
SYNTHESIS OF MULTIRESOLUTION SCENES WITH GLOBAL
ILLUMINATION ON A GPU

Raquel Concheiro1, Margarita Amor1, Montserrat Bóo2, Iago Iglesias1, Emilio J. Padrón1 and Ramón
Doallo1

1Dept. Electronics and Systems, Univ. Coruña, E–15071 A Coruña, Spain
rconcheiro@udc.es, margarita.amor@udc.es, iago.iglesias.alvarez@gmail.com, emilioj@udc.es, doallo@udc.es

2Dept. Electronic and Comp. Eng., Univ. Santiago de Compostela, E–15782 Santiago de Compostela, Spain
montserrat.boo@usc.es

Keywords: Multiresolution:GPU:Radiosity:Subdivision Surface

Abstract: The radiosity computation has the important feature of producing view independent results, but these results
are mesh dependent and, in consequence, are attached to a specific level of detail in the input mesh. Therefore,
rendering at iterative frame rates would benefit from the utilization of multiresolution models. In this paper
we focus on the rendering stage of a solution for hierarchical radiosity for multiresolution systems. This
method is based on the application of an enriched hierarchical radiosity algorithm to an input scene with low
resolution objects (represented by coarse meshes), and the efficient data management of the resulting values.
The proposed encoding makes it possible to apply the color values obtained for the coarse objects to detailed
versions of these objects during the rendering phase. These finer meshes are obtained by a standard mesh
subdivision strategy, such as the Loop subdivision scheme. Our solution performs the whole rendering stage
of this multiresolution approach on the GPU, implementing it in the geometry shader using Microsoft HLSL.
Results of our implementation show an important reduction in computational costs.

1 INTRODUCTION

Realistic scene walkthroughs are commonly per-
formed in many applications such as virtual reality,
simulations, animation, games or geographic infor-
mation system. Global illumination models, such as
the hierarchical radiosity algorithm (Hanrahan et al.,
1991), are usually needed to achieve realistic illumi-
nation results. Radiosity is view independent, so the
results obtained can be re-employed for camera walk-
throughs of the scene. An important drawback, how-
ever, is the mesh dependence of the radiosity compu-
tation that, in consequence, results in obtaining illu-
mination values attached to a specific level of detail in
the input mesh. Due to this fact, the obvious approach
to get optimum results could be using a very detailed
input mesh but, unfortunately, that means high com-
putational costs. Thus, real time rendering of com-
plex scenes would benefit from the utilization of mul-
tiresolution models. This could imply radiosity re-
computation after each change in the object resolution
level when the camera position changes.

Most of the existing approaches to the use of mul-

tiresolution models in a radiosity engine (Garland
et al., 2001; Gobbetti et al., 2003) are based on the
re-computation of the radiosity values in terms of the
selected resolution of the objects. A proposal that dif-
fers from this scheme is presented in (Padrón et al.,
2010). In that work the illumination values are pre-
computed only once, using the hierarchical radiosity
method, and the challenge lies in the application of
the fixed colors computed to a multiresolution scene.
The different multiresolution meshes are obtained by
a standard mesh subdivision strategy, specifically the
Loop subdivision scheme in this case (Loop, 1987).

Real time tessellation has been performed on Sub-
division Surfaces on GPU (Shiue et al., 2005; Loop
and Schaefer, 2008; Patney et al., 2009). Focussing
on surface subdivision techniques related with our
work, (Shiue et al., 2005) uses multiple textures in
order to store the base mesh as a patch and makes
use of a precomputed lookup table, so these propos-
als present a limitation on the subdivision level. In
(Loop and Schaefer, 2008) tessellated surface is ap-
proximated and in general does not possess the same
continuity as the limit surface. In (Patney et al., 2009)



COARSE MESH COARSE MESH COARSE MESH

PREPROCESSING STAGE RENDERING STAGE

Detailed Mesh 
Generation 

+ 
Normal Analysis

Modified 
Hierarchical 
Radiosity 

+ 
HCE lists

Surface 
Subdivision 

+ 
HCE Application

Normal

Set

HCE

Values

Final

Scene

Figure 1: Scheme of a multiresolution radiosity algorithm.

a data structure and breadth-first algorithm to perform
recursive subdivision of Catmull-Clark on a GPU us-
ing CUDA, is presented.

In this paper we take the proposal in (Padrón et al.,
2010) as a starting point and present an implementa-
tion that performs the whole rendering stage of this
multiresolution approach on the GPU. This phase ba-
sically consists of two steps, first a surface subdivi-
sion step and, subsequently, the mapping of colors
obtained from coarse meshes of the objects in the
scene to more detailed versions of those objects. Both
steps are implemented in the geometry shader using
the API DirectX 10, with the shaders programmed
with Microsoft HLSL. A variant version of the origi-
nal Loop subdivision scheme, based on a factored ap-
proach (Warren and Schaefer, 2004), has been used as
it is more appropriate for an efficient implementation
on a GPU. Additionally, an analysis of the different
alternatives to access the necessary neighboring in-
formation is included in this work.

2 HIERARCHICAL RADIOSITY
FOR MULTIRESOLUTION
SYSTEMS

In (Padrón et al., 2010), the global illumination
computation for a synthetic scene with multiresolu-
tion objects is performed using the coarse mesh of
these objects. Thus, the colors are precomputed only
once, using an enriched version of the hierarchical ra-
diosity method to obtain a set of significant pairs nor-
mal vector-color per polygon. Subsequently, the main
challenge consist in the application of the precom-
puted colors to the finer meshes of these multireso-
lution objects. The basic structure of this approach is
outlined in Figure 1. The algorithm comprises three
main stages, two of them associated with the radiosity
computation (preprocessing), and the last one dealing
with the final mesh representation (rendering).

The developed solution is based on the analysis
of the normal vectors of the multiresolution mesh and
the selection of a representative set of normals (first
preprocessing stage). This set is employed to en-
rich the hierarchical radiosity algorithm, thus obtain-
ing a set of radiosity values per triangle in the coarse

mesh of a multiresolution object (second preprocess-
ing stage). These view independent values are effi-
ciently stored and selectively applied to the multires-
olution mesh during the last step (rendering stage).
The proposed encoding, named Hierarchical Color
Encoding method (HCE), allows the direct assign-
ment of colors to meshes with any resolution. Note
that these computed energy values can be applied to
the objects in the scene in any resolution configura-
tion, so high quality scenes with very low computa-
tion requirements can be obtained.

The mesh detail level of the multiresolution ob-
jects in the final render depends on the camera po-
sition and computational cost constraints. This mul-
tiresolution scheme is based on a standard mesh sub-
division strategy. Among all standard subdivision
strategies, the Loop subdivision scheme (Loop, 1987)
has been used, although the extension for working
with other subdivision schemes is straightforward.
Once the mesh is conveniently refined, the radiosity
values are applied according to the HCE representa-
tion and a given normal selection criterion specified.

HCE is a representation method that defines a
hierarchical color triangle structure that stores the
values obtained from the hierarchical radiosity algo-
rithm. The encoding is based on the following struc-
ture: ei [Ti Li Ci Ri], where ei is the triangle color, fol-
lowed by four bits, enclosed in brackets in our nota-
tion. Each of these bits is associated with each one of
the four child subtriangles (Top, Left, Center, Right).
A value of 1 means that the subtriangle is in turn sub-
divided into four children, as a consequence of having
been further subdivided during the hierarchical refine-
ment procedure, also coded in the HCE structure. A
value of 0 marks that child as a leaf element.

With this notation, the adaptive subdivision hierar-
chy for any coarse triangle can be represented in a list
J, taking the information associated with each level in
the hierarchy in a breadth-first way (each subdivision
level is listed before starting the next level). To deal
with the set of normal vectors per root triangle and the
radiosity values associated with them obtained from
the global illumination step, the resulting HCE list
for a triangle i with normal ~n0

i and an additional set
of m normals (Ni = {~n1

i ,~n
2
i , . . . ,~n

m
i }) would have the

following structure:

J = smNi E0 [T0 L0 C0 R0] E1 [T1 L1 C1 R1] . . .

where Ei is the set of m + 1 colors (Ei =
{e0

i ,e
1
i , . . . ,e

m
i }) computed for each triangle in the hi-

erarchy for each normal vector. The starting bit, s, is
added to mark the root triangle as a leaf (s = 0) when
necessary (s = 1 means there are child triangles).

During the rendering stage, once the subdivision
level of a multiresolution object is selected and the



corresponding model generated, the assignment of
colors is performed. A set of colors was computed
per subtriangle and listed in the J list, each one asso-
ciated with a representative normal. When rendering,
the final color to be assigned to the triangle is based on
a normal comparison criterion. Specifically, if m+ 1
colors were obtained with the radiosity procedure for
a triangle i, the correct color (ek

i ∈ Ei,0 ≤ k ≤ m) as-
signed to a triangle j in the final mesh is the one with
the closest normal vector nk

i

~nk
i ·~n0

j ≤~nl
i ·~n0

j , l ∈ {0...m}

where~n0
j is the normal vector of triangle j.

3 SURFACE SUBDIVISION AND
COLOR APPLICATION ON A
GPU USING THE GEOMETRY
SHADER

This section describes the GPU implementation
developed for the rendering step of the multiresolu-
tion method depicted in Section 2. This last stage of
the method dynamically selects the geometric level of
detail of each multiresolution object to be rendered as
a function of the viewpoint and the associated compu-
tational costs. The refined mesh for the selected level
of detail is computed by applying the Loop subdivi-
sion scheme to the coarse mesh. Afterwards, the ap-
propriate colors obtained from the global illumination
step are assigned.

We have implemented both the two tasks involved
in this phase, surface subdivision and color mapping,
in a kernel for the geometry shader. This kernel is
spawned for each triangle in the input mesh and per-
forms the whole computation (both tasks) for that
triangle. Notice that our proposal is recomputation-
based, so many redundant computations are made due
to the geometry shader constraint that prevent the syn-
chronization among tasks. The redundant computa-
tions allows multiple arbitrary asynchronous kernel
calls and does not affect performance, however. The
details of our proposal are detailed below.

3.1 Geometry Shader HLSL
Implementation of Surface
Subdivision with Loop

Our implementation of subdivision using Loop fol-
lows the factored approach introduced in (Warren and
Schaefer, 2004). This approach deals with all the ver-
tices in the mesh, the new ones introduced with the

Figure 2: First step in kernel: Linear Subdivision.

subdivision of the edges and the old ones, in a simi-
lar way. This feature simplifies the original Loop al-
gorithm, avoiding computations and, more important,
branch divergence, common performance killer for
computations on GPU kernels. To minimize the num-
ber of times the subdivision kernel is called in the ge-
ometry shader, and to keep the number of output trian-
gles below the recommended 25 (Lorenz and Döllner,
2008) as well, we have unrolled a couple of iterations
of the subdivision iterative process in our implemen-
tation. Of course, more iterations of the subdivision
process may be computed by sending back the results
to the pipeline through stream out.

Each input triangle to be subdivided by the ker-
nel, being its three vertices {v0,v1,v2} (see Figure 2)
needs information about the adjacent triangles shar-
ing a vertex with it, that is, the rest of triangles with
vertices {v0,nv0,v1}, {v1,nv1,v2} and so on. A regu-
lar vertex is shared by six triangles (valence 6), so a
regular case like the one in the figure needs the geom-
etry data of 12 adjacent triangles. The notation used
is vi for the vertices in the triangle to be subdivided,
nv j for neighboring vertices and wk for the additional
newly created vertices needed for the computation.

Each iteration of the subdivision scheme is sep-
arated into three different steps: Linear Subdivision,
Averaging and Correction Factor. The Linear subdi-
vision step (see Figure 2) creates a new vertex as a
result of the linear subdivision of every edge in the
original input and the adjacent triangles. Therefore,
the new vertices {v0,1, v1,2, v2,0, w0,1, w0,2, w1,2, w1,3,
w1,4, w1,5, w2,5, w2,6, w2,7, w2,8, w0,8} are obtained
as a result. Only v0,1, v1,2 and v2,0 are inserted in the
mesh, though. The rest, vertices wi, j, are only used in
the next step, Averaging, and will be recomputed in
other kernel executions for triangles {nvi,vi,v j}. The
Averaging step computes the new positions of the ver-
tices v0, v1, v2, v0,1, v0,2 and v0,4, aiming at improving
smoothness, this way:

v′i =
1
4

vi +
3

4n

n

∑
j=1

ad jacent vertex j,



Figure 3: Second iteration in the subdivision process.

where n is the valence of vi.
Lastly, a correction factor, c f (n), is applied to the

relevant vertices (v0, v1, v2, v0,1, v0,2 and v0,4, follow-
ing with the example of Figure 2) to keep the continu-
ity of the surface as in the original Loop algorithm (C2

at regular vertices and C1 at extraordinary vertices).
The new location for these vertices will be:

v′′i = vi + c f (n) ·
(
v′i− vi

)
.

The correction term is a function of the valence, n:

c f (n) =
5
3
− 8

3

(
3
8
+

1
4

cos(2π/n)
)2

,

so it does not modify regular vertices, that is, v′′i = v′i
when n = 6. The terms for each possible value of n
are precomputed and stored in the constant memory.
This read-only memory, optimized for the access to
constants, provides a low latency, similar to register.

After the first iteration, 4 new triangles are created
and make up the output of the geometry shader if no
more iterations are needed. Otherwise, in the second
iteration (as commented above, two iterations are un-
rolled in our subdivision kernel) 16 new triangles are
obtained from those 4 triangles. This second iteration
performs again the three steps with the same opera-
tions than the previous one. Notice, however, that it
is necessary to compute the Averaging and Correc-
tion Factor steps of the first iteration for some ver-
tices whose computation had not been completed dur-
ing the first iteration (because it was not needed). An
example is shown in Figure 3: the vertices wi, j (w0,0,
w0,1. . . ) were obtained by the Linear Subdivision step
at iter. 1, but the other two steps, Averaging and Cor-
rection Factor, were only applied on the vertices of
the triangle being subdivided (v0, v0,1. . . ). Now, we
need the final (smooth) position of these vertices to
get some of the new vertices for the second iteration.

For example, following the example in Figure 3,
the smooth position of w0,1 is needed to get the vertex

w0,01 as the linear interpolation of v0−w0,1. Exactly
the same for the rest of the vertices wi, j in the figure
so the Averaging and Correction Factor steps are ap-
plied to these vertices. These computations in turn
imply the computation of additional linear interpola-
tions between the vertices nv j. Finally, after updating
the positions of the vertices wi, j the three steps of the
second iteration can be performed.

3.2 HLSL Implementation of Color
Mapping with HCE

Once the input triangle has been subdivided up to the
needed level, the resultant set of triangles has to be
rendered. That requires to compute the proper colors
for the vertices of these triangles. Since the color val-
ues provided by the global illumination phase have
been coded for each coarse triangle using the HCE
representation, the kernel running in the geometry
shader must decode and map the corresponding ra-
diosity values to the new triangles and compute the
final color value in the vertices. Therefore, this is a
two-step process:

1. First, for each generated triangle the more appro-
priate color has to be selected from the HCE rep-
resentation. This color is the color associated with
the more similar vector to the normal vector of the
sub-triangle among a set of normal vectors asso-
ciated with the original parent triangle.

2. Once the color of all the sub-triangles has been
obtained, the color of every vertex is computed
as a weighted average of the colors of the trian-
gles it belongs to. Naturally, besides the colors of
the sub-triangles obtained from the input triangle,
the colors of the sub-triangles resulting from the
neighboring triangles are needed as well, so they
are recomputed as times as needed.

3.3 Implementation Details

As it has been commented, the geometric data of the
neighboring triangles is needed to perform an accu-
rate Loop subdivision of a triangle. Specifically, we
need to access the position of the vertices in the adja-
cent triangles, 12 triangles and 10 vertices in the reg-
ular case, as seen in Figure 2 (vertices nv0 to nv9).

We have analyzed three different ways for access-
ing the information of the neighboring triangles in the
kernel. The performance achieved with any of them
is analyzed in Section 4. The three alternatives work
with the same basic structure VS OUTPUT, defined in
Listing 1, that encapsulates the information of each
of the input vertices that come from the vertex shader:



Listing 1: Geometry shader input and vertex shader output.

1 struct VS_OUTPUT {

2 float4 vPosition : POSITION0;

3 float3 vNormal : NORMAL;

4 float4 vColor : COLOR0;

5 float4 ints : STATUS;

6 }

position, normal vector, color and additional informa-
tion needed in the kernel (the field named STATUS),
such as the vertex index, whether it is an inner ver-
tex o not, whether it is part of a multiresolution object
or not and its valence (number of triangles that vertex
belongs to).

As it has been commented, there are recomputa-
tion in the three proposed alternatives as every input
triangle is assigned to a computational core with no
possibility of sharing information among cores.

Neighboring Information in Texture Memory
(NITM): This first implementation gets all the
neighboring information needed during the kernel
computation from the texture memory. All the trian-
gles are indexed using the PrimitiveId generated by
the system. The signature of the function for the ge-
ometry shader is:

void GS(triangle VS_OUTPUT v[3], inout

TriangleStream <GS_OUTPUT > TriStream , uint

PrimitiveId : SV_PRIMITIVEID)

Regarding the function prototype, the first param-
eter sets an input of 3 vertices of type VS OUTPUT
for the geometry shader. With the primitive type
triangle, this means a triangle {v[0],v[1],v[2]}.

Triangle with Adjacent Structure (TA): The in-
formation of the three adjacent triangles that share an
edge with the triangle to be subdivided is passed di-
rectly to the kernel, using a triangle with an adjacent
structure as input. This way, we take advantage of
the triangleadj primitive of geometry shader, that
makes this adjacent information directly accessible in
the kernel. Rest of the neighboring data is still ac-
cessed through the texture memory. Now the function
has this prototype:

void GS(triangleadj VS_OUTPUT v[6], inout

TriangleStream <GS_OUTPUT > TriStream , uint

PrimitiveId : SV_PRIMITIVEID)

Therefore, the first parameter sets now an input
of 6 vertices. As the primitive type triangleadj
indicates, these vertices are interpreted as a triangle
{v[0],v[1],v[2]} and three adjacent vertices.

(a) (b)
Figure 4: Test scenes (a) Teatime (b) Chesstime.

Neighboring Information Included in
VS OUTPUT (VS OUTPUT): Instead of us-
ing the adjacency structure as input data, we modify
the VS OUTPUT structure for keeping the necessary
neighboring information, avoiding the costly accesses
to texture memory. The new VS OUTPUT simply adds
this field to the structure in Listing 1:

6 float4 neighbors[12] : NEIGHBORS;

The prototype of the kernel is the same that in the
NITM case, passing just the three vertices of the tri-
angle to be processed. Adding all the neighboring
data needed for the computation to the three input ver-
tices may seem quite redundant, but although we are
replicating part of the neighboring information, this
is completely compensated by the increase in the per-
formance achieved by avoiding the texture memory
accesses. As a matter of fact, there is only needed
to access texture memory in the infrequent case when
the number of adjacent triangles is greater than 12.

4 EXPERIMENTAL RESULTS

In this section we discuss the performance of our
GPU proposal for the rendering phase of the target
multiresolution system. All the results have been
obtained in a computer with processor Intel Core i7
920 2.67 GHz, 6 GB of RAM and a video card ATI
Radeon 5870. The software platform was Microsoft
Windows 7 Ultimate 64 bits as operative system and
the Microsoft Visual C++ 2008 compiler with HLSL
Shader Model 4.0 and DirectX 10.

In the following, we include the results obtained
with two of the scenes employed in our tests: Teatime
(see Figure 4(a)) and Chesstime (see Figure 4(b)).
Among the different objects in these scenes, we have
employed several multiresolution models: a teapot,
a cup and a spoon for Teatime scene and several
chess pieces for Chesstime (specifically two kings,
two queens, one pawn and one bishop).



Table 1: Comparison of the three proposed alternatives (fps
for surface subdivision).

OBJECT NITM TA VS OUTPUT OBJECT NITM TA VS OUTPUT

Pawn 1840 1966 4063 Teapot 1720 1873 3970
Bishop 1879 1989 4063 Spoon 1701 1810 3907
Queen 1850 1975 3998 Cup 1772 1920 3970
King 1820 1960 3975

Table 2: Frames per second for rendering the multiresolu-
tion objects in the test scenes.

OBJECT 1st it. 2nd it. OBJECT 1st it. 2nd it.

Pawn 2750 662 Teapot 2726 642
Bishop 2752 665 Spoon 2750 668
Queen 2735 660 Cup 2755 625
King 2742 659

In Table 1 we show the results (frames per sec-
ond) obtained for the surface subdivision of the mul-
tiresolution objects in the test scenes by the three im-
plementations described in Section 3.3. As can be
observed, all the results are more than enough for
real time rendering. The worst results have been ob-
tained by the NITM approach, due to the accesses to
texture memory. There is an average improvement
of 6.8% in the TA proposal as texture memory ac-
cesses to vertices included in the adjacency structure
are prevented. The table shows that the VS OUTPUT
implementation gets an improvement of 120.8% and
106.6% regarding NITM and TA, respectively. This
increase in the performance is produced by practically
avoiding any access to texture memory. Since this op-
tion is obviously the best approach, the rest of the re-
sults shown in this sections refer exclusively to it.

Table 2 presents the rendering results (frames per
second) for the whole rendering (surface subdivision
+ assignment of color) of the multiresolution objects
for one and two levels of subdivision, whereas the re-
sults for the whole scenes for two iterations are 530
and 260 fps, respectively for Teatime and Chesstime.
FPS have been measured for the worst case, that
is, when all the multiresolution objects are rendered.
As can be observed, real time rendering has been
achieved in all the cases, and the differences in ren-
dering time between the two scenes are due to the
number of primitives to process in both cases.

5 CONCLUSIONS

An efficient GPU implementation of the Loop sur-
face subdivision scheme has been presented in this
work. This implementation has been integrated in a
multiresolution system, mapping the color results ob-

tained from global illumination in the subdivided ob-
jects. Among the different options analyzed for per-
forming tessellation on a GPU, we have opted for
using the geometry shader. Even so, our proposal
is recomputation-based, so many redundant compu-
tations are made because of the geometry shader con-
straint that does not allow the synchronization among
tasks. However, these redundant computations does
not deteriorate the performance, as have been shown.

Furthermore, an analysis of three different options
for accessing the necessary neighboring information
in the geometry shader has been done. As a result,
directly passing data though vertex buffer has got the
best results since most of the accesses to texture mem-
ory are avoided. Our implementation achieves a great
performance, rendering all the test scenes in real time.

REFERENCES

Garland, M., Willmot, A., and Heckbert, P. H. (2001). Hi-
erarchical face clustering on polygonal surfaces. In
I3D ’01: Proceedings of the 2001 Symposium on In-
teractive 3D Graphics, pages 49–58, Research Trian-
gle Park, NC. ACM, New York, NY, USA.

Gobbetti, E., Spanò, L., and Agus, M. (2003). Hierarchical
higher order face cluster radiosity for global illumi-
nation walkthroughs of complex non-diffuse environ-
ments. Computer Graphics Forum, 22(3):563–572.

Hanrahan, P., Saltzman, D., and Aupperle, L. (1991). A
rapid hierarchical radiosity algorithm. SIGGRAPH
Comput. Graph., 25(4):197–206.

Loop, C. (1987). Smooth subdivision surfaces based on
triangles. Master’s thesis, University of Utah, Dept.
of Mathematics.

Loop, C. and Schaefer, S. (2008). Approximating catmull-
clark subdivision surfaces with bicubic patches. ACM
Transactions on Graphics, 1.

Lorenz, H. and Döllner, J. (2008). Dynamic mesh refine-
ment on GPU using geometry shaders. In Proc. of 16th
Int. Conf. in Central Europe on Computer Graphics,
Visualization and Computer (WSCG’08).

Padrón, E. J., Amor, M., Bóo, M., and Doallo, R.
(2010). Hierarchical radiosity for multiresolution sys-
tems based on normal tests. The Computer Journal,
53(6):741–752.

Patney, A., Ebeida, M. S., and Owens, J. D. (2009). Par-
allel View-Dependent Tessellation of Catmull-Clark
Subdivision Surfaces. In Proc. of the Conference on
High Performance Graphics 2009 (HPG’09), pages
99–108.

Shiue, L.-J., Jones, I., and Peters, J. (2005). A Real-
time GPU Subdivision Kernel. ACM Trans. Graph.,
24(3):1010–1015.

Warren, J. and Schaefer, S. (2004). A factored approach to
subdivision surfaces. IEEE Computer Graphics and
Applications, 24(3):74–81.


