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ABSTRACT:  

Aim: To analyze GDF15 and MMP7 serum levels as diagnostic biomarkers in gastric cancer (GC) patients. The 

prognostic value of GDF15 and MMP7 serum levels in combination with miR-200c blood expression was also 

analyzed. Patients & methods: Fifty-two GC and 23 control samples were included. Results: GDF15 and MMP7 

proved to be powerful tools for GC diagnosis. Increased levels of GDF15 and MMP7 were associated with shorter 

progression-free survival and overall survival in univariate analysis. In multivariate analysis, the combination of high 

levels of GDF15, MMP7 and miR-200c was an independent predictor for death (p = 0.033). Conclusion: GDF15 and 

MMP7 serum levels have diagnostic value for GC. The combination marker formed by GDF15, MMP7 and miR-

200c is indicative of adverse evolution in GC patients. 
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Gastric cancer (GC) is among the most frequent causes of cancer death worldwide. The stage at 

diagnosis and the options for curative surgery remain the most important prognostic factors. However, 

GC shows extensive tumor invasion and early spread, thus, metastasis and locoregional relapses 

frequently occur despite resection and multimodality therapy. Primary cancer cells are released from their 

initial sites and spread via the peripheral circulation to the premetastatic niches at distant organs. In this 

process, both circulating tumor cells (CTC) and host factors can determine whether metastasis and/or 

recurrence are likely after treatment. The survival of CTC is affected by mediators released by cancer, 

immune cells and/or stromal cells [1–3] and a variety of circulating factors can create a supportive 

microenvironment and promote the survival of metastatic seeds [4].  

 

Recently, several studies have demonstrated that the levels of specific members of the miR-200 family 

of miRNAs are increased in blood of patients with different epithelial cancers compared with healthy 

controls. Furthermore, increasing levels of circulating miR-200b and miR-200c have been correlated with 

unfavorable prognosis in breast cancer [5] and GC [6] patients, respectively.  

 

The miR-200 miRNA family has been shown to regulate the epithelial–mesenchymal plasticity that 

may be crucial at different stages of metastasis through direct targeting of the ZEB–Cadherin 1 axis [7–9]. 

The knowledge about the modulation of this axis and the epithelial–mesenchymal transition (EMT) was 

recently expanded with the addition of TGF-β, an important regulator of inflammation. The autocrine 

TGF-β signaling is necessary for the maintenance of high levels of ZEB proteins and the downregulation 

of miR-200 miRNA family in cells with mesenchymal phenotype [10]. Additional evidences support the 

connection between miR-200c and the inflammatory and prometastatic microenvironment in tumors. 

Thus, a recent study showed the existence of a feed-forward inflammatory signaling system initiated by 

the miR-200c suppression mediated by the proinflammatory cytokine IL6 [11]. Interestingly, recent 

evidences support the idea that IL6 could regulate the expression of GDF15 in prostate cancer [12]. Also, 

the targeting of SEC23A, an essential component of COPII secretory vesicles, by the miR-200 family 

promotes metastasis by influencing on the whole secretome, including the extracellular matrix 

components, proinflammatory cytokines and antimetastatic proteins [13]. Finally, it has been recently 

demonstrated that miRNAs can functioning as ligands for TLR8, thus triggering a prometastatic 

inflammatory response [14].  

 

Diverse clinical parameters indicating a proinflammatory host response [15] and the serum levels of 

several soluble factors have shown to correlate with poor prognostic in GC patients. However, there have 

been few efforts to identify associations between RNA markers in blood, serum levels of inflammatory 

and proinvasive mediators, and prognosis in GC patients. To address this issue, we analyzed the serum 

levels of GDF15 and MMP7 in a cohort of GC patients in which the blood miR-200c levels had been 

previously determined [6]. We choose GDF15 and MMP7 for analysis because these proteins have not 

comprehensively analyzed in relation to their prognostic role in GC.  

 

GDF15, also known as MIC1 [16], NAG1, PLAB, PTGFB and PDF, is a dimeric cytokine belonging 

to TGF-β superfamily involved in the regulation of macrophage activation [17]. Expression of GDF15 

can only be physiologically detected during development in placenta and some others embryonic tissues 

[17], which increases its interest as tumor marker. To date, GDF15 expression was related to a large 

number of pathological conditions such as renal [18] and cardiovascular diseases [19], and cancer [20]. In 

malignant diseases, alterations in the GDF15 expression was correlated with poor prognosis in metastatic 

melanoma [21] and prostate cancer [22]. In addition, increased levels of GDF15 in different body fluids 

were associated with worse outcome in glioblastoma [23] and in ovarian [24], endometrial [25], prostatic 

[26], pancreatic [27] and colorectal cancer [28]. Regarding GC, the overexpression and exposure to 

exogenous GDF15 has been involved in the activation of different proliferative and invasive signals in 

tumor cell lines [29,30], whereas the GDF15 expression in primary tumors was correlated with 

progressive pathological parameters [31]. Finally, GDF15 levels were detected significantly increased in 

serum and plasma from GC patients versus healthy controls [32,33]. Increased GDF15 plasma levels were 

associated with poor survival in a pool of esophageal and GC patients including different histological 

subtypes, although without achieving prognostic independence [33].  

  



MMP7 [34] is a secreted matrix metalloproteinase (MMP) belonging to the large family of zinc- and 

calcium-dependent endopeptidases. MMPs are responsible for the degradation of extracellular matrix 

components and are involved in important physiological processes such as tissue remodeling [35]. In 

cancer, the abnormal activity of MMPs [36], including MMP7 [37], has been related to proliferation, 

angiogenesis and enhanced spreading ability of tumor cells, with the consequent disease progression, 

metastasis and poor prognosis. The role of MMPs as biomarkers has been extensively studied in different 

types of cancer [38], including GC [39]. Regarding MMP7, several authors have correlated its expression 

in gastric primary tumors with several clinicopathological variables [40–42] and survival [43,44]. 

However, the MMP7 serum levels were only studied as prognostic factor in combination with MMP3 in a 

cohort of Helicobacter pylori-infected GC patients, but without obtaining significance in multivariate 

analysis [45].  

 

Therefore, we hypothesized that the serum levels of GDF15 and MMP7, as proinflammatory and 

prometastatic proteins, might correlate with GC diagnosis, staging and prognosis, and could be useful as 

clinical biomarkers in GC. In addition, the strength to predict progression-free survival (PFS) and overall 

survival (OS) of miR- 200c expression in combination with this protein signature in blood was 

investigated across 52 GC cases. Our results suggest that this blood profile defines a promising prognostic 

signature in GC.  

Patients & methods  

Patients & controls  

Consecutive GC patients were recruited at La Coruna University Hospital (CHUAC, Spain). Inclusion 

and exclusion criteria have been previously described [6]. Briefly, a confirmed pathological diagnosis of 

gastric or gastroesophageal junction adenocarcinoma and no prior systemic medical therapy for cancer 

were required.  

 

The diagnostic work-up included a clinical examination, blood sampling, endoscopy (when clinically 

indicated), and CT scanning of chest, abdomen and pelvis. Tumors and regional lymph nodes collected 

during surgery were processed on a routine diagnostic basis. When surgery was not performed, 

pathological diagnostic was based on endoscopic or radiological-guided biopsies. Staging and 

pathological analyses have been previously described [6]. To monitor disease progression, patients were 

followed-up clinically and with imaging every 8–12 weeks during the first 2 years and every 6 months 

thereafter. 

 

The controls were recruited from the patients’ family and relatives. We only excluded subjects with a 

previous history of malignant disease. Thus, controls with different chronic but stable diseases (e.g., 

peptic disease, hypertension, diabetes mellitus or heart disease) were eligible and consecutively recruited. 

The control cohort was selected to include a sex and age distribution that was comparable to the patient 

group.  

 

This study was approved by the institutional research ethics committee and conducted in compliance 

with the Declaration of Helsinki. Written informed consents were obtained from all the patients and the 

controls prior to their inclusion in the study.  

  



Blood sampling & serum determinations  

Peripheral venous bloods were obtained after surgery or in the presence of clinical and radiological 

disease when surgery was not indicated and before any systemic chemotherapy treatment. Blood samples 

were immediately processed by centrifugation (1500 × g, 10 min, 4°C) for serum isolation. Serum 

samples were stored at -80°C until their use. After the first thawing cycle, samples were assessed in 

duplicate for GDF15 and MMP7 levels using commercially available quantitative sandwich ELISA kits 

(Quantikine Colorimetric Sandwich ELISA kit, R&D Systems, MN, USA) following the procedures 

indicated by the manufacturer. The minimum detectable levels indicated by manufacturer for GDF15 and 

MMP7 were 2.0 pg/ml (range: 0.0–4.4 pg/ml) and 0.016 ng/ml (range: 0.005–0.094 ng/ml), respectively. 

Optical densities were quantified by using a microtiter plate reader spectrophotometer (MultiSkanPlus 

Plate Reader, Labsystem Thermo Scientific, MA, USA). GDF15 and MMP7 analyses were performed 

with no knowledge of the clinical or follow-up data. The quantitative detection of miR-200c in blood has 

been previously described [6].  

Bioinformatic analysis  

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database [46] was used to 

detect known and predicted interactions between GDF15 and MMP7 and their role on hypothetical 

regulatory or signaling networks. Microarray expression data were extracted using the Gene Expression 

Atlas tool from the European Bioinformatic Institute [47]. TargetScan version 6.2 (Whitehead Institute 

for Biomedical Research, MA, USA) was used to detect hypothetical miRNA binding sites on the 3´-UTR 

of analyzed genes [48]. 

Study design & statistical analyses  

This study was intended to establish the usefulness of GDF15 and MMP7 serum levels as clinical 

biomarkers and to determine its potential prognostic value in GC patients. The study was performed 

following the proposed guidelines of the Early Detection Research Network [49]. The design and results 

are presented in accordance with the REMARK guidelines [50].  

 

The receiver operating characteristic (ROC) curves were constructed for both markers by plotting 

sensitivity (y-axis) versus 1-specificity (x-axis) and the areas under the curves (AUCs) were calculated. 

The diagnostic performance including sensitivity, specificity, positive and negative predictive values, and 

accuracy of GDF15 and MMP7 serum quantifications were also estimated [49]. The potential correlations 

between GDF15 and MMP7 serum levels and the clinical and pathological features of the study subjects 

were analyzed. The normality of the distribution of GDF15 and MMP7 levels was determined using the 

Kolmogorov–Smirnov test. Thus, parametric or nonparametric statistics were used, as appropriate. The 

relationships between GDF15, MMP7 and miR-200c levels were analyzed.  

 

PFS was measured as the time between the baseline blood sampling and the documentation of first 

tumor progression, based on clinical and radiological findings, or death (events). OS was measured from 

the time at which the baseline blood sample was obtained to the date of death from any cause or date of 

last follow-up.  

 

The patients who were alive and progressionfree at the time of analysis were censored by using the 

time between the blood assessment and their most recent follow-up evaluations. The distributions of time-

to-event end points, namely PFS and OS, were estimated using the Kaplan–Meier method and compared 

using the log-rank test.  

  



The optimal prognostic cutoff values for GDF15 and MMP7 were determined by using the X-tile 

software (Yale School of Medicine, CT, USA) [51]. The X-tile software provides a method of dividing a 

single cohort into training and validation subsets, when separate training and validation cohorts are not 

available. In addition, standard Monte Carlo crossvalidation is performed to produce corrected p-values to 

assess statistical significance of data assessed by multiple cut-points.  

 

Multivariate survival analyses (PFS and OS) were performed using Cox regression models. We 

estimated hazard ratios (HRs), 95% CIs and p-values.  

 

The statistical power of the study was estimated post-hoc, taking into account a Kaplan–Meier 

estimated median OS of 40 weeks and 87 weeks, in the ‘poor-prognostic signature’ group and in the rest 

of the cohort, respectively, and an α-error of 0.05. The poor-prognostic signature was defined by 

increased blood expression of GDF15, MMP7 and miR-200c. The observed probability of survival at 2 

years was 0.75 in the low-risk signature group and 0.25 in the high-risk signature group. With the sample 

size of 52 patients, the study was able to demonstrate by two-sided log-rank test, a significant difference 

in OS, with a statistical power higher than 90%.  

 

All statistical tests were two-sided and p-values less than 0.05 were considered significant. SPSS 

Statistics (IBM Corporation, NY, USA) and GraphPad Prism (GraphPad Software, CA, USA) were used 

for data analyses.  

Results  

Patients & clinical data  

From November 2006 to July 2010, 52 GC patients and 23 healthy controls were consecutively 

enrolled. The clinical and pathological characteristics of patients are shown in Table 1. The composition 

of the population of patients included in this study reflects the disease state in which patients come to the 

medical offices in our department. Considering the lack of screening programs for GC in the country 

where participants have been recruited, the diagnosis is usually performed in patients with locally 

advanced or metastatic disease (stages III or IV). The mean age of controls was 61.87 year (standard error 

of mean [SEM]: 1.568) while the mean age of patients was 65.94 years (SEM: 1.315; p = 0.073, Student’s 

t-test). The ratio of males to females was similar among controls and patients (p = 0.068; Pearson’s χ
2
 

test).  

 

We performed follow-up of all patients enrolled until their death or the end of study (mean: 76.52 

weeks; SEM: 8.3). The last date of follow-up for the survivors was 5 September 2010. The mean follow-

up time of survivors was 118.9 weeks (SEM: 14.63 weeks; median: 104; range: 28–232). Tumor 

progression was detected in 38 patients (73.1%) and 35 (67.3%) died of advanced disease. Seven relapse 

events occurred among stage I–III patients while 31 patients experienced progression of metastatic 

disease.  

 

The median PFS was 27.5 weeks (range: 0–232) and the median OS was 62 weeks (range: 2–232).  

  



Table 1. Patients and clinicopathological data. 

 n  % 

   
Age (years)   

Mean (SEM)  65.94 (1.31)  

Range  42–85  
Quartile 1 (<59)  15  28.85 

Quartile 2 (59–66)  12  23.08 

Quartile 3 (66–74.75)  12  23.08 
Quartile 4 (>74.75)  13  25.00 

Gender   

Male  42  80.8 
Female  10  19.2 

ECOG   

0–1 37  71.2 
2  10  19.2 

Tumor location   

Proximal  13  25.0 

Distal  36  69.2 

Multicentric  3  5.8 
Stage   

I–II  9  17.3 

III  12  23.1 
IV  31  59.6 

pT   

pT1–2  8  15.4 
pT3 19  36.5 

pT4 7  13.5 

pTx  18  34.6 
pN   

pN0  9  17.3 

pN1  11  21.2 
pN2  9  17.3 

pN3  4  7.7 

Histology   
Intestinal  28  53.8 

Diffuse  21  40.4 

Mixed  3  5.8 
R   

R0  20  38.5 

R1–2  32  61.5 
M   

None (0)  23  44.2 

Liver (1) 8  15.4 
Non liver (1)  13  25.0 

Both (1) 8  15.4 

Grade   
Low (0–1)  21  40.4 

High (3–4)  27  51.9 

Vascular/perineural invasion   
No 11 21.2 

Yes 19 36.5 

Unknow 22 42.3 
   

 

pT, pN, M and staging as indicated in [66]. 

ECOG: Eastern Cooperative Oncology Group performance 

status (as indicated in [52]); R: Residual disease, as indicated 

in text; SEM: Standard error of mean. 

 

 

  



Diagnostic performance of GDF15 & MMP7 serum levels  

The determination of serum levels of GDF15 and MMP7 (Figure 1) was performed using 75 samples 

(52 patients and 23 controls). The medians for GDF15 serum levels were 453.36 pg/ml (range: 147.65–

1576.18) and 212.22 pg/ml (range: 90.28–429.44) for cancer patients and controls, respectively (p < 

0.001; Mann–Whitney U test). The medians for MMP7 serum levels were 3.27 ng/ml (range: 1.04–11.31) 

in cancer patients and 1.73 ng/ml (range: 0.66–3.43) in controls (p < 0.001). The median for GDF15 

serum levels was 359.12 pg/ml (range: 186.47–1556.47) in stage I–III patients while in stage IV patients 

was 703.24 pg/ml (range: 147.65–1576.18; p = 0.004). For MMP7, the medians of serum levels were 2.52 

ng/ml (range: 1.04–5.37 ng/ml) in stage I–III patients and 4.78 ng/ml (range: 1.39–11.31) in stage IV 

patients (p = 0.002).  

 
 

 
Figure 1. GDF15 and MMP7 serum levels. (A) GDF15 and (B) MMP7 serum levels in healthy controls, stage I–III and stage IV 

gastric cancer patients. Lines in each group represent the respective median values. p-values correspond to Mann–Whitney U tests. 

Comparing the serum levels in patients and controls, the AUCs were 0.8796 (95% CI: 0.804–0.955; 

p<0.0001) and 0.8597 (95% CI: 0.774–0.942; p< 0.0001), respectively, for GDF15 and MMP7 (Figure 2). 

Based on ROC curve analysis, the optimal discrimination between patients and healthy individuals was 

achieved using 325.28 pg/ml as a cutoff value for GDF15 serum levels. Using this cut-point, we obtained 

a sensitivity of 73.08% and a specificity of 91.30%. In the case of MMP7, the optimal cutoff value to 

distinguish between patients and healthy individuals was set at 2.13 ng/ml, with a sensitivity of 78.85% 

and a specificity of 86.96% (Table 2).  

  



Table 2. Diagnostic performance GDF15 and MMP7 serum levels. 

 Ss (95% CI )  Sp (95% CI )  PPV (95% CI )  NPV (95% CI )  Accuracy (95% CI ) 

      

Patients vs controls 

GDF15 >325.28  73.08 (58.73–84.00)  91.30 (70.49–98.48)  95.00 (81.79–99.13)  60.00 (42.21–75.65)  78.67 (67.39–86.96) 
MMP7 >2.13  78.85 (64.91–88.48)  86.96 (65.33–96.57)  93.18 (80.29–98.22)  64.52 (45.38–80.17)  81.33 (70.33–89.06) 

Stage I–III vs IV      

GDF15 >532.05  67.74 (48.54–82.68)  90.48 (68.17–98.33)  91.30 (70.49–98.48)  65.52 (45.66–81.40)  76.92 (62.83–87.02) 
MMP7 >3.79  61.29 (42.29–77.58)  90.48 (68.17–98.33)  90.48 (68.17–98.33)  61.29 (42.29–77.58)  73.08 (58.73–84.00) 

Controls vs stage I–II 

GDF15 >294.40  88.89 (50.67–99.42)  82.61 (60.45–94.28)  66.67 (35.44–88.73)  95.00 (73.06–99.74) 
 84.38 (66.45–
94.10) 

MMP7 >2.30  66.67 (30.92–90.96)  91.30 (70.49–98.48)  75.00 (35.58–95.55)  87.50 (66.54–96.71)  84.38 (66.45–94.10) 

      

 
GDF15 serum levels are presented in pg/ml and MMP7 serum levels are in ng/ml. 

NPV: Negative predictive value (in %); PPV: Positive predictive value (in %); Sp: Specificity; Ss: Sensitivity. 

ROC curves were also used to assess the ability of GDF15 and MMP7 serum levels to discriminate 

between stage I–III and stage IV patients. The AUCs obtained were 0.740 (95% CI: 0.599–0.882; p = 

0.003) and 0.753 (95% CI: 0.622–0.885; p = 0.002) for GDF15 and MMP7, respectively (Supplementary 

Figure 1; see online at www.futuremedicine.com/doi/suppl/10.2217/ fon.13.263). The optimal GDF15 

cutoff value that distinguishes between stage I–III and IV patients was 532.05 pg/ml with 67.74% 

sensitivity and 90.48% specificity. Using a cutoff value of 3.79 ng/ml for MMP7 serum levels, the 

sensitivity and specificity were 61.29 and 90.48% respectively (Table 2).  

 

In addition, GDF15 and MMP7 were also capable to detect patients at early stages of GC. The AUCs 

for ROC curves distinguishing healthy controls from stage I–II patients were 0.884 (95% CI: 0.755–

1.013; p < 0.001) for GDF15 and 0.768 (95% CI: 0.561–0.975; p = 0.020) for MMP7 (Supplementary 

Figure 1). The optimal cutoff value for GDF15 (294.40 pg/ml) allowed the detection of early-stage GC 

patients with 88.89% sensitivity and 82.61% specificity (Table 2). MMP7 reached 66.67% sensitivity and 

91.30% specificity detecting early stage GC patients when the optimal cutoff value was set at 2.30 ng/ml 

(Table 2).  

 

Clinical & pathological characteristics of GDF15 & MMP7 serum levels  

The GDF15 and MMP7 serum levels in relation to clinical and pathological characteristics of patients 

are shown in Table 3. An increased serum level of GDF15 and MMP7 were associated with Eastern 

Cooperative Oncology Group (ECOG) performance [52] status 2 (p < 0.001 and p = 0.006, respectively), 

residual (R1 and R2) disease (p < 0.001 and p = 0.002, respectively), and advanced (IV) stage (p = 0.004 

and p = 0.002, respectively). The patients with hepatic metastasis showed higher GDF15 and MMP7 

serum levels than patients without metastasis or with extrahepatic metastasis only (p < 0.001).  

  



Table 3. GDF15 and MMP7 serum levels and clinicopathological parameters 

Variable n  GDF15 mean (SEM)  p-value  MMP7 mean (SEM)  p-value 

      

Age (years)      

Quartile 1 (<59)  15  574.67 (136.30)  0.235†  4.25 (0.83)  0.149† 
Quartile 2 (59–66)  12  606.96 (135.39)   3.36 (0.73)  

Quartile 3 (66–74.75)  12  630.44 (89.29)   3.66 (0.44)  

Quartile 4 (>74.75)  13 7 59.71 (130.90)   4.94 (0.61)  
Gender      

Male  42  631.41 (68.47)  0.710  3.99 (0.40)  0.365 

Female  10  682.59 (156.90)   4.47 (0.69)  
Tumor location      

Proximal  13  615.62 (124.44)  0.769†  3.99 (0.79)  0.750† 

Distal  36  648.53 (78.36)   4.14 (0.40)  
Multicentric  3  665.00 (155.67)   3.75 (1.74)  

Stage      

I–III  21  433.87 (69.72)  0.004**  2.70 (0.23)  0.002** 

IV  31  781.74 (85.22)   5.02 (0.50)  

pT      

pT1–2  8  426.12 (32.70)  0.465  2.62 (0.33)  0.273 
pT3–4  26  496.39 (72.83)   3.74 (0.46)  

pN      

Node negative  9  414.42 (42.92)  0.840  3.33 (0.65)  0.936 
Node positive  24  523.13 (77.71)   3.46 (0.46)  

Histology      

Intestinal  28  634.11 (83.02)  0.700  4.39 (0.53)  0.446 
Diffuse + mixed  24  649.58 (96.09)   3.72 (0.43)  

ECOG      

0–1  37  501.70 (54.64)  <0.001***  3.54 (0.38)  0.006** 
2  10  1088.86 (125.36)   5.58 (0.66)  

R status      

R0  20  415.35 (74.99)  <0.001***  2.66 (0.23)  0.002** 
R1–2  32  782.45 (81.04)   4.97 (0.48)  

Metastasis location      

None  23  441.54 (65.58)  0.001†,**  2.94 (0.29)  0.003†,** 
Liver  8  932.84 (186.65)   6.25 (0.99)  

Nonliver  13  540.06 (91.57)   3.66 (0.73)  

Both  8  1088.28 (166.16)   5.89 (0.88)  
Weight loss >10%      

No  21  549.05 (86.00)  0.310  3.98 (0.67)  0.221 

Yes  30  712.31 (88.64)  4.18 (0.38)  
Grade      

Low (1–2)  21  700.63 (104.32)  0.173  4.73 (0.59)  0.074 
High (3–4)  27  594.07 (86.84)   3.48 (0.39)  

Vascular/perineural invasion      

No  11  412.57 (53.24)  0.983  3.47 (0.68)  0.846 
Yes  19  495.13 (87.18)  3.43 (0.52)  

      

 
GDF15 serum levels are presented in pg/ml and MMP7 serum levels are in ng/ml. pT, pN and staging as indicated in [66]. 
†Kruskal–Wallis tests for GDF15 (pg/ml) and MMP7 (ng/ml) serum levels. 

**0.001 ≤ p < 0.01; ***p < 0.001. 

ECOG: Eastern Cooperative Oncology Group performance status; R: Residual disease (as indicated in text); SEM: Standard error of 
mean. 

There was no correlation between GDF15 and MMP7 either with serum LDH levels, total proteins or 

weight loss. However, GDF15 and MMP7 were found correlated with ALP (respective Spearman’s ρ 

coefficients and p-values: 0.290, p = 0.037 for GDF15; and 0.402, p = 0.003 for MMP7) and albumin 

(respective Spearman’s ρ coefficients and p-values: -0.560, p < 0.001 for GDF15; and -0.352, p = 0.011 

for MMP7). GDF15 and MMP7 serum levels were highly correlated (Spearman’s ρ coefficient 0.712, p < 

0.001) (Table 4). However, the STRING database shows no evidences for direct molecular interactions 

between both proteins (Supplementary Figure 2).  

  



Table 4. Correlation of several prognostic factors in gastric cancer and GDF15 and MMP7 serum levels. 

Variable  GDF15  MMP7 

 Spearman’s ρ  p-value   Spearman’s ρ  p-value 

      

Weight loss (%)  0.160  0.263   0.219  0.122 

Positive lymph nodes (n)  -0.160  0.398   -0.090  0.636 
LDH (U/l)  0.177  0.209   0.245  0.080 

ALP (U/l)  0.290  0.037*   0.402  0.003** 

Albumin (g/dl)  -0.560  <0.001***   -0.352  0.011* 
Total proteins (g/dl)  -0.208  0.143   0.072  0.618 

GDF15  –  –   0.712  <0.001*** 

miR-200c  0.226  0.107   0.100  0.481 
      

 
GDF15 serum levels are presented in pg/ml and MMP7 serum levels are in ng/m l. miR-200c was measured as relative values of 

expression as indicated in [6]. 

*0.01 ≤ p ≤ 0.05; **0.001 ≤ p < 0.01; ***p < 0.001. 

To explore the possible influence of recent surgical procedures on the GDF15 and MMP7 levels, we 

analyzed their serum concentrations according to the time interval from surgery and blood sampling. The 

median time from surgery to serum sampling was 6 weeks (mean: 19.1 weeks; SEM: 5.5; range: 2–155). 

There were no significant differences in GDF15 (p = 0.94) and MMP7 (p = 0.22) levels according to time 

intervals (<6 or ≥6 weeks) from the last surgery.  

Prognostic significance of GDF15 & MMP7  

Using the cutoff values provided by X-tile for GDF15 and MMP7 serum levels, patients were divided 

in two subpopulations with significant differences in PFS and OS. High values of GDF15 (>493.82 

pg/ml) were associated with shorter PFS (Figure 3A) and OS (p < 0.001) (Figure 3B). The median PFS in 

the group with high GDF15 serum levels was 17 weeks (95% CI: 6–27 weeks) while in the group with 

low GDF15 serum levels was 53 weeks (95% CI: 28–102 weeks). The median OS in the group with high 

GDF15 serum levels were 40 weeks (95% CI: 22–64 weeks). By contrast, in the group with low GDF15 

serum levels, the median OS was 102 weeks (95% CI: 53–127 weeks).   

 

In the case of MMP7, there were found two different cutoff values providing the greatest differences 

in PFS (5.37 ng/ml) and OS (3.46 ng/ml). MMP7 serum levels higher than indicated were associated with 

shorter PFS (p < 0.001) (Figure 3C) and OS (p = 0.003) (Figure 3D). The median PFS in the group with 

high MMP7 serum levels was 10 weeks (95% CI: 2–27 weeks) while in the group with low MMP7 serum 

levels was 48 weeks (95% CI: 23–70 weeks). The median OS in the group with high MMP7 serum levels 

was 40 weeks (95% CI: 26–66 weeks). In the group with low MMP7 serum levels, the median OS was 83 

weeks (95% CI: 53–118 weeks).  

 

Then, we performed Cox regression analysis to determine the influence of different clinical and 

pathological variables, including GDF15 and MMP7 serum values, on the risk of relapse or death. In 

univariate analysis (Table 5), patients with high serum levels of GDF15 and MMP7, defined by X-tile-

generated cutoff values, had an increased risk of progression (HR [95% CI]: 3.608 [1.831–7.107], p < 

0.001; and 4.172 [2.017–8.629], p<0.001, respectively) and death (HR [95% CI]: 3.843 [1.799–8.209], p 

= 0.001; and 2.602 [1.318–5.136], p = 0.006, respectively). The presence of residual disease and 

advanced stage were also significantly correlated with progression and death. However, in multivariate 

analysis (Supplementary Table 1), GDF15 and MMP7, individually or in combination, failed to reach 

prognostic independence.  

  



 
 

 
Figure 3. X-tile and survival analysis. X-tile analysis on the training (large heat map) and validation (small heat map) data sets and 

the respective Kaplan–Meier curves corresponding to subpopulations generated from the entire data set using the different cutoffs 
provided by X-tile for each biomarker. (A) X-tile and the Kaplan–Meier analysis for GDF15 and PFS, and (B) for GDF15 and OS. 

(C) X-tile and the Kaplan–Meier analysis for MMP7 and PFS, and (D) for MMP7 and OS. Subpopulations with low values of 

biomarkers are represented in blue while subpopulations with high values are represented in yellow. Differences between survival 
curves were assessed by the log-rank test and the corresponding p-values are provided.  

OS: Overall survival; PFS: Progression-free survival. 

  



Table 5. Univariate Cox regression. 

Variable  Subset  Progression  Death 

  HR (95% CI)  p-value   HR (95% CI)  p-value 

       
GDF15  ≤493.82/>493.82  3.608 (1.831–7.107)  <0.001***   3.843 (1.799–8.209)  0.001** 

MMP7 for progression  ≤5.37/>5.37  4.172 (2.017–8.629)  <0.001***   –  – 

MMP7 for death  ≤3.46/>3.46  –  –   2.602 (1.318–5.136)  0.006** 
Residual disease  R0/R1–2  10.953 (4.432–27.067)  <0.001***   6.079 (2.489–14.847)  <0.001*** 

Stage IV  I–III/IV  17.877 (5.870–54.446)  <0.001***   6.341 (2.597–15.480)  <0.001*** 

Weight loss >10%  No/yes  1.292 (0.669–2.494)  0.446   1.889 (0.928–3.848)  0.080 
       

 
Univariate Cox regression analysis was performed to identify variables influencing on progression and death risk. GDF15 serum 

levels are presented in pg/ml and MMP7 serum levels are in ng/ml. 
**0.001 ≤ p < 0.01; ***p < 0.001. 

HR: Hazard ratio. 

Combined analysis of miR-200c blood expression & GDF15 & MMP7 serum levels  

In a previous work [6], we established the expression of the miRNA miR-200c as an independent 

prognostic variable in GC, using an aliquot of the same blood samples that we analyze now for GDF15 

and MMP7. In that study, the expression levels of miR-200c in blood were associated with shorter PFS 

(HR [95% CI]: 2.27 [1.093–4.712]; p = 0.028) and OS (HR [95% CI]: 2.24 [1.091–4.614]; p = 0.028) 

with independence of additional prognostic variables.  

 

Here, we asked for the prognostic capacity of the molecular signature composed by the combination 

of GDF15 and MMP7 serum levels, and miR-200c blood expression. The increased presence in blood of 

GDF15, MMP7 and miR-200c defined a ‘poor prognostic’ signature that was significantly associated 

with a shorter PFS (log-rank: p < 0.001) and a poor OS (log-rank: p < 0.001). In the group of GC patients 

with high levels for all components of this signature, the median PFS and OS were respectively 6 weeks 

(95% CI: 0–13.2) and 26 weeks (95% CI: 18.4–33.6). In the group with low GDF15, MMP7 and miR-

200c blood levels, the median PFS was 40 weeks (95% CI: 17.4–62.6) and the median OS was 87 weeks 

(95% CI: 42.6–131.4). In order to analyze the potential correlation of this prognostic signature with tumor 

burden, we have used the LDH and ALP levels as surrogate of tumor load. We did not obtain any 

significant result when high levels of ‘GDF15+MMP7+miR-200c’ were assessed in relation to LDH and 

ALP levels by binary logistic regression. The combination of elevated GDF15 and MMP7 serum levels 

with high miR- 200c expression in blood was able to predict OS (HR [95% CI]: 2.521 [1.079–5.891]; p = 

0.033) with independence of advanced stage and weight loss >10% (Table 6). In line with this finding, the 

analysis of stage IV patients shows that the presence of the ‘poor prognostic’ signature is significantly 

associated with low OS (log-rank: p = 0.004).    

  



Table 6. Multivariate Cox regression with GDF15 and MMP7 in combination with miR-200c. 

Progression  Death 

Covariables  HR (95% CI)  p-value   Covariables  HR (95% CI)  p-value 

       

GDF15+miR-200c high  1.725 (0.827–

3.598)  

0.146   GDF15+miR-200c high  2.006 (0.942–

4.272)  

0.071 

Stage IV  8.306 (2.160–

31.937)  

0.002**   Stage IV  6.288 (2.382–

16.601)  

<0.001*** 

R1–2  4.105 (1.251–
13.476)  

0.020*   Weight loss >10%  1.660 (0.802–
3.437)  

0.172 

MMP7+miR-200c high  2.105 (0.860–

5.149)  

0.103   MMP7+miR-200c high  1.154 (0.540–

2.466)  

0.711 

Stage IV  8.138 (2.160–

30.663)  

0.002**   Stage IV  6.612 (2.460–

17.774)  

<0.001*** 

R1–2  4.059 (1.264–
13.032)  

0.019*   Weight loss >10%  1.784 (0.856–
3.719)  

0.122 

GDF15+MMP7+miR-200c 
low  

2.218 (0.915–
5.375)  

0.078  GDF15+MMP7+miR-200c 
high  

2.521 (1.079–
5.891)  

0.033* 

Stage IV  8.259 (2.035–

33.522)  

0.003**   Stage IV  6.263 (2.369–

16.556)  

<0.001*** 

R1–2  4.258 (1.215–

14.920)  

0.024*   Weight loss >10%  1.517 (0.717–

3.210)  

0.276 

       

 
Multivariate Cox regression analysis was performed to identify independent variables influencing on progression and death risk. 

The analysis was performed for GDF15 and/or MMP7 serum levels in combination with miR-200c blood expression. The covariates 

included in the model were residual disease (R1–2 vs R0) and stage (early I–III stages vs advanced IV stage) for progression, and 
weight loss >10% (no vs yes) and stage (early I–III stages vs advanced IV stage) for death. miR-200c expression values were 

categorized using as cutoff the mean expression as previously depicted [6]. GDF15 and MMP7 values were categorized as indicated 

in text. ‘GDF15+miR-200c high’ and ‘MMP7+miR-200c high’ are categorical variables representing values above the respective 
cutoffs values for all biomarkers. In the variable ‘GDF15+MMP7+miR-200c low’, used in progression analysis, we grouped values 

below the respective cutoffs for GDF15, MMP7 and miR-200c. In the variable ‘GDF15+MMP7+miR-200c high’, used in survival 

analysis, values above the corresponding cutoffs for all biomarkers were grouped. 
*0.01 ≤ p ≤ 0.05; **0.001 ≤ p < 0.01; ***p < 0.001. 

HR: Hazard ratio. 

Discussion 

This study analyzes for first time the relationship between the serum levels of two inflammatory and 

proinvasive proteins, GDF15 and MMP7, and the blood expression level of miR-200c in a cohort of GC 

patients, with the objective of obtaining a diagnostic and prognostic signature based on 

microenvironmental and CTC molecular properties. In our first analysis, we found significantly elevated 

the serum levels of GDF15 and MMP7 in GC patients, as previously demonstrated [32]. Likewise, we 

found higher serum levels of GDF15 and MMP7 in stage IV GC patients (Figure 1), in line with the 

findings already performed on colorectal, breast and prostate carcinomas [53]. Taking into account these 

data and the lack of reliable markers for GC detection [54], we decide to explore the diagnostic 

performance of GDF15 and MMP7 serum levels as biomarkers for GC (Figure 2), as well as their ability 

to distinguish early stages from healthy individuals, and advanced stages among GC patients 

(Supplementary Figure 1). The analysis of the respective ROC curves shows that both GDF15 and MMP7 

are reliable candidate biomarkers for diagnostic purposes. However, when used to detect advanced 

disease, both biomarkers suffered an important decrease in sensitivity (Table 2). This reduction in 

sensitivity may be attributable to the fact that the serum amount of GDF15 and MMP7 is not different 

between GC patients with extrahepatic metastasis and nonmetastatic patients. Indeed, when we construct 

a specific ROC curve for hepatic disease (data not shown), the same cutoff values used for the 

discrimination of advanced stages now render a sensitivity and specificity of 87.5% and 75% for GDF15, 

and 81.25% and 77.78% for MMP7, respectively. These findings suggest that GDF15 and MMP7 might 

be secreted by liver in response to the colonization by metastatic GC cells.  

  



Since GDF15 and MMP7 serum levels were not thoroughly examined for prognostic purposes in GC 

patients in previous studies, we asked for their association with PFS and OS and for their ability to predict 

risk of relapse or death. The Kaplan–Meier curves using X-tilebased cutoff values for stratification of 

GDF15 and MMP7 serum levels show that GC patients with high levels of any of both biomarkers have a 

worse PFS and OS (Figure 3). However, although in univariate analysis both GDF15 and MMP7 serum 

levels were significantly associated with PFS and OS (Table 5), in multivariate analysis neither GDF15 

nor MMP7 were able to independently predict any of these outcomes (Supplementary Table 1). In 

addition, the Kaplan–Meier analysis shows that high serum levels of GDF15 and/or MMP7 (both or one 

of biomarkers high) have a similar impact on PFS in GC patients (Supplementary Figure 3). Also, the 

combined Kaplan–Meier analysis for GDF15 and MMP7 serum levels shows a similar effect on OS when 

one or both biomarkers have serum levels below the cutoff values (Supplementary Figure 4). The grouped 

behavior of GDF15 and/or MMP7 positivity in Kaplan–Meier analysis for PFS may be a direct 

consequence of the high correlation found between both biomarkers (Table 4) and could indicate a 

physiological association between both biomarkers. However, we obtain an inverse behavior in the OS 

analysis in which survival in patients with low levels for both biomarkers is similar to survival in patients 

with one of biomarkers high. This result points, therefore, to a negative synergic effect on survival only 

when both biomarkers show elevated serum levels. In order to explore the possible relationships between 

these two proteins, we performed a query to the STRING database [55]. While no evidence for direct 

interactions was found (Supplementary Figure 2), the text mining tool returns a single publication [56] in 

which changes in the expression of GDF15 and MMP7 were related to PNN forced overexpression in 

HEK293 cells. The search in Gene Expression Atlas [47] for microarray data about PNN, GDF15 and 

MMP7 expression in GC versus adjacent nontumor samples returns no conclusive results relative to their 

hypothetical joint regulation. Beyond these data, the expression and the potential relation of PNN, GDF15 

and MMP7 was not analyzed in detail in GC, so we can only suggest a potential effect of PNN on the 

overexpression and/or elevated secretion of GDF15 and MMP7. In addition, the expression and secretion 

of GDF15 and MMP7 in cancer could be affected by the deregulation of other multiple interacting and/or 

regulatory proteins (Supplementary Figure 2), which hinders the interpretation of any possible 

relationship. We also wondered for the hypothetical regulation of both proteins by a common miRNA. 

However, when searching for predicted miRNA binding sites on the 3´-UTR of both genes, using 

TargetScan 6.2 [48], none of returned results were coincident (data not shown).  

 

Given the proposed effects of GDF15 on adipose tissue, body mass and food intake [57–59], we also 

explore the association of weight loss and GDF15 serum levels in our cohort of GC patients. However, 

while GDF15 plasma levels were previously found significantly elevated in esophago-GC patients with 

cachexia (defined as weight loss >10%) [33], in this study we could not found such difference for GDF15 

serum levels in GC patients. Moreover, conversely to previous studies [33], we could not find association 

of weight loss >10% with PFS or OS in univariate analysis (Table 5) and with OS in multivariate analysis 

(Table 6 & Supplementary Table 1). In addition, GDF15 serum levels were not correlated with the 

percentage of weight loss (Table 4). However, such as was before depicted in plasma of esophago-GC 

patients [33], we found GDF15 serum levels negatively associated with albumin, a marker for nutritional 

status. This apparent contradiction indicates that weight and nutritional status in GC patients are 

multifactorial events and that may be influenced by opposite variables.  

 

Nowadays, there are increasing evidences supporting the role that tumor microenvironment plays on 

the capacity of malignant cells to grow, invade adjacent tissues and spread [60]. The signals arising from 

the inflammatory component of this microenvironment are among the most influencing factors on the 

metastatic potential of primary tumors [61,62]. However, the establishment of metastasis lies also on 

factors associated to target tissues and organs [60,63], beyond those inherent to primary tumors and their 

capacity of CTC release. Therefore, that a given tumor can spread or not to distant locations in different 

patients depends on individual molecular features that predispose or protect from metastasis. The 

secretion of inflammatory, proangiogenic and proinvasive proteins in the metastasis sites is one of events 

occurring during their colonization by cancer cells [63]. This gives rise to the generation, and consequent 

release, of different proteins to blood, among which are the MMPs [64] and perhaps GDF15. In fact, it 

was recently demonstrated that the overexpression of GDF15 is able to restrict the development of 

prostate cancer, but promotes metastasis in mouse tumor models [65]. As seeds for metastasis, CTC 



released by primary tumors may also account for the production and induction of several cytokines and 

proteins. The molecular mechanisms behind these processes are complex and many signals may interact 

and contribute to tumor dissemination, and ultimately, to metastasis. Among these, miRNAs are known 

for their capacity to work as master regulators of a large number of cellular and physiological events. 

Therefore, the study of miRNA deregulation in cancer can provide cues for the interpretation of events 

occurring during tumor spread and metastasis. An example is our recently published study in which we 

demonstrate that high miR-200c expression in blood from GC patients may be considered a marker 

associated both with poor PFS and OS [6]. Since miR200 family has been also involved in EMT [7–9], 

inflammatory response [11] and secretome regulation [13], we performed a pooled analysis of circulating 

miR- 200c levels obtained in our previous work, and GDF15 and MMP7 serum levels obtained here, in 

order to develop a combinatory marker for GC prognostic integrating molecular features both from CTC 

and microenvironment. Based on findings above depicted, we created a dichotomized variable in which 

low serum levels of GDF15 and MMP7, and low levels of circulating miR-200c, were grouped in a 

separate factor that classifies patients with good prognostic versus the remaining patients. For survival 

analysis, we created a second stratified variable in which high serum levels of GDF15 and MMP7, and 

high levels of circulating miR-200c were classified as a separate factor indicating worse survival. These 

variables were included in multivariate analysis in order to determine its predictive capacity on 

progression and death risk (Table 6). As result, the combination of high GDF15 and MMP7 serum levels 

with high miR-200c blood expression was established as an independent predictor of poor survival in GC 

patients, so this molecular signature could be related to the generation of an adverse molecular 

environment. In fact, the group of GC patients with high levels of ‘GDF15+MMP7+miR200c’ marker 

was enriched for metastasis (10/11; 90.91%; p = 0.034; Fisher’s exact test) and deaths (10/11; 90.91%; p 

< 0.001; log-rank test).  

Conclusion & future perspective  

In this study, we found GDF15 and MMP7 significantly elevated in serum from GC patients. More 

importantly, these changes could be exploited to establish GDF15 and MMP7 as sensitive and specific 

serum biomarkers for GC diagnostic at early stages and for metastatic disease detection. In addition, high 

GDF15 and MMP7 serum levels were associated with poor PFS and OS. Moreover, our data suggest that 

concomitant elevation of GDF15 and MMP7 serum levels with high miR-200c blood expression is able to 

predict for short OS. Taken together, these data are sufficient to provide the basis for further studies with 

a larger number of patients, in order to confirm the diagnostic and prognostic capabilities of GDF15, 

MMP7 and miR-200c in GC. Furthermore, these findings support the importance of molecular 

microenvironment and its influence on the creation of favorable conditions for dissemination of disease 

and metastasis generation. Therefore, the combined analysis of different markers that detect several host 

and tumor factors may enable in future the development of more precise, sensible and specific molecular 

signatures for prognostic evaluation of GC patients, as well as patients with other tumors.  
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