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Abstract 

 

 
 

Predicting drug–protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important 

goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) 

models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of 

preclinical assays reported in public databases. This includes multiple conditions of assays, such as different 

experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. 

On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or 

molecular system in experimental assays with multiple boundary conditions based on a previously known case of 

reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays 

of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with 

accuracy of 70–91% in training and external validation series. We also compared the linear PTML model with 

alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, 

Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable 

increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept 

theoretical–experimental study. We reported for the first time the organic synthesis, chemical characterization, and 



pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In 

addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. 

The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of 

assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound 

in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological 

parameters (IC50, EC50, Ki, etc.) for compounds in assays involving different cell lines used, organisms of the protein 

target, or organism of assay for proteins in the dopamine pathway. 
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INTRODUCTION 

Medicinal Chemistry researchers have at least two important alternatives to study drug–protein 

interactions (DPIs) for all potential drug targets in one specific pathway. One alternative is the use of 

experimental techniques, and the other is the use of computational methods. Computational methods, in 

turn, belong to at least two main classes, machine learning (ML)
(1−3)

 methods or molecular docking 

techniques implemented on AutoDock Vina software (or others).
(4,5)

 In the case of ML methods, it is 

possible to calculate numerical parameters to quantify the chemical information on the compounds, 

peptides, or proteins.
(6−22)

 However, in many cases both classes of methods fail to account for large data 

sets of preclinical assays with many factors not related to drug or target protein structure. These large sets 

of data, called big data, are difficult to model not only because of the large quantity of data but also due to 

the high complexity of it. For instance, the ChEMBL database includes very large sets of experimental 

outcomes obtained in very different conditions.
(23,24)

 This includes different pharmacological parameters 

measured (IC50, Ki, Km, etc.), different cell lines used, different organisms of the protein target or 

organisms of assay, etc. In fact, study of the large data sets reported in this database is gaining interest in 

medicinal chemistry.
(25−27)

 In our opinion, perturbation theory (PT) models allow us to predict the 

properties of a query compound or molecular system (q) in experimental assays with multiple boundary 

conditions based on a previous known case of reference (r). Specifically, PTML models combine PT and 

ML methods to study biomolecular systems.
(18,28)

 In fact, PTML models may have applications in 

medicinal chemistry, nanotechnology, etc. to study large data sets with multiple experimental conditions 

or other parameters.
(29−34)

 The PTML method uses different types of PT operators to account for 

perturbations in the structure of the system and the changing conditions of assay, for instance, Moving 

Average (MA) operators used in Box–Jenkins’s ARIMA models for time series analysis.
(35)

 MA operators 

of structural descriptors have been used to quantify complex data sets in medicinal chemistry and other 

areas.
(36−39) 

 

On the other hand, various biological activities have been assigned to peptidic and peptidomimetic 

structures. They vary from antiviral activities to neuroprotective properties in different animal models of 

neurodegenerative processes, such as Huntington’s, Parkinson’s, and Alzheimer’s diseases.
(40−42)

 In this 

context, the peptide PLG, known as melanocyte-stimulant hormone release-inhibiting factor, possesses a 

variety of pharmacological activities in the central nervous system.
(43)

 PGL (l-prolyl-l-leucyl-

glycinamide) and its analog PAOPA (3(R)-(2(S)-pyrrolidylcarbonyl)amino-2-oxo-1-

pyrrolidineacetamide) modify dopaminergic neurotransmission by acting as allosteric modulators of 

dopamine D2 receptor.
(44−46)

 The allosteric modulators are safer alternatives to conventional orthosteric 

therapeutics; their mechanism involves modulation of endogenous signaling. Studies carried out in cell 

lines transfected with human dopamine receptor subtypes have shown that PLG and PLG 

peptidomimetics enhance agonist binding to the D2S, D2L, and D4 subtypes.
(47,48) 
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In this context, the development of new computational models for the prediction of DPIs for 

dopamine pathway drug targets is a goal of major importance. In this work, we report for the first time a 

PTML model able to predict DPIs for a large ChEMBL data set of preclinical compound assays related to 

dopamine pathway drug targets. The assays include many different pharmacological parameters, target 

proteins, cell lines, organisms of the target, organisms of assay, etc. The data set includes over 50 000 

cases of multivariate perturbations in different assay conditions. We illustrated the practical use of the 

new model with a proof-of-concept theoretical–experimental study. Therefore, for the first time, organic 

synthesis, chemical characterization, and pharmacological assay of a new series of PLG peptidomimetic 

compounds are reported. In addition, the molecular docking study for some of these compounds is 

presented. In addition, we performed a molecular docking study for some of these compounds with the 

software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the 

new compounds in a large number of assays. Therefore, this study offers a new computational 

methodology for predicting the outcome for any compound in new assays. This PTML method focuses on 

prediction with a simple linear model of multiple pharmacological parameters (IC50, EC50, Ki, etc.) for 

compounds in assays involving different cell lines used, organisms of the protein target, or organisms of 

assay for proteins in the dopamine pathway. In Figure 1, we summarize the workflow used in this work, 

emphasizing the four main components of the work: (1) PTML model development (general 

methodology), (2) synthesis of new compounds (experimental example), (3) assay of new compounds 

(experimental example), and (4) molecular docking (additional studies). 

 
 

 
Figure 1. Workflow of the present work. 

RESULTS AND DISCUSSION 

Synthesis of the New PLG Peptidomimetics. Synthesis of compounds 1–12 and 19–21 was 

described by us in a previous work.
(49)

 Compounds 13–18 were synthesized according to the strategy 

given in Schemes 1 and 2. As shown in these schemes, they were synthesized from the corresponding 

dipeptide diastereoisomers IIa and IIb as described in the earlier work.
(49)

 The coupling of the 

corresponding carboxylic acids Ia and Ib with alanine methyl ester hydrochloride provided the 

corresponding tripeptide esters IIa and IIb. Compound IIa was converted to the corresponding 

carboxylic acid IIIa with LiOH in THF/H2O. Nevertheless, the hydrolysis of IIb with LiOH showed, as 

in the similar compounds,
(49)

 high lability of the carbamate group during the acidification process with 1 

M H2SO4; for this reason removal of the Boc protecting group was performed on the dry residue of the 

reaction mass containing IIIb. The transformation of IIa and IIb into the corresponding primary amides 
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IVa and IVb was achieved by treatment with methanolic ammonia. Finally, removal of the Boc 

protecting group from IIa–IVa, IIb, and IVb by reaction with 4 N HCl in dioxane afforded the 

corresponding 13–18 PLG analogues with excellent yields. 

 
 

 
Scheme 1. Synthesis of Compounds 13–15 

  



 
 

 
Scheme 2. Synthesis of Compounds 16–18 

Experimental Assay of New PLG Peptidomimetics. In Table 1 and Figure 2, we summarize the 

experimental results obtained in the pharmacological assay of this series of compounds. The data obtained 

for PLG analog photoaffinity labeling agents 13–21 are shown, and their activity was compared to that of 

PLG. All the compounds significantly (P < 0.05; ANOVA test; post hoc Dunnet T3 test) increased 

[3H]NPA binding at low concentrations. Compound 13 increased [3H]NPA binding higher than that 

observed with PLG at the same concentrations. Both compounds 17 and 18 increased [3H]NPA binding: 

17 showed 40% increased [3H]NPA binding at the concentration 10
–7

 M, and 18 caused increased 

[3H]NPA binding higher than 40% in the range of concentrations 10
–12

–10
–7

 M, showing a better profile 

than PLG. The effect observed with PLG in our work is similar to that observed in our previous work.
(49)

 

However, it is slightly different from that previously reported by Verma et al.,
(50)

 showing increased 

[3H]NPA binding at lower concentrations than those previously reported. This difference can be 

explained by the different host cell where human D2S receptors were expressed, as it has been previously 

reported that allosteric modulators are sensitive to environmental changes; which may condition the 

different active conformations elicited by the endogenous agonists on GPCRs.
(51)

 Most of the compounds 

showed a bell-shaped curve, which is compatible with previous findings from in vivo and clinical 

experiments using PLG.
(50)

 These data evidence that these compounds are acting as allosteric modulators 

of dopamine D2S receptors. To view the profiles observed in the series of analogs of the PLG tested, we 

can conclude that when the change affects the chain of leucine, this happens in both series of compounds. 

The allosteric modulator effect is lower in the series of compounds 19–21. In contrast, if the leucine is 

replaced by valine and the amine group of the proline cycle is protected as carbamate, the series of 

compounds 13–18, where the glycine is replaced by alanine, showed the most similar profiles to PLG in 

the increase of the union of [3H]NPA to dopamine D2 receptors.  
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Table 1. New Experimental Results for Novel PGL Derivatives in Dopamine D2 Receptor Assay 

 

 

 

 
 

 
a Compounds studied in this work; compound 5 was not assayed due to failure of the synthetic route. b Reference in which the 
synthesis of the compound was published for the first time. c Reference in which the assay of the compound was published for the 

first time. 

  



 
 

 
Figure 2. Experimental assay of new PLG peptidomimetics. 

Molecular Docking Simulation. After the synthesis and assay of the new series of PLG 

peptidomimetics, a ligand–protein molecular docking simulation was done for these compounds. Multiple 

target proteins involved in the dopamine pathway with 3D spatial models reported in the PDB have been 

selected for this study. The pdb codes of the proteins selected are 1I15, 1OZ5, 1ZHB, 2LYW, 2MHO, 

3PBL, 4OAJ, 4ZEL, 5AER, 5I6X, 5I6Z, 5I71, 5I73, 5I74, and 5I75. The affinity energy (AE ) values for 

a total of 20 peptides (compounds) × 15 proteins = 300 DPIs in the dopamine pathway have been 

calculated. In addition, a two-way joining cluster analysis (TWJCA) of these results was carried out. 

TWJCA facilitates the visualization and quantitative analysis of the results obtained (see Figure 3). It can 

be observed that proteins with codes 5AER, 2LYW, 2MHO, and 4OAJ form a cluster with AE > −5 

kcal/mol, indicating weak DPIs. In contrast, the other proteins form a cluster with AE = −7 to −9 

kcal/mol. This indicates certain coherence in the predicted behavior of this series of compounds in terms 

of DPI profile. 
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Figure 3. TWJCA of docking results for selected analogues. 

In Table 2, we report the average value (Avg), standard deviation (SD), and minimum value (Min) of 

the AE (kcal/mol) for all 300 DPIs. The protein with the lowest average affinity energy, AE = −8.6 

kcal/mol, for this series of peptides is the dopamine D2 receptor (PDB 1I15). This protein also has one of 

the more negative AE = −9.4 kcal/mol (min energy) for peptide 14 (PVA-l-Val-l-Ala). Interestingly, 

compound 18, the compound that increased [3H]NPA binding to dopamine receptors also has a relatively 

stronger DPI predicted (AE = −9.2 kcal/mol) with dopamine D2 receptor (PDB 1I15). The compound 18 

also has a relevant (AE = −8.0 kcal/mol) but weaker predicted interaction with dopamine D3 receptor 

(human), see Table 2. In Figure 4, we depict the details of the DPI for the compound 18 and protein 

model 1I15. The more relevant amino acids in the binding pocket seem to be Trp115, Ser122, Ser141, 

Phe82, Leu125, Trp182, Cys90, Phe186, Ser118, Val87, His189, Phe145, and Ile190 

 
 

 
Figure 4. Docking interactions between peptide 18 (ligand) and PDB 1I15 (target).  
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Table 2. Results of the Docking Study of Dopamine Pathway Proteins versus PLG Peptidomimetics 

 
 
a AE (kcal/mol) values for compounds 18 and 17, and average (Avg), standard deviation (SD), and minimum (Min) value of all the 
300 DPIs studied. 

PTML-Linear Discriminant Analysis (LDA) Model. The previous experimental and computational 

molecular docking studies are very useful to know details of DPIs for new compounds. However, the 

experimental studies have and important cost in terms of sacrifice of laboratory animals, material 

resources, and time. The molecular docking calculations have an important cost in computational 

resources too. Therefore, the experimental or molecular docking study of large sets of experimental 

conditions may be a goal hard to accomplish for many research groups. Previous publications showed that 

the PTML analysis of big data sets may be a useful tool. PTML is especially useful if it is a study with 

multiple pharmacological parameters for a series of compounds in different target proteins, organisms of 

assay, cell lines, etc. In the current work, the first PTML model for the DPIs of the dopamine pathway 

was developed. A large data set of preclinical assays was downloaded from the ChEMBL database. The 



data set is large and complex including different target proteins, cellular lines, organisms, etc. PT 

operators of molecular descriptors have been used as inputs to train a PTML classifier. In Table 3, we 

depict the results for the best PTML linear model obtained (PTML-LDA model): PTML model obtained 

with the LDA algorithms. In this table, the overall results for training and validation subsets are 

presented. In training series, the model presented high values of specificity = Sp (%) = 72.8, sensitivity = 

Sn (%) = 72.4, and overall accuracy = Ac (%) = 72.7. The model was stable in external validation series 

with values of Sp (%) = 72.7, Sn (%) = 71.4, and Ac (%) = 72.6. The equation of this model is presented 

in eq 1. 

 

 

𝑓(𝜀𝑖𝑗)
new

= −10.780386430140 − 0.000000000020𝑓(𝜀𝑖𝑗)
expt

+ 0.440071875560∆𝒟1(𝑐0)

+ 0.465335484664∆𝒟1(𝑐1) − 0.541834505781∆𝒟1(𝑐2)
− 0.127705300409∆𝒟1(𝑐3) − 0.114637007349∆𝒟1(𝑐4)
− 0.095637330548∆𝒟2(𝑐5) − 0.054733584740∆𝒟2(𝑐6)
− 0.056732915285∆𝒟2(𝑐7)      𝑛 = 41082     𝜒2 = 5564.0     𝑝 < 0.05 

 

 

Table 3. PTML Analysis Results (LDA Method) for DPIs in Dopamine Pathway 

   
predicted sets 

observed setsa statistical parameterb predicted statistics nj Lij = 0 Lij = 1 

Training Series 

Lij = 0 Sp 0.701 37080 26005 11075 

Lij = 1 Sn 0.839 4001 644 3357 

total Ac 0.715    

External Validation Series 

Lij = 0 Sp 0.702 12364 8675 3689 

Lij = 1 Sn 0.833 1329 222 1107 

total Ac 0.714    

      

 
a The classification classes are (1) drugs with biological effect over the receptor 
stronger than the average (Lij = 1 when εij > avg(εij)j) and (2) Lij = 0 otherwise. 
b Sn = sensitivity, Sp = specificity, and Ac = accuracy 

PTML model starts with the expected value of activity and adds the effect of different perturbations in 

the system. Consequently, the model has two types of input variables: the expected-value function, 

f(εij)expt, and the PT operators, ΔD1(cj). The input variable f(εij)expt represents the expected value of 

biological activity for one compound in experimental conditions cj. We investigated two types of PT 

operators, ΔD1(cj) and ΔD2(cj). The type 1 operators, ΔD1(cj) = ALOGPi – ⟨ALOGP(cj)⟩, account for the 

effects on biological activity of perturbations of the drug hydrophobicity. We measured these 

perturbations as a deviation ΔALOGP in the value of ALOGPi of the ith drug with respect to the average 

value, ⟨ALOGP(cj)⟩, for all drugs tested under condition cj. The operators selected by the forward-

stepwise strategy of variable selection are sensitive to perturbations of the organism of assay, cell line, 

etc. On the other hand, the type 2 operators, ΔD2(cj), account for the effect on biological activity of 

perturbations of the polar surface area (PSA) of the drug. These perturbations are calculated as a 

deviation, ΔPSA(cj), in the value of PSAi of the ith drug with respect to the average value, ⟨PSA(cj)⟩, for 

all drugs tested under condition cj. Table 4presents more detailed explanation about all input variables. 

After obtaining this model, the next step was to illustrate its use by using a practical example. Therefore, 

the synthesis, biological assay, and computational study of a new series of PLG peptidomimetic 

compounds have been presented (see next section).  
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Table 4. Input Variables of the PTML Model 

condition (cj) 
operator 

symbol 

source 

variable 

operator type 

formula 
operator information 

     

activity type 

(c0) 

f(εij) p(Δεij>0)ref n(Δεij>0)/nj expected value of probability p(Lij = 1) for a given type of activity (εij) 

activity type 
(c0) 

ΔD1(c0) ALOGP ALOGPi – 

⟨ALOGP(cj)⟩ 

quantifies changes or perturbations in the hydrophobicity of the 
compound due to changes in the chemical structure of the compound 

(ALOGPi) and changes in the conditions of assay (⟨ALOGP(cj)⟩) target (c1) ΔD1(c1)   

organism of 

target (c2) 

ΔD1(c2)   

organism of 

assay (c3) 

ΔD1(c3)   

cell line (c4) ΔD1(c4)   

assay type (c5) ΔD2(c5) PSA PSAi – 

⟨PSA(cj)⟩ 

quantifies change or perturbations in the hydrophobicity of the compound 

due to changes in the chemical structure of the compound (PSAi) and 

changes in the conditions of assay (⟨PSA(cj)⟩) confidence 

(c6) 

ΔD2(c6)   

curation (c7) ΔD2(c7)   

     

 

PTML-Artificial Neural Network (ANN) Nonlinear Models. In addition to the linear models, 

different nonlinear ML methods have been used. ANN algorithms have been tested, in a first instance, to 

find a better PTML model with higher accuracy (Ac) and sensitivity (Sn); see results in Table 5. The 

simplest PTML-ANN model is the linear neural network (LNN). The LNN model is similar to the LDA 

in performance but with 19 input variables. The multilayer perceptron (MLP) model has also similar 

performance and is even more complicated with a hidden layer of neurons. It is straightforward to realize 

that both the PTML-LNN and the PTML-MLP models do not outperformed the PTML-LDA model. 

However, the nonlinear PTML-radial basis function (RBF) model has values of Ac and Sn in the range 

80–83% in training and external validation series. These values, in the case of Ac, are 10% higher than 

the values obtained with the PTML-LDA model. The PTML-RBF model has also good area under the 

receiver operator characteristic (AUROC) curve values in the range 0.89–0.88 in training and validation 

series. This demonstrates that the classification results are higher than the values expected for a random 

model (AUROC = 0.5).(52) In any case, the PTML-RBF model with >700 neurons in the hidden layer is 

also notably more complicated than the PTML-LDA model. 
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Table 5. Results for the ANN-PTML Nonlinear Modelsa 

 

 
 

a Stat. Param. = statistical parameters, Sn = sensitivity, and Acc = accuracy. 

PTML Nonlinear Models. In addition, we used the software Weka(53) in order to test other 

nonlinear ML methods with the same features from the linear model. The Ac values for test subset are 

superior to the ANN results: 0.866 with Bayes Nets,(54) 0.915 with Random Tree,(55) 0.927 with 

Random Forest, and 0.908 with Decision Table.(56) All the AUROC values are greater than 0.78. The 

last tested classifier was a Deep Learning model (a hidden layer with 1000) using Keras/python. The test 

accuracy obtained was Ac = 0.909 (training Ac = 0.908). This is a superior value compared with ANN 

and Bayes Net, but not if we compare it with Random Tree, Random Forest, and Decision Trees. If all the 

features are included, the accuracy is improved, Ac = 0.913 (test) and 0.917 (training). These values are 

greater than all the Weka ML classifier results. However, taking into consideration the complexity factor, 

the understanding of the model, and the differences between the Ac values, the linear model was the 

choice for the predictions in the next sections. 

 

PTML Study of New PLG Peptidomimetics. After obtaining the best model, its use was 

demonstrated with a practical example. In the previous section, the synthesis and biological assay of a 

new series of PLG peptidomimetic compounds have been presented. In this section, the use of the PTML 

model to predict the min–max scale probabilities, *p(Δεij > 0) of having a biological activity εij higher 

than the expected value ⟨εij⟩ will be illustrated. This is equivalent to the probability of having Δεij = (εij – 

⟨εij⟩) > 0. In order to achieve this goal, the parameters used to specify both the structure of the compounds 

and the conditions cj for different biological assays were set in the PT operators of the model. In order to 

specify the molecular structure of the peptides, the molecular descriptors D1 = ALOGP and D2 = PSA 

were used for each peptide. In addition, the expected values of the parameters for different conditions 

need to be used to specify the conditions of assay (see Table 6). 
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Table 6. Expected Values ⟨Dk⟩ of Molecular Descriptors for Assay Conditions (Selected Examples) 

c0 = Activity ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj c1 = target protein ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj 

Ki (nM) 4.12 47.07 28030 dopamine D2 receptor 4.16 54.74 11887 

IC50 (nM) 3.79 44.31 10740 dopamine D3 receptor 4.14 54.48 6844 

ratio 4.27 40.10 3034 dopamine transporter 3.95 35.64 5753 

inhibition (%) 3.67 46.45 2877 dopamine D4 receptor 3.83 43.39 3487 

EC50 (nM) 3.44 57.44 1595 dopamine D1 receptor 3.68 57.18 2995 

potency (nM) 2.97 67.04 1267 5HT&D transporters 4.55 32.09 1141 

activity (%) 3.84 55.83 1127 NE&D transporters 3.99 36.17 551 

selectivity ratio 4.01 42.21 577 dopamine β-hydroxylase 2.12 54.21 280 

c3 = assay organism ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj c2 = protein organism ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj 

Mus musculus 3.63 61.58 232 Homo sapiens 4.02 50.08 33240 

Homo sapiens 4.03 51.11 21699 Rattusnorvegicus 3.91 42.33 19265 

Rattusnorvegicus 3.94 43.62 7342 Bostaurus 2.55 53.42 1600 

Cricetulusgriseus 3.40 25.89 82 Mus musculus 3.94 47.27 613 

Carassiusauratus 3.71 75.86 87 Susscrofa 4.58 51.66 352 

Canis lupus familiariz 3.38 46.67 50 Carassiusauratus 3.71 75.86 87 

Bostaurus 3.26 41.80 429 Canis lupus 

familiariz 

2.03 81.58 75 

Susscrofa 4.39 48.18 443 Chlorocebusaethiops 3.99 33.62 42 

c4 = cell line ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj c5 = assay type ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj 

CHO 4.17 50.68 6846 binding (B) 3.99 46.41 46964 

HEK293 3.96 43.95 4835 functional (F) 3.62 53.60 8336 

CHO-K1 4.05 41.52 1079     

Sf9 4.81 46.21 227     

C6 4.70 49.92 122     

COS-7 4.78 18.38 29     

LLC-PK1 4.08 45.54 15     

SCH 4.01 34.60 11     

HeLa 4.25 77.75 7     

SK-N-MC 4.33 26.90 4     

c6 = target conf. score ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj c7 = data curation ⟨D1(cj)⟩ ⟨D2(cj)⟩ nj 

single protein 3.98 50.34 28648 expert 3.97 43.75 24129 

multiple proteins 4.14 42.14 2539 autocuration 3.90 50.97 28000 

homologous protein 3.84 45.17 20645 intermediate 4.01 45.59 3173 

        

 

For instance, with the values ⟨D1(c0)⟩ = 3.67 and ⟨D2(c0)⟩ = 47.07, we specify that we want to 

calculate the *p(Δεij > 0) with which a compound shows a c0 = inhibition (%) of c1 = dopamine D2 

receptor higher than the expected. In addition, it is necessary to select other sets of values from the table 

to specify different conditions cj such as organism of assay, organism of the protein, cell line, type of 

assay, etc. Please, note that this table is only a summary of some selected examples of conditions that can 

be predicted with the model. In the Supporting Information, the full table with all the possible conditions 

to be predicted with this model is presented. PTML model was used to predict the min–max scale 

probabilities, *p(Δεij > 0), for compound 18. Thus, the current study predicted *p(Δεij > 0) for over 150 

different assays(different conditions cj = c0, c1, c2, etc.) of compound 18. Table 7 shows this type of 

results for selected examples involving different c0 = activity parameter (units) such as efficacy (%), 

http://pubs.acs.org/doi/suppl/10.1021/acschemneuro.8b00083/suppl_file/cn8b00083_si_002.xlsx
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inhibition (%), etc. The examples also involve different c1 = target proteins including dopamine (D), 

norepinephrine (NE), and serotonin (5HTA) receptors (R) and transporters (T). Notably, the model allows 

us to make the inference for these values of *p(Δεij > 0) in different organisms including H. sapiens 

(humans), R. norvegicus (rat), and M. musculus (mouse). Notably, the values activity (%), efficacy (%), 

and inhibition (%) of compound 18 for receptors (D1R to D5R) are predicted to be higher than the 

expected value for these assays in humans with *p(Δεij > 0) > 0.5. In addition, Ki (nM) values are 

predicted to have values notably lower than expected for the same receptors in humans with *p(Δεij > 0) < 

0.25. These results also support the selection of compound 18 as a potential lead compound for further 

discovery and optimization of PLG peptidomimetics derivatives. 

Table 7. Prediction of Activity Profiles of Compound 18 for Dopamine Pathway Proteinsa (Selected Examples) 
 

 
 

a Protein names: dopamine (D), norepinephrine (NE), and serotonin (5HTA) 

receptors (R) and transporters (T). 

CONCLUSIONS 

We demonstrated that PTML big data analysis method is able to account for large data sets of 

preclinical assays reported in ChEMBL for compounds targeting dopamine pathway proteins. The 

principal relevance of this finding is not only in the large size of the data set but in the high diversity of 

types of assays, target proteins, cell lines, organisms of target, organisms of assays, etc. present in the data 

set studied. We included a comparative study to nonlinear ANN algorithms. ANN algorithms do not 

improve the results of the linear PTML model. We also presented for the first time a proof-of-concept 

example of the practical uses of this model. In so doing, six novel analogs of PLG modified in the l-

https://pubs.acs.org/doi/full/10.1021/acschemneuro.8b00083#t7fn1


proline and l-leucine scaffolds have been synthesized and chemically characterized. They have been 

tested as mimetics of the neuropeptide PLG for their ability to potentiate the binding of the dopamine 

receptor agonist [3H]NPA to cloned human dopamine D2S receptors. All the compounds show significant 

activity in enhancing the binding of the dopamine D2 receptor agonist [3H]NPA. We used the PTML 

model to predict the results of multiple preclinical assays for the new compounds. In addition, a 

molecular docking study for some of these compounds was also reported as a complementary study. 

METHODS 

General Chemistry Procedures. All chemicals were of reagent grade, were obtained from Aldrich 

Chemical Co., and were used without further purification. All air sensitive reactions were carried out 

under argon. Flash chromatography was performed on flash silica gel SDS type 60 A.C.C., 35–70 μm, 

and analytical TLC was carried out on precoated silica gel plates (Merck 60 F254, 0.2 mm). Melting points 

were measured on a Reichert Kofler Thermopan apparatus and are uncorrected. Na-D line polarimetry 

was carried out at 25 °C on a PerkinElmer 241 polarimeter. Infrared spectra were recorded on a JASCO 

FT/IR-4100 spectrophotometer. 
1
H and 

13
C NMR spectra were recorded on a Varian Mercury 300 or a 

Varian Inova 400 spectrometers at 300 or 400 and 75 or 100 MHz, respectively, using TMS as an internal 

standard (chemical shifts in δ values, J in hertz). Mass spectra were recorded on Micromass Autospec or 

Bruker Microtof spectrometers. Microanalyses were performed on a Thermo Finnigan Flash 1112. 

 

Methyl d-[(3R,5S)-3,5-Bis(azidomethyl)-1-(tert-butoxycarbonyl)]prolyl-l-valyl-l-alanilate (IIa). 

The synthesis of this compound has been reported before.(49) To a solution of the dipeptide acid Ia 

(310.0 mg, 0.73 mmol) in CH3CN anhydrous (18.6 mL) at 0 °C under argon was added O-(benzotriazol-

1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU, 375.02 mg, 1.17 mmol). The resulting 

suspension was stirred for 30 min at 0 °C. l-Alanine methyl ester hydrochloride (122.27 mg, 0.88 mmol) 

in CH3CN anhydrous (18.6 mL) and N,N-diisopropylethylamine (DIEA, 0.51 mL, 2.92 mmol) were 

added. The reaction mixture was stirred at 0 °C for 1 h and at room until complete consumption of the 

starting material (TLC; 21 h).The solvent was removed in vacuo, the residue was dissolved in EtOAc 

(100 mL), and this solution was washed with saturated aq. NaHCO3 (2 × 50 mL) and brine (2 × 50 mL). 

The organic layer was dried over Na2SO4 and evaporated to dryness. The solid crude product was purified 

by flash column chromatography with hexane/EtOAc 1:2 as eluent to afford by concentration IIa (290 

mg, 78%), white solid; mp = 161–163 °C. [α]
25

D −59.6 (c 0.97, MeOH). IR (solid) ν: 3283, 2977, 2933, 

2101, 1739, 1693, 1639, 1539, 1450, 1379, 1365, 1267, 1217, 1164, 1137, 1056 cm
–1

. 
1
H NMR (CDCl3, 

rotamers present) δ: 7.18, 6.34, and 6.15 (3 br s, 2H D2O exchange, 2NH), 4.52–4.03 (4 m, 3H), 3.98–

3.91 (m,1H), 3.72, 3.70, and 3.66 (3 s, 3H, CO2CH3), 3.49–3.46 (m, 2H), 3.41 (dd, J = 12.1, 2.3 Hz, 1H), 

2.51–2.30 (2 m, 3H), 2.06–2.01, 1.86–1.79 and 1.74–1.61 (3 m, 2H), 1.43 and 1.34 (2 s, 9 H, 3 CH3), 1.38 

(d, J = 7.0 Hz, 3H, CH3Ala), 0.94 and 0.88 (2 d, J = 7.1 Hz, 2 CH3Val). 
13

C NMR (CDCl3, rotamers present) 

δ: 172.95 (C), 171.95 and 171.48 (C), 170.77 and 170.30 (C), 154.19 (C), 81.79 and 80.94 (C), 65.90 and 

65.61 (CH), 58.44, 57.97, and 57.58 (CH), 54.30(CH2), 53.76 and 53.52 (CH2), 52.58 and 52.26 (CH3), 

48.39 and 48.12 (CH), 42.56 (CH), 41.16 (CH), 32.08, 30.95, and 29.71 (CH2), 29.13 (CH), 28.29 (3 

CH3), 19.37 and 19.06 (CH3), 18.27 and 18.12 (CH3), 17.34 and 16.99 (CH3). ESI-TOF HRMS, m/z: 

[M]
+
, (C21H36N9O6) 510.2801, requires 510.2783. 

 

d-[(3S,5R)-3,5-Bis(azidomethyl)-1-(tert-butoxycarbonyl)]prolyl-l-leucyl-l-alanine (IIIa). To a 

stirred solution of IIa (100 mg, 0.196 mmol) in THF (1 mL) at 0 °C was added dropwise a solution of 

LiOH (58.68 mg, 2.45 mmol) in THF/H2O (1/1) (4 mL), and the reaction mixture was stirred for 0.5 h, 

warmed to room temperature, and stirred for a further stirred 52 h. The THF was removed, the residue 

was dissolved in H2O (10 mL), and this solution was adjusted to pH 4 with 1 M H2SO4. The solution was 

concentrated to give a white solid, which was triturated with warm Et2O/EtOH 1:3 (40 mL) to afford, 

after concentration, a white solid (91 mg, 94%); mp = 120–123 °C. [α]
25

D–34.2 (c 0.81, MeOH). IR 

(solid) ν: 3301, 2972, 2933, 2099, 1651, 1610, 1524, 1454, 1393, 1367, 1256, 1141, 774 cm
–1

. 
1
H NMR 

(CDCl3, rotamers present) δ: [11.04–11.02 and 10.80–10.78 (2 m), 7.13 (d, J = 7 Hz) and 7.02 (d, J = 7.4 

Hz), 3H, D2O exchange, CO2H and 2 NH], 4.64–4.60 (m, 1H), 4.42–4.29 (m, 2H), 4.04–3.99 (m, 1H), 

3.77–3.31 (m, 4H), 2.93–2.83 (m, 1H), 2.38–2.37 (m, 2H), 2.0–1.91 (m, 1H), 1.73–1.70 (m 1H), 1.42–
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1.20 (m, 12H, 4 CH3, 3 CH3tert-butyl and CH3Ala), 0.94–0.85 (m, 6H, 2 CH3Val). 
13

C NMR (CDCl3, rotamers 

present) δ: 177.76 and 172.67 (C), 172.78 (C), 171.89 (C), 155.36 (C), 81.91 and 81.85 (C), 64.10 (CH), 

59.58 and 58.42 (CH), 54.11 (CH2), 53.60 (CH2), 50.61 (CH), 40.93 (CH), 31.80 (CH2), 29.65 (CH), 

28.17 (3 CH3), 27.98 (CH), 21.78 (CH3), 19.84 (CH3), 18.87 (CH3). ESI-TOF HRMS, m/z: [M]
+
, 

(C20H34N9O6) 496.2631, requires 496.2627. 

 

d-[(3S,5R)-3,5-Bis(azidomethyl)-1-(tert-butoxycarbonyl)]prolyl-l-valyl-l-alanylamide (IVa). 

Methyl ester IIIa (100 mg, 0.20 mmol) was treated with a concentrated solution of ammonia in MeOH 

(10 mL) at room temperature. The solution was stirred for 27 h, and the solvent and excess ammonia were 

removed in vacuo. The solid residue was successively dissolved in CH2Cl2 (3 × 10 mL) and then 

evaporated to dryness to afford IVa (90 mg, 90%) as a white solid; mp = 212–214 °C. [α]
25

D– 38.2 

(c0.82, MeOH). IR (solid) ν: 3262, 3202, 2973, 2099, 1678, 1636, 1534, 1451, 1365, 1255, 1164, 1146 

cm
–1

. 
1
H NMR (CDCl3, rotamers present) δ: [7.45 (d, J = 8.8 Hz, 1H, D2O exchange), 6.71 (br s, 1H, D2O 

exchange), 6.06 (d, J = 6.2 Hz, 1H, D2O exchange), 5.12 (br s, 1H, D2O exchange), 2 NH + NH2], 4.61–

4.53 (m, 1H), 4.18 (dd, J = 6.6, 3.6 Hz, 1H), 4.13–4.08 (m, 1H), 3.94 (d, J = 7.4 Hz, 1H), 3.86 (dd, J = 

12.3, 4.8 Hz, 1H), 3.55–3.43 (m, 2H), 3.36 (dd, J = 12.3, 1.6 Hz, 1H), 2.63–2.50 (2 m, 2H), 2.34 (dt, J = 

13.3, 8.5 Hz, 1H), 1.74–1.68 (m, 1H), 1.55 (s, 3H, CH3Ala), 1.47, 1.45, and 1.44 (apparent 4s, 9H, 3CH3), 

1.04, 0.98, and 0.94 (3d, J = 7.0 Hz, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, rotamers present) δ: 175.75 

(C), 173.09 and 172.48 (C), 172.04 (C), 155.16 (C), 80.65 and 80.41 (C), 65.67 and 65.49 (CH), 59.98, 

59.50, 58.68, and 58.13 (CH), 58.68 and 58.13 (CH), 54.49 and 53.95 (CH2), 53.02 (CH2), 49.41 (CH), 

43.04 (CH), 41.79 (CH), 32.33, 31.09, and 30.04 (CH2), 31.85 and 31.45 (CH), 28.51, 28.56, and 20.40 (3 

CH3), 19.94 and 19.83(CH3), 19.55 and 19.37 (CH3), 18.86 and 18.77(CH3). ESI-TOF HRMS, m/z: [M]
+
, 

(C20H35N10O5) 495.2805, requires 495.2786. 

 

Methyl d-[(3R,5S)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanilate Hydrochloride (13). Compound 

IIa (50.7 mg, 0.1 mmol) was dissolved in 4 N HCl in dioxane (2 mL), and the reaction mixture was 

stirred at room temperature for 6.5 h. The reaction mass was concentrated, and the residue was azeotroped 

with CH2Cl2 (5 × 5 mL) to afford 13 (41 mg, 93%), as a low melting point beige solid. [α]
25

D −45.3 (c 

0.96, MeOH). IR (solid) ν: 2963, 2927, 2101, 1741, 1650, 1541, 1455, 1276, 1160, 1053 cm
–1

. 
1
H NMR 

(pyridine-d5, rotamers present) δ: 9.53–9.52, 9.40–9.38, 9.29–9.27 and 7.41 (3 br s, 4H, D2O exchange, 2 

NH, 
+
NH2), 4.95–4.72 and 4.55–4.53 (2 m, 3H), 4.01–3.86 (m, 2H), 3.72–3.59 (m, 3H), 3.55 (s, 3H, 

CH3), 2.83–2.81, 2.44–2.39 and 2.22–2.20 (3 m, 3H), 1.69–1.61 (m, 1H), 1.52, 1.36, and 1.29 (3d, J = 

7.0, 7.1, and 7.0 Hz, 3H, CH3Ala), 1.10–1.02 (m, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, rotamers present) 

δ: 173.40 (C), 171.33 and 171.19 (C), 171.10 (C), 66.84 (CH2), 62.84 (CH), 59.0, 58.73 and 58.63 (2 

CH), 53.86 and 52.88 (CH2), 51.66 (CH3), 48.40 (CH), 44.14 (CH), 43.52 (CH), 33.64 (CH2), 31.51 

(CH), 19.44 and 19.32 (CH3), 18.32 and 18.21 (CH3), 17.80 and 17.06 (CH3). ESI-TOF HRMS, m/z: 

[M]
+
, (C16H28N9O4) 410.2263, requires 410.2259. 

 

d-[(3S,5R)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanine Hydrochloride (14). The same procedure 

as used to make compound 13 was used for 14 from IIIa (50.3 mg, 0.10 mmol) to give 14 (43 mg, 93%) 

as a low melting point beige solid. [α]
25

D −18.2 (c 0.95, MeOH). IR (solid) ν: 3246, 2964, 2931, 2104, 

1649, 1556, 1455, 1407, 1262, 1162 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.60–9.54 and 7.10 

(m and br s, 5H, D2O exchange, OH, 2 NH, 
+
NH2), 4.95–4.87 and 4.74–4.72 (2 m, 3H), 4.04–3.89, 3.81–

3.74 and 3.69–3.59 (3 m, 6H), 2.86–2.85, 2.53–2.48, 2.25–2.24 (3 m, 3H), 1.72–1.69 and 1.53–1.46 (2 m, 

3H, CH3Ala), 1.25–1.03 (m, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, rotamers present) δ: 175.89 (C), 171.88 

(C), 171.25 (C), 63.00 (CH), 61.56 (CH), 59.50 and 59.52 (CH), 54.22 and 53.07 (CH2), 49.29 (CH), 

44.50 (CH), 33.94 and 29.98 (CH2), 31.80 (CH), 19.76 (CH3), 18.79 (CH3), 18.02 (CH3). ESI-TOF 

HRMS, m/z: [M]
+
, (C15H26N9O4) 396.2111, requires 396.2102. 

 

d-[(3S,5R)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanylamide Hydrochloride (15). The same 

procedure as used to make compound 13 was used for 15 from IVa (50 mg, 0.1 mmol) to give 15 (42 mg, 

95%) as a low melting point beige solid. [α]
25

D −36.2 (c 0.96, MeOH). IR (solid) ν: 3243, 2963, 2928, 

2102, 1653, 1544, 1453, 1373, 1268, 1121 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.69 and 9.52 

(2 d, J = 6.8 and 8.8 Hz, respectively, 2H, 2NH), 8.71 and 8.10 (2 br s, 2H, D2O exchange, NH2), 7.15 (br 

s, 2H, D2O exchange, 
+
NH2), 5.22–5.20 (m, 1H), 4.97–4.94 (m, 1H), 4.20–4.15 (m, 1H), 4.01–3.82 (m, 



3H), 3.70–3.64 (m, 2H), 2.92–2.89 (m, 1H), 2.43–2.36 (m, 2H), 1.85–1.83 (m, 1H), 1.51 (d, J = 5.9 Hz, 

3H, CH3Ala), 1.11 (dd, J = 22.4, 6.8 Hz, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, rotamers present) δ: 175.75 

(C), 171.53 (C), 170.84 (C), 62.52 and 61.57 (CH), 61.59 (CH2), 60.11 and 59.45 CH), 54.07 and 52.42 

(CH2), 49.47 (CH), 44.70 and 43.87 (CH), 33.85 and 29.98 (CH2), 32.10 (CH), 19.73 (CH3), 19.13 (CH3), 

18.70 (CH3). ESI-TOF HRMS, m/z: [M]
+
, (C15H27N10O3) 395.2269, requires 395.2262. 

 

Methyl l-[(3R,5S)-3,5-Bis(azidomethyl)-1-(tert-butoxycarbonyl)]prolyl-l-valyl-l-alanilate (IIb). 

The same procedure as used to make compound IIa was used for IIb from Ib (110 mg, 0.26 mmol) to 

give IIb (132 mg, 61%) as a white solid, mp = 104–106 °C. [α]
25

D −11.9 (c 92, MeOH). IR (solid) ν: 

3296, 2977, 2099, 1745, 1698, 1644, 1542, 1383, 1366, 1256, 1210, 1164, 1137, 1055 cm
–1

. 
1
H NMR 

(pyridine-d5, rotamers present) δ: 7.39, 6.50, 6.39, and 6.30 (4 br s, 2H D2O exchange, 2 NH), 4.55–4.50 

and 4.43–4.39 (2 m, 1H), 4.21–4.19 and 4.08–3.96 (2 m, 3H), 3.71, 3.70, and 3.69 (3 s, 3H, CO2CH3), 

3.52–3.39 (m, 3H), 2.56–2.19, 2.13–2.09, 1.90–1.83 and 1.72–1.63 (4 m, 5H), 1.47–1.32 (m, 3H, CH3Ala), 

1.42, 1.41, 1.39, 1.38, and 1.36 (5s, 9H, 3 CH3), 0.95–0.86 (m, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, 

rotamers present) δ: 173.08 (C), 172.06 and 171.59 (C), 170.89 and 170.40 (C), 154.22 (C), 81.60 and 

81.07 (C), 65.85, 65.48, and 65.30 (CH), 58.52, 57.83, 57.69, and 57.33 (CH), 54.31 and 53.99 (CH2), 

53.76 and 53.33 (CH2), 52.5 and 52.33 (CH3), 48.41 and 48.09 (CH), 42.22 (CH), 41.28 and 40.74 (CH), 

32.19, 30.76, and 29.63 (CH2), 31.22 (CH), 28.84 and 28.27 (3 CH3), 19.43, 19.11, 18.07, 17.70, 17.31, 

and 16.54 (3CH3). ESI-TOF HRMS, m/z: [M]
+
, (C21H36N9O6) 510.2800, requires 510.2783. 

 

l-[(3S,5R)-3,5-Bis(azidomethyl)-1-(tert-butoxycarbonyl)]prolyl-l-valyl-l-alanylamide (IVb). The 

same procedure as used to make compound IVa was used for IVb from IIb (60 mg, 0.12 mmol) to give 

IVb (58 mg, 97%) as white solid, mp = 148–152 °C. [α]
25

D −5.8 (c 0.96, MeOH). IR ν: 3326, 3210, 2979, 

2098, 2100, 1682, 1648, 1541, 1456, 1340 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.56–9.53, 

9.38–9.32, 9.21–9.12, 9.05–9.02, 8.35–8.24, 8.22–8.20, 8.10–8.03 and 7.90–7.88 (8 m, 4H D2O 

exchange, 2 NH + NH2), 5.11–5.06 (m, 1H), 4.71–4.66, 4.61–4.55, 4.41–4.36, 4.32–4.30 and 4.16–4.01 

(5 m, 3H), 3.76–3.73 and 3.61–3.51 (2 m, 3H), 2.75–2.64 (m, 1H), 2.57–2.34 (m, 2H), 1.83–1.77 (m, 

1H), 1.63 and 1.61 (2s, 9H, 3 CH3), 1.55–1.51 (m, 3H, CH3Ala), 1.33–1.28 (m, 1H), 1.17 and 1.14–1.11 (d, 

J = 6.9 Hz and m, 6H, 2 CH3Val). ESI-TOF HRMS, m/z: [M + Na]
+
, (C20H34N10NaO5) 517.2620, requires 

517.2606. 

 

Methyl l-[(3R,5S)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanilate Hydrochloride (16). The same 

procedure as used to make compound 13 was used for 16 from IIb (50 mg, 0.10 mmol) to give 16 (40 

mg, 91%) as a low melting point beige solid. [α]
25

D −17.0(c 0.81, MeOH). IR ν: 3052, 2961, 2927, 2103, 

1737, 1648, 1545, 1453, 1267, 1211, 1161, 1055 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.64–

9.58, 9.50–9.38, 9.37–9.35 and 9.20–9.19 (4 m, 2H, D2O exchange, 2 NH), 7.40 (br s, 2H, D2O exchange, 
+
NH2), 4.96–4.84 (2 m, 1 H), 4.75–4.63 (m, 1H), 4.02–3.89 (m, 3H), 3.81–3.58 (m, 3H), 3.61 and 3.54 

(2s, 3H, CH3), 2.91–2.87 (m, 1H), 2.51–2.49 and 2.38–2.26 (2 m, 2H), 1.73–1.68 (m, 1H), 1.63–1.57 (m, 

1H), 1.47 and 1.42 (2 d, J = 7.2 and 7.1 Hz, respectively, 3H, CH3Ala), 1.16–0.94 (m, 6H, 2 CH3Val). 
13

C 

NMR (pyridine-d5, rotamers present) δ: 173.83 (C), 171.84 (C), 170.77 (C), 63.07 and 62.97 (CH), 61.59 

(CH2), 59.73, 59.52, 59.31, and 59.24 (CH), 53.96, 53.62, and 52.97 (CH2), 52.05 and 51.96 (CH3), 48.93 

and 48.74 (CH), 44.75, 44.26, and 43.87 (CH), 34.02, and 29.99 (CH2), 33.65 (CH), 31.75 and 31.71 

(CH), 19.73 and 19.59 (CH3), 18.63 and 18.47 (CH3), 17.58 and 17.45 (CH3). ESI-TOF HRMS, m/z: 

[M]
+
, (C16H28N9O4) 410.2263, requires 410.2259. 

 

l-[(3S,5R)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanine Hydrochloride (17). To a stirred solution 

of IIb (60 mg, 0.12 mmol) in THF (1 mL) at 0 °C was added dropwise a solution of LiOH (36 mg, 1.5 

mmol) in THF/H2O (1/1) (3 mL), and the resultant mixture was stirred for 0.5 h at this temperature and 

then 18 h at room temperature. The THF was removed, the residue was dissolved in H2O (7.5 mL), and 

the resulting aqueous solution was adjusted to pH 4 by the addition of 1 M H2SO4. White solid obtained 

after removal of H2O to dryness was extracted with a mixture of Et2O/EtOH (1:3) (2 × 15 mL) to afford, 

after elimination of solvent to dryness, a white solid (0.39 mg) of mp = 173–177 °C, which without 

further purification was dissolved in 4 N HCl in dioxane (2 mL), and the reaction mixture was stirred at 

room temperature for 6.5 h. The elimination of solvents to vacuum through coevaporation with CH2Cl2 (5 

× 5 mL) led to 17 (42.5 mg, 84%) as a solid beige of low melting point. [α]
25

D +7.2 (c 0.79, MeOH). IR ν: 



3382, 2104, 1655, 1543, 1456, 1270, 1049 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.72–9.70, 

9.68–9.64, 9.47–9.45 and 9.34–9.31 (4 m, 2H D2O exchange, 2 NH), 6.61 (br s, 3H D2O exchange, 
+
NH2 

and OH), 4.98–4.87 and 4.70–4.63 (2 m, 2H), 3.95–3.93, 3.88–3.85 and 3.73–3.57 (3 m, 8H), 2.86–2.85, 

2.52–2.35 and 2.21–2.17 (4m, 2H), 1.66–1.56 and 1.53–1.52 (2 m, 3H, CH3Ala), 1.20–1.03, 0.98, and 0.92 

(m and 2 d, J = 6.6 Hz, 6H, 2 CH3Val). 
13

C NMR (pyridine-d5, rotamers present) δ: 175.84 (C), 171.87 (C), 

170.91 (C), 62.94 (CH), 61.57 (CH2), 59.69 and 59.55 (CH), 53.81 and 53.07 (CH2), 49.19 (CH), 44.41 

(CH), 43.90 (CH), 34.05 and 29.97 (CH2), 31.68 (CH), 190.80 and 19.70 (CH3), 18.79 (CH3), 18.13 

(CH3). ESI-TOF HRMS, m/z: [M]
+
, (C15H26N9O4) 396.2096, requires 396.2102. 

 

l-[(3S,5R)-3,5-Bis(azidomethyl)]prolyl-l-valyl-l-alanylamide Hydrochloride (18). The same 

procedure as used to make compound 13 was used for 18 from IVb (41 mg, 0.08 mmol) to give 18 (33 

mg, 92%) as a low melting beige solid. [α]
25

D +17.8 (c 0.81, MeOH). IR ν: 3279, 2964, 2928, 2102, 1672, 

1648, 1635, 1542, 1454, 1373, 1265, 1121 cm
–1

. 
1
H NMR (pyridine-d5, rotamers present) δ: 9.47, 9,35, 

8.40, and 8.02 (2 d, J = 8.8 and 7.5 Hz, respectively, and 2 br s, 4H, D2O exchange, 2 NH and NH2), 6.95 

(br s, 2H, 
+
NH2), 5.07, 4.89–4.85, 4.59–4.57 (t, J = 7.1 Hz and 2 m, 3H), 3.94–3.83 (m, 3H), 3.72–3.51 

(m, 3H), 2.86–2.79 (m, 1H), 2.44–2.20 (3 m, 2H), 1.66–1.63 and 1.55–1.51 (2 m, 3H, CH3Ala), 1.22–1.17, 

1.03, and 0.99 (m and 2 dd, J = 14.8, 6.6 Hz and 25, 6.5 Hz, respectively, 6H, 2 CH3Val). 
13

C NMR 

(pyridine-d5, rotamers present) δ: 175.54 (C), 171.58 (C), 171.07 (C), 62.97 (CH), 61.60 (CH2), 59.73 and 

59.38 (CH), 54.06, 53.77, and 53.04 (CH2), 49.43 (CH), 44.73 (CH), 43.88 (CH), 34.04 and 30.0 (CH2), 

31.81 (CH), 19.71 (CH3), 18.95 and 18.82 (CH3), 18.72 and 18.61 (CH3). ESI-TOF HRMS, m/z: [M]
+
, 

(C15H27N10O3) 395.2251, requires 395.2262. 

 

Pharmacological Assay of New PLG Peptidomimetics. Eleven novel PLG mimetics based on a 3,5-

disubstituted proline scaffold were tested for their ability to potentiate the binding of the dopamine 

receptor agonist N-propylnorapomorphine ([3H]NPA) to cloned human dopamine D2S receptors, as 

described by Verma et al.(50) These compounds were tested for their ability to increase [3H]NPA 

binding at eight different concentrations in the range between 1 and 10 mM. The data obtained for PLG 

analog photoaffinity labeling agents 13–21 are shown, and their activity was compared to that of PLG. 

All of the compounds significantly (P < 0.05, ANOVA test, post hoc Dunnet T3 test) increased [3H]NPA 

binding at low concentrations. Compound 13 increased [3H]NPA binding more than that observed with 

PLG at the same concentrations. Both compounds 17 and 18 increased [3H]NPA binding: 17 showed 

40% increased [3H]NPA binding at the concentration 10
–7

 M, and 18 caused increased [3H]NPA binding 

higher than 40% in the range of concentrations 10
–12

–10
–7

 M, showing a better profile than PLG. The 

effect observed with PLG in our work is similar to that observed in our previous work(49) and slightly 

different from that previously reported by Verma et al.,(50) showing increased [3H]NPA binding at lower 

concentrations than those previously reported. This difference can be explained by the different host cell 

where human D2S receptors were expressed as it has been previously reported that allosteric modulators 

are sensitive to environmental changes, which may condition the different active conformations elicited 

by the endogenous agonists on GPCRs.(57) Most of the compounds showed a bell-shaped curve, which is 

compatible with previous findings from in vivo and clinical experiments using PLG.(50) These data 

evidence that these compounds are acting as allosteric modulators of dopamine D2S receptors. To view the 

profiles observed in the series of analogs of PLG tested, we can conclude that the change affects the chain 

of leucine. This happen in both series of compounds; however, the allosteric modulator effect is lower in 

the series of compounds 19–21, counterparts in which the leucine is replaced by valine and the amine 

group of the proline cycle is protected as carbamate, than in the series of compounds 13–18, where the 

glycine is replaced by alanine, which showed most similar profiles to PLG in the increase of the union of 

[3H]NPA to dopamine D2 receptors. 

 

Docking Simulation. Molecular docking techniques were used as a complementary tool useful to 

measure the DPI variable Lij. A transformation similar to previous publications has been applied: Lij = 1 

when the deviation of AEij from the expected value is ΔAEij > 0. This deviation was calculated as ΔAEij = 

AEij – ⟨AEij⟩. The expected value of the parameter is equal to the average value ⟨AEij⟩ for all the 

calculated peptides. The strength of the interactions was quantified by the affinity energy AE ij (kcal/mol) 

of ligands with protein targets using the free software AutoDock Vina.(58) The entire processing was 

done in the BioCAI cluster at University of A Coruna (Spain). The docking flow has several steps that 
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include the ligand and protein processing, molecule format conversion, and geometry optimization before 

the docking calculations. Thus, the ligands are presented as a list of SMILES formulas, and they are 

converted into PDB with optimized 3D structure using the free tool Babel.(59) The protein targets are 

filtered for only the first PDB model, and the nonprotein part is eliminated (water molecules, other 

ligands, etc.). The PDB of ligands and proteins are converted into PDBQT format using AutoDock tools 

scripts (prepare_ligand4.py and prepare_receptor4.py).(60) The protein target is considered rigid in all 

docking calculations, and the interaction search considers the entire surface of the targets. The docking 

flow is based on python and bash scripts, including the reading of the final results. The cutoff for stable 

interactions is considered AE < −7.0 kcal/mol.(61) The results are based on the first docking conformer of 

the ligands with reference root-mean-square deviation of atomic positions RMSD = 0.(62) Authors will 

release the atomic coordinates and experimental data upon article publication. 

 

ChEMBL Data Preprocessing. In this work, the values of the experimental parameter εij that 

characterizes the effect of the ith molecule (mi) over the jth target have been downloaded from ChEMBL. 

This parameter depends on a series of experimental conditions cj = (c0, c1, c2, ..., cn). The conditions could 

be, for example, c0 = type of biological activity parameter εij measured (IC50, Ki, Km, etc.), c1 = jth target 

protein, and c2 = organism of assay (H. sapiens, R. norvegicus, etc.). Unfortunately, the values εij reported 

in ChEMBL are not exact numbers in many cases: there are several examples such as Ki > 1000 or Ki < 

1000 instead of Ki = 1000 (the exact value). On the other hand, the experimental values differ for IC50, Ki, 

Km, etc. Therefore, it is better to develop a classification model than a regression model for the DPI. 

Consequently, the values εij downloaded from ChEMBL have been preprocessed in order to transform 

them into the discrete variable Lij. The transformation used the following rule: Lij = 1 when the deviation 

of εij from the expected value is Δεij > 0 (experimental perturbation with respect to the expected value). 

This deviation was calculated as Δεij = εij – ⟨εij⟩.The expected value of the parameter is equal to the 

average value ⟨εij⟩ for all the drugs with the same jth experimental parameter. In this context, the DPI 

variable Lij is a discrete variable. The value Lij = 1 is indicative of a DPI stronger than the expected, and 

Lij = 0 may be indicative of a DPI weak or lower than expected. 

 

PTML Model of ChEMBL Data Set. González-Díaz et al. introduced a general-purpose PTML 

modeling technique useful to quantify the effect of perturbations in complex biomolecular 

systems.(63,64) Using a PTML model, it is possible to predict the values of the scoring function f(εij)new 

for the ith compound in the jth preclinical assay. The PTML model uses as input the expected value of 

biological activity, f(εij)expt for one compound assayed in the conditions cj and the values of the PT 

operators ΔDk(mi, cj). The expected value f(εij)expt = ⟨εij⟩ is the average value of the biological activity 

parameter εij for all cases in ChEMBL data set with the same c0 = activity parameter εij(units). These PT 

operators ΔDk(mi, cj) = Dk(mj) – ⟨Dk(cj)⟩ are intended to account for the changes (perturbations) in the 

system with respect to the expected values. Specifically, perturbations on the value of the molecular 

descriptors of the drug, Dk(mj), with respect to the expected value, ⟨Dk(cj)⟩, for a drug measured under the 

conditions of the experiment cj. These PT operators resemble the Box–Jenkins MA operators.(18,28) We 

used both linear and nonlinear ML algorithms called linear discriminant analysis (LDA) and artificial 

neural network (ANN) to seek alternative linear and nonlinear models.(52) The compact and developed 

forms of a PTML linear model are given as follows. 

 

 

𝑓(𝜀𝑖𝑗)
new

= 𝑎0 · 𝑓(𝜀𝑖𝑗)
expt

+ ∑ ∑ 𝑎𝑗𝑘 · Δ𝐷𝑘(𝑚𝑖 , 𝑐𝑗) + 𝑒0

 𝑗𝑚𝑎𝑥

𝑗=0

 𝑘𝑚𝑎𝑥

𝑘=1

 (2) 

  

𝑓(𝜀𝑖𝑗)
new

= 𝑎0 · 𝑓(𝜀𝑖𝑗)
expt

+ ∑ ∑ 𝑎𝑗𝑘 · (𝐷𝑘(𝑚𝑖)new − ⟨𝐷𝑘(𝑐𝑗) ⟩
ref

) + 𝑒0

 𝑗𝑚𝑎𝑥

𝑗=0

 𝑘𝑚𝑎𝑥

𝑘=1

 (3) 

  

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


In addition, several ML methods from Weka(53) have been used: Bayes Nets(54), RandomTree(55), 

Random Forest, and Decision Table.(56) The Weka parameters are the default ones. The last classifier 

tested was a Deep Learning model using the following parameters: a single hidden layer with 1000 

neurons with ReLU activation functions, batch normalization, Adam optimizer, accuracy metrics, binary 

cross entropy loose function, and 5000 epochs for training using 2048 batch size. 
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