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Abstract The increasing number of cores per processor is turning manycore-based
systems in pervasive. This involves dealing with multiple levels of memory in NUMA
(Non Uniform Memory Access) systems and processor cores hierarchies, accessible
via complex interconnects in order to dispatch the increasing amount of data required
by the processing elements. The key for efficient and scalable provision of data is the
use of collective communication operations that minimize the impact of bottlenecks.
Leveraging one sided communications becomes more important in these systems, to
avoid unnecessary synchronization between pairs of processes in collective opera-
tions implemented in terms of two sided point to point functions. This work proposes
a series of algorithms that provide a good performance and scalability in collective
operations, based on the use of hierarchical trees, overlapping one-sided communica-
tions, message pipelining and the available NUMA binding features. An implemen-
tation has been developed for Unified Parallel C (UPC), a PGAS (Partitioned Global
Address Space) language, which presents a shared memory view across the nodes for
programmability, while keeping private memory regions for performance. The perfor-
mance evaluation of the proposed implementation, conducted on five representative
systems (JuRoPA, JUDGE, Finis Terrae, SVG and Superdome), has shown generally
good performance and scalability, even outperforming MPI in some cases, which
confirms the suitability of the developed algorithms for manycore architectures.
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1 Introduction

Current computer systems are based on multicore chips, which are constantly increas-
ing their number of cores. This scenario, and particularly the new manycore processor
architectures, heightens the importance of memory performance and scalability. The
inclusion of the memory controller inside the processor’s chip helps to minimize the
issues associated with the access to shared memory from manycore chips. As a re-
sult, currently most systems, both single socket and multi-socket, have NUMA (Non
Uniform Memory Access) architectures, as now processors package several mem-
ory controllers in a single chip. NUMA architectures provide scalability through the
replication of paths to main memory, reducing the memory bus congestion as long as
the accesses are evenly distributed among all the memory modules. This scalability
is key for applications running on thousands of cores. The contributions presented in
this paper, a series of new collective operations algorithms for NUMA architectures,
target effectively the need for hardware awareness to extract the maximum perfor-
mance.

Previous works on optimizing collective communication operations for clusters
of nodes with multicore processors and SMP systems focused on taking advantage
of intra-node shared memory transfers. Additionally, scalable collective algorithms
are usually based on the use of process-based trees, usually disregarding their par-
ticular location in the system. Therefore, there is still room for locality exploitation.
Moreover, the trees used for transferring data are usually computed every time the
collective routine is invoked, as the source of the data can vary from one call to an-
other. While the overhead of this tree computation is reduced for small setups, for
large systems can limit the scalability of the collective operations. Furthermore, the
presence of multiple NUMA regions and multicore/manycore processors within each
cluster node poses new challenges, such as taking advantage of data locality and
implementing efficient data transfers in these multilevel, hierarchical and complex
architectures.

This work presents a new, scalable and efficient algorithm which computes stati-
cal trees at initialization time, thus improving scalability, especially on large systems.
These trees consist of subtrees that map the different hierarchical levels present in
clusters of NUMA nodes: (1) cluster of network interconnected nodes, (2) NUMA
regions within a cluster node, and (3) cores within NUMA regions. This algorithm
has been implemented in Unified Parallel C (UPC), a representative PGAS (Parti-
tioned Global Address Space) language, due to its suitability for programming clus-
ters of manycore nodes. In fact, PGAS UPC is increasing its popularity as it provides
a shared memory view of all resources for programmability while exploiting local
memory for performance. Four representative collective operations (broadcast, re-
duce, gather and scatter) have been compared in terms of performance against current
collectives libraries, both UPC and MPI.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 presents the proposed algorithm and its realization for broadcast, re-
duce, gather and scatter operations on clusters of NUMA nodes. Section 4 analyzes
the performance evaluation of the developed collective operations on five represen-
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tative systems, assessing their performance against its industry leaders counterparts.
Finally, Section 5 concludes the paper.

2 Related Work

The optimization of middleware for High Performance Computing is a complex task.
It might involve all the layers of the runtime, and it should evolve with new versions
of the language and library APIs [11, 35]. Within the runtime optimization, one of
the most important points is the optimization of the collective operations, as most
applications rely on them, both for programmability, as they implement popular op-
erations, relieving the programmer from its error prone implementation, and also for
performance, as they generally implement optimized and refined algorithms. Col-
lective operations are usually key to achieve a good scalability. There are basically
two approaches for the optimization of collective operations: the algorithmic and the
system approach.

The algorithmic approach focuses on how the data is transferred and how the
processes are organized. Not all algorithms can be suitable or implemented for all
systems. Previous works on this field can be split between two main groups: dis-
tributed memory algorithms and shared memory algorithms, which target the main
current architectures.

Typically, distributed memory algorithms for clusters of multicore nodes do not
take into account the potential performance benefits of NUMA awareness. Kandalla
et al. [13] developed and tested a topology-aware algorithm that builds the inter-
connect tree taking into account the process placement in relation to the switches,
avoiding unnecessary switch hops. Bibo Tu et al. [31] described a new broadcast
algorithm for multicore clusters. In this algorithm two sets of communicators were
used. The first one for intra-node communications, where binding is used to improve
locality within a node. The second one is for inter-node communications. This way a
broadcast is performed in two steps, inter and intra-node transfer steps, avoiding the
network interface congestion. Kumar et al. [15] designed and evaluated an all-to-all
algorithm for multicore clusters. This algorithm is similar to the Bibo Tu’s broadcast
algorithm, in the sense that is performed in two steps. While these approaches yield
important benefits for clusters of nodes with a small number of cores per processor,
they present some limitations for clusters with tens of cores per node, ignoring the
current NUMA architectures. Chan et al. [4] proposed an algorithm that takes advan-
tage of architectures with multiple links, where messages can be sent simultaneously
over different links in systems with N-dimensional meshes/tori.

Other works focused on optimizations for shared memory. Nishtala et al. [22]
conducted a series of experiments in three shared memory systems, based on mul-
ticore processors, using k-nomial trees for representing the virtual topology of the
processes. These experiments demonstrated that for each architecture and message
size the optimal radix of the k-nomial trees is different. Graham et al. [7] designed
and tested a series of algorithms for shared memory, each one appropriate for a set of
functions and message sizes. The described algorithms are basically fan-in or fan-out
trees of variable radix; reduce-scatter (each process reduces its data) followed by a
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gather or all-gather; and a recursive doubling algorithm. As expected, every algorithm
is the best performer for some setups, whereas not optimal for others.

Additionally, there are some works that aimed to optimize both shared and dis-
tributed memory architectures, such as the work of Mamidala et al. [19], which im-
plements and evaluates similar algorithms to the previous works. A work more closer
to ours is that of Kandalla et al. [12], which proposed a multi-leader algorithm. This
proposal is similar to Bibo Tu’s broadcast algorithm, except for using more than one
leader per node, initially considering only the allgather operation. Nishtala et al. [23]
leveraged shared memory and trees to optimize collectives and explore their autotun-
ing possibilities. Qian [24] followed a similar path to Kandalla et al. and proposed
a series of algorithms mainly focused on all-to-all and allgather, targeting multicore
systems with multiple connections per node, as well as optimizing the algorithms for
cases where different processes arrive at the collective at a different time.

Other optimizations can be categorized in the algorithmic approach, but with-
out targeting specifically distributed or shared memory systems. Rabenseifner [25]
proposed an algorithm for reduce operations in MPI that is widely used in many im-
plementations. It is performed in two steps: a reduce-scatter and a gather, and yields
increased performance in cases where the size of the arrays to be reduced are big
enough.

The algorithms considered in the related work are usually independent of their
actual implementation in a particular language. However, they have been generally
developed using MPI or UPC, two of the most popular choices nowadays. They are
representative of message-passing and PGAS solutions, respectively. However, usu-
ally there is no algorithm that always outperforms the others. In fact, the perfor-
mance of an algorithm depends on three factors: (1) message size, (2) number of
processes involved, and (3) the hardware. Providing the best algorithm for each setup
and message size is the optimum approach, as demonstrated in [28]. However, select-
ing among the algorithms entails a significant effort, as they are highly dependent on
the system. The solution typically relies on autotuning [32], generally based on an
automatic performance analysis of each algorithm for a wide range of setups.

Furthermore, it is possible to adapt the runtimes to the underlying hardware. Two
main approaches can be easily distinguished: the first one adds software features in
order to achieve a better usage of the underlying hardware; whereas the second one
adapts the corresponding layer to a given architecture.

Following the first approach, Miao et al. [20] proposed a single copying method
to take advantage of shared memory architectures, avoiding the system buffer. The
proposal of Trahay et al. relies on a multithreaded communication engine to offload
small messages [30]. Brightwell et al. [3] propose the sharing of page tables between
processes, speeding up applications performance. Hoefler et al. [8] proposed the use
of multicast in networks, resulting in highly scalable operations, but just valid for
very small messages. More recently, Li et al. [16] have proposed a NUMA-aware
multithreaded MPI runtime, where MPI ranks are implemented as threads as opposed
to processes, and they have implemented and evaluated algorithms for allreduce in
this runtime.
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The second approach generally consists of the design of custom algorithms for
a given architecture. Following this approach, Velamati et al. [33] designed a set of
algorithms for MPI collective operations for the heterogeneous Cell processor.

Previous works adapted collective operations algorithms and runtimes to sev-
eral architectures. However, few of them took into account clusters of nodes with
multicore processors with NUMA features. These features are increasingly impor-
tant, as even some single-socket servers based on recent processors are NUMA sys-
tems [1, 5]. Therefore, thread/process binding is increasingly important, as well as
a key feature for maximizing performance [2]. The work described in the present
paper optimizes collective operations for NUMA clusters in three ways: (1) the use
of one-sided communications to leverage asynchronicity and pipelining with full-
bidirectional bandwidth; (2) the use of NUMA binding to take advantage of the local-
ity; (3) the use of hierarchically-fixed trees, computed at initialization time. Pipelin-
ing is a well-known technique implemented in many MPI libraries, and has been
proposed before for UPC [26]. However, to the best of our knowledge, it has never
been implemented and tested.

3 Scalable Algorithm for Collective Operations on NUMA Clusters

Scalability is a pervasive and complex problem in HPC. Sometimes an algorithm
presents easy development and good performance but it might not scale well with
hundreds or thousands of cores, hindering the use of today’s HPC systems at their full
power. The key issue is the use of highly scalable methods, even though they might be
more complex. This kind of methods should be the preferred choice to face up large
scale problems, as demonstrated in [21], whereas less complex algorithms with good
performance are acceptable for small or medium scale setups. This principle is valid
both for applications and collective operations libraries. The algorithm presented in
this work aims at scalable performance on hundreds or thousands of cores on NUMA
clusters rather than providing efficiency on small/medium scale setups.

One of the design principles for scalability is to avoid the use of dynamic struc-
tures whose size and build time overhead increases with the number of processes.
Thus, in the proposed algorithm the first call to a collective function creates a per-
sistent and fixed (invariable) process tree structure, which can be reused in a future
collective call. If the root of the collective operation and the root of the tree are not
the same, then a copy of the message into the tree root is required, in top-down opera-
tions like scatter or broadcast, or the copying from the tree root to the operation root,
in bottom-up operations like reduce or gather. This approach has as main benefit the
reuse of the tree structures through all the run time. However, for a reduced number
of processes it is still faster building a custom tree than reusing a structure, if the root
of the collective operation is not the root of the precomputed tree.

Traditionally, most efficient collective implementations use trees of processes to
distribute or gather the data, although generally regardless the processes placement.
Only some advanced solutions implement topology or multicore aware trees [12, 13,
15, 31]. The algorithm presented in this paper extends these approaches to NUMA
clusters, taking into account the NUMA topology. Therefore, the trees used will be
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decomposed in three levels of subtrees: (1) the cluster level, (2) the node level, and
(3) the NUMA region level.

In the cluster level the nodes are interconnected through a network . For each node
one process is selected as a node leader, in charge of communicating its node with the
other nodes. Under certain circumstances it would be desirable to have multiple node
leaders (for instance, in systems with more than one network interface per node).
However, given the characteristics of the machines analyzed in this work, the number
of node leaders is one. For efficiency and scalability purposes, a binomial tree of node
leaders will be built.

The node level comprises the NUMA regions available in a node. The considera-
tion of this level is one of the contributions of this work. For each NUMA region one
process is selected as NUMA region leader, and a binomial tree of NUMA region
leaders will be built, with the node leader as root of its node tree. This level leader
will be responsible for the communication of its children and its father, that could
be the node leader or another NUMA region leader in systems with multiple NUMA
regions. The tree used for this level is also a binomial tree.

The NUMA region level connects its elements through shared memory. In this
level a new tree will be built, with the NUMA region leader as root. Here processes
are attached to the NUMA region through binding, thus avoiding process migration
to another NUMA region. Using NUMA region binding rather core binding is advis-
able, as it allows the operating system to move processes within the NUMA region if
necessary. However, in some architectures the cache or bus sharing can have a signifi-
cant impact [17]. Therefore, in these architectures a per core binding could be a better
choice. In this level two types of trees have been implemented and tested: binomial
and flat trees. In the proposed algorithm there is no reason to avoid a process from
being leader at several levels. In fact, it is advisable. Therefore, the node leader has
been made also its NUMA region leader.

Figure 1 illustrates the proposed structure for the algorithm using an example
which consists of 8 nodes, each one of them with 24 cores distributed between 4
NUMA regions. The proposed algorithm will be able to distribute effectively and effi-
ciently the data transfers among processes, taking advantage of the increased locality
at the same time, as it minimizes the usage of the most costly links, using the fastest
data channels whenever is possible, taking the most out of runtimes’ shared memory
optimizations. In fact, even runtimes without shared memory optimizations can get an
extra benefit. For instance a UPC runtime without shared memory optimizations but
support for privatizability functions [34] can map page tables from other processes
into its own memory space, allowing the use of the much faster memcpy system call.

The reason for using binomial trees instead of binary trees is their reduced number
of steps needed to traverse them in setups with large number of nodes. Binomial trees
will complete a 1-to-N or N-to-1 operation (broadcast, gather, scatter, reduce) in a
[loga(N)]| number of steps, for an N number of nodes. That is considering that the
communication starts towards the deepest branch, and that the communication is done
with one connected node at a time (sibling nodes can not communicate at the same
time with their parent). Binary trees on the other hand, will complete the operation
in ([log2(N)] — 1) %2 — 1 number of steps in the best case, or ([loga(N)] —1) %2 in
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Fig. 1 General overview of the scalable algorithm for collective operations on NUMA clusters

the worst case, for N > 2. For 16 processes the binomial tree will finish in 4 steps,
whereas the binary tree will finish in 6. For 4096 nodes the difference is 12 vs. 22.

Therefore, binomial trees are a better choice for scalable communications. How-
ever, it shall be noted that binary trees can be also a valid option when commu-
nication between nodes in the tree can be non-blocking and/or one-sided. In these
cases/scenarios communications can be overlapped, making the time required to com-
municate with all the children nodes in a lower level close to the time required to
communicate with just one node. In that case the operation will be completed in a
maximum of ([logz(N)] — 1) number of steps. This is true when both transfers can
be done simultaneously without mutual interference, which is usually not possible,
and is highly dependent on the bandwidth and the message rate that the network
adapter can handle. Moreover, if that scenario is possible, binomial trees will also
finish in a ([log2(N)] — 1) number of steps, which makes considering binary trees
impractical in most situations.

Flat trees do not scale, as they saturate the sender or receiver (depending on the
operation) easily. However, for a small number of nodes in the tree, a flat tree avoids
intermediate steps, reducing the synchronization overhead. Since the number of cores
per NUMA region is not likely to increase significantly, to avoid the memory bus
saturation, the library presented in this work also evaluates the use of flat trees in the
intra NUMA level (the core level).

Another feature present in high speed network fabrics is the presence of separate
links for upload and download data. Bearing that in mind, it is possible to pipeline
communications, overlapping send and receive operations to reduce latency. This li-
brary implements two modes of message fragmentation for pipelining: fixed and dy-
namic. In the fixed mode the message is fragmented into chunks of a given size. This
way, when one chunk is received, the destination process is able to send that data
while it is receiving the next chunk. This operation goes on until the complete mes-
sage has been delivered. The dynamic mode is similar to the fixed mode, except that
it splits the message in two halves, instead of [message_size /chunk_size| messages.
The selected chunk size for the fixed mode is 32768 bytes. The dynamic mode will
start fragmenting the messages when they are larger than 8192 bytes.

This library also takes advantage of one-sided memory copies, implementing
most functions in two approaches: push and pull. In the push approach the source
process puts the data in the destination process, whereas in the pull mode it is the
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destination process the one which gets the data. This way it is possible to achieve a
higher degree of communication overlapping, since data is streamed to/from different
sources at the same time.

Finally, the correctness of the developed functions has been assessed with GUTS
(GWU Unified Testing Suite) [6].

3.1 Scalable Reduce Operations

Reduce in UPC is different than reduce in MPI. In UPC, all the values of a shared
array are reduced to a single element, as opposed to MPI, where the result is an array,
with reduced values for every array position. Therefore, the developed algorithms
do not conform the definition of the reduce operation in MPI, and no comparison
between the two will be made.

The developed reduce function is based on several design principles looking for
scalability. The first one is that each process performs the reduction of its own data.
Therefore, the data communication is restricted to communicating a single element
of a primitive data type, that is to say, from a minimum size of char and a maximum
size of long double. Due to this, no fragmentation occurs.

The second consideration is motivated by the fact that a process might not know
if its children participate in the reduction. To solve this issue, each process with a
passive participation will contribute to the operation with a neutral operand value
(e.g., 0 for add operations and 1 for multiplications). In case the user defines its own
operation then this value must be adapted.

The third reduce design principle is a consequence of the tree used. Thus, for
noncommutative operations (such as noncommutative operations defined by the user,
UPC_NONCOMM_ FUNC), the operations must take the order into account, otherwise
they will provide an erroneous result.

The use of binomial trees not mapped into the hardware supports the two first
design principles. However, this would neglect the benefits of hierarchical trees.

3.2 Scalable Scatter and Gather Operations

Scatter and gather operations have a particularity. In these functions the source or
destination of the data, respectively, is a single process, while the other processes re-
ceive or send, respectively, their specific chunk of data. Therefore, the data movement
can not be optimized in the same way as for broadcast, since each process holds a dif-
ferent chunk of data. For this reason, trees are not an appropriate structure for data
distribution in these functions. However, a collective using trees avoids the overhead
of each process copying data separately, since less copies from/to source/destination
will be done. Such collectives seem interesting in scenarios where the data hold by
each process is not excessive. Besides this, having a scatter or gather function that
uses trees has an additional benefit. Since just a few processes will communicate
with the root of the operation, the memory footprint will be smaller in some systems,
leading to a higher scalability. In high-speed cluster networks, such as InfiniBand, a
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small buffer is used for each peer connection. In jobs with thousands of processes this
becomes a big problem as it has been pointed out before in several works [14, 27].
Mitigating this effect usually involves deep changes in the communication layer of the
runtime or the transport layer. Shared Receive Queues (SRQ) and eXtended Reliable
Connection (XRC) are recent InfiniBand features that allow to minimize the memory
overhead in large setups.The library presented in this paper and a runtime/driver with
on-demand approach, where buffers are allocated as needed instead of at initializa-
tion, help to solve this problem for scatter and gather at a higher level than runtime
or transport layer modifications.

The trees aforementioned take advantage of the underlying hardware and memory
hierarchy. In scatter and gather operations in order to move data efficiently downward
or upward the tree, the processes have to be contiguous within a given branch. This
cannot be guaranteed, as the user can choose a cyclic process distribution among
nodes. One possible workaround is having each level root being aware of all the pro-
cesses (and their order) hanging in all their branches. However, this workaround has
two major issues that leads it to do not scale. The first issue is that the tree root would
need to store too much information about the tree. The second and more important
issue is that root processes would have to perform multiple out-of-order memory
copies, instead of a single big memory copy. The overheads of these two issues make
this workaround impractical.

" Node

Fig. 2 Example of a binomial tree structure for a 32 process configuration, distributed among 4 nodes
in a block fashion. This tree structure is used in Scatter and Gather operations, and ignores the process
distribution and memory hierarchies.

A trade-off solution is building a binomial tree with all the processes, ignoring
their distribution among nodes and NUMA regions. Figure 2 presents this approach
in an ideal case, with a block distribution and a power of 2 number of processes in the
nodes and in the NUMA regions. In this case the processes will map perfectly onto
the hardware, minimizing the use of the links with more latency.

Scatter and gather functions with trees have also some other particularities. They
use intermediate buffers to copy data. The buffer management code is performed
before the initial barriers (if UPC_IN_ALLSYNC or UPC_IN_MYSYNC are set) and the
ending barriers (if UPC_OUT_ALLSYNC or UPC_OUT_MYSYNC are set). The buffers are
not freed if the new call has the same or fewer buffer requirements than previous
calls. However, if a certain call needs a buffer size of more than a certain threshold
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(currently 16M B), the buffer will be freed at the end of the function to avoid excessive
memory usage.

Another particularity is that process 0’s buffers will be the source or the destina-
tion (in gather or scatter, respectively), if the process O is the root of the operation.

The last particularity is that, even though these functions do not take advantage
of the processes’ distribution and trees do not map onto the hardware, they are bound
to the corresponding NUMA region, since this step is performed when the library is
initialized, at the beginning of each runtime execution.

The described particularities up to now are for both scatter and gather. Gather has
an extra particularity. It does not have a dynamic fragmentation version. The reason
for this is that, since the data flows upwards, copying the first half do not make sense
in most situations. The parent process could not take advantage of it, since its own
first half will be larger than any of its sons’ first half. Therefore, data can not flow
in halves because parent processes would have to wait for the second half anyway
before sending the first half.

Lastly, an additional algorithm has been implemented for scatter and gather. The
tree structure is not appropriate when the chunks of data are too big. A token-passing
algorithm has been developed for those cases. The token is passed to the next pro-
cess, in a ring fashion. The process with the token starts copying data. This way the
algorithm prevents that all process access at the same time, saturating the network.
The token is passed to the next process when one of the following conditions are
met: (1) the current process is in the same node as the source/destination process,
before start copying, to allow overlapping using the fast memory subsystem; (2) the
data to be copied is smaller than a given threshold, to avoid the following processes
wait unnecessarily; (3) when the remaining data to be transferred is smaller than the
previous threshold. When the data is bigger than this threshold the copy is performed
in two phases, the first one with a size N — Threshold and the second one with a
size Threshold. Since the bottleneck of scatter and gather operations is the outbound
link from the source thread, the presented implementation operates with a single to-
ken, assuming that a single thread can saturate the network or, when this condition is
not met, passing the token before initiating the copy, to allow overlapping of copies
to/from different threads. Operations with very small messages and a large number
of threads can benefit from the tree algorithm or use a ring algorithm with multiple
tokens. Evaluating the use of multiple tokens has not considered in this work, as the
evaluated systems are not big enough for taking advantage of it.

3.3 Summary of the Implemented Algorithms

The number of variations of the developed algorithms is a result of combining dif-
ferent orthogonal optimizations suited for the operations. The Table 1 presents an
overview of the developed algorithms. It should be noted that, even though these al-
gorithms have been implemented in UPC, the underlying principle and optimizations
are also valid for MPI. However, UPC, and more generally any PGAS language, al-
lows to implement them in a more natural way, since one-sided communication is a
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Table 1 Algorithms implemented.

Operations
Broadcast | Reduce | Scatter | Gather
Ring v v
. i Standard v v v v
Hierarchical D =T - 7
. . ynamic fragmentation
Push binomial Static fragmentation v v
. . Standard v v
Hlera{ch1cal Dynamic fragmentation v
binomial+flat Static fragmentation v
Ring v v
. . Standard v v v v
Hl?rﬂl‘Cl’}lCal Dynamic fragmentation v v
Pull binomial Static fragmentation v v
. i Standard v v
Hierarchical D T - 7
. . ynamic fragmentation
binomial+flat Static fragmentation v

main feature of the language. In MPI, put and get operations, and their non-blocking
counterparts, require explicit memory and window management, as opposed to UPC.

4 Performance Evaluation

This section presents a performance evaluation of the proposed algorithms imple-
mented in UPC. This language implements the PGAS programming model, quite
suitable for current and upcoming hybrid shared/distributed memory architectures,
especially its one-sided features. This development is a portable library as it is based
on standard UPC operations, using upc_mem{cpy, put,get} operations. However,
some algorithms require three extended UPC features: (1) UPC semaphores, (2)
privatizability functions, and (3) asynchronous and non-blocking functions. Even
though this features are not part of the standard, implementors have expressed they
willingness to add then, which makes this approach the most portable (as opposed to
implement it directly in GASNet).

4.1 Experimental Configuration

The performance evaluation of this work has been carried out on five representative
systems. The first one is the Finis Terrae supercomputer (at Galicia Supercomput-
ing Center, CESGA) [29], composed of 142 HP Integrity rx7640 nodes, each one
with 8 Montvale Itanium 2 dual-core processors (16 cores per node) at 1.6 GHz and
128 GB of memory. The processors are distributed between 2 cells, each one with 4
processors (8 cores) and its own I/O subsystem. Each cell is an independent NUMA
region. The interconnection network is InfiniBand 4X DDR (16 Gbps of theoretical
effective bandwidth), with Mellanox InfiniHost III Ex HCAs and a Voltaire Grid Di-
rector ISR 2012 switch. The HCAs are plugged in the cell 0. The node root thread
is bound to this NUMA region (cell 0 NUMA region) to that NUMA region. The
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library has been tested with up to 1024 cores in this system. The number of nodes
used in the performance evaluation is [n/16], being n the total number of cores used.
The UPC compiler and runtime is Berkeley UPC 2.12.1, relaying on the effective
the InfiniBand Verbs library for distributed memory communication. The GASNet
PSHM (GASNet inter-Process SHared Memory) optimization has been enabled. The
backend C compiler available in the system is the Intel 11.1.

The second system is an HP Integrity Superdome at CESGA, with 64 Montvale
Itanium 2 dual-core processors (128 cores total) at 1.6 GHz and 1 TB of memory. The
processors are distributed between 16 NUMA regions, each one with 4 processors (8
cores). The library has been tested with up to 128 cores in this system. The UPC
compiler and runtime is Berkeley UPC 2.12.1, with the SMP conduit, which uses
shared memory constructs for communications. The backend C compiler is the Intel
11.1.

The third system is the SVG 2011 (Galician Virtual Supercomputer) at CESGA,
composed of 46 HP ProLiant SL 165z G7 nodes, each one with two 12-core AMD
Opteron 6174 Magny-Cours processors (hence 24 cores per node) at 2.2 GHz, and
32 or 64 GB of memory. Each processor has 2 memory controllers. Therefore each
node has 4 NUMA regions, connected through high-speed HyperTransport links. The
interconnection network is Gigabit Ethernet, with Intel 82576 cards. There are two
interfaces bonded together. The bonding mode is 0 (round-robin balancing). The eth-
ernet switches are HP ProCurve 2910al. The library has been tested with up to 192
cores in this system. The number of nodes used in the performance evaluation is
[n/24], being n the total number of cores used. The UPC compiler and runtime is
Berkeley UPC 2.12.1, relying on the MPI conduit for distributed memory commu-
nication. Therefore the remote memory operations are built on top of MPIL. In this
particular testbed the implementation used is MPICH 1.3.2. The GASNet PSHM op-
timization has been also enabled in this system. The backend C compiler available in
the system is the Open64 4.2.4.

The fourth system used in the evaluation is the JUDGE (Jiilich Dedicated GPU
Environment) supercomputer, comprised of 206 IBM System x iDataPlex dx360 M3
nodes, each one with two 6-core Intel Xeon X5650 Westmere processors (hence 12
cores per node) at 2.66 GHz, and 96 GB of memory. Each processor has its own
memory controller. Therefore each node has 2 NUMA regions, connected through a
high-speed Intel QPI (Quick Path Interconnect) links. The interconnection network
is InfiniBand 4X QDR (32 Gbps of theoretical effective bandwidth), with Mellanox
ConnectX HCAs. The InfiniBand switches are Voltaire Grid Director 4036. The li-
brary has been tested with up to 648 cores in this system. The number of nodes used
in the performance evaluation is [n/12], being n the total number of cores used.
The UPC compiler and runtime is Berkeley UPC 2.12.2, a minor release fixing some
bugs on 2.12.1, and the communication layer uses the InfiniBand Verbs library for
distributed memory communication. The GASNet PSHM optimization has been also
enabled in this system. The backend C compiler available in the system is the Intel
11.1.

The fifth and last system is the JuRoPA (Jiilich Research on Petaflop Architec-
tures) supercomputer, comprised of 2208 Sun Blade 6048 nodes, each one with 2
quad-core Intel Xeon X5570 Nehalem-EP processors (hence 8 cores per node) at
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2.93 GHz, and 24 GB of memory. Each processor has its own memory controller.
Therefore each node has 2 NUMA regions, connected through a high-speed Intel
QPI links. The interconnection network is InfiniBand 4X QDR (32 Gbps of theoret-
ical effective bandwidth), with Mellanox ConnectX HCAs and a Sun Data Center
Switch 648. The library has been tested with up to 4096 cores in this system. The
number of nodes used in the performance evaluation is [n/8], being n the total num-
ber of cores used. The OS is SUSE Linux Enterprise Server 11, with kernel 2.6.32.
The UPC compiler is Berkeley UPC 2.12.2, relying on the InfiniBand Verbs library
for distributed memory communication. The GASNet PSHM optimization has been
also enabled. The backend C compiler available in the system is the Intel 11.1.

The use of five different systems allows for a broader study. Finis Terrae and Su-
perdome are basically two different implementations of the same node architecture,
allowing to extrapolate results in a system with a large number of NUMA regions to
future systems with multiple nodes. The architecture and network of SVG is present
in many deployed clusters, and even though it does not have RDMA capable hard-
ware that can fully benefit from one-sided communications, results in this system are
valuable to a large number of researchers. JUDGE allows to compare the benefits of
hierarchical trees, that can be hidden in systems with a number of cores per node that
is a power of two, due to the fact that an hierarchical binomial-based tree in those
systems is equivalent to a normal binomial tree. Lastly, JuRoPA allows to study the
behavior of the algorithms in a large scale system.

The implementation of the proposed algorithm (from now on we will refer to it
as NUMACo l) presented in this paper has been tested against the Berkeley UPC col-
lectives (from now on BerkeleyCol), based on the high performance layer GASNet
which implements an optimized binomial tree scheme; and also against the Michigan
Technological University (MTU) reference implementation of the collective opera-
tions (from now on MTUCol), based on flat trees on top of upc_memcpy operations.
The reference implementation has, like the algorithm here presented, two approaches:
pull and push, where data is either pulled from the destination thread or pushed from
the source thread.

The software used for the performance evaluation is the UPC Operations Mi-
crobenchmarking Suite (UOMS) [18], version 1.1. For each particular test, given a
number of cores and message block sizes, it performs several iterations, from 1000
iterations to 20 iterations depending on the number of cores being used and the mes-
sage size, to ensure representativeness and significance of the measures. All the tests
have been performed in the same batch job, one after the other, to try to guarantee
fairness in the comparison. Finally, the metric shown is the best result for each setup.
By showing the minimum runtime the paper presents the performance of the algo-
rithm without the influence of external factors (e.g., network contention/congestion),
allowing to focus on the scalability of the operations that implement the proposed
algorithm.

The UPC threads distribution has been performed in a block fashion. That is,
consecutive thread ranks will be in the same node until the node is fully populated.
This benefits algorithms that use trees but are not topology aware.
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4.2 Analysis of Performance Results

Table 2 Bandwith (in MB/s) obtained by the basic pull approach algorithm (labelled Pull) and the pull
algorithm with fragmentation of a fixed size and flat trees at the intra NUMA level of this library (labelled
Pull-f-f). The data displayed has been obtained with the maximum number of processes tested in each
system. That is: 1024 cores in Finis Terrae, 128 cores in Superdome, 192 cores in SVG, 648 cores in
JUDGE and 4096 cores in JuRoPA.

Message Size

256B 4KB 64KB IMB 16MB

FT Pull 665.2 9706 63465 48409 48647
Pull-f-f | 650.5 9865 84944 162280 167094

sD Pull 172.2 2501 7284 7764 10750
Pull-f-f | 172.6 2610 13003 26265 24031

SVG Pull 11.86 188.0 1900 4094 4096
Pull-f-f | 11.83 184.5 1824 3194 3322

JUDGE Pull 1550 | 22493 | 124537 108300 83310
Pull-f-f | 1521 | 22881 | 157871 248346 270849

JuROPA Pull 4369 | 68478 | 476794 320855 275361
Pull-f-f | 4387 | 66841 | 582289 | 1155182 | 1222592

This section presents the performance results of four representative collectives,
broadcast, reduce, scatter and gather in Figures 3, 4, 5 and 6, respectively. Their
results have been also analyzed comparatively against MPI collectives. All figures
present the performance of a representative medium-size message (16KB) on the
left and the performance of a representative large-size message on the right. The
size of the large message is IMB for broadcast and reduce, and 64KB for scatter
and gather, due to their higher memory requirements in the root process, which is
the result of multiplying the message size by the number of processes. The y axis
represents latency in microseconds in the graphs on the left (medium-size message
case), whereas the y axis represents bandwidth in GB/s in the graphs on the right
(large-size message case), except for broadcast on the SVG, which shows MB/s, and
the reduce operation, which always shows latencies.

Variations in the same basic algorithm can lead to some dramatic performance
differences, as shown in Table 2. The graphs display only the most relevant algorithms
for each combination of system, function and message size.

4.2.1 Scalability and Performance of UPC Broadcast Collective

Figure 3(a) shows the performance obtained for the different implementations of the
broadcast operation in the Finis Terrae supercomputer. The most relevant algorithms
for this system are the variations of the pull approach with static fragmentation, both
with flat tree and binomial trees in the intra NUMA level, NUMACol (pull, fixed frag,
flat) and NUMACol (pull, fixed frag), respectively. The proposed algorithms present
the highest benefit, both for 16KB and 1MB messages, on 16 cores, and also for 512
and 1024 cores. The efficient handling of intranode transfers is key for achieving a
good 16-core performance result whereas the scalability on 512 and 1024 cores is
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key to outperform BerkeleyCol, which suffer performance drops for the largest core
counts. These graphs confirm that it is possible to improve the performance through
NUMA-awareness. 16KB message performance (left graphs) is dominated by start-
up latency and synchronization whereas 1MB message performance is dominated by
the ability to overlap communications and harness data locality. Furthermore, scalable
algorithms do not show performance degradation as the number of cores increases. In
fact, the proposed NUMACo ol algorithms scale almost linearly, whereas BerkeleyCol
suffers from poor scalability. Thus, the bandwidth obtained by NUMACol (pull, fixed
frag, flat) is more than 61 times the bandwidth of BerkeleyCol on 1024 cores.

Figure 3(b) presents the performance in the Superdome system. The best per-
former algorithms in this system are again variations of the pull approach using flat
trees in the intra NUMA level, both with static and dynamic fragmentation. In this
system BerkeleyCol does not scale for 16 KB. Here the OS scheduler has a major im-
portance since it is a shared memory machine with 16 NUMA regions. Different core
mappings might yield significantly different results. This is specially important in the
medium message case, since it is latency bounded rather than bandwidth bounded.
This is why the NUMACo ol algorithms present more stable results, especially for 16
KB messages. Furthermore, it is remarkable the performance benefits with 128 cores,
where the NUMACol algorithms obtain almost 8 times the BerkeleyCol performance.
However, different runs can yield different results for BerkeleyCol, depending on the
OS scheduler decisions, resulting in a non-predictable performance. Regarding 1 MB
communication scalability, NUMACol suffer when using 32 or 64 cores (2 or 4 pro-
cesses per cell). However, its better scalability allows performance benefits of around
30% over BerkeleyCol.

The results for the SVG system can be observed in Figure 3(c). The best NUMA-
Col performance results have been obtained with the pull version with flat trees in
the intra NUMA level, and the pull version with dynamic fragmentation. The perfor-
mance drops significantly for 16 KB messages when more than one node is in use.
Additionally, there is an increasing difference between the NUMACol algorithms and
BerkeleyCol when fully populating the first node. In systems using Magny-Cours
processors or similar architectures with many NUMA regions, the NUMA aware-
ness becomes more important. With more than one node the NUMACol algorithms
are heavily penalized. The network is Gigabit Ethernet, with high latency. Since the
NUMACol algorithms rely on semaphores for synchronizing, which are basically
very short messages, they will suffer in latency bounded scenarios, like the one de-
picted on the left plot. The right plot is bandwidth bounded, and therefore the use
of semaphores does not hurt the performance as much as in latency bounded scenar-
ios. The tree topology yields major gainings in this scenario. The pull approach with
dynamic fragmentation performs almost 18 times better than BerkeleyCol, with 192
processes. However, despite its good performance compared with BerkeleyCol, the
network prevents to achieve a good scaling. The bandwidth for 192 processes is just
28% higher than with 96 processes.

The performance numbers obtained in the JUDGE supercomputer are shown in
Figure 3(d). This system shares some common features with the Finis Terrae super-
computer. Namely the network, even though JUDGE is equipped with a later gener-
ation of the InfiniBand standard (InfiniBand QDR 32 Gbps vs InfiniBand DDR 16
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Gbps). The behavior of the different collective operations evaluated is also similar.
The major difference is the gap between BerkeleyCol and the NUMACol algorithms
in the medium message case, when a single node is in use. This gap is the result of the
good latency of the QPI bus and the tree topology mapped to the hardware, allowing
the algorithm to achieve a good performance. The results for the large message case
show the same tendency than in the Finis Terrae system. The BerkeleyCol collective
does not scale beyond 192 processes, while the NUMACol algorithms keep scaling.
For 648 processes the performance of the pull approach with fixed fragmentation is
more than 420% of the performance of the BerkeleyCol collective.

Lastly, the Figure 3(e) depicts the results for the JuRoPA supercomputer. This
supercomputer also shares some architectural features with JUDGE and Finis Terrae,
and the algorithms showed are the same as in these systems. The results are also sim-
ilar to the results observed in JUDGE. However, there is one remarkable difference in
the medium message case. Even though the performance of BerkeleyCol is slightly
better than the NUMACol algorithms’ performance in setups with a few nodes, with
1024 processes this gap disappears, showing the superior scalability of the NUMA-
Col algorithms. In the large message case stands out the fact that the NUMACol
algorithms keep scaling without hesitation up to 4096 processes. The NUMACol al-
gorithm with pull approach and static fragmentation achieves almost 160 times the
bandwidth obtained by BerkeleyCol, with 4096 processes.

The conclusions that can be extracted about this operation are: (1) the scalability
of the developed algorithms is outstanding, especially for large messages; (2) for
medium messages its performance is good within one node if the internal node buses
are latency optimized; and (3) for medium messages BerkeleyCol usually performs
better when more than one node is in use. Optimizations in the network access can
boost further the performance of the NUMACol algorithms.

4.2.2 Scalability and Performance of UPC Reduce Collective

There are no major differences between algorithms for the reduce operation. There-
fore, all graphs will show the same two algorithms: Push and pull with flat trees in
the intra NUMA level. The reduce operation is addition, and the data type double.
The data size is per process. Therefore 2048 elements per process for 16KB message
size, and 131072 for 1IMB.

Figure 4(a) represents the performance for the reduce operation in the Finis Terrae
supercomputer. The medium message case shows that the algorithms scale steadily.
This performance data is the most important one from the communication scalability
point of view, since the large message case will be computational power bounded. The
data moved between processes will be the same, even though each process will have
to spend more time computing the reduction of its own data in the large case. When
using more than one node the performance is worse than BerkeleyCol by a narrow
margin. Since BerkeleyCol has its collectives implemented in GASNet, rather than
in UPC, its network access is slightly faster than directly from the UPC layer, caus-
ing this performance difference. Despite its slightly better performance, BerkeleyCol
performs much worse for 512 processes or more. This fact is also present in the other
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InfiniBand systems. The issue can be attributed to the InfiniBand conduit or the re-
duce algorithm in BerkeleyCol. The large message case is not large enough on this
system to be computational power bounded. Therefore, when more than one node is
in use the time to synchronize the processes is larger than the time spent computing,
and left and right graphs are quite similar.

The Figure 4(b) shows the performance obtained in the Superdome system. In this
shared memory system the results for the medium message case show that the Berke-
leyCol reduce performs better than the NUMACol algorithms just with 2 processes.
Up to 32 processes both algorithms performs at the same level. However, for 64 and,
especially, 128 processes, the NUMACol algorithms keep scaling, while the perfor-
mance of BerkeleyCol degrades. This effect is observable for data sizes from 8 bytes
to 16KB, not being present in the large message case. In the right graph the NUMA-
Col algorithms outperform BerkeleyCol except for 4 processes. However, with the
system fully populated the differences are not appreciable, since the limit is imposed
by the caches and memory buses performance, and the operation is computational
power bounded.

The results for the SVG system are presented in Figure 4(c). In the medium mes-
sage case the NUMACol algorithms outperform BerkeleyCol when just one node is in
use (up to 24 cores). This is especially true when the node is fully populated (using 24
cores), due to the NUMA awareness. However, and as seen before, when more than
one node is used, the NUMACol algorithms do not perform better than the Berkeley-
Col counterpart. The large message case shows a scenario very similar to the medium
message case when using more than one node, since the Gigabit Ethernet intercon-
nect becomes a major bottleneck and the benefits reducing the computational times
are neglected by the high latency of the network (as it can be seen for the medium
message case, the left graph). When using a single node BerkeleyCol and the NU-
MACol algorithms perform at the same level, except for the case with 24 processes.
The reduce computational task is not optimized on this system, and therefore, as the
data sets to be reduced get larger, the importance of the computing time increases,
and the benefits of the NUMACol algorithms are neglected.

Figure 4(d) shows the results in JUDGE. The general shape of the plot in the
medium message case is similar to the results for the Finis Terrae system. However,
in JUDGE the NUMACo l algorithms are able to better exploit the NUMA hardware
than in the Finis Terrae. This is due to the fact that in JUDGE the caches are shared in
the same NUMA region, since there is a single NUMA region per socket. However,
in Finis Terrae there are 4 different processors per NUMA region. Therefore com-
munication will be significantly faster in JUDGE between neighbouring processes.
In the Finis Terrae the ratio between speed communicating processes in different
processors, but same NUMA region, and speed communicating processes in differ-
ent NUMA regions is much lower. However, as for the previously analyzed systems,
when more than a single node is being used, this advantage is lost due to the high net-
work latency overhead which hides the differences between algorithms in the shared
memory scenario. Regarding the 1MB performance results, BerkeleyCol is gener-
ally the best performer. This is because of the better implementation of the reduce
computations in BerkeleyCol collective together with the fact that the QDR Infini-
Band interconnection network is fast enough to make this setup computational power
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bounded. Therefore, NUMACol collectives are only able to outperform BerkeleyCol
when using 648 cores, as for more than 384 processes the performance of Berkeley-
Col degrades sharply.

Lastly, Figure 4(e) displays the performance obtained in JuRoPA, a system which
is similar to JUDGE in terms of architecture. The biggest difference, besides the size
of the system, is the type of processors, with different number of cores (JUDGE has
hexa-core Xeon Westmere processors whereas JuRoPA has quad-core Xeon Nehalem
processors). Thus, in JuRoPA when using more than 8 cores (more than a single
node), BerkeleyCol outperforms the NUMACol algorithms in both the medium and
the large message scenarios, but only up to 256 cores, as for 512 cores BerkeleyCol’s
performance degrades, whereas the NUMACol algorithms keep scaling steadily.

The analysis of the performance of the reduce implementations have allowed to
draw the following conclusions: (1) the NUMACol algorithms can effectively outper-
form BerkeleyCol in modern NUMA hardware; (2) the performance of NUMACol
reduce algorithms is latency sensitive, due to the synchronization and copy of single
elements between processes, so therefore reducing network latency yields significant
improvements, as observed when comparing systems with low latency networks (Fi-
nis Terrae, JUDGE or JuRoPA) with systems with high latency networks (SVG); and
finally (3) BerkeleyCol presents a much more efficient implementation of the arith-
metic operations supported in the reduce operation, which means that NUMACol
reduce implementations have still room for improving its performance.

4.2.3 Scalability and Performance of UPC Scatter Collective

The MTU reference implementation of the scatter operation, unlike the broadcast and
the reduce reference implementations (whose results were not shown for clarity pur-
poses), presents a quite competitive performance despite its simplicity (it implements
a flat tree). In the scatter operation the data from a root process has to be distributed
(scattered) among all processes participating in the collective operation. The bottle-
necks are, therefore, the outbound bandwidth of the root process and the start-up
network latency. The simple algorithm implemented in the reference library is a good
alternative due to that, since the use of the bandwidth of the root process is max-
imized without additional synchronization and copying overhead. As for previous
collectives, for clarity purposes only the two best performer NUMACol algorithms
are shown. Additionally, for scatter and gather the MTU reference library is consid-
ered and every graph will show its best performer algorithm (either the pull or the
push version). Finally, it has to be noted that for scatter and gather the amount of
data to be scattered/gathered increases with the number of cores. In this performance
evaluation the selected message sizes are 16 KB an 64 KB. Therefore, by selecting
64 KB messages the root process will be handling a 1 MB message when communi-
cating 16 cores (16 x 64 KB), or handling a 256 MB message when communicating
4096 cores (4096 x 64 KB).

Figure 5(a) displays the results obtained from the benchmarking of the scatter
operation in the Finis Terrae supercomputer. The relevant algorithms for this super-
computer are the pull versions of the MTUCo ol library, of the NUMACo ol ring algo-
rithm and the NUMACo l tree with dynamic fragmentation. In the 16KB case, in the
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one hand the best performer is the reference implementation, for the whole range of
number of cores evaluated (2-1024). On the other hand, BerkeleyCol is the worst per-
former in shared memory (up to 16 cores), whereas it performs slightly better when
using two or more nodes (from 32 cores), except when using 1024 cores (64 nodes).
Here the ring algorithm presents the opposite behavior, as it performs well in shared
memory (close to MTUCol performance), but it is the worst performer in the intern-
ode case. Finally, the pull version of the NUMACol tree with dynamic fragmentation
has balanced performance, between the best and the worst case. The conclusions
derived from the analysis of the performance results using 64 KB messages are dif-
ferent. Thus, BerkeleyCol is always the worst performer. Here MTUCol is the best
performer, but in this case closely followed by the NUMACol ring algorithm. Once
again the pull version of the NUMACol tree algorithm with dynamic fragmentation
is not able to take advantages of its features because here the bottleneck is the out-
bound bandwidth of the root process. However, as for the 16 KB case, it presents
performance results between MTUCol and the best performer NUMACol algorithm.
When using 1024 processes the performance gap between the best performer and
the worst performer is almost 1 GB/s, which in relatively terms means that the best
performer, MTUCo l, presents 3 times higher performance than the worst performer,
BerkeleyCol, which is not able to provide scalable bandwidth as the number of cores
increases.

In Figure 5(b) the results measured in the Superdome system are showed. The
best performer algorithms are the same as for the Finis Terrae, except for the NUMA-
Col tree algorithm, which presents its optimal performance with static fragmentation.
Here the differences between algorithms are much higher than in the Finis Terrae
system, in both cases (16KB and 64KB). The reason is that the Superdome is a large
NUMA server with lower communication latency than an interconnection network
such as InfiniBand (the network in Finis Terrae). Moreover, in this shared memory
system it is possible to access directly to the source data, minimizing problems such
as congestion/contention like in a networked environment. Therefore, removing the
interconnection network limitations (latency overhead, network congestion and con-
tention) the differences between algorithms are more noticeable. In fact, the perfor-
mance gap between the best (MTUCol) and the worst performer (BerkeleyCol) can
be as high as 54 times, as for 64KB message size and 128 cores. As before, the best
performer is the reference implementation, whereas the performance of BerkeleyCol
falls behind all the other evaluated options, for 16KB and 64KB. The ring algorithm
shows performance results around 30% lower than MTUCol, but following the same
trend line, as both algorithms show very similar scalability. Finally, the NUMACol
tree algorithm presents performance results quite close to the worst performer, Berke-
leyCol, since the multiple levels the data has to go through, plus additional memory
requirements and synchronizations, do not compensate. As can be derived from ob-
serving Figure 5, the scatter operation is only able to scale on the Superdome, where
BerkeleyCol is outperformed for 64KB messages on 128 cores by the NUMACol tree
algorithm (2.75 times higher performance), the NUMACol ring algorithm (37 times
higher performance) and MTUCol (54 times higher performance).

In the SVG the best performer algorithms are the same as for the Finis Terrae su-
percomputer, namely the pull versions of MTUCol, NUMACol ring and NUMACol
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tree with fixed fragmentation. The results can be seen in Figure 5(c). Here the results
in shared memory (intra-node, up to 24 cores) are similar to the Superdome system,
although the MTUCol bandwidth is higher for 64 KB messages. However, for in-
ternode results (from 48 cores) the network latency overhead is a major issue, since
the network available in this system —Gigabit Ethernet— presents a very high start-up
latency. Thus, algorithms such as NUMACol ring especially suffers this high start-up
overhead as it relies on semaphores, which are implemented using very short mes-
sages. Therefore, its performance on inter-node setups (from 48 cores) falls behind
the remaining algorithms which are less sensitive to start-up network latency. Berke-
leyCol, MTUCol and the NUMACol tree algorithm are able to take more advantage
of the network, despite their limitations, avoiding synchronization overhead.

The results measured in JUDGE can be seen in Figure 5(d), where the best per-
former algorithms are the same as for the SVG and Finis Terrae. Moreover, the per-
formance of these algorithms is quite similar to previous results on shared memory
(intra-node case, using up to 12 cores). However, when using multiple nodes —24 or
more cores— the performance drops significantly, showing higher latency (left graph)
or lower bandwidth (right graph). Thus, in this case the MTUCol and NUMACol
ring algorithms show quite similar results, within 1% of performance gap for the
648 core setup, for both 16KB and 64KB. However, the use of NUMACol ring is
recommended as communications are done one by one, coordinated by semaphores,
which presents lower risk than the MTUCol implementation where all cores commu-
nicate to the root process, which could be potentially an important bottleneck. These
two algorithms —the MTUCol and NUMACol ring— perform up to 60% better than
BerkeleyCol on 648 cores.

Finally, the last system, JuRoPA, has an architecture similar to JUDGE, so it
seems reasonable that the best performer algorithms are the same as for JUDGE, and
that their performance results present similar behavior (they can be seen in Figure
5(e)), so they share most of the analysis of the JUDGE results. Regarding JuRoPA
benchmarking, the most important contribution is the analysis of the selected algo-
rithms using up to 4096 cores. Thus, one of the conclusions of the analysis of the
results is that MTUCol (pull), which implements a flat tree, is able to cope with up
to 4096 simulatenous messages, even without degrading too much the performance,
thanks to the InfiniBand network. However, BerkeleyCol can not avoid a significant
performance drop for the 64KB test case using 4096 cores, falling in this case below
half of the performance of MTUCol and NUMACol ring.

The conclusions that can be derived from the analysis of the performance results
of the scatter operation are: (1) tree-based NUMACol algorithms, despite their scal-
ability, are never the best option, due to the extra data that has to be handled; (2) the
scatter operation is seriously limited by the outbound performance at the root process,
which explains why quite simple algorithms, such as the flat tree implemented by
MTUCo l, are able to achieve the best performance although they might be disregard-
ing the scalability of the data transfers; and finally (3) the MTUCol implementation
has shown the best performance results and it has been able to deal with up to 4096
simultaneous communications, without saturating the interconnection network (in the
evaluated system an InfiniBand network) and without requiring the implementation
of any synchronization mechanism to support the scalability of the operation.
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4.2.4 Scalability and Performance of UPC Gather Collective

Figure 6 presents the performance results of the microbenchmarking of the gather
operation on the 5 representative systems considered in this work. As for scatter,
MTUCol, implementing a quite simple flat tree algorithm, has an outstanding perfor-
mance. In this case the data is collected from all the processes and has to be written
in the root process, so it is the reverse operation of the scatter and the analysis could
be the same as for the scatter, just considering the reverse operation. Thus, the bot-
tleneck is the inbound bandwidth and latency. Apart from the considerations about
the direction of the communications, the gather operation presents performance re-
sults very similar to those of the scatter collective for all the systems and messages
sizes. Thus, the analysis and conclusions for the scatter results are perfectly valid
for gather. However, it shall be noted that whereas the best performer algorithms for
scatter are those which implement pull-based approaches, for gather the best option
is push. The reason behind that is that communications are initiated by all the par-
ticipants, rather than just one. Therefore, the cost of setting up the communication is
partly distributed, avoiding jitter and providing better overlapping.

4.2.5 Comparative Performance Analysis of NUMA Algorithms against MPI

This section presents a comparative evaluation of the proposed NUMACol algo-
rithms against state-of-the-art collective algorithms, such as those available for MPI,
which has been carried out in JuRoPA using the MPI implementation ParaStationMPI
5.0.27, based on MPICH2 1.4.1p1. Even though ParaStationMPI is not as widely
spread as other MPICH2 derivatives, the fact that it is based on MPICH?2 makes suit-
able for a reasonable comparison. Moreover, this is the MPI implementation installed
and supported on JuRoPA, and therefore results with it are more significant for users
of this system.

The software used for the performance evaluation is the Intel MPI Benchmarks
(IMB) suite [9] version 3.2.4, and the UPC Operations Microbenchmarking Suite
(UOMS) [18] version 1.1. These two tools have small differences in how they mea-
sure performance. IMB reports minimum, maximum and average latency. However,
this data is the average per message size per process. The formulas of the reported
date are described in Equation 1, where p is the number of processes and n is the
number of iterations for a given message size. UOMS also reports minimum, maxi-
mum and average latencies. However, these latencies are considering iterations, not
processes, as UOMS considers one operation finished just when all the processes
involved are done, using UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC as synchronisation
mode. The formulas for the reported data in UOMS are described in Equation 2.
In order to allow comparisons as fair as possible the reported values for IMB are the
maximum, i.e. the highest average time among processes, to guarantee a state where
all the processes have finished the operation. The reported values for UOMS are the
average, i.e. the average time per iteration needed to guarantee that all the processes
have finished the operation. Both reflect the average time needed to allow the oper-
ation to be completed by all the processes. UOMS also reports the bandwidth, but
on this case based on the minimum latency. Due to that, the reported bandwidth on
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this paper is not the one reported from the output of UOMS, but the one calculated
using the average latency. Another difference that requires attention is that the root of
each collective in IMB changes every iteration, whereas UOMS keeps the root static.
However, the impact of this is minimum, specially in large experiments.
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MPICH?2 implements three broadcast algorithms, selected at runtime depending
on message size. These message size thresholds are configurable, but this evaluation
uses the default thresholds. Thus, for messages up to 12KB the algorithm is based
on binomial trees. For sizes between 12KB and 512KB the algorithm performs a
scatter using a binomial tree and followed by an allgather implemented with a re-
cursive doubling algorithm. For messages larger than 512KB the algorithm is similar
to the previous one, except for the allgather phase, which is performed with a ring
algorithm.

Regarding the scatter and gather operations, MPICH2 implements these collec-
tives using an algorithm based on binomial trees, with intermediary buffers in non-
leaf processes, in a similar way as the NUMA implementation proposed in this paper.

Finally, the reduce operation has been also included in this comparison. The re-
duce operation in UPC and MPI have significant differences. In UPC this collective
is done on a shared array and produces a single value, whereas the outcome of the
MPI reduce is an array result of reducing elements per position, using private ar-
rays as source. However, when the number of elements per rank or UPC thread is 1,
both operations are comparable. MPICH?2 implements reduce using two algorithms:
Rabenseifner’s algorithm, for messages larger than 2KB, and a binomial algorithm
for shorter messages. Since our comparison is limited to one element per rank, the
Rabenseifner’s algorithm is not used.
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Figure 7 presents the comparison of NUMACol with MPI for the broadcast us-
ing two representative message sizes, 16KB representative of medium size messages,
and 1 MB, representative of large messages. For short messages (<12KB) the con-
sidered algorithms have similar scalability, whereas the performance is highly depen-
dent on the start-up latency achieved by MPI and UPC communications. Both graphs
show a good performance and scalability of the NUMACol algorithms, although it
is noticeable that MPI achieves the highest performance for 16KB when using more
than 256 cores, and for IMB from 64 up to 2048 cores. However, for 4096 cores
MPI performance is overcome by the better scalability of the NUMACol algorithms.
Nevertheless, it shall be noted that the UPC experimental results present much more
variability than the MPI ones, both for the NUMACol algorithms and for the Berke-
leyCol broadcast. This variability is already present in BerkeleyCol point-to-point
communication, whose performance is much more variable than MPI point-to-point
primitives, showing occasionally differences of an order of magnitude between mea-
sures for short messages. Nevertheless, when considering large messages these peaks
are not present.

Figure 8 shows the comparative performance results for scatter and gather, re-
spectively, with a format similar to the layout previously presented. Thus, the se-
lected message size for evaluation are 16KB and 64KB. Regarding the performance
results, generally MPI is the worst performer and the NUMACol ring algorithm the
best performer (up to 3 times more performance than MPI), especially for 64KB.
MTUCo ol also outperforms MPI. Here the NUMACol tree algorithm is basically the
same as the MPI algorithm. There are only two major differences: the NUMA affin-
ity support, not present in MPI, and the fragmentation of the messages. These two
differences explain the better performance of the NUMACol algorithms. Moreover,
as for gather the fragmentation does not add any benefit and the best algorithm is
the one that does not use fragmentation. Therefore, in this case the key aspect for
achieving more performance in UPC operations is the efficiency achieved in shared
memory thanks to the NUMA binding. In gather, the data flows upwards, causing
the algorithm to be more sensitive to jitter and accumulating the penalty of ignoring
optimizations of the memory subsystem. In scatter this is less important, since the
data is transmitted to the root, and immediately pulled by other root processes from
other nodes, which minimizes the penalty of not optimizing the memory subsystem,
instead of adding additional overhead.

In Figure 9 the results for reduce can be observed. Both plots contain the data for
8 bytes (a double per MPI rank or UPC thread). The plot on the left represents latency,
whereas the plot on the right represents MFLOP/s. In this range, with a message size
of just 8 bytes, the best algorithms are both pulling algorithms. However, despite their
good scalability, their performance is worse than for MPI, and in some cases worse
than BerkeleyCol. With this setup, all the algorithms (except NUMACol with flat tree
at the NUMA level) are algorithms based on binomial trees. The number of cores per
node and per NUMA region is power of 2, and therefore the shape of the trees and the
cost of the operation is the same between them. However, MPI outperforms all the
UPC implementations, due to its lower start-up latency, that is specially important
in this case due to the fact that this operation is largely dominated by the network
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Fig. 8 Comparison of scatter and gather scalability of NUMA-based algorithms against MPI on JuRoPA

latency. This fact is also the root cause for the low number of MFLOP/s, due to the
low computation/communication ratio.
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4.2.6 Impact on Performance of Different Optimizations at High Core-Counts

The basic algorithm has been optimized using different techniques. However, up to
now, the contribution of each optimization to the overall collective performance has
not been assessed. This section analyzes the influence of several optimizations for
broadcast, due to its importance in the context of this work. The analysis has been
focused on the impact of these techniques on scalability. Therefore JuRoPA has been
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selected for this analysis due to its higher number of available cores (it has been used
up to 4096 cores).
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Fig. 10 Impact of message pipelining in broadcast performance

Figure 10 shows the contribution of the message pipelining to the overall per-
formance, for a setup of 4096 cores. In short message communication, with mes-
sages from 4 bytes to 8KB, the performance of the different variations of the algo-
rithm shows the same performance results. In fact, they are using the same algorithm
since the dynamic fragmentation algorithm processes messages larger than 8KB, and
the fixed fragmentation algorithm starts processing messages larger than 32KB. It is
from this point, messages larger than 32KB, that each algorithm presents a different
performance. Thus, the pull algorithm without fragmentation increases performance
slightly for 64KB and 128KB, achieving at this latter point its peak performance,
degrading performance from that point on. The pull algorithm with dynamic frag-
mentation performs twice as good as the pull algorithm. However, its performance
also degrades for messages larger than 256KB. The usage of the fixed fragmentation
pull algorithm achieves even higher performance, reaching its maximum at 4MB. At
this point its performance is more than 4 times as good as the initially considered pull
algorithm, showing the importance of message pipelining.
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Fig. 11 Impact of multilevel trees in broadcast performance

Figure 11 presents the impact on performance of the usage of multilevel trees.
This experiment has been conducted with 3072 processes, with 512 nodes and 6
processes per node. A multilevel tree assigning 4096 processes, with 512 nodes and
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8 processes per node, is equal to a standard binomial tree, due to the usage of a
number of processes per node that is a power of 2. However, nowadays is increasingly
common to find systems with a number of cores per node that is not a power of 2.
It is in these scenarios where the usage of multilevel trees become important and
where they are different from binomial trees. In scenarios where the short messages
latency dominates the overall performance, the importance of having a multilevel
tree is noticeable for messages larger than 16 bytes. The difference between both
approaches is small up to IMB. At that point the benefits of using the most efficient
multilevel tree become more apparent as the message size increases, and for 16MB
the use of a multilevel tree performs 1.5 times better than using a binomial tree.

The benefits of NUMA affinity to control the mapping of processes to the un-
derlying hardware are negligible in setups with a high number of nodes where the
effects of network latency and bandwidth have much more impact on performance
than the small benefit obtained from NUMA binding control. Nevertheless NUMA
affinity has shown its importance in shared memory scenarios. Moreover, a few facts
suggest that NUMA affinity control has room for improving collective operations
performance over the coming years. Thus, (1) the latest processor models are directly
connected to network interfaces, typically one per node. In this case the relevance of
having the node root process in the processor with direct connection to the network
increases. Moreover, (2) the increasing number of NUMA regions per socket is forc-
ing the consideration of new algorithms that are able to minimize jitter. This has been
demonstrated through Section 4.2. The NUMA aware algorithms have outperformed
other approaches in single node setups, with fully populated nodes. Finally, (3) as in-
terconnection networks become faster, supercomputers with a high number of nodes
turn out to be more sensitive to jitter. These facts suggest that NUMA affinity can
have a major impact in collective performance in future systems. Moreover, affinity
should be carefully evaluated for every application, as show in [10]. Correct affinity
can have a significant impact on the performance of an application. The optimal affin-
ity setup for any application will not interfere with the performance of NUMACol, as
long as the trees are set up according to the process mapping.

5 Conclusions

This work has presented a new series of algorithms for collective operations for
NUMA multicore and manycore architectures. Its main contributions are: (1) the use
of correct one-sided point-to-point communications (pull vs. push) to leverage com-
munication overlapping; (2) message fragmentation to allow communication pipelin-
ing on one-sided communications; (3) resorting to multilevel trees to minimize the
use of the slowest data paths; (4) NUMA region binding as a core feature of the col-
lective library; and finally, (5) the use of fixed trees, to avoid tree computation at
function init. It worths it when the initial copy to the tree root is faster than the tree
computation.

The analysis of the implementation of these algorithms (NUMACol) has shown:
(1) the implementation of these algorithms is able to equal and even outperform an
evolved and more mature UPC library (BerkeleyCol); (2) NUMACol can outperform
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in some scenarios the state-of-the-art implementation of their equivalent functions
in MPI, bringing another algorithm to the mix, allowing more possibilities for au-
totuning and choosing the most appropriate algorithm in each situation; (3) major
contributor factors to performance are a tree mapped to the underlying hardware con-
sidering all levels, message pipelining, communications overlapping with adequate
(pull vs. push) one-sided point-to-point transfers. Furthermore, (4) it is hard to de-
termine which is the optimal tree shape for each level, as it depends on the archi-
tecture and message size; and (5) tree-based collectives are often outperformed by
ring algorithms with communication overlapping, in operations where data have to
be scattered/gathered from a single point. Finally, (6) NUMA binding does not im-
prove significantly the performance in nowadays clusters, as the main performance
bottleneck is the network overhead. However, due to its highly scalable design, it
is expected that the performance benefits of the developed library will be higher in
future systems with tens of NUMA regions.
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