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Abstract 

Cardiovascular diseases, particularly severe stenosis, are the main cause of death in the western 

world. The primary method of diagnosis, considered to be the standard in the detection and 

quantification of stenotic lesions, is a coronary angiography. This article proposes a new 

automatic multiscale segmentation algorithm for the study of coronary trees that offers results 

comparable to the best existing semi-automatic method. According to the state-of-the-art, a 

representative number of coronary angiography images that ensures the generalisation capacity of 

the algorithm has been used. All these images were selected by clinics from an Haemodynamics 

Unit. An exhaustive statistical analysis was performed in terms of sensitivity, specificity and 

Jaccard. Algorithm improvements imply that the clinician can perform tests on the patient and, 

bypassing the images through the system, can verify, in that moment, the intervention of existing 

differences in a coronary tree from a previous test, in such a way that it could change its clinical 

intra-intervention criteria. 
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1. Introduction 

Cardiovascular diseases (CVD) are the number one cause of death globally. An 

estimated 17.9 million people died from CVDs in 2015, representing 31% of all global 

deaths. Of these deaths, an estimated 7.4 million were due to coronary heart disease and 

6.7 million were due to stroke. Over three quarters of CVD deaths take place in low- 

and middle-income countries. Out of the 16 million deaths under the age of 70 due to 

non-communicable diseases, 82% are in low and middle income countries and 35% are 

caused by CVD [1]. 

 

The most used diagnostic technique at present, and that which is used for evident 

symptoms of cardiovascular problems, is an angiography obtained through 

catheterisation [2],[3]. This procedure is recommended in patients with a high 

probability of coronary heart disease. In these cases, cardiologists analyse the 

angiography images, establish a diagnosis for the disease and even anticipate its 

prognosis, depending on the severity and extent of the coronary disease. 

 

Due to the importance of this type of test and its implications on public health, 

researchers such as O’Brian and Ezquerra [4] have been working on the automatic 

segmentation of the coronary tree since the mid 1990s. Since then, a large number of 

processing techniques have increased to efficiently segment the coronary tree, as can be 

verified in the comparative studies of Kirbas and Quek [5], published in 2004, and the 

studies of Novoa et al. [6], published in 2011. In this last study, it was concluded that 

the algorithm with the best results was that of Poon et al. [7]. However, this technique 

has the downside of a very long execution time, to the order of several minutes for an 

average sized image, and its semi-automatic nature requires human intervention. What 

is more, semi-automatic arterial segmentation has the issue of the existence of an inter- 

and intra-observer variable. Even though it is a value that can be minimised, as has been 

documented in several studies and publications, it is not possible to completely 

eliminate it [8]. Lastly, the efficiency of these semi-automatic algorithms is completely 

dependent on the experience of a clinical expert, and largely eliminates the 

generalisation capacity of this algorithm. 

 

This article presents a new coronary tree segmentation technique that is completely 

automatic and efficient, in terms of execution time. Its results surpass those obtained by 

Poon et al. [7] in precision, a state of the art technique that was previously mentioned, 

and, according to several state of the art reviews, which currently offer the best results 

for this type of medical image. 

2. Background 

In the field of processing coronary angiographies, segmentation algorithms have to 

solve very complex problems, such as the noise that angiography capture devices 

register, the spontaneous movements of the patient and of his/her internal organs, 

bifurcations, different level blood-vessel crossings, stenotic lesions, etc. Due to all of 

this, it is very difficult to develop a technique that behaves appropriately in all of these 

situations. 

 

Over the years, may studies have come into existence that present algorithms whose 

aim is to offer the user a reliable segmentation based on the data entry set within a 

reasonable period of time. However, many methods offer only one of these two 

characteristics. An example of this fact are Random Walk methods [9], which are one of 

the fastest, in general terms, of all the developments at present. However, they suffer 

from problems of false positives and are unable to completely ignore the noise of the 
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input image. On the other hand, the active contour methods [10] are less sensitive to 

random noise, but the required execution time is much longer than that of the multiscale 

methods. Algorithms based on artificial neuron networks [11],[12] have experienced a 

significant gap in terms of new publications, given their low precision in coronary 

angiographies, whose quality is generally far from optimal. 
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In the state of the art review, approximately 50 articles were analysed, based on 

different focuses and methodologies. Based on these reviews performed by different 

research groups, we concluded that, among all the algorithms published up until now, 

Poon's multiscale method [7] provides the highest sensitivity and specificity values for 

the segmentations performed using it. Furthermore, this algorithm has been used to 

carry out arterial segmentation in different medical imaging modalities related to 

angiographies, such as in the case of angiographies of vessels in the retina or in the 

recording of cerebral vessels [13]. Therefore, it will be used as a reference point to 

explain our automatic multiscale algorithm proposal for the segmentation of vessels 

(vascular) in coronary angiography imaging. Its greatest deficiency is relative to the 

processing times, since it is a semi-automatic method. 

 

The Poon et al. method [7], used as a starting algorithm, is based on multiscale 

filters to obtain the cost associated with each pixel of the image. The user must indicate 

the starting and end point of a vascular segment, and the algorithm automatically selects 

the required intermediate points between both points to outline the vessel. To do so, it 

uses an exhaustive graphical search based on Dijkstra's algorithm [8]. This method also 

offers the added control of manual segmentation, allowing the user to only segment the 

area of the angiography that he/she desires. This is particularly useful when the doctor 

wishes to focus his/her analysis on a specific area of the image. 

 

The first step of the method is to create the cost matrix of the angiography. 

Optimization in Poon's et al. is achieved by minimizing the cumulative cost function at 

each (x, y, z) node. Thus, in this approach the cost associated from a node of a vascular 

segment q = (x, y, z) to a neighboring node p = (x′, y′, z′) is calculated as: 

 

𝐶𝑜𝑠𝑡(𝑞, 𝑝) = 𝑤1𝐶𝑣(𝑝) + 𝑤2𝐶𝐸𝑣(𝑞, 𝑝) + 𝑤3𝐶𝐼𝑒(𝑝) + 𝑤4𝐶𝑅(𝑞, 𝑝) + 𝑤5𝐶𝑆(𝑞, 𝑝) 
 

This will be used retrospectively to choose the minimum cost path between the two 

points that the user selects as the start and end points of a vascular segment. The 

justification for selecting the minimum cost path is simple: the filters are designed to 

offer the minimum response inside the vessels and a greater response on what is 

considered the background. The filters that are used in this phase are the multiscale 

vessel enhancement filters described by Frangi et al. [14], Koller et al. [15] and several 

structural filters. 

 

In the case of the former, developed by Frangi et al., the noise and background of the 

image are suppressed while the vessels are enhanced, in accordance with the following 

function: 

 

𝐶𝑣(𝑞) = 𝑣(𝜆1, 𝜆2) =

{
 
 

 
 

1 if𝜆2 > 0

1 − 𝑒𝑥𝑝 (−
𝑅𝛽
2

2𝛽2
)(1 − 𝑒𝑥𝑝 (−

𝑇2

2𝑐2
)) if𝜆2 ≤ 0 

 

with λ1 and λ2 being the eigenvalues of the Hessian matrix, λ1 < λ2, Rb = λ1/λ2, 𝑇 =

√𝜆1
2 + 𝜆2

2   and c affect the sensitivity of the filter and have values of 0.5 and 0.3, 

respectively. 

 

The second filter is that of the direction, work of Koller et al. [15]. This algorithm is 

based on a non-linear combination of linear filters. It searches for elongated, 

symmetrical and linear structures, such as the minimisation of response at the edges of 

these structures. This filter creates highly intense coloured lines in the middle of these 
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structures, along their entire length. Its value is calculated according to the following 

mathematical expression: 

 

𝐶𝐸𝑣(𝑞, 𝑝) =
2

𝜋
arccos

𝐸𝑣(𝑝) · 𝐸𝑣(𝑞)

|𝐸𝑣(𝑝)||𝐸𝑣(𝑞)|
 

 

with Ev (i) being the eigenvector with the kth smallest magnitude of the Hessian matrix 

in point i. 

  



Lastly, the structural filtering must be mentioned, which tends to favour the pixels 

that are found in the middle of the vessels. To do so, it uses different operators, such as 

the Canny edge detector [16], the gradient of the image [17] and the Laplacian of 

Gaussian Matrix [18]. The average response of these three operators is called R(x, y). 

Representing r as the scale, for each q = (x, y, r) analysed, its Ev (x,y,r) and R(x, y) are 

combined to thus define a marker of how centred the point in question is inside of a 

vessel. This filter then calculates the R(x, y) value at N points, including these points and 

all the adjacent and normal (PR = (xi, yi);i = 1, 2, …, N) to the node q. The final cost of 

the structural filter is defined this way, in order to minimise a response to noise, such as: 

 

𝐶𝐼𝑒(𝑞) = 1 − (
1

𝑁
)∑ 𝑅(𝑃𝑅)

𝑁

𝑖=1
 

 

In addition to these three filters, the algorithm uses two restrictions to detect the best 

path between the two points. The first is the spatial restriction, which sums a small 

constant value to the cost of the path for each additional pixel added to it. This way, the 

distance between the points on the path tends to be smaller, thus avoiding the see-saw 

effect on the edges of the vessels. For example, the cost that this restriction applies to a 

path that starts at point q = (x, y, r) and that ends at point p = (x′, y′, r′) is: 

 

𝐶𝑆(𝑞, 𝑝) = √(𝑥 − 𝑥
′)2 − (𝑦 − 𝑦′)2 

 

The algorithm also applies a radius restriction, which penalises the paths on which 

sudden radius changes appear. This occurs for two reasons. The first of these is that the 

vessel enhancement filter is sensitive to noise and that it is not reliable to base the radius 

calculation of the arteries on only the output of this filter. The second is that the radius 

of the vessels does not tend to suddenly change, unless there is a strong stenosis. 

Therefore, adding this restriction ensures that the chosen path has progressive radius 

variations. The equality that defines this restriction is the following: 

 

𝐶𝑅(𝑞, 𝑝) =
|𝑟 − 𝑟′|

𝑟max − 𝑟min
 

 

where rmax and rmin are the maximum and minimum possible values of the radius r. 

 

Finally, to compute the optimal path in the (x, y, r) space, the cost function is used as 

the input of a Dijkstra's algorithm [8], a deterministic and exhaustive graph search 

algorithm that always finds the global optimal path [7]. 

 

The aim of this work is to achieve a new automatic method that offers results 

comparable to the best existing semi-automatic method. 

3. Automatic multiscale algorithm proposal 

The algorithm proposed in this paper uses the Poon et al. method as a starting point, 

always taking into consideration that this method was initially designed for the 

segmentation of fundus photography in colour. For coronary angiographies, the images 

obtained are monochromatic, which minimises the necessary number of colour 

channels. Based on an initial angiography, the segmentation process starts with a 

transformation into an HSL colour model, subsequently discarding the hue and 

saturation channels. The luminance channel, on the other hand, creates the image used 

in the filtering process. 

 

https://www.sciencedirect.com/science/article/pii/S1746809418301599#bib0080
https://www.sciencedirect.com/science/article/pii/S1746809418301599#bib0085
https://www.sciencedirect.com/science/article/pii/S1746809418301599#bib0090
https://www.sciencedirect.com/science/article/pii/S1746809418301599#bib0040
https://www.sciencedirect.com/science/article/pii/S1746809418301599#bib0035


Recall that Poon et al. filtered the image on different scales by means of the methods 

of Frangi et al. and Koller et al., and subsequently applied the Canny and LoG filters, as 

well as radius and variation restrictions, to segment the vascular vessels. After 

considering the results of the filters, a cost matrix was obtained that was subsequently 

used by applying Dijkstra's method, by which the shortest path was established, 

determining the edges of the identified vessel. From this point on, human intervention 

was necessary to manually determine two points on the image and for the algorithm to 

perform the search and definition of the coronary tree. As was previously mentioned, 

one of the problems that the Poon method presents is that it uses a manual algorithm. As 

is described in [7], “our proposed technique was 98.2% reproducible”. On the other 

hand, the algorithm that we will describe below is independent of an operator and 100% 

reproducible and verifiable when dealing with a completely automatised segmentation 

method. 

 

In the proposed method, the Frangi et al. [14], Koller et al. [15] and Evidence filters 

are applied on different scales, developing our multiscale input in a different way than 

that initially proposed by Poon et al. [7]. Moreover, an auxiliary image is determined for 

each scale, based on the maximum values of all the filters. These images are then 

weighted to obtain an initial segmentation and are ultimately binarised. A prunning 

iterative method is then applied in order to eliminate incoherent elements in an 

automated manner that worsens the subsequent result of the segmentation. The 

differences between both algorithms are shown in Fig. 1 and the different parts between 

both algorithms are highlighted (manual and automatic). As can be seen, our proposal, 

in addition to being completely automatic and not requiring the intervention of a clinical 

expert, analyses the images by following a multiscale approximation based only on the 

luminance channel, successively applying the Frangi, Koller and evidence algorithms 

for each of the different scales (alphas). 
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Fig. 1. Workflows related to the Poon et al. algorithms (left) and the proposed method (right). The 

automatised processes are indicated in green and the manual processes are in red. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

  



The optimal scales obtained for the coronary angiographies were [3.5, 4.5, 5.5]. In 

the case of the Frangi et al. filter, the optimal β1 and β2 filters obtained were 0.5 and 

15.0, respectively. These values were obtained by means of a leave-one-out cross-

validation [19],[20]. 

 

In [7], authors state that their implementation by default uses equal weighting 

𝑤1−5 = 1 and that varying each weight by 50% did not change the accuracy by more 

than 5.2% using their test images. In our case, a search grid was applied using 30 real 

angiographies as ground truth, together with the leave-one-out cross-validation to 

determine and guarantee the adequacy of the values for . Based on the obtained results, 

the final values used for the optimised version were (𝑤1 = 0.25;𝑤2 = 0.55;𝑤3 =
0.55). 

 

Once the initial segmented image was obtained, a binarisation was performed from 

the values of the pixels in the image, based on a given cut-off value (threshold). The 

optimal cut-off value depends on several factors: image brightness, average values of 

the pixels and pixel variation. The problem with these resulting binarised images lies in 

the detected artefacts (false positives). In most cases they are bony structures or similar, 

which can also be detected as erroneous branches from a vessel. In order to minimise 

this noise, post-processing is applied based on prunning, for which the false positives 

are minimised due to artefacts or shadows from this type of image. 

 

The operability of the prunning algorithm follows an iterative model: based on the 

binarised image obtained in the previous step, a convolution model is applied to 

determine the new active pixels (true positives) of the resulting image. In this case, the 

calculation is based on determining the number of active pixels in 3 × 3 pixel windows. 

If at least two pixels connected to the reference pixel (the positioned in the center of 

both axes) are active, it is understood that this pixel in the resulting image will be active. 

 

This process can be considered as a convolutional process over the binarised image 

using a modified Laplacian operator (including the diagonals). Once the mask is 

convoluted over the image, a new binarisation threshold process is applied in terms of: 

 

𝐶pru(𝑝, 𝑞) = {
255 if∑

𝑢

∑

𝑣

𝑓(𝑢, 𝑣)𝑔(𝑥 − 𝑢, 𝑦 − 𝑣) > 𝑇

0 otherwise

 

 

where the threshold is the defined as 𝑇 =
10

16
 and the convolutional kernel as: 

 

Kernel =
1

16
[
1 1 1
1 8 1
1 1 1

] 

 

The idea is that if a pixel is not “connected” to more than one neighbouring pixel 

(directly or indirectly), it can be considered to be a “loose” pixel. This process is 

performed as many times as necessary, until no more pixels are altered between 

iterations. 

 

As shown in Fig. 1, this can be mathematically defined following Poon's approach 

based on an optimization problem to minimize the cumulative cost function from the 

node p to the neighboring node q following the next equation: 

 

Cost(𝑞, 𝑝) = 𝐶pru(𝑝, 𝑞) ∗ (𝑤1𝐶𝑣(𝑝) + 𝑤2𝐶Ev(𝑞, 𝑝) + 𝑤3𝐶Ie(𝑝)) 

 

Accordingly, the output of the cost function is similar to Fig. 3d. 
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Fig. 2 shows the partial images referring to the application of different multiscale 

filters, binarisation and the prunnings identified in Fig. 1. In this example the iterative 

prunning was repeated 32 times. 
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Fig. 2. Example of the partial images within the workflow shown in Fig. 1. From left to right: original image, 

prunning post-processed, binarised image and final segmented image obtained by applying the proposed 

method. 

4. Dataset 

To analyse the efficiency of the presented method, a test set was used that was made 

up of 30 coronary angiography images, with a 512 × 512 pixel resolution, all originating 

from anonymised angiography studies assigned by the CHUAC Haemodynamics Unit. 

For each of the images, an ideal segmentation mask was performed to make it possible 

to verify the segmentation results of the algorithm. This mask was determined by the 

doctors at the hospital using a manual image editing tool. Several doctors were asked to 

determine the minimum mask necessary for a correct segmentation (see examples in 

Fig. 3). 

 

Among the state of the art images, other segmentation images related to coronary 

angiographies use between 20 and 40 images [21], [22] as test sets, understanding that 

the set of 30 pairs (original images and ideal masks) can be considered as 

representational to validate the proposed algorithm. 
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Fig. 3. Examples of images of the test set. The original angiography images are on the top row. The 

corresponding ideal masks are on the bottom row. 

5. Results 

In the case of Poon's et al. method, most of the segmentation processing time is 

spent by the user on the manual selection of the start and end points of each vascular 

segment that must be segmented, as well as its associated scales. An example of the test 

cases is shown in Fig. 4. In this image, from left to right, you can see the original image, 

the ideal mask and the segmentation obtained by the presented algorithm. The three 

images in each of the 30 cases used in this article are available at 

https://figshare.com/s/4d24cf3d14bc901a94bf. 
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Fig. 4. Angiography image example, ideal mask and obtained segmentation. 

A quantifiable analysis was performed in terms in sensitivity, specificity and the 

Jaccard index for the segmentations obtained from the designed algorithm with respect 

to the proposed method. This association of measurements was made in order to cover 

all the segmented areas in the image. On one side, the sensitivity identifies how many 

pixels in the object are correctly segmented in the image. On the other side, with the 

specificity, the number of pixels are calculated that do not belong to the object and are 

correctly excluded. Lastly, by using the Jaccard index, we collaboratively evaluated the 

results of the segmentation. In Fig. 5 these values are shown in a boxplot for both 

methods in each of the 30 test cases and with the three calculated performance 

measures. 
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Fig. 5. Boxplot of the Jaccard index, sensitivity and specificity results of the state of the art algorithm 

proposed by Poon and our proposal for the segmentation of coronary angiographies.  



As can be discerned in Fig. 5, the algorithm shows, overall, high sensitivity and 

specificity figures and an overall performance very similar to the state of the art 

algorithm, improved in terms of sensitivity and the Jaccard index [23]. The detection of 

the image background, i.e., the area that is not a blood vessel, is very high, around 98%, 

as the specificity indicates, where both algorithms appear to behave very similarly. 

However, the presented algorithm has less problems when correctly detecting the pixels 

that represent the vessel, given that the average sensitivity is 82%, compared to 78% of 

the original. Our next step was to evaluate the performance of our algorithm by using a 

widely used performance measurement in imaging segmentation, accepted in the 

scientific community as the Jaccard index [23]. This measurement was designed to 

evaluate the performance of cerebral imaging segmentation algorithms due to its 

simplicity. What is does is measure the intersection ratio of two sets and divides it by its 

union area. 

 

To compare the two algorithms using the different proposed performance 

measurements: sensitivity, specificity and the Jaccard index, we followed the method 

proposed by [24] in the final experimental analysis phase with Machine Learning 

techniques. To do so, what we first needed to know was, in light of the results, if the 

statistical test was the most appropriate test to be applied. Although it is intuitively 

known that the strength of a statistical test may be greater than others, this strength is 

lost if this test is applied to data that does not meet certain conditions. In light of this, it 

is necessary to verify if the results obtained by both algorithms, in terms of each of the 

performance measurements, meet the independence, normality and heteroscedasticity 

criteria. If any of these three criteria are not met, we must use a nonparametric test, 

which in this case would be for two Machine Learning models, from which we obtained 

the performance measurements on a set of 30 images. All the statistical tests that we 

performed were done with a significance level of α < 0.05. For clarity reasons, the 

statistical analysis workflow is schematically summarized in Fig. 6. 
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Fig. 6. Workflow for the statistical analysis used in this work.  



We used a Shapiro–Wilk test [25] with the null hypothesis that our results, with 

respect to the Specificity, would follow a normal distribution. We obtained a p-value of 

8.073e−05 and W = 0.8941. Once this result was obtained, it was confirmed that we 

needed to use a nonparametric test to compare the two models. Therefore, we applied 

the Wilcoxon test for pairs (pairwise Wilcoxon) [26] with the null hypothesis that both 

methods would have the same performance and obtain a p-value = 0.6263 i.e., we can 

affirm with great confidence that there no significant difference between using either of 

the two algorithms. We used a Shapiro–Wilk test [25] with the null hypothesis that our 

results, with respect to the Specificity, would follow a normal distribution. We obtained 

a p-vale of 0.3532 and W = 0.97809, so we could not reject the null hypothesis. We then 

performed a Bartlett test with the null hypothesis that our results would be 

homoscedastic. We obtained a Bartlett's K of 1.3381 and a p-value of 0.2474, so we 

could not reject the null hypothesis again. Once these results were obtained, it was 

confirmed that we needed to use a parametric test to compare the two models. 

Therefore, we applied a Welch two samples T-test, with the null hypothesis that both 

methods would have the same performance and obtain a p-value = 0.02248 i.e., we can 

affirm that the algorithm proposed in this study is significantly better in terms of the 

Sensitivity performance measurement than that originally proposed in the state of the 

art. Fig. 7 graphically shows the errors referring to the false positives (specificity) 

marked in red and the false negatives (sensitivity) marked in green. 

 
 

 
Fig. 7. Matching comparison between the expected (a) and obtained (b) segmentations. Image (c) identifies 

true positives in white, true negatives in black, false positives (falsely classified pixels as background) in red 
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and false negatives (falsely classified pixels as vessels) in green. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

  



We used a Shapiro–Wilk test [25] with the null hypothesis that our results, with 

respect to the Specificity, would follow a normal distribution. We obtained a p-vale of 

0.01713 and W = 0.95088. Once this result was obtained, it was confirmed that we 

needed to use a nonparametric test to compare the two models. Therefore, we applied 

the Wilcoxon test for pairs (pairwise Wilcoxon) [26] with the null hypothesis that both 

methods would have the same performance and reject a verify significant p-

value = 9.313e−09 i.e., we can affirm with great certainty that the algorithm proposed in 

this study is significantly better in terms of the Jaccard index performance measurement 

than that originally proposed in the state of the art. 

5.1. Time optimization 

The most expensive operation at the computational level of the presented algorithm 

is that related to applying the Frangi et al. filter, since it is necessary to obtain the 

eigenvalues of the matrix that represent the displayed images. The calculation time is to 

the order of 4.88 s per radius on average using INTEL i7 4790k 4.00 GHz (4 cores, 8 

threads) on 512 × 512 images. For clarification, the average time spent to perform the 

manual segmentation of the 30 images used as a test set was 37.29 s. Start and end 

points in this case where determined by doctor assigned by the CHUAC 

Haemodynamics Unit. By contrast, the proposed method, by eliminating human 

interaction, together with a parallel implementation, offers an average segmentation 

time of 5.69 s with a standard deviation of 0.64 s. 

 

The presented method is 5 times faster than that presented by Poon et al. This, in 

absolute terms, has passed the 37.29 s that the Poon et al. [7] method entails for 

512 × 512 images, to 5.69 s that the proposed algorithm uses. This is particularly 

important considering that, with the current workload level that doctors support during 

their daily assistance service, the more automatic the system is and the least amount of 

time required for the segmentation of the coronary tree, the greater the degree of 

implementation of the algorithm in the national health care system. 

 

In the last column of Table 1 the processing times of each one of the angiographies 

studied are shown. It is important to bear in mind that in all cases these times are less 

than those by the most expensive scale of Poon's et al. approach. That is to say, the 

simplification and automation of the method, together with its multi-thread 

implementation, offers a significant improvement in processing times. 
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Table 1. Differences between the proposed and Poon's et al. algorithm in terms of execution time. From left to 
right, the total times of Poon's approach are shown, time used by the most expensive computationally scale, 

the total time used in the automatic part of the method and by the manual part. Finally, the time used by the 

proposed automatic algorithm is shown. 

 
Poon's implementation Proposed algorithm 

 
Total time Slowest scale All scales Manual 

 

      

Angio #1 30,052 9685 14,528 15,524 5075 

Angio #2 34,567 9763 14,645 19,922 5401 

Angio #3 33,973 9767 14,650 19,323 5120 

Angio #4 29,045 9671 14,506 14,539 5846 

Angio #5 33,743 9729 14,593 19,150 5747 

Angio #6 29,979 9704 14,556 15,423 5483 

Angio #7 51,745 9814 14,721 37,024 6634 

Angio #8 65,104 9863 14,794 50,310 6027 

Angio #9 33,617 9796 14,695 18,922 6576 

Angio #10 37,238 9808 14,713 22,525 5913 

Angio #11 38,271 9803 14,705 23,566 5985 

Angio #12 34,484 9783 14,674 19,810 3823 

Angio #13 43,243 9836 14,754 28,490 5881 

Angio #14 44,489 9848 14,772 29,717 5854 

Angio #15 49,745 9853 14,779 34,966 6142 

Angio #16 74,264 9880 14,821 59,443 5962 

Angio #17 35,702 9781 14,671 21,030 5982 

Angio #18 35,455 9798 14,697 20,758 5279 

Angio #19 34,606 9761 14,642 19,965 5988 

Angio #20 33,391 9717 14,575 18,815 6201 

Angio #21 35,393 9787 14,681 20,712 6051 

Angio #22 32,907 9751 14,626 18,281 6161 

Angio #23 30,831 9731 14,597 16,234 5539 

Angio #24 30,256 9716 14,573 15,682 4239 

Angio #25 36,960 9745 14,617 22,343 6397 

Angio #26 31,664 9726 14,589 17,076 5579 

Angio #27 28,718 9733 14,600 14,118 4610 

Angio #28 33,132 9759 14,638 18,494 5645 

Angio #29 30,142 9682 14,523 15,619 5554 

Angio #30 25,985 9511 14,266 11,718 6004 

      

 

Therefore, it has been statistically proven that our algorithm, in less time and 

eliminating the human factor, is able to obtain results statistically equivalent to those of 

the state of the art in terms of specificity. The statistical test indicates that there is no 

significant difference between them and that it clearly surpasses it in terms of sensitivity 

and the Jaccard index, since the statistical test indicates, with a very significant value, 

that there are differences between the compared techniques. 

  



6. Discussion 

To ensure that our results are relevant, we have tested, through different parametric 

and nonparametric statistical contrast tests of the null hypothesis, that our algorithm is 

statistically and significantly better than that previous published in the state of the art. 

The performance measurements in which the study is statistically better are: sensitivity 

and the Jaccard index. We have also proven that there is no significant difference in 

using either of the two algorithms if the comparison criterion is its specificity. In this 

sense, we wish to emphasise that the use of Dijkstra's algorithm in the final part of 

Poon's et al. algorithm implies that the user manually determines which parts of the 

coronary tree are accepted. On the other hand, in the proposal of this article, since there 

is no human interaction in any process, it is the algorithm that automatically segments 

any initial angiography image, with a consequent saving of time and suppression of 

inter- and intra-operator variability. 

 

It is also worth mentioning that the time required to perform each segmentation 

using other semi-automatic methods depends entirely on the ability of the user and the 

quantity of blood vessels wished to be segmented. This process, in addition to being 

difficult to reproduce and dependent on the experience of the clinician performing the 

task, is critical if dealing with a system applicable to daily practice and its 

implementation in a haematology service. Thanks to the algorithm proposed in this 

study, the segmentation times and the results obtained are 100% reproducible in a 

shorter time interval and prevent biases due to human intervention. 

 

If we focus on the results obtained by the proposed algorithm, it is important to 

stress that the precision obtained in wide vessels is excellent, considering the data 

provided by the statistical markers. The data obtained in narrow vessels is also very 

good, although it can be observed that it is slightly less than that of the wide vessels, 

according to the metric values obtained in these areas. Our results also highlight that the 

sensitivity to noise of the proposed system is minimal due to the use of a set of several 

independent techniques to create the final segmented image. 

 

Moreover, the results obtained in this work are similar to other recent studies in the 

field using different machine learning approaches. The best performance is achieved in 

the Nasr-Esfahani et al. work [27] using convolutional nets with an average specificity 

of 98.59% and sensitivity of 86.76% over a set of 44 angiographies of size 512 × 512 

pixels. In addition, the overall processing time per image is 106 s. In Khowaja et al. [28] 

the authors states that their method offers the best performance with the minimum 

processing time with a specificity of 98.03% and a sensitivity of 70.28% over 20 

DICOM images of identical nature in 2.2 s average. 

 

Lastly, in the presented method, as was seen in the exhaustive statistical analysis 

performed, there is a clear existence of errors produced by false positives, which, as we 

have been able to see, tend to be related to the “width” of the detected arteries. This 

problem is related to the impossibility of using variable width radii. It is because of this 

that, in the near future, we intend to study if it is possible develop a new multiscale 

module where the radii have variable widths in order to minimise the influence of the 

widths of the vessels. Furthermore, we found another problem related to the final 

convolution with the modified kernel based on the Laplacian operator; in those cases 

within the limits of the coronary tree the result was a false negative, especially in 

branches with few pixels of width. 
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7. Conclusions 

This article proposes a new automatic multiscale segmentation algorithm for 

coronary angiography images for the study of coronary trees. A design of the 

experiment has been created that makes it possible to validate our development and to 

pit it against some of the current state of the art algorithm, according to different, 

already published state of the art reviews and the literature search performed by the 

authors. What is more, based on this state of the art algorithm, we have researched a 

different approach that involves optimisation, and that has been able to statistically 

prove that the study we developed is better, basing this affirmation on different success 

measurements. We used a representative number of coronary angiography images that 

was greater than the minimum established by previous publications to ensure the 

generalisation capacity of the algorithm. 

 

The algorithm presented has been described in detail throughout this article and the 

most remarkable conclusion is that our study can be used as an automatic segmentation 

system for coronary angiographies in daily assistance services. This is possible due to 

its outstanding precision and its drastic reduction in the calculation time required to 

segment images of this nature and, ultimately, to present the segmentation results to the 

doctors. These improvements to the algorithm imply that the clinician can perform tests 

on the patient and, by passing the images through the system, can verify, in that 

moment, the intervention of existing differences in a coronary tree from a previous test, 

in such a way that it could change its clinical intra-intervention criteria. 
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