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Abstract:  

Schizophrenia is a complex disease, with both genetic and environmental influence. Machine learning techniques can 

be used to associate different genetic variations at different genes with a (schizophrenic or non-schizophrenic) 

phenotype. Several machine learning techniques were applied to schizophrenia data to obtain the results presented in 

this study. Considering these data, Quantitative Genotype – Disease Relationships (QDGRs) can be used for disease 

prediction. One of the best machine learning-based models obtained after this exhaustive comparative study was 

implemented online; this model is an artificial neural network (ANN). Thus, the tool offers the possibility to 

introduce Single Nucleotide Polymorphism (SNP) sequences in order to classify a patient with schizophrenia. Besides 

this comparative study, a method for variable selection, based on ANNs and evolutionary computation (EC), is also 

presented. This method uses half the number of variables as the original ANN and the variables obtained are among 

those found in other publications. In the future, QDGR models based on nucleic acid information could be expanded 

to other diseases.  

Keywords: Bioinformatics, Data mining, Machine learning, Neural networks, Schizophrenia, SNP, Support vector 

machines. 

 

  



1. INTRODUCTION 

The study of diseases with computational models uses different molecular information such as 

structure and physical/chemical properties of a protein and DNA/RNA molecules, blood proteome mass 

spectra, DNA microarrays, disease biomarkers and concentration of the metabolites in physiological 

liquids. Schizophrenia is a common mental disorder defined as a heterogeneous syndrome characterized 

by perturbations in language, perception, thinking, social relationships and will as a consequence of 

several cumulative effects of certain (genetic and environmental) risk factors [1] or epigenetics [2]. Due 

to the impact of this disease molecular genetics techniques have been used to identify the genes related 

with this disorder. 

 

The computational methods are focused on finding the relationships between schizophrenia and 

molecular information. Quantitative Structure - Activity Relationships (QSARs) are widely used for 

predicting protein properties [3] and Quantitative Protein (or Proteome) - Disease Relationships (QPDRs) 

[4-10] for disease prediction. The numerical data used for these classifications consisted in topological 

indices or molecular descriptors obtained with the Graph/Complex Network theory [11-14]. Several 

QSAR/QPDR models based on protein structure and proteome mass spectra have been obtained for 

cancer [15-18], especially for breast and colorectal cancer [19, 20] and prostate cancer [21]. Additional 

applications have been published for protein interactions in parasites [22-24]. 

 

In a similar way, a QGDR can be established in order to automatically evaluate schizophrenia DNA 

sequences using Single Nucleotide Polymorphisms (SNP) data A SNP [25] is a single nucleotide 

variation in a genetic sequence that occurs at appreciable frequency in the population, that is, at 1east in 

1%. Thus, SNPs can be used as inputs in disease computational studies such as pattern searching or 

classification models. Models based on machine learning have been extensively used to analyse complex 

diseases, such as diabetes [26], hepatitis [27] and rheumatoid arthritis [28]. However. not many studies 

have been carried out on variation analysis in schizophrenia using Machine Learning algorithms [29, 30]. 

Statistical models were the most used for this type of complex disease. 

 

Ban et al. [26] analyzed the importance of gene-gene interactions in Type 2 diabetes mellitus (T2D) 

susceptibility by investigating 408 SNPs in 87 genes involved in major T2D-related pathways in 462 T2D 

patients and 456 healthy controls from the Korean cohort studies. They used the support vector machine 

(SVM) method to differentiate between cases and controls using SNP information in a 10-fold cross-

validation test and they achieved a 65.3% prediction rate with a combination of .14 SNPs in 12 genes by 

using the radial basis function (RBF)-kernel SVM. As the high-throughput technology tor genome-wide 

SNPs improves, it is likely that a much higher prediction rate with biologically more interesting 

combination of SNPs can be acquired by using· this method. Thus, SVM-based feature selection method 

in this study found novel association between combinations of SNPs and T2D in a Korean population.  

 

Uhmn et al. [27] used several machine learning techniques to predict the susceptibility to chronic 

hepatitis from SNP data integrated with several feature selection algorithms to identify a set of SNPs 

relevant to the disease. They applied a backtracking technique to a couple of feature selection algorithms, 

forward selection and backward elimination, and showed that it was beneficial to find the best solutions 

by experiment. The experimental results show that the decision rule was able to distinguish between 

chronic and normal hepatitis with a maximum accuracy of 73.20%, whereas the accuracy of the support 

vector machine was 67.53% and that of the decision tree was 72.68%. It was also shown that the decision 

tree and decision rule are potential tools to predict susceptibility to chronic hepatitis from SNP data. 

 

Briggs et al. [28] studied the genetic interactions (epistasis) with a statistical approach, by combining 

several analytical methods. Thus, they used a multi-stage analysis that incorporated supervised machine 

learning and methods of association testing, to investigate epistatic interactions with a well-established 

genetic factor (PTPN22 1858T) in a complex autoimmune disease such as rheumatoid arthritis (RA). The 

analysis consisted of four principal stages: Stage I (data reduction) - identifying candidate chromosomal 

regions in 292 affected sibling pairs, by predicting PTPN22 concordance using multipoint identity-by-

descent probabilities and a supervised machine learning algorithm (Random Forests); Stage II (extension 



analysis) - testing detailed genetic data within candidate chromosomal regions for epistasis with PTPN22 

1858T in 677 cases and 750 controls using logistic regression; Stage III (replication analysis) - 

confrrmation of epistatic interactions in 947 cases and 1.756 controls; Stage IV (combined analysis) - a 

pooled analysis including all 1624 RA cases and 2,506 control subjects for final estimates of effect size. 

A total of seven replicating epistatic interactions were identified. The results demonstrate that the SNP 

variants within CDH13. MY03A, CEP72 and near WFDCl showed significant evidence for interaction 

with PTPN22, affecting susceptibility to RA. 

 

One of the most studied genes related to schizophrenia susceptibility is DRD3. Same as HTR2A, it is 

considered to be an important target for several antipsychotic drugs [31]. HTR2A encodes one of the 

receptors for serotonin and DRD3 encodes one subtype of the five dopamine receptors, both 

neurotransmitters. More specifically, Dopamine 3 receptors (DRD3) are concentrated in limbic regions of 

the brain, which are associated with cognitive, emotional and endocrine functions. Thus, it may be 

particularly relevant to schizophrenia, as the DRD3 messenger RNA is predominantly expressed in the 

limbic system, a region thought to be dysfunctional in this disease [32]. Association studies involving 

these functional candidate genes have systematically focused on a limited set of SNPs, generally based on 

previously reported small contributions of these markers of risk of susceptibility to schizophrenia. More 

specifically, SNP TI 02C (rs6313) at HTR2A and SNP Ser9Gly (rs6280) at DRD3 have been extensively 

analyzed in several schizophrenia case-control studies [33]. 

 

The serotonin transporter gene (SLC6A4) and its promoter (5-HTTLPR) polymorphism have been the 

focus of a large number of association studies of behavioral traits and psychiatric disorders such as 

schizophrenia. However, large-scale genotyping of the polymorphism has been very difficult. Lu et al. 

[30] reported the development and validation of a 5-HTTLPR genotype prediction model. The single 

nucleotide polymorphisms (SNPs) from the 2,000 kb region surrounding 5-HTTLPR were used to 

construct a prediction model through a newly developed machine learning method, multicategory vertex 

discriminant analysis with 2.147 individuals from the Northern Finnish Birth Cohort genotyped with the 

Illumina 370K SNP array and manually genotyped for 5-HTTLPR polymorphism. The prediction model 

was applied to SNP genotypes in a Dutch/German schizophrenia case-control sample of 3,318 individuals 

to test the association of the polymorphism with schizophrenia. The prediction model of eight SNPs 

achieved a 92.4% accuracy rate and a 0.98±0.01 area under the receiving operating characteristic. Thus, 

evidence tor an association of these SNPs with schizophrenia was observed (P=0.05, odds ratio=1.105). 

This prediction model provides an effective substitute of manually genotyped 5-HITLPR alleles, 

providing a new approach for large scale association studies of this polymorphism. 

 

The current review will present details about the comparative study of machine learning disease 

classification models using only SNPs at the HTR2A and DRD3 genes in Galician (Northwestern Spain) 

·schizophrenic patients. Methods such as ANNs [34], SVMs [35-37], EC [38-40] and other machine 

learning techniques [41) have been used to find the best classification models. 

 

Once this comparison was finished. the machine learning-based method which obtains the best results 

in Ref. [42] was implemented online as SNP-Schizo (http://bioaims.udc.es/SNPSchizo.php) in the Bio-

AIMS server. This too] also includes an approach for variable selection, based on ANNs and evolutionary 

computation (EC). 

  



2. MATERIALS AND METHODS 

Fig. 1 summarizes the workflow followed by this approach. Firstly, data from patients is genotyped in 

order to obtain SNP sequences. After that, computational methods are applied to this data in order to 

obtain QGDR classification models. Finally, the models obtained are evaluated using new data. Thus, this 

procedure allows establishing relationships between SNP sequences and the predisposition to the disease. 

 
 

 
Fig. (1 ). QGDR Modcl classification. 

  



2.1. Schizophrenia Data 

For the comparative study, schizophrenia data collected from Galician patients [33] were used. These 

data contained 48 SNPs at the DRD3 and HTR2A genes, which are associated to schizophrenia. These 

SNPs were encoded taking different values: 

 

 0 if homozygous (both copies of a given gene have the same allele) tor the first allele (one of a 

number of alternative forms of the same gene occupying a given position on a chromosome), 

 1 if heterozygous (the patient has two different alleles of a given gene). 

 2 if homozygous for the second allele or 

 3 if unknown . 

 

The original dataset contained 260 positive subjects (genetically predisposed to schizophrenia) and 

354 negative subjects (not predisposed), a total of 614 patients. 

 

To perform further tests, six other datasets were obtained from the original one. This was carried out 

by adding negative subjects generated with the HAP-SAMPLE [43] simulation tool. These data were 

modified to include genotyping errors (represented as value 3) taking into account the error frequencies of 

the real data, but choosing randomly which positions were modified. Thus, these datasets included 307, 

614, 1.228, 1.842, 2,456 and 3.070 simulated negative subjects. Datasets were named following the 

pattern 1:N. where this label represents the proportion between the real subjects (positive and negative) 

and the simulated negative subjects. 

 

However, there are several genetic data simulation packages. Among those, we consider the 

coalescent-based methods [44], which have been used for population-based simulation in genetic studies, 

such as GENOME [45]. This method was developed to overcome previous limitations. HAPSAMPLE 

[43], which is the simulator used in this paper, uses the existing Phase I/II HapMap data to resample 

existing phased chromosomes to simulate datasets. There are also forward-time population simulations. 

such as easyPOP [46], FPG [47], FREGENE [48], simuPOP [49] and genomeSlMLA [50]. The last 

method can simulate realistic patterns of LD in both family-based and case-control datasets and, unlike 

other similar packages, has proved to be an effective platform for simulating large scale genetic data. 

Another program capable of generating large sea le genetic as well as phenotypic variation data is 

presented in ref. [51]. This program generates genotypes/phenotypes by perturbing real data, with the aim 

of creating a large number of replicates that share similar properties with real data. Nevertheless, since 

HAP-SAMPLE is an association simulator for candidate regions and was specifically designed for 

simulating SNP genotypes for case-control studies, it was the most appropriate simulator given the nature 

of the original data used in this study. 

2.2. Machine Learning Methods 

ANNs [52, 53] have been extensively used for classification problems. More specifically, a multilayer 

Linear Neural Network (LNN) has been used. This technique uses a linear network model, as the 

activation functions is linear, and always has an equivalent single layer counterpart [54]. The Multilayer 

Perceptron (MLP) [52] has also been used. Other types of networks considered were the Radial Base 

Functions (RBF). In this type of network. the neurons of the hidden layer perform a calculation function 

instead of an activation function of the MLP. 

 

Same as the MLP, SVMs belongs to non-linear classifiers. SVMs induce·linear separators or 

hyperplanes in the space of characteristics. This type of classifier has proved to be very useful when 

dealing with high dimensionality problems [55]. 

  



Bayesian methods are based on Bayes' theory of probability. Not only they allow performing 

classification, but they also allow finding relationships among attributes. Several of these methods have 

been used, such as Naive Bayes [56] (which assumes that the attributes are independent and Bayesian 

Networks [57]. 

 

The following techniques allow obtaining classification models based on "IF-THEN-ELSE" rules or 

on hierarchical structures such as trees. More specifically, rule inference models·from Decision Tables 

[58] are obtained by building a decision table majority classifier. This type of method evaluates feature 

subsets using best-first search and uses the nearest-neighbor method to determine the class for each 

instance that is not covered by the decision table or by the Decision Table Naive Bayes Hybrid Classifier 

(DTNB) [59]. A similar model was considered to infer decision trees, following a hybrid approach 

between the decision trees and the Naïve Bayes classifier, called Best-First decision Tree classifier 

(BFTree) [60]. 

 

A boosting meta-algorithm was also included in this study. This algorithm consists of combining 

multiple classification models that complement each other. The Adaptive Boosting (AdaBoost) [61] 

method builds the models iteratively, weighing the instances differently in each iteration. The new models 

classify the instances that the previous models did not classify correctly. 

 

Multifactor Dimensionality Reduction (MDR) [62, 63] is a data mining approach designed to detect 

and characterize non-linear interactions among discrete attributes or variables that influence a binary 

outcome (for example, case-control status). It is a constructive induction algorithm which reduces the. 

Original n-dimensional model to a one-dimensional model, repeating this procedure for each possible n-

factor combination and selecting the combination that maximizes the case-control ratio of the high-risk 

group. This method is considered to be a non-parametric alternative to traditional statistical methods. The 

MDR software combines attribute selection, attribute construction and classification with cross-

validation. This method has mostly been used to detect gene-gene interactions or epistasis in genetic 

studies of common human diseases [64-66] such as schizophrenia [67-69], although it can also be applied 

to other domains. 

2.3. Improving Machine Learning Methods by Means of Variable Selection 

Once the comparative study is presented. a novel approach based on a previous variable selection will 

be discussed. This new approach uses Genetics Algorithms (GA) and ANNs in a first stage to establish 

which are the most relevant variables within the data. In the second stage, the classification stage, ANNs 

and SVMs will be used. 

ANN and GA .for Variable Selection 

GAs [70-72] represent a search method based on Charles Darwin's theory of Evolution [73]. This 

algorithm makes a population evolve through random actions similar to those existing in biological 

evolution such as mutations and genetic recombination, as well as selections with a certain criterion 

called fitness. The fitness is used to decide which individuals are selected, i.e., the most suitable 

individuals are those with the higher likelihood they will reproduce. Thus, the result of this method is a 

set of rules which are used to classify the input data. Thus, this method tries to find relationships between 

attributes or variables and a binary outcome [74-77]. 

 

ANN-GA approach [38. 39] uses “pruned” search, which starts by considering all the variables and 

gradually discards groups of them. The remaining set of variables is used to classify the samples, and the 

results are used to determine how relevant the discarded variables were for the classification. This process 

can be continued as long as the classification results are equal, or at least similar, to those obtained using 

the overall set of variables. Therefore, the GA determines how many and which variables will be 

considered for the classification. An ANN was included within the GA to evaluate the fitness values of 



the individuals. The use of an “inner” ANN to evaluate fitness avoids definition and optimization of more 

formal equations and, remarkably, yields generality to the approaches presented herein. As the goal is to 

determine which solutions, out of those provided by the GA, represent good starting points to get 

acceptable classification models, it is not required to fully train such ANN; instead, extending the training 

up to the point where the ANN starts converging is enough. 

 

In other words, the pruned search consists of a stepwise approach by which the GA steadily reduces 

the number of variables characterizing the samples, until an optimal subsect is obtained. Each individual 

in the genetic population is initially described by d genes, each representing an original variable (using a 

binary encoding, each gene can be either 0 or 1). 

 

Fitness will guide the pruning process (a black-box approach) to get individuals that, besides 

classifying as accurately as possible, use less variables. Eq. (1) defines how fitness can be described 

according to two parameters: the number of variables used to classify the samples and the quality of their 

classifications, calculated using the Mean Square Error (MSE) of the inner-ANN. Eq. (2) (employed here) 

shows that fitness will favor those individuals with less active genes (the denominator being the total 

number of variables). 

 

fitness(individual;) = f(classiticationi) + f(Selected variables) (1) 

  

fitness(individuali) = MSE(ANNi) + #1's genotype individuali / #total variables (2) 

 

A good characteristic of Eqs. (1) and (2) is that they can be tailored. For instance, fitness may consider 

the cardinality (i.e . number of variables that have been select for classification) or the percentage of 

variables (regarding the overall initial set of variables) being used. 

 

Similar approaches were applied in the diagnosis of dermatological diseases [78], prediction of 

outcome [79] or heart problems [80] among others. In other fields this kind or approaches are also widely 

used [81-83] 

ANN and SVM.for Classijication 

After the variables have been selected, a classification algorithm has been applied in order to build the 

classification model. In the variables selection phase, a simple ANN model was built tor the fitness score, 

but in the classification phase, this ANN has been replaced by a more complex model with more complex 

training. Several models have been tested, mainly SVMs and different ANN models. These ANN and 

SVM models have been developed using the Weka software [84], specifically, the MI.P and Sequential 

Minimal Optimization (SMO) algorithm implementations. 

3. RESULTS 

3.1. Comparative Study 

252 QDGR classification models were obtained after applying machine learning techniques to the data 

described previously. Seven datasets were used. The Weka software package [84] was used to perform 

the comparative study. This work presents the results achieved with the best responses provided by the 

most representative algorithms included in this software. In addition to LNN, the following techniques 

were applied to the datasets: MLP, RBF, EC, MDR. Naive Bayes, Bayes Networks, SVM, Decision 

Tables, DTNB, BFTree and AdaBoost. 

  



After carrying out this comparative study, the neural network model was implemented online. This 

approach consists of a type of ANN, hereafter referred to as LNN, that has a linear activation function in 

all neurons. More specifically, it is a multilayer neural network, with 40 neurons in the first layer, 152 in 

the second layer and 1 neuron as output. The number of input neurons was selected according to the 

results obtained from several feature selection methods (Best First [85], Linear Forward Selection [86], 

FCBF Search [87], Genetic Search [88], Scatter Search [89] and Random Search [90]). After several runs, 

it was proved that taking as input only the 40 neurons selected by the previous selection methods, the 

method achieved good results. 

 

A graphical representation of the evolution of the different methods is shown in (Fig. 2). As said 

before, 1:N represents the proportion between the real subjects and the simulated negative subjects. Thus, 

the first dataset does not include any simulated subject and the last dataset includes 5 simulated subjects 

per real one. 

 
 

 
Fig. (2). Classification results of the different methods. 

For each method, the percentage of correctly classified subjects is shown for each dataset. It can be 

observed that the classification percentages do not increase significantly after adding five parts of 

simulated subjects. Thus, we will focus on the results obtained for the dataset which contains the lowest 

number of simulated subjects, that is, the 1:0.5 dataset. 

 

Classification accuracy percentages range from 56.6 to 66.6% for 1:0, which is the original dataset. 

For the datasets which included simulated subjects, these percentages range from 60.5 to 78.2% for 1:0.5, 

69.8 to 83.0% for 1:1, 76.2 to 88.8% for 1:2, 84.8 to 91.5% for 1:3. 87.4 to 93.2% for 1:4 and 88.4 to 

94.3% for 1:5. 

 

Among the best models, the LNN described above is proposed. This QGDR model includes only a 

minimum of simulated subjects (1:0.5). Thus, this dataset is made up of 921 subjects: 260 real positive 

subjects, 354 real negative subjects and 307 simulated negative subjects for schizophrenia As mentioned 

previously, this neural network is based on 40 SNPs which are taken as an input and it has a hidden layer 

of 152 neurons. This technique obtained 78.2% in test accuracy When the 1:0.5 dataset was used as input.  



The LNN achieves good results for all the datasets, as it is simpler and less computationally expensive 

than other methods. In (Fig. 3), the area under the receiver operating curve (AUC-ROC) for the cross-

validation group (0.8405) demonstrates that this model is not a random one. In addition, for this model, 

the threshold is 0.8. 

 
 

 
Fig. (3). Area under the receiver operating characteristic curve (AUC-ROC). 

3.2. Results After Variable Selection 

It is important to point out that ii1 order to characte1ize a complex disease, 40 SNPs are too many. 

Therefore, another approach based on genetic algorithms, artificial neural networks and SVMs, which 

was described previously, was applied to the 1:0.5 dataset. The best SVM classification model was a 

Weka SMO implementation with a complexity of 5. building logistics models [91], using a polynomial 

kernel [84]. Thus, the model is based on a LNN 40:1 52-1-l, data set 1:0.5 and it has a test accuracy of 

78.2%. 

 

This method obtains similar results to the LNN in terms of classification scores and AUC-ROC values 

(Table 1) using less than half of the variables: only 17 variables were considered, instead of the 40 

variables required by the previous LNN. 

Table 1. Comparison between the LNN and the Variable Selection Method Proposed. 

Method Classification Scores AUC-ROC 

   

LNN 78.20% 0.8405 

Variable selection - SVM 76.98% 0.824 
   

 

  



3.3. Single Nucleotide Polymorphism Schizophrenia Processing (SNP-Schizo) 

Bio-AIMS (Biomedical Artificial Intelligence Model Server) [16, 23. 92, 93] is a portal that offers 

theoretical models based on Artificial intelligence, Computational Biology and Bioinformatics to study 

Complex Systems in OMICS (Genomics, Transcriptomics, Metabolomics, Reactomics) that are relevant 

for Cancer, Neurosciences, Cardiovascular diseases, Parasitology, Microbiology and other Biomedical 

research in general (http://bio-aims.tic.udc.es/). It is the result of the collaboration between several 

scientific institutions. This portal includes two parts: TargetPred (Target Prediction) and DiscasePred 

(Disease Prediction ). The DiseastPred part includes biomedicine applications for predicting human 

diseases from different data sources, such as genotypcs. Future tools will be implemented based on the 

published models using EEG recordings and blood proteome mass spectra for epilepsy and colorectal 

cancer. 

 

SNPSchizo (Single Nucleotide Polymorphism Schizophrenia Processing) [94] is the result of an 

online implementation (http://miaja .tic.udc.es/Bio-AIMS/SNPSchizo.php) of the previously described 

machine learning method which takes as input SNPs from two different genes related to schizophrenia 

and performs a classification [42] (see Fig. 4). The interface of this tool was implemented using PHP, 

XHTML and Python, and the method was implemented using Java and Weka's [84] APls. The tool is 

running on Apache HTTP- Server. 

 
 

 
Fig. (4). SNP-Schizo web tool. 

This tool is simple and easy to use. To get a classification result, the user has to introduce a list of 

sequences of SNPs in the format used by the tool and click on the "Diagnose” button. A new window will 

pop up with information about the results. These results can be saved as a text file and include the 

following information: 

  



 For each sequence: the classification result (genetically predisposed to schizophrenia or not) and the 

SNP sequence. 

 Information about the original dataset. 

 Information about the method implemented online and its test accuracy. 

 Input SNP order. 

 Reference to the article of the comparative study with these data. 

 

To test this tool, three example sequences are provided following the coding described above. 

4. CONCLUSION 

This review is presenting the applied computational techniques on schizophrenia, focusing on the 

genotype – disease relationships based on information of the nucleic acids such as the genetic mutations: 

Several machine learning methods have been described including a method for variable selection based 

on an ANN and a GA. To test the different methods, real clinical data of an association study on Galician 

patients (Spain) who suffered from schizophrenia using the DRD3 and HTR2A genes have been used, as 

well as simulated data which were generated with specialized software. 

 

In complex diseases such as schizophrenia, the factors involved in increasing the risk of developing a 

disease do not correspond to one or two genes. There is a combination of values from different sets of 

SNPs, as well as a great influence due to environmental factors, which increase the risk of developing this 

complex disease. 

 

The classification results obtained with the original data are not good with any of the presented 

methods. When the number of control subjects in the training sets is increased using simulated data, the 

developed method improves its classification accuracy, obtaining better results than with those methods 

which provide objective infi1rmation about SNPs, obtaining a model based on rules or on trees. One of 

the models that obtain the best classification scores was implemented online as a free web tool named 

SNP-Schizo. The model implemented was the result of applying a LNN to the dataset that contained the 

lowest number of simulated subjects. 

 

It is also interesting to observe which variables (or SNPs) are taken into account by tbc different 

methods which perform variable selection. Costas et al. used a sliding window approach and confirmed 

the existence of a common protective haplotype, which included the SNPs rs963468, rs2134655, rs 

1486012 and rs7631540 at DRD3, against schizophrenia [95]. The ANN and GA for variable selection 

approach presented in this paper is capable of finding three of the four previous SNPs (rs2134655, 

rs1486012 and rs7631540) if 17 variables are considered. However, if 21 variables are considered, this 

approach finds all the SNPs included in the publication, as well as rs9824856, which is located at the 

same region. The same results in terms of classification scores and AUC-ROC values are obtained 

considering either 17 or 21 variables. 

 

This review demonstrated the power of machine leaning in obtaining genotype - disease 

classifications using molecular structure information such as the genetic mutations and it proposes the 

application on other diseases. The results can be used to determine the future gene targets for new drugs 

or genetic treatments. 
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