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Abstract The simulation of particle dynamics is an essential method to ana-
lyze and predict the behavior of molecules in a given medium. This work
presents the design and implementation of a parallel simulation of Brownian
dynamics with hydrodynamic interactions for shared memory systems using
two approaches: (1) OpenMP directives and (2) the Partitioned Global Ad-
dress Space (PGAS) paradigm with the Unified Parallel C (UPC) language.
The structure of the code is described, and different techniques for work distri-
bution are analyzed in terms of efficiency, in order to select the most suitable
strategy for each part of the simulation. Additionally, performance results have
been collected from two representative NUMA systems, and they are studied
and compared against the original sequential code.

Keywords Brownian dynamics · parallel simulation · OpenMP · PGAS ·
UPC · shared memory

1 Introduction

Particle based simulation methods have been continuously used in physics
and biology to model the behavior of different elements (e.g., molecules, cells)
in a medium (e.g., fluid, gas) under thermodynamical conditions (e.g., tem-
perature, density). These methods represent a simplification of the real-world
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2 Carlos Teijeiro et al.

scenario but often provide enough details to model and predict the state and
evolution of a system on a given time and length scale. Among them, Brownian
dynamics describes the movement of particles in solution on a diffusive time
scale, where the solvent particles are taken into account only by their statisti-
cal properties, i.e. the interactions between solute and solvent are modeled as
a stochastic process.

The main goal of this work is to provide a clear and efficient paralleliza-
tion for the Brownian dynamics simulation, using two different approaches:
OpenMP and the PGAS paradigm. On the one hand, OpenMP facilitates the
parallelization of codes by simply introducing directives (pragmas) to create
parallel regions in the code (with private and shared variables) and distribute
their associated workload between threads. Here the access to shared variables
is concurrent for all threads, thus the programmer should control possible
data dependencies and deadlocks. On the other hand, PGAS is an emerging
paradigm that treats memory as a global address space divided in private and
shared areas. The shared area is logically partitioned in chunks with affinity
to different threads. Using the UPC language [15] (which extends ANSI C
including PGAS support) the programmer can deal directly with workload
distribution and data storage by means of different constructs, such as assign-
ments to shared variables, collective functions or parallel loop definitions.

The rest of the paper presents the design and implementation of the parallel
code. First, some related work on this area is presented, and then a mathe-
matical and computational description of the different parts in the sequential
code is provided. Next, the most relevant design decisions taken for the pa-
rallel implementation of the code, according to the nature of the problem, are
discussed. Finally, a performance analysis of the parallel code is accomplished,
and the main conclusions are drawn.

2 Related work

There are multiple works on simulations based on Brownian dynamics, e.g.
several simulation tools such as BrownDye [7] and the BROWNFLEX pro-
gram included in the SIMUFLEX suite [5], and many other studies oriented
to specific fields, such as DNA research [8] or copolymers [10]. Although most
of these works focus on sequential codes, some of them have developed parallel
implementations with OpenMP, applied to smoothed particle hydrodynamics
(SPH) [6] and the transportation of particles in a fluid [16]. The UPC language
has also been used in a few works related to particle simulations, such as the
implementation of the particle-in-cell algorithm [12]. However, comparative
analyses between parallel programming approaches on shared memory with
OpenMP and UPC are mainly restricted to some computational kernels for
different purposes [11,17], without considering large simulation applications.

The most relevant recent work on parallel Brownian dynamics simulation
is BD BOX [2], which supports simulations on CPU using codes written with
MPI and OpenMP, and also on GPU with CUDA. However, there is still little
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Parallel Brownian dynamics on shared memory 3

information published about the actual algorithmic implementation of these
simulations, and their performance has not been thoroughly studied, espe-
cially under periodic boundary conditions. In order to solve this and provide
an efficient parallel solution on different NUMA shared memory systems, we
have analyzed the Brownian dynamics simulation for different problem sizes,
and described how to address the main performance issues of the code using
OpenMP and a PGAS-based approach with UPC.

3 Theoretical description of the simulation

The present work focuses on the simulation of Brownian motion of particles in-
cluding hydrodynamic interactions. The time evolution in configuration space
has been stated by Ermak and McCammon [3] (based on the Focker-Planck
and Langevin descriptions) which includes the direct interactions between par-
ticles via systematic forces as well as solvent mediated effects via a correlated
random process

ri(t+∆t) = ri(t)+
∑

j

∂Dij(t)

∂rj
∆t+

∑

j

1

kBT
Dij(t)Fj(t)∆t+Ri(t+∆t) (1)

Here the underlying stochastic process can be discretized in different ways,
leading to e.g. the Milstein [9] or Runge-Kutta [14] schemes, but in Eq. 1
the time integration method follows a simple Euler scheme. In a system that
contains N particles, the trajectory {ri(t); t ∈ [0, tmax]} of particle i is cal-
culated as a succession of small and fixed time step increments ∆t, defined
as the sum of interactions on the particles during each time step (that is,
the partial derivative of the initial diffusion tensor D0

ij with respect to the
position component and the product of the forces F and the diffusion ten-
sor at the beginning of a time step, being kB Boltzmann’s constant and T
the absolute temperature), and a random displacement Ri(∆t) associated to
the possible correlations between displacements for each particle. The random
displacement vector R is Gaussian distributed with average value 〈Ri〉 = 0
and covariance 〈Ri(t + ∆t)RT

j (t + ∆t)〉 = 2Dij(t)∆t. The diffusion tensor
D thereby contains information about hydrodynamic interactions, which, for-
mally, can be neglected by considering only the diagonal components Dii.
Choosing appropriate models for the diffusion tensor, the partial derivative of
D drops out of Eq. 1, which is true for the Rotne-Prager tensor [13] used in
this work. Therefore, Eq. 1 reduces to

∆r =
1

kT
DF∆t+

√
2∆tSξξξ (2)

where the expression R =
√
2∆tSξξξ holds and D = SST , which relates the

stochastic process to the diffusion matrix. Therefore, S may be calculated via a
Cholesky decomposition of D or via the square root of D. Both approaches are
very CPU time consuming and have a complexity of O(N3). A faster approach
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4 Carlos Teijeiro et al.

that approximates the random displacement vector R without constructing S
explicitly was introduced by Fixman [4] using an expansion of R in terms of
Chebyshev polynomials, which has a complexity of O(N2.25).

The interaction model for the computation of forces in the system (which
here considers periodic boundary conditions) consists of (1) direct systematic
interactions, which are computed as Lennard-Jones type interactions and eval-
uated within a fixed cutoff radius, and (2) hydrodynamic interactions, which
have long range character. The latter ones are reflected in the off-diagonal
components of the diffusion tensor D and therefore contribute to both terms
of the right-hand side of Eq. 2. Due to the long range nature, the diffusion
tensor is calculated via the Ewald summation method [1].

4 Design of the parallel simulation

The sequential code considers a unity 3-dimensional box with periodic bound-
ary conditions that contains a set of N equal particles. The main part of this
code is a for loop in which each iteration represents a time step. Following
the formulas presented in Section 3, each time step of the simulation consists
of two main parts: (1) the calculation of the forces that act on each particle
(function calc force), and (2) the computation of random displacements for
every particle in the system (function covar).

The main loop of time steps is not parallelizable, as each iteration depends
on the previous one. However, the workload of each iteration can be executed
in parallel through a domain decomposition of the work. Here OpenMP re-
quires separate parallel regions for each function, as a work distribution is only
possible if the parallel region is defined inside the target function; otherwise,
its arguments would be treated mandatorily as private variables. Nevertheless,
UPC targets a balanced workload distribution between threads and an efficient
data access, exploiting the NUMA architecture through the maximization of
data locality (processing the data stored in the thread’s affine space). A more
detailed description of both OpenMP and UPC parallelizations is given in the
next subsections.

4.1 Calculation of interactions

The main part of the computation in function calc force consists in updating
the diffusion tensor D, which is defined in the code as a symmetric square
pNDIM×pNDIM matrix (called D), where pNDIM= 3 ×N (that is, one value per
dimension and per pair of particles). For each element in matrix D, the Ewald
summation is split into (1) a short range part, where elements are calculated
according to pairwise distances within a cutoff radius, and (2) a long range
part, which is evaluated in Fourier k-space. Both computations are performed
individually for each value in matrix D using the current coordinates for each
particle in the system with two separate loops. In the sequential code, these
loops operate only on the upper triangular part of D, because of its symmetry.
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Parallel Brownian dynamics on shared memory 5

According to the previous definitions, the independent computation of va-
lues of matrix D defines a straightforward parallelization for calc force in the
simulation. The OpenMP implementation uses an omp for directive to paral-
lelize the computation of short and long range interactions, using a dynamic
scheduling of iterations because of the different amount of values calculated
per particle/dimension, alongside with atomic directives to obtain the aver-
age overall speed and pressure values. The UPC code performs an analogous
processing, but using a 1D storage for matrix D: its elements are divided in
THREADS equal chunks (being THREADS the number of threads in the UPC pro-
gram), and each thread computes its associated values for each particle for all
dimensions.

4.2 Computation of random displacements

The random displacements are calculated for each particle as Gaussian random
numbers with prescribed covariances according to the diffusion tensor matrix.
The simulation code includes two alternative methods to obtain the covariance
terms: (1) a Cholesky decomposition of D and (2) the Fixman’s approximation
method.

The Cholesky decomposition of matrix D obtains a lower triangular matrix
L, whose values for each row are multiplied by a random value generated for
the corresponding particle and dimension. The final result is the sum of all
these products, as stated in Eq. 3, where row i represents particle i div DIM

in dimension i mod DIM (with DIM= 3, the number of dimensions), and xic is
the array of pNDIM random values:

Ri(t+∆t) =
i∑

j=1

L[i][j] · xic[j] (3)

The original sequential algorithm calculates the first three values of the
lower triangular result matrix (that is, the elements of the first two rows),
and then the remaining values are computed row by row in a loop. Here the
data dependencies between the values in L computed in each iteration and the
ones computed in previous iterations prevent the direct parallelization of the
loop. However, UPC takes advantage of its data manipulation facilities and
computes the values in L as a sum (reduction) of different contributions cal-
culated by each thread: after a row in matrix L is computed, its elements are
used to obtain partial computations of the random displacements associated
to the unprocessed rows, thus maximizing parallelism. This functionality is
implemented in UPC using the upc forall construct to distribute the loop
iterations between threads, and a broadcast collective to send partial compu-
tations. Listing 1 presents a pseudocode of this algorithm.

Regarding OpenMP, and given the difficulties for an efficient paralleliza-
tion of the original algorithm commented previously, an alternative iterative
algorithm is proposed: the first column of the result matrix is calculated by
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6 Carlos Teijeiro et al.

f o r every row ‘ i ’ i n matrix D
i f the row i s as s i gned to MYTHREAD

obtain va lues o f row ‘ i ’ i n L
c a l c u l a t e random displacement ‘ i ’

end i f

broadcast va lues in row ‘ i ’ to a l l thr eads

u p c f o r a l l rows ‘ j ’ l o ca t ed a f t e r ‘ i ’ i n matrix D
ca l c u l a t e p a r t i a l va lues f o r e lements in row ‘ j ’
c a l c u l a t e p a r t i a l value f o r di splacement ‘ j ’

end for
end for

Listing 1 UPC pseudocode for Cholesky decomposition

dividing the values of the first row in the source matrix by its diagonal value
(parallelizable for loop), then these values are used to compute a partial con-
tribution to the rest of elements in the matrix (also parallelizable for loop).
Finally, these two steps are repeated to obtain the rest of columns in the result
matrix. Listing 2 shows the source code of the iterative algorithm: a static

scheduling is used in the first two loops, whereas the last two use a dynamic

one because of the different workload associated to their iterations.

L [ 0 ] [ 0 ] = sq r t (D [ 0 ] [ 0 ] ) ;
#pragma omp p a r a l l e l p r i va t e ( i , j , k )
{
#pragma omp f o r s chedu l e ( s t a t i c )
f o r ( j =1; j<N∗DIM; j++)

L [ j ] [ 0 ] = D[ 0 ] [ j ] /L [ 0 ] [ 0 ] ;
#pragma omp f o r s chedu l e ( s t a t i c )
f o r ( j =1; j<N∗DIM; j++)

f o r ( k=1; k<=j ; k++)
L [ j ] [ k ] = D[ k ] [ j ]−L [ 0 ] [ j ]∗L [ 0 ] [ k ] ;

f o r ( i =1; i<N∗DIM; i++) {
L [ i ] [ i ] = sq r t (L [ i ] [ i ] ) ;

#pragma omp f o r s chedu l e ( dynamic )
f o r ( j=i +1; j<N∗DIM; j++)

L [ j ] [ i ] = L [ i ] [ j ] /L [ i ] [ i ] ;

#pragma omp f o r s chedu l e ( dynamic )
f o r ( j=i +1; j<N∗DIM; j++)

f o r (k=i +1; k<=j ; k++)
L [ j ] [ k ] −= L[ i ] [ j ]∗L [ i ] [ k ] ;

}
}

Listing 2 Iterative Cholesky decomposition with OpenMP

Fixman’s algorithm [4] is an alternative to Cholesky decomposition to ob-
tain the covariance terms of random displacements. This method approximates
R using the Chebyshev polynomial SMξξξ, where SM is an approximation to
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Parallel Brownian dynamics on shared memory 7

S (cf. Eq. 2) and the number of polynomial coefficients M controls the ac-
curacy of the approximation, without constructing an additional matrix as
with Cholesky decomposition. Practically this algorithm works on a scaled
matrix, with eigenvalues within the range λ ∈ [−1, 1], thus requiring to know
the smallest (λmin) and largest (λmax) eigenvalues of matrix D, as stated in
Eq. 4.

√
d ≈

L∑

l=0

alCl , where L ≡ order of the polynomial approximation, and

C0 = 1 ; C1 = dad+ db ; Cl+1 = 2(dad+ db)Cl − Cl−1 , having

da =
2

λmax − λmin
; db =

λmax + λmin

λmax − λmin

(4)

According to this, two iterative approximation methods are used for Fix-
man’s algorithm: (1) the calculation of the minimum and maximum eigenvalues
of matrix D, which uses a variant of the power method, and (2) the computa-
tion of covariance terms following the formulas in Eq. 4. In both cases, the core
of the algorithm consists of two for loops that operate on every row of ma-
trix D independently (thus fully parallelizable) until the predefined accuracy
is reached. Each iteration of these methods requires all the approximations
computed for every particle in all dimensions (pNDIM values) in the previous
iteration, thus both codes use two arrays that are read or written alternatively
on each iteration to avoid additional data copies.

The OpenMP code includes omp for directives for each loop to compute
approximations, using a critical directive to obtain the maximum/minimum
eigenvalues of D and a reduction clause to compute the total error value for
the final approximated covariance terms. Listing 3 presents the pseudocode
of the loop that computes the maximum eigenvalue of D, using x and x d

as working arrays for the iterative method. Here a reduction clause with a
maximum operator could be used instead of the critical directive, but in this
case the experimental analysis showed better performance using critical.

The UPC parallelization requires the use of three collective operations
(all-to-all, allgather and allreduce) to obtain the final results of both iterative
methods. A prototypical implementation of their associated loops is shown in
Listing 4, where the approximations are stored alternatively in arrays x and
x d, as in the code in Listing 3. Each thread computes a partial result for the
approximated eigenvalues in its local memory, and then an all-to-all collective
communication is performed to get all the partial results of their assigned
particles. After that, each thread obtains an approximation of its associated
maximum eigenvalue, and finally an allgather collective ensures that all threads
have all the approximated values in order to prepare a new iteration of the
approximation method. At the end of the while loop, the maximum eigenvalue
is obtained with a reduction of the partial values computed on each thread.

In general terms, the presented UPC parallelization required additional
lines of source code (SLOCs) than using OpenMP. This is due to the data
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8 Carlos Teijeiro et al.

#pragma omp p a r a l l e l
{
whi le the r equ i r ed accuracy f o r ‘ eigmax ’ i s not reached
do

i f the i t e r a t i o n number i s even
// read from ‘x ’ , wr i te to ‘ x d ’

#pragma omp f o r s chedu l e ( s t a t i c ) \
de f au l t ( shared ) p r i va t e ( i , j , . . . )
f o r every p a r t i c l e ‘ i ’ i n the system

x d [ i ] = 0 ;
f o r every p a r t i c l e ‘ j ’ i n the system

x d [ i ] += D[ i ] [ j ]∗ x [ j ] / eigmax ;
end for

#pragma omp c r i t i c a l
i f i t i s the maximum value

s e l e c t i t i n ‘ eigmax ’
end i f

end for
e l s e

// The same code as above , but changing
// ‘x ’ with ‘ x d ’ and v i c e ver sa

end i f
endwhi le
}

Listing 3 OpenMP pseudocode that computes the maximum eigenvalue of matrix D

movements, especially collective operations, that are needed for an efficient
access to the data set (logically stored in the thread’s shared and private
memory spaces). However, thanks to these data movement operations, the
UPC code can take advantage of efficient data layouts both for NUMA and
distributed memory systems [11]. This higher flexibility of UPC contrasts with
the limitation of UPC collectives, which can only be used on 1D arrays and
thus the code was adapted accordingly, as mentioned at the end of Section 4.1.
Regarding OpenMP, the parallelization was mainly accomplished by introduc-
ing directives in the source code, but this code also required major changes in
order to obtain scalability (as it was the case for Cholesky decomposition).

5 Performance evaluation

Two different NUMA systems have been used for the performance analysis.
The first one (named NEH in the graphs) consists of 2 Intel Xeon X5570
(Nehalem-EP) quad-core processors at 2.93 GHz with Simultaneous Multi-
threading (SMT) and 24 GB of memory at 1066 MHz. The second system
(MGC) is an HP ProLiant SL165z G7 node with 2 dodeca-core AMD Opteron
processors 6174 (Magny-Cours) at 2.2 GHz with 32 GB of memory. The Intel
C Compiler (icc) v12.1 and the Open64 Compiler Suite (opencc) v4.2.5.2 have
been used as OpenMP compilers in NEH and MGC, respectively. The UPC
compiler in both systems is Berkeley UPC 2.14.2 (a UPC-to-C source-to-source
compiler) with the SMP conduit, backed by the aforementioned C compilers
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Parallel Brownian dynamics on shared memory 9

whi le the r equ i r ed accuracy f o r ‘ eigmax ’ i s not reached
do

i f the i t e r a t i o n number i s even
// read from ‘x ’ , wr i te to ‘ x d ’
f o r every element in ‘D’ ( a s s o c i a t ed to each thread )

compute p a r t i a l approximation in ‘ copyArray ’ us ing ‘x ’
end for
a l l−to−a l l c o l l e c t i v e to get a l l p a r t i a l \
approximations from ‘ copyArray ’

f o r every p a r t i c l e ‘ i ’ i n the system
f o r every ‘THREADS’ p a r t i a l r e s u l t s i n ‘ copyArray ’

sum p a r t i a l r e s u l t s to get the f i n a l \
approximation o f ‘ x d [ i ] ’

end for
i f i t i s the maximum value

s e l e c t i t i n ‘ eigmax ’
end i f

end for
gather a l l the computed va lues in ‘ x d ’

e l s e
// The same code as above , but changing
// ‘x ’ with ‘ x d ’ and v i c e ver sa

end i f
reduce a l l the ‘ eigmax ’ va lues on each thread

endwhi le

Listing 4 UPC pseudocode that computes the maximum eigenvalue of matrix D

on each system. The optimization flags used in all executions are -fast for
icc and -Ofast for opencc. The environment variable OMP STACKSIZE has been
set to a small value (128 KB) for OpenMP executions in order to obtain the
highest efficiency. Periodic boundary conditions (3×3 boxes per dimension)
are considered for all simulations. Next some relevant performance results of
specific parts of the code (Tables 1-3) are detailed, and after them Figures 1
and 2 show data of the whole simulation.

Table 1 Execution time profile of the sequential code

Code Part 128 particles 1024 particles

calc force - short range contributions 1.104 s 70.125 s
calc force - long range contributions 2.954 s 522.867 s

covar - option 1: Cholesky 0.838 s 435.748 s
covar - option 2: Fixman 0.265 s 28.327 s

move 0.006 s 0.483 s

Total time (with Cholesky) 4.902 s 1029.223 s
Total time (with Fixman) 4.329 s 621.802 s

Table 1 shows the execution time breakdown of sequential simulations (128
and 1024 particles with 100 time steps) in the NEH system, considering the
functions commented in Section 4 and including the computation of the new
coordinates for the next time step as a separate function (called move). These
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10 Carlos Teijeiro et al.

results give a measure of the different weights and algorithmic complexities of
each part of the code. As the diffusion tensor matrix D has (3×N)2 elements,
its construction has a complexity of at least O(N2), which is related to the
computation of short and long range interactions. However, the long range
part has an additional contribution because of the use of reciprocal vectors
to obtain the required error tolerance in the Ewald sum, which increases its
complexity to approximately O(N2.5). Regarding the computation of random
displacements (function covar), the results clearly show the effect of the higher
complexity of the Cholesky decomposition with respect to Fixman’s algorithm.

Table 2 presents performance results of the loop that computes short range
interactions (see Section 4.1) in a 1024-particle system with 100 time steps us-
ing the NEH system, with initial conditions chosen as a regular grid. These
results confirm that the OpenMP dynamic distribution of iterations outper-
forms the static ones (block and cyclic) because of the different workload
associated to each iteration, obtaining about 7.56 of speedup with 8 threads.
This speedup is limited by the sequential calculations of pressure and speed us-
ing the atomic directive, which creates a lightweight critical section that solves
the data dependencies. The UPC version obtains similar results (slightly better
for 8 threads) to the most efficient OpenMP implementation.

Table 2 Execution times of short range interactions with OpenMP and UPC

Short range interactions - 1024 particles - 100 time steps

#Threads OMP-static block OMP-static cyclic OMP-dyn. UPC

1 70.125 s
2 52.628 s 37.827 s 34.836 s 34.876 s
4 31.195 s 20.567 s 17.143 s 17.123 s
8 17.871 s 14.545 s 9.270 s 8.876 s

Table 3 presents the results of OpenMP and UPC Cholesky decomposition
algorithms (see Section 4.2) using 1024 particles with 100 time steps on NEH,
which shows that the original implementation (used in UPC) is the most ef-
ficient sequential routine. Even though the OpenMP iterative version obtains
scalability up to 8 threads, it is far from the ideal because of loop i presented
in Listing 2: implicit synchronizations executed at the end of each nested loop
j due to the omp for directive, thus involving a significant overhead.

Table 3 Execution times of covar using Cholesky with 1024 particles and 100 time steps

Code \ #Threads 1 2 4 8

OpenMP 568.153 s 396.564 s 354.792 s 348.334 s
UPC 435.748 s 345.924 s 250.175 s 182.432 s
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Figure 1 presents the execution times and speedups of the whole simulation
with 128 particles and 100 time steps. The execution times of NEH are better
than those of MGC for both random displacement generation methods, even
though the influence of using SMT for 16 threads affects performance. This is
mainly due to the higher processor power of NEH. The reduced problem size
involves a low average workload per thread, thus the bottlenecks of the code
(e.g., OpenMP atomic directives and UPC collective communications) are
more noticeable. Nevertheless, the UPC implementation compiled with Berke-
ley UPC even obtains superlinear speedup for 2 and 4 threads with Fixman on
NEH. Regarding the covar function, the use of Fixman’s method clearly helps
to obtain higher performance when compared to Cholesky decomposition, as
stated in the previous sections.
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Figure 1 Performance results with 128 particles (Fixman and Cholesky)
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12 Carlos Teijeiro et al.

Figure 2 shows the simulation results for a large number of particles (4096)
and 5 time steps. Only the results of covar with Fixman’s algorithm are
shown, because of its higher performance. The results up to 8 threads present
similar performance, which is mainly due to the heavy computation of long
range interactions compared to the relatively small computation of random
displacements. In fact, the larger problem size provides higher speedups than
those of Figure 1. However, the algorithmic complexity of calculating the dif-
fusion tensor D is O(N2), whereas Fixman’s algorithm is O(N2.25); thus,
when the problem size increases, the generation of random displacements rep-
resents a larger percentage of the total simulation time. As a result of this, and
also given the parallelization issues commented in Section 4.2, the speedup is
slightly limited for 16 or more threads, mainly for OpenMP (also due to the
use of SMT in NEH). However, considering the distance to the ideal speedup,
we can conclude that both systems present reasonably good speedups for this
code.
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Figure 2 Performance results with 4096 particles (Fixman)
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6 Conclusions

This work has presented the parallel implementation of a Brownian dynamics
simulation code on shared memory using OpenMP directives and a PGAS-
based approach with the UPC language. According to both programming
paradigms, different workload distributions have been presented and tested
for the main functions in the code, trying to obtain good performance as the
number of threads increases. The scheduling techniques in for loops, the con-
venient use of reduction or critical directives, and the control of the stack
size in parallel function calls have been the most relevant features to tune the
OpenMP code, whereas the efficient work distribution and a wise optimization
of data management have been key factors for UPC. The results of the paral-
lel implementation have shown that there is a high dependency of the code
on the part where random displacements are generated for each particle, and
here Fixman’s approximation method has shown to be the best choice. Re-
garding both programming paradigms, UPC has obtained better results than
OpenMP, mainly because of the more efficient access to the data set, as the
PGAS memory model presents a more straightforward adaptation to current
NUMA multicore-based systems, although at the cost of a slightly higher pro-
gramming effort. OpenMP has provided a more compact implementation in
terms of SLOCs and a more straightforward approach to parallel programming
but, in general, the trade-off between programmability and performance has
been favorable for the UPC code.
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