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Abstract. Understanding program behavior is at the foundation of pro-
gram optimization. Techniques for automatic recognition of program con-
structs (from now on, computational kernels) characterize the behavior
of program statements, providing compilers with valuable information to
to guide code optimization. Our goal is to develop automatic techniques
that summarize the behavior of full-scale real applications by building
a high-level representation that hides the complexity of implementation
details. The first step towards this goal is the description of applications
in terms of computational kernels such as induction variables, reductions,
and array recurrences. To this end we use XARK, a compiler framework
that recognizes a comprehensive collection of frequently used kernels.
This paper presents detailed experiments that describe several bench-
marks from different application domains in terms of the kernels recog-
nized by XARK. More specifically, the SparsKit-II library for the manip-
ulation of sparse matrices, the Perfect benchmarks, the SPEC CPU2000
collection and the PLTMG package for solving elliptic partial differential
equations are characterized in detail.

1 Introduction

Automatic code optimization hinges on advanced symbolic analysis to gather
information about the behavior of programs. Compiler techniques for automatic
kernel recognition carry out symbolic analysis in order to discover program con-
structs that are frequently used by software developers. Such techniques were
shown to be a powerful mechanism to improve the performance of optimizing
and parallelizing compilers. Well-known examples are the substitution of induc-
tion variables with closed-form expressions, the detection of reduction operations
to raise the effectiveness of dependence analysis, the characterization of the ac-
cess patterns of array references to predict program locality, or the automatic
replacement of sequential algorithms with platform-optimized parallel versions.
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XARK [2] is an extensible compiler framework for automatic recognition of
computational kernels. Unlike previous approaches that focus on specific and iso-
lated kernels [6, 8, 11], XARK provides a general solution that detects a compre-
hensive collection of kernels that appear in real codes with regular and irregular
computations. The recognition algorithm analyzes data dependences and con-
trol flow altogether, and handles scalar and array variables in a unified manner.
The kernels are organized in families that share common syntactical properties.
Some well-known examples are induction variables, scalar reductions, irregular
reductions and array recurrences.

The rest of the paper is organized as follows. Section 2 gives a general
overview of the XARK compiler and describes the families of computational ker-
nels. Section 3 shows detailed experimental results for the benchmarks SparsKit-
II, Perfect, SPEC CPU2000 and PLTMG. Finally, Section 4 concludes the paper
and outlines future work.

2 The XARK Compiler

2.1 Overview

XARK [2] is a compiler framework that provides a general solution to the prob-
lem of automatic kernel recognition. Three key characteristics distinguish XARK
from previous approaches: (1) completeness, as it recognizes a comprehensive col-
lection of computational kernels that involve integer-valued and floating-point-
valued scalar and array variables, as well as if-endif constructs that introduce
complex control flows; (2) robustness against different versions of a computa-
tional kernel; and (3) extensibility, as its design enables the addition of new
recognition capabilities with little programming effort.

XARK internals consist of a two-phase demand-driven classification algo-
rithm that analyzes the data dependences and the control flow graph of a pro-
gram through its Gated Single Assignment (GSA) representation [12], which
is an extension of the well-known Static Single Assignment (SSA) form where
reaching definition information of scalar and array variables is represented syn-
tactically. For illustrative purposes consider the example code presented in Fig-
ure 1. For the sake of clarity, the details about the GSA form and the loop index
variable h have been omitted. The code consists of a loop doh that computes a
kernel called consecutively written array (see Section 2.2 later in this paper). At
run-time, consecutive entries of the array a are written in consecutive memory
locations determined by the value of the linear induction variable i. The com-
plexity of this loop comes from the fact that i is incremented in one unit in
those iterations where the condition c(h) is fulfilled. In general, the condition is
not loop-invariant, so the value of i in each iteration cannot be calculated as a
function of the loop index variable h.

The framework is built on top of an intermediate representation where the
source code statements are represented as abstract syntax trees, and the data
dependences between statements are captured as use-def chains between the



i=1
do h=1,n
  if c(h) then
    a(i)=t+2
    i=i+1
  endif
enddo
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Fig. 1. Overview of the XARK compiler.

trees. In the first phase, XARK identifies the strongly connected components
(SCCs) of the dependence graph and carries out an intra-SCC analysis that
determines the type of kernel computed during the execution of the statements
of each SCC. As a result of this intra-SCC analysis, the code is decomposed
into a set of mutually dependent kernels that capture the run-time behavior
of each source code variable. In the example, the code is decomposed into two
SCCs (namely, SCC(i) and SCC(a)) that enable the recognition of the induction
variable and the array assignment (see Section 2.2) computed as a result of
executing the statements i=i+1 and a(i)=t+2, respectively. The dependence
relationships between a and i are represented as use-def chains between the
SCCs.

In the second phase, XARK focuses on the use-def chains between statements
of different SCCs in order to recognize more complex kernels that result from
combining simpler kernels in the same code. In the example of Figure 1, the
isolated detection of the induction variable i and the array assignment a does
not provide enough information to recognize the consecutively written array.
Thus, during the inter-SCC analysis, XARK checks that array a is indexed
with the induction variable i; it analyzes the control flow graph to prove that
every time a(i)=t+2 is executed, i=i+1 is also executed; and checks that i is
incremented in one unit in every loop iteration where c(h) is fulfilled. Under
such conditions, the consecutively written array a is recognized successfully. The
results of this stage provide the compiler with high level information about the
behavior of the program, hiding the complexity of implementation details. This



information is very useful for the construction of other passes of a parallelizing or
optimizing compiler. Examples of successful application of XARK in the scopes
of parallel code generation and prediction at compile-time of cache behavior have
been presented in [3] and [1], respectively.

2.2 Collection of Kernels

The collection of computational kernels recognized by XARK is organized in the
eight families described next: assignments, induction variables, maps, reductions,
masks, array recurrences, reinitialized kernels, and complex written arrays.

Assignments. This is the simplest form of computational kernel. Given a vari-
able of a program, it consists of setting the variable to a value that does not
depend on the variable itself. The family is called scalar assignment or array
assignment if the variable is a scalar or an array, respectively. Different classes
of array assignments are distinguished according to the properties of the array
index. If the index consists of a linear, polynomial or geometric function of the
loop index, the family is called regular array assignment (e.g., a(h)=f(h) where
h is the loop index). If the index is a loop-variant subscripted expression, it is
called irregular array assignment (e.g., a(b(h))=f(h)).

Induction Variables. This family represents the type of scalar, integer-valued
variables that are updated in the iterations of a loop, either in every iteration
or in those iterations that fulfill a given condition. Different classes of induction
variables (IVs) are distinguished: linear, if an integer-valued loop-invariant value
is added to the value of the IV in each iteration (e.g., i=i+1 is an IV of step
one); polynomial, if it is the value of another IV that is added (e.g., i=i+j where
j=j+1); and geometric, if the IV is multiplied by a loop-invariant (e.g., k=2*k+1).

Maps. A distinguishing characteristic of IVs is that there is a closed form func-
tion that allows the computation of the next value of the variable starting from
its initial value or from its current value. A map represents a sequence of val-
ues that do not have such a closed form. In each loop iteration, the variable
is assigned the value of an array reference whose subscript expression contains
an occurrence of the variable (e.g., i=next(i)). When the variable is an ar-
ray, different types of regular and irregular access patterns are considered (e.g.,
a(h)=next(a(h)), with loop index h, is an array map with a regular access
pattern).

Reductions. A scalar reduction is a kernel with one scalar variable that is
defined in terms of itself and at least one loop-variant subscripted expression
(e.g., r=r+a(h)). An array reduction is defined in a similar manner, the reduction
variable being an array (e.g., r(h)=r(h)+a(h)). The characteristics of the index
expression lead to distinguish between regular and irregular array reductions.



flag=true
do h=1,n

if flag then
...
flag=false

endif
...
enddo

Fig. 2. Example of loop that com-
putes a mask kernel.

do h=1,n
i=0
do hh=1,m

i=i+1
enddo

enddo

Fig. 3. Example of loop that com-
putes a reintialized induction vari-
able kernel.

Well-known examples of this family of kernels are adding the elements of a vector,
and finding the minimum/maximum element in each row of a matrix. A variant
of a minimum/maximum reduction consists of gathering additional information
about the reduction variable, for instance, the position of the minimum (or the
maximum) value within each row.

Masks. Masks are kernels that modify the value of a variable if its content
fulfills a boolean condition. This family is called either scalar find&set or array
find&set. A typical example is a loop that contains a set of statements that are
executed only in the first loop iteration (see Figure 2). When the condition is
true (flag in the example), such statements are executed and the condition
is set to false to avoid the execution in the subsequent loop iterations. Array
masks with regular and irregular access patterns are also considered.

Array Recurrences. Array recurrences are kernels that compute the value of
the elements of the array using the values of other elements of the array (e.g.,
a(h)=a(h-1)+1). Unlike array reductions, array recurrences use different index
expressions to access to the elements of the array. Regular and irregular access
patterns are also considered.

Reinitialized Kernels. Real codes may contain more elaborate program con-
structs built from the kernels described above. From a graphical point of view,
they can be interpreted as a point in a multidimensional space where the syntac-
tical kernels are the values represented in the axes. Thus, a reinitialized kernel is
as follows: first, an assignment that sets a scalar/array variable to a given value
at the beginning of every iteration of a loop; and second, an induction variable,
a map, a reduction, a mask or an array recurrence that updates the value of the
scalar/array variable during the execution of an inner loop. The example shown
in Figure 3 contains a reinitialized IV i.

Complex Written Arrays. Another interesting family is called complex writ-
ten array [7]. It consists of a scalar kernel (e.g., induction variable, reinitialized
IV, scalar reduction) that defines the array entries to be modified during the



Table 1. Summary of characteristics of the benchmark suite.

SPEC2000 Perfect SparsKit-II PLTMG Totals

#Routines 273 608 103 258 1242
#Code lines 53173 60136 8286 27530 149125
#Loops analyzed 769 1245 293 651 2958
#Loops recognized 609 955 224 502 2290
%Loops recognized 79% 77% 76% 77% 77%

execution of the code, and an array assignment whose left-hand side subscript
is a linear function of the scalar variable. When the scalar kernel is an IV of
step one, the kernel is called consecutively written array (see the example code
of Figure 1). When it is a reinitialized IV of step one, it is called segmented
consecutively written array. Other variants of complex written arrays recognized
by XARK involve an array reduction or an array recurrence instead of an array
assignment. Then, they are called (segmented) consecutively reduced array and
(segmented) consecutively recurrenced array, respectively.

3 Experimental Results

3.1 Benchmarks

Four benchmark suites have been used in the experiments: the Fortran routines
included in SPEC CPU2000 [10], the Perfect benchmarks [5], the SparsKit-II
library [9] and the PLTMG (Piecewise Linear Triangle Multi-Grid) code [4].
SPEC2000 and Perfect are well-known benchmarks that have been extensively
used in the literature. SparsKit-II and PLTMG have been selected because their
source codes contain plenty of irregular computations that cover the typical ker-
nels found in full-scale applications. Table 1 shows the size of the benchmarks
in terms of number of routines and number of code lines, and presents the per-
centage of loops recognized successfully by the XARK compiler.

SparsKit-II [9] contains routines for the manipulation of sparse matrices. It is
organized in four modules: MATVEC, devoted to basic matrix-vector operations
(e.g., matrix-vector products and triangular system solvers); BLASSM, which
covers basic linear algebra operations (e.g., matrix-matrix products and sums);
UNARY, to carry out unary operations with sparse matrices (e.g., extract a sub-
matrix); and FORMATS, for the conversion of sparse matrices between different
types of sparse storages.

SPEC CPU2000 [10] consists of six Fortran codes: a program in the area
of quantum chromodynamics (WUPWISE), two weather prediction programs
(SWIM and APSI), a very simple multi-grid solver for computing a three dimen-
sional potential field (MGRID), coupled nonlinear partial differential equations
solver in the scope of computational fluid dynamics and computational physics
(APPLU), and a program in the area of high energy nuclear physics accelerator
design (SIXTRACK).



The Perfect Benchmarks [5] are a collection of thirteen scientific and engi-
neering Fortran programs that are representative of applications executed on
high-performance computers and that have been used extensively in research
on parallelizing and restructuring compilers. It covers different application ar-
eas: fluid dynamics (ADM, ARC2D, FLO52, OCEAN and SPEC77), chemical
and physical modeling (BDNA, MDG, QCD and TRFD), engineering design
(DYFESM and SPICE), and signal processing (MG3D and TRACK).

PLTMG (Piecewise Linear Triangle Multi-Grid) [4] is a Fortran-77 code that
consists of an adaptive multi-grid solver for two dimensional problems in general
domains.

3.2 Recognition Results

The first step towards the characterization of the behavior of programs is the
recognition of the computational kernels that appear in the code. The last row
of Table 1 measures the effectiveness of XARK in terms of the percentage of
loops whose body has been decomposed into a set of kernels recognized by the
compiler. The percentage of recognized loops is 77% on average, ranging from
76% in SparsKit-II up to 79% in SPEC2000.

The experiments revealed that the loops of the benchmarks can be described
in terms of the eight kernel families recognized by XARK, which were introduced
in Section 2.2. Tables 2-4 summarize the number of kernels N found in each
module of SparsKit-II, PLTMG, Perfect and SPEC2000. The last rows show the
totals for each module, including the percentage of computational kernels that
contain irregular computations. Measurements of the complexity of the kernels
are also presented: S is the range of statements that compose the kernels; C is the
range of conditions checked in if-endif statements; and L is the range of nested
loops that contain the statements of the kernels. The ranges are displayed in
the format m-M, the numbers m and M being the minimum and the maximum,
respectively.

Sparskit-II and PLTMG are codes that contain a high percentage of irregular
computations, ranging from 41% in PLTMG up to 64% in the BLASSM mod-
ule of Sparskit-II (see last row of Table 2). Irregularity is due to the presence
of kernels with irregular access patterns (e.g., irregular assignment, irregular
reduction, irregular find-and-set and irregular recurrence), array references in
the conditions of if-endif constructs, or read-only subscripted array references
used in the computations of other kernels. Sparskit-II consists of small routines
with complex computations. Apart from the high percentage of irregular com-
putations, this complexity is reflected in the maximum number of statements
(6 and 5 in BLASSM and FORMATS, respectively), conditions (4 in UNARY
and FORMATS) and nested loops (4 in MATVEC, FORMATS and PLTMG).
The experiments also reveal that PLTMG is a complex application. It consists
of 1575 kernels that involve up to 9 statements, 9 conditions and 4 nested loops.
Note that PLTMG is the unique benchmark that contains kernels of the eight
families presented in Section 2.2. It contains 46 maps, which is a family that
does not appear in any other benchmark. This fact shows that the recognition



Table 2. Kernel families recognized by XARK in Sparskit-II and PLTMG.
SparskitIIPltmg

Page 2

Kernel family
MATVEC BLASSM UNARY FORMATS PLTMG

N S C L N S C L N S C L N S C L N S C L

Assignments

Scalar assignment 16 1-1 0-0 2-4 37 1-1 1-1 1-3 61 1-1 0-4 1-3 82 1-2 1-4 1-4 503 1-4 1-9 1-4

Regular assignment 12 1-1 0-0 1-2 23 1-2 1-2 1-3 39 1-1 0-1 1-3 55 1-2 1-2 1-2 456 1-9 1-4 1-3

Irregular assignment 13 1-1 1-1 1-2 11 1-4 1-2 1-3 47 1-2 1-1 1-3 67 1-3 1-2 1-2

Induction variables

Linear 1 1-1 0-0 4-4 6 1-3 1-2 1-3 12 1-1 1-2 1-2 17 1-5 1-2 1-3 100 1-6 1-5 1-4

Polynomial 5 1-1 0-0 1-2

Geometric 1 1-1 0-0 3-3 1 1-1 0-0 4-4 38 1-1 0-2 1-2

Maps

Linked list 44 1-2 1-9 1-4

Regular map 2 1-1 0-0 2-2

Reductions

Scalar reduction 5 1-1 0-0 1-1 12 1-1 0-1 1-3 4 1-1 0-0 1-1 105 1-2 1-3 1-2

Regular reduction 2 1-1 0-0 2-2 2 1-1 0-0 1-1 4 1-1 0-0 1-1 2 1-2 0-1 1-2 86 1-3 0-1 1-3

Irregular reduction 9 1-1 0-0 1-4 1 1-1 1-1 1-1 7 1-3 1-1 1-2 13 1-1 1-1 1-2 24 1-3 0-1 1-2

Scalar min/max 2 1-2 1-2 1-1 4 1-2 1-2 1-2 6 1-2 1-3 1-2

Masks

Scalar find-and-set 2 1-1 1-1 1-1 13 1-2 1-4 1-3

Regular find-and-set 4 1-2 1-1 1-1 6 1-2 1-2 1-2

Irregular find-and-set 2 1-1 1-1 1-2 5 2-4 1-3 1-3

Recurrences

Regular recurrences 7 1-1 0-0 1-1 18 1-1 0-0 1-2 51 1-3 0-1 1-2

Irregular recurrences 2 1-1 1-1 2-2 2 1-1 1-2 1-2 15 1-1 0-0 1-3

Reinitialized kernels

Induction variables 2 2-2 1-1 2-3 2 2-2 1-1 2-2

Maps 9 2-3 2-2 2-4

Reductions 1 2-2 0-0 2-2 5 2-2 1-1 2-2 2 2-2 0-0 2-3 4 2-2 0-0 2-2

Complex written arrays

13 2-6 1-2 1-2 17 2-2 1-1 1-3 31 2-2 1-2 1-4 31 2-6 1-3 1-2

1 2-2 0-0 2-2 5 2-2 1-1 2-2

2 3-3 0-0 2-2

TOTALS 46 1-2 0-0 1-4 97 1-6 0-2 1-3 190 1-4 0-4 1-3 281 1-5 0-4 1-4 1575 1-9 0-9 1-4

21 46% 62 64% 96 51% 157 56% 642 41%

C. written ar. (CwriA)

C. recurrenced ar. (CrecA)

Segmented CwriA

Kernels with irregular 
computations

of all the kernel families is essential in order to fully characterize the behavior
of real applications.

Perfect and SPEC2000 are codes characterized by the regularity of their com-
putations. On average, only 11% of the kernels contain some type of irregularity,
ranging from 0% in TRFD up to 26% in SIXTRACK. The complexity of the
analysis of the Perfect benchmarks is mainly due to the existence of plenty of
linear, polynomial and geometric induction variables. SPEC2000 includes large
applications such as APPLU, SIXTRACK and APSI. They contain complex im-
plementations of the well-known kernels assignments, induction variables and
reductions. Note that the maximum number of statements is 29 in SIXTRACK,
the maximum number of conditions is 6 in APSI, and the maximum number of
nested loops is 4 in APPLU and SIXTRACK. These results demonstrate that
the representation of programs in terms of computational kernels hides the com-
plexity of the implementation, and eases the understanding of program behavior
by the compiler.

Overall, the three families assignments, induction variables and reductions
cover, on average, 83% of the computations of the recognized loops. In MATVEC,
ADM, TRACK, OCEAN, MG3D and APSI, they cover more than 90% of the
computations, being almost 100% in MATVEC and MG3D. The family of com-
plex written arrays covers 6% of the kernels on average. This percentage raises
up to 13%, 14% and even 48% in MDG, BLASSM and QCD, respectively. Note
that, implicitly, these kernels involve the computation of IVs and reinitialized
IVs. Finally, it should be noted that the experiments enabled to identify new
computational kernels not studied in the literature so far, in particular, array



Table 3. Kernel families recognized by XARK in Perfect.
perfect
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Kernel family
ADM SPICE QCD MDG TRACK BDNA

N S C L N S C L N S C L N S C L N S C L N S C L

Assignments

Scalar assignment 278 1-3 1-6 1-3 42 1-1 0-0 1-2 14 1-2 1-2 1-2 20 1-1 0-0 1-3 2 1-1 0-0 1-1 360 1-3 0-2 1-4

Regular assignment 169 1-10 1-4 1-3 23 1-1 0-0 1-2 22 1-1 1-1 1-3 23 1-1 0-0 1-2 45 1-2 1-1 1-2 113 1-4 0-1 1-2

Irregular assignment 1 1-1 0-0 2-2

Induction variables

Linear 62 1-2 2-2 1-3 20 1-1 0-0 1-2 2 1-1 0-0 4-4 23 1-1 1-1 1-3 6 1-1 1-1 1-2 43 1-1 0-0 1-3

Polynomial 4 1-1 0-0 2-3

Geometric 12 1-1 1-1 1-2 1 1-1 0-0 1-1 2 1-1 0-0 1-2 9 1-1 0-0 1-3 7 1-1 0-0 1-2

Reductions

Scalar reduction 17 1-1 0-0 1-3 6 1-1 0-0 1-2 2 1-1 0-0 1-1 22 1-2 0-0 1-2 4 1-1 0-0 1-2 33 1-1 0-0 1-2

Regular reduction 13 1-2 0-0 1-2 5 1-1 0-0 1-1 5 1-1 0-0 1-2 7 1-3 0-0 1-2 8 1-2 1-1 1-3 49 1-6 0-0 1-4

Irregular reduction 1 1-1 1-1 2-2 14 1-12 0-0 1-3

Masks

Regular find-and-set 1 2-2 1-1 1-1

Recurrences

Regular recurrences 7 1-1 0-0 1-3 5 1-1 0-0 1-1 1 1-1 0-0 1-1 6 1-1 0-0 1-1 20 1-3 0-0 1-2

Irregular recurrences 10 1-2 0-0 1-1

Reinitialized kernels

Induction variables 7 2-2 0-0 2-3 1 2-2 0-0 2-2 3 2-2 0-0 4-4 10 2-2 0-0 2-4 1 2-2 0-0 3-3

Reductions 1 2-2 0-0 2-2 4 2-2 0-0 2-2 2 2-2 0-0 2-4

Complex written arrays

4 2-2 0-0 1-2 45 2-28 1-1 1-4 10 2-2 0-0 1-4 23 2-2 0-0 1-1

8 2-2 0-0 2-3 4 2-2 0-0 2-2 45 2-2 0-0 1-2

1 3-3 0-0 2-2

1 3-3 0-0 2-2

TOTALS 582 1-10 0-6 1-3 114 1-2 0-0 1-2 94 1-28 0-2 1-4 128 1-3 0-1 1-4 80 1-2 0-1 1-3 711 1-12 0-2 1-4

29 5% 22 19% 6 6% 22 17% 8 10% 118 17%

C. written ar. (CwriA)

C. reduced ar. (CredA)

Segmented CwriA

Segmented CredA

Kernels with irregular 
computations

perfect_2
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Kernel family
OCEAN DYFESM MG3D ARC2D FLO52 TRFD SPEC77

N S C L N S C L N S C L N S C L N S C L N S C L N S C L

Assignments

Scalar assignment 14 1-2 3-3 1-2 32 1-1 1-4 1-4 747 1-2 1-1 1-3 158 1-3 0-3 1-3 40 1-1 0-0 1-2 1 1-1 0-0 2-2 64 1-3 1-2 1-3

Regular assignment 29 1-2 0-0 1-2 55 1-3 0-1 1-4 65 1-5 0-0 1-3 65 1-4 0-0 1-3 56 1-4 0-0 1-3 5 1-2 0-0 1-2 120 1-2 0-1 1-2

Irregular assignment 6 1-1 1-1 2-2

Induction variables

Linear 27 1-1 0-0 1-2 10 1-1 0-0 1-2 194 1-2 0-0 1-3 24 1-2 1-1 1-3 11 1-1 1-1 1-2 10 1-2 1-1 1-4 62 1-2 1-1 1-3

Polynomial 8 1-1 0-0 1-2 52 1-1 0-0 2-3 2 1-1 1-1 2-2

Geometric 9 1-1 0-0 1-2 6 1-1 0-0 1-1 2 1-1 0-0 1-1 9 1-1 0-0 1-2

Reductions

Scalar reduction 4 1-1 0-0 1-1 18 1-2 0-1 1-4 2 1-1 0-0 1-1 1 1-1 0-0 2-2 4 1-1 0-0 1-1 4 1-1 0-0 2-4 33 1-1 1-1 1-3

Regular reduction 30 1-1 0-0 1-2 18 1-4 1-1 1-3 13 1-2 0-0 1-2 30 1-4 0-0 1-3 18 1-1 0-0 1-3 4 1-2 0-0 1-1 59 1-2 1-1 1-3

Irregular reduction 4 1-3 1-1 1-2

Scalar min/max 3 1-1 1-1 1-2

Masks

Scalar find-and-set 1 1-1 1-1 2-2

Recurrences

Regular recurrences 6 1-1 0-0 1-2 5 1-1 1-1 1-2 2 69 1-2 0-0 1-2 11 1-2 0-0 1-2 7 1-1 1-1 1-2

Reinitialized kernels

Induction variables 4 2-2 0-0 2-2 2 2-2 0-0 2-4 36 2-2 0-0 2-3 10 2-2 0-0 2-3 1 2-2 0-0 2-2 16 2-2 0-0 2-3

Reductions 11 2-2 0-0 2-4 14 2-2 0-0 2-2

Complex written arrays

2 2-2 0-0 1-1 2 2-2 0-0 1-1 2 2-2 0-0 1-1 2 2-2 0-0 1-1

2 2-2 0-0 1-1

15 4-10 0-0 2-3

TOTALS 133 1-2 0-3 1-2 161 1-4 0-4 1-4 1119 1-5 0-1 1-3 347 1-4 0-3 1-3 154 1-4 0-1 1-3 27 1-2 0-1 1-4 407 1-10 0-2 1-3

7 5% 30 19% 23 2% 29 8% 8 5% 0 0% 24 6%

C. written ar. (CwriA)

C. recurrenced ar. (CrecA)

Segmented CwriA

Kernels with irregular 
computations



Table 4. Kernel families recognized by XARK in SPEC CPU2000.
spec2000

Page 5

Kernel family
WUPWISE SWIM MGRID APPLU SIXTRACK APSI

N S C L N S C L N S C L N S C L N S C L N S C L

Assignments

Scalar assignment 6 1-2 1-2 1-3 1 1-1 0-0 3-3 24 1-1 0-0 1-4 32 1-2 1-2 1-3 276 1-3 1-6 1-3

Regular assignment 2 1-1 0-0 1-2 23 1-1 0-0 2-2 4 1-1 0-0 3-3 26 1-25 0-1 1-4 432 1-29 1-4 1-4 167 1-10 1-4 1-3

Irregular assignment 1 2-2 0-0 1-1 3 1-1 1-1 1-1

Induction variables

Linear 4 1-1 0-0 1-1 22 1-2 1-1 1-4 61 1-2 2-2 1-3

Polynomial 4 1-1 0-0 2-3

Geometric 3 1-1 0-0 3-3 6 1-1 0-0 2-4 30 1-1 0-0 1-2 12 1-1 1-1 1-2

Reductions

Scalar reduction 2 1-1 0-0 1-1 3 1-1 0-0 2-2 1 1-1 0-0 3-3 3 1-1 0-0 2-2 8 1-1 0-0 1-1 17 1-1 0-0 1-3

Regular reduction 12 1-3 1-2 1-3 4 1-1 0-0 2-2 5 1-4 0-0 1-3 8 1-2 0-0 1-4 36 1-2 1-2 1-4 10 1-1 0-0 1-2

Irregular reduction 4 1-1 1-1 1-1

Scalar min/max 1 1-1 1-1 3-3

Regular min/max 2 1-1 1-1 1-4

Masks

Scalar find-and-set 1 2-2 4-4 1-1 1 1-1 1-1 2-2

Regular find-and-set 1 2-2 2-2 1-1 1 2-2 1-1 1-1

Recurrences

Regular recurrences 30 1-1 0-0 1-1 5 1-2 0-0 1-2 9 1-1 0-0 1-3 86 1-3 1-2 1-3 8 1-2 0-0 1-3

Reinitialized kernels

Induction variables 7 2-2 0-0 2-3

Reductions 6 2-2 0-0 3-3 2 2-2 0-0 2-2

Complex written arrays

1 2-2 0-0 1-1 1 4-4 0-0 1-1 4 2-2 0-0 1-2

2 2-2 0-0 1-1 6 2-2 0-0 2-3

TOTALS 36 1-2 0-4 1-3 60 1-1 0-0 1-2 21 1-4 0-1 1-3 78 1-25 0-1 1-4 658 1-29 0-4 1-4 573 1-10 0-6 1-3

9 25% 7 12% 2 10% 8 10% 171 26% 27 5%

C. written ar. (CwriA)

C. reduced ar. (CredA)

Kernels with irregular 
computations

maps, irregular array recurrences, consecutively reduced (and recurrenced) ar-
rays and segmented consecutively reduced (and recurrenced) arrays.

4 Conclusions

This article has demonstrated that a significant amount of the regular and irreg-
ular computations carried out in full-scale real applications can be characterized
using the families of computational kernels recognized by the XARK compiler.
The representation of programs in terms of kernels hides the complexity of im-
plementation details, providing optimizing compilers with a promising tool to
reason about programs and, thus, to guide program optimizations.

In addition, the experiments have shown that full-scale real applications re-
quire the recognition of all the kernel families detected by XARK. Finally, note
that new kernel families that had not been studied in the literature have been
found in the benchmarks.

As future work we intend to give a step forward by describing program behav-
ior using a higher-level of abstraction that consists of dependence relationships
between the computational kernels. It is also intended to use such high-level
representation for code generation using a stream programming model.
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