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Sparse Givens QR Factorization on a Multiprocessor�Juan Touri~no, Ram�on DoalloDept. Electr�onica y SistemasUniversity of La Coru~naCampus de Elvi~na s/n15071 La Coru~na, Spainfjuan,doallog@udc.es Emilio L. ZapataDept. Arquitectura de ComputadoresUniversity of M�alagaCampus de Teatinos29071 M�alaga, Spainezapata@atc.ctima.uma.esAbstractWe present a parallel algorithm for the QR fac-torization with column pivoting of a sparse matrixby means of Givens rotations. Nonzero elements ofthe matrix M to be decomposed are stored in a one-dimensional doubly linked list data structure. We willdiscuss a strategy to reduce �ll-in in order to gain me-mory savings and decrease the computation times. Asan application of QR factorization, we will describethe least squares problem. This algorithm has beendesigned for a message passing multiprocessor and wehave evaluated it on the Cray T3D supercomputer usingthe Harwell-Boeing sparse matrix collection.1. IntroductionQR factorization is a direct method in matrix alge-bra which involves the decomposition of a matrix Mof dimensions A � B (A � B) into the product ofan orthogonal matrix Q (QT = Q�1) and an uppertriangular matrix R. QR factorization has many appli-cations in numerical linear algebra to solve linear sys-tems of equations, least squares problems, linear pro-grams, eigenvalue problems, coordinate transforma-tions, projections and optimization problems. It is ne-cessary to solve these problems in many scienti�c �elds,such as uid dynamics, molecular chemistry, aeronau-tic simulation : : :This factorization can be computed by several possi-ble ways [6, Chapter 5]: using plane rotations (Givensmethod), the Modi�ed Gram-Schmidt procedure or�This work was supported by the Spanish CICYT under con-tract TIC92-0942-C03 and by the TRACS Programme under theHuman Capital and Mobility Programme of the European Union(grant number ERB-CHGE-CT92-0005)

Householder reections. Since these sequential algo-rithms have a high arithmetic complexity, the deve-lopment of parallel algorithms is of considerable in-terest. Several parallel orthogonal factorization algo-rithms have been designed for various machines. Wecite just a few: [3] for the Intel iPSC/1, [5] for thenCUBE 10, [9] for a network of transputers, [1] for thenCUBE 2, [2] for the CM-200, all of them for densematrices; and [14] (CM-2), [13] (Fujitsu AP1000), [12](Cray T3D) for sparse matrices.We have implemented the Givens method with co-lumn pivoting for sparse matrices on the Cray T3DMIMD distributed memory computer. Although asparse problem could be treated with a parallel pro-gram for dense factorization, the storage and time costof ignoring sparsity would not bene�t from parallel pro-cessing.This paper is organized as follows. In x2 we describethe sequential and parallel Givens algorithm, as well asa strategy to reduce �ll-in. The least squares problem,an application of QR factorization, is shown in x3 andexperimental results are discussed in x4.2. QR through Givens rotationsWe obtain matrices Q and R of dimensions A � Aand B � B, respectively, using Givens rotations. Wedo not calculate matrix Q because this matrix is notexplicitly necessary in order to solve the least squaresproblem, described in x3. Matrix M is overwritten bymatrix R (in-place algorithm). We present the sequen-tial algorithmwith column pivoting in order to considerthose cases in which the rank of matrixM is not maxi-mum. The use of orthogonal transformations is nume-rically stable and, in practice, the rank of the matrixcan be determined accurately when column permuta-tions are performed during factorization.



rank = B;for (j=0; j<B; j++)normj = A�1Xi=0 m2ij ; (1)for (cx=0; cx<B; cx++) fObtain px, cx � px < B, such thatnormpx = maxcx�j<B normj; (2)if (normpx <�) f (3)rank = cx;cx = B ;gelse fswap (normcx; colcx of M ) and(normpx; colpx of M ); (4)for (i=A-1; i>cx; i--)Apply Givens rotation to subrowsi-1 and i from colcx to colB�1; (5)for (j=cx+1; j<B; j++)normj = normj �m2cx j ; (6)ggIn (1) the squares of the euclidean norms of thecolumns of matrix M are calculated and stored in vec-tor norm. Then, a procedure of B iterations (if therank ofM is maximum) is performed. It consists of thefollowing actions: the pivot column (px) and the pivotelement (normpx) are selected (2). The pivot elementis the maximum of the norms of the columns whoseindex is �cx. If pivot is close to 0 (� is the requiredprecision), the rank of the matrix is given by the valuecx and the factorization ends (3). Otherwise, a swap ofcolumn cx with the pivot column of matrix M, as wellas a swap of their norms, are performed (4).Givens rotations are applied in (5) to zero the sub-diagonal elements of column cx. A Givens rotationinvolving two rows �, � of matrix M consists of calcu-lating the following product: m0�cx m0�cx+1 � � � m0�B�10 m0� cx+1 � � � m0� B�1 !" (7)� gcos �gsingsin gcos ��� m� cx m� cx+1 � � � m�B�1m� cx m� cx+1 � � � m� B�1 �where gcos = m� cxpm2� cx+m2� cx ; gsin = �m� cxpm2� cx+m2� cx

Givens rotations are clearly orthogonal and it isnot necessary to perform inverse trigonometric func-tions. Figure 1 shows the sequential QR factorizationby means of Givens rotations. It can be observed howzeros are introduced in matrix M to achieve the uppertriangular matrix R. Finally, the norms of the updatedcolumns are calculated in (6).
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Figure 1. Sequential Givens rotationsOnce the algorithm has ended, what we really get isa M � � = Q � R factorization. � is a permutationB � B made up by the product of rank elementarypermutations, � = �0��1�:::��rank�1, each �j , withj=0,...,rank-1, being the identity matrix or a matrixresulting from swapping two of its columns. This isdue to the pivoting carried out in (2).2.1. Fill-in controlWhen working with sparse matrices an additionalproblem arises, which is the �ll-in. The factors that in-uence the �ll-in of a sparse matrix are the following:the dimensions and rank of the matrix, the sparsitydegree (number of null elements) and another factorof great importance, but di�cult to model, which isthe matrix pattern or the location of the nonzero ele-ments. Thus, �ll-in may vary signi�cantly for two ma-trices with the same dimensions, rank and sparsity de-gree, depending on how nonzero elements are placed.A high �ll-in is an undesirable situation due to the in-crease in the storage cost and computation time. Itwould be of interest to implement a simple methodto reduce �ll-in. The most common heuristic strategyemployed in LU factorization to maintain the sparsitydegree is the Markowitz criterion [7, Chapter 7]. More-over, numerical stability must be ensured in the LUfactorization, by avoiding the selection of pivots with alow absolute value. A row ordering strategy for Givens



Matrix Origin A � B Elem(M) % Elem(M)JPWH991 Circuit physics modelling 991 � 991 6027 0.61%BCSSTK14 Structural engineering 1806 � 1806 32630 1.00%SHERMAN5 Oil reservoir modelling 3312 � 3312 20793 0.19%
Table 1. Harwell-Boeing sparse matrices� = 0 � � 1Matrix Elem(R) %Elem(R) Elem(R) %Elem(R) %Reduc.JPWH991 308149 62.69% 140610 28.61% 54.37%BCSSTK14 1224979 75.07% 254841 15.62% 79.20%SHERMAN5 481439 8.78% 377134 6.87% 21.67%

Table 2. Fill-in reductionrotations based on pairing rows to minimize �ll-in ispresented in [15].We have implemented a method to reduce �ll-in inthe QR factorization by taking advantage of columnpivoting. Instead of expression (2), we use a new cri-terion to select the pivot column:Obtain px, cx � px < B, such that(� zeropxmaxcx�j<Bzeroj!+ (1 � �) normpxmaxcx�j<Bnormj!) (8)is maximumwhere zeroj is the number of nonzero elements in sub-column j (from row cx to row A-1), and �, 0 � � � 1,is a pre�xed parameter. The �rst term refers to �ll-inreduction, while the second one relates to numericalstability. Obviously, for � = 0, the pivot column selec-tion criterion is equivalent to the one described in (2).The strategy is to choose a pivot column with manyzeroes in the subcolumn from row cx to A-1 in orderto perform fewer rotations. Although we try to reduce�ll-in as much as possible (� � 1), we shall always keepa minimum degree of numerical stability in the algo-rithm by discarding as pivot columns those with normclose to zero.With the aimof testing this strategy, we have chosenthree matrices from the Harwell-Boeing sparse matrixcollection [8]. A description of these matrices is pre-sented in table 1, where A � B are the dimensionsof the matrix, Elem(M) is the number of nonzero ele-ments of M and %Elem(M) is the percentage of theseelements. Table 2 shows �ll-in in matrix R after thefactorization; Elem(R) and %Elem(R) are the numberand percentage of nonzero elements, for � = 0 and � � 1in expression (8); %Reduc. is the percentage of reduc-tion in the number of nonzero elements obtained with� � 1 (� = 0:999). As we can see, �ll-in has decreased

by 50% on the average for this set of sparse matrices,which is a substantial reduction.2.2. Parallel Givens RotationsThe parallel algorithm developed has been generali-zed for any number of processing elements (PEs) andany dimension of matrix M. We �nd parallel Givensalgorithms in [2] and [14].Matrix M is distributed onto a mesh with m � nPEs. Each PE is identi�ed by coordinates (idx,idy),with 0 � idx < n and 0 � idy < m. Nonzero elements ofM are mapped over PEs using a Block Column Scatter(BCS) scheme [10], but these elements are stored indoubly linked lists instead of vectors. This distribu-tion provides data and load balancing. The algorithmrequires access both by rows and by columns; a datastructure such as a two-dimensional doubly linked list(used in [11] for a LU factorization) would be suita-ble. But this structure is costly to manage and a greatamount of memory is required. Therefore, we use one-dimensional doubly linked lists; each one represents onecolumn of the matrix and each item of the list stores therow index, the matrix element and two pointers. Theselists are arranged in growing order of the row index andthey provide e�cient access by columns. Row accessis achieved using an auxiliary pointer vector with asmany components as columns in the matrix. We gowith this pointer vector through the linked lists corres-ponding to the columns of the matrix from bottom totop to get row access.Let us consider the sequential algorithm to see howit can be executed in parallel. First, each PE obtainsthe local norms corresponding to the column segments(local lists) it contains. By means of a reduction ins-truction (sum by columns), the vector norm of eachcolumn of PEs will contain the norms of the corres-
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Figure 2. Buffer for sending local listsponding global columns (1). Then, the local maximumnorm of each PE is obtained (this value is the samefor each column of PEs). The global maximum is ob-tained by means of a reduction instruction which �ndsthe maximum norm by rows of PEs. As a result, thepivot element, as well as px (the index of the pivotcolumn (2)), will be contained in all the PEs. The pa-rallelization of the strategy to reduce �ll-in (8) requiresmore communications than (2), but it is not very costlyfrom the computational point of view. In order to per-form the pivoting described in (4), if columns cx and pxare located in di�erent PEs, we use a packed vector [7,Chapter 2] that acts as a bu�er for exchanging data.As �gure 2 shows, information of the lists is placed inconsecutive memory positions; the corresponding co-lumn of M and the square of its norm are sent in asingle message.If the rotations are parallelized according to thesequential algorithm, neither the outer loop, whichgoes through the columns of the matrix, nor the in-ner loop (5), which annihilates each element of thecolumn, could be executed in parallel due to data de-pendencies. Thus, the parallel algorithm would needB(2A-B-1)/2 iterations. Nevertheless, a Givens rota-tion can be applied to any two rows, not necessarilyconsecutive; therefore, each row of PEs can, indepen-dently and in parallel, apply the rotations to the Mrows which they store and, thus, reduce the executiontimes. Figure 3a illustrates how this is done for a ma-trix 16�4 distributed on a mesh 4�1. In this example,the four PEs apply Givens rotations in parallel to the�rst column of the matrix, but the �rst row of each PEis not rotated. This is solved as shown in �gure 3b.The PE containing the row cx (in this example, row 0)sends it to the southern PE (i), and then a Givens ro-tation is applied to row cx and to the non-rotated rowof this PE in order to zero the corresponding element.The new row cx is sent again to the southern PE (iii)and we proceed in the same way as in (ii). Once all

the rows are rotated, row cx is updated (vii); the �nalresult is shown in 3c. We have chosen this approachbecause it is easy to generalize for any dimension of themesh.
* * *

* * *
* * *

0
0
0

* * **

* * *

* * *
* * *

0
0
0

* * **

* * *

* * *
* * *

0
0
0

* * **

* * *

* * *
* * *

0
0
0

* * **

* * * *

* * *

* * *
* * *

0
0
0

* * *

* * *
* * *

* * * *
0
0
0

* * **0

* * *

* * *
* * *

* * *
0
0
0

0

* * *

* * *
* * *

* * *
0
0
0

0

* * *

* * *
* * *

* * *
0
0
0

0

* * *

* * *
* * *

* * * *
0
0
0

* * **0

* * *

* * *
* * *

* * * *
0
0
0

* * **0

* * *

* * *
* * *

0
0
0

* * **

i)

ii)

iii)

iv)

v)

vii)

vi)

a) b) c)

Figure 3. Parallel Givens RotationsRows are rotated to zero the corresponding ele-ments. Clearly, it is not necessary to rotate those rowswhose �rst element is zero. As our matrix is sparse andnull elements are not stored in the lists, we go throughthe elements of list (column) cx and rotate the rows ofthose elements; �ll-in may appear at this stage.3. The least squares problemThe least squares problem calculates a vector x oflength B that minimizes kMx�zk2, where z is a vectorof length A. If the rank of M is maximum (B), the



least squares problem has one unique solution (xLS).Otherwise, it has an in�nite number of solutions xSOL,one of which has a minimum norm and which we willalso denote as xLS ; xLS = xSOL such that kxSOLk2 isminimum. If A=B, the least squares problem is equiva-lent to solving a linear equation system Mx = z, sincekMx� zk2 = 0.This problem can be solved adapting the parallelalgorithm that carries out the Givens QR factorizationof matrix M. In particular, the least squares problemis equivalent to solving the upper triangular systemR�Tx = QT z. This approach is adequate due to thegood numerical stability of the QR factorization. Ifrank(M ) = B, this algorithm calculates the one uniquesolution to the least squares problem. If rank(M ) < B,only one of the in�nite solutions is obtained, the onecalled basic solution, which has a maximum of ranknonzero elements and that, in general, will not coincidewith the minimum norm solution xLS .3.1. Calculation of QT zProduct QT z is obtained at the same time thatQR factorization is performed (we assume vector z isdense). First, vector z is stored in a vector called qtz,which is distributed in each column of PEs, so thatthe global component I of qtz is replicated in the rowof PEs with idy=I mod m. Then, Givens rotationsare applied to the corresponding elements of qtz at thesame time we apply the rotations to the rows of matrixM. For instance, if rows � and � are being processed,this product is calculated (it is similar to (7)): qtz0�qtz0� ! � gcos �gsingsin gcos � �� qtz�qtz� � (9)Once all the rotations of the factorization haveended, vector qtz stores the product QT z from index0 to the global index B-1. As we can see, matrix Q isnot necessary.3.2. Back-substitution and permutationThe upper triangular system Rx = QT z is solvedby means of a back-substitution. The correspondingsequential algorithm is as follows:for (i=rank-1;i�0;i--)xi = (qtzi � rank�1Xj=i+1 rij � xj)=rii; (10)

This loop has data dependencies, and thus it mustbe maintained in parallel code without any possibilityof being distributed among the PEs. In addition, it isnecessary to access the elements of matrix R by rows(matrix R is stored by columns). This is solved byusing an auxiliary pointer vector as we saw in x2.2.Another option is to apply the column version of back-substitution [6, Chapter 3]. Once the back-substitutionis carried out we get the solution vector x of lengthB distributed in each row of PEs, so that the globalcomponent J of vector x is replicated in the column ofPEs with idx=J mod n.Due to the column pivoting carried out in the QRfactorization, � permutation must be applied to thecomponents of vector x, so that x is overwritten withvector �x. All the PEs contain a vector called permutof length B. It is the only vector whose componentsare not distributed among the PEs. This vector storesthe index of the column swapped in each iteration (px)and, by applying these swaps starting from the end,elements of vector x are obtained in the correct order.4. Experimental results and conclusionsThe algorithmhas been implemented on a Cray T3Dsupercomputer [4] with a Cray Y-MP host and 320DEC-Alpha processors connected by a tridimensionaltorus topology, using C language and PVM routines formessage passsing. The parallel code is SPMD (SimpleProgram Multiple Data). We have used low latencycommunication functions, such as pvm fastsend andpvm fastrecv (non-standard PVM functions) for messa-ges of length less than 256 bytes. We have also deve-loped reduction instructions suitable for our algorithmto reduce communications.We have tested the performance of our parallel algo-rithm using the Harwell-Boeing matrices described intable 1. Table 3 shows the execution times (in seconds)for 1, 4, 16, 64 and 128 PEs without taking into accountour strategy to reduce �ll-in (� = 0) and applying the�ll-in control approach (� � 1). These times includethe QR factorization as well as the resolution of theleast squares problem. The time required for data dis-tribution and collection of results is not included be-cause we assume that this program is a possible sub-problem within a wider program.Execution times are substantially reduced with� � 1 because fewer nonzero elements appear and,therefore, computations savings are achieved. Forinstance, execution times decrease for matricesJPWH991, BCSSTK14 and SHERMAN5 using 64 PEsby 60%, 87% and 67%, respectively. These times de-crease even further as the number of PEs increases,



1 4 16 64 128Matrix � = 0 � � 1 � = 0 � � 1 � = 0 � � 1 � = 0 � � 1 � = 0 � � 1JPWH991 614.55 180.85 208.72 63.73 68.13 23.31 24.56 9.79 18.23 10.32BCSSTK14 5724.35 326.60 1593.82 101.73 466.84 34.01 129.50 17.25 79.21 17.08SHERMAN5 5308.59 815.49 1370.68 292.32 389.38 107.50 139.07 45.24 93.17 40.21
Table 3. MGS: execution times (in seconds) for � = 0 and � � 1due to the fact that, when data are distributed amongmore PEs, the number of computations that each PEcarries out is lower, whereas the number of communi-cations tends to increase. Since many communicationsare required to update the non-rotated row of each PEin each step of the algorithm (see �gure 3b), even therunning time is higher using 128 PEs than with 64 PEsfor matrix JPWH991.
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Figure 4. Efficiencies for � = 0Figure 4 shows the e�ciencies for � = 0 attainedfor each matrix. For example, the e�ciencies forJPWH991, BCSSTK14 and SHERMAN5 using 128PEs are 0.26, 0.56 and 0.45, respectively. As we cansee, the algorithm scales rather well. It is clear that e�-ciencies will be lower for � � 1 because the execution ofthe algorithm with �ll-in reduction has lower runningtimes and therefore the communication term is a re-latively more signi�cant fraction of the running time.Nevertheless, better e�ciencies could be achieved withlarger matrices.References[1] B.Hendrickson. Parallel QR Factorization using theTorus-wrap Mapping. Parallel Computing, 19:1259{1271, 1993.[2] C.Bendtsen, P.C.Hansen, K.Madsen, H.B.Nielsen, andM.Pinar. Implementation of QR Up and Downdating
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