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Abstract 

This article explores the use of evolutionary genetic algorithms to predict scenarios of urban vertical growth in large 

urban centers. Tokyo’s Minato Ward is used as a case study because it has been one of the fastest growing skylines 

over the last 20 years. This study uses a genetic algorithm that simulates the vertical urban growth of Minato Ward to 

make predictions from pre-established inputted parameters. The algorithm estimates not only the number of future 

high-rise buildings but also the specific areas in the ward that are more likely to accommodate new high-rise 

developments in the future. The evolutionary model results are compared with ongoing high-rise developments in 

order to evaluate the accuracy of the genetic algorithm in simulating future vertical urban growth. The results of this 

study show that the use of genetic evolutionary computation is a promising way to predict scenarios of vertical urban 

growth in terms of location as well as the number of future buildings. 

Author keywords: Urban morphogenesis; Genetic algorithms; Evolutionary computation; Minato Ward; Tokyo; 

Skyscrapers. 

 

 

  



Introduction 

Since the beginning of the twentieth century, many large urban centers have grown not only in size, 

extent, and population, but also vertically. However, it is not always easy to predict where and when 

vertical growth will occur. Thus the motivation for this research is to develop tools to simulate scenarios 

of future vertical growth in order to aid planners, urban designers, and policy makers. This study proposes 

a genetic algorithm that simulates the vertical urban growth of Minato Ward based on previous growth 

patterns to make predictions from pre-established inputted parameters. Because genetic algorithms have 

been used in the past for predicting the evolution of self-organized systems, it seems plausible that 

evolutionary computation could also be applied to examine the growth of cities. After a brief introduction 

to the development of genetic algorithms, this article explains the parameters that are used in the case 

study, proposes and tests an evolutionary computer model, and, finally, based on the results, offers some 

conclusions on the potential for evolutionary computation to predict vertical urban growth.  

Methodology  

This article develops a computer model that can simultaneously determine the most likely location, 

height and number of new skyscrapers. For inputs, it uses various criteria related to urban regulations, a 

survey of current buildings, and economic indicators in the case study area to simulate future growth 

patterns. The proposed model is divided into two parts: the first is a parametric process which determines 

a probabilistic map for the allocation of new buildings; secondly, a genetic algorithm based on economic 

data determines the estimated number of buildings built per year as well as their average height.  

 

The methodology follows these steps:  

 

 An area of study is defined within a large urban metropolis and the building types to be studied are 

determined.  

 Existing parameters that influence the allocation of vertical growth are analyzed and mapped to later 

determine the location of possible new buildings.  

 A genetic algorithm to predict scenarios of vertical growth is proposed.  

 Economic parameters from the area of study are used as input data for a genetic algorithm to 

determine both the number and average height of new skyscrapers.  

 A probabilistic allocation map is generated.  

 The genetic algorithm is tested for the vertical growth of the study area for a 4-year period.  

 The results obtained by the genetic algorithm and the probabilistic map are contrasted with the current 

observed vertical growth in the area of study.  

Precedents  

In the 1960s, Holland began to study the logical processes involved in adaptation, inspired by the 

studies of cellular automata (CA) by Burks (1960) and neural networks by Selfridge (1958). Holland 

(1975, 1998) explored the way simple rules could lead to complex behavior. Using the logic of Darwinian 

evolution, he built what he initially called a reproductive genetic plan, known today as a genetic 

algorithm. The concept was further developed by Koza (1989, 1992), who introduced the idea of genetic 

programming and achieved excellent results in solving problems for which traditional techniques did not 

work. The evolutionary process consisted of randomly combining pools of genes, in this case codes, 

through which the most successful new solutions and behaviors would be passed on to the next 

generation. Johnson (2001) noted that Turing (1952) was the first to demonstrate, using mathematics, how 

a complex organism could assemble itself without any master planner.  

 

  



This article applies the same logic to an urban system to test whether the genetic algorithms might be 

successful in predicting the evolution of a city over time. Many authors have already proposed links 

between urban growth and biological growth, such as pioneering studies by Weaver (1958) in the natural 

sciences. Jacobs (1961), who applied Weaver’s notion of organized complexity, further theorized that 

although cities are a model of disorder, they somehow work successfully. Johnson (2001) claimed that the 

growth of large urban metropolitan areas resembled the growth of biological organisms. A similar 

analogy was made by Al-Sayed and Turner (2012), who described cities as complex organisms in 

constant evolution, their growth governed by both an evolutionary process and a self-organization 

process. Al-Sayed and Turner (2012) also noted how most of the computer models that simulate urban 

growth were developed based on mechanisms that characterize biological systems rather than spatial 

systems.  

 

The main precedent for the use of computer models to simulate urban growth is CA modeling. 

According to Leao et al. (2004), since the 1980s and the introduction of computation and 

selforganization, the traditional top-down approaches for the simulation of urban growth have shifted 

toward bottom-up approaches. Clarke et al. (1997) developed the first CA-based model, which was 

applied with satisfactory results in the simulation of urban growth for the San Francisco Bay area (Clarke 

and Gaydos 1998). Other CA models were developed by Wu (1998) to analyze forms of city growth for 

different development strategies, and by Li and Yeh (2000) for sustainable development of agricultural 

land. Li and Yeh (2002) combined neuronal networks and CA using geographical information system 

(GIS) to simulate the evolution of multiple land uses. Leao et al. (2004) further noted how urban growth 

has generally been the product of individuals making decisions within existing regulations even if these 

decisions did not necessarily follow the most optimal patterns. Because of this, CA models have also been 

used in combination with other techniques. White and Engelen (1997) included a stochastic factor in their 

CA models, whereas Clarke and Gaydos (1998) used probabilistic random processes. Rienow et al. 

(2014) used CA-based spatial modeling to simulate urban growth in combination with multiagent systems 

(MAS), which are well-suited to capture individual decision making. Other studies have used genetic 

algorithms to calibrate the CA modeling for urban simulation (Li et al. 2007) and landscape metrics (Li et 

al. 2013). Naghibi et al. (2016) combined CA with swarm intelligence–based algorithms.  

 

Because economic factors have always played a role in the selforganization of city growth, other lines 

of research proposed economic models. As an example, Krugman (1996), based on Schelling’s (1978) 

game theory model, explained how a simplified city made up only of businesses will organize itself into 

multiple equidistant, distinct clusters evenly spaced from each other. Beyond these examples, no other 

attempts to produce similar types of studies exclusively using genetic algorithms to simulate urban 

growth have been found. In addition, there are no previous studies that focused exclusively on the 

prediction of vertical growth. Because urban growth is the result of a collective and largely unplanned 

effort that does not necessarily follow the most logical, advantageous, or efficient patterns, the use of 

evolutionary computation seems to present an ideal and novel approach to simulate vertical growth.  

Case Study: Tokyo’s Minato Ward  

One of Tokyo’s most central administrative districts, Minato, was used as a case study. According to 

the Council of Tall Buildings and Urban Habitat (CTBUH), Tokyo is the third tallest city in the world 

based on both the number of buildings over 100 m and their accumulated height (CTBUH 2009). 

However, this is a recent phenomenon, because most of Tokyo’s high-rise buildings were built in the 21st 

century. As Pazos (2014) noted, 72% of all the buildings over 150 m were built after the year 2000. The 

process of building skyward began in the early 1990s and accelerated after the year 2000. The main 

reason for this high-rise boom was the easing of urban regulations, in particular the Urban Regeneration 

Act of 2000, which eased regulations concerning floor area ratio (FAR) in order to boost economic 

growth.  

  



To develop the genetic algorithm, it was necessary to first precisely define the area of study as well as 

the number of high-rise buildings. To this end, an administrative district was selected so that similar 

conditions could be evenly applied to the whole area. It was also important to define the sample size or 

population of objects to be studied. Because the research focuses on the morphology of the skyline, to run 

the algorithm only buildings over 130 m tall were included. Thus this article defined a skyscraper or high-

rise building as a building with an official height over 130 m. According to the CTBUH height criteria, 

there is no absolute definition of what constitutes a tall building, and different cutting marks are 

constantly used. What really defines a tall building is its height relative to its environment as well as the 

slenderness of the building. With this in mind, the model produced in this article focused on buildings 

that significantly stick out from their surroundings. Of the 124 buildings in Minato Ward over 100 m, 

only 51 of them surpass the 130-m mark, which is the threshold for a building to visually protrude into 

the skyline in this ward (Fig. 1). Minato was chosen because it contains 28.7% of the total buildings over 

130 m in Tokyo, including the two tallest buildings, as well as the second tallest communications tower 

(Emporis Building Directory 2017). Ōdaiba, a small area on the eastern side of Minato Ward, was 

excluded from this study because it is an island in Tokyo Bay, disconnected from the main urban fabric, 

and contains no buildings surpassing 130 m in height.  

 
 

 
Fig. 1. Minato Ward skyline renderings; data obtained from photogrammetric 3D model, postedited, and rendered (map data © 2017 

Google, ZENRIN) 

For the purpose of geometrically analyzing the morphology, location, and number of buildings of the 

current skyline, a three-dimensional (3D) model of Minato Ward was developed from original 

photogrammetric data. The model contains the terrain level as well as buildings over 15 m, approximately 

four to five stories high, and accurately represents the Minato skyline in 2015 (Fig. 1).  

  



To develop the genetic algorithms, economic data and parameters were taken from the existing urban 

fabric of MinatoWard. For this purpose, gradient probabilistic maps of the ward were developed from the 

3D data. The gradient maps informed the probability of new high-rise developments occurring in a 

particular area.  

Parameter Mapping  

A series of greyscale probabilistic maps showing different parameters were developed for use as the 

basis for the evolutionary model. The parameters were mapped in the following gradient maps: land 

ownership, regulatory master plans, vertical urban consolidation, accessibility, and allocation.  

Land Ownership: Public versus Private 

The land ownership diagram [Fig. 2(a)] shows publicly owned land in white and privately held land in 

black. The construction of private buildings is prohibited in public spaces such as streets, roads, parks, 

cemeteries, highways, train tracks, stations, and so on. The municipal government has direct control over 

publicly owned areas, which are designed and regulated as top-down systems from a central local 

authority (Johnson 2001). In contrast, privately owned land is developed based on individual decision 

making as a bottom-up process, although it must still adhere to building codes and urban regulations that 

set rules such as floor area ratios, building coverage ratios (BCR), and maximum permitted heights. Floor 

area ratio regulations are variable in Minato Ward, with standard maximum percentages up to 1,000% for 

residential and up to 1,300% for high-rise office developments, and, even then, exceptions can be granted 

in exchange for the integration of public parks or facilities. The usual limiting factor in developing a 

building over 130 m in height tends to be accumulating enough small land plots. Land reorganization 

processes are often necessary in order to put together land plots large enough to accommodate a high-rise 

building based on the current FAR and BCR regulations. 

 
 

 
Fig. 2. Urban consolidation diagrams obtained from the 3D model; white areas show publicly owned land and consolidated master 

plans, and the gradient denotes vertical consolidation: (a) public (white) and private (black) space; (b) consolidated master plans 
(white) and lack of master plan (black); (c) vertical consolidation gradient map 

  



Land Reorganization Master Plans  

The consolidated land diagram [Fig. 2(b)], which presents existing master plans already developed, 

shows areas that have already undergone master plans through urban redevelopment processes in white. 

As Kogut (2006) noted, the modern-day urban fabric of Tokyo is eerily similar to its origins in the Edo 

period (1603–1867), although the administrative boundaries changed numerous times before their current 

configuration was decided in 1947. Tokyo high-rises have grown over this pre-existing urban fabric, with 

no substantial changes made to the previous land structure, except for ownership changes and localized 

regulatory master plans, involving land property reorganization. Almazan and Tsukamoto (2009) defined 

these types of high-rise developments as corporate urban centers, which are an example of government 

policy reinforcing deregulation and privatization of urban developments. Meyer (2011) explained how 

this type of redevelopment strategy has become the norm in Minato Ward, because finding plots large 

enough to build a high-rise building is very difficult due to the small size of land plots. For these reasons, 

areas comprising clusters of low-rise buildings are likely to be reorganized into privately driven high-rise 

redevelopments, whereas areas that have been recently redeveloped are very unlikely to see new high-rise 

developments in the near future.  

Vertical Density  

The vertical consolidation diagram [Fig. 2(c)] shows Minato Ward’s vertical density in grayscale. The 

darker shades represent shorter buildings, which open the possibility for new high-rise urban 

developments. This is because Tokyo high-rise buildings are developed through the reorganization of 

small land plots, which puts pressure on less-dense areas to be developed into high-rises, as was 

explained in the previous paragraph.  

Accessibility  

The train station proximity diagram [Fig. 3(a)] shows greyscale circles with a radius of 500 m 

(walking distance of 5–10 min) centered on subway stations. When several train lines overlap in one 

station, the circles overlap as well, producing a darker tone, which indicates multiple access points to 

public transportation. In Tokyo, there is a strong correlation between the development of high-rise 

buildings and their proximity to public train transportation. Fig. 3(b) plots the footprint of buildings over 

100 m in black over the station diagram, making clear this correlation of high-rise buildings and 

proximity to train stations. The public space and already regulated spaces in the previous diagrams are 

subtracted from the final accessibility diagram [Fig. 3(c)]. The darker areas in the diagram, which are in 

close proximity to public transportation, are more likely to experience further high-rise developments.  

  



 
 

 
Fig. 3. Accessibility grayscale diagrams of the subway stations with a radius of 500 m; darker tones reflect higher accessibility to 
trains and thus a higher probability of future high-rise developments: (a) train station gradient overlap within 500 m radius; (b) train 

stations and tall buildings; (c) train station accessibility gradient map 

Allocation Parameters  

With these various inputs, a final gradient probabilistic map combining the land ownership, existing 

master plans, vertical consolidation and accessibility was developed (Fig. 4), to be later used as the basis 

for the computer model. This map was the result of the overlap of the vertical consolidation diagram and 

the accessibility diagram [Figs. 2(c) and 3(c)]. Darker areas reflect a high probability for future high-rise 

developments to occur due to less urban consolidation as well as proximity to public transportation. 

Lighter areas represent a lower probability of further vertical growth, and the white areas show where 

construction of vertical developments is prohibited or highly unlikely. The gradient plan was produced 

with simple parameters and was used as a probabilistic basis to determine areas with higher probability 

for new skyscraper construction. 

 
 

Fig. 4. Allocation diagram produced by overlapping Figs. 2(c) and 

3(c); darker áreas show higher probability of future high-rise developments 

  



Economic and Real Estate Parameters 

The evolutionary process incorporated economic and demographic data to predict the number of new 

high-rise developments annually. Understanding the overall economic context and its relation to the 

construction of high-rise buildings was an important factor. In 1991, Japan’s economy entered a recession 

which, as Daniell (2008) noted, was the result of a real estate bubble that was fed by easy access to loans 

using overvaluated properties as collateral. As Krugman (2008) explained, “Japan did not merely undergo 

a single year of catastrophic economic decline”; rather, the economy gradually slowed, with growth rates 

below 2% since 1992. Starting in the 1990s with the fall of land prices, some developers began acquiring 

significant numbers of small, adjacent land plots in order to undertake large building projects in a way 

that had not been viable before. Most of the high-rise construction in Minato Ward followed this pattern 

of development. As Pazos (2014) argued, high-rise developments in Tokyo tend to increase with low 

economic growth in part due to lower land prices, the introduction of economic stimulus, and less-

restrictive building regulations as the government attempts to boost productivity across the economy (Fig. 

5). High-rise construction has been more of a tool to boost economic development than a result of 

economic growth itself. Since 1960, a total of 51 buildings over 130 m were completed in Minato Ward, 

with 31% of them completed during 2003 alone. The reason for this anomaly is that urban regulations 

regarding high-rise construction were eased in 2000 by the Urban Regeneration Act, and the typical high-

rise building takes an average of 3 years to build. Attempts by the government to improve the economy 

have led to an increase in high-rise construction, because each drastic fall of the economic growth rate 

results in more quantitative easing (Fig. 5). This economic pattern, and its relation to the number of 

buildings over 130 m completed per year, served as the basis for the evolutionary computation process in 

predicting of the number of future buildings per year.  

 
 

 
Fig. 5. Number of buildings over 130 m built per year in Minato Ward from 1960 to 2015, combined with Japan’s gross domestic 

product (GDP) growth rates and economic stimulus packages 
  



Genetic Evolutionary Vertical Growth Algorithm  

By combining the probabilistic gradient map (Fig. 4) with the historical economic data (Fig. 5), a 

computer model to predict the construction of high-rise buildings over 130 m in Tokyo’s Minato Ward 

was developed and tested. This study used the gradient plan (Fig. 4) as a basis to predict the most likely 

allocations for new high-rise buildings using a variety of determining factors: only areas where new 

developments are allowed; proximity to the public transportation network; the current location of high 

rise buildings; and variances in land prices, density, and population. The economic data, obtained from 

the World Bank (2016), cover the period from 1991 to 2015, when Tokyo experienced its high-rise boom. 

These data were then used to predict the number of buildings that would be built per year as well as the 

height of each building. The model was based on the assumption that the current conditions of vertical 

growth will remain constant and that there will be no major changes in the government’s urban policy. In 

order to complete this task, the economic data for the region were used to statistically determine the 

number of buildings that would be developed within that area from 2016 to 2019 as well as their 

respective building heights based on previous patterns of development and current urban regulations. The 

data parameters contained 184 economic indicators, such as population growth, fuel exports, foreign 

direct investment, deposit interest rates, and so on. The construction data from 1991 to 2015 were 

obtained from specialized websites Emporis Building Directory (2017) and CTBUH (2017).  

 

Once the economic data parameters were decided, a hybrid genetic algorithm was created (Mathias et 

al. 1994). The feature selection (Kudo and Sklansky 1998), feature transformation (Liu and Motoda 1998) 

and parameter selection (Hurvich and Tsai 1990) were done simultaneously to create an adjusted linear 

regression model using R-squared as a measure of performance in the evolutionary process. The genetic 

algorithm uses mathematic operators to refactor input variables in order to find a suitable solution. Fig. 6 

shows all 12 available transformations in the evolutionary process used in this study). Any continuous 

mathematical function could have been used; however, this specific subset was selected based on 

previous experience.  

 
 

 
Fig. 6. Twelve available sets of mathematical transformations used to determine the evolutionary process 

The genotype of the individuals (high-rise buildings) is an array of the functions described previously. 

The genetic algorithm attempts to calculate the best possible combination of selections and 

transformations for all the input features. Fig. 7 presents the workflow of the hybrid genetic algorithm 

previously described. The best combinations of transformations in the input variables that maximize the 

previously determined objective function are determined through the evolutionary process. During the 

feature selection process, the possibility of determining the usability of a variable when assigning null 

selection is known (Fig. 7). For the best individuals of the population, the parameters with the best 



adaptation are selected (parameter selector) to create the final regression model. The termination criteria 

of the evolutionary process are connected to the performance of the current individuals of a population in 

relation to the average individual of the population. When the average difference is lower than the preset 

threshold value for a homogeneous population, the iterative search process comes to an end. For cases in 

which the threshold value is not reached, a maximum number of iterations was used to finalize the 

process.  

 
 

 
Fig. 7. Workflow diagram of the hybrid genetic algorithm; feature selection, feature transformation, and parameter 

selection were done simultaneously to maximize the objective correlation function (R-squared) 

  



For this particular case, the genetic algorithm attempted to maximize the R-squared regression value 

of the initial data (Table 1). It used a vector formed by the previously mentioned 184 indicators 

(variables) as training data, and it used the number of buildings built per year and their median height as 

objective data. Table 2 shows the capacity of the predictive model in relation to the determination 

coefficient R-squared and F-test analysis (Seber and Lee 2012) for both the number of buildings and the 

median height, respectively. All the results reported refer to the performance obtained in validation using 

10-fold cross-validation and 50 independent runs. This probability was low enough to reject the null 

hypothesis using the common significance level of 0.05. Eqs. (1) and (2) in the Appendix show the 

selected/transformed variables during the evolutionary search of the best adapted individual. For these 

individuals, the optimal parameters were calculated according to the input data to extrapolate the 

generated model. Once both predictive models were determined, the gradient probabilistic plan was used 

(Fig. 4) for the generation of a stochastic roulette wheel based on stochastic universal sampling (Baker 

1987). A total of 100 independent simulations were made according to the 2015 map by estimating the 

possible locations of buildings in Minato Ward over the 2016–2019 interval. The number of buildings and 

their heights were determined using both predictive models. A probabilistic map was then generated in 

which the darker tones represent higher likelihood of new buildings over 130 m to be developed (Fig. 8).  

Table 1. Technical Specifications of the Algorithm Proposed 

Algorithm specifications  Operations and parameters 

  

Operators  Add, subtract, sin, cos, tan, asin, acos, 
atan, log, exp, sqrt, and inverse 

Initialization  Ramped half-and-half 

Fitness function  R-squared correlation 
Recombination strategy  One-point crossover 

Mutation strategy  Leave-flipping 

Mutation rate (pm)  0.05 
Crossover rate  0.90 

Selection strategy  Proportional roulette wheel 

Replacement strategy  Invert-fitness 

  

 

Table 2. Regression Analysis for both Models Indicating the Capacity of the Predictive Model for Both 

the Number of Buildings and the Median Height 

Regression analysis operations  Number of buildings Building median height 

   
 Best-fit values  

Slope  0.9900 ± 0.0229 0.9893 ± 0.0236 

Y-intercept  0.0200 ± 0.0937 31.1800 ± 3.3660 
X-intercept  −0.0202 −31.5200 

1/Slope  1.0100 1.0110 

 95% confidence intervals  
Slope  0.9419 to 1.0380 0.9399 to 0.1039 

Y-intercept  −0.1761 to 0.2161 24.1400 to 38.2300 

X-intercept  −0.2240 to 0.1738 −40.2900 to −23.4600 
 Goodness of fit  

R-squared  0.9899 0.9893 

Sy.x  0.3731 9.8170 
 F-test significance  

F  1,855 1,755 

DFn, DFd  1.1900 1.1900 
P value <0.0001 <0.0001 

   

 
Note: DFd = degrees of freedom denominator; DFn = degrees of freedom numerator; F-Test = Fisher-

Snedecor test.  



 
 

 
Fig. 8. Genetic algorithm predictions on a probabilistic grayscale; darker tones show higher 
probability for new high-rise developments over 130 m to occur; dots represent high-rise 

buildings already planned to be completed during the 2016–2019 interval 

Evaluation and Discussion 

Data regarding future high-rise construction and the data predictions obtained from the computer 

model for the 2016–2019 period were compared to evaluate the results (Table 3). The first column of the 

table shows the real estimated data for future high-rises (current construction), and the middle column 

shows the data predictions by the computer model. The differences between both sets of data are shown 

in the third column for evaluation purposes. According to the evolutionary model, a total of six new 

buildings over 130 m should be built over this period. The table also includes the median height of the 

buildings and shows that a total of six buildings over 130 m were under construction or were planned for 

construction in Minato Ward from 2016 to 2019. The current developments under construction and their 

expected dates of completion are Sumitomo Roppongi Grand Tower, 2016 (230 m); Akasaka Intercity 

Air, 2017 (205 m); Park Court Akasaka, 2018 (170 m); TGMM Shibaura, 2018 (169 m); Toranomon 

Hills Residential Tower, 2019 (219 m); and Toranomon Hills Business Tower, 2019 (185 m). There is the 

possibility that additional buildings over 130 m that have not been identified will be finalized before 

2019. There is also a possibility that some of the buildings currently under construction and scheduled to 

be finished by 2019 could be delayed beyond the parameters of this case study. Therefore it will not be 

possible to verify with total accuracy the observed real data until the end of 2019, and thus these data 

should be used only as an estimate for pre-evaluating the results.  

  



Table 3. Observed Available Data for Future Construction in MinatoWard versus Predictions by the Algorithm for the Years 2016–
2019 

 
Observed real 

developments 
 

GA predicted  

developments 
 

Difference  

(observed − predicted) 

Year 
Number of  

buildings 

Average  

height (m) 
 

Number of  

buildings 

Average  

height (m) 
 

Number of  

buildings 

Average  

height (m) 

2016  1 230  0 0  +1 −230 

2017  1 205  2 203.7  −1 1.3 

2018  2 169.5  1 220.9  +1 −51.4 
2019  2 202.5  3 278.8  −1 −76.3 

Total  6 196.5  6 244.1  0 −47.6 

         

 

The algorithm simulation predicted six buildings in Minato Ward for 2016–2019, which matches the 

six known developments either under construction or planned to be completed in the same period. Thus 

the algorithm was 100% accurate in predicting the total number of buildings compared with the observed 

current construction data over a 4-year period. This is despite the fact that the algorithm had an error of 

one building per year, which suggests that, even if the algorithm was accurate in predicting the overall 

number of buildings, it was not accurate in predicting the exact time of construction because it deviated 

by a few months. Construction delays or additional developments are still possible, which might further 

skew these numbers.  

 

The algorithm prediction was not accurate regarding the average building height, with an average 

error of 47.60 m, or 19.50%. This result was probably due to the fact that the maximum possible building 

height entered into the algorithm was 300 m. Even though buildings reaching 300 m in height are allowed 

to be built in Tokyo (for example, there are several buildings of 300 m which are planned to be completed 

in the 2020s), approval for such projects is only granted under special circumstances, and currently there 

are no buildings over 260 m completed in central Tokyo. Thus placing a height limitation of 260 m into 

the algorithm probably would have resulted in a smaller deviation. In order to test the algorithm’s 

accuracy in predicting building heights, further research is necessary.  

 

The six dots on the grayscale map (Fig. 8) show the exact location of the already planned and in-

progress construction projects to be built by 2019. Four buildings appear in the darker areas which the 

algorithm predicted and only two buildings, the TGMM Shibaura and the Sumitomo Roppongi Grand 

Tower, fall into the medium area, with one of them allocated on the edge of an area of higher probability. 

The results are in concordance with the probabilistic plan generated by the algorithm, with 66.67% of the 

buildings allocated to the dark zone, versus a 60% result from the computer simulation, a 6.67% margin 

of error. One-third (33.33%) of the observed construction is allocated to the medium and light zones, 

versus a combined 40% (25 + 15%) by the computer model, again with a margin of error of 6.67%. 

Because of the small size of the population sample (six buildings), these deviations are considered 

acceptable.  

Conclusions  

In the same manner as organisms (Johnson 2001), cities experience constant change and 

transformation through endless mutations in what constitutes the ultimate and most visible expression of 

civilization. The constantly changing skylines of large urban centers have come to define their identity. 

The morphological evolution of cities and biological growth are both driven by a self-organizing process. 

This case study tested an adaptive evolutionary model through the use of genetic algorithms to predict the 

likeness of future vertical growth in Tokyo’s MinatoWard. First, the areas with high potential for future 

high-rise developments based on previously identified recurring patterns of growth (regulations, vertical 



density and accessibility) were identified over a gradient map. Then, using data from previous economic 

patterns and high-rise construction, the algorithm predicted the number of new buildings expected to be 

built per year and their respective heights to generate a probabilistic map of new buildings.  

 

The results obtained from the proposed approach were then compared with the real construction data 

of buildings over 130 m planned to be completed in Minato Ward by 2019. After testing the genetic 

algorithm predictions for the 2016–2019 period and comparing the results with the real projects 

underway, it can be concluded that the growth estimates by the algorithm were accurate regarding the 

total number of buildings (100%) and their likely locations (± 6.67%). However, the algorithm did not 

accurately predict the exact year of the developments (± 1 year) and the height of the buildings (19.50% 

deviation), suggesting that further studies should be done in those areas. Future case studies using this 

methodology should test a larger sample area, because this current study was partially limited by the 

small size of the population sample (six buildings). Nonetheless, it can be concluded evolutionary 

computation yielded acceptable results when used to predict future urban vertical growth.  

 

By simulating possible scenarios of vertical urban growth, urban planners, policy makers, and 

designers will be able to better assess future changes in cities and anticipate the necessary responses for 

implementing new infrastructure or regulations. By imputing different economic, legal, regulatory, and 

real estate parameters, planners will also be able to assess what will happen if those conditions change. 

Future developments for this type of methodology include the use of genetic algorithms to simulate the 

evolution of other urban variables to produce a broader understanding of how a complex self-organizing 

system, such as a city, will change over time. The algorithm used in this study is not limited to Tokyo, but 

could be adjusted for any urban environment with a high density of high-rise buildings. Thus this article 

concludes that it is possible to accurately simulate the evolution of complex self-organizing artificial 

systems, such as a city skyline, with the assistance of genetic algorithms. 

Appendix. Equations 

Eq. (1) is the variable selection/transformation formula obtained in the evolutionary search for Minato 

Ward used to predict the number of probable new buildings 

 
#buildings =  tan(v0) + tan(v1) + sin(v2) + tan(v3) + asin(v4) + sin(v5) + tan(v7) + (v10) + tan(v11) 

+ sin(v12) + asin(v13) + sin(v15) 

+asin(v17) + sin(v18) + tan(v20) + tan(v21) + asin(v22) + asin(v23) + sin(v25) + (v26) 

+ sin(v28) + tan(v31) + asin(v32) 

+tan(v35) + asin(v36) + tan(v40) + sin(v43) + tan(v44) + asin(v45) + sin(v46) + 

asin(v47) + sin(v49) + tan(v51) + tan(v54) 

+tan(v55) + tan(v57) + tan(v58) + tan(v60) + sin(v61) + tan(v62) + tan(v64) + tan(v65) 

+ tan(v66) + sin(v67) + tan(v71) 

+asin(v73) + tan(v74) + asin(v77) + sin(v78) + sin(v80) + sin(v81) + sin(v83) + 

tan(v87) + tan(v90) + sin(v91) + asin(v92) 

+tan(v93) + sin(v94) + sin(v96) + sin(v97) + sin(v99) + tan(v100) + sin(v102) + 

asin(v103) 

(1) 

 

 

  



Eq. (2) is the variable selection/transformation formula obtained in the evolutionary search for Minato 

Ward used to predict the average heights of probable new buildings 

 
avg(heights) =  sin(v1) + asin(v3) asin(v7) + asin(v9) + asin(v10) + sin(v13) + asin(v14) + tan(v15) + 

asin(v16) + tan(v17) 

+ tan(v20) + tan(v22) + tan(v25) + asin(v28) + sin(v30) + tan(v31) + asin(v32) + sin(v33) + 

(v34) + asin(v35) 

+ asin(v37) + asin(v38) + tan(v39) + asin(v40) + asin(v42) + sin(v43)+ + sin(v44) + 

asin(v49) + tan(v51) + tan(v52) 

+ sin(v53) + tan(v54) + tan(v56) + sin(v57) + asin(v60) + tan(v61) + tan(v62) + sin(v64) + 

tan(v68) + tan(v69) 

+ asin(v70) + tan(v71) + tan(v72) + asin(v73) + sin(v76) + tan(v77) + sin(v79) + tan(v80) + 

asin(v83) + sin(v84) 

+ asin(v85) + sin(v86) + tan(v87) + tan(v89) + sin(v90) + asin(v91) + sin(v92) + asin(v94) 

+ asin(v95) 

+ tan(v96) + asin(v99) + asin(v100) + sin(v102) + asin(v105) (2) 
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