually increased with depth in the 
typic Haplocalcids (Figure 2D), as expected from the increase 
of carbonate content and formation of calcic horizons. The 
formation of these horizons is known to be caused by the 
release of Ca from the primary minerals and subsequent 
leaching before precipitating as carbonates. Yousefifard et al. 
(2012) found that in a semi-arid region of Iran, the percentage 
of Ca released from primary minerals that precipitates as 
secondary calcium carbonate to form calcic horizons can 
reach up to 70-90%. The values of CaO also increased in some 
profiles of the typic Haplocambids (Figure 2B); although in this 
case, the migration of CaO was not marked enough to develop 
calcic horizons yet. 

On the contrary, there was no obvious trend in CaO 
distribution for some profiles of the typic Haploxerepts (Figure 

Figure 2. CaO and Al2O3 contents in the 17 sampled profiles, including the measured 5 reference profiles and the 12 predicted 
by the Random Forest models

A. B. C. D.

E. F. G. H.

R2 - Coefficient of determination; MSEOOB - Mean square of error out-of-bag; RMSE - 
Root mean square error

Table 3. Results of the validation of the RF model calculated 
for each oxide
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2C) and typic Haloargids (Figure 2A). In the typic Haloargids, 
the most prominent feature is the decrease of CaO from 
the A horizon to the Bt horizon. In general, CaO values are 
positively correlated with soil leaching (Wang et al., 2002), 
and thus it seems that leaching is a more important process 
in Haplocalcids and Haplocambids, while it is not so relevant 
in Haploargids and Haploxererts.

In a weathering environment controlled by leaching, a 
consistent decrease of Al with depth could also be expected. 
Figure 2E, F, G and H shows that, for each profile, the differences 
in Al composition among the horizons are not large, and a 
consistent decrease of Al2O3 with depth was only observed in 
the Haplocambids. The results suggest that these soils were at 
an early stage of development and weathering was not intense 
enough to produce significant Al variations with depth.

In fact, in the Haploxererts, and especially in the 
Haplargids, a decrease in the Al content was observed with 
the transition from the A horizon to the Bw (Haplocambids) 
or Bt1 (Haplargids) horizons. This decrease was most likely 
caused by an increase in clay content with depth, since Al2O3 
contents in phyllosilicate clay minerals are higher than those 
that have been found in primary aluminosilicates such as 
feldspars (Muhs, 2001).

In summary, and based on the distribution of elements 
in the soil profiles, soils in Miandoab County are young, and 
some leaching was taking place in the profiles, mobilizing 
the most soluble elements (Ca), but they were an early stage 
of development and did not have obvious differences in less 
mobile elements (Al).

In addition to the goodness of fit parameters, RF provided 
the most relevant wavenumbers for the prediction of each 
element. Those wavenumbers are presented in Figure 3 for 
those indices that showed a good fit when modelling Al2O3, 
and CaO. The most relevant bands for the prediction of Al2O3 
were 595 cm-1, followed by 561 and 557 cm-1. In fact, 9 of the 
10 most important bands are in the region between 500 and 
650 cm-1, which have been ascribed to a combination of out-of-
plane OH bending vibrations and gibbsite and alumino-silicate 
Al-O vibrations (Ali & Padmanabhan, 2017).

In the case of the CaO (Figure 3B), the interpretation of 
the important spectral bands was more complex. The 10 most 
important ones included those at 865, 883, 869 and 867 cm-1, 
which were part of a broad peak with a maximum at 875 cm-1, 
characteristic of carbonates. This band has been found useful 
for carbonates quantification by other authors (Tatzber et al., 
2007).

The bands at 3093 and 3095 cm-1 could also be related 
to carbonates have also been ascribed to carbonates, but 
their meaning is uncertain. The bands at 1029 and 1593 cm-1 
were related to silicates, and this could be derived from the 
presence of Ca in the exchangeable complex adsorbed to the 
clay surfaces.

Thus, for Al and Ca, the combination of FTIR spectra and 
RF not only allowed the creation of models that can be used to 
predict these elements contents in other soil samples of the area 
by simply measuring their FTIR spectra, but it also allowed the 

MSE - Mean square error

Figure 3. Important bands in the MIR region for modelling 
A) Al2O3, and B) CaO contents

A.

B.

relation of the amounts and variability of these two elements 
with the soil components where they are more abundant: 
carbonates in the case of Ca, and silicates in the case of Al.

Conclusions

1. The Fourier transform infrared spectra reflected the 
composition of these soils, with distinctive signatures, 
including the presence of calcite and low activity clays, mainly 
halloysite.

2. The combination of Fourier transform infrared spectra 
and Random Forest models provided adequate predictions 
of two of the analysed oxides, Al2O3 and CaO. The important 
spectral bands for the prediction of these oxides were related 
to sounding functional groups and soil components.

3. The interpretation of the measured and predicted 
profiles indicated that the soils in the Miandoab County, West 
Azerbaijan, Iran, are at an early stage of development. In each 
profile, the elemental composition was very similar for all 
horizons, and a consistent enrichment of CaO with depth was 
only observed in the Typic Haplocalcid.
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