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Abstract—In the past several years, organizations have
been changing their storage methods as the volume of
data they managed has increased. The cloud computing
paradigm offers new ways of storing data based on scala-
bility and on good conditions of reliability and accessibility.
This paper proposes the design of HPS3, a service that
uses compression and concurrency techniques in order to
reduce storage costs and data processing times in public
storage providers. Different strategies for compressing and
uploading data depending on differential characteristics of
the datasets are also explained. The evaluation of HPS3
shows, in comparison with the default use of the cloud
storage provider (Amazon S3), an average reduction of
61.6% in data transfer volume, 85.5% in upload time and
73.2% in incurred costs. Compared to Dropbox, HPS3
shows an average improvement of 27.4% in data transfer
volume and 93.6% in upload time.
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I. INTRODUCTION

The amount of data stored in the cloud is growing
fast. Besides the use of cloud storage from particular
users, there are more and more companies and research
centers that decide to locate their data with cloud services
due to their accessibility and price features.

The use of cloud computing for storage shows, how-
ever, some problems the user has to deal with, such
as security, network latency, waste of bandwidth or un-
derutilization of computing resources. There are several
public storage providers where particular users store their
data: Amazon S3, Dropbox, Google Drive, Microsoft
SkyDrive, etc. However, there are some unmet demands
from organizations with a higher level of requirements
in terms of transfer time and incurred costs.

The cost of storing files is usually determined by

the occupied space in the cloud provider, the number
of requests and the data transfer volume. The occupied
space and the data transfer volume can be reduced
by using compression. The number of requests can be
reduced by aggregating files in groups, compressing each
group to one archive file and uploading it using a single
request. The considered groups can be, typically, the own
directories in which the dataset may be divided.

The aim of this paper is to analyse how data can
be stored in cloud storage providers optimizing costs
and reducing the execution time of data processing
operations. As a result, a cloud-based storage service
called HPS3 (which stands for High Performance S3)
is proposed, with a flexible design based on concurrency
and compression.

The structure of this paper is as follows: Section II
presents the related work. Section III explains the pro-
posed solution for a high performance storage service in
the cloud. Section IV describes the experimental config-
uration used in the evaluation and presents comparative
results with well-known cloud storage services using
representative datasets. Finally, Section V summarizes
our concluding remarks.

II. RELATED WORK

Storage in the cloud is an active research topic that
is gaining increasing attention. Besides services that
only use public storage providers, some works study the
way to use cloud storage for enhancing existing storage
systems. FriendBox [1] uses a hybrid Friend-to-Friend
(F2F) storage system, combining resources of trusted
friends with cloud storage to improve QoS of pure F2F
systems. The use of cloud storage allows the service
to increase performance and data availability, mitigating
the drawbacks of pure decentralization. The paper also



includes an analysis of the costs of FriendBox in terms
of use of the cloud.

Costs of storing the data generated by workflow-based
scientific applications are analysed in studies such as [2],
which proposes an algorithm to store large application
datasets using linear Data Dependency Graphs (DDGs).
The strategy developed in the paper automatically selects
several datasets from a larger group to be stored in the
cloud. The rest of datasets will be regenerated from
the stored ones when needed. The applicability of this
approach is limited to the kind of applications to which
it is oriented (where the DDG is known).

Other works focus on providing optimized solutions
for encrypting and storing data in the cloud, like Cryp-
tonite [3]. This secure data repository is the result of
the study of several optimizations in the encryption of
data to be uploaded to Windows Azure. Many ideas in
the paper can be applied to compression when uploading
large datasets to storage providers, allowing the service to
reduce storage costs. This reduction can also be achieved
by studying which public storage provider is best to
use. In order to do this, an integrated storage service
called iCostale [4] uses data compression, cloud pricing
schemes and history of access patterns. The framework
optimizes the storage costs taking into account specific
characteristics of each dataset and even storing its data
using different providers. Deployed as a cloud service,
iCostale does not reside with the client, which involves
an additional overhead in the communications with the
storage provider.

Cumulus [5] is a cloud-based backup system. It
aggregates small files for remote storage, segments the
files and implements incremental changes in order to
maintain storage efficiency. The paper shows how ag-
gregation can reduce the number of requests to the cloud
storage provider, which reduces costs and increases the
compression ratios. However, the system does not take
into account differential characteristics of the uploaded
datasets and, despite using concurrency, the paper does
not show the way it is applied.

III. THE HPS3 STORAGE SERVICE

The main goal of the service to be implemented is
to achieve the best possible efficiency and to reduce the
pricing of the storage provider used. The service is in-
tended to be used for enterprise backup or storage of data
to be processed in the cloud provider, and is targeted for
both enterprise and research environments. This section

covers the analysis of the service scenario, the different
compression strategies that have been considered and the
resulting design.

A. Service Scenario

The main objective of HPS3 is to offer a fully func-
tional cloud storage service that optimizes cost savings
and transfer times. Both terms can be improved by us-
ing data compression when performing data operations,
which are divided in upload and download operations.
Upload operations consist in compressing the data and
uploading it to the provider. Download operations consist
in downloading the compressed data and decompressing
it. The achieved compression ratio depends on several
factors from which the following ones are taken into
account: (1) Compression algorithm, (2) Data type, and
(3) Dataset structure.

First, the chosen compression algorithm will show
a certain compression ratio and efficiency (time taken
to compress the data). Although a higher compression
ratio will involve higher cost savings in the target cloud
provider, the compression operation may be more time
consuming. Therefore, the selection of the algorithm
must take into account both terms. Second, the compres-
sion ratio of the selected algorithm may vary depending
on the data type that is being compressed. Third, files
can be compressed in several ways, one by one or by
groups. The particular structure of the dataset may affect
the optimal way of compressing the data. Compressing
the files in groups can reduce the number of requests
but it would make random accesses more difficult (the
whole group must be downloaded to access a single file).
Groups in which the files will be compressed can have
different sizes. If the size is too big the latency of random
accesses will be higher, and if the size is too small the
number of requests will increase. In this paper, different
compression strategies have been considered and will be
explained in the next subsection.

Besides using data compression, the time taken by
upload and download operations can be reduced by using
concurrency, enabling the service to manage more than
one file at a time. For example, to upload a directory
that is divided in groups of files, each of these groups
can be allocated to a processing instance, and the set of
processing instances can be executed concurrently.

B. Compression Strategies

In order to take into account the distinct characteris-
tics of datasets uploaded to the storage provider, different



strategies for compressing and uploading are proposed.
It is assumed that each dataset will be composed by a
file hierarchy that is going to be uploaded to the storage
provider. The data will be downloaded and restored later
or will be processed using cloud services, no matter
the encoding used. The considered strategies are the
following ones:

• Plain: The elements in the first level of the
root directory are compressed and sent to the
cloud provider. Redundancy among files is ex-
ploited, and full branches of the hierarchy are
uploaded with a single request. This means fewer
operations (compression plus upload), but larger
transfers per request. A drawback that must be
considered is the difficulties in random accesses:
to download a single file it is necessary to down-
load the full branch in which it is contained.
Therefore, this strategy can be appropriate for
compressing datasets which constitute a logical
element by themselves.

• Recursive: The hierarchy is accessed until its last
level, in which every single file is compressed
and uploaded using one operation. Redundancy
is only considered within each file, so the com-
pression ratio can be lower in comparison with
the plain strategy. It will also involve more opera-
tions, but allowing a higher level of concurrency.
The random access does not add overhead, since
every file can be recovered uniquely.

• Mix: It consists in the application of a recursive
strategy until a user-selected level, in which
the directories are fully compressed and up-
loaded to the storage provider. The mix strategy
is presented as a tradeoff between the plain
strategy (which provides reduction of operations
and higher compression ratios) and the recursive
strategy (which provides random access to the
files and higher concurrency).

C. Design

An optimized storage service, HPS3, has been im-
plemented using Amazon S3 as cloud storage provider.
Amazon S3 is part of the AWS (Amazon Web Services)
group of cloud services and allows to store files in the
cloud in good conditions for durability and reliability.
The files stored in Amazon S3 are represented as objects,
each one contained in a bucket and identified by a unique
key. Each bucket is located in a certain AWS Region and

objects in the bucket never leave the region unless the
user moves them.

HPS3 runs as a client connected to Amazon S3,
allowing the user to display and manage files. These
files can be contained in the local filesystem or in the
cloud provider, and the user can modify their location
by uploading and downloading them. These operations
are handled by a pipeline that can be broken down in
different subsystems as follows.

a) Connection: The Connection subsystem man-
ages the connection between the client and the public
storage provider. Once the connection is started, this
subsystem makes the requests to manage the files and
to retrieve the information about the stored data. This
subsystem maintains dependencies with the API given
by the public cloud provider, which allows to make the
requests using high-level operations. Low-level issues
like authentication, error management and retries are
handled by the underlying libraries of the Amazon API.

b) Compression: The Compression subsystem
contains the hierarchy of available compression algo-
rithms: gzip, bzip2, tar.gz, tar.bz2, zip, rar, etc. Each
algorithm can have multiple implementations in order to
select the most suitable one for the environment in which
the service may be running. This subsystem also provides
the mechanisms to select a compression algorithm to be
applied to a file. This selection is based on user-defined
configuration options that link a certain data type to its
most suitable compression algorithm.

c) Concurrency: The Concurrency subsystem al-
lows HPS3 to reduce the time taken to perform upload
and download operations. To do this, this subsystem
divides the source directory in different groups that are
managed individually. These groups are, typically, the
proper subdirectories in which the source directory may
be divided. The different ways to divide a directory
are defined by the compression strategies explained in
Sec. III-B.

Once the directory is divided, each group of files is
allocated to a processing instance. Each processing in-
stance uses the Compression and Connection subsystems
to compress and transfer, respectively, its group of files.
The entire operation, consisting of a set of processing
instances, is executed by a pool of threads. The number
of instances that are processed concurrently is determined
by the size of this pool. In order to make use of the full
capabilities of the client machine, the implementation of



Fig. 1: Interaction among HPS3 subsystems

HPS3 uses a pool of as many threads as the number of
available cores.

d) Interface: The Interface subsystem allows the
interaction of the user with the service, showing a view
of local files and objects stored in the cloud provider. The
user can upload and download files, as well as retrieve
information about the files stored in the cloud.

At the time of uploading and downloading file hi-
erarchies, the subsystems will communicate with each
other to perform the action. Every subsystem contains the
implementation of each function needed in the process.
As an example, Figure 1 shows the sequence diagram
of subsystem interactions for uploading a directory. The
interaction shown in the diagram begins when the user
selects to upload a directory in the Interface subsystem.
The Concurrency subsystem reads the file hierarchy and
creates an upload instance for every group of files in
which the hierarchy is divided. This division is de-
termined by the user-selected strategy. Each instance
compresses the data using the Compression subsystem
and uploads the compressed data using the Connection
subsystem. Downloading a directory would work in a
similar manner, but using download instances that would
download the data and decompress it.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the pro-
posed solution, several upload experiments have been
conducted. This section shows and discusses these results
in terms of data transfer volume and data upload time.

A. Experimental Configuration

Four representative datasets (see Table I) have been
selected to be uploaded using HPS3 :

• BOE: a set of PDF documents from the Spanish
Official State Bulletin (BOE), a daily release that
publishes Spanish laws and public acts [6].

• MEFF: a set of economic data files from the
Financial Futures Spanish Market (MEFF) [7].

• DICOM: a set of medical images in DICOM
format [8].

• OpenJDK: the source code of Java version 6 [9].

The buckets used to upload the data are located in the
AWS standard region, which is the US East (Northern
Virginia) region. The client was run on an 8-core Intel R©
i7 CPU 930 at 2.80GHz with 6 GB RAM.



TABLE I: Characteristics of the datasets

Dataset Total size Number of files File format Hierarchy depth Average file size
BOE 477.1 MB 852 PDF 4 556 KB
MEFF 643.2 MB 223 plain text 2 2.88 MB
DICOM 856.5 MB 80 DICOM 5 10.71 MB
OpenJDK 261.7 MB 25408 Java code 15 10.3 KB

The compression algorithm used in the experiments
was tar.gz as it showed the best compression-time ratio in
previous tests. Different strategies have been compared
in terms of data transfer volume and upload time, using
the same computer and network connection. The final
results were obtained as the average values from a set of
10 experiments.

B. Performance Evaluation

In order to show the benefits of compression and con-
currency in the upload operation, the sequential upload
of the uncompressed data (i.e. the default scenario) has
been compared with the different compression strategies
described in Sec. III-B.

Figure 2a shows the size of the uploaded data and Fig.
2b the compression ratio for each dataset. The selection
of the compression strategy is the only factor that affects
the data transfer volume (concurrency has no influence
on it). As can be observed in the results, there are not
great differences between strategies for the BOE, MEFF
and DICOM datasets, which suggests that redundancy
among files is not being exploited in these datasets.
However, the OpenJDK dataset has significant differ-
ences between strategies, due to the high redundancy
that this dataset shows among its files. Using the plain
or the mix strategies, which exploit this redundancy, the
compression ratios are much higher than those of the
recursive strategy, which only uses redundancy within
each single file. Moreover, the DICOM dataset has the
lowest compression ratio because it uses the JPEG format
(which already includes compression) to encode the
images. These results show that HPS3 reduces the data
transfer volume in a range from 35.6% (DICOM) to
85.1% (OpenJDK with the plain strategy).

Figure 3a shows the time taken for the same uploads,
comparing each compression strategy with the sequential
uploading without compression. These results include
both compression and transfer times (except for the
sequential case, which has no compression time) for each

whole dataset. In this case, both the compression strategy
and the use of concurrency (set to 8 threads, one per core)
affect the upload times. Figure 3b shows the same results
in terms of speedup relative to the sequential upload with
no compression (i.e. the default scenario) and thus it is
calculated as the quotient of the default upload time and
the time using each compression strategy.

Some conclusions can be drawn from the results.
DICOM is the dataset that gets the lowest speedup, which
is 2.3 in the recursive case. This is caused by the fact that
DICOM is the dataset with the largest files and the lowest
compression ratio (as shown in Fig. 2b). Large files
are more affected by interruptions, since an interrupted
upload involves the data to be transmitted from scratch.
This is due to the behaviour of the used public storage
service, Amazon S3, which does not consider partial
uploading of the objects.

The BOE and MEFF datasets show good speedups. In
the case of BOE, mix is the best strategy with a speedup
of 10. MEFF does not show great differences among
strategies, with a speedup near 20 (obtained with the
plain strategy). OpenJDK has the most successful results.
On the one hand, the speedup is 166 and 138 using
the plain and mix strategies, respectively. On the other
hand, the speedup is 8 with the recursive strategy. The
performance using the plain strategy can be explained
by the properties of the dataset, which consists of a
large number of small files. Also, the directory tree has
a large depth. The compression of each hierarchy branch
to a single file causes a high reduction in the number of
requests to the cloud provider, and increases the compres-
sion ratio (as shown in Fig. 2b). The use of the recursive
strategy shows a larger upload time compared with the
other strategies because compression and uploading have
to be executed separately for every file of the dataset. In
conclusion, according to the upload times of Fig. 3a,
HPS3 achieves a reduction from 57.4% (DICOM with
the recursive strategy) to 99.4% (OpenJDK with plain).

In order to summarize the benefits of using HPS3,



(a) MB transferred to Amazon S3 (b) Compression ratio

Fig. 2: HPS3 performance in terms of data transfer volume

(a) Upload time (b) Speedup

Fig. 3: HPS3 performance in terms of upload time

TABLE II: Summary of results for HPS3

BOE MEFF DICOM OPENJDK Average
Speedup 10.1 20.9 2.3 166 48.7
Compression ratio 1.9 4.5 1.6 6.7 3.7
Cost savings ($) 50.3% 78.3% 35.4% 97.2% 73.2%

Table II shows the main features calculated for each
dataset: speedup, compression ratio and cost savings, as
well as the average result for each feature. The selected
compression strategy has been the one that obtained the
best upload time for each dataset, i.e. mix for BOE, plain
for MEFF and OpenJDK, and recursive for DICOM. Cost
savings have been calculated using Amazon S3 price
rates [10] as for January 2014, considering the costs
of each request and the volume of stored data when
uploading the datasets.

C. Comparison with Dropbox

Dropbox is one of the most popular public storage ser-
vices nowadays. It is directed to particular users, show-
ing good performance in uploading modified files [11],
due to the use of delta compression. This compression
allows to upload only the modified parts of the files,
reducing significantly the communication cost for dy-
namic datasets. Dropbox uses Amazon S3 for storing the
data, behaving as an intermediary between the user and



(a) MB transferred (b) Compression ratio

Fig. 4: Data transfer volume using Dropbox and HPS3

Fig. 5: Upload time using Dropbox and HPS3

the storage provider. This section shows a performance
comparison of uploading our test datasets using Dropbox
and HPS3. For HPS3, the compression strategy that
obtained the best results was used for each dataset (see
last paragraph of Sec. IV-B). As the datasets of the
experiments are static, the compared behaviour of both
systems may vary when managing dynamic datasets.

Figure 4a shows the volume of data uploaded to the
cloud using each service and Fig. 4b the compression
ratios achieved. As can be observed, these ratios are
higher using HPS3, specially for the OpenJDK dataset,
where Dropbox uses a recursive strategy that does not
take advantage of the redundancy among files. The data
transfer volume using HPS3 is reduced with respect
to Dropbox in a range from 18.7% (MEFF) to 51.4%
(OpenJDK).

A comparison of the upload times is presented in

Fig. 5 (note that the results for “No strategy” and “HPS3”
are the same as in Fig. 3a). HPS3 clearly outperforms
Dropbox, reducing the upload time in a range from
90.1% (DICOM) to 97.1% (MEFF). These results can
be explained by the following features of Dropbox:

• Lower compression ratio due to the delta com-
pression, which introduces an overhead that pe-
nalizes the first upload.

• Recursive strategy to compress directories, which
involves the execution of an upload operation
(compression and transfer of the data) for every
file in the dataset. This may involve a significant
overhead when uploading datasets with a large
number of files.

• Background client: unlike HPS3, the Dropbox
client runs sequentially in the background, giving
priority to the applications the user may be using.



• Multiple server connection: Dropbox executes an
intermediate process for uploading the initial ver-
sions and deltas of the files. This process includes
connections with several servers for uploading
data and metadata, increasing the upload time.
This is not the case of HPS3, which is executed
completely on the client side.

• Transmission of large files: as said in Sec. IV-B,
the transmission of large files is affected by
interruptions. This issue gains significance in
the case of Dropbox, since the upload involves
connections with several servers.

V. CONCLUSIONS

This paper shows the benefits of using compression
and concurrency when storing data on a cloud provider,
having selected Amazon S3 as a case study. A design
for a new service (HPS3 ) has been proposed, achieving
a maximum reduction of 85.1% in data transfer volume,
99.4% in upload time and savings in cost up to 97.2%
(61.6%, 85.5% and 73.2% reduction on average, re-
spectively). Also, a comparison was performed between
HPS3 and Dropbox, one of the most popular cloud
storage services. This comparison has shown a reduction
of the data transfer volume when using HPS3 up to
51.4% (27.4% on average), and a maximum reduction
of 97.1% in upload time (93.6% on average).

Results have shown that the use of compression and
concurrency can improve significantly the operations
when storing large amounts of data on the cloud. The
compression of files can reduce the number of requests
to the cloud provider, and decrease the storage cost and
the time to perform upload and download operations. In
order to obtain the best results when uploading each
particular dataset, several compression strategies have
been studied, implemented and tested. The compression
algorithm used in these strategies can vary depending
on the data type of each dataset, which increases the
flexibility of the service. The operation time is also
reduced by the use of concurrency, by performing each
upload or download operation using a separate thread.

The implemented service HPS3 is fully operational
and can be used for uploading and downloading data to
Amazon S3 by any AWS account, providing its AWS
credentials. The service can be configured by the user
to determine which strategy to apply in every upload
operation, and which compression algorithm to use for
each type of file. Functionality can be extended in several

ways. Firstly, encryption of the data can be provided by
replacing the plain client by an encryption client, allow-
ing the users to use their own keys to encrypt data before
sending it through the network. Secondly, the interfaces
that operate on the data could be adapted to other public
storage providers by using open storage standards like
CDMI (Cloud Management Data Interface) [12].
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