
Simulation of conforming contact in
real-time multibody dynamics using a

volumetric force model

David Vilela Freire

Advisors:
Manuel González Castro
Alberto Luaces Fernández

Ferrol, September 2018

Dr. Manuel González Castro, Doctor por la Universidade da Coruña, y Dr.
Alberto Luaces Fernández, Doctor por la Universidade da Coruña, certifican que la
presente memoria, titulada Simulation of conforming contact in real-time multibody
dynamics using a volumetric force model, ha sido desarrollada por David Vilela
Freire bajo su supervisión para optar al grado de Doctor con mención Internacional
por la Universidade da Coruña.

Dr. Manuel González Castro, Doctor by the University of A Coruña, and Dr.
Alberto Luaces Fernández, Doctor by the University of A Coruña, certify that this
doctoral dissertation, titled Simulation of conforming contact in real-time multibody
dynamics using a volumetric force model, has been developed by David Vilela Freire
under their supervision in order to obtain the International Doctor mention by the
University of A Coruña.

Ferrol, 2018.

David Vilela Freire Dr. Manuel González Castro Dr. Alberto Luaces Fernández
Doctorando Director Director
PhD. student Advisor Advisor

Miguel Ángel Naya Villaverde
Tutor
Tutor

A mi familia: María, Antonio, Rubén y Sara.

Agradecimientos

Al volver la vista atrás, me resulta prácticamente incomprensible la celeridad
con la que ha transcurrido este tiempo. Han pasado ya cuatro años y medio desde
el comienzo de los desarrollos que han dado como fruto este documento, y es ahora
cuando uno reflexiona y comprende que no son solamente las ideas, sino también
las personas, las que aportan el valor que un trabajo como éste encierra. Es por
ello que me gustaría, antes de comenzar, mencionar a todas esas personas que han
proporcionado, de una forma u otra, algo valioso que ha quedado reflejado en estas
páginas.

En primer lugar, me gustaría agradecer a mis directores, Manuel González y
Alberto Luaces, la orientación que me han dado durante el progreso de esta tesis
y los innumerables traspiés que he dado a lo largo de la misma. De no haber sido
por la capacidad crítica de Manuel y los aparentemente inagotables conocimien-
tos multidisciplinares de Alberto, seguramente éste habría sido un trabajo muy
diferente.

En segundo lugar, querría expresar también mi gratitud hacia Javier Cuadrado
y Daniel Dopico, que han apuntalado constantemente los cimientos que han sos-
tenido esta empresa, y cuyo apoyo, especialmente durante estos últimos meses, ha
hecho posible que fructifique.

Además, desarrollar un trabajo así no sería posible sin la colaboración de todas
las personas que forman el Laboratorio de Ingeniería Mecánica: Miguel, Urbano,
Emilio, Fran González, Amelia, Fran Mouzo, Florian, Antonio, Sarath y Borja.
Ellos han creado el entorno de trabajo óptimo, tanto a nivel profesional como
personal.

Mencionar también a Gabriel Zachmann y Rene Weller, del Department for
Computer Science de la Universidad de Bremen, por los conocimientos que me
brindaron durante mi estancia con ellos.

Por último, ni aun empleando todas las páginas restantes sería suficiente para
poner en valor el apoyo incondicional de mi familia: María, Antonio, Rubén y Sara.
Vosotros habéis sido la semilla y el sustrato.

vii

Abstract

Simulation is a tool on the rise, especially in the industrial field. The usage of
simulators grants the ability of studying, predicting and improving the behavior
of a system, as well as designing a new one. In the case of mechanical processes
simulators, the characterization of contacts and collisions between the different
elements at play is one of the key factors to achieve a realistic simulation. If,
furthermore, the simulator is designed to interact with machines or people, the
need of real-time execution is imposed. Usually, these requirements produce a
conflict of interest, since more complex algorithms demand larger execution times.
Furthermore, all this is worsened by some application’s need of conforming contact
simulation, this is, complex contacts where the size of the contact footprint is not
negligible compared to the size of the bodies in collision. This work studies two
methods suitable for conforming contact simulation and their possibilities to be
used in real-time simulators are discussed.

ix

Resumo

A simulación é unha ferramenta en auxe, especialmente no ámbito industrial.
O emprego de simuladores otorga a capacidade de estudar, predecir e mellora-lo
comportamento dun sistema, así como de deseñar un novo. No caso dos simulado-
res de procesos mecánicos, a caracterización do contacto e das colisións entre os
diferentes elementos en xogo é un dos factores clave para conseguir unha simula-
ción fidedigna. Se, ademáis, ésta está deseñada para interactuar con máquinas ou
persoas, imponse a necesidade de que a execución da simulación sexa en tempo
real. Xeralmente, estos requerimentos producen un conflicto de intereses, xa que al-
goritmos máis complexos esixen tempos de execución máis amplos. Ademáis, todo
isto vese perxudicado pola necesidade dalgunhas aplicacións de simular contactos
conformes, isto é, contactos complexos nos que o tamaño da pegada de contacto
non é desprezable en comparación ó tamaño dos corpos en colisión. Neste traballo
estúdianse dous métodos adecuados para simular contactos conformes e debátense
as súas posibilidades para ser aplicados en simuladores en tempo real.

xi

Resumen

La simulación es una herramienta en auge, especialmente en el ámbito indus-
trial. El empleo de simuladores otorga la capacidad de estudiar, predecir y mejorar
el comportamiento de un sistema, así como de diseñar uno nuevo. En el caso de los
simuladores de procesos mecánicos, la caracterización del contacto y las colisiones
entre los diferentes elementos en juego es uno de los factores clave para conseguir
una simulación fidedigna. Si, además, ésta está diseñada para interactuar con má-
quinas o personas, se impone la necesidad de que la ejecución de la simulación sea
en tiempo real. Generalmente, estos requerimientos producen un conflicto de in-
tereses, ya que algoritmos más complejos exigen tiempos de ejecución más amplios.
Además, todo esto se ve perjudicado por la necesidad de algunas aplicaciones de
simular contactos conformes, esto es, contactos complejos en los que el tamaño de
la huella de contacto no es despreciable en comparación al tamaño de los cuerpos
en colisión. En este trabajo se estudian dos métodos adecuados para simular con-
tactos conformes y se debaten sus posibilidades para ser aplicados en simuladores
en tiempo real.

xiii

Resumen extendido

Introducción
Desde el amanecer de los tiempos, el desarrollo de herramientas ha sido una de

las características más icónicas del ser humano. La capacidad de construir, usar y
mejorar cosas nos ha seguido a través de la historia hasta la Era Digital y de la
Información, ayudándonos a allanar el camino para las generaciones venideras.

Durante mucho tiempo, nuestras herramientas eran simples y rudimentarias,
pero la capacidad para compartir nuestras invenciones con nuestros semejantes
y permitirles desarrollar nuevo conocimiento sobre el nuestro ayudó a mantener
la tecnología en un ciclo de constante mejora que ha llevado a los humanos más
allá de la Tierra. La forma clásica de crear una nueva herramienta o mejorar una
ya existente es construir un prototipo con alguna funcionalidad nueva, probar-
la y corregir todos los errores de diseño detectados. Esta forma de proceder es
bastante efectiva, pero también consume mucho tiempo, ya que muchas veces se
necesita una reconstrucción total del prototipo para resolver un error de diseño.
Afortunadamente, el uso generalizado de los ordenadores ha traído una posibilidad
interesante para sortear este desafío: crear y probar máquinas inexistentes a través
de la simulación en realidad virtual.

La simulación por ordenador y la realidad virtual han sido florecientes campos
de investigación durante las últimas décadas. La continua caída en el precio de la
potencia de cálculo ha hecho posible una explosión en la investigación relacionada
con la informática, y estos campos han salido especialmente beneficiados. Desde
una perspectiva empresarial, la simulación de máquinas y mecanismos conlleva
una gran cantidad de ventajas competitivas y un importante ahorro en los costes:
las plantas de fabricación pueden reducir ampliamente el número de prototipos
fabricados, ya que sus homólogos virtuales pueden hacer frente a muchas de las
pruebas necesarias previas a la producción, las instalaciones de entrenamiento
pueden comenzar a preparar a sus operarios de maquinaria en entornos virtuales
reduciendo en gran medida los costes y riesgos asociados e impulsando el proceso
de aprendizaje, y las líneas de ensamblaje pueden detectar los posibles errores de
producción más rápidamente a través de simulaciones de ensamblaje virtual. Estos

xv

xvi

son sólo algunos ejemplos del enorme potencial que la introducción de la simulación
en la industria ha involucrado.

Muchos de estos simuladores ampliamente extendidos no necesitan contar con
una gran precisión física: en ocasiones es suficiente tener todos los objetos simula-
dos en su lugar e incluso algunos de ellos no precisan de interacción con el usuario.
En estos casos, el uso de modelos reducidos o simplificados implica simuladores
con menores requerimientos de potencia de cálculo y que son lo suficientemente
buenos para hacer el trabajo. Tomemos como ejemplo un simulador de conducción
empleado para enseñar a los estudiantes que desean obtener su permiso de condu-
cir. Para esta tarea, el simulador puede obviar la mayor parte de la complejidad
mecánica de un vehículo y centrarse en el volante, la palanca de cambios y los pe-
dales. Eso es suficiente para que el estudiante aprenda los conceptos básicos antes
de subirse a un automóvil real.

Pero, ¿y si el usuario realmente necesita sentir fuerzas de retroalimentación,
como es el caso de los operarios entrenándose en un simulador de grúa o los tra-
bajadores de una línea de montaje virtual? Estos casos exigen simulaciones más
realistas y precisas y las implementaciones simplificadas no se adaptan a sus nece-
sidades. Las simulaciones de máquinas complejas deben lidiar con un alto número
de entradas y la interacción entre las entidades simuladas plantean un interesante
desafío de ingeniería para poder obtener una caracterización realista. Específica-
mente, la descripción de colisiones e impactos entre objetos es un factor clave en
el desarrollo de un simulador físicamente correcto. Estas estrictas condiciones son
agravadas si la simulación exige ejecución en tiempo real ya que en este caso existen
restricciones de tiempo y se requieren algoritmos eficientes.

La dinámica multicuerpo es una disciplina relativamente joven que permite
el cálculo del movimiento de sistemas mecánicos definidos como un conjunto de
las partes interconectadas que componen dicho sistema. Una vez que cada parte
y cada articulación es definida en una familia de coordenadas preseleccionada,
una formulación multicuerpo integra las ecuaciones del movimiento en el tiempo,
obteniendo así la dinámica del mecanismo.

Este trabajo documenta el uso de la dinámica multicuerpo combinado con un
modelo de fuerza de contacto volumétrico en tiempo real.

Objetivos
El propósito de este trabajo puede ser resumido en los siguientes puntos:

Implementar un modelo de contacto volumétrico capaz de caracterizar de
forma precisa las fuerzas que aparecen en situaciones de contacto conforme.

xvii

Investigar diferentes enfoques para calcular los volúmenes de intersección en
colisiones simuladas de forma genérica.

Evaluar un conjunto de ejemplos y estudiar la viabilidad de la implementa-
ción del método para procesar simulaciones en tiempo real.

Estructura de la tesis

Esta tesis está dividida en los siguientes seis capítulos:
El capítulo 1 es una breve introducción a la motivación que desembocó en la

creación de este documento, y en él se presenta también el estado del arte de la
dinámica multicuerpo y los últimos desarrollos en modelos de contacto y detección
de colisiones.

El capítulo 2 describe la disciplina de la dinámica multicuerpo empleada pa-
ra las simulaciones y la forma en que se formulan e integran las ecuaciones del
movimiento para recrear el movimiento de un mecanismo. Se concluye que la for-
mulación de Lagrange Aumentado con proyecciones en índice 3 satisface los re-
querimientos de estabilidad y eficiencia que precisa un simulador interactivo. Esta
formulación permite resolver el sistema diferencial-algebraico de las ecuaciones del
movimiento para cada instante de tiempo.

En el capítulo 3 se discute un modelo de fuerzas de contacto basado en el
modelo volumétrico de Gonthier, que sirve para caracterizar las fuerzas normales
y tangenciales que aparecen durante la colisión entre dos cuerpos. Éste modelo es
capaz de calcular dichas fuerzas a partir del volumen de intersección entre objetos
con forma arbitraria, de manera que constituye un método general para modelar
los contactos de forma eficiente y precisa.

El capítulo 4 trata sobre los métodos de detección de colisiones y sobre cómo
calcular los parámetros necesarios para caracterizar los impactos. Se presentan
dos algoritmos de detección de colisiones, uno basado en superficies de mallas de
triángulos y otro en aproximaciones volumétricas de esferas, cada uno con sus
particularidades. Estos métodos posibilitan identificar situaciones de contacto y
calcular la geometría de la intersección entre los objetos en colisión que posterior-
mente se emplea para alimentar al modelo de fuerzas de contacto.

El capítulo 5 muestra la metodología presentada aplicada a tres casos diferentes
y sus resultados.

En el capítulo 6 se presentan las conclusiones obtenidas de este trabajo y se
proponen futuras líneas de investigación.

xviii

Metodología
Para verificar la validez de los modelos de contacto implementados, se diseñaron

tres tests diferentes orientados cada uno de ellos a un tipo específico de movimiento
relativo entre cuerpos y su correspondiente fricción: deslizamiento, giro y rodadura.

Test 1: bloque deslizando en un plano inclinado
Este test consistió en un bloque de 1 m x 0.5 m x 0.5 m y 1 kg de masa deslizan-

do cuesta abajo de manera que su mayor dimensión coincide con la dirección de
deslizamiento. El objetivo del test era comparar el ángulo a partir del cual la fuerza
de rozamiento no puede mantener el bloque estático y éste comienza a deslizar.
El valor teórico para un coeficiente de fricción µ = 0.5 es 26.5650◦. Además, se
ejecutó una simulación de 4 segundos de duración con un plano inclinado 30◦ para
asegurar el deslizamiento y comprobar la trayectoria del centroide del bloque, su
velocidad y la desviación de sus ejes con respecto a su orientación inicial.

Para el modelo de malla, la desviación comenzó a los 26◦, lo cual implica
una precisión del 97.87%. El error en la trayectoria del centroide se mantuvo por
debajo de 5× 10−6 durante la simulación de 4 segundos mostrando un crecimiento
cuadrático. El perfil de velocidad resultó ser prácticamente idéntico al teórico y el
mayor desvío angular fue de −6× 10−5. Estos resultados muestran una precisión
muy cercana a la ideal.

El modelo de esferas o IST de este test estuvo compuesto por 12 215 para el
bloque y 15 423 para el suelo. A pesar de que aparentemente el contar con cientos de
fuerzas de contacto en lugar de una sola debería de hacer que la caracterización de
las colisiones se asemejase más a una distribución de fuerzas, el modelo de stiction
encontró dificultades para manejar todas esas colisiones simultáneas, y no pudo
detener al bloque completamente, quedando en todas las pruebas una velocidad
residual dependiente del ángulo del plano base. Los errores de trayectoria, velocidad
y desviación angular fueron bastante significativos y dependientes de la posición
inicial.

En cuanto al rendimiento, el modelo de malla se ejecutó unas 19 veces más
rápido que el modelo IST, siendo sólo el primero capaz de alcanzar la ejecución en
tiempo real.

Test 2: disco rotando en un plano
Se diseñó un test en el que un disco de radio R = 0.25 m, altura H = 0.05 m

y masa m = 1 kg rota sobre un plano a una velocidad angular ω0 = 5π rad s−1

(2.5 Hz). El coeficiente de fricción fue µ = 0.6. El objetivo de este test fue validar
el modelo de resistencia al giro, y se emplearon unos parámetros equivalentes al

xix

test anterior, además de medir el tiempo que el disco tardó en detenerse debido a
la fricción. El valor teórico para este tiempo de frenado es t = 0.5 s.

El modelo de malla tardó en detener el disco 1 s. La fuerza de frenado fue
continua y suave aunque imprecisa. El error de trayectoria máximo fue de 1× 10−4

y los errores de velocidad y desviación angular fueron despreciables.
Para el modelo de esferas se emplearon un IST de 11 212 esferas para el disco y

otro de 21 272 para el suelo. El perfil de frenado fue muy similar al teórico, siendo
el tiempo de parada solamente 0.07 s menor al esperado. El error de trayectoria
fue de 9 mm, el de velocidad 0.05 m/s y el de desviación angular 0.0022 rads. En
general, la simulación mostró bastantes vibraciones debido a las colisiones entre
esferas.

Ninguno de los dos modelos consiguió alcanzar el tiempo real, si bien el modelo
de malla se aproximó bastante, ejecutándose 19 veces más rápido que el IST.

Test 3: cilindro rodando en un plano inclinado
Para comprobar la calidad del modelo de resistencia a la rodadura se empleó

un test consistente en un cilindro de radio R = 0.25 m, altura H = 1 m y masa
m = 1 kg rodando en un plano inclinado 15◦. Se registraron, de forma análoga a
los anteriores tests, los perfiles de trayectoria, velocidad y orientación para com-
pararlos a los teóricos.

El modelo de malla mostró unos perfiles muy similares a los esperados, con
errores prácticamente despreciables durante el primer segundo de simulación. So-
lamente el error de velocidad aumentó a partir de ese punto hasta alcanzar un
desvío del 8% con respecto al teórico. Mayores inclinaciones de plano implica-
ron un aumento en la frecuencia del ruido debido a la modelización del cilindro
mediante una malla de triángulos.

En cuanto al modelo de esferas, se empleó un IST de 8849 esferas para el
cilindro, mientras que para el suelo hubo que generar una disposición de 200× 30
esferas alineadas, ya que el IST inicial produjo trayectorias incorrectas durante las
simulaciones, llegando a desviar el cilindro perpendicularmente a su trayectoria.
Con la nueva modelización, el error máximo de trayectoria fue de 1 cm, el desvío
angular de 1◦ y el perfil de velocidades se aproximó bastante al teórico.

El modelo de malla se ejecutó 6.5 veces más rápido, siendo el único en alcanzar
el tiempo real.

Conclusiones y trabajo futuro
Esta tesis tiene por objetivos evaluar la factibilidad del empleo de modelos de

fuerza volumétricos en situaciones de contacto conforme en entornos de tiempo

xx

real e investigar la precisión de dichos métodos.
La unión entre la formulación multicuerpo, el modelo volumétrico de contacto

y el método de detección de colisiones hizo posible el desarrollo de un algoritmo
capaz de simular contactos conformes en tiempo real, y por lo tanto es apto pa-
ra ser empleado en entornos interactivos como simuladores de ensamblaje virtual.
Las ecuaciones del movimiento fueron expresadas en una formulación Lagrangiana
Aumentada de índice 3 e integrada con un paso de tiempo de 1 milisegundo a
través de la regla trapezoidal. Se implementó un modelo volumétrico de contacto
de Gonthier para calcular las fuerzas normales y se acopló a un modelo de fuerzas
tangenciales para modelar los fenómenos de fricción. Dos algoritmos de detección
de colisiones diferentes, uno basado en superficies de mallas de triángulos y otro
en aproximaciones volumétricas de esferas, fueron empleados para calcular las pro-
piedades de intersección durante las colisiones y alimentar al modelo de Gonthier.
Para el modelo de malla, se escribió una librería de detección de colisiones (LIM-
CODE). Esta librería calcula intersecciones malla-malla y fue desarrollada con la
coherencia de resultados en mente.

Se diseñaron e implementaron tres tests diferentes para investigar las fortalezas
y debilidades de los dos enfoques en el cálculo de los volúmenes de intersección.
Estos tests tenían por objetivo validar la precisión del modelo de fuerzas en todo
tipo de situaciones de contacto comunes presentes en simulaciones de ensamblaje
virtual, y cada uno de ellos fue orientado a uno de los posibles movimientos relativos
entre dos cuerpos: deslizamiento, rodadura y giro.

Sobre nuestra librería de dinámica multicuerpo (MBSLIM) y nuestras librerías
de detección de colisiones (MBSMODEL, LIMCODE), se implementó una librería
de exportación de datos (MBSDEBUG) en C++ para depurar y visualizar colisio-
nes, recortes de triángulos y procesos de reconstrucción de mallas, e identificar los
posibles escollos para estos algoritmos. Esta librería exporta información gráfica
en el formato EnSight6 que puede ser abierto con el software Paraview.

Tras evaluar los resultados de estos tests, se sacaron las siguientes conclusiones:

El modelo de detección de colisiones basado en mallas de triángulos es capaz
de producir resultados precisos en tiempo real en la mayor parte de los casos.
El hecho de contar con una representación casi exacta (exacta para superficies
planas) del volumen de intersección es claramente un factor clave para el
cálculo de los parámetros necesarios para el modelo de fuerzas.

Por otra banda, este modelo calcula simplemente una fuerza total. Para
calcular la dirección de dicha fuerza, se debe asumir un contorno de contacto
plano para poder aproximarlo a un plano de contacto y obtener su normal,
lo que hace que el modelo pierda generalidad. Este problema y una posible
solución se explicarán y discutirán más en profundidad en la próxima sección.

xxi

La implementación del modelo de esferas o IST, a pesar de no ser capaz de
ser ejecutada en tiempo real o generar simulaciones realistas, es mas sencilla
y general, ya que reduce una colisión volumétrica compleja a un número de
contactos esfera-esfera y consecuentemente a un número de fuerzas, aseme-
jándose más, por lo tanto, a una distribución de fuerzas. A pesar de ello,
la aproximación hecha al emplear este modelo parece ser demasiado tosca
para representar fielmente colisiones de ensamblaje virtual, al menos de una
manera realista.

En los test ejecutados, con el número seleccionado de esferas para el modelo
IST, el modelo de malla se ejecutó hasta 20 veces más rápido. Probablemente
la evaluación del IST sería más rápida con menos esferas, pero esto desafor-
tunadamente implicaría perder precisión y realismo en la simulación, que
con entre 10000 y 15000 es ya insuficiente para cumplir los requisitos, como
se ha visto anteriormente. Además, la necesidad de rellenar los objetos con
esferas implica que, en objetos con un ratio superficie/volumen bajo, como
los empleados en los tests, muchas de las esferas no se ven involucradas en
las colisiones ya que son esferas internas a mayor profundidad que la má-
xima penetración. Esto causa una gran ineficiencia desde el punto de vista
de la memoria, ya que la información de todas las esferas es cargada pero
no empleada en su mayoría. El problema empeora debido al hecho de que el
modelo de stiction necesita llevar un registro del estado de las colisiones en
el paso de tiempo anterior, y por lo tanto incrementa la cantidad de infor-
mación que debe ser guardada para cada par de esferas. Esto exige que en
cada paso de tiempo haya que realizar una búsqueda a través de una lista de
pares de esferas activas que resulta bastante costosa computacionalmente.

Existen diversas líneas de investigación que podrían mejorar sensiblemente el
estado actual de este trabajo.

Generalización de las colisiones
A pesar de que los test descritos en esta tesis cubren algunas situaciones que

pueden aparecer en condiciones de contacto conforme simples, deberían probarse
nuevos tests para validar el rendimiento de los métodos en situaciones más comple-
jas, como un cubo (o cualquier otro objeto) insertado en un agujero donde encaja
perfectamente. Este tipo de test implica contacto conforme multi-plano y sería
interesante estudiar cómo se comporta el modelo volumétrico en estas situacio-
nes. Además, se deberían probar colisiones generales en las que aparezcan diversos
tipos de fricción simultáneamente para asegurar que los modelos de fricción no
interfieren los unos con los otros.

xxii

También se deberían realizar tests con un mayor número de objetos para estu-
diar cómo afecta el tamaño del problema a la velocidad de ejecución. Se supone que
una simulación de realidad virtual contará con múltiples objetos interactuando, así
que debe asegurarse un buen rendimiento con un alto número de mallas.

Finalmente, contar con un simulador de ensamblaje virtual sería el entorno de
pruebas ideal para probar todo tipo e colisiones y validar la aplicabilidad de este
tipo de métodos para producción.

Optimizaciones
Aparte de las optimizaciones puramente de programación que siempre pueden

ser realizadas para aumentar el rendimiento, algunos cambios podrían también
aportar mejoras a los tiempos de simulación.

Incrementar el paso de tiempo: actualmente se está empleando un paso de
tiempo de 1 milisegundo, pero podría ser aumentado a 3, 5 o incluso 10
milisegundos siempre y cuando la precisión no se vea afectada. Visualmente,
los usuarios no percibirán frecuencias de refresco mayores a 60 fotogramas
por segundo, de manera que aumentar el paso de tiempo podría permitir
la inclusión de un número mayor de objetos interactivos en la simulación
manteniendo una visualización lo suficientemente buena. A pesar de ello,
si se conecta algún dispositivo háptico a la simulación, este cambio ha de
ser tratado con cuidado ya que la frecuencia de refresco óptima para éstas
máquinas es de 1KHz.

Llamar a la rutina de detección de colisiones una vez por paso de tiempo: en
algunos pasos de tiempo, especialmente en aquellos en los cuales los objetos
están en colisión o durante contactos complejos, el integrador debe iterar
varias veces hasta converger a una solución. Esto conlleva desplazamientos
muy pequeños de los objetos que generalmente no implican cambios en las
mallas de colisión. A pesar de esto, la detección de colisiones es llamada
incondicionalmente en cada iteración. Al ser la tarea con mayor uso de CPU,
eliminar estas llamadas extra podría suponer un notable ahorro de tiempo
de ejecución.

Paralelización
Los métodos presentados en este documento se ejecutan secuencialmente, uno

tras el otro. Las arquitecturas de los microprocesadores modernos, incluso las de los
de uso doméstico, cuentan con la capacidad de ejecutar varias tareas simultánea-
mente. Dividir un algoritmo en sub-tareas que puedan ser ejecutadas en paralelo

xxiii

no es una labor trivial, ya que la sincronización entre procesos independientes tiene
un coste no despreciable. Para cada tipo de problema se debe buscar un esquema
de paralelización satisfactorio que minimice la transferencia de información entre
procesos. En [28] se manifiestan algunas advertencias acerca del alto coste que
puede suponer la paralelización de problemas multicuerpo pequeños o medianos:
normalmente el cuello de botella es el cálculo del Jacobiano de las restricciones y
la resolución del sistema de ecuaciones lineal final.

Una línea de investigación interesante consiste en dividir el sistema multicuerpo
en varios sub-mecanismos con sus propios procesos que interactúan mediante el
intercambio de fuerzas de reacción. Los costes de sincronización se pueden evitar
empleando comunicaciones inter-proceso.

Detección de colisiones con tiempo crítico para el modelo
IST

Un algoritmo de detección de colisiones crítico en el tiempo implicaría ajustar
el cálculo de las propiedades de intersección volumétrica a una cantidad de tiem-
po predeterminada. En [58] se realizaron los primeros esfuerzos para implementar
esta característica en la librería CollDet. Este enfoque implicaría que, durante el
recorrido del IST, se devolvería un volumen de intersección aproximado en caso
de que se alcance el tiempo máximo. Este comportamiento asegura una ejecución
a tiempo real con el coste de perder precisión en las colisiones más complejas.
Emplear este algoritmo modificado podría ser beneficioso para mantener una fre-
cuencia de refresco interactiva, al menos para simulaciones human-in-the loop o
hardware-in-the-loop.

Stiction con múltiples contactos
El modelo IST fue incapaz de detener completamente el bloque deslizante del

primer test. Parece ser que el modelo de stiction empleado podría tener problemas
al manejar cientos de contactos simultáneamente. Es necesaria una investigación
más profunda para clarificar este comportamiento.

Descomposición de formas arbitrarias
Los modelos de fuerza necesitan un punto de aplicación y una dirección para

poder ser introducidos en la simulación. Esto plantea un revés para los modelos
volumétricos como el modelo de malla presentado en este trabajo: un volumen
de intersección no tiene tal dirección, de manera que para burlar este problema y
calcular un vector normal, se emplea el contorno de contacto para calcular un plano
mediante el método de los mínimos cuadrados. La normal de este plano sirve como

xxiv

dirección de la fuerza normal, pero esta forma de proceder relega el modelo a los
anteriormente mencionados contactos planos, ya que las intersecciones multi-plano
no son aproximables a un sólo plano y por lo tanto no satisfacen los requisitos del
modelo de Gonthier.

El modelo IST no sufre este problema exactamente, ya que cada par de esfe-
ras es tratado de forma independiente y su normal se calcula fácilmente como el
vector director entre los centros de ambos centros. A cambio, muchas de estas nor-
males son imprecisas y generalmente precisan de algún tipo de filtrado para evitar
comportamientos extraños. Ejemplos de esto son las colisiones entre una esfera del
cuerpo A que ha penetrado complemente la capa más externa de esferas del cuerpo
B y genera una fuerza de atracción cuando los dos cuerpos comienzan a separarse,
o fuerzas con un gran componente tangencial debido a colisiones laterales entre
esferas.

Para que el modelo de malla sea capaz de enfrentarse a colisiones no planas
(como un cubo insertado en un agujero cúbico de sus mismas dimensiones), se
podría aplicar una descomposición arbitraria. Los objetos serían preprocesados
y divididos en un conjunto de formas convexas, y cada parte sería usada para
calcular una fuerza empleando el modelo de malla presentado. De esta forma, cada
parte en contacto generaría una colisión convexa-convexa individual adecuada para
alimentar el modelo.

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. State of the art . 3

1.2.1. Multibody dynamics . 3
1.2.2. Contact models . 4
1.2.3. Collision detection . 4

1.3. Objectives . 5
1.4. Summary . 5

2. Multibody dynamics formulation 7
2.1. Multibody dynamics . 7

2.1.1. Coordinates . 8
2.1.2. Formulation . 8

2.2. Equations of motion . 9
2.2.1. Penalty method . 10
2.2.2. Index-3 Augmented Lagrangian 11

2.3. Integration of the equations of motion 12
2.3.1. Newmark integrators . 12
2.3.2. Projections of velocities and accelerations 14

2.4. Flowchart . 17

3. Contact model 19
3.1. Normal contact . 20

3.1.1. Description . 20
3.2. Tangential contact . 22

3.2.1. Sliding friction and stiction 22
3.2.2. Rolling resistance . 23
3.2.3. Spinning friction . 23

xxv

xxvi CONTENTS

4. Collision detection 25
4.1. Detection and characterization of contacts between solids 26

4.1.1. Geometric definition of surfaces 26
4.2. Mesh surface trimming . 28

4.2.1. Consistency enforcing and floating-point error mitigation . . 29
4.2.2. Implementation of surface trimming for meshes 31

4.2.2.1. AABB trees . 32
4.2.2.2. Testing of potentially colliding triangles 34

4.2.3. Intersection volume computation for meshes 35
4.2.3.1. Binary Space Partitioning Trees 36
4.2.3.2. Polygon Clipping 37
4.2.3.3. Half-edge structure 39
4.2.3.4. Computation of volume properties 42

4.3. Inner Sphere Trees volume trimming 45
4.3.1. Sphere intersection . 46

4.3.1.1. Spherical cap properties 48
4.3.2. Numerical error optimization 49
4.3.3. Computation of the derivatives of the contact properties . . 51

5. Results 57
5.1. Test 1: block sliding on plane . 57

5.1.1. Description . 57
5.1.2. Results . 58

5.1.2.1. Mesh . 58
5.1.2.2. Inner Sphere Tree 60
5.1.2.3. Performance comparison 62

5.2. Test 2: disk rotating on plane . 64
5.2.1. Description . 64
5.2.2. Results . 67

5.2.2.1. Mesh . 67
5.2.2.2. Inner Sphere Tree 68
5.2.2.3. Performance comparison 69

5.3. Test 3: cylinder rolling on plane . 70
5.3.1. Description . 70
5.3.2. Results . 72

5.3.2.1. Mesh . 72
5.3.2.2. Inner Sphere Trees 73
5.3.2.3. Performance comparison 74

5.4. Contact model parameters . 74

CONTENTS xxvii

6. Conclusions and future work 83
6.1. Conclusions . 83
6.2. Future work . 85

6.2.1. Collision generalization . 85
6.2.2. Optimizations . 86
6.2.3. Parallelization . 86
6.2.4. Time critical IST collision detection 87
6.2.5. Multiple contact stiction . 87
6.2.6. Arbitrary shape decomposition 87

List of Figures

2.1. Physical meaning of penalty factors. 11
2.2. Harmonic oscillator . 14
2.3. Flowchart for the Augmented Lagrangian method. 18

3.1. Winkler elastic foundation . 21
3.2. Contact forces and momenta during a collision 21

4.1. Parameter space of a curve-curve intersection 27
4.2. False positive in bounding volumes collision 32
4.3. Representation of an AABB tree (cgal.org) 33
4.4. Vertex ordering in Guigue’s method. 35
4.5. Intersection between a pair of objects 36
4.6. Intersecting faces detection stage 37
4.7. Definition of a non-convex domain 38
4.8. BSP tree. Leaf nodes point to convex cells. 39
4.9. Clipping faces stage . 39
4.10. Depiction of a FSM: “A” is the starting node and valid transitions

are marked with arrows. 40
4.11. Representation of the boundary planes Bi (edges) of the polygon

and the splitting plane H . 41
4.12. Internal faces detection stage . 41
4.13. The half-edge structure. 42
4.14. Complete intersection volume . 43
4.15. IST collision . 46
4.16. Collision of two spheres . 46
4.17. Sphere intersection types . 47
4.18. Spheres intersection . 48
4.19. Herbie output chart: dA expression bit error vs value of RA, old

(red) and new (blue) . 51
4.20. Herbie output chart: dA expression bit error vs value of RB, old

(red) and new (blue) . 51

xxix

https://doc.cgal.org/latest/AABB_tree/anchor.png

xxx LIST OF FIGURES

4.21. Herbie output chart: dA expression bit error vs value of d, old (red)
and new (blue) . 52

5.1. Block sliding on plane . 58
5.2. Sliding block mesh discretization 59
5.3. Sliding block (mesh): trajectory error 59
5.4. Sliding block (mesh): velocity error 60
5.5. Sliding block (mesh): angular deviation 61
5.6. Sliding block sphere discretization 62
5.7. Sliding block floor sphere discretization 62
5.8. Sliding block (IST): trajectory error 63
5.9. Sliding block (IST): velocity error 64
5.10. Sliding block (IST): angular deviation 65
5.11. Disk rotating on plane . 66
5.12. Uniform disk and infinitesimal thickness ring 66
5.13. Rotating disk mesh discretization 68
5.14. Rotating disk (mesh): angular velocity error 69
5.15. Rotating disk (mesh): trajectory error 70
5.16. Rotating disk (mesh): velocity error 71
5.17. Rotating disk (mesh): angular deviation 71
5.18. Rotating disk sphere discretization 72
5.19. Rotating disk floor sphere discretization 72
5.20. Rotating disk (IST): angular velocity error 73
5.21. Rotating disk (IST): trajectory error 74
5.22. Rotating disk (IST): velocity error 75
5.23. Rotating disk (IST): angular deviation 75
5.24. Cylinder rolling on plane . 76
5.25. Rolling cylinder mesh discretization 76
5.26. Rolling cylinder (mesh): trajectory error 77
5.27. Rolling cylinder (mesh): velocity error 77
5.28. Rolling cylinder (mesh): angular deviation 78
5.29. Rolling cylinder sphere discretization 78
5.30. Rolling cylinder floor sphere discretization 79
5.31. Rolling cylinder (IST): trajectory error 79
5.32. Rolling cylinder (IST): velocity error 80
5.33. Rolling cylinder (IST): angular deviation 80

List of Tables

4.1. Possible states and results of the FSM 40

5.1. Sliding block IST: slope vs. residual velocity 61
5.2. Computer specs . 63
5.3. Sliding block time execution performance 64
5.4. Rotating disk time execution performance 69
5.5. Rolling cylinder time execution performance 74
5.6. Contact model parameters . 81

xxxi

Acronyms

AABB Axis-Aligned Bounding Box. 33–35, 37, 46

AVX Advanced Vector eXtensions. 30

B-Rep Boundary Representation. 26, 27

BSP Binary Space Partitioning tree. 5, 37, 38, 42, 81

CAD Computer Aided Design. 26

CFD Computer Fluid Dynamics. 26

COM Center of Mass. 34, 42, 44

CSG Constructive Solid Geometry. 26, 28

FEM Finite Element Modeling. 3, 26, 28, 30

FPS Frames Per Second. 84

FSM Finite State Machine. 39, 40

GPU Graphics Processing Unit. 44

IST Inner Sphere Tree. 25, 45, 59, 61, 64, 68, 70, 73, 77, 79–81, 83, 85, 86

LIMCODE LIM Collision Detection. 31, 34, 40

NURBS Non-Uniform Rational B-Spline. 26–28

OBB Oriented Bounding Box. 34

SIMD Single Instruction Multiple Data. 44

SSE Streaming SIMD Extensions. 30

xxxiii

Chapter 1

Introduction

Since the dawn of time, tool development has been one of the most iconic
features of the human nature. The ability of building, using and improving things
has followed us through our history to the current Digital and Information Age,
helping us to pave the way for the coming generations.

For a very long time, our tools were simple and rudimentary, but our skills in
sharing our inventions with our peers and letting them build more knowledge on
top of ours helped to keep technology in an ever-improving cycle that has driven
humans beyond the Earth. The classic way of creating a new tool or improving
an existent one is to build a prototype with some new functionality, test it and
correct every design error detected. This way of proceeding is quite effective, but
also time consuming, since many times a total rebuild of the prototype is needed
in order to solve a design error. Fortunately, the mainstream use of computers has
brought an interesting possibility to circumvent this challenge: to create and test
non-existent machines through simulation in virtual reality.

Computer simulation and virtual reality have been flourishing fields of research
for the last decades. The continuous decay in computing power price made possible
an explosion in computer-related research, and these fields have been especially
benefited. From a business perspective, the simulation of machines and mech-
anisms entails a lot of competitive advantages and important cost savings: the
number of prototypes can be widely reduced in manufacturing plants as their vir-
tual counterparts can cope with a lot of the testing needed before production,
training facilities can start training their machinery operators in virtual environ-
ments greatly reducing the associated cost and risk and boosting the learning
process, and assembly lines can detect potential production errors faster through
virtual assembly simulations. These are just some examples of the huge potential
that the introduction of simulation in the industry has involved.

Many of this widely spread simulators don’t have the need for a great physical
accuracy: sometimes it is enough to have all simulated objects in place and even

1

2 CHAPTER 1. INTRODUCTION

some of them don’t need interaction capabilities with the user. In this cases, the use
of reduced or simplified models implies less computing-power-hungry simulators
which are good enough to get the job done. As an example, let’s think of a driving
simulator used to teach students who want to obtain their driving licenses. For
this task, the simulator can obviate most of a vehicle’s mechanics complexity and
just focus on the wheel, gearshift and pedals. That would be sufficient for the
student to learn the basics before getting into a real car.

But, what if the user really needs to feel force feedback, like those operators
training in a crane simulator or workers in a virtual assembly line? This use-
cases demand more realistic and accurate simulations and naive implementations
do not suit their needs. Full complex machine simulations must deal with a high
number of inputs and interaction between simulated entities pose an interesting
engineering challenge in order to be realistically characterized. Specifically, the
description of object collisions and impacts is a key factor in the development of a
physically correct simulator. This strict conditions are aggravated if the simulation
needs real time execution as in this case time restrictions are imposed and efficient
algorithms are required.

Multibody dynamics is a relatively young discipline that allows for the com-
putation of motion in mechanical systems defined as an interconnected group of
every of the parts that compose the full system. Once every part and every joint
is defined in a previously selected family of coordinates, multibody formulations
integrate the equations of motion over time, thus obtaining the mechanism dy-
namics.

This work documents the use of multibody dynamics combined with a volu-
metric contact force model in order to simulate conforming contact collisions in
real-time.

1.1. Motivation
Simulators and virtual reality offer benefits and opportunities for virtually ev-

ery company or business involved somehow with manufacturing, prototyping, as-
sembly, design or machine and vehicle training. Some of the most prominent
strengths that this technology unleashes are:

Fast design evaluation and prototype stage reduction

Operator physical risk minimization

Cost reduction through the whole product life cycle

Assembly line early error detection

1.2. STATE OF THE ART 3

Hardware costs reduction and risk minimization for expensive machinery

Operator training course automated evaluation

With the increasing demand of computer-powered solutions in the industry and
the emergence of a new dawn of virtual reality in the last five years that is quickly
making its way into the mainstream usage, it is no secret that having the right
simulation tools poses a big competitive advantage.

As previously stated, contact and impact characterization is a key issue in
the process of obtaining an accurate simulation and it usually constitutes the
computing bottleneck, thus the development of fast and robust algorithms is one
of the most interesting areas of research.

Traditionally, two different approaches have been employed to crack this prob-
lem: Finite Element Modeling (FEM) methods, which are extremely accurate but
incapable of being run in real time due to their complexity, and methods similar
to those integrated in video game physics engines, that are fast but usually yield
poor results from a physical point of view, as they only look for visually feasible
simulations and not accurate ones.

A hybrid solution that can calculate physically accurate forces yet fast enough
in order to be executed in real time simulations would open a new door full of
possibilities.

1.2. State of the art

1.2.1. Multibody dynamics
Rigid-body system dynamics has been an active research topic for a very long

time now, but it wasn’t until the computer science early development that multi-
body dynamics was consolidated and took its modern shape [51]. [52] and [18]
made great historical reviews of multibody dynamics evolution.

It is widely accepted that the first practical solution methodology for large
multibody systems was the one presented in [46]. This research lead to the de-
velopment of ADAMS (Automatic Dynamic Analysis of Mechanical systems), and
was followed by a rapid growth in the use of multibody dynamics in several fields
like aerospace, automotive, robotics or biomechanics [44] and its corresponding
new software solutions developments [25].

The increase in the available computational power, and the development of
new, more efficient formulations allowed the use of multibody dynamics in real
time simulations [35] and made human-in-the-loop and hardware-in-the-loop simu-
lations possible. Recent developments have been done towards the implementation

4 CHAPTER 1. INTRODUCTION

of real-time multibody models in low-cost hardware platforms [48] and machinery
simulators [38].

1.2.2. Contact models
Carefully modeling the contact forces that appear during collisions in simula-

tions is a key factor in order to obtain adequate results. Moreover, if the appli-
cation requires to be integrated in a human-in-the-loop simulation, restrictions on
the time-step, number of iterations, simulation stability and robustness are tighter
and impose an aggregated difficulty.

Typically, two different approaches have been proposed to resolve the rigid
body collision problem that led to two distinct method families: the discontinuous
and the continuous [36, 23, 25]. The rigid body assumption implies that bodies are
supposed to be hard and only small local deformations are required to generate
very large contact pressures [55]. The first family, the discontinuous approach,
assumes an instantaneous impact and therefore an instantaneous change in the
balance momenta [14, 15]. The continuous approach, on the other hand, is based
on regularized-force models that relate forces and body deformation [36, 33] or
constraint techniques that avoid the penetration between bodies [40, 50, 6, 24].
The continuous methods based on regularized forces include a number of viscoelas-
tic and viscoplastic models [25, 34, 8, 27]. Many of these continuous methods are
based on the Hertzian contact theory thus assume contact areas much smaller than
the characteristic dimensions of the contacting bodies. This poses a problem when
trying to simulate conforming contacts.

There exist a large number of formulations of the equations of motion that
describe the movement of mechanical systems [35]. Among them, the augmented
Lagrangian formulations [2, 3] used in this work have the peculiarity of trans-
forming the constraints into forces proportional to the constraints violation, which
makes them compatible with the continuous force methods.

1.2.3. Collision detection
Collision detection encloses different techniques and procedures to solve an

apparently simple problem: to determine if two objects are in contact. The answer
to this question and its corresponding mathematical implementation, despite its
seeming simplicity, is far from trivial. It is understood that two objects are colliding
if they share at least one point in the space at the same time.

The first attempts to resolve this issue appeared with the first robots. The
automation at the assembly lines required that robot maneuvers were simulated
in order to verify the interference between machines [4]. Also, early developments

1.3. OBJECTIVES 5

in computer graphics and the study of geometric algorithms gave birth to compu-
tational geometry. This research spawned a wide range of knowledge leading to
the first methods to compute geometric properties such as polyhedra convex hulls,
distance calculations or intersection detection. It was on the early 1980s, with the
appearance of interactive 3D applications and the spread of home computers and
video games, that collision detection as we know it today started to take shape.
The first applications and games, constrained by the hardware specs, simplified
collision detection using simple shapes, like spheres and boxes, to check if two
objects were in contact. Further research was done in the 1990s as increasingly
complex computer animations joined the area of influence of collision detection,
for example to meet the requirements of the film industry.

As computer processing power grew, so did the complexity of animations and
simulations, and to keep the collision detection power requirements under control,
many optimized techniques were developed: spatial data structures like the Binary
Space Partitioning tree (BSP), and bounding volume hierarchies based on Axis
Aligned Bounding Boxes (AABB) or Oriented Bounding Boxes (OBB) were used
to swiftly reject large number of geometric primitives from the intersection being
tested and boost the computation. Many of these now well established algorithms
are described in [4] and [22].

1.3. Objectives
The aim of this work can be summarized in the following points:

Implement a volumetric contact model capable of accurately characterizing
the forces that arise in conforming contact situations.

Research different approaches to calculate the intersection volumes on colli-
sion simulations in a general way.

Evaluate a set of collision test cases and assess the viability of the method
implementation in order to process simulations in real time.

1.4. Summary
This thesis is divided into the following six chapters:
Chapter 1 is a brief introduction to the motivation which led to the creation of

this document, presenting also a brief state of the art of multibody dynamics and
the contact and collision detection last developments.

6 CHAPTER 1. INTRODUCTION

Chapter 2 describes the multibody dynamics discipline used for the simula-
tions and the way the equations of motion are integrated to recreate a mechanism
movement.

Chapter 3 discusses the contact models whose aim is to define the forces that
stress the system.

Chapter 4 deals with collision detection methods and how to calculate the
needed parameters in order to characterize impacts.

Chapter 5 shows the presented methodology applied to three different test cases
and its results.

Chapter 6 presents the conclusions drawn from this work and proposes future
lines of research.

Chapter 2

Multibody dynamics formulation

2.1. Multibody dynamics

Before the computers went mainstream, mechanical problems had traditionally
been solved by hand. For this reason, most of them were simple cases that could
be worked using analytical expressions. In the case of mechanism dynamics or
motion analysis for more complex ones, the solving was focused on just specific
configurations, whether they were worst-case scenarios or interesting situations.
The classical approach consists in finding the system energy equations and solve
the system imposing a force equilibrium. This is usually rendered difficult to
achieve since the differential equations obtained can be really complex to solve,
especially in closed-loop mechanisms.

Once the computer usage spread out across the globe, a lot of research fields
were benefited from it. In particular, mechanical simulation was rendered feasible
not only for specific case or configurations, but for a much broader set of problems.
For this reason, many computer-oriented disciplines were born in order to take on
the new possibilities: multibody dynamics was one of them.

Multibody dynamics enables the definition of a system by means of a coordinate
set and the integration of the equations of motion over time. It requires to describe
the problem by defining each of its parts and the joints that act as links between
them. As a computerized field, simple and generalized mathematical methods
are promoted over the ones that were used when solving by hand the system of
equations yielded. While the variety of coordinates, formulations and integrators is
very diverse, it is recommended to make a careful selection to improve the method
performance.

7

8 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

2.1.1. Coordinates
Different families of coordinates can be used within multibody dynamics. This

choice will affect the easiness in the modeling stage, the number of equations of
motion and also the computation cost needed in order to integrate them. Some of
these families simplify the modeling using less redundancy at the cost of creating
a less flexible system definition, while others demand a bigger effort in the coor-
dinates selection phase in exchange of a more redundant and flexible definition.
Examples of this families are the following:

Reference point coordinates

Relative coordinates

Natural coordinates

Mixed coordinates

For this work, the natural family of coordinates was selected. Like the reference
point coordinates, natural coordinates locate every element independently from the
others, but the selected reference points match the joints location, so that every
joint can be used for the definition of two consecutive elements.

2.1.2. Formulation
The multibody formulation is the final form of the equations of motion used

to solve the system dynamics. This form will be affected by the coordinates selec-
tion, the mechanical principles used to derive the equations of motion and the way
to enforce the constraint equations. All these choices also determine the simula-
tion performance and are greatly influenced by the problem topology: while some
formulations may yield an improved performance, others may facilitate the com-
putation of some variables like reaction forces. In the end, every problem should
be carefully analyzed and a formulation must be selected as a trade-off between
performance, accuracy, stability and complexity. Some of the usual formulations
include direct solving, stabilized Lagrange, Baumgarte stabilization, projection
matrix R and penalty formulations, each one with its peculiarities, advantages
and disadvantages.

The formulation used during this work was the Index-3 Augmented Langrangian
formulation with projection of velocities and accelerations. This formulation com-
bines the penalty formulation with the Lagrange multipliers method, allowing for
the use of smaller penalty factors, yielding a better numerical conditioning and
leading to the exact solution if the numerical implementation is appropriate. An

2.2. EQUATIONS OF MOTION 9

extra iteration loop must me performed in order to update the Lagrange multipli-
ers, causing a very small computational overhead due to most of the terms being
constant in the iteration. This formulation has been proven robust and efficient,
and has been tested extensively in [1], [10] and [16].

2.2. Equations of motion
The configuration of a multibody system can be defined using n generalized

coordinates, related by means of m constraint equations. When no redundant con-
straints are used, the system has n−m degrees of freedom. Constraints described
here are holonomic, kinematic constraints, expressed as Φ(q, t) = 0, being q the
vector where the n generalized coordinates are stored.

An application of the virtual work principle is shown in (2.1). Any virtual
displacement has to be compatible with the constraints of the system.

δq∗T(M(q)q̈ −Q(q, q̇)) = 0 (2.1)
Φ(q, t) = 0 (2.2)

M is a n×n mass matrix, defining the mass distribution over the coordinates,
Q is the vector representing external applied forces to the system, and δq∗ is an
infinitesimal displacement compatible with the constraints. The expressions for
M and Q matrices are coordinate-dependent.

By definition, virtual displacements δq∗ are instantaneous, and unaffected by
time-dependent constraints. The Jacobian matrix of the constraints, Φq, indicates
the directions for which the constraints are violated. Thus, virtual displacements
δq∗ are orthogonal to the Jacobian rows, yielding

Φq(q,t)δq∗ = 0 (2.3)

Ideal constraints do not produce work, therefore they do not appear in (2.1). In
order to get the equations for the dynamic equilibrium, constraint forces must be
introduced into this expression. The rows of Φq give the direction of the reaction
forces associated with each constraint. Each one of those rows is multiplied by a
unknown λi value that holds the magnitude of the ith force [35]:

δq∗T(Mq̈ + ΦT
qλ−Q(q, q̇)) = 0 (2.4)

Since there are only n−m independent coordinates and m unknown λi values,
the final system can be expressed as

10 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

Mq̈ + ΦT
qλ = Q(q, q̇) (2.5)

Φ(q, t) = 0 (2.6)

This is a system of Differential-Algebraic Equation (DAE) which is not usually
solved directly. Non-linear DAEs with a high index lead to very complex solving
algorithms, as described in [7] and [31]. This complexity entails further disadvan-
tages as equation instability problems, and the requirement of specific integration
methods.

For multibody dynamics, this complexity can be avoided by transforming the
motion equations (2.5) into a simpler to solve, equivalent system that approximates
the correct solution. Furthermore, it will be shown that some of these methods lead
to more compact system sizes than the original DAE system of n+m equations.

2.2.1. Penalty method
The penalty method transforms (2.5) into a system of Ordinary Differential

Equations (ODE), leading to simpler integration algorithms. In this method, con-
straint forces are considered proportional to the violation of the constraints and
their derivatives, as shown in (2.7). The physical meaning of this method is that
constraints are substituted by an equivalent mass-spring-damping system that tries
to prevent disallowed displacements, as shown in Figure 2.1. In that figure, a sim-
ple pendulum mechanism is represented with a punctual mass at its end. If the
weight of the bar is negligible, the mass can be considered free, and the penalty
forces (2.7) will act as a very rigid and dissipating system that maintains constant
the length of the bar.

λ = α(Φ̈ + 2ξωΦ̇ + ω2Φ) (2.7)

The penalty parameter α can be usually chosen as large as 106 or 107 for many
real life mechanisms. The other two parameters are used to impose an elastic and
dissipating behavior into the constraint forces. Typically recommended values are
ω = 10 and ξ = 1 (critical dissipation).

Substituting (2.7) into (2.5), a linear system of equation is obtained, being q̈
its sole unknown.

(M + αΦT
qΦq)q̈ = Q− αΦT

q (Φ̇qq̇ + 2ξωΦ̇ + ω2Φ) (2.8)
q̈ = (M + αΦT

qΦq)−1[Q− αΦT
q (Φ̇qq̇ + 2ξωΦ̇ + ω2Φ)] (2.9)

2.2. EQUATIONS OF MOTION 11

M

K

C

mg
mΩ2l

Figure 2.1: Physical meaning of penalty factors.

2.2.2. Index-3 Augmented Lagrangian

A more advanced approach is the Index-3 Augmented Lagrangian, with penalty
only at position level, and mass-stiffness-damping orthogonal projections. This
formulation fulfills the constraints but not their derivatives; therefore, the obtained
velocities and accelerations must be further processed to make them also fulfill the
derivatives of the constraints. That cleaning process is called projection, since it
consists in the projection of q̇ and q̈ over the manifolds represented by Φ̇ and Φ̈.

The Augmented Lagrangian method combines the penalty method, where a
high α factor is penalizing constraint violations, with the Lagrange multipliers,
which hold the magnitude of the reaction forces that avoid the violation of the
constraints. Unlike the Lagrangian method, the system size is n×n —being n the
number of coordinates—, since this time the Lagrange multipliers are computed
in an iterative manner, and the constraints are not solved explicitly:

Mq̈ + ΦT
qλ
∗ + ΦT

qαΦ = Q(q, q̇) (2.10)
λ∗i+1 = λ∗i + αΦi+1, i = 0, 1, 2, . . . (2.11)

As mentioned, Lagrange multipliers λ∗i are computed according to the current
state of the system, and they will converge until they reach equilibrium values. At
the first iteration of the initial time-step, the multipliers λ∗0|t=0 can be computed
by means of the penalty method described in (2.7). For the rest of the time-steps,
the final value of the multipliers in the previous instant, λ∗n|t, is used for the first
iteration, λ∗0|t+h.

12 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

2.3. Integration of the equations of motion

2.3.1. Newmark integrators
This family of integrators are specific methods for solving second order dif-

ferential equation systems. This technique has been widely used in multibody
dynamics. Among structural integrator families, Newmark [43], HHT [32] and
Generalized-α [9] are the most common ones. The expressions for these implicit
integrators can be used to compute positions and velocities from the coordinate
values and its derivatives of the previous time-step and the accelerations in the
current time-step. For example, the Newmark integrator family,

qn+1 = qn + hq̇n + h2

2 {(1− 2β)q̈n + 2βq̈n+1} (2.12)

q̇n+1 = q̇n + h{(1− γ)q̈n + γq̈n+1} (2.13)

From 2.12 and 2.13 velocities and accelerations in time-step n+1 can be ex-
pressed as function of positions in time-step n+1 (primary variables).

q̇n+1 = γ

βh
qn+1 + ˆ̇qn; ˆ̇qn = −

[
γ

βh
qn +

(
γ

β
− 1

)
q̇n +

(
γ

2β − 1
)

q̈n
]

(2.14)

q̈n+1 = 1
βh2 qn+1 + ˆ̈qn; ˆ̈qn = −

[
1
βh2 qn + 1

β
hq̇n +

(
1

2β − 1
)

q̈n
]

(2.15)

Introducing now 2.14 and 2.15 into (2.10), a non-linear system of equations is
obtained in which the positions in time-step n+1 are the unknowns. A factor of
h2/4 is used in order to avoid having to scale the mass matrix:

f(q) = Mqn+1 + h2

4 ΦT
qn+1(αΦn+1 + λn+1)− h2

4 Qn+1 + h2

4 Mˆ̈qn = 0 (2.16)

This system can be solved using well-known methods such as the Newton-
Raphson iterative solver. The generic method is presented as

[
∂f(q)
∂q

]
i

∆qi+1 = −[f(q)]i (2.17)

qi+1 = qi + ∆qi+1 (2.18)

2.3. INTEGRATION OF THE EQUATIONS OF MOTION 13

For this problem, the Jacobian of (2.16) with respect to the coordinates q is:

[
∂f(q)
∂q

]
= M + h2

4

{
Φqq

T(αΦ + λ) + Φq
T(αΦq + λq) + K + 2

h
C
}

(2.19)

The expression (2.19) is denoted as the tangent matrix. The computation of
some elements of this matrix can be avoided, given their negligible magnitude
with respect to the remaining matrix terms. ΦT

qq is a very sparse third order
tensor vastly composed of null values; the rest of its elements are usually constant,
since the constraints are generally linear or at most quadratic when using natural
coordinates. The computation of the combined term ΦT

qq(αΦ+λ) can be avoided,
both for simplification and for speed up purposes. A remark should be made about
the fact that it is not strictly required to compute the exact tangent to achieve a
convergent method.

Therefore, an approximation for the tangent matrix with good convergence
properties is [

∂f(q)
∂q

]
≈M + h

2C + h2

4 (ΦT
qαΦq + K) (2.20)

being

K = −∂Q
∂q

(2.21)

C = −∂Q
∂q̇

(2.22)

The K and C terms are called the stiffness and damping matrices. They state
the influence of the change in positions and velocities on the magnitude of the
applied forces. Those parameters also resemble the stiffness and damping in the
well-known harmonic oscillator problem, shown in Figure 2.2. In the harmonic
oscillator, the applied force vector is F = kx+cẋ. Constant k is the ratio at which
the force increases given an increase in the displacement x, that is ∂F/∂x = k.
Constant c behaves in the same manner with respect to the displacement time
derivative, ∂F/∂ẋ = c. Therefore, the naming for the expressions (2.21) and
(2.22) is apparent.

The residual for the Newton-Raphson iterative method is computed directly
for the step n+ 1 from equation (2.16):

f(q) = h2

4 (Mq̈ + ΦT
qλ
∗ + ΦT

qαΦ−Q)
n+1 (2.23)

14 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

m

k

c

x

Figure 2.2: Harmonic oscillator

As noted in [10], the approximate tangent matrix (2.20) can be suffer from
loss of significance problems when the integration time step, h, is very small. The
exact value depends on the order of magnitude of the parameters of the problem
(masses, forces, etc.), and can be as small as 10−6s for typical, common problems.

2.3.2. Projections of velocities and accelerations
Since the Index-3 Augmented Lagrangian method has the position coordinates

q as its primary variables, the computed solutions do satisfy the imposed con-
straints, Φ = 0, at the requested precision level. However, the equations presented
so far do not impose the fulfillment of the constraints’ derivatives, Φ̇ = 0 and
Φ̈ = 0. In order to avoid instabilities that could arise when integrating incoher-
ent sets of velocities and accelerations, a projection process can be performed for
keeping the velocities and accelerations on the constraints derivatives manifolds.

The projection method is based in the work developed in [1], which described
the projection of velocities and accelerations onto the mass matrix. The original
formulation is

min V = 1
2(q̇ − q̇∗)TM(q̇ − q̇∗)

subject to Φ̇(q, q̇, t) = 0

This problem is solved using the Augmented Lagrange Multipliers method de-
scribed before,

min V ∗ = 1
2(q̇ − q̇∗)TM(q̇ − q̇∗) + 1

2Φ̇TαΦ̇ + Φ̇Tσ (2.24)

where σ is the vector of multipliers for the projection problem. Then,

∂V ∗

∂q̇
= M(q̇ − q̇∗) + Φ̇T

q̇αΦ̇ + Φ̇T
q̇σ = M(q̇ − q̇∗) + ΦT

qαΦ̇ + ΦT
qσ = 0 (2.25)

2.3. INTEGRATION OF THE EQUATIONS OF MOTION 15

The identity Φ̇q̇ = Φq is demonstrated with the expression (2.26)

Φ̇q̇ = ∂Φ̇
∂q̇

= ∂

∂q̇
(Φqq̇ + Φt) = Φq (2.26)

This projection method is also an iterative process where a better, new set of
velocities, q̇, will be obtained from the original velocities, q̇∗, coming from the
integrator. The multipliers σ are updated as

σi+1 = σi + αΦ̇i+1 (2.27)
An interesting computing performance improvement is to use the penalty op-

timization method instead of the Augmented Lagrangian method. The former
problem is not iterative, leading instead to a linear system of equations:

(M + ΦT
qαΦq)q̇ = Mq̇∗ −ΦT

qαΦt (2.28)
Additionally, it is a sufficient condition for finding the minimum that M +

ΦT
qαΦq matrix is positive definite [45].
The projection method used in this document applies some additional opti-

mizations. A first performance improvement comes from the strategy of avoiding
to compute and factorize the coefficient matrix of the linear system, M + ΦT

qαΦq.
Cuadrado et al. [11] demonstrated that it is also possible to attain the projection
of velocities using the tangent matrix (2.20) instead. This matrix was already com-
puted and factorized in previous steps when solving the dynamics. Thus, choosing
a new definition for the projection problem such as

min V = 1
2(q̇ − q̇∗)TP(q̇ − q̇∗) (2.29)

subject to h2

4 Φ̇(q, q̇, t) = 0 (2.30)

where P is a matrix defined as

P = M + h

2C + h2

4 K (2.31)

The penalty method leads to the minimization problem

min V ∗ = 1
2(q̇ − q̇∗)TP(q̇ − q̇∗) + h2

8 Φ̇TαΦ̇ + Φ̇Tσ (2.32)

Differentiating and solving the equation

∂V ∗

∂q̇
= P(q̇ − q̇∗) + h2

4 ΦT
qαΦ̇ = 0 (2.33)

16 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

the following linear system is found:

(P + h2

4 ΦT
qαΦq)q̇ = Pq̇∗ − h2

4 ΦT
qαΦt (2.34)

Substituting the weight matrix P with its own value, the final expression is

(M + h

2C + h2

4
(ΦT

qαΦq + K))q̇ = (M + h
2

C + h2

4
K)q̇∗ − h2

4
ΦT

qαΦt (2.35)

The coefficient matrix of this final system is the tangent matrix (2.20) already
computed and factorized in the last iteration of the motion problem (2.17). Co-
incidentally, the tangent matrix is definite-positive as well; this fact ensures that
the algorithm finds the minimum of the optimization problem (2.30).

The accelerations’ projection method is analogous to the velocities’ projection
already presented. The coordinates q̈ are projected onto a matrix and required to
fulfill the constraints. For the mass matrix-orthogonal projection:

min V = 1
2(q̈ − q̈∗)TM(q̈ − q̈∗)

subject to Φ̈(q, q̇, q̈, t) = 0

And for the corresponding Augmented Lagrangian method:

min V∗ = 1
2(q̈ − q̈∗)TM(q̈ − q̈∗) + 1

2Φ̈TαΦ̈ + Φ̈Tν (2.36)

Here ν are the Lagrange multipliers for the problem of the acceleration projec-
tion. The expression resulting from differentiating this equation in order to find
its minimum:

∂V ∗

∂q̈
=M(q̈ − q̈∗) + Φ̈T

q̈αΦ̈ + Φ̈T
q̈ν

=M(q̈ − q̈∗) + ΦT
qα(Φqq̈ + Φ̇qq̇ + Φ̇t) + ΦT

qν = 0
(2.37)

Where the property Φ̈q̈ = ∂Φ̈
∂q̈ = ∂

∂q̈(Φqq̈ + Φ̇qq̇ + Φ̇t) = Φq has been applied.
In the same way as the velocity projection, a simpler problem can be solved

using only a penalty method. Therefore, a linear system of equations is obtained:

(M + ΦT
qαΦq)q̈ = Mq̈∗ −ΦT

qα(Φ̇qq̇ + Φ̇t) (2.38)
The tangent matrix can be used as well in the acceleration case by redefining

the problem in terms of the P matrix already presented. The formulation of the
problem would be:

2.4. FLOWCHART 17

min V = 1
2(q̈ − q̈∗)TP(q̈ − q̈∗) (2.39)

subject to h2

4 Φ̈(q, q̇, q̈, t) = 0 (2.40)

and the final linear equation system:

(Mh

2C + h2

4 (ΦT
qαΦq + K))q̈ = (M + h

2C + h2

4 K)q̈∗− h2

4 ΦT
qα(Φ̇qq̇ + Φ̇t) (2.41)

2.4. Flowchart
The flowchart for the Augmented Lagrangian method is displayed in Figure

2.3.

18 CHAPTER 2. MULTIBODY DYNAMICS FORMULATION

Initialization
t = 0

Compute M, sparsity patterns...

q̈0 = (M + ΦT
qαΦq)−1[Q(q0, q̇0)−ΦT

qα(Φ̇qq̇0 + Φ̇t + 2ξωΦ̇ + ω2Φ)]

Time loop: t := t+ h

Predictor:
ˆ̇qn = −(γ

βh)qn − (γβ − 1)q̇n − (γ2β − 1)q̈n
ˆ̈qn = −(1

βh2)qn − 1
βh q̇n − (1

2β − 1)q̈n
q̇n+1 = γ

βhqn+1 + ˆ̇qn
q̈n+1 = 1

βh2 qn+1 + ˆ̈qn

Iteration loop: i := i+ 1

Corrector (Newton-Raphson):[
∂f(q)
∂q

]
∼= M + h

2 Cn+1 + h2

4
(
ΦT

qαΦq + K
)
n+1

f(q) = h2

4 (Mq̈ + ΦT
qλ

∗ + ΦT
qαΦ−Q)

n+1

Solve linear system:[
∂f(q)
∂q

]
i
∆qi+1 = −[f (q)]i

qi+1 = qi + ∆qi+1

Computation of velocities and accelerations:
q̇n = γ

βhqn+1 + ˆ̇qn
q̈n = 1

βh2 qn+1 + ˆ̈qn

err < tol?

Projection of velocities and accelerations:

minV = 1
2(q̇ − q̇∗)TP(q̇ − q̇∗)

minV = 1
2(q̈ − q̈∗)TP(q̈ − q̈∗)

t = tend?

stop

no

no

yes

yes

Figure 2.3: Flowchart for the Augmented Lagrangian method.

Chapter 3

Contact model

Collisions and contacts are fundamental phenomena in almost every complex
multibody simulation. While some physics simulations may avoid the need to
handle impacts, most of them, including machinery, vehicles or virtual assembly
have to deal with this kind of events. There is no general consensus about which
is the most appropriate way of implementing a contact model. In the framework
of this work, the model is composed of the contact detection algorithm and the
contact force model itself. The contact detection algorithms can vary between
trivial contact detections to very complex general algorithms like the one proposed
here. Force models can largely vary from one simulator to another, each one must
match different needs and have distinct goals and sometimes different approaches
are possible to solve the same problem. While some simulations may do well with
simplified force models (like in those cases where only very primitive contacts take
place or where precision is not a main concern), others may need more accurate
models to characterize more complex contact situations.

Furthermore, the decision to choose among all the diverse models available is
constrained by the CPU time during the simulation. Regarding this issue, we can
catalog all simulations in two big different groups: those where the simulation is run
completely offline, so the CPU time is not a priority, and those where the user or
other entities (like sensors or actuators) somehow interact with the simulation. In
this last category we find hardware-in-the-loop and human-in-the-loop simulators,
which need real time execution in order to provide interactive interfaces. For this
ones, the force evaluation time is critical, in the sense that only models which are
capable of computing forces much faster than the time-step are suitable since the
overall calculations have to be done in less time than the time-step.

A worst case scenario would be a simulation where both real time and a high
degree of precision are needed, since this represents an execution time constraint
and a need for complex —and therefore computer time demanding— force models.
This would be the case for virtual assembly simulations, where the user requires

19

20 CHAPTER 3. CONTACT MODEL

that the visual feedback matches the speed of the decision-making loop but also
that the interaction between virtual bodies is smooth enough to achieve things like
handling and assembling small parts together.

The process of computing contact forces is divided into two stages: the collision
detection, where bodies in a potential contact situation are identified and the
interference properties are calculated, and the computation of the forces that will
be responsible for generating a motion that resembles the real one.

During this chapter, the force models selected for this thesis are presented.
Usually, two different contact force models are needed to characterize object in-
terference: one that accounts for the normal force, and another one to calculate
the tangential force. The normal force is needed to avoid object inter-penetration,
while the tangential force illustrates the friction between bodies.

In this work, triangular meshes are used as the object representation, and only
rigid bodies with small local deformations in the contacting regions are consid-
ered, so no object deformation is taken into account in terms of the geometry
representing the body.

3.1. Normal contact

3.1.1. Description

During the development of this work, a general contact model capable of dealing
with multiple contacts and conforming situations was pursued. As explained in
Section 1.2.2, many continuous force models are based on the Hertz theory and
thus assume contact areas much smaller than the characteristic dimensions of the
contacting bodies, i.e., non-conforming contacts. In mechanism and machinery
simulation it is very common to find conforming contacts that fall out of this
assumption, such as plane parts resting on flat surfaces, or a pin inside a cylinder.

For this reason, the force model selected for the normal force computation
was the Gonthier volumetric model described in [26]. It is based on a modified
Winkler elastic foundation model and, in contrast with other models more suited
to point contacts, it mimics the force distribution that takes place between objects
in contact due to the body deformation. Furthermore, the fact of having a volume
of interference instead of a surface allows for the calculation of properties that are
useful to include rolling resistance and spinning friction in the model.

Since these volumetric properties can always be calculated for any intersection,
the method is not restricted to contacts over a small area compared with the
bodies size: it can be considered a generalized model for any kind of situation.

3.1. NORMAL CONTACT 21

Fn

hf

Figure 3.1: Winkler elastic foundation

The expression for the normal force is the following:

Fn = kn
hn
V (1 + avn)n (3.1)

where kn is the contact stiffness, hn the hysteretic damping factor, V the volume
of the intersection, a is the hysteretic damping factor [27] and vn stands for the
relative normal velocity of both bodies in contact. n is the direction of the force
and it is also used in some subscripts standing for “normal”.

Fn

Ft

Vrn

O'

O

Vrt

Vr

Figure 3.2: Contact forces and momenta during a collision

22 CHAPTER 3. CONTACT MODEL

3.2. Tangential contact
The tangential model is composed of three different sub-models that are suited

for different friction situations: sliding/sticking, rolling and spinning. Each of these
models actuate only in their corresponding situations as they are proportional to
different velocities involved in friction phenomena. Sliding and sticking is related
to the tangential velocity and generates an associated force. Rolling is related to
the tangential angular velocity and spinning to the normal angular velocity, and
both of them are associated with a resistive momentum.

3.2.1. Sliding friction and stiction
The Gonthier volumetric force [26] proposes the following sliding force model

Ft = Fn(vt + ωt × ρn) (3.2)

where Fn stands for the normal force, vt is the relative tangential velocity, ωt
is the angular velocity and ρn the position vector of the contact surface centroid
relative to the interference volume centroid.

The paper also specifies that, for rigid bodies, ρn can be neglected, simplifying
the expression to

Ft = Fnvt (3.3)

The problem with this approach is the lack of static friction. If this model is
used to simulate a body sliding down a slope, the body will be never be stopped
completely by the friction. As we can see in 3.3, the tangential force is directly
proportional to the tangential velocity. For this reason, when the velocity of the
body tends to zero, its small tangential velocity will yield a tiny tangential force,
thus not being able to stop the object and letting it slide at a very small velocity
[21]. To solve this limitation, the model described in [17] was implemented.

Ft = κFstick + (1− κ)Fslide − µviscvt (3.4)

Here, three different terms are depicted. The first one accounts for the static
friction, introducing a damper-spring force that acts at very low velocities to solve
the null velocity problem described above. This force can be considered as the
result of small viscoelastic elements that actuate between quasi-static colliding
bodies and are known as bristles. The second term represents the dynamic friction
(Coulomb model), and the last one constitutes the viscous friction, but in this work
µvisc was set to zero as a simplification. The smoothing function κ is responsible for

3.2. TANGENTIAL CONTACT 23

the transition between null or low tangential velocities (stick) and normal dynamic
conditions (slip) and must be selected so that it fulfills the following conditions:

κ =
{

0; ‖vt‖ >> vstick
1; ‖vt‖ = 0

}
(3.5)

where vstick is the transition parameter and can be understood as the velocity
where the stick phase ends. The chosen form for this function, as described in [26],
is:

κ = e−(vT
t vt)/v2

stick (3.6)

3.2.2. Rolling resistance
The previous friction model works well for simple situations where a body

slides over another body, but does not account for the friction generated when
there exists rolling. In this case, the contact patch in the moving bodies has
near-zero velocity and the stiction bristles are rendered useless since the hooking
point varies constantly. Gonthier proposes the following expression to calculate
the rolling resistance

τr = kna

hn
Igωt (3.7)

where Ig is the intersection volume inertia tensor and ωt the tangential angular
velocity. This expression represents a torque opposing to the relative tangential
angular velocity.

3.2.3. Spinning friction
There is another friction that must be taken into account: the one derived form

spinning bodies. Gonthier also presented a model for this situations.

τs = Fn
V

Igωn (3.8)

where ωn is the normal angular velocity. This equation represents a torque
acting in opposition to the relative normal angular velocity.

Chapter 4

Collision detection

It is clear from Chapter 3 that, in order to be able to use the force models pre-
sented there, several pieces of information from the simulation have to be collected.
Some of them are provided by the multibody system itself, as body positions and
velocities. Nevertheless, there the rest of the properties go beyond the mechani-
cal definition of a rigid body solid, that deals with mass distribution, since they
explicitly depend on the geometrical definition of the boundaries.

The model described in Section 3.1 requires that the properties of the volumes
defined by the intersection of each pair of colliding bodies are known. In order to
do that, it must be ensured that: a) those properties can be computed and; b) this
is done with a reasonable degree of precision at a high computation rate.

Those tasks are highly-dependent on the chosen geometric representation method
for the surface of the bodies, but when considered from a high-level view, they can
be always divided in the following sub-steps:

1. Detect pairs of bodies in collision subject to reaction forces.

2. Trim the surfaces that define the inter-penetration.

3. Obtain the desired parameters out of those surfaces: penetration length or
volume, perpendicular direction of the contact.

In this chapter, those stages will be described for the two geometric method
proposed: definition by triangular meshes or by a distribution of inner spheres,
the Inner Sphere Tree (IST).

25

26 CHAPTER 4. COLLISION DETECTION

4.1. Detection and characterization of contacts
between solids

4.1.1. Geometric definition of surfaces
The development of a virtual assembly simulator comprises managing shapes

that are arbitrarily defined. Mechanical parts are very frequently designed with
the aid of Computer Aided Design (CAD) software, allowing defining complex
parts by de-composing them into sequences of elemental shapes and geometric
procedures. The results are stored as a set of free-form surfaces that can define
any part as a solid domain. This encoding is called Boundary Representation
(B-Rep), since all the properties of the solid are inferred from the surfaces that
enclose it. Those closed solid domains can be later used into any other engineering
procedure, since they can hold all the physical information of the part. Popular
uses of CAD geometry are the FEM for stress-strain computation, impact, thermal
distribution, Computer Fluid Dynamics (CFD), etc.

Representing a solid in terms of the bounding surfaces that enclose its vol-
ume is not the only form of defining a 3D part. Another interesting method is
the Constructive Solid Geometry (CSG), in which a part is defined in terms of
boolean operations between simple primitives. Those primitives are shapes for
which usually a mathematical definition of their surface can be found: spheres,
cones, cylinders. . . The resulting sequence of boolean operations also leads to
straightforward collision detection among objects; however, although many me-
chanical parts are well-suited to be encoded by this method, some others pose
difficult or impossible problems when modeling.

Non-Uniform Rational B-Spline (NURBS) are parametric surfaces, so each of
them is defined in terms of two parameters, s and t (4.1). A direct consequence
of this fact is that the process of finding features regarding one or more NURBS
surfaces lead to non-linear systems whose solution time cannot be guaranteed
for real-time purposes. Therefore, a common approach is to approximate the
surfaces by a collection of much simpler primitives, which can be queried in a
much straightforward and efficient way [41].

p(s, t) =
∑n
i=0

∑m
j=0 hijpijNi,K(s)Nj,L(t)∑n

i=0
∑m
j=0 hijNi,K(s)Nj,L(t) 0 ≤ s, t ≤ 1 (4.1)

In the context of this document, the CAD representation is used to compute
the physical properties of the contact state of two solids in collision. That informa-
tion can be computed from the B-Rep definition of the objects and their relative
position. However, the B-Rep is not well suited for real-time purposes. Para-
metric surfaces are highly flexible, but it is precisely this flexibility what vastly

4.1. DETECTION AND CHARACTERIZATION OF CONTACTS BETWEEN SOLIDS27

complicates the surface-surface intersection evaluation in the shape of a nonlinear
system. Solving a nonlinear system is a complex process in numerical analysis, and
despite there are specialized textbooks on the topic, geometric modeling applica-
tions pose severe robustness, accuracy, automation, and efficiency requirements
on those solvers [49]. Furthermore, the solution of a surface-surface intersection
may be empty, or include a several branches curve, a surface patch or a point
(Figure 4.1).

border points

singular
points
F=Fu=Fv=0

v turning point
F=Fu=0

loop

u turning point
F=Fv=0

v

u

Figure 4.1: Parameter space of r(u, v) and resulting algebraic curve F (u, v) = 0
[49]

Therefore, usually the NURBS B-Rep definition is further processed in order
to obtain a simpler form, easier to manage in the context of a real-time simulation.

28 CHAPTER 4. COLLISION DETECTION

For the end user this does not constitute any disadvantage, since the preprocessing
of the shapes can be run automatically, without further intervention.

There are many ways in which the solid information can be simplified. They
usually involve some kind of discretization into simple elements or primitives. In
this document, two of those methods are shown: one consists in the discretization
of the surface of the solid into surface primitives, and the other de-composes the
volume of any part into volume primitives.

The first approach described in this document is to segment the NURBS sur-
faces into a collection of simple polygons —triangles— that are faster and easier
to manage. Triangle polygons feature some desirable properties, as being easy to
define and store in memory, and they always define a planar-subdomain indepen-
dently of the value of their coordinates. On the other hand, they are not immune
to bad numerical conditioning: if the length of any of its edges is much shorter
than the others, or if the area of the whole triangle itself is small, any of the
computations based on their data will expose a significant degree of error.

This problem shows up in several other fields that use element-based meshes
for computation purposes. An example is the FEM, in which the solids are also
modeled by means of surface or volume elements. Therefore, a critical aspect for
obtaining good results in a FEM simulation is to start from a well-defined mesh.
Usually FEM packages are able to generate good quality meshes by reaching seg-
mentation solutions in which all its elements have a maximum level of degeneracy.
We use those mesh programs to obtain surface discretizations that do not lead to
numerical errors when computing the intersection properties.

Even in the case that the algorithms use well-conditioned meshes, numerical
errors do still occur. This is an inherent problem stemming from the use of finite-
precision algebra in computers. In the most extreme cases, rounding of floating
point numbers can lead to inconsistencies that lead to wrong results.

4.2. Mesh surface trimming

The procedure of trimming two contacting closed surfaces representing a pair
of solids can be regarded as a specific case of a boolean operation: the intersection
result between both of them.

There is extensive research about computing boolean operations among solids.
Boolean operations are frequently used as modeling operations for creating more
complex shapes. This is the basis of the CSG method mentioned earlier, although
the latter usually only holds the information in an implicit form, since the final
surfaces are not computed directly.

4.2. MESH SURFACE TRIMMING 29

4.2.1. Consistency enforcing and floating-point error mit-
igation

Performing boolean operations on meshes to obtain the surfaces of the resulting
solid implies trimming or clipping the original ones. When the surfaces are defined
as a mesh of polygons, it has been demonstrated that the queries needed to perform
any operation over a mesh can be based on elementary operations called predicates.
Geometrical predicates are used to check if a point is aligned to a segment, or if
it is under or below a given plane. Those checks have to be performed in order to
decide if a polygon or some part of it is going to be trimmed out of the resulting
boolean shape.

Not only they are useful in terms of modularization of the implementation code,
but they are also used to control frequent computation errors that arise in boolean
operations. Small errors when computing those predicates lead to inconsistencies
that, in turn, result in inconsistent output meshes. Inconsistent meshes do not
describe valid solids since they exhibit open cracks, or non-manifold surfaces that
ruin the computations of the properties needed for the contact model.

The literature on boolean operations deals primarily with this problem: some
of them aim to enforce the consistency of the system [56, 20], while others focus
on attaining perfect rounding in floating point computations [53].

Algorithms enforcing the consistency of the results impose a set of additional
rules over the predicates so the inconsistencies cannot occur. For example, Sugi-
hara [56] discovers that the vertices of a mesh are a sub-product of the intersection
of the facets or polygons that define the mesh, themselves being subject to round-
ing issues. Therefore, four points belonging to a same plane but two different
facets could not verify the predicate of being co-planar. The inconsistencies can
be cleared if each vertex vi is defined in terms of the intersection of three planes πi,
with i = 1, 2, 3. For example, the predicate that computes if a point p = [x, y, z]T
is below or above a given plane in implicit form, π = ax+ by+ cz + d, is modified
into

F =

∣∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
aπ bπ cπ dπ

∣∣∣∣∣∣∣∣∣ (4.2)

where the first three row parameters are the coefficients of the planes whose
intersection is the point p, while the last row are the parameters of the plane π. If
the determinant F is positive, the point p is above the plane π. If it is negative,
the point is below, and if the computation is equal to zero, then the point and the
plane are co-planar. This re-formulation of the predicates is also immune to the

30 CHAPTER 4. COLLISION DETECTION

numerical errors that happen when any of the mesh operands is transformed by
any affine operation as a translation, rotation or scale.

Sugihara also removes the rounding error from the predicates scaling each pa-
rameter by a sufficiently large coefficient, so all the determinants can be carried
with integer number data types. The disadvantage of this method is that the
requirements of storage for any mesh increase by a factor of 4. This is not a big
problem in terms of storage in the current computing platforms, but it can affect
greatly to its storage locality, and therefore to the performance of the memory
reading bandwidth.

Another possibility for avoiding floating-point rounding and therefore model
inconsistencies, is to use unlimited-precision floating point number data types.
Even the computation results would be correct, the downside of this method is
that neither the time nor the amount of memory spent on them can be easily
predicted beforehand, so their utility in real-time applications is limited. In the
development of a mesh triangulator for an earthquake FEM, Shewchuk [53] devel-
ops a progressive, adaptive system in which the predicates are split into several
stages with an increasing degree of accuracy. If the accuracy at any intermediate
step is enough to verify the output of predicate (usually the sign of the operation,
instead of the value), the rest of the stages can be discarded, therefore saving time
and computational resources. The system is based on special functions that per-
form arithmetic operations, and upon them, the predicates are built. Statistically,
the most cases that the predicates will be used for will be clear cases in which
a solution is found at the first stages, and only in the minority of the cases the
difficulty of the problem will make that the algorithm has to carry all the steps.

The library of predicates is licensed as “Public Domain” and available at
https://www.cs.cmu.edu/%7Equake/robust.html. A disadvantage of this li-
brary is that it relies in a complete IEEE-conforming floating-point computing
platform; otherwise the results may not be correct. Even if the library was correct
at the time it was written, there is no source which can confirm if it is still the
case on nowadays computers, which feature vectorization instructions as Stream-
ing SIMD Extensions (SSE) or Advanced Vector eXtensions (AVX). Under the
most aggressive levels of code optimization of current compilers, numerical code
can be wildly transformed, leading to inconsistencies when dealing with brittle
algorithms.

More recently, Devillers [12] describes a system for computing the geometric
predicates exactly and efficiently based on transforming their source (user pro-
vided) code into an analogous multi-step filter. As opposed to Shewchuk’s ap-
proach, in which each predicate was decomposed into several stages in the same
system, Devillers uses a hybrid scheme in which several computing methods are
tried in sequence: static and semi-static filters, interval arithmetic, and multi-

https://www.cs.cmu.edu/%7Equake/robust.html

4.2. MESH SURFACE TRIMMING 31

precision algorithms for the edge cases. In the same spirit as Shewchuk’s work, the
possibility of interrupting early the sequence of computations, and only having to
compute the exact solution in the most rare cases is crucial in order to attach a
good average performance.

The static and semi-static filters are automatically generated from the user’s
source code, and it is expected for them to be successful almost always (when
the predicate output is far from zero). Otherwise libraries for interval or multi-
precision arithmetic are used; the latter is likely to be the slowest implementation
available, but it provides always the exact result. Note that this is done in a
case-by-case basis, so the extra cost of using sparingly an exact multi-precision
algorithm is amortized with the rest of the computations.

4.2.2. Implementation of surface trimming for meshes
In order to accommodate the tasks of identifying intersecting and the trimming

of the facets in the code, a new C++ library, LIM Collision Detection (LIMCODE)
was written. This library is similar to some others already available as free soft-
ware, but features a number of additional characteristics:

1. It does not require the meshes to be in a specific format, since the user can
choose to pass the library either one reference to the list of vertices defining
the shape, or a list of non-repeating vertices and a list of indices. The
library does not store the data itself, it only uses it for building its internal
structures.

2. The type of the data passed can be configured by the user, so single or double
precision data can be passed without problems, or any other data type that
features the common algebraic operators (+,−, ∗, /).

3. Any multi-precision data type can be configured in order for the library to
compute the exact value of the predicates only in the cases where it is near
zero. Again, the only requirement on that data type is that defines the
arithmetic operations specified in the previous item.

The first stage is commonly referred to as “far detection”; its aim is to discover
how many pairs of objects are in potential contact. It usually consists of a simple
test that quickly discards objects that are separated by a big distance, therefore
avoiding to further spend computation cycles. Typically a simple volume, such as
a sphere or a rectangular box is created and resized to enclose the whole object.
Those fast tests can result in false positives, since the enclosing volume is bigger
than the object itself, but never in false negatives. In a typical situation, the

32 CHAPTER 4. COLLISION DETECTION

number of false positives should be very low, and nevertheless processing them
should be also very fast.

For virtual assembly purposes, the low amount of moving parts makes it pos-
sible to almost ignore this far detection stage, since the small number of checks do
not constitute any significant computation load for the system.

Figure 4.2: False positive when colliding bounding volumes (Wikipedia.org, swg-
produktion.de)

4.2.2.1. AABB trees

After having the list of pairs that are potentially in collision, the system pro-
ceeds to what is commonly called “near detection” phase. In this stage, the collision
is computed at a precise detail level; in the case of triangle meshes, the process
finds all the pairs of intersecting facets. That information is needed to obtain the
resulting intersection between the objects and its volumetric properties.

Contrary to what it was described for the far detection stage, the number of
facets in any of the objects is usually large; checking all the possible combination of
facets in the search for intersections would lead to a huge number of tests whose re-
sult is false. Even for offline boolean algorithms, this process is optimized through
the classification of each facet into a spatial hierarchy that makes it possible to

https://en.wikipedia.org/wiki/File:Adjustable_wrench.svg
https://www.swg-produktion.de/fileadmin/swg-produktion.de/Media/02_Schrauben/Universal/universalholzbauschraube.svg
https://www.swg-produktion.de/fileadmin/swg-produktion.de/Media/02_Schrauben/Universal/universalholzbauschraube.svg

4.2. MESH SURFACE TRIMMING 33

quickly traverse among all the ones in its vicinity. A structure of that kind, used
for interactive applications, is the Axis-Aligned Bounding Box (AABB) tree.

emax

emin

Figure 4.3: Representation of an AABB tree (cgal.org)

An AABB tree is a hierarchical structure composed of nodes, each of them
enclosing a AABB volume; each of these volumes are rectangular boxes, aligned
to the local axes X, Y, Z. Its only parameters are its extremal points emin =
[xmin, ymin, zmin]T and emax = [xmax, ymax, zmax]T . In order for the tree traversal
to be as efficient as possible, each node should lead to their smaller-sized child
nodes; at each level, the probability of intersecting all the children diminishes, so
the number of discards increases, accelerating the process. There is not an unique
algorithm for creating an AABB tree, since the criteria for classifying each group
of facets at each level is not unique itself. However, any function splitting a group
of facets into two equal-sized children groups would typically lead to good results,
since it would diminish the complexity of a search from O(n) to O(log(n)).

https://doc.cgal.org/latest/AABB_tree/anchor.png

34 CHAPTER 4. COLLISION DETECTION

The implementation of our C++ collision detection library, LIMCODE, follows
a spatial policy in which the initial group is divided into two groups, depending
on if a given facet lies on either side of a splitting plane. The splitting plane is
computed to pass through the Center of Mass (COM) of the facet group, and its
orientation to be perpendicular to the axis whose dimension is the largest. For
each child group of facets, the process is repeated until each group holds exactly
one primitive (triangle).

When performing the near detection stage between two solids, only their AABB
trees are used. Considering that the affine transformation Ti ∈ R4×4 holds the
translation and the rotation of each object i, the inputs of the procedure are TA and
TB. A rotated AABB is not aligned with the global coordinate system anymore,
and it is called an Oriented Bounding Box (OBB). Even if checks on OBB entities
are not very expensive in computational terms, they are still slower and less precise
than checks on AABB boxes due to the higher number of floating-point operations
involved. A typical optimization consists in expressing the problem in terms of
the local coordinate system of one of the objects, therefore having to check an
AABB tree against the OBB boxes of the other object. In that case, the relative
transformation matrices TA and TB in the reference frame of the first object (A):

T′A = I4×4 (4.3)
T′B = T−1

A TB (4.4)

The near detection stage compares the nodes of each tree, checking if they
are in collision. Since the process is carried in the frame of reference of one of
the objects, the root AABB node of its tree is tested against the other object’s
AABB root node. The nodes of the second object have to be transformed into the
frame of the first by applying T′B to each AABB node, and the AABB-OBB test
is performed. If the test is successful, the children of each node of each object have
to be tested analogously. If a test fails, the node and its children are discarded,
therefore pruning large parts of each tree.

The tree traversal ends at the primitive level, when two leaf nodes holding only
one triangle each are tested.

The AABB tree collision test lessens the need for a complex far detection
algorithm, since if the number of moving objects is moderate, non-colliding objects
are quickly discarded at the first check of the root nodes of each object.

4.2.2.2. Testing of potentially colliding triangles

For these primitive tests, the method described by Guigue [30] is used. This
algorithm decomposes the problem into a combinatorial stage and a predicate

4.2. MESH SURFACE TRIMMING 35

evaluation, therefore containing the numerical error into a single place which can
be modified to use different precision data types if necessary. The combinatorial
stage detects the relative position of the vertices of one triangle with respect to
the other, and then passes the ordered sequence to the orientation predicates. It is
required to evaluate at most two predicates to know the results of the test. If the
test is positive, the pair of indices of each triangle is stored for further processing.

P1

R1

Q1

P2

R2

Q2

n2

n1

Figure 4.4: Vertex ordering in Guigue’s method.

4.2.3. Intersection volume computation for meshes

After a collision between a pair of objects is detected, the system can proceed
to identify the shape of the intersection enclosed by them (Figure 4.5). This
procedure is composed of two different stages, depending on the type of primitive
type:

1. Primitives detected in the collision detection: the triangles that were de-
tected to intersect any other triangle of the second object (Figure 4.6). These
primitives have to be clipped against the other object.

2. Neighboring primitives to the first type: triangles that touch those to be
clipped and are inside any of the two objects. They have to be collected in
order to close the intersection shape.

36 CHAPTER 4. COLLISION DETECTION

A

B

A B

U

Figure 4.5: Intersection between a pair of objects

4.2.3.1. Binary Space Partitioning Trees

For both tasks, it is frequently needed to know if some entity lies in the inside
or the outside of an object’s boundary. As described in Chapter 4, an object is
built by free-form surfaces whose only requirement is to define a manifold domain.
Thus, simple local tests on the surface of an object can lead to erroneous results
(Figure 4.7). This problem is caused by the fact that a shape is not required to
be convex, so in a volume domain V and two points i and j such as i, j ∈ V , any
given point

k = i+ α(j − i) with 0 ≤ α ≤ 1
is not guaranteed to belong to V as well.
Thibault [57] develops a structure that decomposes a closed domain into a

set of convex cells, called BSP. In the same spirit of the AABB trees, a BSP
can be computed in the preprocessing step of a simulation, and it remains valid
even the object is transformed by any affine operation, since it is referred to the
local coordinate system. The procedure of building a BSP consists on successively
splitting the mesh by a plane until each sub-mesh is a convex cell. An object
has not a single BSP representation, since it depends on the plane selection used.
This selection can alter the performance of the queries of the BSP, since they can
result in better balanced or shorter trees. An usual strategy is to use the facets of
the object itself as the partitioning planes for creating the BSP, thus reducing the
number of cells in the tree: if a partitioning plane passes through any other facet,
it has to be split and classified into both sides.

4.2. MESH SURFACE TRIMMING 37

A

B

Figure 4.6: Intersecting faces detection stage

The procedure for determining if an entity lies in the inside of a given object
is analogous to other binary-tree traversals: the entity is checked against the root
node, and then classified as being in the positive (⊕) or the negative () sub-space
that the node defines. The traversal continues by following the corresponding sub-
space node at each generation until a leaf node is found: the classification of the
entity against the whole object is the one obtained at the leaf node.

In the case of the BSP the classification has always to reach a leaf node, since
they represent the convex cells in which the volume domain is de-composed, but
since the path of the traversal has no bifurcations, it delivers very good perfor-
mance, being O(log(n)) as well.

4.2.3.2. Polygon Clipping

In the process of creation of a BSP, or in the mesh intersection stage, some
polygons are required to be cut against a given plane (Figures 4.9 and 4.11).
Splitting a polygon in two different pieces is a brittle numerical task if performed
naively; as presented in [20], numerical errors can lead to inconsistent output (the
result set of split polygons does not cover the same domain as the original one,
open polygons, . . .)

Again, geometrical predicates are used in order to contain and identify the po-
tential source of numerical errors, and to be able to exploit different computational
strategies depending on the difficulty of the problem.

The algorithm proposed by Bernstein [5] is able to compute the split polygons
corresponding to one of the sides of the splitting plane in only one traversal of

38 CHAPTER 4. COLLISION DETECTION

Pi

Pk

Pj

Figure 4.7: Definition of a non-convex domain

the original polygon. To accomplish the task, it follows each vertex in order and
classifies them against the splitting plane, using the predicates.

Depending on the classification of a vertex and the classification of the previous
2 vertices, it can be known if a vertex belongs to the polygon in the positive side
of the plane, or the negative, or both. Since it is required to store at most the
information from the previous pair of vertices in the sequence, it is straightforward
to implement the algorithm as a Finite State Machine (FSM), an algorithm that
has a predefined set of states, and has rules to enforce that the nodes can only be
followed in some allowed sequences.

For this matter, the state of the clipping algorithm is defined by the classifi-
cation results of the last three vertices against the splitting plane. The possible
states of the FSM are shown in Table 4.1: 	 determines a point is below the plane,
⊕ that is above it, “0” strictly on the plane, and “*” means that the classification
of that point is not relevant.

The output corresponding to each of the stages is marked as “H” (the splitting
hyperplane) or “B” (boundary hyper-plane), depending on which new boundary
the algorithm is creating: if it is using the splitting plane or if it continues to use
the current boundary of the polygon. In the case that a joint mark is output (i.e.
“HB”), it means that the code is emitting both planes, and in that precise order.
Outputs marked with an empty set (∅) mean that the algorithm should proceed
to the next vertex without adding any new boundary.

4.2. MESH SURFACE TRIMMING 39

2

1

3

4

5

0

C1

C2

0

3

2 4

1

OUT OUT

5OUT OUTC1

C2OUT

Figure 4.8: BSP tree. Leaf nodes point to convex cells.

A

B

Figure 4.9: Clipping faces stage

4.2.3.3. Half-edge structure

Once the intersecting facets from both objects are clipped against the other
object, the intersection shape has to be completed by adding the rest of the facets
that lie in the inside of the objects (Figure 4.12). This task can be precomputed by
storing beforehand the connectivity information of each facet in the preprocessing
stage. LIMCODE uses a half-edge structure [37] which encodes the local infor-
mation of each facet and makes it possible to traverse the mesh following some
criteria, as cycling through the vertices of a facet, or jumping to an adjacent facet.

The structure is composed of a collection of edge nodes Ne(V, F,N ′e), each one
holding a reference to the vertex V to which the edge is pointing, to the face F

40 CHAPTER 4. COLLISION DETECTION

state

B

Figure 4.10: Depiction of a FSM: “A” is the starting node and valid transitions
are marked with arrows.

Input Output Input Output Input Output
*⊕⊕ B ⊕0⊕ B *	⊕ HB

00⊕ HB
	0⊕ HB

*⊕0 B *00 ∅ *	0 ∅
*⊕	 B *0	 ∅ *		 ∅

Table 4.1: Possible states and results of the FSM

which it belongs, and to the coincident, opposite-direction edge that belongs to
the neighboring face N ′e. As the mesh is required to be manifold, only one node
N ′e is opposed to the node Ne, and it is also guaranteed that each edge node has
a complementary node; otherwise the surface would be open.

Precisely that complementary edge node N ′e allows to traverse the surface along
the adjacent facets of a given one. In order to close one of the caps of the intersec-
tion surface starting from the intersection primitives, an interior face Fwi, neighbor
to the intersection face Fi has to be found, such as

Fwi ∈ N ′e1, N ′e2, N ′e3 from Fi/BSPB(Fwi) < 0

the search stops when the interior face of object “A” (resp. “B”) is classified
as “interior” by using the BSP structure of the opposite object “B” (resp. “A”).

The rest of the algorithm is very simple: a list containing the intersection faces

4.2. MESH SURFACE TRIMMING 41

H

B1

B5
B4

B2

B3

Figure 4.11: Representation of the boundary planes Bi (edges) of the polygon and
the splitting plane H

A

B

Figure 4.12: Internal faces detection stage

42 CHAPTER 4. COLLISION DETECTION

V

F

F'
he'

he

Figure 4.13: The half-edge structure.

Fi and the interior face Fwi is created, Lif . Then, the algorithm traverses all the
neighbors of Fwi not present on Lif and adds them to it; the algorithm continues
the traversal until it cannot advance anymore: all the forward faces are already
present in Lif . The interior surface cap is guaranteed to be continuous and gap-
less, because the imposed manifold property of the objects: the algorithm cannot
traverse the initial ring of intersection faces Fi, and there has to exist a valid path
from them to any of the interior faces Fwi.

4.2.3.4. Computation of volume properties

Once the intersection boundaries of both objects are defined, they form a closed,
manifold object whose solid properties can be computed (Figure 4.14). The contact
model requires to know three mass-moments: the volume of the object, its COM
and the inertia tensor with respect to it.

Some methods have been developed to accomplish that task; one of the most
cited ones is Mirtich’s [42], which can deal with manifold meshes of polygons, each
one with an arbitrary number of sides. The algorithm takes advantage of the
successive application of the Divergence Theorem to a closed surface to transform
the volume integral into a bi-dimensional one per facet. In the same way, Green’s
Theorem is used later to finally reduce each of the area integrals into line integrals.

As an example of how the method works, it is shown the procedure of com-
puting one of the products of inertia of a solid, Pxy =

∫
V xydV over its volume

domain, V .

4.2. MESH SURFACE TRIMMING 43

A

B

Figure 4.14: Complete intersection volume

The Divergence Theorem states that∫
V
∇ · F dV =

∫
∂V

F · n̂ dA

The method by Mirtich takes advantage of the fact that if a function F is
found such as ∇ · F is the desired quantity to obtain, the volume integral over
the whole solid can be decomposed into several, simpler area integrals, one per
facet (the sub-domains ∂V). For example, it can be checked that a function as
Fxy = 1/2x2yi + 0j + 0k complies with the requirements to compute the integrand
of the product of inertia Pxy, as ∇ · Fxy = xy. Then, the volume integral can be
transformed into a collection of area integrals

Pxy =
∫
V
xydV =

∫
V
∇ · Fxy dV =

∫
∂V

Fxy·n̂ dA = 1
2
∑
F∈∂V

n̂
∫
F

Fxy dA (4.5)

for each facet F . Note that, since the facets are flat, the normal n̂ of each
surface is constant and does not need to be integrated. Analogously, Mirtich uses
the Green’s Theorem to express each of the area integrals in terms of line integrals,∫

F
∇ ·HdA =

∮
∂F
H · m̂ds (4.6)

where H is a function that, in the same sense as F , aids to transform the area
integral into a collection of line integrals along each of the edges of the polygon
that encloses that area and whose outside-pointing normal is m̂.

44 CHAPTER 4. COLLISION DETECTION

After collecting all the terms for each edge and polygon facet, the properties
can be added and transmitted to the next part of the program. This process is
simple, but it requires a significant amount of floating-point operations, therefore
accumulating numerical errors in the process, which could be noticeable when the
volume is small.

If the mesh to be processed is composed only by triangles, the method can be
further simplified. Since any flat polygon can be decomposed into a set of triangles,
only a small preprocessing overhead would be required. Eberly [19] reports that
simplifications stemming from the only use of triangles “require significantly less
computational time” than the original algorithm.

DiCarlo [13] suggests a much simpler implementation by using an affine ex-
tension to the Euler tensor. This method can be used also with affine operations,
so the final results can be obtained without having to transform them afterwards.
Since only multiplications and additions are required to implement the method,
is well-suited to be used in Single Instruction Multiple Data (SIMD) computing
devices such as any Graphics Processing Unit (GPU).

The method extends the notion of the Euler tensor E ∈ R3×3 to an augmented
E+ ∈ R4×4:

E =
∫
B

r⊗ rdM ⇒ E+ =
∫
B

r+ ⊗ r+dM (4.7)

where r is a vector pointing to each dM of the body, and r+ is the equivalent
variable in homogeneous coordinates.

Developing 4.7, and upon closer inspection of 4.8, it is clear that the upper-left
corner of E+ holds the inertia tensor, the last three elements of the last row or
column the COM, and the element at (4, 4) the mass, since the homogeneous
coordinate w = 1 for points.

E+ =
∫
B


x2 xy xz xw
xy y2 yz yw
xz yz z2 zw
xw yw zw w2

 dM (4.8)

The method computes the contribution to the tensor of each triangular facet
with the following expression

E+ = det(G)GE∗+GT (4.9)

4.3. INNER SPHERE TREES VOLUME TRIMMING 45

where E∗+ is a constant tensor of the form

E∗+ = 1
120


2 1 1 5
1 2 1 5
1 1 2 5
5 5 5 20

 (4.10)

and G ∈ R4×4 is a matrix holding the three coordinates vi of a triangle vertex:

G =
(

v0 v1 v2 0
0 0 0 1

)
(4.11)

All the results are referred to the origin of coordinates (0, 0, 0).

4.3. Inner Sphere Trees volume trimming
Mesh analysis is usually a costly approach for calculating the intersection vol-

ume, because of the need to compute every colliding facet and clipping the in-
tersecting ones requires a lot of processing time. Therefore, a simpler alternative
method was also used to compare its performance and accuracy against the mesh
intersection method. The alternative selected, known as IST, is described in [58]
and its based on the ProtoSphere sphere packing algorithm presented on [59].

Basically, the method consists in using a simplified geometry for the object
representation. Instead of using the triangle mesh to calculate the intersection
volume, a group of non-overlapping spheres of diverse size, known as sphere pack-
ing, is used to fill the object and therefore to approximate its shape. Usually,
around 10 000 spheres are enough to get a rough approximation, depending on
the object’s size and shape. This simplification makes it easier to find the in-
tersection volume as no triangle checking is involved in the operation. Once the
sphere packing is created using the ProtoSphere tool, a hierarchy is established
between the spheres in order to speed-up the collision checks analogously to the
aforementioned AABB trees. This hierarchy is called Inner Sphere Tree, and it is
a top-down tree where the leaves (spheres from the sphere packing) are contained
inside node spheres, which are also grouped together into bigger sphere nodes until
only one sphere wraps the object entirely. This makes it possible to have a time
critical algorithm that can check the approximate overlapping volume running in
a predefined time budget.

On top of these tools, an algorithm was implemented in order to calculate
the rest of the needed properties, such as the center of mass, inertia tensor of
the intersection volume and the normal force direction vector. Since a collision
between two objects is represented as a two Inner Sphere Trees intersection, the
interference volume is approximated as a number of colliding pairs of spheres. The

46 CHAPTER 4. COLLISION DETECTION

overall mass properties can be derived then from the sum of the properties of the
individual sphere pairs.

Figure 4.15: IST collision

4.3.1. Sphere intersection

Given two spheres A and B, of radius RA and RB, located at pA and pB respec-
tively, the distance between the spheres can be calculated as d =

√
(pB − pA)(pB − pA).

A is assumed to be the biggest sphere, RA ≥ RB.

dA dB
pA

pB

A

B

Figure 4.16: Collision of two spheres

4.3. INNER SPHERE TREES VOLUME TRIMMING 47

The distance from the contact plane to the center of both spheres is

dA = R2
A + d2 −R2

B

2d (4.12)

dB = R2
B + d2 −R2

A

2d (4.13)

d = dA + dB (4.14)

Depending on the relation between this distances and the radius of both spheres,
we can have up to four different situations, as shown in Figure 4.17. In order to
calculate the intersection volume Vi, its centroid pi and its inertia tensor Ii, the
following cases must be tested sequentially until one that fits the current situation
is found.

d

AB

d

B A
dAdB

A)

C)

d

B A

d

B A
dA

dB

B)

D)

Figure 4.17: Sphere intersection types

A) d ≥ RA +RB There is no contact between the spheres.

Vi = 0 (4.15)

48 CHAPTER 4. COLLISION DETECTION

B) RA ≥ d+RB Sphere B is completely inside sphere A

Vi = 4πR3
B

3 (4.16)

pi = pB (4.17)

Ii = 2mBR
2
B

5 I3 (4.18)

C) d ≥ dA Less than half sphere B is inside sphere A. The intersection is the
union of two spherical caps and their properties are calculated using the
expressions in Section 4.3.1.1.

D) d < dA More than half sphere B is inside sphere A. This case is similar
to Item C), but one of the caps is larger than half sphere, so despite the
same expressions can be used, this has to be taken into account: for this
cap properties to be calculated, first the properties of its complementary cap
must be found and then subtracted from the properties of the whole sphere.

4.3.1.1. Spherical cap properties

iA

iB

Figure 4.18: Spheres intersection

As previously stated, in the case that d < RA + RB, it can be inferred that
there is penetration between both spheres. This interference i is usually a biconvex
lenticular body that can be decomposed in two spherical caps (iA and iB) cut by the
contact plane, the one which contains the contact circumference (Figure 4.18). If
the collision is positive, the mass properties of the caps iA and iB can be calculated
using the following formulas for a spherical cap where h is the height of the cap
and R the radius of the sphere.

Vcap = πh2

3 (3R− h) (4.19)

4.3. INNER SPHERE TREES VOLUME TRIMMING 49

zccap = 3(2R− h)2

4(3R− h) (4.20)

Icap =

I11cap 0 0
0 I22cap 0
0 0 I33cap

 (4.21)

I11cap = I22cap = πh2

60 (60R3 − 9h3 − 80hR2 + 45h2R) (4.22)

I33cap = πh3

30 (20R2 + 3h2 − 15hR) (4.23)

Where Vcap is the volume of the cap, zccap is the height of its centroid along its
symmetry axis and Icap is the inertia tensor, all of them expressed in the center of
the sphere.

Once the mass properties have been calculated for every sphere pair, all of
them can be added-up to get the total values for the whole set properties.

4.3.2. Numerical error optimization
While the expressions above are theoretically correct, there is still a prob-

lem with their implementation. As every calculation made on a computer, this
equations suffer from some floating-point errors that may render them inaccurate.
Truncation error or loss of significance effects like catastrophic cancellation are
some issues that affect the results. In some other cases this errors may not be
significant, but when trying to discern between contact and no-contact situations
(or any other boolean output), a false positive due to numerical error leads to
division-by-zero calculations and other undesirable issues.

Let’s say for example that while evaluating Equation (4.12) or Equation (4.13) a
slightly inaccurate result is obtained that leads to a positive output for the collision
test described before when the two spheres are not in contact or just tangent. This
would yield a negative value for h and would be propagated to Equation (4.19),
(4.20) and Equation (4.21) producing also negative values for Vcap, zccap and Icap,
which has absolutely no physical meaning and would make the force model fail
and therefore invalidate the simulation.

In collision-detection-related equations, minimizing the floating point error is
critical because a lot of terms can produce wrong results leading to an incorrect
contact detection, being catastrophic for the simulation. The equations above, in
their current form, are numerical error prone, so they must be reworked in order
to avoid these issues. In [47], a heuristic algorithm that reformulates equations to

50 CHAPTER 4. COLLISION DETECTION

minimize their floating-point error is presented. This tool, called Herbie, was used
to generate new, improved equations.

Herbie works sampling random input points for the given equations over all
the floating-point range and identifying known errors to certain mathematical op-
erators. It then rewrites the expression using a heuristic search algorithm to find
programs that compute the same equation more accurately. Series expansions are
used to avoid under/overflow and all the different paths that branch-out from the
original are combined into an optimized solution. Sometimes this solution is a set
of conditional expressions, and the one that must be evaluated will depend on the
numeric value of the input.

The improvement in Herbie’s reformulation process can be measured with the
average bit error. This accuracy error is measured in Units in the Last Place
or Units of Least Precision (ULP) and represents the spacing between floating-
point numbers. It can also be understood as the value the least significant digit
represents if it is 1.

The new equations generated by Herbie are

dA = 0.5RA

d
RA

+ 0.5d− 0.5RB

d
RB

(4.24)

dB = 0.5RB

d
RB

+ 0.5d− 0.5RA

d
RA

(4.25)

Vcap = (h(πh))(R− h

3) (4.26)

zccap = (h0.75)h− (3R)(h−R)
3R− h (4.27)

The distance average bit error using this new expressions goes from 26.7 with
the old equations all the way down to 0.2 with the new ones. This can be appre-
ciated in Figure 4.19, Figure 4.20 and Figure 4.21. These charts represent the bit
error for the old and also the new expressions in all the floating-point range versus
the different input values. For the sake of brevity, only the charts correspondent
to dA (4.12) reformulation are included, as there is one figure for every input RA,
RB and d.

In the case of the intersection volume, the average bit error is 5.8 with the old
formula and 0.4 with the new one. For the centroid, the bit error improves from
30 to 0.3.

It can be seen that this poses a great error improvement and certainly it was
a key determinant factor in solving the false positive collision situations.

4.3. INNER SPHERE TREES VOLUME TRIMMING 51

Figure 4.19: Herbie output chart: dA expression bit error vs value of RA, old (red)
and new (blue)

Figure 4.20: Herbie output chart: dA expression bit error vs value of RB, old (red)
and new (blue)

4.3.3. Computation of the derivatives of the contact prop-
erties

Some of the collisions that happen during simulations are impacts: low dura-
tion, high frequency forces that vastly affect the integrator stability and therefore
the simulation robustness. Introducing these forces can make the integration pro-
cess require a high number of iterations in the search of a valid solution, and put
at risk the real-time requirements. In order to improve the convergence of this pro-
cess, the collision forces contribution to the tangent matrix in Equation (2.20) must

52 CHAPTER 4. COLLISION DETECTION

Figure 4.21: Herbie output chart: dA expression bit error vs value of d, old (red)
and new (blue)

be also calculated. As stated there, the contribution for a force is K = −∂Q/∂q
and C = −∂Q/∂q̇.

This contribution can be analytically deducted for simple force models, for
which derivatives with respect to q and q̇ can be found. For more complex force
expressions, such as medium-sized mathematical expressions or piecewise-defined
functions, their derivatives could not be easily found or they could not exist in the
general case.

For the geometric model proposed in this section,

Q = Q(q, q̇, V (q), IA(q), kn, hn, . . .) (4.28)

In addition to the fact that the complete expression for 4.28 is not short, the
functions in which they are based are defined differently depending on the relative
position of each pair of spheres, and therefore the differentiation algorithm has to
take that into account.

The simplest approach is to approximate the value of the derivatives numeri-
cally by the at first sight straightforward “finite difference” method: evaluate the
function f in the vicinity of the point of interest, f(xo) and in another close point
that is at a small distance ε, f(xo + ε). The quotient (f(xo) − f(xo + ε))/ε is
the definition of the derivative as ε → 0. However, the subtraction of very close
numbers is specially problematic in floating point arithmetic, and therefore the
implementation has always to balance the effects of choosing a big ε parameter,
which would lead to an inaccurate computation, or a small ε, which would lead to
inadmissible numerical errors.

For overcoming these problems, a common alternative approach derivatives is

4.3. INNER SPHERE TREES VOLUME TRIMMING 53

to use the “complex step” method [39, 54]. It is analogous to the previous one,
but in this case a complex perturbation iε is chosen, instead of a real number. The
expression to evaluate the derivatives is shown in Equation (4.29). The resulting
effect is that the computed derivative is much less dependent on the size of the
perturbation, and the numerical error is noticeably smaller.

f ′(x0) ≈ Im(f(x0 + iε))
ε

(4.29)

There are still some disadvantages when using the “complex step” method in
a generic software implementation:

1. existing code performing the force evaluation has to be rewritten in order to
use complex arithmetic;

2. the whole evaluation process has to be carried by this method: it is not
possible to use the derivatives that can be provided by “black box” elements
in terms of which the force function evaluation could be based.

A third method for evaluating derivatives is the family of “automatic differen-
tiation” procedures. Those methods consist in the evaluation of the derivatives of
each of the operations that define the expression, and accumulating the results for
incorporating them to the subsequent calculations by means of the “chain rule”.
The evaluation of the derivatives is performed at the same time as the evaluation
of the function itself. The derivative of each elementary term is either provided by
the user, or considered null by default. Therefore, “black box” models, for which
the algorithm is not available, can be used seamlessly as long as their derivatives
are known, thus addressing Item 2. Some automatic differentiation systems require
the function to be defined in terms of a special number type, but some others rely
in code transformation, therefore addressing Item 1.

This system is based on the C++ Eigen library [29]. Eigen is a templating
library implementing linear algebra algorithms. The “templating” term refers to
the fact that those algorithms are written in an independent way from the data
type, and thus can handle many numeric formats, such as single, double precision
or complex ones. This is the same philosophy shown in the library described in Sec-
tion 4.2.2. The library also includes an automatic differentiation capabilities mod-
ule (Auto Diff), which is activated by using the special Eigen::AutoDiffScalar
type in the function evaluation.

Listing 4.1 illustrates the usage of the module in the computation of the terms
needed for calculating a force and the derivatives of each one of them. Each compo-
nent is augmented with an array holding its derivatives with respect to (qx, qy, qz).
By default they are considered null, meaning the parameter is a constant. Lines
18 to 20 show how to declare a variable directly dependent on the set of three

54 CHAPTER 4. COLLISION DETECTION

coordinates, cA. This scheme would be used as well to link to any procedure that
could supply the evaluation of a function as well as the derivatives, but not the
actual implementation.

Following the code, it can be seen that the calculations are performed in a
normal way, and that they spawn newer automatic differentiation variables that
accumulate the derivatives as well the function evaluation.

As an example, the contact normal is stored in the variable named direction,
and the lines 56 to 58 show that the actual computed value can be retrieved with
the method value(), while the three derivatives of each component of the vector
can be found with the method derivatives() (see lines 60 to 62).

Listing 4.1: Usage of the automatic differentiation module
1
2 // Type declaration:
3 // diffcomp: scalar value and its three derivatives (qx, qy, qz)
4 typedef Eigen::AutoDiffScalar<Eigen::Vector3f> diffcomp;
5 // V3df: vector of three "diffcomp" elements
6 typedef Eigen::Matrix<diffcomp, 3, 1> V3df;
7
8 // cA, cB: regular vectors holding the coordinates of the spheres
9 Eigen::Vector3f cA(pA.getX(), pA.getY(), pA.getZ());

10 Eigen::Vector3f cB(pB.getX(), pB.getY(), pB.getZ());
11 // centerA, centerB: augmented vectors with automatic derivatives.
12 V3df centerA, centerB;
13
14 // cA and cB are transformed into the global frame of reference.
15 // centerA and centerB are loaded with them; sphere A is supposed
16 // to be moving, while sphere B is considered fixed.
17 cA = TA * cA;
18 centerA << diffcomp(cA[0], Eigen::Vector3f(1, 0, 0)),
19 diffcomp(cA[1], Eigen::Vector3f(0, 1, 0)),
20 diffcomp(cA[2], Eigen::Vector3f(0, 0, 1));
21 cB = TB * cB;
22 centerB << cB[0], cB[1], cB[2];
23
24 // Distance between centers
25 diffcomp dist = sqrt((centerB - centerA).dot(centerB - centerA));
26
27 // Check that there is actually contact
28 if(dist >= (RA + RB)) return;
29
30 diffcomp vol;
31 Eigen::Vector3f com;
32 Eigen::Matrix3f Ig = Eigen::Matrix3f::Zero();
33
34 // Unit vector from pA to pB
35 V3df direction;

4.3. INNER SPHERE TREES VOLUME TRIMMING 55

36 // direction.normalize();
37 direction = (centerB - centerA) / dist;
38
39 // Check if B is completely inside A
40 if((dist + RB) <= RA)
41 {
42 // Volume and Center Of Mass computation
43 vol = 4 * M_PI * pow(RB,3) / 3;
44 com << centerB[0].value(), centerB[1].value(), centerB[2].value();
45
46 // Computation of the inertia tensor of the volume
47 float i = 2 * vol.value() * RB * RB / 5;
48 Ig.diagonal() << i, i, i;
49
50 // Regular vector holding the direction of the force
51 Eigen::Vector3f normal;
52 // 3x3 matrix holding the derivatives of (nx, ny, nz) w.r.t. (qx, qy, qz)
53 Eigen::Matrix3f dn_dr;
54
55 // value() holds the actual value of a given component
56 normal << direction[0].value(),
57 direction[1].value(),
58 direction[2].value();
59 // derivatives() holds the three derivatives of a given component
60 dn_dr << direction[0].derivatives(),
61 direction[1].derivatives(),
62 direction[2].derivatives();
63
64 // Use the force in the multibody system
65 force_callback(vol.value(),
66 com.data(),
67 normal.data(),
68 Ig.data(),
69 vol.derivatives().data(),
70 dn_dr.data(),
71 idA,
72 idB,
73 nCollisions);
74
75 return;
76 }

Chapter 5

Results

To assess the correctness and the performance of the presented contact meth-
ods, three different tests were designed, each one focused on studying the model
behavior during one of the possible relative motions between two colliding bodies:
sliding, rolling and spinning.

5.1. Test 1: block sliding on plane

5.1.1. Description
The first of the performed tests was designed to verify the accuracy of the

normal and tangential force models. It consisted in a simple block sliding down
an inclined plane with friction subject to the gravity acceleration. The goal of
this test is to compare the angle at which the friction force can’t hold the block
anymore and it starts sliding downhill with the theoretical one, which is known.
For a plane with a coefficient of friction with value µ = 0.5 the limit inclination
angle for the floor is:

θ = atan(µ) = 26.5650◦ (5.1)

The mass of the block is m = 1 kg and its dimensions are 1 m by 0.5 m by
0.5 m. Its longest side is oriented to match the sliding direction.

Furthermore, a 4 seconds simulation with a plane inclination of 30◦ was run
in order to ensure sliding and compare the centroid trajectory, its velocity and
the angle deviation of three local vectors initially aligned with the global x, y
and z vectors. The trajectory error was measured as the distance from the block
centroid to the floor sagittal plane. Under ideal conditions, this distance should
be constantly zero, and so should be the three angles deviation with respect to
the three global axis. The axis configuration is the following: the x axis points

57

58 CHAPTER 5. RESULTS

forward and matches sliding direction, the y axis points upward and the z axis to
the right of the block. The contact parameters can be seen in Table 5.6.

Figure 5.1: Block sliding on plane

5.1.2. Results
5.1.2.1. Mesh

The mesh model for this test is the simplest triangular mesh possible with two
triangles per face (Figure 5.2). For the floor, another bigger block has been used
with an equivalent triangle mesh.

The angle at which the sliding started was 26◦. Compared with the theoretic
value of 26.56◦, this accounts for a 97.87% accuracy. The trajectory, velocity and
angular errors can be seen in Figure 5.3, Figure 5.4 and Figure 5.5. The trajectory
error remained under 5× 10−6 during the 4 seconds simulation despite it seems to
show a quadratic growth. The velocity evolution matches the theoretical one to a
high degree of resemblance, and the biggest angular error, which corresponds with
the pitch angle, was −6× 10−5. These results denote a very good correlation to
the ideal performance in terms of accuracy.

It’s important to take into account the effects of the initial position: in the
theoretical solution, there is no inter-penetration between the block and the floor,
but in the simulation a perfectly tangent, non-indentation initial position was set,
so there exists a transition phase for the forces stabilization that lasts about 0.2
seconds and can be perceived both in the angular deviation and trajectory error
charts.

5.1. TEST 1: BLOCK SLIDING ON PLANE 59

Figure 5.2: Sliding block mesh discretization

0 1 2 3 4
0

1e-06

2e-06

3e-06

4e-06

5e-06

t(s)

s(
m

)

Trajectory error

error

Figure 5.3: Sliding block (mesh): trajectory error

60 CHAPTER 5. RESULTS

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

t(s)

v(
m

/s
)

Velocity

theoretical
simulation

Figure 5.4: Sliding block (mesh): velocity error

5.1.2.2. Inner Sphere Tree

The IST model is an approximation of an object’s geometry composed of
spheres. The number of spheres selection poses a trade-off between the accuracy
of the model and the computation cost. A higher number of spheres yields a more
accurate object representation, but also means that the simulation execution time
will be larger. As a rule of thumb, ISTs with in the range of 5000 to 20 000 spheres
usually produce a fair enough representation for the objects used in this work. For
this test, two ISTs of 12 215 and 15 423 spheres were used for the simulation’s main
body and the floor (Figure 5.6 and Figure 5.7).

In contrast to the previous mesh model, where only one force is calculated using
data for the intersection, the IST model allows for the calculation of one force for
every pair of colliding spheres. This means that the number of applied forces can be
in the order of dozens, hundreds or even thousands. While this can be an advantage
in the sense that replicates more faithfully the real interaction and adds up for the
normal forces stabilization, it also creates some difficulties in the application of
the tangential forces. The bristle model explained in Section 3.2.1 and used to
solve the near-zero velocity tangential force problem, applied to such high number
of forces, finds complications when trying to stop the block completely. When the
sliding starts, a spring force is applied to every colliding sphere pair, and it is only

5.1. TEST 1: BLOCK SLIDING ON PLANE 61

0 1 2 3 4
-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

t(s)

an
gl

e(
ra

d)

Angular deviation

theta
x

theta
y

theta
z

Figure 5.5: Sliding block (mesh): angular deviation

released when the tangential force surpasses the theoretical maximum.

Ftmax = µFn (5.2)
As the sliding starts, lots of bristles are continuously triggered and released as

the normal force is far from constant due to the roughness of the terrain made
from spheres. This implies that the bristles can’t stop the block completely, as
a low residual sliding velocity always remains. This residual velocity depends on
the plane inclination and its only perceptible to the eye from 22◦ on. Beyond 25◦
the block slides clearly. In Table 5.1 the inclination angles and its corresponding
approximated residual velocities are represented for every order of magnitude.

Angle Residual velocity (m/s)
10◦ 1× 10−5

22◦ 1× 10−4

23◦ 1× 10−3

25◦ 1× 10−2

Table 5.1: Sliding block IST: slope vs. residual velocity

The trajectory, velocity and angular errors can be seen in Figure 5.8, Figure 5.9
and Figure 5.10. In comparison with the mesh simulation, the IST model shows the

62 CHAPTER 5. RESULTS

expected worse performance in terms of accuracy. The trajectory error moves in
the range of centimeters, the velocity profile deviates greatly from the theoretical
one and the angular deviation, while small, is significant if compared with the
produced in the mesh simulation. The aforementioned initial transition phase can
be increased here depending on the initial position, due to the greater fall in some
positions where the first contacting spheres coincide with “valleys” in the other
object.

Figure 5.6: Sliding block sphere discretization (only the biggest 5000 spheres are
shown)

Figure 5.7: Sliding block floor sphere discretization (only the biggest 5000 spheres
are shown)

5.1.2.3. Performance comparison

One of the main targets of this work is to be able to run these contact models in
real-time environments such Virtual Reality simulations. Therefore, the execution
time of every test was measured in order to assess the suitability of the models for
their objective.

5.1. TEST 1: BLOCK SLIDING ON PLANE 63

0 1 2 3 4
-0.01

0

0.01

0.02

0.03

0.04

0.05

t(s)

s(
m

)

Trajectory error

error

Figure 5.8: Sliding block (IST): trajectory error

The specs of the computer used to perform the simulations are summarized in
Table 5.2.

Processor Intel Core i7 950 @ 3GHz
RAM 6 GB DDR3
GPU Nvidia Geforce GT 520
OS elementary OS 0.4.1 Loki 64-bit

OS base Ubuntu 16.04.5 LTS
Linux kernel version 4.9.1

Table 5.2: Computer specs

For this measurements, graphic output was disabled in order to reduce uncer-
tainty and strictly measure the time spent on the simulation. It is also worth
mentioning that no code optimization was made for any of the models. The mea-
sured time corresponds to the full simulation, from start to end, including object
loading, preprocess routines execution and some datafile output. The results for
this test can be seen in Table 5.3.

The real time ratio shows a fraction between the execution time and the simu-
lated time. For a simulation to be run in real time, this number must be lower than
1. The mesh model simulation ran almost 19 times faster that the IST one, and

64 CHAPTER 5. RESULTS

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

t(s)

v(
m

/s
)

Velocity

theoretical
simulation

Figure 5.9: Sliding block (IST): velocity error

Model Execution time (s) Real time ratio
Mesh 1.362 0.340
IST 25.754 6.438

Table 5.3: Sliding block time execution performance

while the first beats the needs for real-time execution, the latter couldn’t achieve
this requirement.

5.2. Test 2: disk rotating on plane

5.2.1. Description
For this test, an uniform disk of radius R = 0.25 m, height H = 0.05 m and

mass m = 1 kg is rotating over a plane at angular velocity ω0 = 5π rad s−1 (2.5 Hz).
The coefficient of friction is µ = 0.6 and no forces other than gravity interfere in
the rotation.

The aim of this setup is to validate the spinning friction force model. The
parameters selected for this validation are equivalent to the ones in the other
tests: trajectory error, measured as the distance from the disk centroid to the

5.2. TEST 2: DISK ROTATING ON PLANE 65

0 1 2 3 4
-0.1

-0.05

0

0.05

0.1

t(s)

an
gl

e(
ra

d)

Angular deviation

theta
x

theta
y

theta
z

Figure 5.10: Sliding block (IST): angular deviation

origin, angular velocity profile as compared to the theoretical one, velocity error
and angular deviation. In this case, the centroid should in theory not move during
the simulation, and therefore the centroid distance to origin should be zero and
its velocity null. The angular deviation is measured as the angle between the disk
axis and the vertical axis, and its theoretical value is also zero.

To calculate the theoretical stop time for a spinning uniform disk, consider an
infinitesimal thickness disk ring with dr radial dimension and dm mass like the
one in Figure 5.12.

The uniformity of both the full disk and the infinitesimal ring enforces a con-
stant relation between area and mass:

dm

M
= π(r + dr)2 − πr2

πR2 (5.3)

dm = 2M
R2 rdr (5.4)

The braking torque is provided by the tangential force, so

dτ = rFt = rµFn = rµgdm (5.5)

66 CHAPTER 5. RESULTS

Figure 5.11: Disk rotating on plane

R

r

dr

Figure 5.12: Uniform disk and infinitesimal thickness ring

Where Ft is the tangential force, Fn is the normal force, µ the friction coefficient
and g the gravity constant.

Substituting 5.4 into 5.5:

dτ = 2Mµg

R2 r2dr (5.6)

τ = 2Mµg

R2

∫ R

0
r2dr (5.7)

5.2. TEST 2: DISK ROTATING ON PLANE 67

τ = 2
3MµgR (5.8)

Which gives us the total exerted torque, that can also be calculated as:

τ = Iα (5.9)

Where I is the moment of inertia and α is the acceleration. For a uniform disk
rotating over its axis, we have

Idisk = 1
2MR2 (5.10)

Introducing Equation (5.8) into Equation (5.9):

α = −τ
I

= −4µg
3R (5.11)

Finally, the time it takes the disk to stop can be obtained using the expression
for the angular velocity in an uniformly accelerated circular motion:

ω = ω0 + αt (5.12)

t = −ω0

α
(5.13)

t = 3Rω0

4µg (5.14)

With the given parameters, the friction generated by the gravity force should
then stop the disk completely at t = 0.5 s

5.2.2. Results
5.2.2.1. Mesh

The mesh discretization for the rotating disk can be seen in Figure 5.13.
In an ideal situation, the rotating disk friction would linearly decrease its an-

gular velocity until its full stop at 0.5 s. In Figure 5.14 we can see that this is not
the case and that this braking process is more similar to a logarithmic decrease,
followed by a full stop at around 1 s. This effect is due to the Gonthier spinning
friction: while in the theoretical model the friction is constant, producing a lineal
deceleration, the Gonthier spinning friction depends on the angular velocity, and
therefore diminishes with time. Overall, the braking response is smooth but the
braking time is inaccurate.

68 CHAPTER 5. RESULTS

The maximum trajectory error was 1× 10−4 (Figure 5.15) during the initial
transition phase and stabilized at 5× 10−5. It is worth mentioning that for this
simulation the sliding tangential force was deactivated due to integration prob-
lems. High angular velocities can complicate the integration when using vector
coordinates instead of angles for the modelization. Despite it would be better for
this test to use the spinning angle as a coordinate, the same modelization as the
other test was intentionally used in order to compare all kind of situations in the
same general conditions.

The velocity error (Figure 5.16) is only minimally significant during the initial
phase but goes rapidly to zero, its expected value, and the angular deviation
evolves in a similar way.

Figure 5.13: Rotating disk mesh discretization

5.2.2.2. Inner Sphere Tree

In the sphere test the disk was discretized with 11 212 spheres and the ground
with 21 272 (Figure 5.19 and Figure 5.18). As seen in Figure 5.20, the angular
velocity profile produced is very similar to a linear deceleration, despite the stop
time was achieved 0.07 s earlier than the theoretical model. The maximum trajec-
tory error (Figure 5.21) was 9 mm, which is two orders of magnitude greater than
the mesh error, the velocity error (Figure 5.22) moved in the order of 0.05 m/s
and the axis angular deviation was kept under 0.0022 rads.

Overall, the IST angular velocity evolution was more similar to the theoretical
one than the mesh model but with a slightly less smooth response. The simulation
results show more noise and vibration due to the effect of the colliding spheres.
More spheres could be added to the model reduce this effect at the expense of a
more computational expensive simulation.

5.2. TEST 2: DISK ROTATING ON PLANE 69

0 0.5 1 1.5 2
0

5

10

15

20

t(s)

om
eg

a(
ra

d/
s)

Angular velocity

simulation
theoretical

Figure 5.14: Rotating disk (mesh): angular velocity error

5.2.2.3. Performance comparison

Table 5.4 shows the time performance results for the rotating disk test. It has
to be taken into account that as a result of this test duration depending directly
on the stop time, both simulations lasted different times. The IST model braked
significantly faster than the mesh model, so the simulation was stopped at t = 0.5 s
while the mesh simulation stopped at t = 1.5 s.

Model Execution time (s) Real time ratio
Mesh 1.973 1.315
IST 12.397 24.794

Table 5.4: Rotating disk time execution performance

For this test, none of the models met the real-time requirements. The fact
that the spinning body made the integrator iterate multiple times until converging
implied the simulation could not be run faster than real-time.

70 CHAPTER 5. RESULTS

0 0.5 1 1.5 2
0

2e-05

4e-05

6e-05

8e-05

0.0001

t(s)

s(
m

)

Trajectory error

error

Figure 5.15: Rotating disk (mesh): trajectory error

5.3. Test 3: cylinder rolling on plane

5.3.1. Description

To check the quality of the rolling resistance model, one last test was designed.
In this case, a cylinder of radius R = 0.25 m, width H = 1 m and mass M = 1 kg
rolls down a 15◦ inclined plane. The reason for the inclination angle selection
was due to the fact that the IST model, with the current discretization, would
not roll down planes less inclined. Very large inclinations like 30◦, in the other
hand, would produce an increasing frequency vibration in the mesh model, caused
by the triangular faces of the cylinder’s surface rotating at an increasing rotation
rate. A simulation of 3.5 s was run and trajectory, velocity and angular errors were
measured. As in previous tests, the trajectory error was measured as the distance
from the cylinder centroid to the floor sagittal plane, which should be zero, the
velocity profile was compared to the theoretical one and the angular deviation
corresponds to the angle between the cylinder axis and the z-axis, that should also
be null.

The simulation setup is depicted on Figure 5.24.

5.3. TEST 3: CYLINDER ROLLING ON PLANE 71

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

t(s)

v(
m

/s
)

Velocity error

error

Figure 5.16: Rotating disk (mesh): velocity error

0 0.5 1 1.5 2
0

5e-05

0.0001

0.00015

0.0002

t(s)

an
gl

e(
ra

d)

Angular deviation

error

Figure 5.17: Rotating disk (mesh): angular deviation

72 CHAPTER 5. RESULTS

Figure 5.18: Rotating disk sphere discretization (only the biggest 5000 spheres are
shown)

Figure 5.19: Rotating disk floor sphere discretization (only the biggest 5000 spheres
are shown)

5.3.2. Results
5.3.2.1. Mesh

The mesh discretization for the rolling cylinder can be seen in Figure 5.25.
Figure 5.26, Figure 5.27 and Figure 5.28 show the results.

Similarly to the first test, the trajectory error value remained very low (under
6× 10−10), but it shows an exponential evolution that starts to slow towards the
end of the simulation. The velocity profile during the first second almost matches
the theoretical solution, and from that point on, it starts drifting slowly until
it reaches a maximum error of 8 % at the end. Nevertheless, the cylinder axis
remained perfectly aligned with its original direction.

In general, the simulation appeared smooth and correct to the eye, but as
stated before, great plane inclinations would induce increasing frequency noises in

5.3. TEST 3: CYLINDER ROLLING ON PLANE 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-5

0

5

10

15

20

t(s)

om
eg

a(
ra

d/
s)

Angular velocity

simulation
theoretical

Figure 5.20: Rotating disk (IST): angular velocity error

the results.

5.3.2.2. Inner Sphere Trees

The mesh discretization for the rolling cylinder can be seen in Figure 5.29.
It consists of 8849 spheres. For the ground model a change in the discretization
strategy was needed due to highly incorrect trajectories in the simulations.

Using the ProtoSphere generated models with arbitrarily positioned spheres,
the cylinder would roll out of the edges of the ground at very early stages of
the simulation, rendering it unusable. The non-symmetrical sphere modelization
produced forces that deviated the cylinder, making it turn 90◦ until it fell off the
edge. For this reason, a new homogeneous ground sphere model was created. In
this model, a layer of 200× 30 spheres were aligned to avoid this deviation effect.
It can be seen in Figure 5.30. While it could be thought that the same reasoning
should apply to the cylinder model, the fact that it has radial symmetry helps
the ProtoSphere tool to position the spheres in a more homogeneous way, creating
the two first big spheres aligned with the cylinder axis and driving the cylinder
in a more rectilinear trajectory. This can be seen in Figure 5.31: the maximum
trajectory error is 1 cm.

The velocity profile (Figure 5.32) remained a little lower than the theoretical

74 CHAPTER 5. RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.002

0.004

0.006

0.008

0.01

t(s)

s(
m

)

Trajectory error

error

Figure 5.21: Rotating disk (IST): trajectory error

model, and the chart show the effect of the spheres collisions in the shape of “steps”
in the first 2 seconds. As the rolling velocity increases, these are harder to perceive.
The axis deviation (Figure 5.33) shows that the error remained under 1◦.

5.3.2.3. Performance comparison

Table 5.5 shows the time performance results for the rolling cylinder test.

Model Execution time (s) Real time ratio
Mesh 1.893 0.540
IST 12.503 3.572

Table 5.5: Rolling cylinder time execution performance

Only the mesh model simulation, which ran 6.5 times faster that the IST model,
could be executed faster than real-time.

5.4. Contact model parameters
The values used for the contact parameters in all the performed tests are col-

lected in Table 5.6. These values were selected mainly as a function of the object

5.4. CONTACT MODEL PARAMETERS 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

t(s)

v(
m

/s
)

Velocity error

error

Figure 5.22: Rotating disk (IST): velocity error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.0005

0.001

0.0015

0.002

0.0025

t(s)

an
gl

e(
ra

d)

Angular deviation

error

Figure 5.23: Rotating disk (IST): angular deviation

76 CHAPTER 5. RESULTS

Figure 5.24: Cylinder rolling on plane

Figure 5.25: Rolling cylinder mesh discretization

masses and the time-step. Some of these parameters, like the stiffnesses for the
normal model and the tangential one, had to be scaled for the IST simulations.
The reason behind this scaling is the different number of forces in both methods:
while in the mesh model we have only one collision and therefore one force, in the
IST model dozens of collisions are processed at every time-step. Because of this,
these stiffnesses need to be distributed along all the different contacts.

Also, the base stiffness value for the normal model in the IST method was
selected so that the number of collisions was high enough to resemble a conform-
ing contact. Otherwise, the collisions would be more similar to multiple simple
contacts. Here 50 to 100 was enforced as the minimum number of collisions.

5.4. CONTACT MODEL PARAMETERS 77

0 0.5 1 1.5 2 2.5 3 3.5
-1e-10

0

1e-10

2e-10

3e-10

4e-10

5e-10

6e-10

t(s)

s(
m

)

Trajectory error

error

Figure 5.26: Rolling cylinder (mesh): trajectory error

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

t(s)

v(
m

/s
)

Velocity

theoretical
simulation

Figure 5.27: Rolling cylinder (mesh): velocity error

78 CHAPTER 5. RESULTS

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

t(s)

an
gl

e(
ra

d)

Angular deviation

error

Figure 5.28: Rolling cylinder (mesh): angular deviation

Figure 5.29: Rolling cylinder sphere discretization (only the biggest 5000 spheres
are shown)

5.4. CONTACT MODEL PARAMETERS 79

Figure 5.30: Rolling cylinder floor sphere discretization

0 0.5 1 1.5 2 2.5 3 3.5
-0.015

-0.01

-0.005

0

0.005

0.01

t(s)

s(
m

)

Trajectory error

error

Figure 5.31: Rolling cylinder (IST): trajectory error

80 CHAPTER 5. RESULTS

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

t(s)

v(
m

/s
)

Velocity

theoretical
simulation

Figure 5.32: Rolling cylinder (IST): velocity error

0 0.5 1 1.5 2 2.5 3 3.5
0

0.002

0.004

0.006

0.008

0.01

0.012

t(s)

an
gl

e(
ra

d)

Angular deviation

error

Figure 5.33: Rolling cylinder (IST): angular deviation

5.4. CONTACT MODEL PARAMETERS 81

Pa
ra
m
et
er

M
es
h

IS
T

Sl
id
in
g

bl
oc
k

R
ot
at
in
g

di
sk

R
ol
lin

g
cy
lin

de
r

Sl
id
in
g

bl
oc
k

R
ot
at
in
g

di
sk

R
ol
lin

g
cy
lin

de
r

Normal
µ

0.
5

0.
6

0.
5

0.
6

K
1
×

10
6

1
×

10
7

m
n

c
o

ll
is

io
n

s
1
×

10
9

m
n

c
o

ll
is

io
n

s
1
×

10
7

m
n

c
o

ll
is

io
n

s

h
5

Tangential

µ
d
y
n

0.
5

µ
st
a

µ
d
y
n

µ
v
is
c

0
v s
ti
ck

5
×

10
−

3 µ
d
y
n
g

k
st
ic
k

2.
5
×

10
−

5
2.

5
×

10
−

5
m

n
c
o

ll
is

io
n

s

c s
ti
ck

2√
k
st
ic
k

p 0
u
pd
co
ef

0.
8

Ta
bl
e
5.
6:

C
on

ta
ct

m
od

el
pa

ra
m
et
er
s

Chapter 6

Conclusions and future work

6.1. Conclusions
This thesis aims to assess the feasibility of using volumetric force models in

conforming contact situations while running in real-time environments, and to
research the accuracy of these methods.

In Chapter 2, an efficient and robust combination of multibody formulation,
coordinates and integration method was described. This algorithm is fast
enough to be used in interactive simulations, while remaining sufficient flex-
ible to be able to enlarge or shrink the number of simulated bodies without
high penalties.

Chapter 3 described a volumetric contact model, including the computation
of normal and friction forces, that is suitable to be used at interactive rates,
yet producing realistic and accurate force responses.

Chapter 4 discussed an algorithm aimed at determining the presence of con-
tacts between the bodies in the simulation, based on their geometrical prop-
erties. The far and near detection stages were discussed, and two collision
detection models were reviewed in order to evaluate both surface-defined
and volume-defined object representations: one based in superficial triangu-
lar meshes combined with a Binary Space Partitioning tree (BSP) and other
based in volumetric sphere fillings used along an Inner Sphere Tree (IST)
hierarchy.

Chapter 5 compared the performance of the two collision detection meth-
ods discussed in Chapter 4 in combination with the volumetric force model
described in Chapter 3 in terms of both accuracy and execution speed.

83

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The alliance between the multibody system formulation, the volumetric contact
model and the collision detection method made it possible to develop an algorithm
capable of simulating conforming contacts in real-time, therefore suitable for being
used in interactive environments like virtual assembly simulators. The equations
of motion were expressed in an Index-3 Augmented Lagrangian formulation and
integrated with a fixed time-step of 1 millisecond by means of the trapezoidal rule.
A Gonthier volumetric contact model was implemented in order to compute nor-
mal forces coupled with a tangential force model for describing friction phenomena.
Two different collision detection algorithms, one based in triangular mesh surfaces
and the other in volumetric filling spheres approximations, were employed to cal-
culate the intersection properties during collisions to feed the needed input to the
Gonthier model. For the mesh model, a collision detection library (LIMCODE)
was written. This library calculates mesh-mesh intersections and was developed
with results coherence in mind.

Three different tests were designed and implemented to investigate the strengths
and weaknesses of the two approaches in the calculation of the intersection vol-
umes. These tests were aimed to validate the accuracy of the force model in all
kind of common contact situations that are present in virtual assembly simulations,
and each of them was focused on one of the possible relative motions between two
colliding bodies: sliding, rolling and spinning.

On top of our multibody dynamics library (MBSLIM) and our graphics col-
lision detection libraries (MBSMODEL, LIMCODE), an export library was im-
plemented (MBSDEBUG) in C++ in order to debug and visualize collisions, the
clipping and intersection reconstruction process, and identify possible pitfalls for
these algorithms. This library exports graphical data in EnSight6 format which
can be opened with Paraview.

After evaluating the results of the tests, the following conclusions are drawn:

The mesh collision detection model is able to produce real-time, accurate
results in most cases, as expected. The fact of having an almost exact (exact
in planar surfaces) representation of the volume intersection is clearly key in
the calculation of the parameters needed for the force model.
On the other hand, this model calculates just one total force. To calculate
the direction of application of that force, a planar-contour contact must be
assumed in order to approximate a contact plane and its normal, rendering
the model less general. This problem and a possible workaround to solve it
is explained with more detail in Section 6.2.6

The IST model implementation, despite not being able to run in real-time
or yield highly realistic simulations, is simpler and more general: it reduces
a complex volumetric collision to a number of simple sphere-sphere contacts

https://www.paraview.org/

6.2. FUTURE WORK 85

and consequently to a number of forces, thus resembling more a force distri-
bution.
Despite of it, the approximation made when using this model seems too
rough to accurately represent virtual-assembly-grade collisions, at least in a
realistic way.

In the performed tests, with the selected number of spheres for the IST
model, the mesh model ran up to almost 20 times faster. Probably, the IST
evaluation would be faster with lower sphere counts, but this unfortunately
means to lose accuracy and realism in the simulation, which with 10 000 to
15 000 is already not enough to meet the requirements, as seen previously.
Furthermore, the need to completely fill objects with spheres means that, in
objects with low surface-to-volume ratio, like the ones used in the tests, most
of the spheres are not involved in collisions as they are internal spheres that
never interact with the other body spheres due to being located deeper than
the maximum penetration. This causes a big inefficiency from a memory
point of view, as all the information of the spheres is loaded despite not
being used in its majority. This is worsened by the fact that the stiction
model needs to keep track of the collisions state in previous time-steps, thus
incrementing the amount of information that must be saved for every sphere
pair. This results in a time consuming list search that is run for every active
sphere pair in every time-step.

The presented results are promising as a starting point for the development
of real-time simulators with conforming contact requirements. However, different
lines of research could help to improve both their efficiency and accuracy.

6.2. Future work
Several lines of research could pose interesting improvements over the actual

status of this work.

6.2.1. Collision generalization
While the tests described in this thesis cover some situations that can arise

in simple conforming contact conditions, new tests should be created in order
to validate the performance of these methods in more complex situations, like a
cube (or any other shape) inserted into a hole where it fits perfectly. This kind
of tests involves multi-planar conforming contact and it would be interesting to
study how a volumetric contact model performs in such situations, as this type

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of collisions occurs frequently in virtual assembly environments. Furthermore,
general collisions where several friction force types appear at the same time should
be checked to ensure friction models do not interfere with each other.

Also, tests with many more objects than just two could be carried out to learn
how the problem size affects the speed of computation. It is expected for a virtual
reality simulation to have multiple objects interacting, so a good performance with
a high number of meshes must be ensured.

Finally, an interactive virtual assembly environment to test all kind of collisions
would be the ideal testbed to validate the applicability of this kind of methods for
production.

6.2.2. Optimizations
Besides the purely programming optimizations that can always be done in order

to boost computation speeds, some changes can also improve simulation times.

Using larger time-steps: currently a fixed time-step of 1 millisecond is be-
ing used, but this could be increased to 3, 5 or even 10 milliseconds as long as
the accuracy doesn’t get affected. Visually, most users won’t perceive frame-
rate refreshes greater that 60 Frames Per Second (FPS), so increasing the
time-step could potentially allow for the inclusion of more interacting objects
in the simulation while keeping a good enough visual feedback. Nonetheless,
if haptic devices are connected to the simulation, this has to be handled more
carefully since the optimal refresh rate for these machines is 1KHz.

Calling contact detection one time per time-step: in some time-steps,
specially those when high speed objects are under collision or when complex
contact situations are taking place, the integrator has to iterate several times
before converging to a solution. This implies very small displacements of the
objects which usually means very little or no change in their colliding meshes.
Despite this fact, collision detection is being called unconditionally at each
iteration. Being the most CPU-time consuming task, getting rid of this extra
calls could carry noticeable time savings.

6.2.3. Parallelization
The methods presented in this document perform all the computations in the

same processing line, i.e. all the tasks are serialized one after the other. Current
computing architectures, even domestic devices, have the capability of performing
several tasks simultaneously. A process that performs all its computation in a
serial order, has at most the chance to make use of a fraction of the computing

6.2. FUTURE WORK 87

power of the processing unit. As the simulated system is enlarged, techniques
like the ones presented in [38] can alleviate the problem, but they can become
ineffective if there is a huge number of bodies interacting in the scene.

Subdivide an algorithm into sub-duties that can be computed in parallel is
not a trivial task, since synchronization stages between independent processes
have a non-negligible computing cost. For each kind of problem, a satisfactory
parallelization scheme must be found that minimizes the information transfers —
and thus the need for synchronization steps— between processes. In [28] warnings
are stated about the high penalty that small or medium-sized multibody problems
incur into when trying to parallelize: usually the bottlenecks are the computation
of the Jacobian of the constraints and the solving of the final linear system of
equations.

An interesting research line consists in dividing the multibody system on sev-
eral sub-mechanisms having their own processes, and interacting by exchanging
reaction forces. Synchronization costs can be avoided using Inter-Process Com-
munications for data passing between the processes.

6.2.4. Time critical IST collision detection
Time-critical collision detection algorithms would imply to adjust the volumet-

ric intersection properties calculations to a predefined time budget. Some early
work was done in [58] in order to implement this feature into the CollDet library.
This approach would mean that during the IST traversal, an approximate inter-
section volume would be returned instead of the exact one if the integration step
is running out of time. This behavior ensures to be capable of always running
at real-time speeds at the cost of losing accuracy in the most complex collisions.
Using this modified algorithm could be beneficial for keeping an interactive frame
rate, at least for human-in-the loop or hardware-in-the-loop simulations.

6.2.5. Multiple contact stiction
The IST model was not able to completely stop the sliding block in Sec-

tion 5.1.2.2. It seems that the stiction model used may have some problems when
dealing with dozens or hundreds of contacts simultaneously. More research is
needed in order to clarify this behavior.

6.2.6. Arbitrary shape decomposition
Force models always need a point and a direction of application in order to be

introduced into the simulation. This poses a setback for volumetric models like
the mesh model presented in this work: an intersection volume does not have such

88 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

direction, so to circumvent this problem and calculate a normal vector, planar-
contour contacts are assumed and the collision contour between the bodies is used
for approximating a plane through the least squares fitting method. The normal
of this plane is then used as the direction of the normal force, but this procedure
relegates the model to the aforementioned planar-contour contact situations, as
multi-planar intersections are not assimilable to a single plane and thus do not
satisfy Gonthier model requirements.

The IST model doesn’t suffer from this exact problem, as every sphere pair con-
tact is treated separately and its normal is easily calculated as the director vector
of the line along both sphere centers. In return, many of these normals are inac-
curate and often need some kind of filtering to avoid strange behaviors. Examples
of this would be the collision between a sphere from body A that has penetrated
completely the outermost sphere shell in body B and generates an attraction force
when the two bodies start separating, or forces with a high tangential component
due to the spheres colliding sideways.

For the mesh model to be able to confront non-planar-contour collisions (e.g.
a cube inserted in a cubic hole with its same dimensions), an arbitrary shape
decomposition could be applied. Bodies would be preprocessed and split into a
set of convex shapes, and every piece would be used to calculate a force through
the presented mesh model. This way every part in contact would generate an
individual convex-convex collision suitable to feed the model.

Bibliography

[1] E. Bayo and R. Ledesma. “Augmented Lagrangian and mass–orthogonal
projection methods for constrained multibody dynamics”. In: Nonlinear Dy-
namics 9.1-2 (1996), pp. 113–130.

[2] E. Bayo, J. Garcia De Jalon, and M. A. Serna. “A modified lagrangian formu-
lation for the dynamic analysis of constrained mechanical systems”. In: Com-
puter Methods in Applied Mechanics and Engineering 71.2 (Nov. 1, 1988),
pp. 183–195.

[3] E. Bayo and R. Ledesma. “Augmented Lagrangian and mass-orthogonal pro-
jection methods for constrained multibody dynamics”. In: Nonlinear Dynam-
ics 9 (Feb. 1, 1996).

[4] G. van den Bergen. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann, 2004.

[5] G. Bernstein and D. Fussell. “Fast and Exact and Linear Booleans”. In:
Eurographics Symposium on Geometry Processing 2009 Volume 28 (2009),
Number 5 Marc Alexa and Michael Kazhdan (Guest Editors). 2009.

[6] K. Bhalerao, S. Anderson, and J. Trinkle. “A Recursive hybrid time-stepping
scheme for intermittent contact in multi-rigid-body dynamics”. In: Journal
of Computational and Nonlinear Dynamics 4.4 (2009), pp. 1–11.

[7] K. Brenan, S. Campbell, and L. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. New York: North-Holland, 1989.

[8] E. A. Butcher and D. J. Segalman. “Characterizing Damping and Resti-
tution in Compliant Impacts via Modified K-V and Higher-Order Linear
Viscoelastic Models”. In: Journal of Applied Mechanics 67.4 (Feb. 10, 2000),
pp. 831–834.

[9] J. Chung and G. Hulbert. “A time integration algorithm for structural dy-
namics with improved numerical dissipation: the generalized-alpha method”.
In: ASME Journal of Applied Mechanics 60 (1993), pp. 371–375.

89

90 BIBLIOGRAPHY

[10] J. Cuadrado, R. Gutiérrez, M. Naya, and P. Morer. “A comparison in terms
of accuracy and efficiency between a MBS dynamic formulation with stress
analysis and a non–linear FEA code”. In: International Journal for Numer-
ical Methods in Engineering 51.9 (2001), pp. 1033–1052.

[11] J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo. “Intelligent Simulation
of Multibody Dynamics: Space–State and Descriptor Methods in Sequential
and Parallel Computing Environments”. In: Multibody System Dynamics 4.1
(2000), pp. 55–73.

[12] O. Devillers and S. Pion. Efficient Exact Geometric Predicates for Delaunay
Triangulations. Tech. rep. RR-4351. INRIA, Jan. 2002.

[13] A. DiCarlo and A. Paoluzzi. “Fast Computation Of Inertia Through Affinely
Extended Euler And Tensor”. In: Computer-Aided Design. Vol. 2016-November.
2006, pp. 1145–1153.

[14] S. Djerassi. “Collision with friction; Part A: Newton’s hypothesis”. In: Multi-
body System Dynamics 21.1 (Feb. 1, 2009), p. 37.

[15] S. Djerassi. “Collision with friction; Part B: Poisson’s and Stronge’s hypothe-
ses”. In: Multibody System Dynamics 21.1 (Feb. 1, 2009), p. 55.

[16] D. Dopico. “Formulaciones semi-recursivas y de penalización para la dinámica
en tiempo real de sistemas multicuerpo”. PhD thesis. Universidade da Coruña,
Oct. 2004.

[17] D. Dopico, A. Luaces, M. Gonzalez, and J. Cuadrado. “Dealing with multiple
contacts in a human-in-the-loop application”. In: Multibody System Dynam-
ics 25.2 (Feb. 2011), pp. 167–183.

[18] P. Eberhard. “Computational Dynamics of Multibody Systems: History, For-
malisms, and Applications”. In: European Journal of Mechanics 25.4 (2006),
pp. 566–594.

[19] D. Eberly. Polyhedral Mass Properties (Revisited). 2002. url: https://www.
geometrictools.com/Documentation/PolyhedralMassProperties.pdf
(visited on 07/12/2018).

[20] H. Edelsbrunner and E. P. Mücke. “Simulation of Simplicity: A Technique
to Cope with Degenerate Cases in Geometric Algorithms”. In: ACM Trans.
Graph. 9.1 (Jan. 1990), pp. 66–104.

[21] E. Eich-Soellner and C. Führer. Numerical Methods in Multibody Dynamics.
Red. by L. Arkeryd, H. Engl, A. Fasano, R. M. M. Mattheij, et al. Euro-
pean Consortium for Mathematics in Industry. Wiesbaden: Vieweg+Teubner
Verlag, 1998.

[22] C. Ericson. Real Time Collision Detection. Morgan Kaufmann, 2005.

https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf
https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf

BIBLIOGRAPHY 91

[23] P. Flores, J. Ambrósio, J. C. P. Claro, and H. M. Lankarani. “Influence
of the contact-impact force model on the dynamic response of multi-body
systems”. In: Proceedings of the Institution of Mechanical Engineers, Part
K: Journal of Multi-body Dynamics 220.1 (2006), pp. 21–34.

[24] P. Flores, R. Leine, and C. Glocker. “Modeling and analysis of planar rigid
multibody systems with translational clearance joints based on the non-
smooth dynamics approach”. In: Multibody System Dynamics 23.2 (Feb. 1,
2010), pp. 165–190.

[25] P. Flores, J. Ambrósio, J. C. Claro, and H. M. Lankarani. Kinematics and
Dynamics of Multibody Systems with Imperfect Joints. Vol. 34. Lecture Notes
in Applied and Computational Mechanics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008.

[26] Y. Gonthier, J. McPhee, C. Lange, and J. Piedboeuf. “A contact modeling
method based on volumetric properties”. In: Proceedings of the ASME In-
ternational Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. ASME, 2005, pp. 477–486.

[27] Y. Gonthier, J. McPhee, C. Lange, and J. Piedboeuf. “A regularized contact
model with asymmetric damping and dwell-time dependent friction”. In:
Multibody System Dynamics 11.3 (2004), pp. 209–233.

[28] F. González, A. Luaces, U. Lugrís, and M. González. “Non–intrusive par-
allelization of multibody system dynamic simulations”. In: Computational
Mechanics 44.4 (2009), pp. 493–504.

[29] G. Guennebaud, B. Jacob, et al. Eigen: a C++ Template Library for Linear
Algebra: Matrices, Vectors, Numerical Solvers, and Related Algorithms. July
2018. url: http://eigen.tuxfamily.org.

[30] P. Guigue and O. Devillers. “Fast and Robust Triangle-Triangle Overlap Test
Using Orientation Predicates”. In: Journal of Graphics Tools 8 (Jan. 2003).

[31] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems. Springer- Verlag, Berlin Heidelberg, 1996.

[32] H. Hilber, T. Hughes, and R. Taylor. “Improved numerical dissipation for
time integration algotithms in structural dynamics”. In: Earthquake Engi-
neering and Structural Dynamics 5 (1977), pp. 283–292.

[33] K. Hunt and E. Crossley. “Coefficient of restitution interpreted as damping
in vibroimpact”. In: Journal of Applied Mechanics (1975).

[34] K. A. Ismail and W. J. Stronge. “Impact of Viscoplastic Bodies: Dissipation
and Restitution”. In: Journal of Applied Mechanics 75.6 (Aug. 20, 2008),
pp. 061011–061011–5.

http://eigen.tuxfamily.org

92 BIBLIOGRAPHY

[35] J. García de Jalón and E. Bayo. Kinematic and dynamic simulation of multi-
body systems: the real time challenge. Springer-Verlag, 1994.

[36] H. M. Lankarani and P. E. Nikravesh. “A Contact Force Model With Hys-
teresis Damping for Impact Analysis of Multibody Systems”. In: Journal of
Mechanical Design 112.3 (1990), p. 369.

[37] D. T. Lee and F. P. Preparata. “An Optimal Algorithm for Finding the
Kernel of a Polygon”. In: J. ACM 26.3 (July 1979), pp. 415–421.

[38] A. Luaces. “Contact and HiL Interaction in Multibody Based Machinery
Simulators”. PhD thesis. Universidade da Coruña, 2013.

[39] J. Lyness and C. Moler. “Numerical Differentiation of Analytic Functions”.
In: SIAM Journal on Numerical Analysis 4.2 (1967), pp. 202–210.

[40] P. Lötstedt. “Mechanical Systems of Rigid Bodies Subject to Unilateral Con-
straints”. In: SIAM Journal on Applied Mathematics 42.2 (Apr. 1, 1982),
pp. 281–296.

[41] M. Machado, P. Flores, and J. Ambrósio. “A lookup-table-based approach
for spatial analysis of contact problems”. In: Journal of Computational and
Nonlinear Dynamics 9.4 (2014).

[42] B. Mirtich. “Fast and Accurate Computation of Polyhedral Mass Properties”.
In: Journal of Graphics Tools 1.2 (Feb. 1996), pp. 31–50.

[43] N. M. Newmark. “A method of computation for structural dynamics”. In:
Journal of the Engineering Mechanics Division, ASCE 85.EM3 (1959), pp. 67–
94.

[44] P. E. Nikravesh. Computer-aided analysis of mechanical systems. Engelwood
Cliffs, NJ, USA: Prentice-Hall, 1988.

[45] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Oper-
ations Research. Springer-Verlag, 1999.

[46] N. V. Orlandea, D. A. Calahan, and M. A. Chace. “A sparsity-oriented
approach to the dynamic analysis and design of mechanical systems – Part
1”. In: Journal of Engineering for Industry 99.3 (1977), pp. 773–779.

[47] P. Panchekha, A. Sachez-Stern, J. R. Wilcox, and Z. Tatlock. “Automati-
cally improving accuracy for floating point expressions”. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Vol. 2015-June. 2015, pp. 1–11.

[48] R. Pastorino, F. Cosco, F. Naets, W. Desmet, and J. Cuadrado. “Hard real-
time multibody simulations using ARM-based embedded systems”. In:Multi-
body System Dynamics 37.1 (2016), pp. 127–143.

BIBLIOGRAPHY 93

[49] N. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided
Design and Manufacturing. Jan. 2002.

[50] F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Contacts.
CISM International Centre for Mechanical Sciences. Springer Vienna, 2000.

[51] H. Rahnejat. “Multi-body dynamics: historical evolution and application”.
In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science 214.1 (2000), pp. 149–173.

[52] W. Schiehlen. “Multibody system dynamics: roots and perspectives”. In:
Multibody system dynamics 1.2 (1997), pp. 149–188.

[53] J. Shewchuk. “Adaptive precision floating-point arithmetic and fast robust
geometric predicates”. In:Discrete and Computational Geometry 18.3 (1997),
pp. 305–363.

[54] W. Squire and G. Trapp. “Using Complex Variables to Estimate Derivatives
of Real Functions”. In: SIAM Review 40.1 (1998), pp. 110–112.

[55] W. J. Stronge. Impact Mechanics. Cambridge University Press, Mar. 25,
2004. 306 pp.

[56] K. Sugihara and M. Iri. “A Solid Modelling System Free from Topological
Inconsistency”. In: J. Inf. Process. 12.4 (Apr. 1990), pp. 380–393.

[57] W. C. Thibault. “Application of Binary Space Partitioning Trees to Geo-
metric Modeling and Ray-Tracing”. PhD thesis. School of Information and
Computer Science Georgia Institute of Technology, 1987.

[58] R. Weller. “New Geometric Data Structures for Collision Detection”. PhD
thesis. Universität Bremen, 2012.

[59] R. Weller and G. Zachmann. “ProtoSphere: A GPU-assisted prototype guided
sphere packing algorithm for arbitrary objects”. In: ACM SIGGRAPH ASIA
2010 Sketches, SA’10. Jan. 2010.

Acknowledgments

This research has been funded by the Government of Spain through the grant
BES-2013-062939 inside the FPI 2013 program.

95

	Introduction
	Motivation
	State of the art
	Multibody dynamics
	Contact models
	Collision detection

	Objectives
	Summary

	Multibody dynamics formulation
	Multibody dynamics
	Coordinates
	Formulation

	Equations of motion
	Penalty method
	Index-3 Augmented Lagrangian

	Integration of the equations of motion
	Newmark integrators
	Projections of velocities and accelerations

	Flowchart

	Contact model
	Normal contact
	Description

	Tangential contact
	Sliding friction and stiction
	Rolling resistance
	Spinning friction

	Collision detection
	Detection and characterization of contacts between solids
	Geometric definition of surfaces

	Mesh surface trimming
	Consistency enforcing and floating-point error mitigation
	Implementation of surface trimming for meshes
	AABB trees
	Testing of potentially colliding triangles

	Intersection volume computation for meshes
	Binary Space Partitioning Trees
	Polygon Clipping
	Half-edge structure
	Computation of volume properties

	Inner Sphere Trees volume trimming
	Sphere intersection
	Spherical cap properties

	Numerical error optimization
	Computation of the derivatives of the contact properties

	Results
	Test 1: block sliding on plane
	Description
	Results
	Mesh
	Inner Sphere Tree
	Performance comparison

	Test 2: disk rotating on plane
	Description
	Results
	Mesh
	Inner Sphere Tree
	Performance comparison

	Test 3: cylinder rolling on plane
	Description
	Results
	Mesh
	Inner Sphere Trees
	Performance comparison

	Contact model parameters

	Conclusions and future work
	Conclusions
	Future work
	Collision generalization
	Optimizations
	Parallelization
	Time critical IST collision detection
	Multiple contact stiction
	Arbitrary shape decomposition

