
For Review Only

Performance evaluation of
data-intensive computing applications

on a public IaaS cloud
Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos,

Juan Touriño and Ramón Doallo

Computer Architecture Group, Department of Electronics and Systems,
University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain

Email: {rreye,taboada,sramos,juan,doallo}@udc.es

The advent of cloud computing technologies, which dynamically provide on-
demand access to computational resources over the Internet, is offering new
possibilities to many scientists and researchers. Nowadays, Infrastructure as a
Service (IaaS) cloud providers can offset the increasing processing requirements
of data-intensive computing applications, becoming an emerging alternative to
traditional servers and clusters. In this paper, a comprehensive study of the
leading public IaaS cloud platform, Amazon EC2, has been conducted in order to
assess its suitability for data-intensive computing. One of the key contributions
of this work is the analysis of the storage-optimized family of EC2 instances.
Furthermore, this study presents a detailed analysis of both performance and cost
metrics. More specifically, multiple experiments have been carried out to analyze
the full I/O software stack, ranging from the low-level storage devices and cluster
file systems up to real-world applications using representative data-intensive
parallel codes and MapReduce-based workloads. The analysis of the experimental
results has shown that data-intensive applications can benefit from tailored EC2-
based virtual clusters, enabling users to obtain the highest performance and cost-

effectiveness in the cloud.

Keywords: Data-intensive computing; Cloud computing; Infrastructure as a Service (IaaS);
Amazon EC2; Cluster file system; MapReduce

1. INTRODUCTION

In recent years, the computational requirements for
large-scale data-intensive computing [1] applications
across distributed clusters or data centers have
grown significantly in various disciplines including
bioinformatics, astronomy or medical image analysis.
In the current era of Big Data, characterized by the
unprecedented volume of data, these applications are
generating and analyzing large data sets, which usually
require a high number of computational resources
together with the availability of a high-performance
cluster file system for scalable performance.
Cloud computing [2] is a relatively recent Internet-

based computing model which is gaining significant
acceptance in many areas and IT organizations as an
elastic, flexible, and variable-cost way to deploy their
service platforms using outsourced resources. These
resources can be rapidly provisioned and released with
minimal management effort. Public cloud providers
offer access to external users who are typically billed
by consumption using the pay-per-use pricing model.

Infrastructure as a Service (IaaS) is a type of
cloud service which dynamically provides, by means of
virtualization technologies, on-demand and self-service
access to elastic computational resources (e.g., CPU,
memory, networking and storage), offering a powerful
abstraction that easily allows end users to set up
virtual clusters to exploit supercomputing-level power
without any knowledge of the underlying infrastructure.
Public IaaS providers typically make huge investments
in data centers and then rent them out, allowing
consumers to avoid heavy capital investments and
obtain both cost-effective and energy-efficient solutions.
Hence, organizations are no longer required to invest in
additional computational resources, since they can just
leverage the infrastructure offered by the IaaS provider.

Most popular public cloud providers include Amazon
Web Services (AWS) [3], Google Compute Engine
(GCE) [4], Microsoft Azure [5] and Rackspace [6].
Nowadays, AWS remains as the top public cloud
provider [7], offering the widest range of cloud-based
services. In fact, the Elastic Compute Cloud (EC2)
service [8] is among the most used and largest IaaS cloud

The Computer Journal, Vol. ??, No. ??, ????

Page 1 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

2 R.R. Expósito et al.

platforms [9], which allows computational resources in
Amazon’s data centers to be easily rented on-demand.
Moreover, Amazon EC2 offers several cloud resources
which specifically target High Performance Computing
(HPC) environments [10], composed of several virtual
machines that are intended to be well suited for
highly demanding workloads by offering powerful multi-
core CPU resources, improved network performance
via a high-speed interconnect (10 Gigabit Ethernet)
and enhanced Input/Output (I/O) performance by
providing Solid State Drive (SSD) disks.
In this context, the cloud computing paradigm

has experienced tremendous growth in the last few
years, particularly for general-purpose applications
such as web servers or commercial web applications.
Furthermore, it has also generated considerable interest
both in the scientific community and industry. Thus,
cloud computing is becoming an attractive option
for distributed computing and HPC due to the high
availability of computational resources at large scale.
This fact has motivated multiple works that analyze
the feasibility of using public clouds, especially Amazon
EC2, instead of traditional clusters for running HPC
applications [11, 12, 13, 14]. However, most of the
previous works are focused mainly on computation- and
communication-intensive HPC codes, especially tightly-
coupled parallel applications using the Message-Passing
Interface (MPI), whereas there are few works that
have investigated cloud storage and I/O performance
using data-intensive applications (e.g., MapReduce [15]
workloads). In addition, previous evaluations have
been carried out before Amazon introduced storage-
optimized instances [16], which provide with direct-
attached storage devices specifically optimized for
applications with high disk I/O requirements.
This paper presents a comprehensive study of running

data-intensive applications on the leading Amazon
EC2 cloud, using storage-optimized instances and
conducting a related analysis that takes into account
both performance and cost metrics. Hence, multiple
experiments have been performed at several layers
using a suite of micro-benchmarks and applications
to evaluate the full I/O software stack of data-
intensive computing, ranging from the low-level storage
devices and cluster file systems up to the application
level using representative parallel codes implemented
on top of common computing frameworks and I/O
middleware (e.g., Apache Hadoop [17], MPI-IO [18]).
The main experimental results indicate that the unique
configurability advantage offered by public clouds,
almost impossible to achieve in traditional platforms,
can benefit significantly data-intensive applications.
Thus, our main conclusions point out that current
cloud-based virtual clusters enable end users to build
up high-performance I/O systems when using the
appropriate resources and configurations.
The rest of the paper is organized as follows:

Section 2 describes the related work. Section 3

presents an overview of the software stack for data-
intensive computing. Section 4 provides general
background of the Amazon EC2 platform and the
experimental configuration, briefly describing both
the benchmarks and applications used as well as
the evaluation methodology. Section 5 presents and
analyzes the performance results obtained in the
evaluation conducted in this work. Finally, Section 6
summarizes our concluding remarks.

2. RELATED WORK

Recently, there have been a series of research efforts
assessing the suitability of using public cloud platforms
for HPC and scientific computing. Although there
are some works that have evaluated other public IaaS
providers such as Microsoft Azure [19] and GoGrid [20],
the vast majority of them have assessed the most
popular IaaS platform: Amazon EC2 [11, 12, 13, 14,
21, 22, 23]. Most of these previous studies are mainly
focused on computation and communication behavior,
evaluating only tightly-coupled parallel codes, usually
MPI-based applications, which are commonly used
in HPC environments, hence characterizing only the
performance of CPU and network. As a main conclusion
of these works, it has been fairly well-established that
communication-intensive MPI codes tend to perform
poorly on Amazon EC2, primarily due to the low
virtualized network performance.

However, few works have investigated I/O and
storage performance on Amazon EC2. Some of
them analyzed the suitability of running scientific
workflows [24, 25, 26], showing that it can be a
successful option as these are loosely-coupled parallel
applications. Other works, next presented, have
evaluated some I/O aspects of Amazon EC2, but they
were carried out before the availability of storage-
optimized instances. Evangelinos and Hill [27] reported
some I/O storage results using an I/O-intensive
workload, but limited to sequential runs on a basic
Network File System (NFS) setting. The storage
and network performance of the Eucalyptus cloud
computing platform was analyzed in [28], confronted
with some results from one general-purpose EC2 large
instance. Ghoshal et al. [29] compared the I/O
performance of Amazon EC2 confronted with Magellan,
a private cloud platform, and an HPC cluster. Their
results show that NFS performance in Amazon is
many orders of magnitude worse than the parallel
file system installed in the HPC cluster. Similar
studies have been carried out in [30, 31, 32], which
have evaluated some parallel codes for NFS and/or
PVFS file systems, but only limited to MPI-based
applications, as MapReduce-based workloads were not
taken into account. Gunarathne et al. [33] presented
a MapReduce framework designed on top of the
Microsoft Azure cloud, which was evaluated against
the Amazon Elastic MapReduce (EMR) service and an

The Computer Journal, Vol. ??, No. ??, ????

Page 2 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 3

EC2-based Hadoop cluster. More recently, the same
authors have introduced a new runtime that supports
iterative MapReduce computations [34]. Finally, some
other works have evaluated MapReduce frameworks
and applications on private cloud platforms such as
Nimbus [35] and on traditional HPC clusters [36, 37].

3. OVERVIEW OF DATA-INTENSIVE
COMPUTING APPLICATIONS

Most current data-intensive applications can be
classified into one of the following categories: HPC
and Big Data analysis. In both categories, applications
are executed across distributed clusters or data centers
using multiple compute nodes and handling massive
amounts of data, in which the underlying cluster
file system is a key component for providing scalable
application performance.
On the one hand, HPC is traditionally defined by

parallel scientific applications in the fields of science
and engineering that rely on low-latency networks
for message passing and cluster deployments that
usually separate compute and storage nodes. HPC
applications are typically large simulations that run for
a long time and protect themselves from failures using
fault tolerance methods such as checkpointing [38].
These methods involve large-scale data movements as
the system state is periodically written to persistent
storage in order to be able to restart the application
in case of failure. Therefore, checkpointing can be
particularity challenging when all processes in the
parallel application write to the same checkpoint file at
the same time, an I/O access pattern fairly known as
N-1 writing [39]. Hence, these HPC applications are
considered data-intensive, and they typically rely on
a POSIX-based parallel file system for highly scalable
and concurrent parallel I/O. In these systems, multiple
dedicated storage nodes act as I/O servers to provide a
UNIX file system API and expose a POSIX-compliant
interface to applications to support a broad range of
access patterns for many different workloads. In this
scenario, the I/O access pattern is mainly dominated
by sequential operations, being random accesses rare in
data-intensive HPC applications [40, 41].
On the other hand, Big Data analysis generally

refers to a heterogeneous class of business applications
that operate on large amounts of unstructured and
semi-structured data, usually implemented using the
MapReduce programming model, which was first
proposed by Google [15]. In fact, MapReduce has
become the most popular computing framework for
large-scale processing and analysis of vast data sets
in clusters [42], mainly because of its simplicity
and scalability. These data-intensive applications
are designed to handle data more efficiently than a
traditional structured query language to quickly extract
value from the data. They include traditional batch-
oriented jobs such as data mining, building search

indices and log collection and analysis [43], as well
as web search and advertisement selection [44]. One
key aspect of these applications is that they are
aware in advance of the workloads and I/O access
patterns, typically relying on a custom, purpose-built
distributed file system that is usually implemented
from scratch. These file systems are specifically
designed to support only one programming model
(e.g., MapReduce) in order to provide high scalability
with reliability by striping and replicating the data in
large chunks across the locally attached storage of the
cluster nodes. Hence, by exposing the data layout
to the applications, the MapReduce task scheduler
is able to co-locate a compute task on a node that
stores the required input data [15], thereby relying on
cluster deployments that co-locate compute and storage
nodes on the same cluster node. However, these file
systems feature a simplified design and implementation
without providing a POSIX-compliant interface or
consistency semantics. Consequently, they work well for
MapReduce applications but cannot support traditional
HPC applications without changes. Unlike distributed
file systems, parallel file systems cannot exploit data
locality as they do not generally expose the data
layout to the applications, which usually results in a
significant performance loss when running MapReduce
applications. Hence, the developers of the most popular
parallel file systems have demonstrated the feasibility of
using them with the MapReduce paradigm by applying
some minor modifications and providing simple file
system extensions, obtaining comparable performance
to distributed file systems [45, 46].

3.1. I/O Hardware and Software Support

Figure 1 shows the I/O software stacks more commonly
available on current HPC and Big Data platforms that
support data-intensive applications. On the one hand,
HPC applications perform I/O at a specific level in
the software stack depicted in Figure 1(a). In the
upper levels, advanced data models such as HDF5 [47]
and NetCDF [48] can provide certain advantages for
particular applications. These high-level libraries
usually feature a parallel version (Parallel HDF5 [49],
Parallel NetCDF [50]) implemented on top of the
MPI-IO [18] middleware in order to perform parallel
I/O cooperatively among many processes. MPI-IO
is specified in the MPI-2 standard and defines a
comprehensive API, which is implemented on top of file
systems, intended specifically to provide MPI programs
with a high-performance, portable and parallel I/O
interface. Towards the bottom of the stack, parallel
file systems (e.g., GPFS [51], PVFS [52], Lustre [53],
OrangeFS [54]) are used to transfer I/O requests and
file data across the underlying interconnection network
and storage devices. Figure 2(a) shows the most widely
extended cluster architecture in HPC platforms, which
usually separates compute and storage nodes.

The Computer Journal, Vol. ??, No. ??, ????

Page 3 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

4 R.R. Expósito et al.

Storage Infrastructure
Interconnection Network

(HDF5, NetCDF)

HPC Applications

(POSIX, MPI−IO)

High−level I/O Libraries

I/O Middleware

(GPFS, PVFS, Lustre, OrangeFS)
Parallel File Systems

(a) I/O software stack for HPC applications

Big Data Applications

Interconnection Network

Distributed File Systems

MapReduce Frameworks

High−level Tools

(GFS, HDFS, KFS)

(Google, Hadoop, Twister)

Storage Infrastructure

(Google Tenzing, Apache Mahout, Apache Hive)

(b) Big Data analysis on top of MapReduce frameworks

FIGURE 1. I/O software stacks for data-intensive computing applications

(a) Traditional HPC cluster architecture (b) High-level overview of Hadoop and
HDFS architecture

FIGURE 2. Hardware support for data-intensive computing applications

On the other hand, Big Data applications can
either use a high-level tool or directly a distributed
computing framework (e.g., Google MapReduce [15])
to perform their data analysis (see Figure 1(b)).
Usually, the high-level tools (e.g., Google Tenzing [55],
Apache Mahout [56]) are built on top of a computing
framework to allow users write applications that take
advantage of the MapReduce programming model
without having to learn all its details. Among
these frameworks, the Apache Hadoop project [17]
has gained significant attention in the last years as
a popular open-source Java-based implementation of
the MapReduce paradigm derived from the Google’s
proprietary implementation. As mentioned before,
these frameworks generally rely on custom distributed
file systems (e.g., GFS [57], HDFS [58], KFS [59])
to transfer I/O requests across the interconnection
network and the underlying storage infrastructure.
Figure 2(b) shows an overview of a typical Hadoop
cluster that stores the data in HDFS, using a master-
slave architecture which co-locates compute and storage
nodes on the same slave node. Using the Hadoop
terminology, the TaskTracker and DataNode processes,
which execute the tasks and store the data, respectively,
run on the slave nodes. The master node runs the
JobTracker and NameNode processes, acting as a single
task manager and metadata server.

4. EXPERIMENTAL CONFIGURATION

In this section, the Amazon EC2 platform and the
selected instance types are described along with brief
descriptions of the representative benchmarks and
applications used in the performance evaluation section.

4.1. Amazon EC2 Platform

The Amazon EC2 cloud service currently offers a rich
variety of Xen-based virtual machine configurations
called instance types [16], which are optimized to fit
different use cases. Virtual machines of a given instance
type comprise varying combinations of CPU, memory,
storage and networking capacity, each with a different
price point. One of the key contributions of this paper is
the evaluation of the storage-optimized family of EC2
instances, which according to Amazon are specifically
intented to be well suited for Hadoop, cluster file
systems and NoSQL databases, among other uses.

The storage-optimized family includes two EC2
instance types: High I/O (hi1.4xlarge, hereafter
HI1) and High Storage (hs1.8xlarge, hereafter HS1).
These instances provide direct-attached storage devices
(known as “ephemeral” or local disks) optimized
for applications with specific disk I/O and capacity
requirements. More specifically, HI1 provides 2
TB of instance storage capacity backed by 2 SSD-

The Computer Journal, Vol. ??, No. ??, ????

Page 4 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 5

based disks, whereas HS1 provides 48 TB across 24
standard Hard Disk Drive (HDD) disks (see Table 1).
Generally, EC2 instances can access two additional
storage options: (1) off-instance Elastic Block Store
(EBS), which are remote volumes accessible through
the network that can be attached to an instance
as block storage devices; and (2) Simple Storage
Service (S3), which is a distributed key-value based
object storage system, accessed through a web service
interface. However, S3, unlike EBS and ephemeral
devices, lacks general file system interfaces usually
required by data-intensive applications. Hence, S3
has not been considered in our evaluation since its
use is not transparent to applications, and because of
its poor performance shown by previous works [24].
Moreover, ephemeral (local) disks perform better than
EBS volumes according to [28, 29] due to the overhead
caused by the additional network access incurred by
EBS. This superior performance of ephemeral disks
was assessed even before the availability of storage-
optimized instances, which favor significantly the
performance of local disks.
In addition, storage-optimized instances provide 8

physical cores that represent 35 EC2 Compute Units
(ECUs1) of computational power, together with 60.5
and 117 GB of memory for HI1 and HS1, respectively.
Moreover, these instances support cluster networking
via a high-speed network (10 Gigabit Ethernet), which
is also another differential characteristic of these
resources. Hence, instances launched into a common
placement group are placed in a logical cluster that
provides low-latency, full-bisection 10 Gbps bandwidth
connectivity between instances in the cluster. However,
there is a current limitation that only instances of
the same type can be included in a placement group
(i.e., a placement group cannot combine HI1 and HS1
instances).
Two additional high-performance instance types

which also provide the cluster networking feature
together with the 10 Gigabit Ethernet network have
been evaluated. On the one hand, the Cluster Compute
instance type (cc2.8xlarge, hereafter CC2) is a compute-
optimized instance with 16 physical cores, 60.5 GB of
memory and 3.4 TB of instance storage capacity across
4 HDDs. On the other hand, the High Memory Cluster
Compute instance type (cr1.8xlarge, herefater CR1) is a
memory-optimized instance with 16 physical cores, 244
GB of memory and 240 GB of instance storage capacity
across 2 SSDs. Note that CC2 and CR1 are among the
EC2 instances with the most powerful computational
resources (i.e., 88 ECUs). Table 1 summarizes the main
characteristics of the selected instance types together
with their hourly price for on-demand Linux usage in
the North Virginia data center.

1According to Amazon one ECU provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or Xeon processor.

4.2. Benchmarks and Applications

The evaluation of data-intensive applications on
Amazon EC2 has been conducted using representative
benchmarking tools and applications (see details in
Table 2) ranging at the different levels shown in the
software stacks of Figures 1(a) and 1(b). The first
set of experiments consists of a single-instance micro-
benchmarking of a local file system, xfs, selected as
it provides interesting features (e.g., allocation groups,
B-tree indexing, metadata journaling) as building
blocks for scalable data-intensive infrastructures. This
analysis has been carried out using the IOzone
benchmark [60] on a single ephemeral disk as well as
on multiple disks combined in a single software RAID
array with the Linux mdadm utility.

After characterizing the performance of the under-
lying storage infrastructure, both software stacks have
been analyzed at the cluster file system level. Re-
garding the HPC stack, the OrangeFS parallel file sys-
tem [54] has been evaluated using the IOR bench-
mark [61] and the MPI-IO interface [18] as represen-
tative I/O middleware. OrangeFS is a relatively recent
branch of the production-quality and widely extended
Parallel Virtual File System (PVFS) [52], but unlike
PVFS, under active development and introducing new
features. OrangeFS has also been selected because it
lacks, to the best of our knowledge, suitable assess-
ments of its performance on a public cloud infrastruc-
ture. Regarding the Big Data software stack, the Intel
HiBench suite [62] has been used for the evaluation of
Apache Hadoop [17], selected as the most representa-
tive MapReduce computing framework. The HiBench
suite consists of a set of Hadoop programs including
both synthetic micro-benchmarks and real-world appli-
cations. Hadoop HDFS [58] has been evaluated at the
distributed file system level using the Enhanced DFSIO
benchmark included in HiBench.

Next, the performance of several data-intensive codes
has been analyzed at the application level. On the
one hand, the BT-IO kernel [63] and the FLASH-IO
code [64], which are implemented on top of the MPI-
IO and Parallel HDF5 (PHDF5) libraries, respectively,
have been selected as representative I/O-intensive
HPC applications. On the other hand, the Sort
and WordCount workloads, also included in HiBench,
have been selected as they are representative of two
widespread kinds of MapReduce jobs: transforming
data from one representation to another, and extracting
a small amount of information from a large data set.
Additionally, the PageRank and Aggregation workloads
have been evaluated. They are based on high-level
tools built on top of the Hadoop framework. PageRank
is an implementation of the page-rank algorithm in
Apache Mahout [56], an open-source machine learning
library. Aggregation measures the performance of
Apache Hive [65] through computing the sum of each
group in Hive over a single read-only table.

The Computer Journal, Vol. ??, No. ??, ????

Page 5 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

6 R.R. Expósito et al.

T
A
B
L
E

1
.
D
es
cr
ip
ti
on

of
th
e
A
m
az
on

E
C
2
in
st
an

ce
s:

C
C
2,

H
I1
,
H
S
1
an

d
C
R
1

C
C
2

H
I1

H
S
1

C
R
1

R
e
le
a
se

D
a
te

N
ov

em
b
er

20
11

Ju
ly

20
12

D
ec
em

b
er

20
12

Ja
n
u
ar
y
20

13
In

st
a
n
ce

F
a
m
il
y

C
om

p
u
te
-o
p
ti
m
iz
ed

S
to
ra
ge
-o
p
ti
m
iz
ed

S
to
ra
ge
-o
p
ti
m
iz
ed

M
em

or
y
-o
p
ti
m
iz
ed

A
P
I
n
a
m
e

cc
2.
8x

la
rg
e

h
i1
.4
x
la
rg
e

h
s1
.8
x
la
rg
e

cr
1.
8x

la
rg
e

P
ri
ce

(L
in
u
x
)

$2
p
er

h
ou

r
$3

.1
0
p
er

h
ou

r
$4

.6
0
p
er

h
ou

r
$3

.5
0
p
er

h
ou

r

C
P
U

M
o
d
e
l

In
te
l

X
eo
n

E
5-
26

70
S
an

d
y
B
ri
d
ge

In
te
l

X
eo
n

E
56

20
W
es
tm

er
e

In
te
l

X
eo
n

E
5-
26

50
S
an

d
y
B
ri
d
ge

In
te
l

X
eo
n

E
5-
26

70
S
an

d
y
B
ri
d
ge

#
C
P
U
s

2
(E

ig
h
t-
C
or
e)

2
(Q

u
ad

-C
or
e)

1
(E

ig
h
t-
C
or
e)

2
(E

ig
h
t-
C
or
e)

C
P
U

S
p
e
e
d

(T
u
rb

o
)

2.
6
G
H
z
(3
.3

G
H
z)

2.
4
G
H
z
(2
.6
6
G
H
z)

2
G
H
z
(2
.8

G
H
z)

2.
6
G
H
z
(3
.3

G
H
z)

#
C
o
re

s/
T
h
re

a
d
s

16
/3

2
(H

T
2
en

ab
le
d
)

8/
16

(H
T

en
ab

le
d
)

8/
16

(H
T

en
ab

le
d
)

16
/3

2
(H

T
en

ab
le
d
)

A
m
a
zo

n
E
C
U
s

88
35

35
88

E
C
U
s
p
e
r
C
o
re

5.
5

4.
4

4.
4

5.
5

E
C
U
s
p
e
r
U
S
$

44
11

.2
9

7.
61

25
.1
4

L
3
C
a
ch

e
si
ze

20
M
B

12
M
B

20
M
B

20
M
B

M
e
m
o
ry

60
.5

G
B

60
.5

G
B

11
7
G
B

24
4
G
B

#
M

e
m
o
ry

C
h
a
n
n
e
ls

4
(D

D
R
3-
16

00
)

3
(D

D
R
3-
10

66
)

4
(D

D
R
3-
16

00
)

4
(D

D
R
3-
16

00
)

M
e
m
o
ry

B
a
n
d
w
id
th

51
.2

G
B
/s

25
.6

G
B
/s

51
.2

G
B
/s

51
.2

G
B
/s

#
Q
P
I
L
in
k
s

2
(4
00

0
M
H
z)

2
(2
93

3
M
H
z)

2
(4
00

0
M
H
z)

2
(4
00

0
M
H
z)

Q
P
I
S
p
e
e
d

8
G
T
/s

5.
86

G
T
/s

8
G
T
/s

8
G
T
/s

E
p
h
e
m
e
ra

l
D
is
k
s

4
×

84
5
G
B

(H
D
D
)

2
×

1
T
B

(S
S
D
)

24
×

2
T
B

(H
D
D
)

2
×

12
0
G
B

(S
S
D
)

S
to

ra
g
e
C
a
p
a
ci
ty

3.
4
T
B

2
T
B

48
T
B

24
0
G
B

S
to

ra
g
e
p
e
r
U
S
$

1.
7
T
B

0.
65

T
B

10
.4
3
T
B

0.
07

T
B

In
te

rc
o
n
n
e
ct

10
G
ig
ab

it
E
th
er
n
et

(F
u
ll
-b
is
ec
ti
on

b
an

d
w
id
th

u
si
n
g
P
la
ce
m
en

t
G
ro
u
p
s)

2
T
h
e
In
te
l
H
y
p
er
-T

h
re
ad

in
g
(H

T
)
te
ch

n
ol
og

y
is

en
ab

le
d
fo
r
al
l
in
st
an

ce
ty
p
es
.
H
en

ce
,
A
m
az

on
an

n
ou

n
ce
s
th

at
th

es
e
in
st
an

ce
s
h
av

e
a
n
u
m
b
er

of
av

ai
la
b
le

v
ir
tu

al
co

re
s
th

at
ta
k
es

in
to

ac
co

u
n
t
h
y
p
er
-t
h
re
ad

ed
co

re
s
(i
.e
.,
A
m
az

on
st
at
es

th
at

C
C
2
in
st
an

ce
s
p
ro
v
id
e
32

v
ir
tu

al
co

re
s)
.
H
ow

ev
er
,
th

e
p
er
fo
rm

an
ce

in
cr
ea

se
of

u
si
n
g
th

is
te
ch

n
ol
og

y
is

h
ig
h
ly

w
or
k
lo
ad

-d
ep

en
d
en

t,
an

d
m
ay

b
e
ev

en
h
ar
m
fu
l
in

so
m
e
sc
en

ar
io
s.

P
ar
ti
cu

la
rl
y,

w
e
h
av

e
n
ot

se
en

an
y
im

p
ro
ve

m
en

ts
u
si
n
g
al
l
th

e
av

ai
la
b
le

v
ir
tu

al
co

re
s
in

ou
r
ex

p
er
im

en
ts

on
A
m
az

on
E
C
2.

T
h
er
ef
or
e,

al
l
th

e
co

n
fi
gu

ra
ti
on

s
sh

ow
n
in

th
is

p
ap

er
h
av

e
u
se
d
on

ly
on

e
v
ir
tu

al
co

re
p
er

p
h
y
si
ca

l
co

re
.

The Computer Journal, Vol. ??, No. ??, ????

Page 6 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 7

4.3. Software Settings

The Linux distribution selected for the performance
evaluation was Amazon 2012.09.1, as it is a supported
and maintained Linux provided by Amazon for its
specific usage on EC2 instances. This Linux flavour
comes with kernel 3.2.38 and has been tailored for
the performance evaluation with the incorporation of
the previously described benchmarks: IOzone 3.414,
IOR 2.10.3 and HiBench 2.2. For the parallel file
system evaluation, OrangeFS version 2.8.7 was used,
whereas the selected MPI library was MPICH [66]
version 3.0.2, which includes MPI-IO support. In
addition, the MPI implementation of the NASA
Advanced Supercomputing (NAS) Parallel Benchmarks
suite (NPB) [67] version 3.3 was installed for the
BT-IO kernel evaluation, whereas the HDF5 data
library version 1.8.10 was used for the FLASH-IO
code. Regarding the Hadoop experiments, the versions
used were Hadoop 1.0.4 (stable), Mahout 0.7 and Hive
0.9.0. The Java Virtual Machine (JVM) was OpenJDK
version 1.7.0 19.
Finally, the performance results presented in this

paper are averages of a minimum of five measurements
for each evaluated configuration. Furthermore, all
the experiments have been carried out in the US
East EC2 region (i.e., us-east-1), corresponding to
North Virginia, the main data center, which has
the highest availability of the evaluated instance
types. The selected availability zone was us-east-1d,
where, according to previous works [84] and our own
experience, there is usually the lowest variability.

5. EVALUATION OF AMAZON EC2 FOR
DATA-INTENSIVE COMPUTING

This section presents an in-depth performance and cost
analysis of data-intensive computing applications on the
selected public IaaS cloud, Amazon EC2, using the
representative micro-benchmarks, cluster file systems
and kernels/applications described in the previous
section.

5.1. Single-Instance Storage Micro-
benchmarking

Figure 3 presents the sequential write and read
bandwidth (left graphs) using the IOzone benchmark
on a single ephemeral disk (two top rows of graphs) and
on multiple ephemeral disks combined into a software
RAID array (two bottom rows of graphs). The right
graphs of the figure show the performance/cost ratio
on these scenarios, a productivity metric defined as the
bandwidth obtained per invoiced US$. As mentioned
before, the underlying local file system is xfs, whereas
the default chunk size3 (512 KB) has been used in
RAID configurations. Furthermore, the evaluation of

3Chunk size is defined as the smallest “atomic” amount of data
that is written to the storage devices.

CC2, CR1 and HI1 instances has only considered the
RAID 0 level (data striping) owing to the low number
of available ephemeral disks on these instances (i.e., 2
disks in CR1 and HI1 and 4 disks in CC2). However,
HS1 provides up to 24 ephemeral disks and so the RAID
0 level might not be the most reliable solution. Hence,
HS1 has been evaluated using two additional RAID
levels: RAID 6 and 10. These experiments basically
write and read a single data file of 8 GB on xfs, and the
performance results are shown for a certain block size
(i.e., the transfer size of each underlying I/O operation
at the file system level) varying from 16 KB up to
16 MB, which is the maximum value supported by
IOzone. Finally, the Linux buffer cache was bypassed
using direct I/O (O DIRECT flag) in order to get the
real performance (without buffering that might distort
the results) of the underlying storage devices.

The results using a single ephemeral disk show that
the SSD-based device of the HI1 instance significantly
outperforms the rest of instances, especially from 64 KB
on, obtaining up to 3 times (for writing, achieving 545
MB/s) and up to 4 times (for reading, achieving 960
MB/s) higher performance and productivity. However,
CR1, which also provides SSD-based disks, obtains poor
results compared to HI1, and only slightly better than
HS1 for the read operation. The CC2 instance type
gets the worst results in terms of performance, but it
can be a competitive option, at least compared to CR1
and HS1, when taking into account the incurred costs,
especially for the write operation.

Regarding software RAID results, HI1 almost doubles
the performance of a single ephemeral disk obtaining
up to 1060 and 1620 MB/s for writing and reading,
respectively. However, HS1 now obtains the maximum
bandwidth results achieving up to 2200 MB/s for both
operations when using the RAID 0 level and a block
size larger than 1 MB, thus taking full advantage of the
24 available disks. In terms of write productivity, HS1
using RAID 0 and the largest block sizes (≥ 4 MB) is
again the best option, despite the fact that it is the most
expensive instance ($4.6 per hour), whereas its read
productivity is slightly lower than HI1. Nevertheless,
the RAID 6 level imposes a high performance penalty
for the write operation as only 200 MB/s are achieved.
Therefore, the RAID 10 level is the midpoint between
performance and reliability for HS1, obtaining write
bandwidth results very similar to those of HI1, but
up to 30% lower productivity. Finally, CC2 and CR1,
which cannot rival previous instances for large block
sizes, obtain very similar results, which allows CC2 to
be more productive than CR1 due to its lower price ($2
vs $3.5 per hour).

As main conclusions, these results have revealed that:
(1) HI1 instances clearly provide the best performance
and productivity when using a single ephemeral disk.
(2) Using RAID 0, the HS1 instance is clearly the
best performer thanks to the availability of up to 24
ephemeral disks. However, if the storage reliability is

The Computer Journal, Vol. ??, No. ??, ????

Page 7 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

8 R.R. Expósito et al.

TABLE 2. Selected benchmarks, kernels and applications
Name Type Description

IOzone [60] I/O Benchmark

IOzone is a popular open-source file system benchmarking tool used
in several works [68, 69, 70] that generates and measures a variety
of file system operations. It has been ported to many machines and
operating systems.

IOR [61]
Parallel I/O
Benchmark

IOR is a widely extended benchmarking tool for evaluating parallel
I/O performance, as done in [40, 41, 70, 71, 72, 73, 74, 75]. It is
highly parameterized and allows to mimic a wide variety of I/O
patterns, supporting different APIs (e.g., MPI-IO, HDF5).

Intel HiBench [62]
Benchmark /
Application
Suite

HiBench is a representative benchmark suite for Hadoop, used for
instance in [76, 77, 78]. It consists of a set of typical Hadoop
workloads (e.g., Sort, WordCount), HDFS micro-benchmarks (e.g.,
DFSIO) as well as web search (PageRank), machine learning (K-
means) and data analytics (e.g., Hive queries such as Aggregation)
real-world applications.

NPB BT-IO [63]
Parallel I/O
Benchmark

The NPB suite [67] is the de-facto standard to evaluate the
performance of parallel computers, as done in [70, 74, 79, 80, 81]
for I/O. BT-IO extends the NPB BT kernel by adding support for
periodic solution checkpointing using the MPI-IO interface.

FLASH-IO [64]
Parallel I/O
Benchmark

FLASH-IO is a widely used benchmark, e.g. in [50, 75, 81, 82], that
mimics the I/O pattern of FLASH [83], a parallel hydrodynamics
application. It recreates the primary data structures in FLASH and
produces a checkpoint file using the parallel HDF5 library.

critical it will be more reasonable to use the RAID 10
level, which provides comparable performance to HI1
but lower productivity. (3) Although CC2 performance
is usually among the worst ones, it achieves competitive
productivity results using RAID 0 and a block size ≤ 1
MB, as it is the cheapest instance under evaluation.
And (4) the poor performance results obtained by
CR1, together with its high price, low productivity and
reduced storage capacity (240 GB) points out that it is
not a good choice for data-intensive applications, which
has led us to discard its evaluation in the remainder of
the paper for clarity purposes.

5.2. Performance Analysis at the Cluster File
System Level

Two representative file systems have been selected for
this analysis: (1) OrangeFS, a parallel file system
widely extended in HPC clusters (Section 5.2.1),
and (2) HDFS, which is the distributed file system
especifically designed for the Hadoop MapReduce
computing framework (Section 5.2.2).

5.2.1. Parallel File System Performance
Figures 4 and 5 present the aggregated bandwidth of
OrangeFS (top graphs) for write and read operations,
respectively, using the MPI-IO interface. These results
have been obtained using the IOR benchmark with
a baseline cluster configuration that consists of 4
instances acting as I/O servers (i.e., storage nodes of
instance type CC2, HI1 or HS1) and multiple instances
acting as clients (i.e., compute nodes of instance type
only CC2 or HI1), which access the server data through

the 10 Gigabit Ethernet network. In these experiments,
the number of cores in the cluster has been set to 128,
which determines the number of compute nodes being
used depending on the client instance type. Hence,
each client instance runs 8 (on HI1) or 16 (on CC2)
parallel processes (i.e., one MPI process per core),
writing and reading collectively a single shared file of
32 GB under different block sizes (from 64 KB to 16
MB), thus simulating the aforementioned N-1 access
pattern. For clarity purposes, the graphs only present
experimental results using RAID configurations on the
storage instances, as they maximize their performance.
Furthermore, the usage of RAID in HPC environments
is the common rule as it allows to increase performance
and/or redundancy. Therefore, the RAID 0 level for
CC2 and HI1 storage instances and RAID 10 for HS1
have been selected for this benchmarking.

As shown in Table 3, four different cluster
configurations have been evaluated: (1) using 4 CC2
servers and 8 CC2 clients (labeled as CC2-CC2); (2)
4 HI1 servers and 8 CC2 clients (HI1-CC2); (3) 4
HI1 servers and 16 HI1 clients (HI1-HI1); and (4)
4 HS1 servers and 8 CC2 clients (HS1-CC2). Note
that the HS1-HS1 configuration (i.e., 4 HS1 servers
and 16 HS1 clients) has not been included for clarity
purposes, as it provides similar performance than HI1-
HI1 but incurring significantly higher costs. The
use of CC2 instances as clients in the heterogeneous
cluster deployments (i.e., HI1-CC2 and HS1-CC2)
has been motivated for their higher number of cores
and computational power compared to HI1 and HS1
instances: 16 vs 8 cores and 88 vs 35 ECUs. In addition,
their lower price significantly reduces the overall cost of

The Computer Journal, Vol. ??, No. ??, ????

Page 8 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 9

 0

 100

 200

 300

 400

 500

 600

16KB 64KB 256KB 1MB 4MB 16MB

B
a

n
d

w
id

th
 [

M
B

/s
]

Block Size

Sequential Write Performance (single disk)

 CC2
 CR1
 HI1
 HS1

 0

 25

 50

 75

 100

 125

 150

 175

 200

16KB 64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

Sequential Write Productivity (single disk)

 CC2
 CR1
 HI1
 HS1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

16KB 64KB 256KB 1MB 4MB 16MB

B
a

n
d

w
id

th
 [

M
B

/s
]

Block Size

Sequential Read Performance (single disk)

 CC2
 CR1
 HI1
 HS1

 0

 50

 100

 150

 200

 250

 300

 350

16KB 64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

Sequential Read Productivity (single disk)

 CC2
 CR1
 HI1
 HS1

 0

 400

 800

 1200

 1600

 2000

 2400

16KB 64KB 256KB 1MB 4MB 16MB

B
a

n
d

w
id

th
 [

M
B

/s
]

Block Size

Sequential Write Performance (RAID)

 CC2 (4HDD/R0)
 CR1 (2SSD/R0)
 HI1 (2SSD/R0)
 HS1 (24HDD/R0)
 HS1 (24HDD/R6)
 HS1 (24HDD/R10)

 0

 100

 200

 300

 400

 500

16KB 64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

Sequential Write Productivity (RAID)

 CC2 (4HDD/R0)
 CR1 (2SSD/R0)
 HI1 (2SSD/R0)
 HS1 (24HDD/R0)
 HS1 (24HDD/R6)
 HS1 (24HDD/R10)

 0

 400

 800

 1200

 1600

 2000

 2400

16KB 64KB 256KB 1MB 4MB 16MB

B
a

n
d

w
id

th
 [

M
B

/s
]

Block Size

Sequential Read Performance (RAID)

 CC2 (4HDD/R0)
 CR1 (2SSD/R0)
 HI1 (2SSD/R0)
 HS1 (24HDD/R0)
 HS1 (24HDD/R6)
 HS1 (24HDD/R10)

 0

 100

 200

 300

 400

 500

 600

16KB 64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

Sequential Read Productivity (RAID)

 CC2 (4HDD/R0)
 CR1 (2SSD/R0)
 HI1 (2SSD/R0)
 HS1 (24HDD/R0)
 HS1 (24HDD/R6)
 HS1 (24HDD/R10)

FIGURE 3. Sequential performance and productivity (performance/cost ratio) of ephemeral disks using an 8 GB file

The Computer Journal, Vol. ??, No. ??, ????

Page 9 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

10 R.R. Expósito et al.

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

64KB 256KB 1MB 4MB 16MB

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Block Size

OrangeFS Write Performance (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

64KB 256KB 1MB 4MB 16MB

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Block Size

OrangeFS Write Performance (no I/O)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

64KB 256KB 1MB 4MB 16MB

%
 E

ff
ic

ie
n

c
y

Block Size

OrangeFS Write Efficiency (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

OrangeFS Write Productivity (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

FIGURE 4. OrangeFS write performance, efficiency and productivity using 4 I/O servers and 128 cores

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64KB 256KB 1MB 4MB 16MB

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Block Size

OrangeFS Read Performance (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64KB 256KB 1MB 4MB 16MB

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Block Size

OrangeFS Read Performance (no I/O)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

64KB 256KB 1MB 4MB 16MB

%
 E

ff
ic

ie
n

c
y

Block Size

OrangeFS Read Efficiency (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

 50

64KB 256KB 1MB 4MB 16MB

M
B

/s
 p

e
r

U
S

$

Block Size

OrangeFS Read Productivity (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

FIGURE 5. OrangeFS read performance, efficiency and productivity using 4 I/O servers and 128 cores

The Computer Journal, Vol. ??, No. ??, ????

Page 10 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 11

TABLE 3. Hourly cost using on-demand instances of the EC2-based HPC clusters
HPC Cluster #I/O Server Instances #Client Instances #Compute Cores Hourly Cost

CC2-CC2 4 × CC2 8 × CC2 128 $24
HI1-CC2 4 × HI1 8 × CC2 128 $28.4
HI1-HI1 4 × HI1 16 × HI1 128 $62
HS1-CC2 4 × HS1 8 × CC2 128 $34.4

the cluster deployment on Amazon EC2, which favors
their popularity for HPC applications.
Furthermore, the use of storage-optimized instances

as clients does not take advantage of the locally
attached ephemeral disks. However, the heterogeneous
cluster deployments (e.g., HI1-CC2) cannot benefit
from being located in the same placement group, which
can cause a loss in network performance. In order
to analyze the impact of locating nodes outside the
same placement group, the “null-aio” TroveMethod4

available in OrangeFS has been used. This method
consists of an implementation that does no disk I/O,
and is useful to test the performance of the underlying
interconnection network. Hence, the top right graphs
in Figures 4 and 5 show the aggregated network
bandwidth using the “null-aio” method (labeled as
“no I/O”), whereas the top left graphs have been
obtained with the default method (“alt-aio”, which
uses an asynchronous I/O implementation). The
“null-aio” method also allows to analyze each cluster
configuration in terms of the efficiency metric, shown
in the bottom left graphs, which has been defined
as the aggregated network bandwidth divided by the
aggregated bandwidth when doing I/O. Finally, the
bottom right graphs show the productivity results
in terms of aggregated bandwidth per invoiced US$,
taking into account the hourly cost of the different EC2-
based HPC clusters (see the last column of Table 3).
Regarding write performance results (see the top

left graph in Figure 4), it can be clearly observed
that the use of the largest block size (16 MB) is
key to achieve high-performance parallel I/O, mainly
using HI1 instances. HI1 server-based configurations
achieve the best results, around 1600 and 1000 MB/s
for HI1-HI1 and HI1-CC2, respectively, whereas CC2-
CC2 obtains only 800 MB/s, although it outperforms
the HS1-CC2 configuration (600 MB/s). These results
can be explained by the top right graph, where
HI1-CC2 and HS1-CC2 obtain the poorest network
bandwidths, which significantly limit their overall
storage performance. As mentioned before, it is not
possible to locate different instance types in the same
placement group, so when using CC2 clients together
with HI1 and HS1 servers the network performance
drops severely. However, the HI1-CC2 cluster achieves
slightly higher network bandwidth than HS1-CC2,
which can suggest that the physical location of the HI1

4The TroveMethod parameter specifies how both metadata
and data are stored and managed by the OrangeFS servers.

and HS1 instances with respect to the clients (CC2)
could be different inside the same EC2 region (us-east-
1 in these experiments). Here, the CC2-CC2 cluster
achieves the highest network bandwidth (up to 2650
MB/s), but very poor efficiency (around 30%) when
using the largest block sizes, as shown in the bottom
left graph, because of its limited underlying storage
performance. However, the remaining configurations
achieve above 65%, being HS1-CC2 the most effective
configuration. Taking costs into account (see the
bottom right graph), HI1-CC2 becomes the best
configuration from 256 KB on, owing to its relatively
high performance and the use of client instances that
are cheaper than the HI1-HI1 configuration. Even CC2-
CC2 seems to be a good choice instead of HI1-HI1, as
it is the cheapest cluster under evaluation. Finally,
HS1-CC2 is obviously the worst option in terms of
productivity due to its high price and low performance,
especially when using block sizes > 1 MB.

Regarding read performance (see the top left graph
in Figure 5), HI1-HI1 is again the best performer,
up to 3000 MB/s of aggregated bandwidth using the
largest block size. In this case, HI1-CC2 and HS1-
CC2 achieve similar results from 1 MB on, around 1000
MB/s, clearly limited by the interconnection network,
as shown in the top right graph. Here, HS1-CC2
requires a large block size (≥ 4 MB) to exploit the
underlying network bandwidth, whereas HI1-CC2 does
not. The CC2-CC2 configuration presents the worst
performance with 625 MB/s, although it obtains up to
3400 MB/s of network bandwidth, showing again very
poor efficiencies (below 25%, see the bottom left graph).
HI1-HI1 achieves between 70 and 85% of the available
network bandwidth, although the maximum efficiency
is obtained by HI1-CC2 and HS1-CC2, especially when
using block sizes > 1 MB (nearly 98%). This fact allows
HI1-CC2 to obtain the best productivity up to a block
size of 1 MB (see the bottom right graph). From 4 MB
on the highest-performance and most expensive HI1-
HI1 configuration offsets its price. CC2-CC2 gets the
worst productivity from 1 MB on, even below HS1-CC2.

To sum up, these results have shown that: (1)
the HI1-HI1 configuration is the best performer for
both write and read operations using any block size;
(2) the overall performance of heterogeneous cluster
deployments (i.e., HI1-CC2 and HS1-CC2) is severely
limited by the network bandwidth, as their instances
cannot be located in the same placement group; and (3)
taking costs into account, the HI1-CC2 configuration

The Computer Journal, Vol. ??, No. ??, ????

Page 11 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

12 R.R. Expósito et al.

achieves the best productivity, except when reading
block sizes > 1 MB, a scenario where HI1-HI1 is the
best configuration.

5.2.2. Distributed File System Performance
Figure 6 shows the aggregated bandwidth of HDFS
(left graphs) for write and read operations using a
baseline cluster that consists of one instance acting
as master node (running JobTracker/NameNode) and
multiple instances acting as slave nodes (running
TaskTrackers/DataNodes), all connected to the 10
Gigabit Ethernet network. As mentioned in Section 4.2,
these results have been obtained using the Enhanced
DFSIO benchmark included in the Intel HiBench suite,
writing and reading 512 files of 512 MB (i.e., 256 GB
in total). In these experiments, two different cluster
sizes have been evaluated using 8 and 16 slave instances,
together with the master node of the same instance
type. Therefore, all the instances are located in the
same placement group, thus relying on homogeneous
cluster deployments. In addition, the right graphs
show the productivity results in terms of the aggregated
bandwidth per US$, according to the hourly cost of the
different EC2-based Hadoop clusters considered in this
analysis (shown in the last column of Table 4).
Moreover, each DataNode instance (i.e., slave node)

uses all the available locally attached ephemeral disks
(e.g., 24 disks for HS1 instances) to store HDFS data.
The ephemeral disks have been configured as a Just
a Bunch Of Disks (JBOD) (i.e., each disk is accessed
directly as an independent drive 5). This is the most
recommended setting for Hadoop clusters, as HDFS
does not benefit from using RAID for the DataNode
storage. The redundancy provided by RAID is not
needed since HDFS handles it by replication between
nodes. Furthermore, the RAID 0 level, which is
commonly used to increase performance, turns out to
be slower than the JBOD configuration, as HDFS uses
round-robin allocation of blocks and data across all the
available disks.
Regarding Hadoop settings, several configurations

have been tested in order to choose the one with
the best observed performance. However, the main
goal of these experiments focuses on the comparison
between different instance types for running Hadoop-
based clusters on Amazon EC2 under common setting
rules. Therefore, our setup is not intended as a guide
to optimize the overall Hadoop performance, which is
usually highly workload-dependent. Taking this into
account, our main Hadoop settings are as follows:
(1) the block size of HDFS is set to 128 MB. (2)
The replication factor of HDFS is set to 2. (3) The
I/O buffer size is set to 64 KB. (4) The number of
map/reduce tasks that are allowed to run in each
TaskTracker instance (i.e., slave node) is configured

5We have specified a storage directory for each ephemeral disk
using the dfs.data.dir property of Hadoop.

as shown in Table 4. This configuration follows the
widespread rule saying that the number of map and
reduce tasks should be set to the number of available
physical cores in the TaskTracker instance, considering
that the DataNode and TaskTracker processes would
use 2 hyper-threaded cores. (5) The ratio of
map/reduce tasks is 3:1. (6) The available memory
to use while sorting files is set to 200 MB. And (7)
the compression of the intermediate output data during
the map phase is enabled using the Snappy codec [85].
This reduces the network overhead as the map output
is compressed before being transferred to the reducers.

Concerning write performance results (see the top left
graph in Figure 6), the use of 8-slave clusters shows
similar HDFS bandwidths, around 1400 MB/s, and
thus the CC2-based cluster is clearly the most cost-
effective in terms of productivity, as shown in the top
right graph. However, storage-optimized instances (i.e.,
HI1 and HS1) obtain 34% and 44% more aggregated
bandwidth, respectively, than CC2 instances when
using 16-slave clusters. Nevertheless, CC2 remains as
the most productive choice, although followed closely
by HI1, whereas the HS1-based cluster, which is the
most expensive, remains as the least competitive. Note
that while the storage-optimized instances have slightly
increased their productivity when doubling the number
of slaves, CC2 has decreased 27%. Regarding read
results (see the bottom left graph), HS1 obtains the
highest bandwidth both for 8 and 16 slaves, around
2920 and 5630 MB/s, respectively. These results are
9% and 70% higher than HI1 and CC2 bandwidths
using 8 slaves and 7% and 80% higher using 16 slaves,
respectively. Nevertheless, the high performance of the
HS1 cluster is not enough to be the best option in
terms of productivity due to its high price, even being
outperformed by CC2 (see the bottom right graph), the
worst cluster in terms of read performance. Here, HI1
is clearly the best choice when taking into account the
incurred costs, achieving up to 13% higher productivity
than CC2. In this case, all the configurations are able
to maintain (or even to increase in the case of HI1) their
productivity when doubling the number of slaves.

Another interesting comparison can be conducted
taking into account the number of map and reduce
tasks. Hence, an 8-slave CC2-based cluster provides
the same capacity in terms of map/reduce tasks (i.e.,
96/32) as a 16-slave cluster using storage-optimized
instances, as can be seen in Table 4. This fact
is due to the different number of physical cores
provided by each instance type (16 vs 8 cores for CC2
and storage-optimized instances, respectively). For
the write operation, the 16-slave HS1-based cluster
doubles the performance of the 8-slave CC2-based
cluster, but significantly incurring higher costs (the
same would apply to HI1). For the read operation,
the storage-optimized instances obtain up to 3 times
higher bandwidth than CC2, which allows the HI1-
based cluster to be the most productive in this case.

The Computer Journal, Vol. ??, No. ??, ????

Page 12 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 13

 0

 500

 1000

 1500

 2000

 2500

 3000

8 16

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Number of Slave Instances

Hadoop DFS Write Performance

 CC2
 HI1
 HS1

 0

 25

 50

 75

8 16

M
B

/s
 p

e
r

U
S

$

Number of Slave Instances

Hadoop DFS Write Productivity

 CC2
 HI1
 HS1

 0

 1000

 2000

 3000

 4000

 5000

 6000

8 16

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Number of Slave Instances

Hadoop DFS Read Performance

 CC2
 HI1
 HS1

 0

 25

 50

 75

 100

 125

 150

8 16

M
B

/s
 p

e
r

U
S

$

Number of Slave Instances

Hadoop DFS Read Productivity

 CC2
 HI1
 HS1

FIGURE 6. HDFS performance and productivity using 8 and 16 slave instances

TABLE 4. Number of map/reduce tasks and hourly cost using on-demand instances of the EC2-based Hadoop clusters
Hadoop Cluster #Map/Reduce tasks per slave node (8 - 16 slaves) Hourly Cost (8 - 16 slaves)

CC2-based 12/4 (96/32 - 192/64) $18 - $34
HI1-based 6/2 (48/16 - 96/32) $27.9 - $52.7
HS1-based 6/2 (48/16 - 96/32) $41.4 - $78.2

The main conclusions that can be drawn from these
results are: (1) the HS1-based cluster is the best option
in terms of HDFS performance, especially when using
16 slaves, but followed closely by HI1; (2) the high price
of the HS1 instance discourages its use, favoring HI1
instances as the preferred choice when costs are taken
into account without trading offmuch performance; and
(3) comparing clusters in terms of the same map/reduce
capacity, the storage-optimized instances provide up
to 2 and 3 times higher write and read bandwidths,
respectively, than CC2 instances.

5.3. Data-intensive Parallel Application Per-
formance

The performance of two I/O-intensive HPC applications
(Section 5.3.1) and four real-world MapReduce work-
loads (Section 5.3.2) has been analyzed at the applica-
tion level. As mentioned in Section 4.2, the BT-IO ker-

nel from the NPB suite and the FLASH-IO code have
been selected for the HPC software stack evaluation. In
addition, the Sort, WordCount, Mahout PageRank and
Hive Aggregation workloads have been selected for the
Big Data counterpart. Finally, the performance vari-
ability of the evaluated workloads is briefly discussed in
Section 5.3.3.

5.3.1. I/O-Intensive HPC Applications
The NPB BT kernel solves systems of block-tridiagonal
equations in parallel. BT-IO extends the BT kernel
by adding support for periodic solution checkpointing
using the MPI-IO interface. In these experiments,
the NPB class C workload was selected, whereas the
I/O size was the “full” subtype. With these settings,
all the parallel processes append data to a single
file through 40 collective MPI-IO write operations,
resulting in an output data file sized around 6.8 GB.

The Computer Journal, Vol. ??, No. ??, ????

Page 13 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

14 R.R. Expósito et al.

 0

 100

 200

 300

 400

 500

 600

 700

1-2/16 3-5/36 4-8/64 8-16/121

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Number of Client Instances (CC2-HI1)/Processes

NPB BT-IO Kernel I/O Data Rate (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

 50

1-2/16 3-5/36 4-8/64 8-16/121

M
B

/s
 p

e
r

U
S

$

Number of Client Instances (CC2-HI1)/Processes

NPB BT-IO Kernel Productivity (MPI-IO)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 200

 400

 600

 800

 1000

 1200

1-2/16 2-4/32 4-8/64 8-16/128

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 [

M
B

/s
]

Number of Client Instances (CC2-HI1)/Processes

FLASH-IO Checkpoint Creation (PHDF5)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 10

 20

 30

 40

 50

 60

1-2/16 2-4/32 4-8/64 8-16/128

M
B

/s
 p

e
r

U
S

$

Number of Client Instances (CC2-HI1)/Processes

FLASH-IO Productivity (PHDF5)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

FIGURE 7. NPB BT-IO and FLASH-IO results using OrangeFS with 4 I/O servers

The default I/O frequency, which consists of appending
data to the shared output file every 5 computation
time steps, was used. Note that this kernel requires
that the number of client processes be square numbers.
The FLASH-IO kernel simulates the I/O pattern of
FLASH [83], a parallel hydrodynamics application that
simulates astrophysical thermonuclear flashes in two
or three dimensions. The parallel I/O routines of
the FLASH-IO code are identical to those used by
FLASH, so their performance closely reflects the full
parallel I/O performance of the application. This kernel
recreates the primary data structures in the FLASH
application and produces a checkpoint file sized around
7.6 GB (for 128 clients) using PHDF5, together with
smaller plotfiles for visualization and analysis. Finally,
the experiments have been conducted under the same
cluster configurations previously used in the parallel file
system evaluation (see Table 3 in Section 5.2.1).

Figure 7 presents NPB BT-IO (top graphs) and
FLASH-IO (bottom graphs) performance and produc-
tivity results (left and right graphs, respectively). Re-
garding BT-IO results, HI1- and HS1-server based con-
figurations achieve the highest bandwidths from 36 pro-
cesses on, being the HI1-HI1 cluster the best performer
in accordance with the previous parallel file system eval-

uation for the write operation (see the top left graph
in Figure 4), obtaining up to 30% higher bandwidth
than the CC2-CC2 cluster (460 MB/s vs 350 MB/s
for 121 processes). Nevertheless, HI1-CC2 is the con-
figuration with the highest productivity from 36 pro-
cesses on, as happened before (see the bottom right
graph in Figure 4). Here, the performance advantage
obtained by HI1-HI1 is not enough to be an interest-
ing cost-effective option, even being outperformed by
HS1-CC2. Note that this code is also a computation-
and communication-intensive application that performs
lots of MPI communication calls, increasing the com-
munication overhead with the number of processes.
Hence, MPI communications across client instances
share the interconnection network with MPI-IO com-
munications (i.e., I/O operations) between client and
server instances. This sharing reduces the available
network bandwidth, which limits parallel I/O perfor-
mance. This limitation becomes more noticeable for
CC2-client based configurations, which run 16 parallel
processes per instance, due to the poorer ratio between
CPU power and network bandwidth. Furthermore, the
computation phase of this kernel allows to overlap I/O
with computation. This fact boosts the slowest storage
configuration for writing, which was HS1-CC2 accord-

The Computer Journal, Vol. ??, No. ??, ????

Page 14 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 15

ing to the parallel file system evaluation (see the top
left graph in Figure 4), now obtaining more competi-
tive performance results.
Regarding FLASH-IO results, HI1-HI1 shows again

the best performance, obtaining more than 830 MB/s
for 64 and 128 processes, up to 23% and 30% higher
aggregated bandwidth than HI1-CC2 and CC2-CC2
clusters, respectively. The HS1-CC2 cluster gets
stucked at 455 MB/s from 32 processes on, being the
worst performer as occurred before in the parallel file
system evaluation for the write operation. Thus, the
underlying network bandwidth significantly limits its
overall I/O performance. Note that the FLASH-IO
code simply creates the checkpoint file using PHDF5,
which is implemented on top of MPI-IO. This means
that, unlike the BT-IO kernel, this code is neither
computation-intensive nor makes an extensive use of
MPI communication routines. Therefore, the FLASH-
IO results are more in tune with the write performance
at the parallel file system level than the BT-IO results,
but using a high-level library (PHDF5) instead of using
directly the MPI-IO interface. In terms of productivity,
CC2-CC2 becomes the best option, but closely followed
by the HI1-CC2 cluster when 64 or more processes are
used. HI1-HI1 shows again poor productivity, especially
from 32 processes on, which makes it a bad choice when
costs are taken into account.
The main conclusions of this evaluation are: (1)

in terms of performance, HI1-HI1 remains as the
best option for I/O-intensive HPC applications, in
accordance with the previous evaluation at the parallel
file system level; and (2) in terms of productivity, it is
generally advisable to use CC2 instances as clients in
order to save costs when using a high number of cores,
and combine them with HI1 or CC2 as storage servers
to maximize performance.

5.3.2. MapReduce-based Workloads
Figure 8 shows performance (left graphs) and cost re-
sults (right graphs) of the selected Hadoop applications
from the Intel HiBench suite (see details in Section 4.2).
In this case, these workloads do not report any aggre-
gated bandwidth metric as output. Hence, the perfor-
mance metric reported is the time (in hours) required
to run 1,000 executions of each evaluated application.
Consequently, the productivity metric reported is the
total execution cost in US$, which represents the cost
of having each Hadoop cluster running during the num-
ber of hours required to complete the 1,000 executions
for each experiment. The experiments have been con-
ducted under the same Hadoop settings and cluster con-
figurations previously used in the distributed file system
evaluation (see Table 4 in Section 5.2.2). The specific
workloads for these applications have been configured as
summarized in Table 5. This table shows the total data
that are read and written from and to HDFS, which
represents the job/map input and job/reduce output,

respectively. The last column of the table shows the
total data that are transferred during the shuffle phase
(i.e., data from output mappers that are read by reduc-
ers). As mentioned in Section 5.2.2, these intermediate
data are compressed before being transferred, thus re-
ducing the network overhead.

Since the Sort workload transforms data from one
representation to another, the job output has the same
size as the job input (102 GB), as can be seen in Table 5.
Although this workload is I/O bound in nature, it also
presents moderate CPU utilization during the map and
shuffle phases, especially due to the intermediate data
compression, and low CPU utilization and heavy disk
I/O during the reduce phase. In addition, considering
the large amount of shuffle data (53 GB), even though
compressed, it is expected to be the most network-
intensive workload under evaluation. Results using 8-
slave clusters show that CC2 is able to outperform HI1
and HS1 configurations by 20%, thanks to the higher
map/reduce capacity of the CC2 cluster due to the
availability of more CPU resources, which seem to be of
great importance, especially during data compression.
However, CC2 only reduces its execution time by 22%
when doubling the number of slaves, whereas HI1 and
HS1 reduce it by 40% and 42%, respectively, but far
from linear scalability due to the intensive use of the
network. This allows storage-optimized instances to
slightly outperform CC2 when using 16 slaves, due
to their higher HDFS bandwidth, even taking into
account that they have half the map/reduce capacity
of CC2 (see Table 4). Nevertheless, the cost of the
CC2 cluster continues to be the lowest, a pattern
that is maintained in the remaining workloads. If
the comparison is done using the same map/reduce
capacity, the 16-slave clusters using HI1 and HS1
instances outperform the 8-slave CC2 cluster by 24%
and 27%, respectively. However, these performance
improvements are not enough to turn optimized-storage
instances into interesting options when considering the
associated costs.

The shuffle data (12.7 MB) and job output (25.5
KB) of WordCount are much smaller than the job
input (102 GB), as this application extracts a small
amount of information from a large input data set.
Consequently, the WordCount workload is mostly CPU
bound, especially during the map phase, having very
high CPU utilization and light disk/network I/O.
Therefore, the CC2 instance type, which provides the
largest CPU resources, shows the best performance and
productivity results both for 8- and 16-slave clusters.
For instance, the 8-slave CC2 cluster achieves up to
1.9 and 2.1 times higher performance than HI1 and
HS1 clusters, respectively. These numbers are reduced
to 1.7 and 1.8 times when 16-slave clusters are used.
Therefore, CC2 obtains again lower execution time
reduction (42%) when doubling the number of slaves
compared to HI1 (46%) and HS1 (50%, i.e. linear
scalability). In this case, the use of 16-slave storage-

The Computer Journal, Vol. ??, No. ??, ????

Page 15 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

16 R.R. Expósito et al.

 0

 25

 50

 75

 100

8 16

E
x

e
c

u
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Number of Slave Instances

Hadoop Sort Performance

 CC2
 HI1
 HS1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8 16

E
x

e
c

u
ti

o
n

 C
o

s
t

(U
S

$
)

Number of Slave Instances

Hadoop Sort Cost

 CC2
 HI1
 HS1

 0

 25

 50

 75

 100

 125

 150

 175

8 16

E
x

e
c

u
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Number of Slave Instances

Hadoop WordCount Performance

 CC2
 HI1
 HS1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

8 16

E
x

e
c

u
ti

o
n

 C
o

s
t

(U
S

$
)

Number of Slave Instances

Hadoop WordCount Cost

 CC2
 HI1
 HS1

 0

 50

 100

 150

 200

 250

 300

 350

8 16

E
x

e
c

u
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Number of Slave Instances

Mahout PageRank Performance

 CC2
 HI1
 HS1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

8 16

E
x

e
c

u
ti

o
n

 C
o

s
t

(U
S

$
)

Number of Slave Instances

Mahout PageRank Cost

 CC2
 HI1
 HS1

 0

 25

 50

 75

 100

 125

8 16

E
x

e
c

u
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Number of Slave Instances

Hive Aggregation Performance

 CC2
 HI1
 HS1

 0

 1000

 2000

 3000

 4000

 5000

 6000

8 16

E
x

e
c

u
ti

o
n

 C
o

s
t

(U
S

$
)

Number of Slave Instances

Hive Aggregation Cost

 CC2
 HI1
 HS1

FIGURE 8. Hadoop performance and cost results using 8 and 16 slave instances

The Computer Journal, Vol. ??, No. ??, ????

Page 16 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 17

TABLE 5. Data size for map, reduce and shuffle phases
Workload Job/Map Input (HDFS Read) Job/Reduce Output (HDFS Write) Shuffle Data

Sort 102 GB 102 GB 53 GB
WordCount 102 GB 25.5 KB 12.7 MB
PageRank 89.8 GB 49.6 GB 4.6 GB

Aggregation 75 GB 14.3 GB 7.5 GB

optimized clusters does not outperform the 8-slave CC2
cluster, as occurred for Sort. In fact, the performance
of CC2 using 8 slaves is similar to that of HI1 and HS1
clusters using 16 slaves, but having 2.8 and 4.3 times
lower costs, respectively.
The Mahout PageRank and Hive Aggregation

workloads share similar characteristics. They are more
CPU bound during the map phase and more disk I/O
bound during the reduce phase, mostly due to the
output to HDFS (49.6 GB and 14.3 GB, respectively).
They also present low to medium network I/O, as the
amount of shuffle data is relatively small (4.6 GB and
7.5 GB, respectively). Hence, both workloads show
very similar results, also similar to those of WordCount.
Consequently, the CC2-based cluster is again the best
option, both in terms of performance and cost. For
instance, CC2 obtains 2.1 times higher performance and
4.6 times lower cost than HS1 when using 8 slaves for
the PageRank workload. Furthermore, it is not worth
using 16-slave storage-optimized clusters, which provide
the same map/reduce capacity than the 8-slave CC2
cluster, as similar or even lower performance is obtained
but incurring significantly higher costs.
These results have shown that: (1) storage-optimized

instances do not seem to be the most suitable choice
for the evaluated MapReduce workloads. As explained
before, the main reason is that these instances provide
poorer CPU resources than CC2, both in terms of
number of physical cores (8 vs 16) and computational
power per core (4.4 vs 5.5 ECUs), as shown in Table 1.
(2) This fact encourages the use of the CC2-based
cluster which, using the same number of slaves, provides
twice the map/reduce capacity of clusters based on
storage-optimized instances. (3) The CC2-based cluster
usually achieves significantly higher performance and
lower cost, which offsets the fact that the CC2 instance
type provides lower underlying I/O performance, as
shown in Section 5.1. And (4) if the instance types
are compared using the same map/reduce capacity
(i.e., 8-slave CC2 cluster vs 16-slave HI1 and HS1
clusters), only Sort, the most I/O-intensive workload
under evaluation, experiences some performance benefit
when using storage-optimized instances, but incurring
more costs.

5.3.3. Analysis of Performance Variability
Performance unpredictability in the cloud can be an
important issue for researchers because of repeatability
of results. In this paper, the main guidelines and

hints suggested by Schad et al. [84] have been followed
in order to minimize the variance and maximize the
repeatability of our experiments in Amazon EC2.
Examples of these guidelines are always specifying one
availability zone when launching the instances (us-east-
1d, as mentioned in Section 4.3) and reporting the
underlying system hardware of the evaluated instances
(see Table 1). In this section, a brief analysis of
the performance variability at the application level is
presented, as it takes into account the likely variability
of all the lower levels (i.e., storage infrastructure,
interconnection network, cluster file system, I/O
middleware and MapReduce frameworks, and high-level
I/O libraries and tools), showing its impact on the
performance of real applications.

Figure 9 presents the performance variability for the
data-intensive applications evaluated in Sections 5.3.1
(left graph) and 5.3.2 (right graph). These graphs show
the measure of the mean value and include error bars to
indicate the measure of the minimum sample (bottom
arrow) and the maximum sample (top arrow). The
results are shown using the largest cluster configuration
for each corresponding application (i.e., a 128-core
cluster for I/O-intensive HPC applications and a 16-
slave Hadoop cluster for MapReduce workloads).

As main conclusion, the evaluated MapReduce
workloads generally present negligible variance in their
performance (see the right graph), except for the
Sort application executed on the CC2 cluster. This
variability is significantly lower than the one observed
for HPC applications, as shown in the left graph.
This is motivated by the fact that these MapReduce
workloads are more computationally intensive than the
BT-IO and FLASH-IO applications, especially due to
the intermediate data compression and map/reduce
phases. In fact, as mentioned in Section 5.3.1,
BT-IO also presents higher computation intensiveness
than FLASH-IO and thus its variability is also lower.
Among the evaluated instances, HI1 shows the highest
variability, particularly for the BT-IO and FLASH-
IO codes, which present a write-only access pattern.
This fact can be due to the varying overhead of the
background tasks associated with the SSD internal
architecture. Hence, the inherent variable write
performance of SSD disks, especially when using RAID,
is due to the internal garbage collection process that can
block incoming requests that are mapped to the flash
chips currently performing erase operations [86].

The Computer Journal, Vol. ??, No. ??, ????

Page 17 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

18 R.R. Expósito et al.

 0

 200

 400

 600

 800

 1000

NPB BT-IO

FLASH-IO

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Performance Variability (128-core HPC clusters)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 100

 200

 300

 400

 500

 600

Sort
WordCount

PageRank

Aggregation

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Performance Variability (16-slave Hadoop clusters)

 CC2
 HI1
 HS1

FIGURE 9. Performance variability of data-intensive computing applications

6. CONCLUSIONS

Cloud computing platforms are becoming widely
available and are gaining significant popularity in
many domains, as a convenient way to virtualize
data centers and increase the flexibility in the use
of computational resources. Amazon Web Services is
the leading commercial public cloud provider, whose
EC2 IaaS cloud service provides end users with reliable
access to on-demand resources to run their applications.
At the same time, scientific research is increasingly
reliant on the processing of very large amounts of data.
In fact, current data-intensive applications generally
demand significant computational resources together
with scalable cluster file systems. Public IaaS clouds
can satisfy the increasing processing requirements of
these applications while offering high flexibility and
promising cost savings.
The main contributions of this paper are: (1)

extensive assessment of the suitability of using the
Amazon EC2 IaaS cloud platform for running data-
intensive computing applications; (2) a thorough
performance study of the storage-optimized family of
EC2 instances, which provide direct-attached storage
devices intended to be well suited for applications
with specific disk I/O requirements; and (3) a detailed
performance, cost and variability analysis of four
EC2 instance types that provide 10 Gigabit Ethernet,
conducting multiple experiments at several layers and
using a representative suite of benchmarking tools
(IOzone, IOR, Intel HiBench), cluster file systems
(OrangeFS, HDFS), I/O middleware (MPI-IO, HDF5),
distributed computing frameworks (Apache Hadoop),
I/O-intensive parallel codes for HPC (NPB BT-IO and
FLASH-IO) and MapReduce workloads for Big Data
analysis (Sort, WordCount, PageRank, Aggregation).
The analysis of the experimental results points

out that the unique configurability and flexibility
advantage offered by Amazon EC2, almost impossible
to achieve in traditional platforms, is critical for
increasing performance and/or reduce costs. Hence,

this paper has revealed that the suitability of using
EC2 resources for running data-intensive applications
is highly workload-dependent. Furthermore, the most
suitable configuration for a given application heavily
depends on whether the main aim is to obtain the
maximum performance or, instead, minimize the cost
(or maximize the productivity). Therefore, one of
the key contributions of this work is an in-depth
and exhaustive study that provides guidelines for
scientists and researchers to increase significantly the
performance (or reduce the cost) of their applications in
Amazon EC2. Finally, our main outcomes indicate that
current data-intensive applications can benefit from
tailored EC2-based virtual clusters, enabling end users
to obtain the highest performance and cost-effectiveness
in the cloud.

FUNDING

This work was supported by the Ministry of Economy
and Competitiviness of Spain and ERDF funds of the
European Union [Project TIN2013-42148-P]; by the
Galician Government [Project GRC2013/055]; by the
FPU Program of the Ministry of Education of Spain
[ref. AP2010-4348]; and by an Amazon Web Services
(AWS) Research Grant.

REFERENCES

[1] Gorton, I., Greenfield, P., Szalay, A., and Williams, R.
(2008) Data-intensive computing in the 21st century.
Computer, 41, 30–32.

[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J.,
and Brandic, I. (2009) Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 25, 599–616.

[3] Amazon Web Services Inc. http://aws.amazon.com/.
[Last visited: July 2014].

[4] Google Inc. Google Compute Engine. https://cloud.
google.com/products/compute-engine/. [Last vis-
ited: July 2014].

The Computer Journal, Vol. ??, No. ??, ????

Page 18 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 19

[5] Microsoft Corporation. Microsoft Azure. http://
azure.microsoft.com/. [Last visited: July 2014].

[6] Rackspace Inc. Rackspace Public Cloud. http://www.
rackspace.com/. [Last visited: July 2014].

[7] Top 10 cloud platforms of 2013. http://yourstory.
com/2013/12/top-10-cloud-platforms-2013/. [Last
visited: July 2014].

[8] Amazon Web Services Inc. Amazon Elastic Compute
Cloud (Amazon EC2). http://aws.amazon.com/ec2.
[Last visited: July 2014].

[9] Top 20 cloud IaaS providers of 2014. http:
//www.crn.com/slide-shows/cloud/240165705/the-
20-coolest-cloud-infrastructure-iaas-vendors-
of-the-2014-cloud-100.htm/pgno/0/1. [Last visited:
July 2014].

[10] Amazon Web Services Inc. High Performance
Computing using Amazon EC2. http://aws.amazon.
com/ec2/hpc-applications/. [Last visited: July
2014].

[11] Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon,
S., Cholia, S., Shalf, J., Wasserman, H. J., and
Wright, N. J. (2010) Performance analysis of high
performance computing applications on the Amazon
web services cloud. Proc. 2nd IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom’10), Indianapolis, IN, USA, 30
November–3 December, pp. 159–168. IEEE Computer
Society, Washington, DC, USA.

[12] Mauch, V., Kunze, M., and Hillenbrand, M. (2013)
High performance cloud computing. Future Generation
Computer Systems, 29, 1408–1416.

[13] Napper, J. and Bientinesi, P. (2009) Can cloud
computing reach the TOP500? Proc. Combined
Workshops on UnConventional High Performance
Computing Workshop plus Memory Access Workshop
(UCHPC-MAW’09), Ischia, Italy, 18–20 May, pp. 17–
20. ACM, New York, NY, USA.

[14] Walker, E. (2008) Benchmarking Amazon EC2 for high-
performance scientific computing. USENIX;login:, 33,
18–23.

[15] Dean, J. and Ghemawat, S. (2008) MapReduce: Simpli-
fied data processing on large clusters. Communications
of the ACM, 51, 107–113.

[16] Amazon Web Services Inc. Amazon EC2 instance
types. http://aws.amazon.com/ec2/instance-
types/. [Last visited: July 2014].

[17] Apache Hadoop. http://hadoop.apache.org/. [Last
visited: July 2014].

[18] Thakur, R., Gropp, W. D., and Lusk, E. (1999)
On implementing MPI-IO portably and with high
performance. Proc. 6th Workshop on I/O in Parallel
and Distributed Systems (IOPADS’99), Atlanta, GA,
USA, 5 May, pp. 23–32. ACM, New York, NY, USA.

[19] Roloff, E., Birck, F., Diener, M., Carissimi, A., and
Navaux, P. O. A. (2012) Evaluating high performance
computing on the Windows Azure platform. Proc. 5th
IEEE International Conference on Cloud Computing
(CLOUD’12), Honolulu, HI, USA, 24–29 June, pp. 803–
810. IEEE Computer Society, Washington, DC, USA.

[20] He, Q., Zhou, S., Kobler, B., Duffy, D., and McG-
lynn, T. (2010) Case study for running HPC applica-
tions in public clouds. Proc. 19th ACM International

Symposium on High Performance Distributed Comput-
ing (HPDC’10), Chicago, IL, USA, 21–25 June, pp.
395–401. ACM, New York, NY, USA.

[21] Expósito, R. R., Taboada, G. L., Ramos, S., Touriño,
J., and Doallo, R. (2013) Performance analysis of HPC
applications in the cloud. Future Generation Computer
Systems, 29, 218–229.

[22] Mehrotra, P., Djomehri, J., Heistand, S., Hood,
R., Jin, H., Lazanoff, A., Saini, S., and Biswas,
R. (2013) Performance evaluation of Amazon elastic
compute cloud for NASA high-performance computing
applications. Concurrency and Computation: Practice
and Experience (in press), http://dx.doi.org/10.
1002/cpe.3029.

[23] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R.,
Fahringer, T., and Epema, D. (2009) A performance
analysis of EC2 cloud computing services for scientific
computing. Proc. 1st International Conference
on Cloud Computing (CLOUDCOMP’09), Munich,
Germany, 19–21 October, pp. 115–131. Springer-
Verlag, Berlin, Germany.

[24] Juve, G., Deelman, E., Berriman, G. B., Berman, B. P.,
and Maechling, P. (2012) An evaluation of the cost and
performance of scientific workflows on Amazon EC2.
Journal of Grid Computing, 10, 5–21.

[25] Vecchiola, C., Pandey, S., and Buyya, R. (2009) High-
performance cloud computing: A view of scientific
applications. Proc. 10th International Symposium
on Pervasive Systems, Algorithms, and Networks
(ISPAN’09), Kaoshiung, Taiwan, 14–16 December, pp.
4–16. IEEE Computer Society, Washington, DC, USA.

[26] Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R.,
Fahringer, T., and Epema, D. (2011) Performance
analysis of cloud computing services for many-tasks
scientific computing. IEEE Transactions on Parallel
and Distributed Systems, 22, 931–945.

[27] Evangelinos, C. and Hill, C. N. (2008) Cloud computing
for parallel scientific HPC applications: Feasibility
of running coupled atmosphere-ocean climate models
on Amazon’s EC2. Proc. 1st Workshop on Cloud
Computing and Its Applications (CCA’08), Chicago,
IL, USA, 22–23 October, pp. 1–6. ACM, New York,
NY, USA.

[28] Shafer, J. (2010) I/O virtualization bottlenecks in
cloud computing today. Proc. 2nd Workshop on
I/O Virtualization (WIOV’10), Pittsburgh, PA, USA,
March 13, pp. 5:1–5:7. USENIX Association, Berkeley,
CA, USA.

[29] Ghoshal, D., Canon, R. S., and Ramakrishnan,
L. (2011) I/O performance of virtualized cloud
environments. Proc. 2nd International Workshop on
Data Intensive Computing in the Clouds (DataCloud-
SC’11), Seattle, WA, USA, 12–18 November, pp. 71–80.
ACM, New York, NY, USA.

[30] Zhai, Y., Liu, M., Zhai, J., Ma, X., and Chen,
W. (2011) Cloud versus in-house cluster: Evaluating
Amazon cluster compute instances for running MPI
applications. Proc. 23rd ACM/IEEE Supercomputing
Conference (SC’11, State of the Practice Reports),
Seattle, WA, USA, 12–18 November, pp. 11:1–11:10.
ACM, New York, NY, USA.

[31] Expósito, R. R., Taboada, G. L., Ramos, S., González-
Domı́nguez, J., Touriño, J., and Doallo, R. (2013)

The Computer Journal, Vol. ??, No. ??, ????

Page 19 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

20 R.R. Expósito et al.

Analysis of I/O performance on an Amazon EC2 cluster
compute and high I/O platform. Journal of Grid
Computing, 11, 613–631.

[32] Liu, M., Zhai, J., Zhai, Y., Ma, X., and Chen,
W. (2011) One optimized I/O configuration per HPC
application: Leveraging the configurability of cloud.
Proc. 2nd ACM SIGOPS Asia-Pacific Workshop on
Systems (APSys’11), Shanghai, China, 11–12 July, pp.
1–5. ACM, New York, NY, USA.

[33] Gunarathne, T., Wu, T.-L., Qiu, J., and Fox, G.
(2010) MapReduce in the clouds for science. Proc. 2nd
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom’10), Indianapolis,
IN, USA, 30 November–3 December, pp. 565–572. IEEE
Computer Society, Washington, DC, USA.

[34] Gunarathne, T., Zhang, B., Wu, T.-L., and Qiu,
J. (2013) Scalable parallel computing on clouds
using Twister4Azure iterative MapReduce. Future
Generation Computer Systems, 29, 1035–1048.

[35] Moise, D. and Carpen-Amarie, A. (2012) MapReduce
applications in the cloud: A cost evaluation of
computation and storage. Proc. 5th International
Conference on Data Management in Cloud, Grid
and P2P Systems (Globe 2012), Vienna, Austria,
5–6 September, pp. 37–48. Springer-Verlag, Berlin,
Germany.

[36] Fadika, Z., Govindaraju, M., Canon, R., and Ramakr-
ishnan, L. (2012) Evaluating Hadoop for data-intensive
scientific operations. Proc. 5th IEEE International
Conference on Cloud Computing (CLOUD’12), Hon-
olulu, HI, USA, 24–29 June, pp. 67–74. IEEE Computer
Society, Washington, DC, USA.

[37] Zhang, C., De Sterck, H., Aboulnaga, A., Djambazian,
H., and Sladek, R. (2009) Case study of scientific
data processing on a cloud using Hadoop. Proc.
23rd International Conference on High Performance
Computing Systems and Applications (HPCS’09),
Kingston, ON, Canada, 14–17 June, pp. 400–415.
Springer-Verlag, Berlin, Germany.

[38] Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson,
D. B. (2002) A survey of rollback-recovery protocols
in message-passing systems. ACM Computing Surveys,
34, 375–408.

[39] Bent, J., Gibson, G., Grider, G., McClelland, B.,
Nowoczynski, P., Nunez, J., Polte, M., and Wingate,
M. (2009) PLFS: A checkpoint filesystem for parallel
applications. Proc. 21st ACM/IEEE Supercomputing
Conference (SC’09), Portland, OR, USA, 14–20
November, pp. 21:1–21:12. ACM, New York, NY, USA.

[40] Carns, P. H., Harms, K., Allcock, W., Bacon, C., Lang,
S., Latham, R., and Ross, R. B. (2011) Understanding
and improving computational science storage access
through continuous characterization. Proc. 27th IEEE
Symposium on Mass Storage Systems and Technologies
(MSST’11), Denver, CO, USA, 23–27 May, pp. 1–14.
IEEE Computer Society, Washington, DC, USA.

[41] Shan, H., Antypas, K., and Shalf, J. (2008) Charac-
terizing and predicting the I/O performance of HPC
applications using a parameterized synthetic bench-
mark. Proc. 20th ACM/IEEE Supercomputing Con-
ference (SC’08), Austin, TX, USA, 15–21 November,
pp. 42:1–42:12. IEEE Press, Piscataway, NJ, USA.

[42] Doulkeridis, C. and Norvag, K. (2014) A survey of
large-scale analytical query processing in MapReduce.
The VLDB Journal, 23, 355–380.

[43] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain,
N., Sen Sarma, J., Murthy, R., and Liu, H. (2010) Data
warehousing and analytics infrastructure at Facebook.
Proc. 2010 ACM SIGMOD International Conference
on Management of Data (SIGMOD’10), Indianapolis,
IN, USA, 6–10 June, pp. 1013–1020. ACM, New York,
NY, USA.

[44] Borthakur, D. et al. (2011) Apache Hadoop goes
realtime at Facebook. Proc. 2011 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’11), Athens, Greece, 12–16 June, pp. 1071–
1080. ACM, New York, NY, USA.

[45] Ananthanarayanan, R., Gupta, K., Pandey, P., Pucha,
H., Sarkar, P., Shah, M., and Tewari, R. (2009) Cloud
analytics: Do we really need to reinvent the storage
stack? Proc. 1st Workshop on Hot Topics in Cloud
Computing (HotCloud’09), San Diego, CA, USA, June
15, pp. 15:1–15:5. USENIX Association, Berkeley, CA,
USA.

[46] Tantisiriroj, W., Son, S. W., Patil, S., Lang,
S. J., Gibson, G., and Ross, R. B. (2011) On
the duality of data-intensive file system design:
Reconciling HDFS and PVFS. Proc. 23rd ACM/IEEE
Supercomputing Conference (SC’11), Seattle, WA,
USA, 12–18 November, pp. 67:1–67:12. ACM, New
York, NY, USA.

[47] HDF5 home page. http://www.hdfgroup.org/HDF5/.
[Last visited: July 2014].

[48] Rew, R. and Davis, G. (1990) NetCDF: An interface
for scientific data access. IEEE Computer Graphics
and Applications, 10, 76–82.

[49] Parallel HDF5 home page. http://www.hdfgroup.
org/HDF5/PHDF5/. [Last visited: July 2014].

[50] Li, J., Liao, W.-K., Choudhary, A., Ross, R. B.,
Thakur, R., Gropp, W. D., Latham, R., Siegel, A.,
Gallagher, B., and Zingale, M. (2003) Parallel netCDF:
A high-performance scientific I/O interface. Proc.
15th ACM/IEEE Supercomputing Conference (SC’03),
Phoenix, AZ, USA, 15–21 November, pp. 39:1–39:11.
ACM, New York, NY, USA.

[51] Schmuck, F. and Haskin, R. (2002) GPFS: A shared-
disk file system for large computing clusters. Proc. 1st
USENIX Conference on File and Storage Technologies
(FAST’02), Monterey, CA, USA, 28–30 January, pp.
231–244. USENIX Association, Berkeley, CA, USA.

[52] Carns, P. H., Ligon III, W. B., Ross, R. B., and
Thakur, R. (2000) PVFS: A parallel virtual file system
for Linux clusters. Proc. 4th Annual Linux Showcase
& Conference (ALS’00), Atlanta, GA, USA, 10–14
October, pp. 317–328. USENIX Association, Berkeley,
CA, USA.

[53] Lustre File System. http://www.lustre.org/. [Last
visited: July 2014].

[54] Orange File System (OrangeFS). http://www.
orangefs.org/. [Last visited: July 2014].

[55] Chattopadhyay, B., Lin, L., Liu, W., Mittal, S.,
Aragonda, P., Lychagina, V., Kwon, Y., and Wong,
M. (2011) Tenzing a SQL implementation on the
MapReduce framework. Proc. VLDB Endowment
(PVLDB), 4, 1318–1327.

The Computer Journal, Vol. ??, No. ??, ????

Page 20 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Performance evaluation of data-intensive computing applications 21

[56] Apache Mahout. http://mahout.apache.org/. [Last
visited: July 2014].

[57] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003)
The Google file system. Proc. 19th ACM Symposium
on Operating Systems Principles (SOSP’03), Bolton
Landing, NY, USA, 19–22 October, pp. 29–43. ACM,
New York, NY, USA.

[58] Shvachko, K., Kuang, H., Radia, S., and Chansler,
R. (2010) The Hadoop distributed file system. Proc.
26th IEEE Symposium on Mass Storage Systems and
Technologies (MSST’10), Incline Village, NV, USA, 3–
7 May, pp. 1–10. IEEE Computer Society, Washington,
DC, USA.

[59] Kosmos Distributed Filesystem (KFS). https://code.
google.com/p/kosmosfs/. [Last visited: July 2014].

[60] IOzone filesystem benchmark. http://www.iozone.
org/. [Last visited: July 2014].

[61] Shan, H. and Shalf, J. (2007) Using IOR to analyze the
I/O performance of HPC platforms. Proc. 49th Cray
User Group Conference (CUG’07), Seattle, WA, USA,
7–10 May. CUG, Oak Ridge, TN, USA.

[62] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B.
(2010) The HiBench benchmark suite: Characteriza-
tion of the MapReduce-based data analysis. Proc. 2nd
IEEE Workshop on Information & Software as Services
(WISS’10), Long Beach, CA, USA, 1–6 March, pp. 41–
51. IEEE Computer Society, Washington, DC, USA.

[63] Wong, P. and Van der Wijngaart, R. F. (2003) NAS
parallel benchmarks I/O version 2.4. Technical Report
NAS-03-002. NASA Ames Research Center, Moffett
Field, CA, USA.

[64] FLASH I/O benchmark routine. http://www.
ucolick.org/~zingale/flash_benchmark_io/. [Last
visited: July 2014].

[65] Apache Hive. http://hive.apache.org/. [Last
visited: July 2014].

[66] MPICH: High performance and widely portable
implementation of the MPI standard. http://www.
mpich.org/. [Last visited: July 2014].

[67] NASA. NASA Advanced Supercomputing (NAS)
Parallel Benchmarks (NPB). http://www.nas.nasa.
gov/publications/npb.html. [Last visited: July
2014].

[68] Polte, M., Simsa, J., and Gibson, G. (2008) Comparing
performance of solid state devices and mechanical
disks. Proc. 3rd Petascale Data Storage Workshop
(PDSW’08), Austin, TX, USA, November 17, pp. 1–
7. IEEE Press, Piscataway, NJ, USA.

[69] Kasick, M. P., Gandhi, R., and Narasimhan, P.
(2010) Behavior-based problem localization for parallel
file systems. Proc. 6th International Conference
on Hot Topics in System Dependability (HotDep’10),
Vancouver, BC, Canada, October 3, pp. 1–13. USENIX
Association, Berkeley, CA, USA.

[70] Méndez, S., Rexachs, D., and Luque, E. (2012)
Evaluating utilization of the I/O system on computer
clusters. Proc. 18th International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’12), Las Vegas, NV, USA, 16–
19 July, pp. 366–372. UCMSS, San Diego, CA, USA.

[71] Yu, H., Sahoo, R. K., Howson, C., Almasi, G.,
Castanos, J. G., Gupta, M., Moreira, J. E.,

Parker, J. J., Engelsiepen, T. E., Ross, R. B.,
Thakur, R., Latham, R., and Gropp, W. D. (2006)
High performance file I/O for the Blue Gene/L
supercomputer. Proc. 12th International Symposium
on High-Performance Computer Architecture (HPCA-
12), Austin, TX, USA, 11–15 February, pp. 187–196.
IEEE Computer Society, Washington, DC, USA.

[72] Méndez, S., Rexachs, D., and Luque, E. (2011) Method-
ology for performance evaluation of the input/output
system on computer clusters. Proc. 13th IEEE In-
ternational Conference on Cluster Computing (CLUS-
TER’11), Austin, TX, USA, 26–30 September, pp. 474–
483. IEEE Computer Society, Washington, DC, USA.

[73] Saini, S., Talcott, D., Thakur, R., Adamidis, P., Raben-
seifner, R., and Ciotti, R. (2007) Parallel I/O perfor-
mance characterization of Columbia and NEC SX-8 su-
perclusters. Proc. 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), Long
Beach, CA, USA, 26–30 March, pp. 1–10. IEEE Com-
puter Society, Washington, DC, USA.

[74] Méndez, S., Rexachs, D., and Luque, E. (2012)
Modeling parallel scientific applications through their
input/output phases. Proc. 4th Workshop on
Interfaces and Architectures for Scientific Data Storage
(IASDS’12), Beijing, China, September 28, pp. 7–15.
IEEE Computer Society, Washington, DC, USA.

[75] Sigovan, C., Muelder, C., Ma, K.-L., Cope, J.,
Iskra, K., and Ross, R. B. (2013) A visual network
analysis method for large-scale parallel I/O systems.
Proc. 27th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’13), Boston, MA, USA,
20–24 May, pp. 308–319. IEEE Computer Society,
Washington, DC, USA.

[76] Islam, N. S., Lu, X., Rahman, M. W., and
Panda, D. K. (2014) SOR-HDFS: A SEDA-based
approach to maximize overlapping in RDMA-enhanced
HDFS. Proc. 23rd ACM International Symposium on
High-Performance Parallel and Distributed Computing
(HPDC’14), Vancouver, BC, Canada, 23–27 June, pp.
261–264. ACM, New York, NY, USA.

[77] Wu, D., Luo, W., Xie, W., Ji, X., He, J., and
Wu, D. (2013) Understanding the impacts of solid-
state storage on the Hadoop performance. Proc. 1st
International Conference on Advanced Cloud and Big
Data (CBD’13), Nanjing, China, 13–15 December, pp.
125–130. IEEE Computer Society, Washington, DC,
USA.

[78] Dimitrov, M., Kumar, K., Lu, P., Viswanathan, V., and
Willhalm, T. (2013) Memory system characterization
of big data workloads. Proc. 1st Workshop on Big
Data Benchmarks, Performance Optimization, and
Emerging Hardware (BPOE’13), Silicon Valley, CA,
USA, October 8, pp. 15–22. IEEE Computer Society,
Washington, DC, USA.

[79] Worringen, J., Träff, J. L., and Ritzdorf, H. (2003)
Fast parallel non-contiguous file access. Proc.
15th ACM/IEEE Supercomputing Conference (SC’03),
Phoenix, AZ, USA, 15–21 November, pp. 60:1–60:18.
ACM, New York, NY, USA.

[80] Thakur, R., Gropp, W., and Lusk, E. (1999) Data siev-
ing and collective I/O in ROMIO. Proc. 7th Sympo-
sium on the Frontiers of Massively Parallel Computa-
tion (FRONTIERS’99), Annapolis, MD, USA, 21-25

The Computer Journal, Vol. ??, No. ??, ????

Page 21 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

22 R.R. Expósito et al.

February, pp. 182–189. IEEE Computer Society, Wash-
ington, DC, USA.

[81] Coloma, K., Choudhary, A., Liao, W.-K., Ward,
L., Russell, E., and Pundit, N. (2004) Scalable
high-level caching for parallel I/O. Proc. 18th
IEEE International Parallel and Distributed Processing
Symposium (IPDPS’04), Santa Fe, NM, USA, 26–30
April, pp. 96b. IEEE Computer Society, Washington,
DC, USA.

[82] Ching, A., Choudhary, A., Coloma, K., Liao, W.-K.,
Ross, R. B., and Gropp, W. D. (2003) Noncontiguous
I/O accesses through MPI-IO. Proc. 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid (CCGRID’03), Tokyo, Japan, 12–15 May, pp.
104–111. IEEE Computer Society, Washington, DC,
USA.

[83] Fryxell, B., Olson, K., Ricker, P., Timmes, F. X.,
Zingale, M., Lamb, D. Q., MacNeice, P., Rosner,
R., Truran, J. W., and Tufo, H. (2000) FLASH:
An adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. Astrophysical
Journal Supplement, 131, 273–334.

[84] Schad, J., Dittrich, J., and Quiané-Ruiz, J.-A. (2010)
Runtime measurements in the cloud: Observing,
analyzing, and reducing variance. Proc. VLDB
Endowment (PVLDB), 3, 460–471.

[85] A Hadoop library of Snappy compression. http://
code.google.com/p/hadoop-snappy/. [Last visited:
July 2014].

[86] Kim, Y., Lee, J., Oral, S., Dillow, D. A., Wang, F., and
Shipman, G. M. (2014) Coordinating garbage collection
for arrays of solid-state drives. IEEE Transactions on
Computers, 63, 888–901.

The Computer Journal, Vol. ??, No. ??, ????

Page 22 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

