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Abstract

This thesis deals with the problem of statistical learning in complex objects, with
emphasis on time series data. The problem is approached by facilitating the introduction
of domain knoweldge of the underlying phenomena by means of distances and features.
A distance-based two sample test is proposed, and its performance is studied under
a wide range of scenarios. Distances for time series classification and clustering are
also shown to increase statistical power when applied to two-sample testing. Our
test compares favorably to other methods regarding its flexibility against different
alternatives. A new distance for time series is defined by considering an innovative
way of comparing lagged distributions of the series. This distance inherits the good
empirical performance of existing methods while removing some of their limitations.
A forecast method based on times series features is proposed. The method works
by combining individual standard forecasting algorithms using a weighted average.
These weights come from a learning model fitted on a large training set. A distributed
classification algorithm is proposed, based on comparing, using a distance, the empirical
distribution functions between the dataset that each computing node receives and the
test set.





Resumen

Esta tesis trata sobre aprendizaje estadístico en objetos complejos, con énfasis en
series temporales. El problema se aborda introduciendo conocimiento del dominio del
fenómeno subyacente, mediante distancias y características.

Se propone un test de dos muestras basado en distancias y se estudia su fun-
cionamiento en un gran abanico de escenarios. La distancias para clasificación y
clustering de series temporales consiguen un incremento de la potencia estadística
cuando se aplican al tests de dos muestras. Nuestro test se compara favorablemente
con otros métodos gracias a su flexibilidad antes diferentes alternativas.

Se define una nueva distancia entre series temporales mediante una manera inno-
vadora de comparar las distribuciones retardadas de la series. Esta distancia hereda el
buen funcionamiento empírico de otros métodos pero elimina algunas de sus limita-
ciones.

Se propone un método de predicción basado en características de las series. El
método combina diferentes algoritmos estándar de predicción mediante una suma
ponderada. Los pesos de esta suma salen de un modelo que se ajusta a un conjunto de
entrenamiento de gran tamaño.

Se propone un método de clasificación distribuida, basado en comparar, mediante
una distancia, las funciones de distribución empírica del conjuto de prueba común y
las de los datos que recibe cada nodo de cómputo.





Resumo

Esta tesis trata sobre aprendizaxe estatístico en obxetos complexos, con énfase en
series temporais. O problema abórdase introducindo coñecemento sobre o dominio do
fenómeno subxacente, mediante distancias e características.

Proponse un contraste de dúas mostras basado en distancias e estúdase o seu
funcionamento nun gran abanico de escenarios. As distancias para clasificación e
clustering de series temporais acadan un incremento da potencia estatística cando se
aplican a contrastes de dúas mostras. O noso test compárase de xeito favorable con
outros métodos gracias á súa flexibilidade ante diferentes alternativas.

Defínese unha nova distancia entre series temporais mediante un xeito innovador
de comparar as distribucións retardadas das series. Esta distancia herda o bo funciona-
mento empírico doutros métodos pero elimina algunhas das súas limitacións.

Proponse un método de predicción baseada en características das series. O método
combina diferentes algoritmos estándar de predicción mediante unha suma ponderada.
Os pesos desta suma veñen dun modelo que se axusta a un conxunto de entrenamento
de gran tamaño.

Propónse un método de clasificación distribuida, baseado en comparar, mediante
unha distancia, as funcións de distribución empíricas do conxuto de proba común e as
dos datos que recibe cada nodo de cómputo.





Preface

This thesis deals with the problem of statistical learning in complex objects, with
emphasis on time series data. The studied learning tasks are two-sample testing,
supervised classification, clustering and forecasting. Complex objects are data for
which standard statistical methods, when applied in a straighforward manner, fail
to achive satisfactory results. Complex data appear in multiple domains such as
time series, shapes, images or text. The problem is approached by facilitating the
introduction of domain knoweldge of the underlying phenomena by means of distances
and features.

In Chapter 2, a distance-based two sample test is proposed, which shows a high
degree of flexibility on the kinds of distances it accepts and high power under different
alternatives, particularly for both location and scale alternatives. In Chapter 3, the
proposed test is specifically analyzed in the context of time series, where special tools
are needed due to the complexity that temporal dependence introduces. In this scenario,
distances designed to deal with time series classification and clustering are shown to be
also very useful when applied to the two-sample testing, greatly increasing statistical
power when compared to standard procedures based on the Euclidean distance. Due
to its flexibility, our test also compares favorably to other methods in this setting.

In Chapter 4, a new distance for time series is defined by considering an innovative
way of comparing lagged distributions of the series. This distance inherits the good
empirical performance of existing methods while removing some of their limitations.
The distance can also be considered as a nonparametric extension of model-based time
series distances, with the additional difference that it selects the meaningful lags based
on maximizing discrimination between groups of series, not prediction.

A forecast method is proposed in Chapter 5. The method works by combining
individual standard forecasting algorithms using a weighted average. These weights
come from a feature-based learning model fitted on a large training set.

In Chapter 6, a distributed classification algorithm is proposed to minimize the
impact on classification accuracy that comes when data is fragmented in different
computing nodes and cannot be joined. The approach is based on comparing the



xvi

empirical distribution functions between the dataset at each node and the test set,
using a distance between distributions. Weights are assigned to each observation in
the test set for each node in order to minimize this distance. To compute the final
output of the distributed system, predictions done at each node are combined using
these weights, using a weighted sum. This method improves the classification accuracy
of the distributed system without requiring the sharing of the data that each node has
received.
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Chapter 1

Introduction

This thesis presents contributions in supervised and unsupervised statistical learning,
applied to complex data objects such as time series and shapes, among others. We
study two-sample hypothesis testing, classification and clustering.

We use the term complex data to imply data objects for which general statistical
methods fail to achieve satisfactory results when applied to them. The following
example illustrates a hypothetical scenario for one of the statistical problems we
address in this thesis.

In an econometric setting we want to check whether firms in construction
and firms in agriculture have different behavior during a period of time,
according to one economic indicator. We have a sample of 20 time series
from each group, depicted in Figure 1.1. We identify the question as
a two-sample homogeneity test, since we think of the term behavior as
the distribution function that generates the series in each sample, and
time series are just multivariate observations. When we apply a standard
multivariate two-sample test, such as an extension to the multivariate case of
the Kolmogorov-Smirnov test [45], we find that it does not detect significant
differences. This is puzzling because visually they look different, but still
we would like to give a quantitative measure of their difference. After
consulting a statistician, we model each series as a linear autoregressive
process and then apply the same test, this time to the fitted coefficients,
concluding clearly significant differences.

This example illustrates the following general scenario: We have a set of multivariate
observations from a complex phenomenon and a statistical question about them.
Standard multivariate tools, although when given enough data will be able to solve the
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Fig. 1.1 Simulated scenario of linear autoregressive processes. When looking for
differences between these two groups using a two-sample hypothesis test, we highlight
the fact that taking the series as multivariate observations produces much less statistical
power that the same test over the coefficients extracted from the series. While the left
panel series have been generated from the AR(1) process defined by Xt =−0.3Xt−1 +εt,
the ones on the right panel come from the AR(2) process Xt =−0.3Xt−1 +0.5Xt−2 +εt.
In both cases, independent standard Gaussian innovations εt were used. Each series is
of length 50 and all of them were normalized to have zero mean and unity variance.
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problem, fail to achieve satisfactory results at realistic sample sizes. By introducing
some “domain knowledge” about our underlying phenomenon, in this case just a simple
assumption about the nature of their temporal behavior, we are able to drastically
improve results. Quantitatively, in the scenario of Figure 1.1, the standard approach
needs over 16 times the amount of data to achieve the same statistical power than
the specialized approach, and over 250 times the amount of computing time. There is
clearly a need to develop tools to facilitate the introduction of domain knowledge. We
propose a two-sample test which is able to work with domain knowledge introduced
in a wide range of ways and study how these ideas can be applied to time series in
Chapers 2 and 3, respectively.

Other concrete examples for the major statistical tasks addressed in this thesis are:

• Classification: Identify the species of a fish from the shape (silhouette) of one of
its bones, when a database of already identified bone shapes is available.

• Clustering: Grouping genes of a bacteria by how they vary their expression with
time, after an alteration has been applied to the cell, such as adding an antibiotic
to the substrate.

Distances for data analysis

One way of approaching these learning problems is by defining features (variables,
attributes, characteristics) to be extracted from the data, and then apply standard
multivariate methods over these features. In the above scenario about firms, using
the fitted autoregressive coefficients is an example of feature extraction. When appli-
cable, this is the preferred way, since it is often superior to alternatives in terms of
interpretability of results and computational efficiency. However, in many scenarios we
do not know which features to use. This approach is also limited in its generalization
capability, a set of features that work well in one setting may not do so in another,
even though they are related.

Another way of approaching learning with complex objects is through the use of
similarities between them, this is, by introducing a function that assigns a numerical
value to how similar two objects are. After we introduced this function, we apply a sta-
tistical procedure designed to work directly on object-to-object similarity comparisons,
not the objects themselves.

This comparative function can take the form of a similarity, increasing when the
two compared objects are more alike, or a dissimilarity or distance, which decreases
instead of increasing the more alike two objects are. The use of one or the other forms is
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usually dictated by the context, and it is easy to get one from the other. Following this
distance + method paradigm, the above example of classification could be approached
by using a elastic measure (explained later) as the distance function and the nearest
neighbors algorithm as the algorithm defined on distances between objects, i.e. “Assign
new objects to the family of the most similar among the already classified, according
to this notion of similarity”

Distance-based approaches are interesting because they address limitations of
feature-based approaches. The most critical limitation being that in some domains, we
can find a suitable distance but not a set of features.

The use of domain-specific distances has multiple interpretations in addition to the
straightforward, one of them is as a form of feature extraction. Many of the distances
that have been proposed for comparing complex objects are indeed a combination of
two steps: feature extraction and then Euclidean distance between the features. An
example in the time series setting is to extract linear autoregressive coefficients from
the series and use Euclidean distance between vectors of coefficients afterwards. This
distance was proposed by Piccolo in 1990 [101]. One could argue that there is little
benefit in considering a distance instead of just using the AR coefficients directly as
the set features and work from there with a feature-based approach. The distance
of an object to another fixed reference object, called “landmark”, is also a feature.
However, distance-based approaches are more general than feature extraction, allowing
us to get truly non-parametric: we can use a distance for which the feature-based
equivalent would require an infinite set of features, therefore losing any advantage in
interpretability, computational complexity or even memory complexity/storage space.

We will show an example of a distance between time series which does not have
a practical feature-based equivalent, unlike the distance by Piccolo. This distance is
called Time Warp Edit Distance (TWED), was proposed by Marteau in 2009 [90], and
improved over the state-of-the-art methods in time series classification at the time.
This included simultaneously improving classification accuracy on non related problems
such as the aforementioned example of fish family identification, and others such as
cardiopathy detection based on electrocardiogram readings. TWED belongs to a family
of distances called “elastic measures” [80], based on the idea that the similarity between
two time-evolving phenomena should not be affected by accelerations or deccelerations
in these phenomenons. The original domain of application of this familiy is speech
recognitition [112] with a distance called Dynamic Time Warping (DTW). TWED
is defined intuitively between two given series, lets say series A and B, by allowing
modifications in these two series until they become equal. Roughly speaking, we can
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Fig. 1.2 Algorithmic definition of the TWED distance between two time series. Three
different operations can be applied to the observations of the time series, in order. Each
operation has a cost associated and the distance is defined as the minimum possible
cost to make the two time series match exactly. This is an example of a distance that
can be defined algorithmically but does not have a feature based equivalent.

remove points in A, in B, or move them until they match, as depicted in Figure 1.2.
Moreover, the operations must be in the order of the arrow of time, once an operation
has been applied to a series we must move to the next time step and cannot go back
in time. Each operation has an associated cost, and the distance is defined by the
minimal cost required to completely superimpose the two series.

We can define TWED algorithmically, but not as a set of features to be extracted
from the series. The “domain knowledge” introduced by TWED has no feature based
equivalent.

The distances also have a bayesian intepretation. In the Gaussian Processes
modeling framwork, distances may be used to define the covariance function. Thus, a
distance may help define a prior distribution over the functions that fit the data. A
DTW based covariance function was proposed in [119] to identify iron ore deposits
signatures using Gaussian Processes.

The benefits of introducing appropiate distances extend beyond the traditional
objectives of statistical learning and can be used for:

• Information retrieval: Search in a database for objects similar to a given one,
possibly ranking the relevance of the findings. A colourful example is music
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retrieval, where we want to find songs “similar” to the input one, or different
interpretations of the same musical piece. Foster et al. [43] explore similarity
measures based on information theory applied to this task. They also argue for
the possiblity of extending the applicability of their studied measures to other
domains.

• Anomaly detection: An umbrella term for detecting patterns such as outliers,
suprises or novelties, aberrations, etc. Chandola et al. [25] conclude that distance-
based approaches are the best alternative for anomaly detection in an empirical
study involving 19 datasets and 9 techniques.

• Visualization / Summarization: Pairwise distances can be used coupled with
projection/dimensionality reduction techniques, such as multidimensional scaling,
to generate visualizations of samples of complex objects. These techniques work
based on the fact that a suitable distance usually induces a lower-dimensional
space than the raw observation space. Single objects such as time series may
have thousands of dimensions. A recent example of this approach can be seen in
[26].

Distances arise naturally in data analysis. In ecology, Jaccard proposed in 1901 to
analyze the alpine ecosystem by comparing relative populations of flora between all
pairs of areas that define the Alpine region [66]. This distance is now being used much
more generally, to compare objects which are themselves sets.

These examples attest for the reliance on distances. When we define a distance
for a specific scenario, such as clustering time series, there is a good chance that this
distance can be used again to solve other tasks in the same domain, and even other
domains.

Distance-based methods

There is a bi-directional relationship between distances and the learning methods that
can leverage them: We want to define distances that can be used with existing methods,
and we want to define new methods that can accept a wide range of distances.

Consider the K-means clustering algorithm. It is defined for the Euclidean distance:
the arithmetic mean of a set of observations minimizes the average Euclidean distance
to the members of the set. When one naively substitutes the Euclidean distance for a
domain-specific one but keeps using the arithmetic mean to generate the centers, the
results are likely to be of little utility. This happens because the cluster centers created
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by the arithmetic mean, are centers in the raw data space and not in the feature space
induced by the distance, intragroup average distance is not being minimized. The
mean of the AR coefficients of a set of time series is different to the AR coefficients
of the mean of the set of time series, and for clustering we usually want the former,
not the latter. This fact limits the applicability of the K-means algorithm, it can not
work with arbitrary measures of similarity. In order to apply K-means with arbitrary
distances, we need to provide a way of computing the center (usually called barycenter)
of a group of objects, i.e. the object that minimizes the average distance to the
group. This is a complex problem so the usability of K-means is effectively reduced. A
barycenter-calculating method for DTW, one of the most widely used distances in time
series, was proposed in [100], 17 years after DTW was introduced to the data mining
community [15]. There is also no clear best way for computing these barycenters for
DTW, it is still a subject of research [95].

There are clustering algorithms which can be used with arbitrary distances, such
as Partitioning Against Medoids, similar to K-means but avoiding using centers, or
hierachical clustering.

Most distance-based learning methods have limitations on the distance they are
able to use, such as requiring additional properties that distances do not fulfil in general.
Perhaphs the most common of this requirement is the triangular inequality, in other
words, they need metrics. The energy family of statistics, used for two-sample and
independence testing, requires its distances to be conditionally negative definite [129].

To fully benefit from the domain knowledge that may be introduced via a distance,
it is therefore of special interest to define methods that can work with a wide range of
them.

Limitations of distance-based methods

• Computational Complexity: The requirement of computing all parwise distances
between the objects of the dataset induces quadratic time complexity, which
renders these approaches inapplicable to very large datasets. On the other
hand, pairwise distance calculations are easy to parallelize, and finding efficient
approximate methods is an active field of research, e.g. a review of approximations
for nearest neighbor search can be seen in [142].

• Rigidness compared to data-driven approaches: Both distance and feature-
based approaches, while very powerful, can be outperformed by data-driven
approaches when sufficient data is available. Data-driven approaches can be
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Fig. 1.3 Map of learning algorithms

seen as “automatically” constructing the set of features or distance metric to
use based on the available data, instead of introduced by the expert to express
some “domain knowledge”. Image classification is a clear example of this effect,
the yearly ImageNet challenge [111], was dominated in 2010 by feature-based
methods and SVM, but it has since been won by data-driven neural network
approaches. It can be argued that “domain knowledge” is still being introduced
by humans in the form of network architecture and other hyperparameters.

A map of distance-based learning (Thesis structure)

The contributions of this thesis follow from two main intertwined ideas:

• Distances are a useful vehicle for introducing domain knowledge about complex
objects to statistical problems. It is interesting to define both new distances
between complex objects (such as time series) as well as statistical methods that
work well with a variety of distances.

• Some two sample testing statistics can be considered distances between empirical
distribution functions, so they can be used as the base to define distances between
objects such as sets of multivariate observations.

Figure 1.3 shows a visual representation of how the topics of this thesis are related
and how they fit in a larger context of statistical learning tasks. This figure also
highlights how having a good performing distance may be used for solving a range
of problems in the domain. We start from Chapter 2, a distance-based two-sample
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hypothesis test. This is a general procedure, it works with multivariate observations
and a wide range of distances. In addition to the wide range of supported distances
thanks to the light assumptions required from them, it shows good performance on
the kinds of distributional differences that may be induced by the distances. All the
methods we analyzed in our experiments are good against either location or scale
differences, a fact that has already been highlighted in [27], but our method achieved
competitive results on both types of differences. When we introduce a distance to take
advantage of some “domain knowledge”, we can interpret it as inducing a different
feature space. The distributions of the two samples in this new feature space may
differ in several ways (mean, scale, etc.), therefore is of special interest that a test has
good performance all-around and is not too focused on one kind of alternative.

We study the test in the context of time series in Chapter 3, combining it with
some well-known time series dissimilarities originated from the time series clustering
literature. We show that the introduction of these distances drastically improves
statistical power in most scenarios, for all the studied two sample tests, compared
to the baseline Euclidean distance. When comparing tests, the one we propose also
performs better on average than the alternatives.

The relevance and range of application of two-sample test statistics is expanded
by realizing that some of these statistics are also a form of distances, measuring
dissimilarity between sets of objects or distribution functions. They can be used as
distances for other statistical tasks such as classification and clustering of these kinds
of objects. Shape objects and time series have been effectively modeled as distribution
functions for information retrieval, classification and clustering [98, 113]. Previous
works have been modeling shapes and time series as univariate distributions, often
applying strong dimensionality reduction techniques to achieve this unidimensionality.
Coupled with simple dissimilarities for histograms they achieved state-of-the art results.
In Chapter 4 we leverage modern two-sample statistics to lift the unidimensionality
requirement. We propose a distance for time series and shapes based on modeling them
as multivariate distributions, using lag embedding representations of these objects. As a
distance, it achives excellent empirical results, while arguably being more parsimonious
than the alternatives.

Two sample tests are also useful for testing independence. Testing independence
between variables is an objective in itself, but is also used for variable selection in
classification. Variable selection for classification using two sample testing is perfomed
by finding a set of variables that are independent, called filter methods [19]. While our
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test can be applied directly to independence testing and variable selection, we do not
explore its performance in this thesis.

Chapter 5 presents a meta-learning algorithm for time series forecasting. The
scenario is forecasting a large dataset of time series, and the idea is to improve
forecasting accuracy by exploiting information of the whole dataset, instead of treating
each series individually. Our approach is similar to a time series classification problem,
where we want predict which method is the best for forecasting a given time series.
Instead of selecting the best method, we train our model to produce weights which
then are used to average the forecasts of all the methods that are being considered.
The method is based on extracting time series features, may of them have also been
used in distances between time series.

In Chapter 6 we apply the notion of similarity between probability distributions via
two-sample test statistics to the context of classification when the dataset is partitioned
in subsets which cannot be merged. This restriction may come into play for numerous
reasons, each subset may reside in computing nodes located in different physical
locations and the dataset may be too big to store in only one machine, communication
between nodes may be too costly. Privacy or regulations may impede nodes to share
the data, such as hospitals not able to share their patients records but that still want
to develop some predicitive model. In our approach, classification models are fitted to
each subset and their predictions are incorporated in a weighted voting system, where
the weights are dependent on how similar each training subset is to the test dataset.



Chapter 2

Two-sample homogeneity testing:
A procedure based on comparing
distributions of interpoint distances

2.1 Introduction

A classical problem in statistical inference consists in checking whether two independent
samples have been generated from the same probability distribution. This problem,
commonly referred to as two-sample homogeneity testing problem, has been extensively
studied, particularly in the univariate setting. Traditional nonparametric approaches
to address two-sample homogeneity include the comparison of empirical distributions
(two-sample Kolmogorov-Smirnov and Cramér-von Mises tests) and distribution free
tests based on runs (Wald-Wolfowitz test) and ranks (Wilcoxon-Mann-Whitney test).
Nevertheless, extending these procedures to deal with multivariate data is not simple.
Unlike the univariate two-sample problem, most of the extensions to the multivariate
setting are no longer distribution free. Even in the parametric setting, natural exten-
sions of univariate tests to check equality of mean vectors (Hotelling’s T 2 test) and
variance-covariance homogeneity (e.g. Box test) are very sensitive to departures from
distributional assumptions and show a substantial power loss as dimension increases
[7]. Despite these difficulties, with the steadily growing availability of huge databases,
developing efficient inference procedures for large dimensions is still a major challenge
requiring further research.

A useful approach to address the comparison of probability distributions in large
dimensions is to consider interpoint distances, see e.g. the early work by Bickel and
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Breiman [17]. The distances (commonly the Euclidean distance) between all possible
pairs of points in the data are calculated, and then these pairwise distances are used to
discriminate between the samples. In addition to reducing the dimension of the problem,
distance-based approaches exhibit appealing properties to be used in multivariate two-
sample testing. First, they are not limited to dealing with continuous data since there
is a variety of distances or dissimilarities for different kinds of data objects, including
categorical data [34], time series objects [94], functional data [42], and also complex
structured data such as graphs [51] and image data [36]. Moreover, whenever interpoint
distances are available, the two-sample test can be tackled even though the original
observations are not accessible. Versatility to choose the proper distance facilitates the
introduction of prior domain knowledge such as invariance against rotation or shift
effects in shapes [57]. For instance, it is well-known that some metrics are preferred to
others when clustering functional data depending on the type of curves at hand [42] or
when clustering time series data according to the clustering purpose [94]. In a similar
way, it is intuitively expected that employing a suitable distance to define the statistic
test in two-sample problems should increase the test power.

In this chapter, a new test statistic using interpoint distances is proposed to
address the multivariate two-sample homogeneity problem. The idea is to compare
the empirical distributions of both the intra-group and inter-group pairwise distances
by using a Cramér-von Mises-type statistic and approximate the critical values by
means of a permutation procedure. Maa et al. [85] establish conditions under which
testing for equal distributions of these pairwise distances is equivalent to testing for the
equality of the original distributions, thus providing theoretical support to ensure the
consistency of the proposed test. Our proposal intends to take advantage of comparing
the whole empirical distributions of interpoint distances instead of just a few moments.
Based on this intuition, it is expected that the proposed test is more powerful for
detecting alternatives based on differences in shape or other relevant distributional
feature. Like other distance-based tests, our test is not restricted to continuous data.
In fact, regarding the mild regularity conditions required in the results by Maa et al.
[85], the proposed test applies to a broad range of dissimilarities in both discrete and
continuous cases, including some popular distances not considered by other alternative
test statistics. The asymptotic analysis of the proposed test is carried out within the
classical setting of fixing the dimensionality d while letting the sample size n tend to
infinity, i.e. the asymptotic power of the test as both n and d tend to infinity is not
studied.
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An extensive Monte Carlo power study shows the good performance of the proposed
test compared to other popular distance-based tests. Overall, satisfactory results are
reached in all simulated scenarios, including very different types of alternative distribu-
tions. In particular, it is highly competitive in power in HDLSS (High Dimension, Low
Sample Size) scenarios.

2.1.1 Two-sample homogeneity test

The two-sample homogeneity testing problem can be formally stated as follows. Let
ΞX ≡ {X1, . . . ,Xn} and ΞY ≡ {Y1, . . . ,Ym} be independent random samples of Rd-
valued random vectors, d≥ 1, with multivariate distributions FX and FY , respectively.
Then, the two-sample homogeneity problem consists in testing the equality of the
distributions

H0 : FX = FY versus H1 : FX ̸= FY . (2.1)

Note that no assumptions on the kind of the distributions are imposed, and in
particular they are not restricted to belonging to a specific family indexed by a finite
dimensional parameter. Thus, the problem is nonparametric in nature.

2.1.2 Related work

Recent approaches for testing (2.1) involve statistics regarding interpoint distances. Fol-
lowing the works by Wei et al. [143] and Chen and Friedman [27], these approaches could
be loosely classified into three categories, namely graph-based methods, projection-based
methods and statistics comparing within- and between-sample interpoint distances.

Graph-based. Methods in this category rely on properties of the graph created when
connecting all the observations (nodes) using interpoint distances as weighted non-
directional edges. Friedman and Rafsky [45] proposed to count the edges connecting
nodes from different samples in the minimum spanning tree of the graph so that
the null is rejected if the number of between-sample edges is significantly small.
Another approach in this category consists in using k-nearest neighbor (k-NN) graphs
[58, 59, 115]. The test statistics evaluates, for all observations, the proportion of
neighbours belonging to the same sample, rejecting the null when these proportions are
large. The nearest neighbor tests are both consistent and asymptotically distribution-
free under the null, but they require continuity of the distributions. Hall and Tajvidi
[53] propose a method related to the nearest neighbors which is valid for infinite
dimensional Euclidean spaces and can take any dissimilarity function as distance. More
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recently, Biswas et al. [18] propose counting the number of edges connecting different
samples in the shortest Hamiltonian path of the graph.

Projection-based. The aim is to project the data onto a lower dimensional space where
traditional statistics can be applied. Ghosh and Biswas [47] and Wei et al. [143] propose
to use the projection direction learned from a linear classifier such as support vector
machine (SVM) or distance-weighted discrimination (DWD) [89]. The method in
Ghosh and Biswas [47] achieves the distribution-free property by splitting the data into
training and testing sets so that the direction learned by the classifier is independent
from the testing data, and then applying a distribution-free univariate test to the
projected data. The method in [143], DiProPerm, is not distribution-free but uses
the whole available data for training the classifier. A univariate statistic such as the
t-statistic is calculated on the projected data and its null distribution is approximated
by repeating the whole process of training the projection and calculating the statistic
on permutations of the data labels. The projection approach has also been applied to
checking for equality of means for two multivariate normal distributions [84, 132, 123].

Based on within and between-sample interpoint comparisons. Székely and Rizzo [127]
and Baringhaus and Franz [10] propose to test the equality of multivariate distributions
by comparing averages of interpoint Euclidean distances evaluated within and between
samples. Large values of the statistic suggest that the samples come from different
distributions. The test statistic is called energy statistic due to Newton’s potential
energy. In the univariate case, the energy statistic is equivalent to the L2 distance
between empirical distribution functions [10] and it can be seen as the treatment sum of
squares in a ANOVA interpretation of the problem [108]. Tests based on the empirical
multivariate characteristic functions introduced by Alba-Fernández et al. [6] and by
Hušková and Meintanis [62] have also been linked to the energy statistic [62].

From the machine learning community, Gretton et al. [50] proposed a two-sample
test statistic called Maximum Mean Discrepancy (MMD) based on evaluating the
difference between embeddings of the distributions into reproducing kernel Hilbert
spaces (RKHS) . A proper choice of the kernel used to perform the embeddings is
crucial for obtaining a powerful test. Sejdinovic et al. [116] analyze the link between
the distance- and the kernel-based approaches by considering the close relation between
negative-type semimetrics and symmetric positive definite kernels, and in particular
the equivalence between the energy and MMD statistics is studied.

The energy and MMD statistics have been widely studied because of their desirable
properties such as simplicity, straightforward implementation and nice interpretation
in terms of generalization of previously proposed statistics. Their computational
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complexity is dominated by the computation of interpoint distances or kernels O((n+
m)2) (as opposed to, for instance, computing nearest neighbors O((n+m)2 log(n+
m)). A linear time variant of the MMD has been proposed in [51] and the power-
computational cost tradeoff has been studied in [105].

The procedure proposed in this chapter also falls in this category of methods
comparing interpoint distances within and between-samples. However, unlike the
energy and MMD methods, our test statistic compares the whole distributions of these
distances instead of a few specific moments.

2.1.3 Overview

The rest of the chapter is structured as follows. Our approach is presented in detail
in Section 2.2. The test statistic is formally introduced and motivated by illustrative
examples highlighting the main differences with other approaches based on interpoint
distances such as the energy statistic. Regularity conditions required to satisfy the
results by Maa et al. [85] are also established, thus giving theoretical support for the
consistency of the procedure. Section 2.3 is devoted to showing results from a broad
Monte Carlo power study comparing the proposed method to other procedures repre-
sentative of each of the aforementioned categories. Sensitivity of the tests is examined
for different types of data and against a range of alternatives, including changes in
location, scale, symmetry, kurtosis and particularly hard two-sample scenarios. Further,
the effect of increasing the dimension is assessed and some benchmark datasets are used
to remark the usefulness of our approach. Lastly, the main conclusions are summarized
in Section 2.4.

2.2 Methodology

2.2.1 The test statistic

Our test statistic is based on pairwise distances between sample points, and hence
a symmetric real-valued non-negative function D(x,y) defined on Rd×Rd must be
employed to compute these distances. Although the function D will be required to
fulfill mild regularity conditions later on (see Lemma 1), D does not need to satisfy
the triangle inequality. Based on both the distance D and the random samples ΞX

and ΞY , the following sets of pairwise distances are considered.
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(a) The sets denoted by WX = {ωij =D (Xi,Xj) ; i, j = 1, . . . ,n; i < j} and WY =
{ωij =D (Yi−n,Yj−n) ; i, j = n+1, . . . ,n+m; i < j} gather the distances between
points within the samples ΞX and ΞY , respectively.

(b) The set W =WX ∪WY = {ωij ; i, j = 1, . . . ,n+m; i < j} gathers together all the
within-sample distances.

(c) The set denoted by B = {bij =D (Xi,Yj) ; i= 1, . . . ,n; j = 1, . . . ,m} groups the
pairwise distances between elements from different samples.

Thus,WX ,WY ,W and B are formed by realizations of random variables with univariate
probability distribution functions denoted by FWX

, FWY
, FW and FB, respectively.

Maa et al. [85] establish conditions under which testing for the equality of the univariate
distributions FWX

, FWY
and FB is equivalent to testing for the equality of the original

multivariate distributions FX and FY . Therefore, a way of approaching the multivariate
two-sample homogeneity testing problem (2.1) as a univariate two-sample problem is
as follows.

Let F̂N,W and F̂M,B be the usual empirical cumulative distribution functions (ecdf)
based on the N = n(n+1)/2+m(m+1)/2 and M = nm elements forming W and B,
respectively. Then, the Cramér-von Mises statistic for testing

H ′
0 : FW = FB versus H ′

1 : FW ̸= FB (2.2)

is given by

Tn,m(u) = NM

N +M

∫ ∞

−∞

(
F̂N,W(u)− F̂M,B(u)

)2
dĤN+M (u), (2.3)

where ĤN+M (u) is the ecdf associated with the pooled sample W ∪B, i.e. (N +
M)ĤN+M (u) =NF̂N,W(u)+MF̂M,B(u), and the test criterion is to reject H ′

0 for large
values of Tn,m.

At the standard framework of empirical cumulative distribution functions based on
i.i.d. observations, the Tn,m statistic becomes asymptotically distribution free under
the null hypothesis [see e.g 71]. In order to obtain tables for using the test statistic at
some conventional significance levels for small sample sizes, Anderson [8] established
an alternative form based on ranks for Tn,m as follows. Consider the pooled sample
W∪B with all the ordered interpoint distances, and let r1, . . . , rM and s1, . . . , sN be
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the ranks in this ordered set of the elements in B and W , respectively. Then

Tn,m(u) = U

NM(N +M) −
4NM −1
6(N +M) , (2.4)

with

U =M
M∑

i=1
(ri− i)2 +N

N∑
j=1

(si− i)2.

Our proposal consists of selecting a proper distance D, constructing the sets WX ,
WY , W and B based on D and the original multivariate samples, and then using the
Cramér-von Mises statistic Tn,m given in (2.4) to testing FW = FB, which is equivalent
to testing FX = FY under mild constraints on D as it is shown in Section 2.2.2. The
critical values of the test are approximated by using the traditional permutation
approach. A large number B of random permutations of the samples ΞX and ΞY

are generated, Tn,m is computed for each permuted sample, and the critical value is
determined by the corresponding critical value of the permutational distribution. Since
the procedure is based on comparing distributions of distances, hereafter we refer to
the proposed test statistic as the DD statistic.

2.2.2 Theoretical foundation

First, we show that testing H0: FX = FY is equivalent to testing H ′
0: FW = FB, thus

reducing the dimensionality of the problem. To do this, the Theorem 2 by Maa et al.
[85] is properly adjusted in Lemma 1 below.

Lemma 1. Let X and Y be independent d-dimensional random vectors with continuous
distribution functions FX and FY , respectively. Assume that the corresponding density
functions fX and fY satisfy

(A1)
∫
Rd f2

X (u) du<∞ and
∫
Rd f2

Y (v) dv<∞.

(A2) The function m(v) =
∫
Rd fY (u +v)fX (u) d(u) has a Lebesgue point in 0.

Let D : Rd×Rd→ R be a nonnegative continuous function such that

(A3) D (u,v) = 0 if and only if u = v.

(A4) D (au +w,av +w) = |a|D (u,v), for all a ∈ R and w ∈ Rd.

Then, if X1,X2,X3 are iid random vectors with distribution FX , Y1,Y2,Y3 are iid
random vectors with distribution FY , and the X’s and Y’s are independent, it holds
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that
FX = FY if and only if FX1Y1 = 1

2 (FX2X3 +FY2Y3) ,

where FX1Y1, FX2X3 and FY2Y3 denote the distribution functions of the univariate
random variables D (X1,Y1), D (X2,X3), and D (Y2,Y3), respectively.

Note that conditions (A1) and (A2) are non-restrictive regularity requirements for
the underlying probability densities fX and fY . While (A1) ensures the existence of
second-order moments, (A2) is a technical requirement which holds if, for example,
one of the densities is bounded or continuous, see Remark 1 in [85]. Conditions (A3)
and (A4) for the function D are also satisfied for a wide range of distances, including
whatever function of the Euclidean metric.

Maa et al. [85] claim that their results do not require the independence of all the
interpoint distances (which is also true for Lemma 1). This is particularly useful in our
framework since the interpoint distances forming W and B are calculated using the
same sample points so that the independence assumption is not fulfilled. Nevertheless,
by treating with dependent data, the null asymptotic distribution of the Cramér-von
Mises statistic involves complex quantities depending on the dependence structure of
the interpoint distances via sums of covariances (see e.g. [118] or [88]). Overall, it is
cumbersome to establish specific approximations for these quantities, which accounts for
determining the critical values of the test using a permutation or bootstrap procedure.
In any case, we have explored conditions ensuring the consistency under the null of the
proposed statistic based on the samples of interpoint distances, such as is established
in Theorem 1 below.

Theorem 1. Let X1, . . . ,Xn and Y1, . . . ,Ym be independent random samples of d-
dimensional random vectors X and Y with respective continuous distribution functions
FX and FY . Let D : Rd×Rd→ R be a symmetric function having bounded support
[0,DMax]. If conditions (A1)-(A4) in Lemma 1 hold and H0: FX = FY (= F ) is true,
then, as min(n,m)→∞, the statistic Tn,m converges weakly to the distribution of

T =
∫

(GW(u)−GB(u))2 dFD(u), (2.5)

where FD denotes the common distribution of the interpoint distances within (FW) and
between samples (FB), and GW and GB are Gaussian processes with zero mean and
covariance function CD(·, ·) given by

CD(u,v) = 4[P (D(Zi,Zj)≤ u,D(Zs,Zt)≤ v)−FD(u)FD(v)] ,
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where Zi, Zj, Zs and Zt are distributed according to F , for pairs of indexes (i, j) and
(s, t) having only one element in common.

Nevertheless, it is actually very complex to obtain the specific quantities determining
the covariance structure of the limiting distribution. For this reason, a standard
permutation test is proposed to obtain the critical values. Random permutations
are performed on the pooled original sample, which is formed by i.i.d. observations
under the null hypothesis. Hence, the observations are exchangeable, i.e. the joint
distribution remains invariant under all possible rearrangements of the subscripts. As
consequence of it, irrespective of the unknown distributions, the critical value obtained
from the permutational distribution corresponds to the exact significance level (see e.g.
Good [48]).

The proofs of Lemma 1 and Theorem 1 are provided in the Appendix A.

2.2.3 Motivation

This section is devoted to shed some light on the usefulness of a two-sample method
comparing distributions of interpoint distances.

Like the popular energy statistic [127], the proposed DD statistic is based on
calculating all the interpoint Euclidean distances and splitting them into two groups,
distances between samples and distances within samples. However, while DD compares
the whole distributions in both groups, energy evaluates the difference between their
means. More specifically, if ∥·∥ denotes the Euclidean norm, then the energy statistic
takes the form

E = nm

n+m

 2
nm

n∑
i=1

m∑
j=1
∥Xi−Yj∥

− 1
n2

n∑
i=1

n∑
j=1
∥Xi−Xj∥−

1
m2

m∑
i=1

m∑
j=1
∥Yi−Yj∥

 . (2.6)

Other interesting approach comparing moments from these interpoint distance
groups is provided by the maximum mean discrepancy (MMD) test. The MMD test
statistic adopts the kernel-based approach and compares the mean embeddings of the
multivariate distributions into reproducing kernel Hilbert spaces (RKHS) [50]. More
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formally, given a bounded continuous kernel κ, MMD is given by

MMD2 = nm

n+m

 2
nm

n∑
i=1

m∑
j=1

κ(Xi−Yj)

− 1
n2

n∑
i=1

n∑
j=1

κ(Xi−Xj)−
1
m2

m∑
i=1

m∑
j=1

κ(Yi−Yj)
 . (2.7)

Our intention is to get insight into the behavior of energy and MMD compared to
DD by means of a motivating example. For illustrative purposes, consider samples
drawn from two von Mises-Fisher distributions centered at (0,1), one of them scaled,
producing two concentric circumferences such as the ones depicted in Figure 2.1.
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Fig. 2.1 Two samples, originally simulated from the von Mises-Fisher distribution and
then scaled to produce the two concentric “circles”.

We have generated large samples and built up the sets of interpoint Euclidean
distances between and within samples. The means (indicated by vertical lines) and
density estimates for these sets of distances are shown in Figure 2.2a. The Gaussian
kernel with median window was also used to observe the RKHS-distance between the
mean embeddings of both distributions. The means and density estimates for the
values of the kernel evaluated on pairs of elements from the same and different samples
are shown in Figure 2.2b.

Both panels in Figure 2.2 show that the densities between and within-samples
project very similar means, but their shapes are arguably more different. Therefore, it
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is expected that DD exhibits higher capability to distinguish the original distributions
than energy and MMD statistics when the Euclidean distances and the kernel approach
are respectively considered. For instance, the empirical power attained with these test
statistics on T=2000 simulated trials using sample sizes n = m = 40 and a nominal
level α = 0.05 are provided in Table 2.1.

Energy DD MMD DD (based on kernel approach)
0.19 0.8 0.18 0.79

Table 2.1 Empirical power for data simulated from the concentric circular Gaussian
distributions.

Results in Table 2.1 fairly reveal that the distributional counterparts given by the
DD statistic achieve greater power, thus confirming the intuition behind Figure 2.2.
We argue that this effect, to a greater or lesser extent, can happen in practice in many
situations. More examples will be seen in Section 2.3.

2.3 Experiments

A set of experiments was conducted to evaluate the power performance of the proposed
test under different alternatives and with varying dimension. In addition to the Cramér-
von Mises-type statistic DD, an alternative version, DDL1, considering the L1 distance
between kernel density estimates of interpoint distances within and between samples

(a) Euclidean distance (b) Gaussian Kernel

Fig. 2.2 Means and density estimates for within- and between-samples distances using:
(a) interpoint Euclidean distances, and (b) quantities defined in RKHSs by computing
the Gaussian kernel with median window on pairs of points. Vertical lines represent
the means of each density.
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has been examined. Specifically, DDL1 is defined by

DDL1 =
∫ ∞

−∞

∣∣∣f̂h,W(u)− f̂g,B(u)
∣∣∣ du, (2.8)

where the bandwidths h and g are automatically determined with the data-driven
bandwidth selector proposed by Sheather and Jones [117]. Note that reviewers have
mentioned that h and g should be equal, see e.g. [54]. The behaviour in terms of
power of DD and DDL1 is examined and compared with other popular two-sample
test statistics regarding interpoint distances, which are enumerated below.

2.3.1 Some alternative test procedures

For comparison purposes, some test statistics representative of each of the three families
described in Section 2.1.2 were selected. Among the procedures comparing interpoint
distances within and between-samples, the energy (E) and maximum mean discrepancy
(MMD) methods have been included in our experiments. These methods have been
widely studied, can be used in different scenarios, and are versatile for considering
a range of distances or kernel functions. Therefore, comparing their behavior in
simulations is worthy.

As far as the graph-based family, three procedures were used, namely the k-th
Nearest Neighbors (k-NN), the method proposed by Hall and Tajvidi [53] (HT), and
the one based on the shortest Hamiltonian path (SHP) proposed by Biswas et al.
[18]. The k-NN statistic calculates the quantity k-NN =∑n+m

i=1
∑k

j=1 Ii(j), where Ii(j)
equals 1 if the i-the element in the pooled sample and its j-th nearest neighbor belong
to the same sample, and 0 otherwise. Large values of k-NN indicate that the samples
are well-separated. Note that k-NN depends on the choice of number of neighbors
while the above tests do not require tuning parameters.

The test statistic HT proposed by Hall and Tajvidi [53], consists of evaluating a
symmetric distance between data, ranking the pooled dataset with respect to this
distance and, for any fixed datum Xi (analogously Yj), calculating Mi(r) (Nj(r)) equal
to the number of Yj (Xi) being smaller than the r-th nearest neighbor in the pooled
sample, for r = 1, . . . ,n+m− 1. Conditional on the sample ΞX (ΞY ) and assuming
continuity, Mi(r) (Nj(r)) follows an hypergeometric distribution under the null of
equal distributions, and hence these quantities can be used to perform the test. In
practice, the test is calibrated by using a standard permutation method. The HT test
is also versatile to choose a suitable distance and has shown a nice performance in
high-dimension (see numerical study reported in [53]).
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The two-sample test based on the shortest Hamiltonian path (SHP) proposed by
Biswas et al. [18] can be considered as a generalization of the univariate Wald–Wolfowitz
run test. The pooled sample is seen as a complete graph with n+m nodes connected
by edges with associated cost equal to the Euclidean distance between their vertices.
Then, if H denotes the Hamiltonian path (each vertex is visited only once) with the
shortest cost sum, the SHP test statistic counts the number of runs along the H, i.e.
the number of consecutive edges in H connecting data from the same distribution. The
SHP test has shown superiority over other existing nonparametric two-sample tests in
high-dimension, low-sample-size settings.

In the projection category, we will take into consideration some simulation results
obtained in the literature with the direction-projection-permutation (DiProPerm) pro-
cedure [143]. In essence, DiProPerm consists in working directly with one-dimensional
projections of the data induced by a binary linear classifier trained from the samples,
determining the critical level by a permutation approach of the labels of the pooled
sample. Several possible choices of the univariate two-sample statistic have been
proposed to work with the projected values, including differences between sample
means (DiProPerm MD), the two-sample t-statistic (DiProPerm t) and the comparison
of areas under the receiver operating curve (DiProPerm AUC).

2.3.2 Multivariate Gaussian distributions

The first experiment in our empirical power study considers multivariate Gaussian
distributions. The gaussian setting is of great interest because of the ubiquity of this
distribution and the fact that parametric approaches such as T 2 Hotelling do not work
properly in high-dimension, low sample-size situations. To gain better insight into
how the power of the tests degrades with increasing dimension, Ramdas et al. [106]
suggest that the Kullback Leibler (KL) divergence between the compared distributions
should remain constant as the dimension increases. Otherwise, for a given sample size,
specific parameters for the distribution under the alternative could be chosen to attain
a prefixed power. Thus, we adopt the criterion of keeping KL constant. In fact, our
experiment followed similar lines to the one carried out by Ramdas et al. [106]. Two
scenarios characterized by differences in location (S1) and in scale (S2) are determined.

For a given dimensionality d, multivariate Gaussians differing in the location of the
mean for the first coordinate are compared in Scenario S1, where FX ≡N(0, Id) and
FY ≡ N

(
(1,0, . . . ,0)t, Id

)
, with Id = diag(1, . . . ,1) the d-dimensional identity matrix.

Scenario S2 involves the distributions FX ≡N(0, Id) and FY ≡N (0,diag(4,1, . . . ,1)),
thus generating Gaussians with different scale in the first dimension.
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For both scenarios, the remaining simulation features were as follows. Dimension
d took the values {1,2,3,4,6,8,12,24,50,80,130,200}. Sample sizes were n=m= 30.
The distance D was always the Euclidean distance, and the Gaussian kernel with
median heuristic for the bandwidth was used to construct the MMD statistic. Each
experiment was repeated T = 2000 times. The empirical power averaged over the
2000 trials for a nominal level α = 0.05 was calculated with each of the examined test
procedures. Plots of the attained power values against the increasing dimension are
given in Figures 2.3 and 2.4 for Scenarios S1 and S2, respectively.
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Fig. 2.3 Empirical power vs dimension for several two-sample test procedures using
multidimensional Gaussian distributions with mean shift.

All the compared methods fairly show a degradation of power with increasing
dimension in both S1 and S2, but different behaviors are observed for each scenario. In
Figure 2.3, E and MMD have similar performance and exhibit greater power than all
the alternative procedures. The proposed approach based on the CvM-type statistic,
DD, presents a power profile very close to the best performing E and MMD. Regardless
of dimension, E, MMD and DD form the group of methods producing the best results
in power in the scenario with mean-separated Gaussian distributions. The alternative
proposal based on measuring the L1-distance within and between interpoint densities
(DDL1) behaves similar to HT. Both of them lead to power values greater than k-NN
and the shortest Hamiltonian path for lower dimensions, but their power degrades
faster with dimension.
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Fig. 2.4 Empirical power vs dimension for several two-sample test procedures using
multidimensional Gaussian distributions with variance change.

As for the Scenario S2 with differences in scale, it is noticeable that E and MMD
statistics perform in a different way. E produces the worst results, and MMD starts
with the highest power at very low dimension but degrades very quickly to match the
performance of energy. The proposed method DD together with MMD present the
best power values in low dimension, but DD degrades much more slowly than MMD
as dimension increases, keeping a competitive power for moderately large dimension.
Actually, only HT and SHP achieve higher power in high dimensions.

If the area under the power curve is used to rank the methods at each scenario, it
is observed that, except for DD and DDL1, the ranking of the remaining methods in
S1 is exactly reversed in S2. Thus, it seems that no method is better than the other
for both mean shift and scale change scenarios. Chen and Friedman [27] also draw the
attention to the fact that graph-based methods are either good for location or scale
alternatives.Only the proposed method DD achieves high positions in both rankings.
Adding the two areas under the curves, DD is the best performer followed closely
by MMD, E, k-NN, SHP, HT and DDL1. The poor performance of DDL1 might be
accounted for the difficulty of selecting proper bands to estimate the kernel densities
in high dimension. Note that DDL1 performs reasonably well in both scenarios with
low dimension.

It is also worthy to analyze how differently the methods degrade with dimension.
For instance, MMD at dimension 1 is clearly a good choice because is close to the
best approach in location shift and the best in scale changes, but the quality of its
performance decreases more rapidly than other tests when increasing the dimension.
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2.3.3 Differences in skewness and kurtosis

In some situations, testing by location and scale differences is not the key issue.
For example, two-sample testing has been suggested as a goodness-of-fit approach
when samples can be simulated for the reference distribution [44]. This approach
is particularly useful in high dimensions. However, in some goodness-of-fit tests,
distributions are compared against a reference having by construction the same location
and scale parameters. Therefore, besides alternative hypotheses based on different
location and scale parameter, it is worthy to assess the capability of the two-sample
tests to detect differences in skewness and weight of the tails.

To check for differences in higher order moments, some authors have included
numerical results comparing normal and Student’s t-distributions [127, 143]. We have
considered the family of sinh-arcsinh distributions introduced by Jones and Pewsey
[68]. By applying the sinh-arcsinh transformation to a generating distribution, usually
the normal, a new class of four-parameter distributions controlling mean, variance,
asymmetry and kurtosis is obtained. This way, symmetric and skewed distributions can
be generated, but also distributions with heavier or lighter tailweight than those of the
generating distribution. Skewness and tailweight can be smoothly changed by moving
the respective parameters. We focused on the called normal sinh-arcsinh (NSAS) class
of distributions, which is generated from the normal distribution. In its canonical
version, a random variable Xν,τ of the NSAS class is defined by the sinh-arccsinh
transformation

Z = sinh
{
τ sinh−1(Xν,τ )−ν

}
,

where Z is the standard normal and parameters ν,τ ∈ R, with τ > 0, control skewness
and tailweight, respectively. Specifically, skewness increases with ν (positive skewness
when ν > 0 and negative if ν < 0), and tailweight decreases with τ (heavier tails than
the normal distribution when τ < 1 and lighter ones if τ > 1). The four-parameter
extension of Xν,τ is obtained by starting from a non-standard Gaussian.

The NSAS class offers a suitable framework to assess the empirical power of the
two-samples tests when differences in skewness or tailweight are present. First, the
univariate case (d= 1) was considered. Two new scenarios S3 and S4 were set up. In
both cases, a sample was drawn out from the standard normal, while the other one
came from variables Xν,1, for several values of ν in Scenario S3, and from variables
X0,τ , for several values of τ in Scenario S4. The sample sizes were n=m= 20 in S3
and n=m= 40 in S4. Implementation was performed as in Stasinopoulos and Rigby
[124]. Figures 2.5 and 2.6 show the average power attained in Scenarios S3 and S4.
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Fig. 2.5 Empirical power vs skewness level controlled by ν for several two-sample tests.
Skewness increases with ν (symmetry if ν = 0).
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Fig. 2.6 Empirical power vs kurtosis level controlled by τ for several two-sample tests.
While τ = 1 corresponds to the standard normal, τ > 1 (τ < 1) means greater (smaller)
kurtosis than the standard normal.

In Scenario S3, no test procedure performs uniformly better than the others since
different behaviors are observed when the skewness level varies. For instance, the
shortest Hamiltonian path (SHP) is one of the best performing but it is ranked fourth
when ν = 1. Indeed, the empirical power improves when skewness increases, and this
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improvement is more rapidly attained with the methods proposed in this chapter. For
the largest ν, DDL1 and DD exhibit the first and third higher powers, respectively.
The tests based on k-NN and particularly on the energy statistic led to the worst
power values for all skewness levels. MMD performs substantially better than E in this
scenario, although its power for high skewness is always surpassed by the proposed tests
and the SHP and HT procedures. In Scenario S4 considering the effect of tailweight,
all the methods showed higher power for values of τ less than 1 (heavier tails) than
when τ is greater than 1 (lighter tails). Statistic DD together with MMD, DDL1 and
HT fairly exhibit higher power than the remaining methods, particularly in the case
of strongly heavy tails (τ close to zero). Note that SHP presents a poor behavior,
also failing to achieve the nominal value (above 0.05 when τ = 1). Our experiments
definitely show that detecting alternatives characterized by light tails is a difficult task
for all the examined procedures since very poor and similar power values were reach
with all of them.

Next step consisted in analyzing the dimensionality effect when one wishes to detect
departures from the null in skewness or kurtosis. As in Section 2.3.2, differences in
skewness and kurtosis were only set for the first marginal of the compared multidimen-
sional distributions. Sample sizes were n=m= 100 and again 2000 trials were run in
order to generate average power values. Figures 2.7 and 2.8 show the average power
results when varying the dimensionality, for fixed skewness ν = 3 (Scenario S5) and
kurtosis τ = 0.2 (Scenario S6) parameters, respectively.

In both scenarios, S5 and S6, power results degrade fast and substantially with
dimension, particularly in the Scenario S5 considering skewness. In fact, only for very
small values of d, reasonable powers are attained in S5, being again noticeable the
nice behavior of DD and DDL1. As d increases, all the methods exhibit very poor
powers and DDL1 is somewhat superior to DD. The influence of dimension is also
important in Scenario S6 considering heavy tails, but less marked than in S5. With
low dimension, the graph-based procedures seem to work better and only DDL1 is
able to show competitive results among the procedures based on within and between
interpoint distances. In both scenarios, E and MMD are the procedures with the lowest
power regardless of the considered dimension.

It is worth comparing the power behavior in Scenarios S1-S2, considering changes in
location and scale, with Scenarios S5-S6, considering changes in skewness and kurtosis.
It is observed that the degradation of power with dimension d is much faster and acute
in S5 and S6. While all the methods have almost no discriminatory power at d= 64 to
detect differences in skewness or kurtosis, similar power values are reached for some
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Fig. 2.7 Empirical power vs dimension for several two-sample tests when asymmetry
on the first variable moves is set to ν = 3.
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Fig. 2.8 Empirical power vs dimension for several two-sample tests when asymmetry
on the first variable is set to τ = 0.2.

methods at d= 200 by testing for differences in location or scale. The strong influence
of the dimensionality is more noticeable at low dimensions. Many methods achieve
powers of 100% at d= 2 in the kurtosis scenario S6, higher than the ones at the same
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dimensionality for scale and location. In sum, all the studied methods are affected by
the noise introduced by adding noninformative dimensions.

2.3.4 Effect of large location shift combined with small co-
variance difference

To examine the joint effect of changes in location and scale, we have replicated one
of the experiments studied by Wei et al. [143]. Simulation S3 in [143] proposes a
scenario combining changes in location and scale related to the dimension in such a
way that the location shift increases with dimension while the scale difference decreases.
In addition, replicating this simulation allows us to compare the proposed approach
with the DiProPerm procedure, which belongs to the projection-based two-sample test
family.

The new scenario (hereinafter referred to as Scenario S7) involves samples of
size n=m= 100 generated from multivariate Gaussian distributions N(µX ,ΣX) and
N(µY ,ΣY ), where µX is the zero vector and µY is zero in the first 25% of the coordinates
and 1/

√
n in the rest. Covariance matrices are constructed as follows. Denote by

λmin(A) the minimum eigenvalue of a symmetric matrix A. Let S = (sij) be the d×d
matrix such that sii = 1, si(i+1) = s(i−1)i = 0.2, and sij = 0 otherwise. Let U be a d×d
matrix with random entries in the upper triangle generated from a uniform distribution
over (0,32/d2), and the elements in the lower triangle determined by symmetry. Then,
we set ΣX = S+δId and ΣY = S+U+δId, with δ = |min[λmin(S),λmin(S+U)]|+0.05.

In order to compare our results with those obtained with the DiProPerm procedure
in [143], identical sample size and values for dimension were considered, namely
m= n= 100 and d= (25,50,100,200,400,800,1600). The obtained empirical powers
are shown in Figure 2.9.

DiProPerm MD, E and MMD produce the highest power values, very close to
each other. By construction, the three procedures take advantage of the strong mean
effect, which increases with dimension. Combined with the decreasing influence of
the scale difference, the satisfactory behavior of these procedures is not surprising.
Significantly, the proposed DD procedure is next, with very high power levels as well.
The rest of methods present fairly worse results. Note that, unlike Scenarios S1 and
S2 characterized by differences purely based on location or scale, the power increases
with dimension in Scenario S7. This is a noticeable fact accounted for an increasing
amount of dimensions contributing to discrimination, while in S1 and S2 the differences
in location and scale are only present in the first coordinate direction. In addition,
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Fig. 2.9 Power vs dimension for large mean, small covariance alternative (Wei Simulation
3).

DiProPerm MD, E, MMD and DD exhibit rates of increase in power with dimension
much higher than the other methods.

2.3.5 Comparing grids of bivariate Gaussians distributions

The next experiment has been proposed by Gretton et al. [52] and reproduced in
[32]. In the new scenario, let us say S8, samples of two equally weighted mixtures of
bivariate Gaussian distributions forming 5×5 grids are compared. Difference between
the generating distributions lies in the correlation structure for the Gaussians forming
the mixtures. The Gaussian components have uncorrelated coordinates for one of
the mixtures but they are correlated for the other mixture. Gretton et al. [52] have
considered different amounts of correlation, measured as the ratio between the largest
and smallest eigenvalue of the covariance matrix. In our simulation, we set this ratio to
10. More specifically, the Gaussian mixtures in Scenario S8 are formed by 25 bivariate
Gaussian distributions with equal weight, locations separated by 15 and with unit
variance on both dimensions, and off-diagonal covariance equal to zero for one mixture
and to 0.8182 for the other. A set of realizations from both mixtures is shown in
Figure 2.10.

In this scenario, we are not particularly concerned about dimension, but it is consid-
ered to be a challenging setting for the two-sample testing problem, thus accounting for
our interest in examining the behavior of the proposed approaches based on DD and
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Fig. 2.10 A realization of the Gaussian grids forming Scenario S8.

DDL1 test statistics. The experiment was carried out with sample sizes n=m= 1800
and using E, MMD, DD and DDL1. The obtained results provide compelling evidence
of the superior behavior of DD and DDL1. In fact, E and MMD showed absolute lack
of discriminatory power in this setting, producing a empirical power equal to zero in
both cases. On the contrary, our distribution and density based methods were close to
full power, attained average empirical powers of 0.96 and 1, respectively. In conclusion,
it has been necessary to compare the whole distributions of the interpoint distances to
detect the differences in the underlying distributions. Indeed, a suitable and careful
kernel choice can be performed in order to improve the behavior of MMD [52]. Nev-
ertheless, using much larger sample sizes (n=m= 10000) in the same Gaussian grid
scenario, the best linear MMD version reported power results below 0.8, still far from
the power attained with DD and DDL1, see the right side of Figure 1 in [51].

2.3.6 Time series

Now, we assume that the random vectors are realizations of time series, i.e. ΞX ≡
{X1, . . . ,Xn} and ΞY ≡ {Y1, . . . ,Ym} are n and m independent realizations of length d
from real-valued stochastic processes X = {Xt, t ∈ Z} and Y = {Yt, t ∈ Z}, respectively.
Time series allow to model complex dependence structures and are inherently high-
dimensional since d is usually large in this setting. In fact, dimensionality is often much
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greater than the sample size when dealing with time series. By setting the same length
for all series, the two-sample test for equal distribution in high dimension posed in
(2.1) is also of interest in this context. Furthermore, based on the mentioned features,
scenarios consisting of time series become an interesting test bed for the examined
statistics. We have carried out three experiments including autoregressive processes.
The two first experiments, leading to Scenarios S9 and S10, replicate examples proposed
by Biswas et al. [18], and the third one, generating the Scenario S11, combines features
from S9 and S10. An extensive study of time series is presented in Chapter 3.

The three experiments consider n=m= 20 realizations of length d= 50 so that
the differences lie in the generating processes. In the first experiment (Scenario S9),
two linear autoregressive processes of order 1 with different parameter are considered.
Specifically, Xi and Yj , for i, j = 1, . . . ,20, are generated from the AR(1) models
Xt = 0.3Xt−1 + εt and Yt = 0.5Yt−1 + εt, respectively. In both cases, innovations εt

are independent N(0.25,1) variables so that the joint distributions of the two samples
present a constant location shift in all dimensions as well as exhibiting different
variance structures. Scenario S10 consists of realizations of the AR(2) processes
Xt = 0.3Xt−1 +0.2Xt−2 + εt and Yt = 0.4Yt−1 +0.3Yt−2 + εt, with standard Gaussian
errors in both models. The joint distributions only differ in the variance structure in
S10. The third experiment considers the AR(2) structures of S10 but with N(0.25,1)
innovations as in S9. This enables us to compare the effect of the innovations at the
same model complexity.

The experiments were repeated 500 times and the average powers with each statistic
for α= 0.05 are shown in Table 2.2. Results for Scenarios S9 and S10 are consistent
with the ones in [18], where SHP led to powers higher than Energy and 3-NN. However,
the proposed approaches DD and DDL1 work substantially better than SHP in these
scenarios, and only HT presents higher power values. Scenario S11 replicates the AR(2)
structures of Scenario S10 but adding mean to the innovations. This makes stronger
marginal location differences (also bigger than in S9) and leads to the easiest scenario,
thus accounting for the best performance of all the tests. In this case, E and MMD take
advantage of the differences in location and outperform SHP. The difference in relative
performance of SHP suggests that this method is comparatively better when changes
in covariance are more subtle. Again DD achieves a very good result (0.82) comparable
to the best one (0.83) provided by HT. It is interesting to note that the scenarios
including time series are the only experiments where HT is the best performer.
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Scenario E 3-NN MMD SHP HT DDL1 DD
S9 0.20 0.18 0.26 0.24 0.59 0.34 0.44
S10 0.10 0.17 0.20 0.24 0.65 0.46 0.48
S11 0.67 0.48 0.75 0.46 0.83 0.69 0.82

Table 2.2 Empirical power in experiments involving time series

2.3.7 Discrete data

Discrete distributions may be problematic to some tests, such as graph-based tests
when there are ties in the distance graph, as noted in [145]. This could end up in a
non unique definition of a nearest neighbor or shortest hamiltonian path. To illustrate
the performance of the proposed test, we pose several simulation scenarios generated
using the following probability mass function (used in [145]):

Pθ,η(x) = 1
ψ(θ) exp(−θρ(x,η)),

where η, the center of the distribution, is a list of numbers, θ controls the spread, ρ is the
Spearman’s distance and ψ a normalizing constant. The domain of this distribution is
any permutation of the center η. Each experiment is repeated 1000 times considering a
nominal level α = 0.05. We check the empirical levels for the scenario with parameters:
n = m = 25,η1 = η2 = (1,2,3,4,5), θ1 = θ2 = 1. Table 2.3 shows that our proposed
methods, energy and MMD do not show problems when the domain is discrete, while
the graph-based approaches produce incorrect nominal levels. NN works well because
of the 3 first neighbors are being considered, its power differs from the expected when
only one neighbor is considered. If the amount of possible values in the domain is
increased, e.g. considering 9 numbers instead of 4, changing the η in the previous
scenario to η = (1,2,3,4,5,6,7,8,9), the graph based tests are closer to the expected
power.

Scenario E 3-NN MMD SHP HT DDL1 DD
A 0.053 0.048 0.050 0.141 0.063 0.052 0.050
B 0.053 0.054 0.054 0.073 0.056 0.052 0.052

Table 2.3 Empirical nominal levels for the discrete data scenarios A and B, where A:
η = (1,2,3,4,5), θ = 1, B: η = (1,2,3,4,5,6,7,8,9), θ = 1

For differences between distributions, we consider the following scenarios:
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• S12: A small change in spread:
N =M = 25,η1 = η2 = (1,2,3,4,5), θ1 = 0.5, θ2 = 2.

• S13: A change of “center” with medium spread:
N =M = 25,η1 = (1,2,3,4,5),η2 = (5,4,3,2,1), θ1 = θ2 = 1.

• S14: A large change in spread:
N =M = 25,η1 = η2 = (1,2,3,4,5), θ1 = 0.5, θ2 = 3.

• S15: A change in center with small spread in both distributions:
N =M = 25,η1 = (1,2,3,4,5),η2 = (5,4,3,5,1), θ1 = θ2 = 0.5.

The results are shown in Table 2.4. Graph based tests achieve less power than
energy, MMD and the proposed approach. In S12, S13 and S14 our method achieves
results very close to the best ones, while in the S15 it performs best. It is interesting
to note that the density-based version of our tests, achieves the best result in S14. In
this scenario, a simple plot of the densities of the groups shows a similar setting as
in Figure 2.2: mean-based methods such as energy and MMD tend to confound the
means while the differences in densities or cdf’s are more clear.

Scenario E 3-NN MMD SHP HT DDL1 DD
S12 0.400 0.180 0.398 0.277 0.381 0.233 0.399
S13 0.806 0.512 0.801 0.491 0.806 0.610 0.801
S14 0.808 0.432 0.809 0.537 0.758 0.802 0.807
S15 0.301 0.270 0.293 0.334 0.313 0.783 0.687

Table 2.4 Empirical power in discrete scenarios.

2.3.8 Some benchmark datasets in classification

Following [18], the two-sample test procedures were also examined on the basis of
benchmark datasets extensively used in the literature on supervised classification. The
authors argue that there is a reasonable separation between two competing classes, and
therefore the alternative hypothesis of unequal underlying distributions can be assumed.
We have replicated their experiment for a fixed sample size at each case and considering
additional datasets, namely Spambase, Phoneme and Urbanland. All the considered
datasets are enumerated and briefly described in Table 2.5. The Colon dataset is
available within the R package dprep [4]. The Trace and Phoneme datasets are ob-
tained from the University of California, Riverside’s time series classification/clustering
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page, at www.cs.ucr.edu/˜eamonn/time series data/ [30]. The rest of the datasets
are taken from the University of California, Irvine’s machine learning repository, at
http://archive.ics.uci.edu/ml/datasets/ [79].

Name Brief description

COLON Microarray gene expression dataset containing expression levels
of 2000 genes for each of 62 samples, 40 from colon cancer tissue
and 22 from normal tissue.

ARCENE Mass-spectrometry dataset for patients with ovarian or prostate
cancer and healthy patients. It consists of 7000 features indicat-
ing abundance of proteins in human sera having a given mass
value and 3000 additional distractor features called “probes”.

IONOSPHERE Radar dataset containing 34-dimensional observations on 126
“good” and 225 “bad” radar returns. A good return is that show-
ing evidence of some type of structure in the ionosphere, while
a bad return does not (its signal pass through the ionosphere).

SONAR Formed by 111 patterns obtained by bouncing sonar signals off
a metal cylinder and 97 patterns obtained from rocks. Each
pattern is a set of 60 numbers in (0,1), and each number repre-
sents the energy within a particular frequency band, integrated
over a certain period of time.

SPAMBASE Measures of 57 attributes for a collection of 4601 spam and
non-spam e-mails. Most of the attributes indicate whether a
particular word or character was frequently occurring in the
e-mail.

PHONEME Formed by 2000 discretized log-periodograms obtained from
digitized speech outputs for five phonemes (aa, ao, dcl, iy, sh).

TRACE Consists of four classes, each containing 50 instances of length
275. It is a time series dataset designed to simulate instrumen-
tation failures in a nuclear power plant.

URBANLAND 148 variables extracted from high resolution hyperspectral aerial
images of urban land cover. The classes of data can be trees,
grass, concrete, buildings, asphalt...

Table 2.5 Benchmark datasets

As in [18], we consider two different two-sample problems for the Trace dataset,
namely TRACE1 comparing the first and second classes and TRACE2 comparing
the third and fourth classes. Besides checking by the equality of distributions of
two classes for each dataset, we have also created new scenarios where mixtures of
classes with different weights p are compared, i.e. the samples are formed by drawing
observations from classes one and two of the dataset, but at different proportions.
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This was carried out for the Ionosphere and Urbanland datasets, thus generating the
scenarios called MIX-IONO and MIX-URBAN, respectively. Furthermore, the scenario
called MIX-IONOSONAR combines, in different proportions, observations from class
one in Ionosphere and class one in Sonar. In this case, we use the first 34 variables
of the Sonar dataset to have the same dimension as observations in Ionosphere. This
way, MIX-IONOSONAR scenario can be seen as a “contamination” scenario because
the two distributions of the mixture have different nature. By including these mixed
scenarios, we intend to examine the power of the test procedures when the distribution
supports overlap significantly.

At each case, the experiment was repeated 2000 times to approximate the testing
power. The distributions were simulated by sampling without replacement from each
considered class, taking equal sample size for the two samples (train and test datasets
were joined). For the mixture distributions, the proportions of random observations
within each class were determined according to a binomial distribution. Specifically,
the chosen binomial parameters were

• p= 1.0 vs p= 0.7 for the MIX-IONO scenario.

• p= 0.3 vs p= 0.75 for the MIX-URBAN scenario.

• p= 0.5 vs p= 0.7 for the MIX-IONOSONAR scenario.

In order to get insight into the effect of the distance between observations, the
experiments were carried out considering two different interpoint distances, namely
the Euclidean distance and the L∞ or Chebyshev distance. Table 2.6 shows the power
results for a nominal level α = 0.05 for the Euclidean distance.
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Scenario E 3-NN MMD SHP HT DDL1 DD

COLON (n=15) 0.88 0.97 0.88 0.89 0.33 0.51 0.78
IONO (n=12) 0.87 0.83 0.91 0.96 0.78 0.84 0.86
SONAR (n=25) 0.62 0.80 0.67 0.78 0.23 0.36 0.55
ARCENE (n=20) 0.38 0.91 0.38 0.88 0.51 0.56 0.50
TRACE1 (n=17) 0.27 0.69 0.32 1.00 0.54 0.49 0.27
TRACE2 (n=25) 0.01 0.49 0.00 1.00 0.00 0.04 0.01
SPAMBASE (n=27) 0.81 0.74 0.85 0.62 0.82 0.81 0.90
PHONEME (n=20) 0.95 0.83 0.95 0.72 0.76 0.76 0.93
URBANLAND (n=20) 0.86 0.86 0.83 0.71 0.77 0.71 0.85
MIX-IONO (n=34) 0.18 0.15 0.20 0.27 0.21 0.17 0.18
MIX-IONOSONAR (n=34) 0.28 0.15 0.31 0.13 0.31 0.29 0.30
MIX-URBAN (n=40) 0.41 0.31 0.41 0.26 0.39 0.35 0.43

Table 2.6 Empirical power in experiments with benchmark datasets using the interpoint
Euclidean distance

In the scenarios taken from [18], the first six rows of the Table 2.6, SHP and 3-NN
are the best performing methods. Our method DD achieves lower power than Energy
and MMD in the Colon and Sonar datasets, similar power in the Ionosphere dataset and
higher power in the Arcene dataset. SHP is clearly the best method in the TRACE1
and TRACE2 datasets, where E, MMD and DD present similar and poor powers. It is
worth remarking that in the TRACE2 scenario, most methods do not achieve even the
nominal power. On the contrary, in the Spambase, Phoneme and Urbanland datasets,
the best performing procedures are either Energy or the proposed DD, while SHP
exhibits the lowest power. The mixtures introduce interesting effects. In the mixture
of Ionosphere classes, while the relative performance of the methods is almost kept
compared to the pure classes scenario (which can be understood also as mixtures with
parameter p= 1.0), the power of the 3-NN method is impacted and ends up being the
worst performer. Overall, HT is the least affected in the mixture scenarios.

The results using the Chebyshev distance as interpoint distance are given in
Table 2.7. Compared to the Euclidean distance, the Chebyshev distance produces
higher powers in some datasets such as Ionosphere, but also lower powers in others
such as Colon. These increases and decreases are not uniform on all the methods in
the sense that relative ordering of the methods by power is changed, e.g. DD achieved
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the best power in the Ionosphere dataset with the Chebyshev distance but not with
the Euclidean. The performance in the mixtures is comparable to the Euclidean case.

Scenario E 3-NN MMD SHP HT DDL1 DD

COLON (n=15) 0.54 0.72 0.48 0.56 0.09 0.09 0.44
IONO (n=12) 0.95 0.86 0.96 0.97 0.89 0.95 0.98
SONAR (n=25) 0.36 0.56 0.40 0.57 0.28 0.36 0.31
ARCENE (n=20) 0.16 0.34 0.19 0.19 0.34 0.28 0.24
TRACE1 (n=17) 0.59 0.96 0.75 1.00 1.00 1.00 1.00
TRACE2 (n=25) 0.01 0.78 0.00 1.00 0.01 1.00 0.01
SPAMBASE (n=27) 0.79 0.72 0.84 0.59 0.82 0.79 0.88
PHONEME (n=20) 1.00 1.00 1.00 1.00 1.00 0.50 0.50
URBANLAND (n=20) 0.87 0.73 0.82 0.57 0.77 0.68 0.83
MIX-IONO (n=34) 0.20 0.16 0.21 0.22 0.23 0.22 0.24
MIX-IONOSONAR (n=34) 0.26 0.15 0.29 0.13 0.38 0.25 0.29
MIX-URBAN (n=40) 0.43 0.27 0.39 0.22 0.38 0.34 0.42

Table 2.7 Empirical power in experiments with benchmark datasets using the interpoint
Chebyshev distance

2.4 Concluding remarks

We have introduced a new class of multidimensional two-sample homogeneity test
consisting of three steps, namely i) defining a suitable distance D between observations,
ii) calculating all the interpoint distances, and iii) checking by the equality of the
univariate distributions of interpoint distances between and within samples using
the Cramér-von Mises test statistic. Our approach presents appealing properties,
including reduction of dimensionality, being free of parameter tuning and inheriting
the theoretical properties of the univariate Cramér-von Mises test. The nonrestrictive
regularity conditions required for the distance D in Lemma 1 provide versatility for a
suitable choice of D in order to increase the test power and get insight into the nature
of the distributional differences. This is particularly interesting in the case of complex
objects such as times series or functional data where different distance measures have
been introduced in the literature (see e.g. [94, 42]).

Unlike other known test statistics based on within and between-samples interpoint
comparisons aimed at evaluating differences in location, our proposal relies on comparing
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the whole interpoint distances distributions, thus providing higher capability to detect
differences in shape or in other moments. This property has been motivated by means
of illustrative examples in Section 2.2.3 and it is indeed a strength of the proposed test.

The power performance of our test has been examined through an extensive
simulation study including multidimensional scenarios with changes in location, scale,
skewness or kurtosis, scenarios formed by time series, and lastly replicating experiments
with simulated and real datasets considered in related papers. Compared to the
behavior of a broad range of alternative two-sample tests based on interpoint distances,
all our experiments have revealed a very satisfactory performance of the proposed test.

Although no procedure has been uniformly more powerful than the others, the
proposed test has shown a robust behavior by attaining reasonable power values in
most scenarios. In fact, unlike of our proposal, we have always detected scenarios
where some of the competitors have failed, i.e. they have presented poor power values
compared to others. For instance, Energy in the concentric circular distributions shown
in Section 2.2.3 or with changes in covariance, the nearest neighbor in large dimension
scenarios or by comparing grids of bivariate Gaussian distributions, and so on.

As expected, our test has exhibited high power in the case of changes in location,
although slightly worse than the best performing Energy and MMD. Also, our proposal
presents the best power values for alternatives based on changes in scale and it is
located between the most powerful by detecting departures from the null in skewness
and kurtosis. As noted in [27] and confirmed in our experimental results, most methods
are either sensitive against changes in location or scale. Unlike the rest of the compared
methods, our proposed method DD achieves relatively good power in both scenarios.

In essence, our procedure takes advantage of the sensitivity of the interpoint
distributions to detect subtle changes in the covariance and dependence structure in
the multidimensional setting.

Our results have also shown that the statistic based on comparing empirical
distributions (DD) exhibits a more robust behavior, while the one based on comparing
densities (DDL1) is more sensitive to changes in shape. Note that a more sophisticated
search of the bandwidth parameter would allow to improve the results with DDL1.
These results are congruent with the detailed discussion and comparison between
distribution and density based approaches provided by Martínez-Camblor and de Uña-
Álvarez [91].

Although our work has focused on continuous variables, Theorem 1 in [85] (es-
tablishing the result (A.1) in Appendix A for discrete variables) together with the
modifications for the univariate Cramér-von Mises statitic in order to deal with discrete
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distributions proposed by Choulakian et al. [31] and Lockhart et al. [83] would allow
to extend our two-sample test to the case of discrete variables. The good performance
of our test on discrete data is also illustrated in a short simulation in Section 2.3.7.

The main weakness of our proposal is the high computational cost, presenting
a computational complexity O((n+m)2 log(n+m)). Though permutations increase
computing time linearly, they can be computed fast since most calculations can be
reused, the most time consuming step is the calculation of the pairwise distances and
the statistic the first time.

In summary, we have presented a robust and powerful two-sample test procedure for
high dimensional data, which is applicable to a broad range of types of multidimensional
data. The choice of a suitable distance D in order to improve the power of the test is
an open and interesting issue which deserves deeper study, particularly in the case of
complex data objects such as time series, where in addition the dimension is frequently
greater than the number of data objects.





Chapter 3

Time series two-sample testing

3.1 Introduction

The two-sample homogeneity testing problem addressed in Chapter 2 for general
multidimensional data is specifically analyzed for time series data in the present
chapter. As we argue later, two-sample tests with time series data are of particular
interest in many applications, and furthermore, we intend to shed light on how the choice
of a proper distance between time series may substantially improve the power of the
testing procedures. Thus, Specifically, let {X1, . . . ,Xn} and {Y1, . . . ,Ym} be n and m
independent realizations of real-valued processes X≡ {Xt : t∈Z} and Y≡ {Yt : t∈Z},
respectively. Assuming equal length T for all observed series and denoting by FX and
FY the T -dimensional distributions of the random vectors (X1, . . . ,XT ) and (Y1, . . . ,YT ),
respectively, the two-sample test can be formally stated as H0 : FX = FY

H1 : FX ̸= FY
(3.1)

If the null hypothesis in (3.1) is not refused, it can be concluded that all the
time series follow the same temporal pattern over the observation period. Therefore,
although the problem is posed in terms of a two-sample test for equal distributions in
high dimension, the final target is to check for differences in the underlying dynamics
of both groups of realizations. Note that two-sample problems involving partial
realizations of time series frequently arise in applications from different fields. Some
motivating examples in the literature are: examining whether two sets audio tracks
sampled in short sequences form an homogenous group is a standard problem in audio
segmentation [55], two-sample tests for detecting intervals of differential gene expression
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in microarray time series [126, 103], detecting structural changes in the flows of the
river Nile by comparing annual flow series before and after the construction of the
Aswan dam [77], comparison of abundance series of phytoplankton species in marine
ecosystems studies [46], comparing temperature patterns [53] or brain signal analysis
[97]. Nevertheless, classical multivariate approaches to handle (3.1) could face serious
drawbacks in a time series framework due to the specific characteristics associated
to series. In this context, dimensionality is often much greater than the sample size
(p≫ n). Frequently, the observed time series have different length. In many problems
the interest lies in the temporal behavior while differences in terms of location or
dispersion tend to be considered as nuisance factors, thus series are normalized prior
to analysis. Other relevant issues such as phase difference tend to be ignored too. In
short, this kind of particularities limit the effectiveness of commonly used multivariate
methods, requiring specific time series approaches, as can be seen in related problems
such as time series clustering or classification.

Likewise distances or dissimilarities between time series objects play a key role in
many successful methods of time series classification [94, 81], intuitively one would
also expect that knowledge on the distances between time series should be useful to
address the two-sample problem (3.1). In fact, a number of successful nonparametric
multivariate two-sample tests based on distances have been introduced in the literature
[59, 127, 51, 18]. All of them take advantage of being suited for the p≫ n (a desirable
property treating with time series) mainly due to relying on distances. Furthermore,
an increasing research effort has been put on generalizing the class of distances that
may be used with these methods [128, 116, 59]. We argue that different distances are
expected to behave better than others, e.g. the supremum/infimum norm outperforms
the Euclidean norm in multivariate scenarios where the difference lies only in the
location of one of the variables (see Section 3.2 in [53]).

These evidences and the fact that distances are often used to convey invariance to
time series nuisance factors (see [12] for a review of invariance types required in several
time series domains) motivated us to study the behavior in two-sample problems of
different combinations of distances and test statistics. There are two main contributions
in this chapter. First, the test statistic proposed in Chapter 2 based on comparing
the empirical distributions of pairwise distances is discussed and motivated for the
setting of time series. Second, by means of an extensive numerical study, the effect of
choosing suitable distances to increase the power of the test is shown. In particular, it
is observed that the proposed testing method produces good results for a large set of
distances.



3.2 A rationale for a new test in the time series setting 45

The rest of the chapter is structured as follows. We present a brief discussion on the
new test statistic proposed in Chapter 2 intending to shed light on the intuition behind
the test compared to a conceptually close alternative. Section 3.3 presents simulation
and real data experiments comparing different test methods and dissimilarity measures
between series. An applicative example is described in Section 3.4 in order to illustrate
the usefulness and versatility of our proposal, and some conclusions and lines for further
research are stated in Section 3.5.

3.2 A rationale for a new test in the time series
setting

In Chapter 2 we propose a two-sample test statistic based on comparing distributions
of interpoint distances. Like our proposal, the energy statistic can be understood in
terms of within- and between-groups interpoint distances. Adding to Section 2.2.3, to
motivate our approach, an intuition of the differences in performance between both
methods in a case of time series is given below.

By definition, the energy statistic compares the average of the means of the within-
groups distances against the mean of the between-groups distances. Nevertheless, in
some scenarios, the value of this statistic might not be large enough to reject the null
hypothesis, and larger sample sizes would be required. It is intuitively expected that
comparing the whole estimated distributions instead of only their means lead to more
powerful tests, and this is precisely the motivation behind of our proposal.

For illustration purposes, we have performed a simple simulated example, which
consisted of generating two groups of time series from AR(1) with coefficient ϕ= 0.3
(group A) and AR(1) with coefficient ϕ= 0.8 (group B) processes, and then computing
the interpoint Euclidean distances for all the generated series. Figure 3.1a shows kernel
estimators of the corresponding within- and between-samples interpoint densities.
Densities instead of distributions are depicted for a neater and clearer view of the
differences. Figure 3.1b, where the within-groups distances are joint, provides valuable
insight into the behavior of both test statistics. The energy statistic essentially
evaluates the distance between the two vertical lines, i.e. it compares the means of the
betweenGroups density and the density obtained by joining the withinA and withinB
distances. Unlike the energy statistic, the proposed statistic directly compares the
whole densities. Clearly, the density shapes differ more substantially than their means
of the interpoint distances, thus the difference between densities seems to be still
significant even though the energy statistic, based only on the difference between the
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means and not the whole densities, will not detect significant differences. In short,
comparing interpoint densities can produce better discriminatory power than simply
comparing their means.
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Fig. 3.1 (a) Densities of within- and between-samples for series generated from AR(1)
ϕ= 0.3 (A) and AR(1) ϕ= 0.8 (B) processes. (b) Kernel densities of the Euclidean
distances between samples and within samples when the latter is obtained by joining
the withinA and withinB distances. Vertical lines represent the mean values of both
densities. While means may be close, the densities are still easily distinguised.

Scenarios where the mean-based approach works better than the distribution method
can indeed appear, for instance when sampling distributions only differ in location. In
these scenarios, the energy statistic outperforms the DD statistic in the same way that
a two-sample mean test is superior to a general distribution test when only the means
are different.

It is important to remark that if a complex distance is introduced, then the resulting
interpoint distances may separate groups in more ways than the different location
scenario. Indeed, a test robust against this possibility is desirable, even at the cost of
discriminatory power in the previously mentioned scenario. Note that a broad range of
different distances and dissimilarity measures have been proposed to deal with time
series (see eg. [94]), most of them taking into account the dynamic character of the
series.

In essence, our approach considers a Cramér-von Mises type statistic over interpoint
distances, which is not to be confused with applying the Cramer-von Mises test to the
underlying data. The Cramér-von Mises test has been recently proposed to address
the problem of detecting change points in time series [110]. Their target is to test
for equality of univariate distributions over two time segments, namely before and
after the potential change point. This approach is not valid for the problem we are
addressing here, which is multivariate homogeneity testing.
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3.3 Simulation study

In this section, the empirical power of the nearest neighbors test (k-NN), the energy
test (Energy) and the proposed test based on the distributions of interpoint distances
(DD) are compared under different scenarios including both synthetic and real data
sets. While Energy and DD are free of tuning parameters, the nearest neighbors test
depends on the choice of the number k of neighbors. Székely and Rizzo [127] observed
that the first two NN statistics, i.e. considering k = 1 and 2 neighbors, failed to achieve
reasonable approximations to the nominal significance levels in simulations, thus they
decided to use the third nearest neighbor test (3-NN). Based on these arguments, we
have also considered k = 3 in our experiments. The specific scenarios for our empirical
power study are described below.

Scenario S1 Time series realizations of length T = 50 are generated from first or-
der autoregressive processes (AR(1)) with autoregressive parameter ϕ taking
values in {−0.9,−0.6,−0.3,0,0.3,0.6,0.9}. In all cases, the error term follows a
standard normal distribution. Based on these simulated realizations, all pairs
of autoregressive models are compared with the three two-sample tests. The
Euclidean distance is used as interpoint distance, since it is the one most com-
monly associated with the distance-based tests and the default choice when no
information is available about the underlying distributions.

Scenario S2 Practitioners may be only interested in the temporal behavior of the
series, thus they often standardize data to cancel shift and scale differences. In
order to measure the sensibility of the tests in this setting, we have considered
the same experimental framework as S1, but adjusting the models to have the
same marginal mean and variance.

Scenario S3 The third experiment is conducted to assess the effect of using different
dissimilarity measures specifically designed to deal with time series. Some of these
dissimilarities are based on assuming specific generating models, e.g. ARMA
models. For this reason, besides considering particularly interesting comparisons
of normalized AR(1) models, GARCH(1,1) models are also included in order
to examine the behavior of the test statistics under more complex dependence
structures. Compared to the results from the above scenarios (S1 and S2) based
on the Euclidean interpoint distance, results from S3 should show the positive
effect on the two-sample tests of regarding specific time series distances. In this
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scenario, comparisons were carried out for series with lengths T =50, 100 and
1000.

Scenario S4 This scenario consists of real data examples taken from the UCR Time
Series archive [30] using different dissimilarities. The selected datasets cover a
range of series’ lengths from 96 to 720, and do not require either very small or very
large sample sizes to produce meaningful method and dissimilarity comparisons.
Note that these data sets are primarily used for classification: each time series
belongs to a class. In order to simulate a two sample test for a given dataset,
two random subsets were selected for each repetition of the experiment, each
subset belonging to one of the two classes of the dataset. When the datasets
had more than two classes, the first and second classes (usually labeled using
integers) were used.

To gain insight into the effect of the dissimilarity measure on the tests power,
different dissimilarities between time series were considered in the Scenarios S3 and
S4, which are briefly presented below.

• Cepstral-based distance (AR.LPC.CEPS). Euclidean distance between Linear
Predictive Coding (LPC) cepstral coefficients, which are derived from the AR(p)
models fitted to the series [69].

• Distance based on local linear smoothers of spectra (SPEC.LLR). Following Vilar
and Pértega [140], we also consider the spectral disparity measure given by

d(X,Y) = 1
4π

∫ π

−π
W

 f̂X(λ)
f̂Y (λ)

dλ,
where f̂X and f̂Y are local lineal least squares smoothers of the corresponding
periodograms and W (·) is the spectral divergence function W (x) = W ∗(x) +
W ∗(x−1), with W ∗(x) = log(αx+(1−α))−α logx, for 0< α < 1.

• Integrated periodogram based distance (INT.PER). Since the cumulative version
of the periodogram completely determines the generating stochastic process,
Casado de Lucas [23] propose to use the distance given by

d(X,Y) =
∫ π

−π
|FX(λ)−FY (λ)|dλ,
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where FX(λj) = C−1
X

∑j
i=1 IX(λi), with IX(λi) the periodogram evaluated at

the i-th Fourier frequency, and CX =∑
i IX(λi) (normalized version) or CX = 1

(non-normalized version), and analogously for Y.

• Divergence between permutation distributions (PDC). Dissimilarity is measured
in terms of divergence between permutation distributions of order patterns in
m-embedding of the original series. An m-dimensional embedding takes the form
X ′

m ≡
{
X ′

m = (Xt,Xt+1, . . . ,Xt+m) , t= 1, . . . ,T −m
}
. Then, for each X ′

m ∈X ′
m,

permutation Π
(
X ′

m

)
obtained by sorting X ′

m in ascending order (so-called
codeword of X ′

m) is recorded, and the distribution of these permutations on X ′
m,

P (X) (so-called codebook of XT ), is used to characterize the complexity of X.
PDC approach [20] consists in measuring the dissimilarity between X and Y as
the α-divergence between their codebooks P (X) and P (Y), respectively.

• A complexity-invariant dissimilarity measure (CID). Batista et al. [12] propose
to use information about complexity difference between two series as a correction
factor for existing dissimilarity measures. Thus, CID takes the general form

d(X,Y) = CF (X,Y) ·d(X,Y) ,

where d(X,Y) denotes a conventional raw-data distance and CF (X,Y) is a
complexity correction factor given by

CF (X,Y) = max{CE (X) ,CE (Y)}
min{CE (X) ,CE (Y)} ,

with CE (X) a complexity estimator of X. In Batista et al. [12], the complexity

estimator is CE (X) =

√√√√T −1∑
t=1

(Xt−Xt+1)2.

• Dynamic Time Warping distance (DTWARP). This is one of the most widely
employed distances between time series. DTWARP [15] is based on finding an
alignment r (so-called warping path) between two series under certain restrictions
such that a pre-specified point-to-point distance is minimized. For instance, if
the L1 distance is used as local distance, then DTWARP is given by

d(X,Y) = min
r∈M

 ∑
i=1,..,m

|Xai−Ybi
|

 ,
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where M denotes the set of all sequences of m pairs ((Xa1 ,Yb1), ...,(Xam ,Ybm)) ,
with ai, bj ∈ {1, ...,T} such that a1 = b1 = 1, am = bm = T , and ai+1 = ai or ai +1
and bi+1 = bi or bi +1, for i ∈ {1, ..,m−1}.

These dissimilarities have been selected as representatives of broad categories
established in the literature on the topic. Thus, PDC belongs to the complexity-based
dissimilarities group, AR.LPC.CEPS for the model-based, CID and DTWARP for their
complexity and time warping invariances, and SPEC.LLR and INT.PER arise from
comparisons in the frequency domain. A comprehensive overview of different approaches
to measure dissimilarity between time series can be seen in [94] and references therein.
It is worth to highlight that this study is not intended as a comparison of dissimilarities
but as evidence of the benefits of introducing specialized dissimilarities in the context
of two-sample testing with time series.

Sample size was n=m= 20 for Scenarios S1, S2 and S3. In S4, the sample sizes
were n = m = 15 except for the ScreenType and TwoPatterns datasets, both with
n = m = 25. Experiments were replicated 500 times to approximate the rejection
proportion.

3.3.1 Results

Results from experiments in Scenarios S1 and S2 are summarized in Table 3.1, where
the rejection rates at the nominal level α = 0.05 are shown.

Results from S1 show that the proposed method is the best in this scenario, except
for the comparisons −0.6 vs 0.6, where 3-NN takes a slight advantage, and −0.3 vs
0.3, where 3-NN fairly outperforms DD. The power obtained by the energy test is less
than or equal to the one achieved by DD in all the considered situations. It is worth to
analyze some particular results such as the power values attained in the comparisons
−0.6 vs 0.3 and −0.6 vs 0.6. Despite the fact that the AR coefficients are more distant
in the second case, energy and DD methods produce higher powers in S1. This is
explained by the difference of variance of the generating processes, greater in the first
scenario. It is observed that the larger variance difference the higher power, thus
accounting for the power values equal to one when one of the autoregressive coefficients
is ϕ= 0.9 or −0.9 and the largest variance differences are attained. The fact that under
the Euclidean distance the differences in distributional properties such as variance
overshadow stronger differences in temporal behavior highlights the importance of
using a suitable interpoint distance regarding the underlying dynamic.
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Table 3.1 Rejection rates at level α = 0.05 for comparing two groups of time series
simulated from AR(1) processes with autoregressive coefficients ϕX and ϕY , respectively
(Scenario S1), and the same models after standardization (Scenario S2).

Generating processes Scenario S1 Scenario S2
ϕX vs ϕY 3-NN Energy DD 3-NN Energy DD
−0.9 vs −0.9 0.05 0.05 0.06 0.05 0.06 0.05

−0.6 0.97 0.96 1.00 0.18 0.09 0.14
−0.3 1.00 1.00 1.00 0.29 0.13 0.33

0.0 1.00 1.00 1.00 0.50 0.16 0.61
0.3 1.00 1.00 1.00 0.84 0.22 0.81
0.6 1.00 1.00 1.00 1.00 0.26 0.97
0.9 1.00 0.36 1.00 1.00 0.38 1.00

−0.6 vs −0.6 0.05 0.06 0.06 0.06 0.05 0.05
−0.3 0.26 0.11 0.82 0.11 0.06 0.07

0.0 0.68 0.27 0.99 0.39 0.08 0.17
0.3 0.98 0.23 0.99 0.91 0.10 0.47
0.6 1.00 0.10 0.90 1.00 0.15 0.90
0.9 1.00 1.00 1.00 1.00 0.27 0.96

−0.3 vs −0.3 0.06 0.03 0.04 0.06 0.06 0.06
0.0 0.11 0.06 0.14 0.10 0.06 0.08
0.3 0.43 0.07 0.16 0.43 0.07 0.16
0.6 0.98 0.27 0.99 0.92 0.10 0.48
0.9 1.00 1.00 1.00 0.86 0.19 0.81

0.0 vs 0.0 0.07 0.06 0.06 0.05 0.05 0.05
0.3 0.10 0.06 0.12 0.10 0.07 0.08
0.6 0.72 0.25 0.99 0.40 0.08 0.16
0.9 1.00 1.00 1.00 0.52 0.18 0.64

0.3 vs 0.3 0.05 0.04 0.04 0.05 0.05 0.05
0.6 0.28 0.14 0.83 0.11 0.06 0.07
0.9 1.00 1.00 1.00 0.33 0.14 0.35

0.6 vs 0.6 0.06 0.07 0.06 0.04 0.05 0.05
0.9 0.96 0.96 1.00 0.21 0.09 0.13

0.9 vs 0.9 0.04 0.06 0.06 0.06 0.05 0.05

By construction, the results from Scenario S2 are free from the effect of variance
differences. Unlike Scenario S1, the power always increases with the difference between
autoregressive coefficients in S2. Nevertheless, the lack of differences in variance
complicates the discrimination task. In fact, a drastic reduction of the power of the
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tests is observed for all the procedures, thus illustrating the difficulty of comparing
normalized time series. Beyond these arguments, the results of the nearest neighbor
approach are superior on average to the ones obtained with the proposed test, although
there exist comparisons where DD performs better than 3-NN. The energy statistic
leads to the lowest powers. Note that the rejection rates under the null are very close
to the nominal size for all statistics and experiments.

In Scenario S3, the two-sample tests were executed considering groups of time
series generated from the following models:

• S3.1 Normalized series coming from two AR(1) models with autoregressive
coefficients ϕX = 0.2 and ϕY = 0, respectively. Therefore, we evaluate the
capability of the test statistics to discriminate between a weak linear dependence
structure and independent realizations.

• S3.2 Series coming from generalized autoregressive conditional heteroskedasticity
GARCH(1,1) models with different parametric specifications. More specifically,
the generating processes take the form Xt = σtεt, where the conditional variance
is modeled by

σ2
t = ω+αε2

t−1 +βσ2
t−1,

for different values of (ω,α,β). This way, more complex dependence structures
are involved in our experiments.

Again, the errors are realizations from a white noise process with mean 0 and
variance 1. In the present scenario, besides the Euclidean distance, we also use other
dissimilarity measures aimed at comparing spectral approximations. The choice of these
structure-based dissimilarities is supported by dealing with stationary models, without
particular interest to detect differences in shape, complexity or specific invariances. The
estimated rejection rates for a significance level α = 0.05 are summarized in Table 3.2.

The effect of considering different dissimilarities in the normalized autoregressive
scenario S3.1, AR(1) ϕ = 0.2 versus AR(1) ϕ = 0, is especially illustrative. When
using the Euclidean distance, all methods present very low discriminatory capability.
The power is substantially improved by considering distances like SPEC.LLR and
AR.LPC.CEPS, which measure dissimilarity in terms of nonparametrically estimated
spectra and estimated cepstral coefficients, respectively. The optimal properties of these
distances to deal with these models are inherited by the three test statistics, resulting
in higher powers. It is worthy to remark that, if the Euclidean distance is considered,
the 3-NN method is the best one, but energy and D-D statistics outperform 3-NN when
SPEC.LLR and AR.LPC.CEPS are used. This result, which can be extrapolated to
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Table 3.2 Rejection rates at level α = 0.05 in Scenario S3. T denotes the length of the
series and “Norm.” indicates if the series were or not normalized.

T Norm. Dissimilarity 3-NN Energy DD
S3.1 AR(1) parameter ϕ
0.2 vs 0.0 50 Yes EUCL 0.06 0.03 0.03

50 Yes SPEC.LLR 0.62 0.92 0.83
50 Yes AR.LPC.CEPS 0.76 0.95 0.91

S3.2 GARCH(1,1) parameters (ω,α,β)
(0.2,0.05,0.7) vs (0.1,0.1,0.8) 50 No EUCL 0.05 0.07 0.28
(0.2,0.1,0.7) vs (0.1,0.15,0.7) 200 No EUCL 0.10 0.27 0.88

1000 No EUCL 0.00 0.60 1.00
(0.1,0.7,0.2) vs (0.05,0.65,0.15) 1000 Yes EUCL 0.04 0.03 0.04

1000 Yes SPEC.LLR 0.14 0.08 0.39
1000 Yes AR.LPC.CEPS 0.10 0.30 0.43

the whole of S3, shows that a dissimilarity measure may differentiate samples in ways
which some tests are not sensible to. Coming back to the AR processes comparisons,
it is observed that energy slightly outperforms DD. Mainly, energy takes a greater
advantage of the dissimilarity properties. For instance, standardization coupled with
the coefficients extracted by the AR.LPC.CEPS dissimilarity creates the ideal location-
separated scenario mentioned in Section 3.2. On the other hand, in the GARCH
scenarios (S3.2) DD outperforms energy because the dissimilarities do not produce
this ideal situation.

Results by comparing non-normalized GARCH models reveal the importance of
having substantially larger sample sizes to reach reasonable power levels. In particular,
we have observed that 3-NN fails to achieve the nominal value, requiring fine-tuning
of the parameter k, one of the drawbacks of this method. This effect occurs for other
GARCH experiments of length T = 200, not shown here. In the normalized, length
T = 1000 GARCH scenario, using other distances increases the discriminatory power
and again DD is the method taking the most advantage of the new distances. Noticeably,
3-NN benefits more than energy with SPEC.LLR, while the opposite happens with
AR.LPC.CEPS.

The results for the real data comparisons (Scenario S4) are given in Table 3.3. In
S4, we face very different kinds of series, including non-stationary series and models
characterized by differences in shapes, complexity, . . . . This accounts for the use of
dissimilarity measures specifically designed to capture these features. We do not intend
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to determine the optimal dissimilarity for each single comparison, but highlighting the
improvement in terms of power when non-Euclidean distances are regarded in the test
statistics. Table 3.3 shows at a glance how this improvement in the rejection rates is
attained with few exceptions. The results also show that the effect of a dissimilarity
is not uniform across the studied methods, e.g. while all methods benefit from the
PDC dissimilarity in the RefrigeratorDevices dataset, the 3-NN with PDC decreases
its power in the TwoPatterns dataset, when compared with the Euclidean distance.
Once again, it is shown that DD is either the best performing or highly competitive
test in all the considered datasets when a suitable dissimilarity is considered.

The UCR time series datasets are used for classification, classes are presumed to be
separable. Nevertheless the two-sample problem may include different scenarios, such
as comparing groups consisting of the same two classes, but in different proportions.
In the last row of Table 3.3, mixtures of the first classes of two datasets in different
proportions are compared, showing that 3-NN method is not particularly suited for
this scenario.

Table 3.3 Rejection rates at level α = 0.05 in Scenario S4 involving real datasets from
the UCR Time series archive.

Datasets Dissimilarity 3-NN Energy DD
ScreenType EUCL 0.10 0.10 0.08

INT.PER 0.21 0.09 0.26
RefrigerationDevices EUCL 0.06 0.04 0.04

PDC 0.95 0.97 0.99
ShapeletSim EUCL 0.05 0.04 0.04

CID 0.86 0.98 0.97
ToeSegmentation1 EUCL 0.12 0.06 0.05

DTWARP 0.86 0.73 0.78
TwoPatterns EUCL 0.45 0.20 0.10

PDC 0.15 0.22 0.21
SPEC.LLR 0.40 0.58 0.60

ElectricDevices EUCL 0.10 0.21 0.48
PDC 1.00 1.00 1.00

ShapeletSim & Twopatterns Mixtures
(0.6,0.4) vs (0.8,0.2) SPEC.LLR 0.33 1.00 1.00
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3.4 Applicative example

In this section we test the equality of distributions of electroencephalogram (EEG)
time series coming from two groups: alcoholic and control subjects. In addition to the
tests methods, time-series specific distances are introduced to illustrate the influence
in test power of this parameter.

The data were gathered in a experiment to measure correlation of the EEG response
with genetic predisposition to alcoholism (see [79] for data and description). Subjects
belonged to either alcoholic or control groups and were exposed to different kinds
of visual stimulus. Each EEG reading corresponds to a 1 second interval after the
presentation of the stimulus, sampled at 256 Hz, therefore producing a 256 length
time series. 64 positions (channels) in the subject’s scalp were measured, producing a
64-variate series for each subject-stimulus presentation trial.

We divide the data into two classes, the EEGs produced by alcoholic subjects and
the EEG produced by subjects in the control group. The two-sample tests are applied
to random samples of these two groups. Therefore, we check whether EEG readings
taken at random from alcoholic subjects differ in distribution from EEGs taken at
random from control subjects. Note that we ignore subject, stimulus and channel
dependencies (considering each of the 64 channels as individual time series) for the
purposes of this experiment. The difference between alcoholic and control groups is
one of the many that may be checked with this data, such as difference between two
specific channels, test subjects, stimulus type, etc.

The division produces 450048 series in the alcoholic group and 257536 control group.
Figure 3.2 illustrates series in each group. Missing data were assigned the series’ median
value and series with constant values were removed. We apply the three tests: Energy,
Nearest Neighbors with parameter r = 3 and the proposed Distance Distribution (DD).
Three distances are also combined with the methods. The Euclidean distance is used
as reference, the Periodogram based distance proposed in [22] and the Complexity
Invariant Distance (CID) [12] are included as examples of time series specific distances.

Table 3.4 shows the average power at sample sizes N =M = 50 and α= 0.05 level for
1000 repetitions of the experiment. When comparing methods, our proposed approach
DD achieves higher power for all distances. Distance-wise, the Peridogram based
distance produces greater power when compared to the Euclidean and CID distances.
Given the nature of the data, it is not surprising that a frequency domain distance
is more suitable for finding differences in this dataset. On the other hand, the CID
approach, designed to scale a given underlying distance (in this case the Euclidean) by
the difference of complexity between series, decreased the power in relation to the raw
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Fig. 3.2 (a) EEG reading of an alcoholic subject. (b) EEG reading of a control subject.

Euclidean. In this scenario, weighting complexity over other series’ features is similar
to increasing noise, since it masks other differences that are better captured by the
Periodogram based distance and even the Euclidean.

Table 3.4 Power results for comparing alcoholic and control subjects EEG readings.
Nearest Neighbors, Energy and the proposed Distance Distribution methods are com-
bined with Euclidean, Periodogram and CID distances to produce 9 testing approaches.

Distance 3-NN Energy DD
Euclidean 0.17 0.18 0.35
Periodogram 0.24 0.53 0.58
CID 0.09 0.11 0.14

3.5 Conclusions and further research

We have addressed the problem of testing for homogeneity of two sets of time series
and studied the behavior of our test proposed in Chapter 2. Like other multivariate
two-sample procedures based on distances, the proposed test presents the property
of reducing the dimension of the problem, particularly desirable here because of the
length of the series usually exceeds the number of series. The main novelty lies on how
the test statistic handles the interpoint distances. Our strategy consists in comparing
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the whole empirical distributions of interpoint distances within- and between-groups.
Considering the whole distributions allows us to obtain a more complete information
than simply using a number of specific moments of these distributions. This way the
test is not only sensitive to differences in location or spread but also allows to identify
differences in the shapes of the distributions. Compared to other alternative statistics,
our proposal attained the best performance in many of the simulated scenarios, and
produced competitive results in the rest.

On the other hand, a testing procedure based on interpoint distances acquires
particular relevance in the time series framework. This is due to the broad range of
dissimilarity measures introduced in the literature to assess discrepancy between time
series models. Thus, it is expected that a suitable choice of the distance between series
will increase the discriminatory power of the proposed test. This intuition has been fully
confirmed in our experiments. Compared to the standard multivariate approach based
on the Euclidean distance, our experiments have shown that a well-selected time series
dissimilarity can substantially improve the performance of the test. As an example,
the proposed test was fairly the most powerful when complex dependence structures
such as conditionally heteroskedastic models were considered. The importance of
using a proper distance was also highlighted by the results obtained with all the real
datasets involved in the experiments. In sum, similarly as distances between time series
play a key role in tasks of clustering and classification, they are extremely useful to
improve the power of the proposed test. In particular, the results presented in this
work open the possibility of performing time series two-sample tests in situations where
the discriminatory power is low.

There are a number of possible directions for further research. It is interesting to
assess the performance in terms of power of the different ways of comparing interpoint
distributions, for example by using nonparametric densities instead of empirical distri-
butions. An automatic criterion to select a suitable dissimilarity in terms of testing
power when no prior knowledge on the generating processes is available would provide a
valuable tool. From a theoretical point of view, the results by Maa et al. [85] establish
requirements on the interpoint distances and it is of great interest to analyze whether
some commonly used time series dissimilarities satisfy these constraints.





Chapter 4

A distance for time series and
shapes based on lagged
distributions

4.1 Introduction

Time Series Classification and Clustering are two of the main tasks of time series analysis,
spanning many fields of application. The main approach to Time Series Clustering
consists of using a dissimilarity to compare time series and then applying general
purpose distance-based clustering methods that work directly on the comparisons
[5, 94]. Similarly, the state of the art approach in Time Series Classification [82] is
an ensemble of 35 individual classifiers, 11 of which are distance-based. Many of the
distances in time series can be applied to both tasks.

The claim that a method is state-of-the-art in classification is based on comparing its
classification accuracies against other methods in the UCR/UEA time series repository
[9]. This repository features classification problems from a wide range of domains
including medicine, engineering, robotics, etc. Some of the datasets in this repository
can be considered shape classification, dealing with silhouettes of objects, such as leaves
or bones of animals, and curves coming from spectrography. We make the distinction
of shapes from time series to highlight this possibility of application, even though it
is implicit since these objects are considered as time series by the community, often
under the umbrella term of 1D signals or sequential data.

Methods in time series analysis can be loosely categorized as model-free or model-
based.
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One of the best performing “families” of model-free methods in time series classifi-
cation are the so called “Bag of Patterns” [113] and “Bag of Features” [114]. These
methods are based on the sliding window approach, extracting all subsequences of the
series of a given length. Once the subsequences have been extracted, they are strongly
quantized to transform them into categorical data. The purpose of this categorization
is to represent each series by the relative frequency of these patterns in a way that is
easily compared, i.e. the histogram. An example of such categorization process is the
K-means algorithm, each subsequence is represented by the label of the cluster it has
been assigned to. The term “bag” (i.e. multiset) comes from the fact that the order of
these patterns inside the series is not considered. Once the series have been transformed
to histograms, they are compared using distances between histograms, such as the L1
distance. While “Bag of Patterns” methods try to keep the subsequences, “Bag of
Features” extracts features from them, such as their mean and variance, prior to the
quantization step. These bag-based methods can be then considered as disimilarities
between time series, since they compare histograms by means of distances.

Introducing models from the time series analysis literature to the classification and
clustering domains has originated the model-based family of distances [69, 86, 139, 101].
Time series models are well understood, which translates into two main benefits: helps
prediciting in which scenarios they will be useful and enhances the interpretability
of results. These distances achieve very good performance when the underlying
assumptions are met, such as economic time series after suitable transforms.

We observe that both bag-based and model-based methods have one thing in
common, they rely on the idea of capturing the “generating process” or “autoregressive
distribution” of the series (albeit in different ways), and then measuring the difference
between these processes or distributions. Distances based on linear autoregressive
models do it parametrically, describing the distribution with a few parameters, and
“Bag of Patterns” methods do it non parametrically, the size of the sliding window
serving a similar purpose to the lags selected in AR models.

All of these methods also perform very strong simplifications of the series, for
several reasons:

• Noise Reduction: Information not considered relevant is discarded. Model-based
methods separate the series into the deterministic and error parts, and the error
part is not used for the similarity of the series. “Bag of Patterns” methods smooth
the subsequences, e.g. by removing the high frequency Fourier coefficients.
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• Computational Reasons: It can be unfeasible to analyze very long time series
under these methods. Limiting the number of lags to test in model-based methods
or the categories in the bag-based methods improves their computation.

• Technical limitations: Bag-methods were originally proposed to process text
strings, “bag of words” [92], where there is no need for more complex tools
beyond histogram. Adaptation of the “bag of words” methods to time series
translate their problem to the original idea, even at the cost of discarding
information. Model-based approaches often specify models even when they are
not a perfect match to the data, for lack of a better solution.

We propose a new distance based on comparing the lagged distributions of the series.
Our objective is to define a distance that inherits the good empirical performance
of bag-based methods and model-based methods but in some sense is free from the
limitations imposed by either family, unifying their underlying ideas into a single
approach. At the same time it can arguably be considered more parsimonious: it
does not assume a parametric model, does not extract features and does not apply
simplifications such as strong quantizations which may be harmful in some domains
of application. We also focus on discriminating instead of modeling: model-based
approaches try to fit individual time series to the model that best predicts them. In
the setting of classification and clustering, discrimination between series is required,
not prediction, and therefore performance is expected to improve if we focus on the
more specific objective. This is the same concept behind Support Vector Machines
modeling the frontier between classes rather than the density function of the each of
the classes. Vapnik [137] summarized this idea as “Do not solve a harder intermediate
problem”.

For parsimoniousness, instead of a sliding window, we use lag embedding with few
lags. The lags for the embedding are selected in a data-driven way, growing a set of
lags instead of using full subsequences of the sliding window. Biasing towards sparsity
also helps with interpretability, as a set of lags maybe interpreted as some kind of
seasonality or pattern. On the other hand, the full consecutive set of lags that is a
sliding window can also be reached by our data-driven method. In the context of
clustering, it is also possible that the practitioner is interested in introducing a given
set of lags with some meaning in the domain of application.

To remove assumptions and strong simplifications required to produce histogram as
the representation in the bag-based methods, we use a divergence between multivariate
distributions, originally used as a statistic for two-sample hypothesis testing. This
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allows us to compare the lag embedding of two time series even when they are of high
dimension (a large number of lags) and also keeps the notion of similarity between
patterns that is lost when quantizing.

We detail the process of lag-embedding, the distance between lag embeddings and
provide a data-driven method for lag selection in Section 4.2. We give an in-depth
discussion of the application of our distance to shape classification in Section 4.3.
Section 4.4 shows empirical results for clustering and classification applied to real and
simulated data and Section 4.5 includes some conclusions and future work.

4.2 A distance between lag embeddings

The distance between time series proceeds by two steps:

1. Each series is transformed to its lag embedding representation (Section 4.2.1).

2. A distance between lag embeddings is calculated (Section 4.2.2).

The only input parameter is the set of lags to create the lag embedding, we also
propose a data-driven method for finding the lags.

4.2.1 Lag embedding of a time series

Let X be a time series of length T , X = (X1,X2, . . . ,XT ). Then given an ordered set
of lags L, L = (L1, . . . ,LD) the lag embedding of X using L is defined as:

SX,L =


X1 X1+L1 . . . X1+LD

X2 X2+L1 . . . X2+LD
... ... ... ...

XT −LD
XT −LD+L1 . . . XT


For the special case of an empty set of lags, the lag embedding is just the series:

SX,∅ =


X1

X2
...
XT


Therefore, for a given sequence of lags L = (L1, . . . ,LD), a lag embedding of an

observed time series consists in representing the time series in a D-dimensional time
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delayed space whose k-th component contains the Lk-step-ahead realizations of the
original data.

It can be seen that a sliding window approach can be recreated with the given
definition of lag embedding by considering L to be a consecutive set of lags, e.g. for a
window size of 10, L = (1,2,3,4,5,6,7,8,9).

The lag embedding we are proposing is related to the widely used technique in
nonlinear time series analysis, most notably in chaotic systems, called time delay
embedding for state space reconstruction. In state space reconstruction, scalar time
series are embedded in a multidimensional space using time delayed versions of the
measured quantities. Among the techniques from state space reconstruction, our
proposal is more closely related to non-uniform time delay embedding [120].

4.2.2 Comparing lag embeddings

Given a set of lags L and two series X and Y, represented by their respective lag
embeddings SX,L and SY,L, we propose to measure the distance between the lag-
embeddings by using the energy statistic [127], originally proposed for two-sample
hypothesis testing and previously described in the above chapters. In this particular
case, regarding that the two samples are actually the sets of the lag embeddings, the
proposed distance takes the form:

E = (T −LD)2

2(T −LD)

(
2

(T −LD)2

T −LD∑
i=1

T −LD∑
j=1

d(SX,Li,SY,Lj)

− 1
(T −LD)2

T −LD∑
i=1

T −LD∑
j=1

d(SX,Li,SX,Lj)

− 1
(T −LD)2

T −LD∑
i=1

T −LD∑
j=1

d(SY,Li,SY,Lj)
)

(4.1)

with d the Euclidean distance and SX,Li the i-th row of SX,L.
We are interested in E not for testing, but as a measure of divergence between SX,L

and SY,L, sets of multivariate observations of arbitrarily large but finite dimension. E
is zero when the two sets are equal and generally grows the more different the two sets
are. This allows us to use E in most distance-based methods, from classification (e.g.
nearest neighbors) to clustering (e.g. hierarchical clustering).
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Compared to approaches like “Bag of Patterns” or “Bag of Features”, the main
benefit of using E is that it is not limited to univariate observations, so extra dimension
reduction or categorization is not required for the lag embeddings to be compared.

Recently, a number of statistics from two-sample testing have been proposed that
can be used as divergences in this step ([51, 143]), including the one we propose in
Chapter 2. We use E due to its simplicity and computational efficiency, and a more
thorough discussion of the choice of divergence is left for future work.

4.2.3 Lag and embedding dimension selection

Similarly to the sliding window size, the order of autoregressive processes or embedding
dimension on state space reconstruction, our technique assumes a set of lags L to
create the lag embedding. In some scenarios L may be given, e.g. in clustering we can
be interested in how the data is clustered under a given lag that has some meaning
in our context. Nevertheless, it is helpful to provide an automatic method for finding
a good performing L. Motivated by its good empirical evidence, interpretability and
computational reasons, we propose a greedy approach for calculating L. Whether for
classification or clustering, our approach adds lags to the set if this addition improves
an objective function. A pseudocode for lag selection is given in Algorithm 1.

Additional hyperparameters can be considered, such as declaring a maximum size
of L, a maximum lag value or fixing the number of clusters.

Unlike related techniques in state space reconstruction that try to find the set of
lags that best models each individual series such as the false nearest neighbors [107], or
dimension deviation [131], our method optimizes the performance measure of interest.

When the set of lags is the empty set, we are comparing the marginal distributions
of the series with respect to time. When the set of lags is the whole series, E is
equivalent to the Euclidean distance between the series.

4.3 A motivating example

We show a real data example in shape classification to illustrate a full process of
analysis using our distance. We show how some of the ideas behind our distance
relate to a reference approach in shape analysis, and measure how the performance is
improved with regards to the reference.

The data are shapes of otoliths (bonelike structures in the ear) of fishes that have
been digitalized by taking pictures. The goal is to determine which family of fish a
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Algorithm 1 Greedy lag selection algorithm
Inputs:

M : the dataset of time series of length N .
E: the energy distance defined in Section 4.2.2.

Output:
L the set of lags to be considered.

1: L←∅
2: g← The “goodness” of the solution under L.
3: repeat
4: continueSearch← FALSE
5: for l = 1 to N : do
6: if l not in L then
7: D ← the pairwise distance matrix, calculated from the E distance

between all possible pairs of time series in M using the lag embedding L∪ l.
8: gtemp← A measure of “goodness” of the solution of D. In supervised

classification, use Leave-one-out crossvalidation accuracy of a nearest neighbor
classifier. For clustering, use a measure of goodness of clustering such as the average
silhouette width or Calinski and Harabasz [56].

9: if gtemp > g then
10: g← gtemp
11: L← L∪ l
12: continueSearch← TRUE
13: end if
14: end if
15: end for
16: until continueSearch== FALSE

bone belongs to, given a picture of it. Each otolith belongs to one of three families.
We use the AFORO database (http://isis.cmima.csic.es/aforo/) of already classified
photos of otoliths. This is a supervised classification problem, with the pictures of
otoliths as input and three possible classes, the three families of fish.

The first step is a preprocessing procedure, the pictures are transformed into a data
structure that is easier to process. The pictures are transformed to a matrix of binary
values, which each position in the matrix indicating whether it is bone or background,
see Figure 4.1 for a result of one otolith.

The reference approach in shape analysis consists of randomly sampling points
inside the shape (see the red dots in Figure 4.1a) and then representing the shape by
the one dimensional density of their interpoint Euclidean distances. The representation
of the shapes of the whole dataset as density objects, colored by their family, is shown
in Figure 4.1b.

http://isis.cmima.csic.es/aforo/
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Note how this approach is similar to bag-based methods and our lag embedding
in the sense that they represent the shapes by distributional objects, in this case a
density. This transform has very desirable properties in shape analysis, it is invariant
to rotations, translations and mirroring of the shapes. On the other hand, it only
uniquely identifies a shape if it is convex [16].
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(a) (b)

Fig. 4.1 (a) An otolith picture that has been transformed into a matrix of binaries.
Red dots represent points randomly sampled inside the shape. The density formed by
all pairwise distances between sample points is used to represent the original shape. (b)
The results of representing the whole dataset of otoliths as densities. Color represents
target class.

One way of using this representation in a classification context is by introducing
the L1 distance between the densities [16], together with a distance-based algorithm
such as nearest neighbors.

Our lag embedding representation is easier to apply to 1-dimensional curves instead
of 2-dimensional shapes. To get curves from the 2D shapes, we consider only the edges
of the shapes, and apply an arc length parametrization. The arc length parametrization
of the 2D line formed by the edges of the shape consist of two 1D lines, each representing
the relation between one of the 2 dimensions of the original curve at the given length
of the curve. The arc length parametrization of the shape in Figure 4.1a can be seen
in Figure 4.2a.

When we apply the reference approach, sampling inside the arc length curves and
computing the density of the interpoint Euclidean distances results in the Figure 4.2b.
To assess the effect of the arc length parametrization with respect to the original 2D
shapes, we first compare the classification accuracy of the reference approach applied
to the whole 2D shapes with the same approach but applied to the edges of the
shapes, extrated by the arc length method. Accuracies are measured by leave-one-out
crossvalidation.
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• Reference approach sampling inside the wholeshape: 0.912.

• Reference approach sampling along the edges, parametrized as arc length: 0.923.

We see that the arc lenght parametrization prior to sampling already produces an
improvement in classification accuracy in the reference approach. We attribute this
effect to the fact than most discriminative information lies in the edges of the shapes,
not inside them.

We now apply our distance based on lagged embeddings. A minor detail to considere
in this particular example is that the original objects here are two one-dimensional
“time series” rather than one. Our distance can be trivially extended in this case by
considering each observation in a given time series X to be a two-dimensional point.

Our lagged distribution representation does not retain the useful invariances of the
reference representation, but these invariances can be achieved by finding the best
translation/rotation/mirror on a pair by pair basis, finding the best affine transformation
from one shape to the other, prior to calculating the distance between the two shapes.
The tradeoff here is the higher computational cost of calculating this transformation,
though this cost is very small compared to the computation of the actual distance.

(a) (b)

Fig. 4.2 (a) Arc length representation of the edges of the otolith shape of Figure 4.1a.
(b) Interpoint Euclidean distance representation of the shapes of the dataset, after
applying the arc length parametrization to them.

When no lags are considered, our approach is also similar to the reference in that
they compare sets of points sampled from the curves. Instead of computing the densities
for interpoint Euclidean distances of each shape and then comparing them via the L1
distance, our approach compares them directly via the energy statistic E, also based
on interpoint Euclidean distances. We sample the curves in a deterministic way, using
a grid.
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When we consider no lags for the embedding with our distance, classification
accuracy improves to 0.956 from the 0.923 of the reference approach that uses the L1
distance between densities interpoint Eculidean distances.

This improvement can be in some way attributed to focusing on discriminating
instead of modeling, e.g. modeling the densities requires additional steps such as
choosing bandwith that may not be optimal for discrimination.

After this, we consider introducing one lag for the lag embedding of the curves.
Figure 4.3 shows the classification accuracy with respect to the time delay that is being
considered. It is important to highlight that accuracy is improved for all possible lag
values. This reflects the usefulness of lag embedding as a way of comparing shapes. The
best accuracy found using only one lag is 0.968, considering two lags for the embedding,
it can be improved to 0.97.
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Fig. 4.3 Classification accuracy in the otolith example usign lag embedding limited to
only one lag. We can see that all possible values of lag improve (or never decreases)
the accuracy.

4.4 Experimental results

We show the empirical performance of our distance for both clustering and classification
problems, under real data and synthetic scenarios. For computational reasons, the
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number of lags selected by the greedy method is limited to 2 in the experiments, and
maximum lag is limited to 1/3 of the length of the series.

4.4.1 Real data for classification

We compare our approach with 12 other distances, using the UCR/UEA datasets.
These distances have been used for classification in the literature and their results over
these datasets are reported in the web page of [9] timeseriesclassification.com.
All distances are used in a 1-nearest neighbor classifier. We use the same splits for
train and test sets as in [9] and show the resulting classification accuracy of 4 of the 12
distances in Table 4.1. The 4 distances shown are the ones with the highest average
accuracy. The rest may be seen in timeseriesclassification.com.

We compare only 43 out of the 85 datasets in the repository for computational
reasons, these 43 are the fastest to test in time complexity taking into account training
and testing sizes and length of the series.

The following groups of distances are included in our comparison

• Euclidean Distance.

• Five Variants of Dynamic Time Warping with different windows selection algo-
rithms, including Weighted Dynamic Time Warping, WDTW [67].

• Longest Common Subsequence, LCSS [141].

• Edit Distance with Real Penalty, ERP [28].

• Complexity Invariant Dynamic Time Warping, dCIDDTW [12].

• Move Split Merge Metric [125].

• Time Warp Edit Distance, TWE [90].

• Derivative Dynamic Time Warping, DD_DTW [49].

Our distance, dLAGDISTR, achieves or ties for best position in 11 of the 43 datasets
and has the best average accuracy among the 12.

4.4.2 Simulation

The UCR dataset is comprised of mostly deterministic times series, but it is also
interesting to compare performance in series of stochastic nature, when the underlying

timeseriesclassification.com
timeseriesclassification.com
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DATASET dLAGDISTR_1NN WDTW_1NN ERP_1NN TWE_1NN DD_DTW_1NN
1 Adiac 0.70 0.61 0.61 0.63 0.70
2 ArrowHead 0.80 0.82 0.80 0.79 0.79
3 Beef 0.60 0.70 0.67 0.60 0.67
4 BeetleFly 0.80 0.70 0.75 0.70 0.65
5 BirdChicken 0.95 0.75 0.75 0.85 0.85
6 Car 0.78 0.78 0.77 0.92 0.80
7 CBF 0.99 1.00 1.00 0.99 1.00
8 Coffee 1.00 1.00 1.00 1.00 1.00
9 DistalPhalanxOutlineAgeGroup 0.69 0.70 0.68 0.71 0.71
10 DistalPhalanxOutlineCorrect 0.72 0.72 0.71 0.74 0.73
11 DistalPhalanxTW 0.65 0.60 0.67 0.63 0.61
12 ECG200 0.83 0.88 0.88 0.89 0.83
13 ECGFiveDays 0.85 0.80 0.81 0.83 0.77
14 FaceAll 0.78 0.79 0.79 0.79 0.90
15 FaceFour 0.94 0.88 0.86 0.85 0.83
16 FacesUCR 0.92 0.92 0.92 0.92 0.90
17 GunPoint 0.98 0.98 0.95 0.95 0.98
18 Ham 0.54 0.58 0.60 0.51 0.48
19 Herring 0.56 0.53 0.62 0.52 0.55
20 ItalyPowerDemand 0.96 0.95 0.96 0.95 0.95
21 Lightning2 0.84 0.90 0.87 0.84 0.87
22 Lightning7 0.63 0.77 0.74 0.75 0.67
23 Meat 0.93 0.93 0.93 0.93 0.93
24 MedicalImages 0.71 0.74 0.68 0.71 0.74
25 MiddlePhalanxOutlineAgeGroup 0.52 0.52 0.48 0.52 0.54
26 MiddlePhalanxOutlineCorrect 0.75 0.75 0.77 0.76 0.73
27 MiddlePhalanxTW 0.50 0.51 0.50 0.49 0.49
28 MoteStrain 0.88 0.86 0.87 0.80 0.83
29 OliveOil 0.83 0.83 0.87 0.87 0.83
30 PhalangesOutlinesCorrect 0.75 0.75 0.76 0.76 0.74
31 Plane 0.96 1.00 1.00 1.00 1.00
32 ProximalPhalanxOutlineAgeGroup 0.79 0.80 0.80 0.80 0.80
33 ProximalPhalanxOutlineCorrect 0.84 0.78 0.81 0.81 0.79
34 ProximalPhalanxTW 0.71 0.75 0.70 0.75 0.77
35 SonyAIBORobotSurface1 0.87 0.74 0.69 0.68 0.74
36 SonyAIBORobotSurface2 0.88 0.83 0.82 0.85 0.89
37 SwedishLeaf 0.90 0.87 0.86 0.89 0.90
38 SyntheticControl 1.00 0.99 0.98 0.99 0.99
39 ToeSegmentation1 0.79 0.79 0.83 0.82 0.81
40 ToeSegmentation2 0.84 0.89 0.92 0.78 0.75
41 Trace 0.99 1.00 0.95 0.99 1.00
42 TwoLeadECG 0.84 0.91 0.94 0.97 0.98
43 Wine 0.63 0.57 0.61 0.57 0.57

Table 4.1 Classification accuracies in the UCR/UEA Time Series datasets. Out distance,
dLAGDISTR, achieves or ties for the best distance in 11 out of the 43 datasets and
has the highest average accuracy.

generating processes are understood. We generate an additional scenario of simulated
time series from the standard time series analysis literature. We use this scenario
both for clustering and classification. This serves as a way to compare distances
performance in a particular scenario and also to compare them under both supervised
and unsupervised versions of the same underlying problem, showing how flexible the
distances are when additional information in the form of the true class labels is available.
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This simulation scenario features traditional linear and nonlinear autoregressive pro-
cesses and 9 models taken from [60], originally used for testing linearity vs nonlinearity,
to make a total of 22 different models.

10 series of length 250 are simulated from each model, and the ground truth labels
for purposes of measuring classification accuracy and the external clustering criteria
are the 22 models. The following models are included in the simulation:

• Stationary Linear

– AR(1) ϕ= 0.9

– AR(2) ϕ1 = 0.95,ϕ2 =−0.1

– MA(1) θ =−0.9

– ARMA(1,1) ϕ= 0.95, θ = 0.1

• Nonstationary Linear

– ARIMA(0,1,0)

– ARIMA(1,1,0) ϕ=−0.1

– ARIMA(0,1,1) θ = 0.1

– ARIMA(1,1,1) ϕ=−0.1, θ = 0.1

• Nonlinearity in mean

– TAR Xt = 0.5Xt−11(Xt−1 < 0)−2Xt−11(Xt−1 > 0)+ et

– EXPAR Xt = [0.3−10exp(−X2
t−1)]Xt−1 + et

– NLMA Xt =−0.5et−1 +0.8e2
t−1 + et

• Nonlinear in variance

– GARCH(2,1) α1 = 0.1,α2 = 0.01,β = 0.9

– GARCH(2,1) α1 = 0.1,α2 = 0.1,β = 0.1

• Nonlinear models (b) to (j) from [60]

– Xt = (−0.9−0.1et−1)Xt1 + et +2

– Xt = (0.3−0.2et−1)Xt1 + et +1

– Xt = (0.9exp(−X2
t−1)−0.6)Xt1 + et
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– Xt = (0.9exp(−X2
t−1)−0.6)Xt1 + et +0.3

– Xt = (0.9exp(−X2
t−1)−0.6)Xt1 + et +1

– Xt =−0.3Xt−11(Xt−1 ≥ 0.2)−0.6Xt−11(Xt−1 < 0.2)+ et

– Xt =−0.3Xt−11(Xt−1 ≥ 0.2)+0.6Xt−11(Xt−1 < 0.2)+ et

– Xt = (−0.3Xt−1−1)1(Xt−1 ≥ 0.2)− (0.3Xt−1 +0.5)1(Xt−1 < 0.2)+ et

– Xt = (−0.3Xt−1 +1)1(Xt−1 ≥ 0.2)− (0.3Xt−1−1)1(Xt−1 < 0.2)+ et

All models use et standard Gaussian innovations, 1 is the indicator function.
The distances involved in the simulation scenario are not the same as in the real

data example. In this case, model-based distances from the time series literature are
added, one based on the cepstral components [69], dAR.LPC.CEPS, and other based on
the spectral density [37], dSPEC.LLR. The rest are chosen because they are commonly
used in clustering and are already implemented in the TSclust and TSdist R packages
[94, 96].

Classification results on the Simulation Scenario

We show in Table 4.2 the leave-one-out nearest neighbour crossvalidation values on
each distance. dLAGDISTR achieves the best classification accuracy by a large margin.

DISTANCE LOO CV
dLAGDISTR 0.74
dSPEC.LLR 0.55
dAR.LPC.CEPS 0.40
dEUCL 0.17
dDTWARP 0.44
dERP 0.41
dLCSS 0.02
dCIDDTW 0.62

Table 4.2 Classification accuracy of the distances in the simulation scenario

Clustering results on the Simulation Scenario

We distinguish two settings, when the true number of clusters is known and when it is
unknown. The distance-based clustering algorithm is Partitioning Around Medoids
(PAM). We use Average Silhouette Width for the internal clustering criterion (non
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ground truth based) and the Adjusted Rand Index and Gavrilov Index for (external
clustering criterion).

The results when the number of clusters is known are shown in Table 4.3. The
best performing method in this case is the distance based on the Spectral Density
of the series, dSPEC.LLR. Our proposed approach is second in this scenario. When
the number of clusters is unknown, and is selected by the Calinski-Harabasz index
generalized for arbitrary dissimilarities (see [56]), the results are similar but our distance
achieves better performance according to both external and internal criterions (see
Table 4.4). The number of clusters found by the distance based on the Spectral
Density is closer to the true solution (10 clusters found, 22 real), but it is arguably
less interpretable than K=44, which is exactly double the amount of clusters, possibly
it is why it gets better external criteria. Note that the difference between the top
performing methods and the rest is very significant according to the adjusted rand
index.

It is interesting to note that the results are better when the number cluster is
unknown in most scenarios, attributed to the the fact that some clusters being difficult
to separate. The results of classification and cluster are consistent among themselves,
the best performing distances are the dLAGDISTR, dSPEC.LLR, and dCIDDTW.

DISTANCE ADJ-RAND GAV
dLAGDISTR 0.41 0.55
dSPEC.LLR 0.45 0.61
dAR.LPC.CEPS 0.01 0.12
dEUCL 0.05 0.24
dDTWARP 0.17 0.37
dERP 0.15 0.34
dLCSS 0.01 0.15
dCIDDTW 0.41 0.53

Table 4.3 Clustering results of the simulation scenario when the number of clusters is
known.

4.5 Conclusions and future work

We have presented a distance for time series with applications to classification and
clustering. The distance shows competitive results in both areas, while at the same
time focuses on simplicity and sparseness, helping with interpretability.
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DISTANCE K AVG. SIL ADJ-RAND GAV
dLAGDISTR 44 0.60 0.54 0.64
dSPEC.LLR 10 0.56 0.37 0.54
dAR.LPC.CEPS 43 0.38 0.31 0.47
dEUCL 3 0.74 0.01 0.16
dDTWARP 6 0.73 0.02 0.19
dERP 3 0.80 0.01 0.16
dLCSS 44 -0.80 0.02 0.17
dCIDDTW 9 0.47 0.14 0.34

Table 4.4 Clustering results when the number of clusters is not known. It is searched
using the Calinski-Harabasz index.

This distance is based on capturing the autoregressive distribution of the series
in a simple way, without assuming models, extracting features or applying additional
simplifications to the processes. The autoregressive distribution is captured via lag or
time delay embeddings, and then the lag embeddings are compared using a divergence
between multivariate sets, originally a statistic for two sample testing.

The main improvements come from focusing on discrimination rather than prediction
when modeling the autoregressive distributions, and by comparing the distributions in a
parsimonious way thanks to incorporating this modern divergences between multivariate
distributions.

The main drawback of the method is its computational complexity, now O(n2T 2)
with n the sample size and T the length of the series. For these computational and
also for empirical performance reasons, we would like to explore further the use of
alternative divergences for comparing the lag embeddings.

Regarding the data-driven method for lag selection, in the context of supervised
classification, we are preparing a global optimization method that considers a set of
lags simultaneously, using multiple kernel learning techniques.



Chapter 5

FFORMA: Feature-based
FORecasting Model Averaging

5.1 Introduction

Forecasting future values with high accuracy is indeed one of the main objectives of
time series analysis. It is interesting in the fields of business management, healthcare
or tourism, among many others. It is becoming increasingly common to have a large
set of related time series, which we want to forecast some or all of them, examples of
such scenarios are inventory control or stock exchange. Exploiting domain information
can help overcome the limitation of individual forecasting methods and improve overall
forecasting accuracy. In this chapter we propose a general framework to time series
forecasting that exploits domain information. It works by the linear combination of
individual forecasting methods, the weights are generated from a model that is trained
on a dataset of time series, using features extracted from them as input.

There are essentially two general approaches for forecasting a time series: (i)
generating forecasts from a single model; and (ii) combining forecasts from many
models (forecast model averaging). There has been a vast literature on the latter
motivated by the seminal work of Bates and Granger [11] and followed by a plethora
of empirical applications showing that combination forecasts are often superior to
their individual counterparts [see 33, 133, for example]. Combining forecasts using a
weighted average is considered a successful way of hedging against the risk of selecting a
misspecified model. A major challenge is in selecting an appropriate set of weights, and
many attempts to do this have been worse than simply using equal weights — something
that has become known as the “forecast combination puzzle” [see for example, 121].
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We address the problem of selecting the weights by using a meta-learning algorithm
based on time series features.

There have been several previous attempts to use time series features combined with
meta-learning for forecasting [see for example 102, 76, 74, 70]. Recently, Talagala et al.
[130] proposed the FFORMS (Feature-based FORecast Model Selection) framework
that uses time series features combined with meta-learning for forecast-model selection.
That is, features are used to select a single forecasting model. In this chapter, we
build on this framework by using meta-learning to select the weights for a weighted
forecast combination. All candidate forecasting methods are applied, and the weights
to be used in combining them are chosen based on the features of each time series. We
call this framework FFORMA (Feature-based FORecast Model Averaging). FFORMA
resulted in the second most accurate point forecasts and prediction intervals amongst
all competitors in the M4 competition [87]. The M4 Competition is the new iteration
of the foremost competition in time series forecasting, the M Competitions, highly
influential to the research in the field. It featured forecasting a dataset of 100000
time series in two main subcategories, point forecasting and prediction intervals, with
awards given to the most accurate methods in each category according to specific
measures of error. The time series come from macro and microenocomics, finance,
tourism, etc. and have periods of hourly, daily, weekly, monthly,... Participants were
required to forecast the next two period of each series. Special emphasis was given to
reproducibility of results and to the clarification of the reasons behind the performance
of the methods. 50 teams participated in the final deadline, with methods ranging
from classical statistical time series analysis to deep learning.

The rest of the chapter is organized as follows. In section 5.2 we describe the
FFORMA framework in a general sense. section 5.3 gives the details of our imple-
mentation of FFORMA in the M4 competition for generating both point and interval
forecasts. This includes the required preprocessing steps, the set of features and forecast
methods, as well as the specific implementation of the meta-learning model. We show
empirical evidence on the performance of the approach in section 5.4 by quantifying the
difference between our proposed learning model and a traditional classifier approach.
section 5.4 also provides some final remarks and conclusions.



5.2 Methodology 77

5.2 Methodology

5.2.1 Intuition and overview of FFORMA

The objective of our meta-learning approach is to derive a set of weights to combine
forecasts generated from a pool of methods (e.g., naïve, exponential smoothing, ARIMA,
etc.). The FFORMA framework requires a set of time series we refer to as the reference
set. Each time series in the reference set is divided into a training period and a test
period. From the training period a set of time series features are calculated (e.g.,
length of time series, strength of trend, autocorrelations, etc.). These form the inputs
to the meta-learning model. Each method in the pool is fitted to the training period,
forecasts are generated over the test period, and forecast errors (the difference between
actual and forecast values) are computed. From these, a summary forecast loss measure
from a weighted combination forecast can be computed for any given set of weights.

The meta-learning model learns to produce weights for all methods in the pool, as
a function of the features of the series to be forecasted, by minimizing this summary
forecast loss measure. Once the model is trained, weights can be produced for a new
series for which forecasts are required. It is assumed that the new series comes from a
generating process that is similar to some of those that form the reference set.

A common meta-learning approach is to select the best method in the pool of
methods for each series; i.e., the method that produces the smallest forecast loss. This
approach transforms the problem into a traditional classification problem by setting
the individual forecasting methods as the classes and the best method as the target
class for each time series. However, there may be other methods that produce similar
forecast errors to the best method, so the specific class chosen is less important than
the forecast error resulting from each method. Further, some time series are more
difficult to forecast than others, and hence have more impact on the total forecast
error. This information is lost if the problem is treated as classification.

Consequently, we do not train our meta-learning algorithm using a classification
approach. Instead, we pose the problem as finding a function that assigns weights
to each forecasting method, with the objective of minimizing the expected loss that
would have been produced if the methods were picked at random using these weights
as probabilities. These are the weights in our weighted forecast combination. This
approach is more general than classification, and can be thought of as classification
with per class weights (the forecast errors) that vary per instance, combined with per
instance weights that assign more importance to some series.
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5.2.2 Algorithmic description

The operation of the FFORMA framework comprises two phases: (1) the offline phase,
in which we train a meta-learner; and (2) the online phase, in which we use the
pre-trained meta-learner to identify forecast combination weights for a new series.
Algorithm 2 presents the pseudo-code of the proposed framework.

Algorithm 2 The FFORMA framework: Forecast combination based on meta-learning
Offline phase: train the learning model
Inputs:

{x1,x2, . . . ,xN}: N observed time series forming the reference set.
F : a set of functions for calculating time series features.
M : a set of forecasting methods in the pool, e.g., naïve, ETS, ARIMA, etc.

Output:
FFORMA meta-learner: A function from the extracted features to a set of M
weights, one for each forecasting method.

Prepare the meta-data
1: for n= 1 to N : do
2: Split xn into a training period and test period.
3: Calculate the set of features fn ∈ F over the training period.
4: Fit each forecasting method m ∈M over the training period and generate

forecasts over the test period.
5: Calculate forecast losses Lnm over the test period.
6: end for

Train the meta-learner, w
7: Train a learning model based on the meta-data and errors, by minimizing:

argmin
w

N∑
n=1

M∑
m=1

w(fn)mLnm.

Online phase: forecast a new time series
Input:

FFORMA meta-learner from offline phase.
Output:

Forecast the new time series xnew.
8: for each xnew: do
9: Calculate features fnew by applying F .

10: Use the meta-learner to produce w(fnew) an M -vector of weights.
11: Compute the individual forecasts of the M forecasting methods in the pool.
12: Combine individual forecasts using w to generate final forecasts.
13: end for
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5.3 Implementation and application to the M4 com-
petition

5.3.1 Reference set

Our meta-learning scheme requires a dataset of time series to train the model. This
dataset should come from a similar process to the the series we want to forecast. In the
case of the M4 competition, the amount of series we want to forecast is large enough
to use it as a reference set, provided we apply temporal holdout to get training and
test periods. We have experimented with adding additional data from similar domains
to the reference set (such as from other forecasting competitions) but the differences
were not substantial.

The M4 dataset includes 100,000 time series of yearly, quarterly, monthly, weekly,
daily and hourly data. All 100,000 series form the reference set. Each series is split
into a training period and a test period. The length of the test period for each time
series was set to be equal to the forecast horizon set by the competition. Series with
training periods comprising fewer than two observations, or series that were constant
over the training period, were eliminated from the reference set. In total, 4 series were
eliminated using this process.

5.3.2 Time series features

Table 5.1 provides a brief description of the 42 features used in this experiment, (F
in Algorithm 2). The functions to calculate these features are implemented in the
tsfeatures R package by Hyndman et al. [64]. Most of the features (or variations of
these) have been previously used in a forecasting context by Hyndman et al. [65] and
Talagala et al. [130], and are described in more detail there. The ARCH.LM statistic
was calculated based on the Lagrange Multiplier test of Engle [41] for autoregressive
conditional heteroscedasticity (ARCH). The heterogeneity features 39–42 are based on
two computed time series: the original time series is pre-whitened using an AR model
resulting in z; a GARCH(1,1) model is then fitted to z to obtain the residual series, r.

Features corresponding only to seasonal time series are set to zero for non-seasonal
time series. For the sake of generality, we have not used any of the domain-specific
features such as macro, micro, finance, etc., even though this information was available
in the M4 data set.
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Table 5.1 Features used in FFORMA framework.

Feature Description Non-seasonal Seasonal
1 T length of time series X X
2 trend strength of trend X X
3 seasonality strength of seasonality - X
4 linearity linearity X X
5 curvature curvature X X
6 spikiness spikiness X X
7 e_acf1 first ACF value of remainder series X X
8 e_acf10 sum of squares of first 10 ACF values of remainder

series
X X

9 stability stability X X
10 lumpiness lumpiness X X
11 entropy spectral entropy X X
12 hurst Hurst exponent X X
13 nonlinearity nonlinearity X X
13 alpha ETS(A,A,N) α̂ X X
14 beta ETS(A,A,N) β̂ X X
15 hwalpha ETS(A,A,A) α̂ - X
16 hwbeta ETS(A,A,A) β̂ - X
17 hwgamma ETS(A,A,A) γ̂ - X
18 ur_pp test statistic based on Phillips-Perron test X X
19 ur_kpss test statistic based on KPSS test X X
20 y_acf1 first ACF value of the original series X X
21 diff1y_acf1 first ACF value of the differenced series X X
22 diff2y_acf1 first ACF value of the twice-differenced series X X
23 y_acf10 sum of squares of first 10 ACF values of original

series
X X

24 diff1y_acf10 sum of squares of first 10 ACF values of differenced
series

X X

25 diff2y_acf10 sum of squares of first 10 ACF values of twice-
differenced series

X X

26 seas_acf1 autocorrelation coefficient at first seasonal lag - X
27 sediff_acf1 first ACF value of seasonally differenced series - X
28 y_pacf5 sum of squares of first 5 PACF values of original

series
X X

29 diff1y_pacf5 sum of squares of first 5 PACF values of differenced
series

X X

30 diff2y_pacf5 sum of squares of first 5 PACF values of twice-
differenced series

X X

31 seas_pacf partial autocorrelation coefficient at first seasonal lag X X
32 crossing_point number of times the time series crosses the median X X
33 flat_spots number of flat spots, calculated by discretizing the

series into 10 equal sized intervals and counting the
maximum run length within any single interval

X X

34 nperiods number of seasonal periods in the series - X
35 seasonal_period length of seasonal period - X
36 peak strength of peak X X
37 trough strength of trough X X
38 ARCH.LM ARCH LM statistic X X
39 arch_acf sum of squares of the first 12 autocorrelations of z2 X X
40 garch_acf sum of squares of the first 12 autocorrelations of r2 X X
41 arch_r2 R2 value of an AR model applied to z2 X X
42 garch_r2 R2 value of an AR model applied to r2 X X
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5.3.3 Pool of forecasting methods

We considered nine methods implemented in the forecast package in R [63] for the
pool of methods, P in Algorithm 2:

1. naïve (naive);
2. random walk with drift (rwf with drift=TRUE);
3. seasonal naïve (snaive).
4. theta method (thetaf);
5. automated ARIMA algorithm (auto.arima);
6. automated exponential smoothing algorithm (ets);
7. TBATS model (tbats);
8. STLM-AR Seasonal and Trend decomposition using Loess with AR modeling of

the seasonally adjusted series (stlm with model function ar).
9. neural networks autoregressive model (nnetar)

The R functions are given in parentheses. In all cases, the default settings are used.
If any function returned an error when fitting the series (e.g. a series is constant), the
snaive forecast method was used instead.

5.3.4 Forecast loss measure

The forecasting loss (L in Algorithm 2) was adapted from the Overall Weighted Average
(OWA) error described in the M4 competitor’s guide [3], which adds together the Mean
Absolute Scaled Error (MASE) and the symmetric Mean Absolute Percentage Error
(sMAPE).

MASE = 1
h

∑h
t=1 |Yt− Ŷt|

1
n−m

∑n
t=m+1 |Yt−Yt−m|

sMAPE = 1
h

h∑
t=1

2|Yt− Ŷt|
|Yt|+ |Ŷy|

With Yt the post sample value of the time series at point t, Ŷt the estimated forecast,
h the forecasting horizon and m the frequency of the time series (i.e., 12 for monthly
series).

To compute the OWA of a method of a given series, its MASE and sMAPE are
calculated and then are divided by the respective error of the Naïve 2 method over all
series in the dataset (i.e., MASE by the average MASE of Naïve 2), and then added.
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OWA= MASE

average Naïve 2 MASE in the dataset+

sMAPE

average Naïve 2 sMAPE in the dataset

(5.1)

Naïve 2 is an extension of the Naïve method, adjusted for seasonality. To check
whether a series should be adjusted for seasonality a 90% autocorrelation test is
performed.

5.3.5 Meta-learning model implementation

We used the gradient decision tree boosting model of xgboost as the underlying
implementation of the learning model [29]. This is a state-of-the-art model that is
computationally efficient and has shown good performance in structure based problems.
The great advantage of its application here is that we are able to customise the model
with our specific objective function.

The basic xgboost algorithm produces numeric values from the features, one for
each forecasting method in our pool. We applied the softmax transform to these values
prior to computing the objective function. This was implemented as a custom objective
function in the xgboost framework.

xgboost requires a gradient and hessian of the objective function to fit the model.
The correctly derived hessian is prone to numerical problems that need to be addressed
for the boosting to converge. This is a relatively common problem and one simple
fix is to use an upper bound of the hessian by clamping its small values to a larger
one. We computed a different upper bound of the hessian by removing some terms
from the correct hessian. Although both alternatives converged, the latter required
less boosting steps to converge. This not only increased the computational efficiency, it
also generalized better due to a less complex set of trees produced in the final solution.

The general parameters of the meta-learning in Algorithm 2 were set as follows.

• p(fn)m is the output of the xgboost algorithm corresponding to forecasting
method m, based on the features extracted from series xn.

• w(fn)m = exp(p(fn)m)∑
m exp(p(fn)m) is the transformation to weights of the xgboost output

by applying the softmax transform.
• Lnm is the contribution to the OWA error measure of method m for the series n.
• L̄n =∑M

m=1w(fn)mLnm is the weighted average loss function.
• Gnm = ∂L̄n

∂p(fn)m
= wnm(Lnm− L̄n) is the gradient of the loss function.
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• The hessian Hnm was approximated by our upper bound Ĥn:

Hn = ∂Gn

∂p(fn)m
≈ Ĥn = wn(Ln(1−wn)−Gn)

The functions G and Ĥ were passed to xgboost to minimize the objective function
L̄.

The results of xgboost are particularly dependent on its hyper-parameters such as
learning rate, number of boosting steps, maximum complexity allowed for the trees or
sub-sampling sizes. We limited the hyper-parameter search space based on some initial
results and rules-of-thumb and explored it using Bayesian optimization implemented
in the R package rBayesianOptimization [144] measuring performance on a 10%
holdout version of the reference set. We picked the simplest hyper-parameter set from
the top solutions of the exploration.

The full process is schematized in the flowchart of Figure 5.1.

5.3.6 Prediction intervals

For each new series we want to forecast, xnew, we used as the centre of the interval the
point forecast produced by our meta-learner. Then the 95% bounds of the interval were
generated by a linear combination of the bounds of three forecasting methods: naïve,
theta and seasonal naïve. The coefficients for the linear combination were calculated
in a data-driven way over the M4 database. The complete procedure was as follows:

1. We randomly divided the M4 dataset into two parts: A and B. We trained the
FFORMA learner using the training periods of the series in part A and produced
point forecasts over the test periods of the series of part B, and vice versa. Only
one replication of this process was applied.

2. We computed the 95% prediction radius for the naïve, theta, and seasonal
naïve methods. This is the difference between the 95% upper bound and the
point forecast for each forecast horizon.

3. For each forecast horizon we found the coefficients that minimized the Mean
Scaled Interval Score (MSIS) of the interval, defined in the M4 Competitor’s
guide [3] the following way:

MSIS = 1
h

∑h
t=1 +2

a(Ut−Lt)+ 2
a(Lt−Yt)1{Yt < Lt}+ 2

a(Yt−Ut)1{Yt > Ut}
1

n−m

∑n
t=m+1 |Yt−Yt−m|
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Fig. 5.1 Flowchart of the meta-learning process applied to the M4 dataset.

Where L and U are the lower and upper bounds of the prediction intervals, Y
the future observations of the series, a= 0.05 and 1 the indicator function. We
minimized the MSIS error produced by the linear combination of the radii of



5.3 Implementation and application to the M4 competition 85

naïve, theta, seasonal naïve forecasts as the radius of the interval, using the point
forecasts of FFORMA as the center. The minimization was done by gradient
descent (Conjugate Gradient implemented in R optim function) over the test
period of the series.

This method produced a set of three coefficients for each prediction horizon in
the M4 dataset and these coefficients were the same independently of the series we
want to forecast. Unlike the point forecasts, these coefficients were not restricted to be
probabilities to produce averages.

5.3.7 Results in the M4 Competition

We show the results of the M4 Competition in terms of forecasting error and also
present some analysis of the FFORMA model fitted to this dataset.

Table 5.2 shows the top three performing methods of the competition, according
to the OWA error measure, and their respective sMAPE and MASE errors. The
FFORMA Method achieved second position in average OWA error.

Method OWA sMAPE MASE
Slawek Smyl 0.821 11.37 1.54
FFORMA 0.838 11.72 1.55
Pawlikoski et al. 0.841 11.84 1.55
Benchmark 0.898 12.55 1.56

Table 5.2 M4 Competition: Point forecast error results. Benchmark is a combination
of methods of the exponential smoothing family, simple, Holts and damped.

The results of the prediction intervals part of the competition are shown in Table
5.3. FFORMA ranked second according to the MSIS measure used in the competition,
and achieved a 95.86% coverage. This is a remarkable difference compared to the rest
of the methods that participated in the competition. The third best method by MSIS,
which achieved a coverage of 90.70%, is far from the target 95% set by the competition.

Method MSIS Coverage
Slawek Smyl 12.23 94.7%
FFORMA 14.33 95.96%
Doornik et al. 15.18 90.70%
ets (Benchmark) 15.68 91.27%

Table 5.3 M4 Competition: Prediction Interval Results.
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When calculating rankings of the methods per series according to OWA, as opposed
to the overall average OWA, FFORMA achieved the best average rank, followed by the
method proposed by Fioruchi et al. (5th according to average OWA) and the method
by Pawlikowski at al. reached third position, coinciding with its position according to
average OWA.

An extended analysis of the competition results may be found in [87].
It is also interesting to analyze the xgboost model that we use as meta-learning

model, fitted to the reference set of the M4 Competition. Figure 5.2 shows the
relative importance of the ten most important features in the fitted model. This
importance is measured by the Gain (see [2]) introduced by the feature in the model,
considering all the trees. We see that many of the most important features come from
the STL decomposition of the series, measuring the linearity and curvature of the
trend, its strength relative the the remainder, etc. The series length and several kinds
autocorrelations are also included. Note that given that xgboost uses bagging, results
of importance vary may each time the model is fitted due to the randomness of the
process.

curvature
arch_acf
x_pacf5

hw_gamma
series_length

trend
seasonal_strength

linearity
unitroot_pp

spike

0.00 0.02 0.04 0.06 0.080.00 0.02 0.04 0.06 0.08

Fig. 5.2 Importance of the features of the xgboost model fitted to the M4 dataset.

The weights that the model assigns to each of the inidividual forecasting methods in
the pool also gives a hint of the contribution of each methods to the overall performance.
Table 5.4 shows the average weight that each of the methods receives. ARIMA is the
method receiving the most weigth on average, and most of the weight is divided among
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the top four methods: ARIMA, exponential smoothing, TBATS and random walk.
Both the autoregressive neural network and seasonal naive methods received very little
weight.

arima ets nnetar tbats stlm rwf thetaf naive snaive
0.22 0.15 0.03 0.18 0.07 0.16 0.09 0.07 0.03

Table 5.4 Average weights received by each indidividual forecast method under
FFORMA in the M4 Reference Dataset.

The whole training and forecasting process for FFORMA on the M4 dataset took
approximately 96 hours in a 8-core desktop computer.

5.4 Discussion and conclusions

We have presented an algorithm for forecasting using weighted averaging of a set of
models. The objective function of the learning model assigns weights to forecasting
methods in order to minimize the forecasting error that would be produced if we picked
the methods at random using these weights as probabilities. This contrasts with how
the final forecasts are produced, which is a weighted average, not a selection.

These weights can however be used as part of a model selection algorithm, if one
picks the method receiving the largest weight. This can be useful for interpretability
or computational reasons, at the cost of forecasting performance.

In order to evaluate the impact of our contribution, we compared the average forecast
error produced by FFORMA with a model selection approach. All implementation
details were kept the same as in FFORMA; specifically we used the same set of features,
the same pool of forecasting methods, the same underlying implementation (xgboost)
but with a standard cross-entropy loss, and the same hyper-parameter search. This
enabled us to measure the impact of the FFORMA loss function against a model
selection approach, all other things being equal. We applied both FFORMA and the
model selection approach to the M4 dataset and compared their overall point forecast
errors. The average OWA error of the FFORMA approach was 10% smaller than that
for model selection. This improvement is entirely due to the proposed model averaging
rather than model selection.

One advantage of our approach is that its form is independent of the forecasting
loss measure. Forecast errors enter the model as additional pre-calculated values.
This allows FFORMA to adapt to arbitrary loss functions when models that directly
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minimize them would be restricted. For example, our approach can be applied to
non-differentiable errors.

The source code for FFORMA is available at github.com/robjhyndman/M4metalearning.

https://github.com/robjhyndman/M4metalearning


Chapter 6

Distributed classification based on
distances between probability
distributions in feature space

6.1 Introduction

Data is growing at an unprecedented pace. With the variety, speed and volume of
data flowing through networks and databases, it has become more and more difficult
to find patterns that lead to meaningful conclusions. At the same time, organizations
need to find ways to obtain some value from all of this data. Unlocking the most
value from large, varied sets of information requires new approaches based on machine
learning. However, traditional machine learning techniques and, more specifically, data
mining algorithms, have been designed to run in a centralized computing environment,
where all data could fit in a single machine. But nowadays, in the current scenario,
where data size increases beyond capacity, these algorithms do not scale well —memory
demands and impracticable runtimes—, damaging performance and efficiency. Thus,
distributed learning has become essential.

The motivation for distributed learning is at least twofold. The most obvious reason
is the volume of data available nowadays. Data generation, which has been estimated
at 2.5 exabytes of data per day [14], comes from everywhere: genomics, astronomy,
CERN experiments, transaction records, posts to social media sites (Twitter generates
500 million tweets/day, each about 3 kilobytes including metadata) or digital pictures
and videos (YouTube currently has 300 hours of video being uploaded every minute).
Second, data is often shared across geographical and organizational boundaries, and
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it is not economic or legal to gather it in a single location. For example, several
datasets concerning business information might be owned by separate organizations
that have competitive reasons for keeping the data private. In addition, this data may
be physically dispersed over many different geographic locations. However, business
organizations may be interested in enhancing their own models by exchanging useful
information about the data.

The machine learning community has been essentially focused on the design of
distributed or parallel algorithms to deal with massive datasets [99]. Different from
the traditional centralized algorithms where a single learner has access to the full
dataset, distributed learning algorithms have their foundations in ensemble learning
[39]. Ensemble learning consists of a hierarchy of multiple local learners operating on
subsets of the full dataset, and one or more ensemble learners combining the outputs
of all the local learners. Thus, the ensemble approach is almost directly applicable to a
distributed scenario since a classifier can be trained at each site, using the subset of
data stored in it, and then the classifiers can be eventually combined using ensemble
strategies. To combine the predictions of a set of classifiers, one of the simplest ways
consists of using decision rules [72]. These decision/fixed rules are defined as functions
that receive as inputs the outputs of the set of learned classifiers and combine them
to produce a unique output. Chan and Stolfo [24] proposed several meta-learning
strategies for integrating independently learned classifiers by the same learner in a
parallel and distributed computing environment. Breiman [21] presented a procedure
to build ensembles of classifiers from small subsets of data, growing a predictor on
each subset and then pasting these predictors together. Lazarevic et al. [75], using
the Mahalanobis distance, developed a general framework for distributed boosting
to integrate efficiently specialized classifiers learned over very large and distributed
homogeneous datasets that cannot be merged at a single location. Tsoumakas et
al. [134] presented a framework for distributed stacking of multiple classifiers. Their
method was based on local learning and model stacking using the average probability
distribution of the local classifiers’ output according to the class as input to the second
level classifier. Similar to distributed learning, another common approach for scaling up
learning algorithms is parallel machine learning [136], which includes GPU architecture
and map reduce techniques.

Data can be distributed either horizontally or vertically. In horizontal partitioning,
the dataset is divided into several nodes that have the same features as the original
dataset, each containing a subset of the original samples. In vertical partitioning, the
original dataset is divided into several nodes that have the same number of instances
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as the original dataset, each containing a subset of the original set of features. This
chapter is focused on horizontal partitioning, since it constitutes the most suitable
and natural approach for most applications. In addition to the common learning
scenario assumptions, we assume the availability of a test set large enough to obtain
distributional information. In this distributed scenario, class probabilities can be shown
to be a weighted average of the individual class probabilities within each node. These
weights depend on the marginal probabilities of the instance over each node and over
the entire data set. This result motivates the study of the use of distances between
distribution functions for improving classification performance. In this chapter, two
different approaches to approximate these weights are proposed. The first one is based
on estimating the distance between feature distributions between each node and the
test set, while the second one controls the contribution of each instance of the test
set in order to minimize these distributional distances. The resulting learning models
exhibit interesting properties including that they work with any local classifier and do
not require retraining the classifiers or sharing information between individual nodes.
The experimental results on several real and synthetic data sets report benefits in terms
of classification accuracy, particularly when the second approach is considered. Besides,
we assess a common problem in many real world problems, the “class imbalance change”
[40] in classification. In a non-distributed framework, this problem appears when the
class balance changes between training and test data sets, due to sample selection bias
or non-stationarity of the environment [104]. In our case, unbalancedness happens
when the feature distributions differ between nodes. Distributed real-world data sets
are usually not symmetric, i.e. the distributions of data for different locations may not
be the same. Imagine a group of epidemiologists studying the spread of hepatitis-C
in Europe. They are interested in detecting any underlying relation of the emergence
of hepatitis-C in Europe with the weather and social patterns. They have access to
some large hepatitis-C country-specific databases and an environmental database at
EEA (European Environment Agency). These patterns could change considerably
from one country to another (e.g. from Denmark to Italy). Besides, analyzing the data
from these distributed datasets using a traditional data mining algorithm will require
combining the databases at a single location, which is quite impractical, or perhaps
not possible due to memory reasons or to privacy issues. It will be shown that our
model works particularly well in these scenarios.

The remainder of this chapter is organized as follows. Our distributed learning
model is introduced and analyzed in detail in Section 6.2. Specifically, the considered
framework and the rationale of the proposal are discussed in Sections 6.2.1 and 6.2.2,
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respectively. A scheme of the methodology is outlined in Section 6.2.3, and the
key issues of the procedure involving the choice of the distributional distance, the
weighting criteria and the way of combining the single classifier outputs are discussed
in Sections 6.2.4, 6.2.5 and 6.2.6, respectively. The results from an experimental study
involving simulated and real data sets are presented in Section 6.3, which is structured
as follows. The experimental design is described in Section 6.3.1. Different classification
algorithms, combination strategies, and partition sizes have been considered in both
balanced and unbalanced scenarios. Some results from a pair of specific experiments
conducted to motivate our approach are shown in Section 6.3.2, and the bulk of
experimental results are analyzed in Section 6.3.3. Additional results measuring
Precision and Recall from our experiments are also provided in Appendix B. Lastly,
computational complexity is addressed in Section 6.4 and some concluding remarks
and proposals for future research are given in Section 6.5.

6.2 A novel distributed learning model

This section is devoted to formally establish the distributed classification problem and
describes in detail the learning model we propose.

6.2.1 Background

Consider a population Ξ characterized by pairs of measurements (x,C) ∈ X ×C, where
X denotes a domain of d-dimensional feature vectors and C = {C1, . . . ,Cm} is a set
of m class labels. Denote by P (x,C) the joint probability function over X ×C. In
a standard classification context, a classifier based on a training sample of n labeled
objects Z = {(x1,C1), . . . ,(xn,Cn)} is used to predict the class of unlabeled features.
In a horizontally distributed framework, the population Ξ spreads across p disjoint
nodes, let us say P ≡ {N1, . . . ,NP}, and the training data set brings together instances
from the different nodes, i.e. Z = ∪p

i=1Zi, with Zi formed by ni instances belonging to
Ni, with ∑p

i=1ni = n.
In this chapter we focus on a distributed environment where a set T of t unlabeled

instances is available and our target is to estimate their labels. The availability of a
whole set of unlabeled instances T enables us to gain knowledge about the underlying
distribution of X and to assess how well this distribution is represented at each node.
As we will see later, our learning model relies on these distributional distances so that
the availability of T is a basic requirement.
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In addition, our learning model is constructed under the standard assumption that
the training set Z and the test set T are independent and identically distributed samples
drawn from the population in study, and therefore following the probability model
given by P (x,C). Note that this stationarity assumption is the default assumption in
many learning scenarios. No distributional or other assumptions are required on the
data or how they are distributed across nodes. In fact, data within each node could
follow different distributions since no constraints on the fragmentation scheme are
imposed. In particular, our framework encompasses scenarios with unbalanced nodes
[109] or with data-driven partitions on the basis of heuristic rules stated to obtain
better classification rates [38].

We also impose the restriction that no communication between nodes is required.
Intelligent interaction between nodes, e.g. taking advantage of the most informative data
at each node, can improve the classification accuracy [35]. Nevertheless, exchanging
information between nodes is frequently unfeasible in real problems dealing with
distributed data for different reasons such as storage cost, communication cost or
private and sensitive data, among others [135].

6.2.2 An overview of our approach

A common approach in distributed learning [13] consists of building classifiers trained
at each node Ni using Zi, i = 1, . . . ,p, and then combining the classifier outputs by
means of a proper ensemble learning strategy [39]. In our approach, we intend to
take advantage of the availability of T to gain insight into the marginal probability
distribution of the feature vectors, and using this knowledge to modulate the importance
of each individual classifier in the combination rule. Specifically, we wish to estimate
the posterior probability that the j-th instance in T , with observed feature vector
xj , belongs to the class Ck, for k = 1, . . . ,m and j = 1, . . . , t. Under the stationarity
assumption and given that P is a partition of Ξ, we have

P (Ck |xj )P (xj) =
p∑

i=1
P (Ck |xj ,Ni )P (xj |Ni )P (Ni) , (6.1)

where P (xj) denotes the marginal density of xj , P (xj |Ni ) the density of xj conditional
on the i-th node, and P (Ni) the prior probability of an instance is allocated to Ni.
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Let ωji be the ratio defined by ωji = P (xj |Ni )
P (xj)

, for i= 1, . . . ,p. Then, from (6.1)
follows that

P (Ck |xj ) =
p∑

i=1
P (Ck |xj ,Ni )ωjiP (Ni) . (6.2)

Equation (6.2) establishes that the posteriori probability of the class Ck given an
observed feature vector xj is a weighted average of the posteriori probabilities within
each node, with weights depending on the node size and the ratios ωji. By definition,
ωji measures how well represented is the observed feature vector xj in the i-th node.
Whether the partition P has been set evenly and uniformly at random, the feature
vectors within each node follow similar distributions and ωji will take values close to
one for all j and i. Otherwise, markedly unbalanced nodes will produce very different
ωji.

The value of P (Ck |xj ) can be directly estimated from (6.2) as long as the remaining
involved probabilities are previously approximated. The posteriori probability within
each node, P (Ck |xj ,Ni ), is estimated using the classifier trained at Ni and whose
output consists of a vector of m belief values. The proportion of training data belonging
to the i-th node can be taken as an estimate of P (Ni). For the sake of simplicity and
computational efficiency, we will assume nodes of equal size so that the weight of a
single prediction is not affected by the nodes’ sizes. Lastly, the behavior in probability
of the feature vectors over Ξ and over each node Ni can be modeled with nonparametric
kernel densities based on the features forming T and Zi, respectively. Nevertheless, this
involves several difficulties. First, we could face the “curse of dimensionality” problem
since the dimension of the feature space may be arbitrarily large. Moreover, we look
for a learning model able to manage different types of features, including mixtures of
discrete and continuous variables. But even assuming an affordable dimension and
continuous features, (p+1) kernel densities should be obtained, which substantially
increases the likelihood of estimation errors. In particular, small errors estimating
P (xj |Ni ) or P (xj) might produce arbitrarily large or small coefficients ωji, thus
leading to overweight or underweight the predictions in specific nodes.

To overcome these drawbacks, the computation of the (p+ 1) kernel densities is
circumvented by directly estimating the coefficients ωij . Two different approaches are
proposed. In both cases, the aim is to measure the dissimilarity di between the feature
distributions on the i-th node and the global population, hereafter denoted by FNi

and FX , respectively. A suitable distance between high-dimensional distributions is
considered, and then specific values for di, i= 1, . . . ,p, are obtained using the empirical
distributions based on Zi and T . The first proposal consists in taking ωji =K ·d−1

i ,
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for all j and i, and K being a constant. This way, all the instances in T receive the
same weight at each node, which decreases with the distance between FNi

and FX .
The second proposed approach is not simply based on the global distance between
empirical distributions. The weights ωji are determined in order to maximize the
matching between FNi

(xj) and FX (xj), for all xj ∈ T . Unlike the prior approach, the
test instances receive different weights ωji at the same node. The effective computation
of the weights is formalized throughout an optimization problem. A detailed description
of the two proposed weighting criteria is provided in Section 6.2.5.

6.2.3 Outline of the methodology

We propose a distributed learning methodology consisting of the following four stages.

Step 1 Assess the distance between the probability distributions of X on the i-th
training node Ni and the global population Ξ using a suitable statistic to measure
dissimilarity between high-dimensional distributions. Denote by di the normalized
distance obtained for the i-th training node, i= 1, . . . ,p.

Step 2 Based on a pre-selected classifier, obtain for each feature vector xj of the test
sample the classifier outputs Yj = {yj1, . . . ,yjp}, where yji denotes the response
generated by the classifier trained at the node Ni, for i= 1, . . . ,p and j = 1, . . . , t.

It is assumed that each classifier output consists of a vector of m membership
or belief values, i.e. yji = (yji1, . . . ,yjim), where yjik can be interpreted as the
amount of confidence or evidence in the assignment of the feature xj to the k-th
class, Ck, for k = 1, . . . ,m.

Step 3 Obtain weighted versions of the belief values Yω
j =

{
yω

j1, . . . ,yω
jp

}
, with yω

ji =
ωjiyji, where the weights ωji take into consideration the distributional distances di.
Two different criteria are proposed to determine how the weights are constructed.

Step 4 Generate a unique decision for classifying the j-th instance in T , with observed
feature xj , by combining the corresponding weighted belief sets {ωj1yj1, . . . ,ωjpyjp).
Following Kittler et al. [73], several fixed rules (decision rules) involving functions
of the elements of Yω

j are considered to produce the required unique output.

The key points of the proposed methodology involve: (i) the choice of the distribu-
tional distance di, (ii) the weighting criteria on the belief values regarding the distances
di, and (iii) the selection of a decision rule. Each of these issues is properly discussed
below.
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6.2.4 Measuring dissimilarity between high-dimensional dis-
tributions

To assess the distance between the probability distributions of X over an arbitrary node
Ni and the population Ξ, we propose to use the so-called energy statistic [127, 128].
Consider two independent samples X and X ′ generated from multivariate distributions
FX and FX ′ , respectively. The energy distance between X and X ′ is defined by

E
(
X ,X ′

)
= 2dX ,X ′−dX ,X −dX ′,X ′ , (6.3)

with
dA,B = 1

rs

r∑
u=1

s∑
v=1
∥au− bv∥ ,

where ∥·∥ denotes the Euclidean norm and A≡ (a1, . . . ,ar) and B ≡ (b1, . . . , bs) denote
arbitrary data sets. Note that this is in essence the same energy statistic mentioned in
Equations 2.6 and 4.1.

Under mild regularity conditions on the generating patterns, Székely and Rizzo
[127] established the consistency of the statistic (6.3) to check the equality of the
generating distributions FX and FX ′ . Hence E (X ,X ′) can be seen as a measure of the
distance between FX and FX ′ in such a way that the larger value of the statistic, the
more distant are the distributions. By construction, E (X ,X ′) is based on comparing
averages of interpoint distances evaluated within and between samples, which means
to move the multidimensional problem to dimension one. Thus, the energy distance
is particularly attractive to be applied in arbitrarily high dimension. It is also worth
remarking that different types of interpoint distances could be used to construct E(·, ·),
thus providing versatility to deal with features taking nominal, categorical, continuous
and also mixed values. Also, the good analytical properties of the energy distance
will allow us to formalize in the next section a suitable optimization problem designed
to provide useful weights for the belief values. Supported by these nice properties,
we decided to evaluate the distributional distance between each Ni and Ξ by means
of the energy distance between the i-th training sample and the test sample, i.e. by
di = E (Zi,T ), for i= 1, . . . ,p.
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6.2.5 Weighting the belief values generated by the single clas-
sifiers

From Step 2 of the proposed methodology, the outputs of the single classifiers Yj =
{yj1, . . . ,yjp} are available for each feature vector xj of the test sample. As mentioned,
we assume that yji is a vector of levels of belief in the assignment of xj to each of the
classes. Working with belief levels enables us to analyze the performance of a range of
efficient classifier combination rules [73] in Step 4 of the proposed methodology. Step 3
consists in correcting these belief values by introducing the distributional distances di.
Two different criteria are proposed.

One approach consists in assigning weights in inverse proportion to the energy
distance for the corresponding node, i.e. ωji =K ·d−1

i for all j, whereK =
(∑p

i=1 d
−1
i

)−1
,

is a normalizing constant used to make the sum of weights equal to one. This way,
the belief values generated from each local classifier receive a common weight for all
instances in the test set, resulting yω

j = Kd−1
i yj , for all j = 1, . . . , t. Hereafter this

weighting approach will be referred to per-Node Weighting and denoted by pNW.
In order to provide a finer grain approach where the belief degrees per instance in

the test set receive different weights, an alternative weighting approach is proposed.
The aim is to assign weights in order to minimize the energy distance between each
training sample and the test set. The procedure can be understood as if, for each
node Ni, a weighted resampling scheme of the test set is carried out to overweight
belief values associated to instances better represented at the node than in the test
sample. Features xj allocated in low probability zones in the test set but belonging
to high probability zones in a specific node will receive high weights, and conversely
instances with low probability in the test set but high probability in the node will
be downweighted (see Figure 6.1). By assigning high weights to instances with low
representation in the test set but well-represented at the node, we ensure an efficient use
of the training samples. Notice that equation (6.2) in Section 6.2.2 leads to theoretical
weights ωji = P (xj |Ni )/P (xj), thus accounting for the rationale of this approach.
Unlike the per-node belief approach, under this new weighting criterion each node
produces a weight for each instance in the test set. For this reason, this weighting
approach will be referred as per-Instance Weighting and denoted by pIW.

According to the definition of the energy distance in (6.3), the per-instance weights
for the set of test instances at the i-th node, ωi = (ω1i, . . . ,ωti), are obtained by
minimizing the objective function E (ωi) given by

E (ωi) = 2DZi,T ω
T
i −DZi,Zi

−ωiDT ,T ω
T
i , (6.4)
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Fig. 6.1 Graphical illustration of the per-Instance Weighting (pIW) criterion.

where DA,B is the matrix whose (u,v)-element is DA,B(u,v) = ∥au− bv∥, for arbitrary
data sets A≡ (a1, . . . ,ar) and B ≡ (b1, . . . , bs).

In practice, the minimization of E(ωi) is posed by means of the optimization
problem, solved by the interior-point method:

minimize
ωi

1
t
DNi,T ω

T
i −ωiDT ,T ω

T
i

subject to
p∑

i=1
ωi = 1, ωi ≽ 0.

6.2.6 Combining the belief values generated by the single clas-
sifiers

Last step in the proposed methodology consists in combining the weighted outputs of
the single classifiers trained at each of the nodes, namely the vectors of belief degrees
yω

ji = ωjiyji = (ωjiyji1, . . . ,ωjiyjim), whose k-th element yω
jik = ωjiyjik provides an

estimate of the posteriori probability P (Ck |xj ,Ni ), for k = 1, . . . ,m. Having available
continuous outputs in form of belief values allows us to consider different functions of
these values, so-called decision rules [99], to get a unique output. Kittler et al. [73]
argue that the decision rules provide a useful approach to circumvent the complex
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problem of inferring the posteriori probability function

P (xj is assigned to the class Ck |yj1, . . . ,yjp ) ,

which would allow us to determine the most likely class using the Bayesian theory.
Some alternative classifier combination approaches include techniques such as Stacked
Generalization, Meta-Learning, Knowledge Probing and Effective Stacking [99]. Never-
theless, these methods work training a new classifier based on single outputs produced
by each node, which requires access to a common training set or sharing of private
training information among nodes, thus limiting their applicability and violating the
condition of no communication between nodes stated in Section 6.2.1. Supported by
these arguments, we propose to use some of the most popular decision rules to generate
the final assignment.

Following Kittler et al. [73], where a common theoretical framework for different
decision rules is provided, we have considered in our experiments the set of rules
presented below. In all cases, we assume that the belief values have been normalized
so that P (Ck |xj ,Ni ) = yω

jik/
∑m

l=1 y
ω
jil, for all j and i.

• Product rule. The instance with observed feature vector xj is assigned to the
class Ck if

p∏
i=1

yω
jik = max

1≤l≤m

p∏
i=1

yω
jil.

Note that, under this rule, a class with a zero or very small belief value from
only one node will receive a zero or very small combined belief degree, even if
the rest of nodes provide high belief degrees to the mentioned class. Hence, this
rule will exhibit a bad performance if for example a class is not represented in a
particular node.

• Sum rule. The instance with observed feature xj is assigned to the class Ck if

p∑
i=1

yω
jik = max

1≤l≤m

p∑
i=1

yω
jil.

The theoretical support for the sum rule lies on assuming that the posteriori
probabilities do not deviate greatly from the prior probabilities [73], that is
P (Ck |xj ,Ni ) = P (Ck) + εjk, with εjk taking very small values for all k and j.
Kittler et al. [73] have shown that the sum rule is less sensitive to the estimate
errors than the product rule.
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• Max rule. The instance with observed feature xj is assigned to the class Ck if

max
1≤i≤p

yω
jik = max

1≤l≤m
max
1≤i≤p

yω
jil.

The class obtaining the highest belief degree over all the nodes is selected as
combined output. It can be shown that this rule approximates the sum rule
under the assumption of equal prior probabilities for the classes.

• Min rule. The instance with observed feature xj is assigned to the class Ck if

min
1≤i≤p

yω
jik = max

1≤l≤m

p
min
i=1

yω
jil.

Assuming as before that classes are a priori equiprobable, the min rule approxi-
mates the product rule.

• Majority vote rule. The instance with observed feature xj is assigned to the class
Ck if

p∑
i=1

∆jik = max
1≤l≤m

p∑
i=1

∆jil,

where ∆jil = 1 if yω
jil = max1≤u≤m y

ω
jiu and ∆jil = 0 otherwise. Therefore, the

combined output consists in selecting the class receiving the largest number of
votes from the single classifiers. Under the equiprobability assumption for the
prior probabilities, this rule matches the sum rule when the belief values are
discretized by using the ∆jil values.

6.2.7 Some remarks

Some remarks concerning the proposed methodology are highlighted below.

Remark 1. The estimated distributional distance di between a particular node Ni and
Ξ could be small (large) even though a few test instances are bad (well) represented at
Ni. In any case, all the classifier outputs obtained at Ni will receive the same weight
when the pNW criterion is used. This is an unsuitable consequence of taking weights
based on the global distance di such as pNW does. On the contrary, the pIW criterion
checks the point-to-point distribution matching, thus being sensitive to local deviations.
Note that if a feature vector xj is badly represented at a specific node, then it must be
well represented at another node because P is a partition of the feature domain. In
sum, the pIW criterion is expected to outperform the pNW one, and the improvement
would be more substantial with unbalanced nodes. In our experimental evaluation in
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Section 6.3.3, both weighting criteria are examined and compared with a standard
approach without weighting the single belief values (an unweighted approach denoted
by UW). A scheme of the three distributed approaches is shown in Figure 6.2.

Fig. 6.2 Distributed approaches schemes.

Remark 2. In a non-distributed classification context with different distributions for
the training and test sets (sample selection bias problem), Huang et al. [61] proposed
to use the unlabeled data to reweight the training data in such a way that the means of
the training and test features in a reproducing kernel Hilbert space are close. Although
in a different context, this is a similar idea to the pIW approach and it is worth
emphasizing the main differences. In our work, the reweighting process is applied to
the test data because the nodes cannot be retrained in our distributed scenario. On
the other hand, a key assumption in [61] is that the conditional probability of C|x is
the same for the training and test populations so that the bias is only exhibited by the
feature distributions. In our framework, stationarity is assumed and therefore the bias
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can only be present between nodes. Nevertheless, it is not necessary to require that
the conditional probabilities of C|x remain unchanged across the nodes, which would
be a very restrictive constraint.

Remark 3. As already mentioned, Kittler et al.[73] pointed out some nice properties of
the sum rule to combine the single classifier outputs. Beyond these properties, equation
(6.2) provides theoretical support to use this criterion since the posteriori probabilities
are expressed as a weighted sum of the single classifier outputs within each node.

Remark 4. The proposed learning model is not restricted to the use of a particular
classification model at each node. The unique requirement is that the classifier outcome
consists of a vector of belief values or posteriori probabilities of the classes for a given
feature vector. Thus, artificial neural network, logistic regression, support vector
machines, Bayesian classifiers, and Random Forest could be used among others.

6.3 Experiments

An empirical study addressed to motivate and evaluate the performance of the proposed
learning models has been carried out. A description of the experimental procedure and
an overview and discussion of the main results are presented in this section.

6.3.1 Experimental setup

The main characteristics of the experiments are detailed below.

Classifiers. To study the interaction between the distributed learning models and the
classifier type, five classification algorithms are considered, namely Random Forest (RF),
a support vector machine with RBF Kernel (SVM), the Fisher’s linear discriminant
(LDA), the classifier based on multinomial logistic regression (Mult), and the XGBoost
(eXtreme Gradient Boosting) algorithm (XGB), a fast implementation of the gradient
boosting using decision trees. All of them were executed by using different R packages,
randomForest [78] for RF, e1071 [93] for SVM, xgboost[29] for XGB, and MASS and
nnet [138] for LDA and Mult, respectively. The default parameters are taken in all
cases since our concern is not to determine the most efficient inputs but comparing the
models under homogeneous conditions. All classifiers provide the options to output
belief values in addition to classes

Data sets. Seven data sets are used to analyze the coupling between the proposed
method and the underlying classification problem. Five databases (Spambase, KDD
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Cup 99, Connect-4, Covertype, and Higgs) contain real data and are available from
the UCI Machine Learning Repository [79]. The other two databases (Simul-C2 and
Simul-C8) consist of synthetic data generated from simulated classification scenarios.
The main characteristics of these data sets are summarized in Table 6.1, including the
total number of instances, the dimension d of the feature space, and the number m of
classes forming C.

Table 6.1 Data sets characteristics

Dataset # Instances # Features # Classes
Spambase 4,601 57 2
KDD Cup 99 825,050 41 5
Connect-4 67,557 42 3
Covertype 581,012 54 7
Higgs 100,000 28 2
Simul-C2 5 2
Simul-C8 3 8

To get a quick understanding on the nature of these data sets, a very brief description
of each one is provided below.

• Spambase. Data set based on the properties of diverse “spam” concept. It
includes 4,601 instances corresponding to e-mail messages, 1,813 of which are
spam. From the original e-mail messages, 57 attributes were computed, most of
them indicating whether a particular word or character frequently occurred in
the e-mail.

• KDD Cup 99. Benchmark data set in the intrusion detection field, which
contains 5 million instances featured by 41 attributes and 39 types of distinct
attacks, grouped into four classes of attack (DoS, Probe, R2L and U2R) and
one class of non-attack (normal pattern) [1]. In our study, a smaller subset with
494,021 instances is used as training sample (10% of the original training set).
For the test set, we used a subset of 331,029 patterns including new attacks that
are not present in the training set. Around 20% of the two datasets are normal
patterns (no attacks). The percentages of class labels for the training and test
sets are shown in Table 6.2. As can be seen, the percentage of attacks in both
data sets is very high, overcoming 80%, where most of the attacks belong to type
DoS. Furthermore, it is a very unbalanced data set, with some classes (such as
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U2R and R2L) formed by very few instances. Due to these characteristics, KDD
Cup 99 becomes a real challenge for the classification task.

Table 6.2 Distribution (in percentage) of normal activities and kinds of attacks in KDD
Cup 99 data set.

Type Training set Test set
Normal 19.69 19.48
DoS 79.24 73.90
Probe 0.83 1.34
R2L 0.23 5.21
U2R 0.01 0.07

• Connect-4. This data set contains all legal 8-ply positions in the game of
Connect-4 in which neither player has won yet, and where the next move is
not forced. The dataset contains 67,557 instances represented by 42 attributes
indicating whether a particular board position is occupied by the first player, the
second player or it is black. The outcome class indicates if the attributes lead to
a win, loss, or draw for the first player.

• Covertype. It contains the forest cover type for 30 x 30 meter cells obtained
from US Forest Service (USFS) Region 2 Resource Information System (RIS).
The database has 581,012 instances. The feature vectors are measurements of
54 cartographic variables used to predict the forest cover type (seven types are
available).

• Higgs. The Higgs boson data set was generated using Monte Carlo simulations
of physics events. The feature vectors include: 21 attributes with kinematic
properties measured by the particle detectors in the accelerator, and 7 attributes
with high-level features derived by physicists from the first 21 attributes. The
target is to determine whether or not an event corresponds to the Higgs boson.
In our study, a subset of 100,000 instances of the original database is considered.

• Simul-C2. Consider a square grid of size 3 in dimension 5 and, centered at each
grid node, a 5-dimensional Gaussian distribution with uncorrelated components
of equal variance 0.052. Each Gaussian is assigned to one of m = 2 possible
classes at random. In this scenario, an identical number of data are drawn out
from each Gaussian to form our first synthetic data set. Figure 6.3 provides an
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intuition on the structure of Simul-C2 in dimension 2. This scenario lets us have
an exact knowledge of the complexity of the classification task in order to derive
some insight into the results.

1 2 3

111

222

333

Fig. 6.3 Plot of a simulated trial from a 2-dimensional version of Simul-C2 scenario.
Color identifies the class.

• Simul-C8. Synthetic data set generated in a similar way as Simul-C2, but now
with 3-dimensional Gaussian distributions randomly assigned to m= 8 classes.

Sample size. At each experimental trial, the sizes of both the training sample Z
and the test sample T are fixed to 500, i.e. n= t= 500. The training sample is then
equidistributed between the nodes so that ni = 500/p, for all i= 1, . . . ,p.

Balancedness. Since no constraints on the fragmentation scheme are imposed, it is
interesting to check the behavior of our learning model with balanced and unbalanced
nodes, i.e. nodes exhibiting similar or different distributions, respectively. The balanced
scenarios are recreated by allocating instances to each node at random and without
replacement while maintaining the class proportions. The unbalanced scenarios are set
up as follows. First, one node with the same class proportions as the entire training set
is formed. For the rest of nodes, the class proportions are perturbed by multiplying
each one of them by a random number uniformly generated between 0.3 and 1.7, and
then normalizing. In consecutive nodes, the overall class proportions are updated
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on the basis of the number of remaining training instances, and sampling without
replacement is always carried out.

Partition size. To assess the classification accuracy as data fragmentation increases,
the training set was randomly split into 2, 4, 7, 11 and 15 nodes. The unique
randomization restrictions are imposed by the class proportions at each node, which
depend on whether a balanced or unbalanced scenario is considered.

Decision Rules. The belief values generated by the classifiers at each node are
combined according to the five decision rules enumerated in Section 6.2.6, namely the
Product (PROD), Sum (SUM), Max (MAX), Min (MIN) and Majority (MAJ) rules.

6.3.2 Some motivating experiments

By construction, the proposed learning models take into account the distances between
the probability distributions of the features in the population and within each node.
The heuristic is that, in general, smaller distributional distances between training and
test sets tend to produce better classification results. Indeed, the key issue is how
these distances should be jointly used to attain this improvement. Beyond this issue, a
pair of motivating experiments designed to provide empirical support for this heuristic
have been carried out. The first experiment consisted in checking for the existence
of negative correlation between distributional distance and classification accuracy. In
the second one, a distributed scenario is considered, and then the proportion of times
that the node with the smallest distributional distance produces the best classification
accuracy is measured.

For these specific experiments, the Spambase data set is used and the within-
node distributions are generated according to the unbalancing approach described
in Section 6.3.1. The number of nodes is set to p = 5 and a training sample of size
ni = 200 is used at each node to train a Random Forest classifier.

Considering test samples with the same size, t= 200, the first experiment consisted
in measuring the distributional distances between training and test samples using
the energy distance di introduced in Section 6.2.4, and simultaneously computing the
proportion of test data correctly classified at each node. This process was performed
for a large number of trials, and the outputs are plotted in Figure 6.4. A clear negative
correlation between distributional distance and classification accuracy is observed, thus
supporting the argument that less distant nodes tend to produce better classification
accuracy.
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Fig. 6.4 Correlation between a distributional distance (the energy statistic) and classifier
accuracy.

In the second experiment, the test sample size is not constant at all trials, taking
values moving from 200 to 3200. Notice that the distributional distance becomes more
accurately approximated as test sample size increases, and therefore the classification
accuracy should be also higher. In a five node distributed scenario, the expected
proportion of times that a node picked at random produces the best classifier is 0.2.
Table 6.3 shows the proportion of times that the node with the smallest distributional
distance produced the highest classification accuracy in our experiment, denoted by
pmin(di). It is observed that the node with the smallest distributional distance becomes
the best one in an increasing proportion with the test sample size, always above the
baseline proportion 0.2, until it is approximately doubled.

Table 6.3 Proportion of times that the smallest distributional distance leads to the
best classifier node (pmin(di)) against the test sample size (t).

t 200 1200 2200 3200
pmin(di) 0.28 0.35 0.37 0.37

In sum, these first experiments empirically illustrate the interest in distributed
learning models regarding distributional distances between training nodes and test
samples. We propose models taking into consideration this principle, but in addition,
they take advantage of combining efficiently the classifiers produced by each node
instead of simply selecting one of them.
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6.3.3 Results

The accuracy of the two weighting criteria (pNW and pIW) described in Section 6.2.5
was checked on all the combinations of parameters involved in our experimental
setup, namely classifiers, data sets, partition sizes, decision rules, and balanced and
unbalanced scenarios (Section 6.3.1). For comparison purposes, accuracy results based
on a standard unweighted distributed model (UW) and a non-distributed model (ND)
were also obtained. The ND model uses the entire data set Z to train a unique classifier.
Hence, ND is expected to achieve the highest classification accuracy, and its results
can be taken as an upper reference level. Besides the classification accuracy, values of
precision and recall were also evaluated. Since very similar conclusions are obtained,
for the sake of clarity in the presentation, the results based on precision and recall are
provided in the Appendix B.

For each combination of parameters, the experiment was replicated N = 300 times
and average classification accuracy values were obtained for each learning model. In
order to examine how the learning models interact with the different parameters, the
average results were aggregated in different ways. For example, Table 6.4 shows the
average accuracy attained with each classifier. It is observed that the weighted models
interact better with SVM, LDA and Mult than with Random Forest and XGBoost in
the unbalanced setting (see Figure 6.5). In particular, the most significant improvement
rates due to the pIW model in the unbalanced setup are observed for Mult and SVM.
In the latter case, this may be connected with the fact that SVM with Gaussian kernel
and energy distance are based on Euclidean inter-point distances.

The average results aggregated by decision rule are reported in Table 6.5 and
graphically represented using bar charts in Figure 6.6. Regardless of whether the
partitioning is balanced or not, the SUM rule produces the best average results with
the three distributed models. This result is consistent with the experimental findings
in Kittler et al. [72] and with our theoretical arguments in Section 6.2 (Remark 3 in
Section 6.2.7).

Table 6.5 and Figure 6.6 also allow to compare the average accuracy attained with
the different models. Except for the MIN and PROD rules, the highest accuracy
values are obtained with the per-Instance Weighting. Nevertheless, the MIN rule
fairly produces the worst results and no differences between weighting approaches
are observed with the PROD rule. Therefore, it is concluded that the per-Instance
Weighting approach fairly leads to the best results.

Overall, pNW performs worse than UW on average. This behavior is somewhat sur-
prising in the light of the results showed in the motivating experiments of Section 6.3.2.
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Table 6.4 Average classification accuracy values conditional on classifier type. Rows
under the last sub-table (MEAN) show the averages over all trials, including balanced
and unbalanced scenarios. The lack of results for ND in the first two sub-tables is
due to the ND model assumes non-distributed data, i.e. no partitions (balanced or
unbalanced) are considered.

Classifier
Model RF SVM XGB LDA Mult
BALANCED
pNW 0.7087 0.5852 0.6923 0.5768 0.6084
pIW 0.7173 0.5908 0.7016 0.5826 0.6168
UW 0.7131 0.5881 0.6964 0.5769 0.6066
UNBALANCED
pNW 0.6935 0.5804 0.6843 0.5727 0.6035
pIW 0.7059 0.5921 0.6977 0.5863 0.6186
UW 0.6996 0.5784 0.6909 0.5749 0.6022
MEAN
pNW 0.7011 0.5828 0.6883 0.5747 0.6060
pIW 0.7116 0.5915 0.6997 0.5845 0.6177
UW 0.7063 0.5832 0.6937 0.5759 0.6044
ND 0.7566 0.6719 0.7398 0.6315 0.6423

We guess that this may be caused by the joint effect of two circumstances, namely
the global character of the per-Node weights (see Remark 1 in Section 6.2.7) and the
noise increase generated by the variability of these weights (Figure 6.4 illustrates this
variability).

The average accuracies aggregated by partition size are shown in Figure 6.7. Signif-
icant degradation of accuracy with the number of nodes is evident for all combinations
of decision rule and learning model in balanced and unbalanced scenarios. For all
the models, the MIN rule degrades faster with fragmentation, although it is very
competitive with UW and pNW for a small number of nodes. As the best-performing
pIW approach is considered, the MIN rule is substantial and uniformly the worst
decision rule. SUM, MAJ and MAX exhibit similar performance, with SUM having
a slight edge. The good behavior of pIW deserves particular attention. Note that,
except for the MIN rule, the pIW approach always produces the highest percentages of
correct classification for all the levels of fragmentation regardless of the used rule.
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Fig. 6.5 Accuracy-based interaction plot to check the joint effect of classifier, learning
model and scenario.

Table 6.5 Average classification accuracy values conditional on the decision rules.

Decision rule
Model MAJ MAX MIN PROD SUM Mean
BALANCED
pNW 0.6442 0.6252 0.6184 0.6347 0.6491 0.6343
pIW 0.6582 0.6461 0.6066 0.6345 0.6639 0.6418
UW 0.6456 0.6283 0.6205 0.6347 0.6519 0.6362
Mean 0.6493 0.6332 0.6152 0.6346 0.6549 0.6374
UNBALANCED
pNW 0.6407 0.6191 0.5977 0.6276 0.6493 0.6269
pIW 0.6652 0.6513 0.5823 0.6275 0.6743 0.6401
UW 0.6454 0.6189 0.6008 0.6277 0.6531 0.6292
Mean 0.6504 0.6297 0.5936 0.6276 0.6589 0.6321
ND — — — — — 0.6884

All our results allow to conclude that the favorable effects of the weighting ap-
proaches are more important in unbalanced scenarios. In particular, the amount
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Fig. 6.6 Average classification accuracy values aggregated by decision rules. The
horizontal red line indicates the average accuracy for the ND model.

of accuracy improvement produced by the per-Instance Weighting model is clearly
stronger when unbalancing.

Figure 6.8 shows separately the average results for each data set and provides
additional insight into the behavior of the proposed models. Concerning the KDD Cup
99 data set, it is noticeable the good performance showed by the per-Node Weighting
approach in unbalanced scenarios. In fact, pNW and pIW behave very similarly and
fairly outperform the Unweighted model. Since KKD Cup 99 exhibits concept drift,
this result illustrates that our distributed approaches work well for various types
of differences in distribution between nodes and population, no matter how these
differences occur. In other words, the effectiveness of our proposal is not restricted to
the case of distributional differences caused by a non-uniform partition of the data.

The pIW model reports lower accuracy with Spambase, while it performs slightly
better than the other distributed models in Connect-4, Covertype and Higgs, the most
complex scenarios in terms of classification. In these cases, the non-distributed model
only reaches an accuracy around 0.6, and the distributed approaches are reasonably
close to this proportion for all partition sizes. An atypical behavior is observed for
Connect-4 since the classification accuracy does not monotonically decrease with the
number of partitions. So, in this particular case, it looks more likely that the local
scenarios generated by splitting the data lead to an easier classification task.
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Fig. 6.7 Average accuracy as function of the partition size. The horizontal red lines
indicate the average accuracy for the ND model.

In addition to knowing the exact underlying distributions, the analysis of simulated
data is free of limitations to generate nodes maintaining the required regularity and
provides insight into the level of difficulty. The results for our simulated data sets,
Simul-C2 and Simul-C8, are particularly interesting. In both cases, pIW clearly draws
the best results, and the differences are more substantial in the unbalanced setting. In
the scenario with only two classes, degradation with the number of nodes is almost
prevented in the balanced setting, and the results end up surpassing the non-distributed
approach in Simul-C2. In the non-distributed approach, a linear classifier will have
bad performance in this scenario, since the classification frontier is non linear. When
distributed, different local models work better. In Simul-C8, degradation of pIW with
the fragmentation is more marked, but still less severe than in the case of pNW and
UW.
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Fig. 6.8 Average accuracy as function of the partition size for each data set. The
horizontal blue lines indicate the average accuracy for the ND model.

6.4 Computational cost

In addition to the cost of training each classifier, our approach requires calculating
the distributional distance between each node and the test set, and the pIW model
requires each node to calculate the weights that minimize this distance.

The cost of training the classifiers depends on the chosen method, but the improve-
ment is equivalent to reducing the training sample by the number of nodes, e.g. if a given
classifier trains in O(n3) then the complexity will be reduced to O(n3/p3). Similarly,
calculating the energy statistic has computational complexity O((n/p)2 + t2 +(n/p)t),
given n the training size, p the number of nodes that the training set is fragmented into
and t the test size. Even though it can be considered a constant factor, we introduce
the number of nodes p to highlight the strong computational benefits of this distributed
approach.

Finding the individual weights for the pIW approach has the complexity of solving
the related quadratic programming problem, and is the usually dominating complexity:
Experimentally, this quadratic programming complexity is between O(t2) and O(t3).
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The influence of the training test size on the quadratic programming complexity is
linear: O(n/p).

Assuming the underlying classifiers test in constant time, the complexity of clas-
sifying a given test set goes from O(t) to a worst case of O(t3 + n) for the pIW
version.

6.5 Conclusions and future work

In a distributed classification framework, we have proposed two weighted approaches
that combine local classifiers trained at each node to improve overall classification
accuracy. The two approaches assume the availability of a test set and are based on
the distance between the distributions of the feature vectors of each node and the test
set. The first approach, per-Node Weighting, assigns the same weight at each node to
all test instances, while the per-Instance Weighting approach achieves finer granularity
by allowing distinct weights for each test instance at each node.

Under the general assumption that both the test set and the entire training set are
i.i.d. samples from the population in study, we have motivated the proposed weighting
criteria and provided theoretical support for the optimality of combining the classifier
outcomes using a weighted sum. Our framework makes no assumptions about the
structure or distribution of the data across the nodes. In fact, by construction, our
classification models are particularly useful to deal with heterogeneity of data among
the nodes, which usually happens in real-world distributed data sets. In addition, our
technique requires no communication between nodes, preserving data privacy, allowing
combination of different classifier models and maximizing computational efficiency.

Our experimental study involving synthetic and real data sets has illustrated the
good performance of the proposed models compared to standard classifier combination
rules. Overall, the per-Instance Weighting approach achieves the best results. As
expected, the improvement is more substantial when treating with unbalanced nodes,
under all tested classifiers an partition sizes. Our experiments also illustrate that
the sum rule outperforms other alternative decision rules. The per-Node Weighting
approach does not achieve improvement over the standard approaches but on the most
extreme cases when the individual nodes training sets differ the most.

There are several topics related to our approach to be considered further. It is
interesting to check by the usefulness of our approach to select one or a small subset of
nodes to perform the classification and evaluating whether a significant degradation in
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accuracy is observed. Other future research direction involves the study of a linear-time
approximation of the pIW approach.





Chapter 7

Conclusions

We have presented tools for the statistical analysis of complex objects, focusing on time
series and shapes. We have identified the use of distances as a useful method of analysis
when dealing with these kinds of data. A distance-based method for multivariate
two-sample homogeneity test has been introduced in Chapter 2. This method works by
comparing the distributions of pairwise distances between observations in the samples,
transforming a multivariate problem into a univariate one. The proposed test compares
favorably in the range of dissimilarities that can be used with it, both in the theoretical
and empirical sense. In the theoretical domain, our method retains its consistency
under very few restrictive assumptions of the kinds of distances, inherits this property
from a celebrated result. The restrictions on the distances are virtually none when data
are discrete; when data are continuous, restrictions are stronger. Besides theoretical
consistency, the flexibility in the range of distances also appears in the empirical sense,
i.e. in the range of alternatives (e.g. scale or location differences) in which the test
achieves good statistical power. If a test has theoretical guarantees but does not
discriminate well under a realistic sample size because it is too focused in one kind of
alternative, its usefulnes will be limited. The proposed test achieves good performance
under many alternatives, at the cost of not being the best in each scenario. In fact,
it is the only test in our study that gets good power under both location and scale
alternatives, which is a problem that has been targeted in recent works in the area.
The empirical performance claims are supported by an extensive empirical study, with
scenarios that have been already proposed in other tests, not crafted for this new
proposal.

In Chapter 3, we apply this test to the domain of time series. We highlight
two conclusions: 1) The statistical power of several distance-based tests is greatly
improved when proper distances in the time series domain are introduced. We show
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that dissimilarities originally for clustering and classification of time series translate
their good performance to the two-sample problem. The difference between using a
traditional standard multivariate test and a distance for time series can go beyond a
merely quantitative improvement, we have shown that statistical power can go from
zero discriminatory power to full discriminatory power with the proper distance. This
means a qualitative change, some scenarios can now be analyzed when previously it
was unfeasible to do so. 2) Among the tests we study, the one we proposed in Chapter
2 shows better empirical results most scenarios. This result highlights the importance
of the flexibility of a testing procedure, in the sense of sensitivity against different
kinds of alternatives. It is difficul to predict in which way a dissimilarity that works
well may differenciate the two samples. We explore several distances for time series
and observe this effect. These results also strengthen the claims of Chapter 2 with new
empirical evidence.

Two sample test statistics are also useful as dissimilarities between sets of multivari-
ate observations or empirical distribution functions. We leverage these tools to define a
distance for time series in Chapter 4. We unify two very good performing approaches in
the literature of time series classification and clustering, and view them both as meth-
ods which compare autoregressive distribution functions of the time series. From this
view point, we apply the two-sample statistics to compare time series, removing some
limitations and assumptions that were being made in the methods we are using as base.
The resulting distance achieves best average results compared to other distances in the
literature in the standard database of time series classification, which features domains
as electocardiograms, spectrometry, motion sensors, electricity demands, etc. It also
achieves good perfomance under a simulation scenario of autoregressive stochastic time
series. The proposed distance compares time series in a very parsimonous way, its only
assumption is the existence of some autoregressive structure in the series, and this
structure is captured in a nonparametric way, without assuming linearity, a degree of
smoothness, etc. The relevant time lags in the autoregressive structure can be chosen
by the practictioner when they have some meaning it the context of application, and
even results with different lags can be compared, without forcing the practitioner to
make additional assumptions that other distances introduce by construction. A data
driven scheme for selecting the relevant time lags is also provided in the chapter. This
makes the distance parameter-free, and coupled with its light assumptions, may render
it superior to other more assumption-heavy distances at larger sample sizes.

We apply the same concept of distance between distributions in the distributed
classification setting in Chapter 6. We study the scenario of a large dataset that has been
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partitioned, and each of the partitions must be processed independently from the others,
data cannot be shared or merged. This scenario occurs when parallelism is needed but
communication between computing nodes is unfeasible, or for privacy reasons, such as
hospitals not being allowed to share information about patients but wanting to the
best common statistical model of a problem. We highlight two main contributions
from this chapter. 1) We formalized the distributed setting from a probabilistic
point of view, establishing a theoretical framework for studying the problem. This
allowed us to motivate the approach we presented, and gave and explanation for the
good performance of a family of ensemble methods based on the sum of the output
probabilities of the individual classifiers. The theoretical framework can also serve as
base or starting point for further studies. We are using it to motivate a new method
in a similar setting, metioned in Section 7.2. 2) We proposed and studied several
methods for improving classification accuracy in the distributed setting. By weighting
the contributions of each classifier using a distance between their train data and the
test data distributions, the error is reduced. The weights of each of the individual
classifiers are generated by the minimization of the distance between distributions, so
each classifier has a different weight per obervation, and only weights and target class
probabilities are shared among the different processing nodes. Distributed classification
under our assumptions is still an open problem, our method improved the accuracy
results of the reference approach.

We propose FFORMA, a method for times series forecasting in Chapter 5. We
assume that a large database of time series is available for training, generated from the
same process that the series we are going to forecast. We pose the problem in a similar
way as a time series classification problem. Initially, we consider a pool of time series
forecasting algorithms and try to predict which method will be the best for a time
series. We relax the assumptions common in classification and consider minimizing
the forecasting error of the chosen method, instead of minimizing the traditional
classification error. FFORMA produces weights and the individual forecasting methods
are combined by a weighting average. The input to the model are features extracted
from the series. FFORMA is general in the sense on the pool of methods and set of
features, forecasting error measures, etc. can be changed to suit any specific situation.
We applied the approach to the M4 Time Series Forecasting Competition, the main
competition in forecasting, achieving second best results in point forecasting and
prediction interval accuracy.

As part of this thesis, several contributions to free open source software were made:
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• TSclust: A package for time series clustering by the author of this thesis, added
new procedures and bug fixes.

• M4comp2018: the database of time series used for the M4 competition as an
easily accesible R package for the research community.

• M4metalearning: The implementation of the FFORMA method for time series
forecasting.

• tsfeatures: a package for extracting time series features, contributed with the
implementation of two features.

• xgboost: tree-based classifier, we contributed introducing custom objective func-
tions for multiclass classification.

7.1 Contributions by topic

• Two Sample Homogeneity Tests:

– New distance-based test, general against multiple alternatives.

– Used two-sample statistics as a measures of divergence between distributions
to time series and distributed classification.

• Time Series:

– Two sample test applied to time series.

– A new distance between TS based on lagged distributions

– A forecasting method based on meta learning.

• Big Data:

– Distributed classification: We propose a classification scheme able to tackle
large dataset that is partitioned, when processing the whole dataset would
be computationally unfeasible.

– A time series forecasting method based on meta learning. We effectively
exploit the availability of a large dataset of time series to improve the
forecasing of individual time series.

• Clustering:
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– A distance between time series for clustering.

• Classification:

– A distance between time series for classification.

– A method for distributed classification.

7.2 Future work

In addition to the future work mentioned in each chapter, there are some lines of
research we would like to highlight. The first is a data-driven way for the lag selection
in the distance proposed in Chapter 4 that is not greedy, considering all possible lags
simultaneously through multiple kernel learning. The second is the study of different
measures of divergence between distributions for the methods in Chapters 4 and 6.
Also from the starting point of the theoretical framework of distributed learning of
Chapter 6, we intend to explore a less restrictive scenario when data is not previously
distributed among nodes, but can be partitioned. When a large quantity of unlabeled
data is available at the moment of partitioning, this information and can be used to
influence the parittion process (i.e. how the data is divided among the computing
nodes) with the objective of improving the accuracy of the joint classifier. Regarding
our forecasting method FFORMA, we would like to explore a model that directly
minimizes the error of a linear combination of single methods, using techniques different
from gradient tree boosting.
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Appendix A

Proofs of theoretical results in
Chapter 2

The proofs of Lemma 1 and Theorem 1 are provided in this Appendix.

Lemma 1. Let X and Y be independent d-dimensional random vectors with continuous
distribution functions FX and FY , respectively. Assume that the corresponding density
functions fX and fY satisfy

(A1)
∫
Rd f2

X (u) du<∞ and
∫
Rd f2

Y (v) dv<∞.

(A2) The function m(v) =
∫
Rd fY (u +v)fX (u) d(u) has a Lebesgue point in 0.

Let D : Rd×Rd→ R be a nonnegative continuous function such that

(A3) D (u,v) = 0 if and only if u = v.

(A4) D (au +w,av +w) = |a|D (u,v), for all a ∈ R and w ∈ Rd.

Then, if X1,X2,X3 are iid random vectors with distribution FX , Y1,Y2,Y3 are iid
random vectors with distribution FY , and the X’s and Y’s are independent, it holds
that

FX = FY if and only if FX1Y1 = 1
2 (FX2X3 +FY2Y3) ,

where FX1Y1, FX2X3 and FY2Y3 denote the distribution functions of the univariate
random variables D (X1,Y1), D (X2,X3), and D (Y2,Y3), respectively.

Proof. Under assumptions (A1)-(A4), Theorem 2 in [85] establishes that

FX = FY ⇔ FX1Y1 = FX2X3 = FY2Y3 , (A.1)
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which directly leads to state that FX = FY ⇒ FX1Y1 = 1
2 (FX2X3 +FY2Y3). Thus we

focus on proving the converse.
According to Lemma 1 in [85], under (A1)-(A4), it holds that

lim
t→0

P (D (X,Y)< t)
td

= α
∫
Rd
fX (u)fY (u) d(u) , (A.2)

where α =
∫
{D(v,0)<1} d(v).

From FX1Y1 = 1
2 (FX2X3 +FY2Y3) follows that

lim
t→0

P (D (X1,Y1)< t)
td

=

= 1
2

(
lim
t→0

P (D (X2,X3)< t)
td

+ lim
t→0

P (D (Y2,Y3)< t)
td

)
,

for any t≥ 0. Now, (A.2) leads to

α
∫
f2

X (u) du +α
∫
f2

Y (u) du = 2α
∫
fX (u)fY (u) du

Therefore, since 0< α <∞, it follows that∫
(fX (u)−fY (u))2 du = 0.

Thus concluding that fX and fY are equal almost everywhere.

As mentioned in Chapter 2, conditions (A1)-(A4) are mild regularity conditions on
the underlying probability densities fX and fY and the distance D(·, ·), which allow us
to state that this lemma holds for a wider class of situations. most complex requirement
concerns to the function

Theorem 1 establishes the consistency under the null hypothesis of the proposed
statistic based on the samples of interpoint distances. The key point in the proof
of Theorem 1 is that the centered empirical cumulative distribution function of the
interpoint distances is asymptotically distributed as a Gaussian process [118]. It is a well
known result that if Z1, . . . ,Zr are i.i.d. observations from a variable with distribution
F , then the empirical process r1/2

(
F̂r(u)−F (u)

)
can be almost surely represented

by a Gaussian process of zero mean and covariance function given by C(u,v) =
F (u∧v)−F (u)F (v), with u∧v denoting the minimum of u and v. Nevertheless, the
central limit theorem established by Silverman [118] focuses on exchangeable dissociated
random variables. Consider an m-tuple J of m ordered natural numbers (j1, . . . , jm)
and denote by P(m) a collection of m-tuples. A set of random variables {ZJ ,J ∈P(m)}
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is said to be dissociated if {Zk,k ∈ I ⊂ P(m)} is independent of {Zk′ ,k′ ∈H⊂ P(m)}
whenever I ∩H = ∅. In addition, a dissociated set of variables {ZJ ,J ∈ P(m)} is said
to be exchangeably dissociated set of variables if and only if for any finite subsequences
of m-tuples, J = (j1, . . . , jm), . . . ,K = (k1, . . . ,km), the random vectors (ZJ , . . . ,ZK) and(
Zπ(J), . . . ,Zπ(K)

)
have the same distribution for any permutation π. In particular, a

set of distances D (Zi,Zj) between pairs of i.i.d. observations are a specific example
of a family of exchangeable dissociated variables, and for this reason the central limit
theorem proved by Silverman [118] applies in our case.

Theorem 1. Let X1, . . . ,Xn and Y1, . . . ,Ym be independent random samples of d-
dimensional random vectors X and Y with respective continuous distribution functions
FX and FY . Let D : Rd×Rd→ R be a symmetric function having bounded support
[0,DMax]. If conditions (A1)-(A4) in Lemma 1 hold and H0: FX = FY (= F ) is true,
then, as min(n,m)→∞, the statistic Tn,m converges weakly to the distribution of

T =
∫

(GW(u)−GB(u))2 dFD(u), (2.5)

where FD denotes the common distribution of the interpoint distances within (FW) and
between samples (FB), and GW and GB are Gaussian processes with zero mean and
covariance function CD(·, ·) given by

CD(u,v) = 4[P (D(Zi,Zj)≤ u,D(Zs,Zt)≤ v)−FD(u)FD(v)] ,

where Zi, Zj, Zs and Zt are distributed according to F , for pairs of indexes (i, j) and
(s, t) having only one element in common.

Proof. According to the definition of the test statistic in (2.3), we have

Tn,m =
∫
S2

n,m(u)dĤN+M (u), (A.3)

with
Sn,m(u) =

(
NM

N +M

)1/2 (
F̂N,W(u)− F̂M,B(u)

)
, for u ∈ R. (A.4)

Under the null hypothesis H0, Lemma 1 leads to FW = FB (= FD). Thus, by adding
and subtracting FD(u) in the term in brackets in (A.4), we have

Sn,m(u) =
(

M

N +M

)1/2
SW

n,m(u)−
(

N

N +M

)1/2
SB

n,m(u) (A.5)
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where SW
n,m(u) =N1/2

(
F̂N,W(u)−FD(u)

)
and SB

n,m(u) =M1/2
(
F̂M,B(u)−FD(u)

)
, re-

spectively.
The family of indicator functions F = {I (D(Zi,Zj)≤ u) ,u ∈ [0,DMax]⊂ R} is a

Vapnik-C̆ervonenkis set of measurable symmetric functions. Then, following [118], it
can be concluded that the empirical processes SW

n,m(u) and SB
n,m(u) converge to the

respective zero mean Gaussian processes GW and GB, with covariance functions CW(·, ·)
and CB(·, ·) given by

CW(u,v) = 4[P (ωij ≤ u,ωst ≤ v)−FD(u)FD(v)] ,

for arbitrary pairs of indexes (i, j) and (s, t) having only one element in common, and
CB(u,v) analogously defined for the variables bij in B.

This way, Sn,m(u) converges in distribution to GW(u)−GB(u), and then the con-
vergence established in (2.5) follows from the Lemma of page 424 in Kiefer [71].

The requirement of compact support [0,DMax] for the distribution FD ensures that
the conditions of Theorem B in [118] to establish the weak convergence to a Gaussian
process in the Skorohod topology are satisfied on the metric space D[0,DMax] of right-
continuous functions and having limits to the left. In the case of non-compact support
for FD, Silverman claims that a suitable metric space depending on the distance must
be chosen to ensure measurability and attain the convergence in a weaker topology
than the uniform one (see comments on page 819 in [118]).



Appendix B

Additional results for distributed
classification

The same numerical analysis performed in Section 6.3.3 with the accuracy values has
been carried out for recall and precision values, two alternative performance measures.
The attained results are shown in this Appendix. In the case of binary classification,
recall measures the effectiveness of a classifier to identify correctly classified positive
instances (sensitivity), while precision evaluates the class agreement of the instance
labels with the positive labels given by the classifier. One possible way to extend
these concepts to the multi-class classification task is to obtain the averages of these
measures calculated over all the classes {C1, . . . ,Cm}. This generalization approach is
known by macro-averaging [122]. This way, we have

Precision = 1
m

m∑
i=1

tpi

tpi +fpi
,

Recall = 1
m

m∑
i=1

tpi

tpi +fni
,

with m the number of classes in the dataset, and tpi denoting the number of true
positive for Ci, and fpi and fni the false positive and false negative counts, respectively.

The results attained for these alternative criteria are displayed below, using the
same scheme of tables and figures as in Section 6.3.3 for accuracy. It can be seen that
very similar results are also obtained, thus supporting the main conclusions of our
work.
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Table B.1 Average recall values conditional on classifier type.

Classifier
Model RF SVM XGB LDA Mult
BALANCED
pNW 0.7154 0.5912 0.6991 0.5788 0.6128
pIW 0.7240 0.5968 0.7079 0.5846 0.6211
UW 0.7197 0.5935 0.7031 0.5788 0.6109
UNBALANCED
pNW 0.7029 0.5890 0.6926 0.5777 0.6093
pIW 0.7154 0.6008 0.7063 0.5915 0.6247
UW 0.7094 0.5869 0.6998 0.5797 0.6078
MEAN
pNW 0.7091 0.5901 0.6959 0.5783 0.6110
pIW 0.7197 0.5988 0.7071 0.5880 0.6229
UW 0.7146 0.5902 0.7015 0.5792 0.6094
ND 0.7676 0.6794 0.7477 0.6418 0.6515

Model
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al
l
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0.70

UW pIW

RF

UW pIW

SVM

UW pIW

XGB

UW pIW
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UW pIW
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BALANCED UNBALANCED

Fig. B.1 Recall-based interaction plot to check the joint effect of classifier, learning
model and scenario.
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Table B.2 Average recall values conditional on the decision rules.

Decision rule
Model MAJ MAX MIN PROD SUM Mean
BALANCED
pNW 0.6505 0.6291 0.6237 0.6401 0.6539 0.6395
pIW 0.6633 0.6506 0.6119 0.6399 0.6687 0.6469
UW 0.6507 0.6323 0.6262 0.6402 0.6567 0.6412
Mean 0.6548 0.6374 0.6206 0.6401 0.6598 0.6425
UNBALANCED
pNW 0.6493 0.6245 0.6060 0.6353 0.6564 0.6343
pIW 0.6733 0.6582 0.5895 0.6351 0.6826 0.6478
UW 0.6527 0.6257 0.6086 0.6353 0.6613 0.6367
Mean 0.6584 0.6362 0.6014 0.6353 0.6668 0.6396
ND — — — — — 0.6976

Decision Rule

R
ec

al
l

0.60

0.62

0.64

0.66

0.68

MAJ MAX MIN PROD SUM

BALANCED

MAJ MAX MIN PROD SUM

UNBALANCED

pIW pNW UW

Fig. B.2 Average recall values aggregated by decision rules. The horizontal red line
indicates the average recall for the ND model.
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Fig. B.3 Average recall as function of the partition size. The horizontal red lines
indicate the average recall for the ND model.
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Fig. B.4 Average recall as function of the partition size for each data set. The horizontal
blue lines indicate the average recall for the ND model.

Table B.3 Average precision values conditional on classifier type.

Classifier
Model RF SVM XGB LDA Mult
BALANCED
pNW 0.7016 0.5631 0.6896 0.5833 0.6118
pIW 0.7113 0.5723 0.6989 0.5895 0.6200
UW 0.7060 0.5665 0.6935 0.5818 0.6103
UNBALANCED
pNW 0.6875 0.5577 0.6827 0.5815 0.6098
pIW 0.7001 0.5760 0.6956 0.5948 0.6249
UW 0.6929 0.5569 0.6879 0.5819 0.6090
MEAN
pNW 0.6945 0.5604 0.6862 0.5824 0.6108
pIW 0.7057 0.5741 0.6973 0.5922 0.6224
UW 0.6994 0.5617 0.6907 0.5819 0.6097
ND 0.7516 0.6586 0.7392 0.6405 0.6496
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Fig. B.5 Precision-based interaction plot to check the joint effect of classifier, learning
model and scenario.

Table B.4 Average precision values conditional on the decision rules.

Decision rule
Model MAJ MAX MIN PROD SUM Mean
BALANCED
pNW 0.6392 0.6239 0.6145 0.6282 0.6436 0.6299
pIW 0.6550 0.6459 0.6030 0.6280 0.6601 0.6384
UW 0.6408 0.6266 0.6166 0.6283 0.6459 0.6316
Mean 0.6450 0.6321 0.6113 0.6282 0.6499 0.6333
UNBALANCED
pNW 0.6378 0.6193 0.5945 0.6226 0.6451 0.6238
pIW 0.6637 0.6531 0.5799 0.6224 0.6724 0.6383
UW 0.6420 0.6178 0.5985 0.6226 0.6477 0.6257
Mean 0.6478 0.6300 0.5910 0.6225 0.6551 0.6293
ND — — — — — 0.6879
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Fig. B.6 Average precision values aggregated by decision rules. The horizontal red line
indicates the average precision for the ND model.
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Fig. B.7 Average precision as function of the partition size. The horizontal red lines
indicate the average precision for the ND model.
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Fig. B.8 Average precision as function of the partition size for each data set. The
horizontal blue lines indicate the average precision for the ND model.





Appendix C

Resumen extendido en castellano

Esta tesis trata sobre aprendizaje estadístico, tanto en objetos complejos, como pueden
ser series temporales o formas, entre otros. Las tareas que se estudian son contrastes
de dos muestras, clasificación, clustering y predicción.

Como objetos complejos entendemos los tipos de datos sobre los que al aplicar
técnicas estadísticas generales de una manera directa, sin ningún tipo de preprocesado,
se obtienen resultados no satisfactorios.

La manera de abordar datos complejos es mediante la introducción de conocimiento
del dominio del fenómeno subyacente que da lugar a los datos complejos al ser medido.
Un ejemplo de conocimiento del dominio puede ser, en el campo de series temporales,
el uso de los coeficientes de autocorrelación extraídos de las series en lugar de las series
en bruto para su análisis.

Ejemplos concretos de tareas de aprendizaje de datos complejos son:

• Test de dos muestras: Detectar si hay diferencias entre los patrones de ondas cere-
brales de sujetos alcohólicos y sujetos de control al presentarles un determinado
estímulo visual.

• Clasificación: Asignar un hueso a una especie de animal concreto a partir de su
silueta digitalizada.

• Clustering: Encontrar grupos de genes de una bacteria en función de cómo se
expresan temporalmente ante una alteración, como añadir un antibiótico a su
sustrato.

Nuestro objetivo es el desarrollo de técnicas para abordar este tipo de problemas.
Los dos métodos principales para introducir conocimiento del dominio son la

extracción de características y el uso de distancias. Las características, también
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llamadas variables o atributos, son valores que se calculan a partir de los datos, como
pueden ser la media, varianza, o coeficientes de autocorrelación de una serie temporal.
Cuando usamos extracción de características, el siguiente paso consiste en aplicar una
técnica estadística estándar sobre ellas, en lugar de sobre los datos en bruto. Debido
a su simpleza y su facilidad de interpretación, el camino de las características suele
ser el preferido para analizar datos complejos. Computacionalmente suele ser el más
ventajoso. Su limitación viene dada por el hecho de que en muchas situaciones no
sabemos qué características extraer de los datos y encontrarlas es un proceso que puede
ser inabordable.

El otro camino para analizar datos complejos es mediante el uso de distancias.
Como distancia se entiende una función que compara dos objetos, asignando un valor
numérico a esta comparación, que decrece conforme más se asemeja el par de objetos
comparado. Una vez se han calculado estas distancias entre pares de objetos, se
aplican métodos generales de análisis basados en distancias, que trabajan sobre las
comparaciones, no sobre los objetos originales.

Los métodos basados en distancias pueden usarse para solucionar la limitación
principal de los métodos basados en características, esto es, existen dominios en los que
podemos definir una distancia que funcione bien, pero no un conjunto de características.

Aunque los métodos basados en distancias tienen una estrecha relación con los
métodos basados en características, siendo equivalentes en muchos casos, los primeros
pueden verse como una extensión no paramétrica de los segundos. Podemos encontrar
distancias que no tengan un conjunto finito de características equivalente.

La familia de distancias “elásticas”, de uso común en el análisis de series temporales,
contiene ejemplos de distancias sin conjunto de características equivalentes e ilustran
el hecho de que para analizar un tipo de datos podemos definir una distancia pero no
características. Las distancias elásticas se originaron para analizar un tipo de series
temporales concreto: la voz humana. La primera distancia elástica, llamada Dynamic
Time Warping (DTW), es similar a la distancia Euclídea pero permite aceleraciones y
deceleraciones en el tiempo de las series a comparar. Estas aceleraciones se calculan
de manera que se minimice la diferencia entre las dos series una vez se han aplicado
los cambios. DTW se define algorítmicamente como un problema de programación
dinámica, y es fácil ver que no es posible encontrar un conjunto de características que
obtenga los mismos resultados. DTW junto con el método de vecinos más próximos
fue considerado el estado del arte en clasificación de series temporales hasta muy
recientemente, y se ha usado con éxito para otros tipos de datos como formas.
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Las distancias también se usan en otras tareas de análisis o minería de datos, como
son la detección de datos atípicos o la recuperación de información o la visualización
de datos. Por lo tanto, al definir una nueva distancia podemos contribuir a mejorar las
herramientas de análisis de múltiples tareas y dominios de aplicación.

Métodos basados en distancias

Existe una relación bidireccional entre las distancias y los métodos que las utilizan:
Queremos definir nuevas distancias que puedan ser usadas por los métodos existentes,
pero también nos interesa definir nuevos métodos que puedan incorporar un amplio
rango de distancias.

Por ejemplo, el algoritmo de clustering K-medias está definido para la distancia
Euclídea. Si intentamos emplear K-medias con otra distancia de una manera directa,
es posible que alcancemos resultados irrelevantes o incluso engañosos. Para poder
usar K-medias con una distancia arbitraria, tenemos que proporcionar una manera de
calcular los centros de los grupos con respecto a la distancia, que en general no van a ser
la media aritmética. El cálculo de centros para una distancia arbitraria es un problema
abierto, y la creación de métodos para obtener centros para distancias populares como
DTW es un problema sobre el que se sigue investigando. Por el contrario, otros métodos
de clustering como cluster jerárquico o particionado alrededor de medoides (PAM) no
necesitan calcular los centros de los grupos, y por lo tanto el abanico de distancias con
los que pueden ser usados es mucho mayor que K-medias.

Es por lo tanto muy deseable que los métodos basados en distancias funcionen con
una gran abanico de ellas.

Contribuciones

Las contribuciones de esta tesis tienen como hilo conductor dos ideas que además están
interrelacionadas:

• Las distancias son una manera muy útil para introducir conocimiento del dominio
ante problemas complejos. Es interesante definir nuevas distancias como nuevos
métodos que funcionen bien con una gran variedad de distancias.

• Algunos estadísticos (basados en distancias) para contrastes de dos muestras
pueden ser a su vez considerados como distancias entre conjuntos de datos
multivariantes o funciones de distribución empíricas. Utilizamos esta idea para
comparar series temporales o conjuntos de datos.



150 Resumen extendido en castellano

En el Capítulo 2 se propone un test de dos muestras multivariante basado en distan-
cias. La idea detrás del estadístico es la de comparar las distribuciones de las distancias
entrepuntos. Dadas dos muestras de observaciones multivariantes, por ejemplo X

e Y y una distancia, se calculan todos los posibles pares de distancias entrepunto.
Estas distancias se dividen en dos grupos, las distancias de pares pertenece a la misma
muestra, llamadas “intramuestra” esto es, las distancias entre dos observaciones de X
y las distancias entre observaciones de Y , y el segundo grupo lo forman las distancias
entre muestras, llamadas “entremuestra”. Las distancias entremuestra salen de pares
de observaciones en los que un miembro del par pertence al grupo X y otro al grupo
Y . Una vez separados estos dos grupos, las distancias pasan a ser consideradas como
observaciones univariantes normales, y las distribuciones de los grupos intramuestra y
entremuestra se comparan mediante un estadístico tipo Cramér-von Mises.

El estadístico propuesto, llamado DD debido a que compara distribuciones de
distancias, pertenece a un grupo más grande de estadísticos de tests de dos muestras
basados en distancias entrepuntos. Dentro de esta familia destaca el estadístico llamado
“energy”. El estadístico energy funciona de una manera similar a DD, pero compara
únicamente las medias de las distancias intragrupo y entregrupo, en lugar de las
distribuciones. Aunque es un estadístico consistente y sencillo tanto conceptual como
computacionalmente, su principal limitación es su falta de potencia ante algún tipo
de alternativa. Por ejemplo, ante cambios de escala o correlación en un escenario
de Gaussianas multivariantes, suele obtener peores resultados que sus competidores.
Otros tests de dos muestras basados en distancias, por ejemplo todos los basados en
el grafo que crea la matriz de distancias dos a dos, tienen limitaciones similares: o
bien son potentes ante cambios de escala o antes cambios de localización, pero no ante
ambos. La capacidad de detectar diferencias distribucionales de varios tipos es uno de
los objetivos que persigue el estadístico DD.

Para evaluar el funcionamiento del estadístico se realizaron experimentos de tanto
de simulación como de datos reales. Todos los escenarios estudiados han sido propuestos
con anterioridad en la literatura de tests de dos muestras. En concreto se estudia
la evolución de la potencia al aumentar la dimensión de Gaussianas multivariantes,
considerando cambios de escala y localización. En este escenario, se comprueba que
todos los métodos estudiados, incluyendo energy y estadísticos basados en grafos, son
potentes ante cambios de escala o localización, pero no ante ambos simultáneamente.
La única excepción es el estadístico DD, que se sitúa entre los más potentes en ambos
escenarios, si bien no es el que mejor en ninguno. En los escenarios de datos reales,
se observa que no existe un método superior a otros, todos los métodos obtienen
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baja potencia en algún escenario. Como conclusión general del estudio empírico, el
estadístico DD obtiene resultados que podrían ser calificados de robustos o flexibles,
alcanzando niveles de potencia razonables en la mayoría de situaciones, sin encon-
trar casos problemáticos particulares donde no obtenga potencia estadística pero sus
competidores sí.

Capítulo 3

En el Capítulo 3 se estudia en mayor profundidad el funcionamiento de los tests de dos
muestras en el contexto de series temporales, incluyendo el estadístico DD. Además
se plantea verificar si las distancias diseñadas para clasificación y clustering de series
temporales proporcionarían un incremento de potencia al ser introducidas en los tests
basados en distancias. En series temporales nos encontramos con dificultades que
aparecen comúnmente en estadística de alta dimensión, como que la dimensión de los
datos es superior al tamaño muestral, pero también aparecen dificultades propias del
ámbito temporal. Entre éstas está la complejidad debido a la dependencia, la necesidad
de analizar series temporales de distinta longitud, o la necesidad de “no considerar”
maneras en las que series puede diferir. Como ejemplo del último caso, es posible que
a los investigadores no les interese detectar si dos grupos de series temporales difieren
en cuanto a escala, porque en su dominio de aplicación la interpretación de la escala
es irrelevante. En el caso de ondas de sonido medidas directamene la escala sería el
volumen, y es posible que los investigadores deseen detectar si hay diferencias entre
dos grupos sin tener en cuenta el volumen. La propiedad de un método de ignorar
cambios de un determinado tipo recibe el nombre de invarianza, y las distancias son
una buena manera de introducir invarianzas complejas.

Se plantean escenarios de simulación de modelos autorregresivos clásicos, incluyendo
modelos heterocedásticos, y de datos reales como electroencefalogramas o consumo
eléctrico. Se observa que las versiones estándar de los tests de dos muestras basados
en distancias, que usan la distancia Euclídea, obtienen baja potencia en muchos
escenarios, y el estadístico DD no alcanza los mejores resultados en la comparativa.
Sin embargo, al introducir distancias específicas de series temporales, la potencia
de los tests aumenta, llegado incluso a potencia 1 cuando con la Euclídea solo se
alcanzaban los valores nominales. Es también destacable que al introducir estas nuevas
distancias, el estadístico DD se compara de manera favorable al resto de métodos,
debido a su flexibilidad: mediante la introducción de una distancia, por ejemplo un
escenario que planteaba una diferencia de distribución en escala, podría pasar a una
diferencia en distribución en localización o a una combinación de ambas. Como es
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posible que haya distancias que discriminen muy bien los dos grupos, pero de una
manera no conocida (por ejemplo sabiendo de antemano que generará una diferencia
en localización), es deseable que es estadístico empleado se capaz de detectar una gran
variedad de alternativas, no centrarse demasiado en alguna en concreto.

Capítulo 4

Como se ha visto con anterioridad, las distancias son un buen vehículo para introducir
conocimiento del dominio que mejore los análisis estadísticos. En este capítulo se
propone una nueva distancia para series temporales principalmente para ser usada
en problemas de clasificación y clustering. Se identifica que métodos con muy buen
funcionamiento empírico en clasificación, conocidos como “bolsa de patrones” (Bag
of patterns) y otros como distancias basadas en modelos, usadas principalmente en
clustering, tienen algunos puntos en común. En concreto, se basan en comparar las
distribuciones lageadas de las series temporales, introduciendo la suposición de que
una serie puede identificarse por su comportamiento al observarse conjuntamente
observaciones próximas en el tiempo. Tanto los métodos Bag of Patterns como las
distancias basadas en modelos aplican, sin embargo, simplificaciones muy fuertes
para comparar las distribuciones, los primeros cuantizan los datos para pasar de
distribuciones multivariantes a histogramas univariantes, y los segundos asumen modelos
restrictivos como los lineales. Para comparar las distribuciones de una manera más
parsimoniosa, se introduce la idea de usar un estadístico para test de dos muestras
como distancia entre distribuciones, en concreto se usa el estadístico energy por su
simpleza. Mediante esta distancia, en cierto modo unificamos y extendemos las dos
familias de métodos Bag of Patterns y distancias basadas en modelos. Además se
propone una manera automática de seleccionar los lags relevantes, que se diferencia de
otros en que se centra en discriminar las series, no en modelar cada una por separado
de una manera precisa. En un amplio estudio de datos reales (incluyendo problemas
con series de distinta naturaleza, como electrocardiogramas, datos de detección de
movimiento o consumo eléctrico) y de simulación basada en modelos autorregresivos,
comparando su funcionamiento tanto en clasificación como en clustering, la distancia
propuesta alcanza mejores resultados que otras alternativas comúnmente usadas en
series temporales.

Capítulo 5

En este capítulo se propone un nuevo método para hacer predicción de series temporales
(forecasting), que llamamos FFORMA (Feature-based FORecast Model Averaging).
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Este método funciona mediante la combinación de las predicciones de algoritmos de
forecast individuales. La combinación de métodos obtiene buenos resultados empíricos
y puede verse como una manera de protegerse ante el riesgo de seleccionar un modelo
érroneo para la serie que queremos predecir. El método que proponemos se encuadra
dentro del paradigma del meta-aprendizaje, donde un modelo se utiliza para combinar
otros modelos predictivos. En lugar de aprender a seleccionar qué modelo sería el
mejor para cada serie, en nuestro caso se aprende a generar pesos que los combinen.

El procedimiento FFORMA se compone de tres elementos básicos:

• Conjunto de referencia: Para ajustar el modelo de meta-aprendizaje es necesario
un conjunto de series temporales generado por un procedimiento que debería
ser similar al de las series sobre las que queremos hacer forecast. En el caso de
necesitar predecir conjuntos de datos muy grandes, estos podrían utilizarse a
su vez como conjuntos de referencia. Las series pertenecientes al conjunto de
referencia se supone que tienen valores futuros conocidos, en el caso de no ser así,
mediante temporal holdout se dividiría cada serie en el período de entrenamiento
y período de prueba, extrayendo las últimas observaciones de la serie.

• Reserva de métodos: Son los algoritmos de forecast que van a ser combinados.
Normalmente son algoritmos clásicos basados en modelos, como ARIMA o expone-
tial smoothing. Cada uno de estos métodos es aplicado a cada serie, ajustando
sus parámetros, y produce la predicción deseada que luego será combinada con
la de los otros métodos.

• Conjunto de características: FFORMA usa características extraídas de las series,
en lugar de las series en bruto como entrada para el algoritmo de meta-aprendizaje.
Muchas de características se han utilizado previamente en comparación de series,
como las autocorrelaciones, fuerza de la tendencia, etc.

La idea detrás de FFORMA está relacionada con la clasificación de series temporales.
Partiendo de un método de meta-aprendizaje que selecciona el método más apropiado
para predecir una serie, puede verse que al asignar etiquetas a los métodos y asignando
a cada serie temporal la etiqueta del método que mejor la predice, obtenemos un
problema de clasificación. Sin embargo, esta aproximación tiene el inconveniente de
descartar información: Por ejemplo cuando algunos de los métodos en nuestra reserva
podría obtener errores muy similares al mejor, de manera que se exagera la relevancia
de este último como clase objetivo. También podrían existir series más difíciles que
otras (en cuanto al error que cometen todos los métodos) y esto no se tiene en cuenta
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si se plantea el meta-aprendizaje como un problema de clasificación. Por este motivo,
lo que se hace es buscar una función que asigna pesos a los métodos de la reserva, con
la sencilla interpretación de minimizar el error de predicción que se produciría si los
métodos fuesen asignados al azar a cada serie siguiendo estos pesos.

FFORMA funciona en dos fases:

1. Fase Offline: Entrenar el modelo de meta-aprendizaje. Las series en el conjunto de
referencia se dividen en período de prueba y período de aprendizaje, los métodos
de la reserva generan sus predicciones y se mide el error de las predicciones
sobre el período de prueba. Usando este error y las características, el modelo de
meta-aprendizaje se ajusta para generar los pesos que asignados a las predicciones
individuales minimizarían el error de predicción.

2. Fase Online: Usar el modelo entrenado en la fase 1 para generar pesos y combinar
las predicciones de los métodos en la reserva usando estos pesos para producir la
predicción de una nueva serie temporal.

FFORMA se usó para la competición internacional de forecasting M4, sobre un
conjunto de 100000 series temporales, alcanzando el segundo mejor resultado en cuanto
a error de predicción.

Capítulo 6

En el Capítulo 6 se presenta un método para clasificación distribuida. En el contexto
que trabajamos, los datos están repartidos en distintos nodos de cómputo y no se
permite que los nodos compartan sus datos. El objetivo es combinar los modelos
de clasificación ajustados con los datos de cada nodo de manera que se minimice la
pérdida de exactidud de clasificación relativa a si se pudiese ajustar un modelo sobre la
totalidad de los datos, al unir los de todos los nodos (llamado conjunto global). Esta
restricción de no comunicación aparece en escenarios realistas por motivos éticos o de
negocio, como hospitales que no pueden compartir registros de sus pacientes, y también
por motivos computacionales, por ejemplo el conjunto al completo sería demasiado
grande para ser procesado en un único nodo, o la comunicación es muy costosa.

Se plantea un marco probabilista que permite analizar el mencionado contexto
distribuido, llegando a un resultado que relaciona el clasificador que saldría del conjunto
global con una suma ponderada de los clasificadores entrenados en cada uno de los nodos.
Estos pesos dependen de un cociente de densidades que deben ser estimadas, pero debido
a la dificultad de esta estimación, proponemos estimar los pesos directamente. Pare
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ello se emplea una heurística basada en considerar una distancia entre la distribución
de los datos de un nodo y la de los datos del conjunto de prueba. La distancia
considerada es el estadístico energy, similar al Capítulo 4. Los pesos calculados por la
heurística minimizan esta distancia energy entre distribución de nodo y prueba. Una
interpretación del procedimiento sería que al hacer un remuestreo ponderado de la
muestra del conjunto de prueba, la distribución de esta remuestra se asemejaría a la del
nodo en cuanto a que se minimiza la distancia energy entre ambas. Las observaciones
del conjunto de prueba mejor representadas en un nodo (con mayor densidad en su
entorno), reciben mayor peso.

Este método consigue mejorar la aproximación de referencia de una manera clara.
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