IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 1

Parallelizing Epistasis Detection in GWAS on
FPGA and GPU-accelerated Computing
Systems

Jorge Gonzéalez-Dominguez, Lars Wienbrandt, Jan Christian Kassens, David Ellinghaus,
Manfred Schimmler, and Bertil Schmidt

Abstract—High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million
genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an
important but time consuming operation since statistical computations have to be performed for each pair of measured markers.
Computational methods to detect epistasis therefore suffer from prohibitively long runtimes; e.g. processing a moderately-sized
dataset consisting of about 500,000 SNPs and 5,000 samples requires several days using state-of-the-art tools on a standard
3GHz CPU. In this paper we demonstrate how this task can be accelerated using a combination of fine-grained and coarse-
grained parallelism on two different computing systems. The first architecture is based on reconfigurable hardware (FPGAs) while
the second architecture uses multiple GPUs connected to the same host. We show that both systems can achieve speedups of
around four orders-of-magnitude compared to the sequential implementation. This significantly reduces the runtimes for detecting
epistasis to only a few minutes for moderately-sized datasets and to a few hours for large-scale datasets.

Index Terms—GWAS, epistasis, pairwise gene-gene interaction, contingency tables, parallel computing, FPGA, GPU

1 INTRODUCTION

ECENT advances in high-throughput genotyping
Rtechnologies allow the collection of hundreds of
thousands to up to a few million genetic markers,
such as Single Nucleotide Polymorphisms (SNPs),
from individual DNA samples in only a few minutes.
In Genome-Wide Association Studies (GWAS) these
genotypes are typically measured for thousands of
individuals and linked to a given phenotype. The
simplest and most common phenotype classification is
a binary trait, i.e. the presence (case) or absence (con-
trol) of an associated disease. By simply determining
the genotype frequencies between cases and controls,
as in classical GWAS, associations between a genetic
disease and specific markers can be made. However,
the separate identification of individual markers with
differences in genotype frequencies between cases and
controls is generally not powerful enough to detect
joint genetic effects (epistasis). Hence, higher-order
statistical methods considering the combination of at
least two markers are necessary to model complex

o J. Gonzilez-Dominguez and B. Schmidt are with the Institute of
Computer Science, Johannes Gutenberg University Mainz, Germany.
E-mail: {j.gonzalez,bertil.schmidt}@uni-mainz.de

e L. Wienbrandt, |. C. Kissens, and M. Schimmler are with the De-
partment of Computer Science, Christian-Albrechts-University of Kiel,
Germany.

E-mail: {lwi,jka,masch}@informatik.uni-kiel.de

e D. Ellinghaus is with the Institute of Clinical Molecular Biology,
Christian-Albrechts-University of Kiel, Germany.

E-mail: d.ellinghaus@ikmb.uni-kiel.de

disease traits based on epistasis [1], [2]. Consequently,
a number of algorithms have been developed to de-
tect 2-SNP epistatic interactions in high-throughput
GWAS datasets (e.g. [3], [4], [5]). The main goal of
these approaches is to find pairs of SNPs whose
joint genotype frequencies show a statistically sig-
nificant difference between cases and controls which
potentially explains the effect of the genetic variation
leading to disease.

Computing epistasis is highly time-consuming due
to the large number of pairwise tests to be calculated.
For example, even for a moderately-sized dataset
consisting of 500,000 SNPs there are about 125 bil-
lion pairwise interaction tests to be performed. This
extensive analysis of all pairwise SNP combinations
might require several hours or days for moderately-
sized datasets as in [6]. Large-scale datasets even take
weeks or months on standard computing platforms.
Since both the availability and size of GWAS datasets
are increasing rapidly, finding faster solutions is of
high importance to research. In this paper we address
this problem by using a combination of both coarse-
grained and fine-grained parallelism on a multi-FPGA
and a multi-GPU accelerated computing system. We
base our approach on the popular BOOST [7] method
which efficiently performs an exhaustive pairwise
analysis of all SNP combinations of a dataset using
statistical regression. We introduce a fast implemen-
tation of the BOOST filter by using FPGA technol-
ogy on the RIVYERA architecture. Furthermore, an
efficient novel implementation of this filter on GPU

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 2

architectures is presented. Although the GBOOST tool
already presents a significant improvement of BOOST
using GPUs, our method is still faster by a factor of
at least 1.8 with both methods tested on two different
NVIDIA GPU systems (Tesla K20m and GTX Titan).
Our design is also able to utilize several GPUs on the
same system, showing high scalability at least up to
4 GPUs.

Taking advantage of both fine-grained parallelism
(by using reconfigurable FPGA hardware and a spe-
cific hardware description) and coarse-grained par-
allelism (by using several FPGAs in parallel) our
reconfigurable implementation utilizing 128 low-cost
Spartan6-LX150 FPGAs on the RIVYERA architecture
further reduces the runtime compared to the multi-
GPU system. This results in a speedup compared to
the original BOOST implementation on a 3GHz CPU
of about four orders-of-magnitude.

The rest of the paper is organized as follows. Sec-
tion 2 reviews some related work. Section 3 summa-
rizes the methodology to find epistasis that has been
adapted in our work. Section 4 describes the utilized
FPGA and GPU technologies. The parallel GWAS
implementations for FPGAs and GPUs are explained
in Sections 5 and 6, respectively. The performance
of both approaches is evaluated in Section 7. Finally,
Section 8 concludes the paper.

2 RELATED WORK

Targeting the problem of detecting epistasis in GWAS
with novel computing architectures such as clusters,
cloud computing or GPUs can help to speedup the
process to become acceptable in a typical biologists
workflow. Tools performing an exhaustive analysis
on standard PC architectures include BOOST [7],
MDR [8], MB-MDR [9], and iLOCi [10]. The underly-
ing algorithms can be implemented on GPU systems
for a significant runtime reduction, resulting in tools
such as GBOOST [11], BOOST2 [12], SHEsisEpi [13],
GWIS [14], EpiGPU [15] and others. Nevertheless,
none of them is able to exploit multiple GPUs for
the same analysis. Other tools such as SIXPAC [16],
SNPRuler [17], SNPHarvester [18], TEAM [19] and
Screen and Clean [20] apply pre-filtering techniques to
reduce the number of analyzed SNP-pairs to perform
a selective test only on a subset of all pairwise combi-
nations. They can reduce runtimes at the expense of
potentially losing some significant SNP combinations.

As mentioned in the previous section, our ap-
proaches are based on the statistical regression meth-
ods available in BOOST [7]. BOOST further applies
a pre-filtering technique to all SNP-pairs called the
Kirkwood Superposition Approximation (KSA) filter
before performing a 2-test with four degrees of free-
dom. This approach has been proven to be accu-
rate through cross-validation of exhaustive bivariate
analysis [21]. Moreover, this tool is widely used in

biomedical research to perform GWAS analyses in
practice (see for instance [22], [23], [24]). Furthermore,
statistical filters and methods of different tools could
also be applied in our approach by merely changing
the internal statistical tests, and without modifying
the data distribution, optimization techniques or other
features related to the parallel implementation.

Both our multi-FPGA and multi-GPU solutions con-
sist of two main parts. Firstly, the parallel creation
of contingency tables, and secondly, the application
of the KSA and log-linear filters as statistical tests.
Since the creation of contingency tables is a common
task in many GWAS algorithms, our method can also
be applied to other tools by simply replacing the
filters. For example, the novel EDCF tool [25] does
pre-filtering with a simple 2-test with two degrees of
freedom on all pairwise SNP combinations to collect
candidates for higher-order interactions. Our imple-
mentation could easily be adapted to this pre-filtering
technique leading to a possible speedup of EDCF in
the same order as for BOOST.

Although, up to our knowledge, we present the
first comparison between a multi-FPGA and multi-
GPU implementation to detect epistasis, the efficiency
of these architectures to solve some other types of
bioinformatics algorithms have been previously stud-
ied. These can be categorized into two areas: sequence
alignment [26], [27], [28] and structural bioinformat-
ics [29]. Chen et al. [26] compare a hybrid FPGA
and CPU multicore implementation of a short read
aligner with a GPU-based approach. Programma-
bility and performance comparisons between these
two architectures using, among others, pairwise se-
quence alignment and molecular docking are pre-
sented in [27], [28], [29]. The reported results show
that both FPGA and GPU architectures are able to
obtain high speedups compared to CPU multicore
approaches. FPGAs usually obtain better performance
than GPUs for these applications at the cost of more
difficult programmability.

3 BACKGROUND
3.1 Contingency Tables

A typical GWAS dataset consists of two groups of
samples (cases and controls) which are genotyped at
a set of marker positions (SNPs). Contingency tables
are created for each SNP-pair separately for case and
control group. Since SNP-pairs can be viewed as sym-
metric, n(n — 1)/2 SNP-pairs have to be analyzed in
an exhaustive test where n denotes the total number
of SNPs. In this work we focus on GWAS datasets
with biallelic markers as it is the common use case,
i.e. genotypes may appear as homozygous wild (w),
heterozygous (h) or homozygous variant (v) type.
Hence, in pairwise interaction tests each contingency
table for cases and controls has the dimension 3 x 3,
one entry for each possible combination of genotypes.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 3

TABLE 1
A contingency table for cases and controls for the
SNP-pairs (A,B). n;;, reflects the count for the
corresponding genotype combination in the current

SNP pair.

controls SNP A
(k=0) w h v
/M w T000 71010 T020
£ h | nwo mnio ni2o
@ v n200 N210 N220

cases SNP A
(k=1) w h A\
M W | mool 7Mo11 N0o21
& h|no mu ma
P v | noor nor mom

The entries reflect the number of occurrences each
combination of genotypes appears in the dataset for
the corresponding SNP-pair in either case or control
group. See Table 1 for an example. The cells of the
contingency table (for ¢,j = 0,1,2; k£ = 0,1) can also
be filled with probabilities: 7;;, = ni;i/n.

3.2 The BOOST Filters

For our parallel implementations we use the same
statistical tests as in BOOST [7]. This tool measures the
interaction between two markers via log-linear mod-
els. We use the dot convention to indicate summation
over a subscript. For instance, m;.. = 3 1 ijh 18 the
marginal probability of the first SNP to be equal to
1. The notation extends to two dimensions as well;

e.g. mj. = y. .Mk is the marginal probability of
having values ¢ and j for the first and second SNP,
respectively.

Wan et al. [7] define the interaction as the difference
Ls — Ly between the log-likelihoods of the homo-
geneous association model and the saturated model.
They prove that this difference is proportional to the
Kullback-Leibler divergence of 7;;, and p;;i, whereby
7i5% is the joint distribution obtained under the sat-
urated model and p;j. is the distribution obtained
under the homogeneous association model:

Bs—La=n- 3 [actor (Z2)])

iik Dijk
=n- Drr (Tijk|[Dijk))

They establish that all pairs with their log-linear
measure higher than a certain threshold 7 show epis-
tasis. Although this log-linear model is affordable,
there exists no closed-form solution for the homo-
geneous association model. Thus, the authors in [7]
propose the Kirkwood Superposition Approximation
(KSA) for ﬁijk

Create Contingency Table

KSA value

~ THRES? >| Calculate log-linear value

log-linear value
> THRES?

| Discard the SNP-pair [

Add SNP-pair to
|< the list of pairs
with epistasis

—D| End analysis

Fig. 1. Workflow of the tests applied to each SNP-pair

175w T
K ij- M-k -5k
Pijp = - ———— 3)
N T 5. Tk
whereby
Tij T kT jk
- ML kA L2 4
" Z 3. T.5. Tk ()
ijk
_ Mg N4 kN 5k ®)
NN Mgy

ijk

It can be shown that with the replacement of p; ;i
by f)g & in (2) the resulting difference Lg — Lgsga is an
upper bound of the interaction defined by Ls — Ly;
.d.e. it holds:

Ls— Ly < Ls— Lisa (6)

The equations above show that the KSA value can
be directly calculated from the cells of the contingency
table without the need for iterative methods. There-
fore, BOOST accelerates its analysis using the KSA
filter (ﬁg — Lgs 4). From now, we call the value of
Ls — Lysa for a specific SNP-pair its “KSA value”.
As the KSA value is an upper bound of the log-linear
measure, we calculate it for all SNP-pairs and discard
those where the following equation does not hold:

2(Ls— Lisa) > 7 @)

where T is a user-defined threshold.

Finally, BOOST only applies the log-linear filter to
the remaining pairs. Figure 1 summarizes the work-
flow of the application. We refer to [7] to find the
proofs and further explanation of the KSA and log-
linear filters.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 4

4 TECHNOLOGY
41 FPGA Technology

FPGA technology offers a flexible way of introducing
very fine-grained on-chip parallelism. Compared to
CPUs the functionality of an FPGA is configured by
an application specific description of the underlying
hardware instead of running a program consisting of a
sequence of commands from a pre-defined instruction
set. The hardware description is typically written in
a special programming language such as Verilog or
VHDL. It usually consists of a set of freely designable
processing elements (PEs) which may have different
functionality but can be utilized concurrently. The
number of PEs and their functionality is only lim-
ited by the available resources of the FPGA. These
resources typically consist of lookup tables (LUTs)
where almost any logical or arithmetic function can
be mapped into, registers, local RAM (Block RAM)
and embedded hardware units such as digital signal
processors (DSPs) which may directly be used for
certain purposes.

4.2 RIVYERA S6-LX150 Architecture

The computing platform RIVYERA was originally de-
veloped for problems related to cryptanalysis. It was
first introduced to bioinformatics in 2008 [30]. For this
work, we have used the specific model RIVYERA S6-
LX150. Its basic structure consists of two parts, a
multi-FPGA system and a server grade mainboard
with standard PC components acting as host sys-
tem. The FPGA system consists of up to 16 FPGA
modules with 8 Xilinx Spartan6-LX150 FPGAs each
(with an optional upgrade possibility to 16 FPGAs per
module). Each FPGA is connected to 512 MB DDR3-
SDRAM divided into two modules. The host system
runs a Linux operating system on two Intel Xeon E5-
2620 CPUs (6 cores @ 2GHz each) with 128 GB of
RAM.

The bus system is organized as a systolic chain, i.e.
each FPGA on an FPGA module is connected by fast
point-to-point connections to both neighbors forming
a ring. One additional member of this ring acts as
communication controller. It provides the intercon-
nection of each module to its neighboring modules
and, on the first module, the uplink to the host
via PCI Express. An application developer uses an
API to transparently communicate between host and
FPGAs. Besides regular point-to-point transmissions,
the API provides broadcast facilities and methods for
configuring the FPGAs. The design structure of the
RIVYERA S6-LX150 system is shown in Figure 2.

4.3 CUDA and GPU Technology

CUDA is a parallel programming language that ex-
tends the general programming languages, such as

CPU

HCICIH

AM
PCle Interface n n]
Slot1 Slot2 Slot3 Slot 16

Host System FPGA Computer

Fig. 2. The RIVYERA S6-LX150 system.

C/C++ and Fortran, with a minimalist set of abstrac-
tions to express parallelisms. A CUDA program is
comprised of code for the host and kernels for the
devices. A kernel is a program launched over a set
of lightweight parallel threads on GPUs, where the
threads are organized into a grid of thread blocks. All
threads in a thread block are split into small groups
of 32 parallel threads, called warps, for execution.
These warps are scheduled in a single instruction,
multiple thread (SIMT) fashion. Full efficiency and
performance can be obtained when all threads in a
warp execute the same code path. It is the program-
mers’ responsibility to limit the amount of thread
divergence.

CUDA-enabled GPUs have evolved into highly
parallel many-core processors with tremendous com-
pute power and very high memory bandwidth. They
are especially well-suited to address computational
problems with high data parallelism and arithmetic
density. A CUDA-enabled GPU can be conceptualized
as a fully configurable array of Scalar Processors (SPs).
These SPs are further organized into a set of Streaming
Multiprocessors (SMs) under three architecture gener-
ations: Tesla [31], Fermi [32] and Kepler [33].

Figure 3 shows the structure of the GPU architec-
ture. The fastest type of memory are the registers,
whose data is visible only to the SM that wrote
it. In the Kepler generation each SM comprises 192
CUDA SP cores sharing a configurable 64 KB on-chip
memory. The on-chip memory is slower than registers
but faster than global memory, and it is divided into
shared memory and L1 cache. It can be configured
at runtime as 48 KB shared-memory with 16 KB L1
cache, 32 KB shared-memory with 32 KB L1 cache,
or 16 KB shared-memory with 48 KB L1 cache, for
each CUDA kernel. Finally, the largest but slowest
type of memory is global memory, whose loads can
only be cached in L2 cache and the 48 KB read-only
data cache.

5 MAPPING ONTO THE FPGA-

ACCELERATED COMPUTING SYSTEM
5.1 Creation of Contingency Tables

The first step of the application is the parallel creation
of contingency tables, which is required as input for

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 5

SM N G
L
o
B
SM 2 [A
SM 1 2 .
| Shared Memory | fe D
Py E
Regs | Regs | Regs I C \I/
InsFruction SP1 SP 2 - SPM : c
Unit E
| L1 Cache | - "é'
<> i
Fig. 3. GPU architecture and memory hierarchy.
PEO PE 1 PE n-1
: Pl ! geno- |
1 H [;7 type 1 H
: genotype i genotype} ; genotype} v,
] w0 H pair E H pair E stream H pair E ig
5| 3 Pl T w
2l 7] N] - i 58
) : C.Table]: : |[=| |C.Table] i |=]|C.Table} i 5 O
Q i HE o) H i o) H o Wn
ol A S i I = : ®
ef N ! Pl= : o
- H ctable | i ctable ! H ctable ! 0
"""""""""""""""""""""""" Ctable ======================d -
t
[Transport b—| Transport I—»s--f-e-?m—)[TranspoTl—»

Fig. 4. Overview of the systolic chain of PEs for contingency table creation.

the subsequent KSA filter. We have designed a chain
of PEs (further referred to as PE-chain) with a systolic-
like dataflow (see Figure 4). The raw data has to be
organized in genotypes grouped by cases and controls
for each SNP. Each FPGA processes two intervals
of SNPs which are stored in the local memory of
the FPGA (see Section 5.3 for more details about the
overall distribution of SNPs).

Each PE contains three main components, a local
RAM to store all genotypes of one SNP, the required
counters of one contingency table, and a bus transfer
unit to send a completed contingency table to the unit
performing the subsequent statistical test.

The SNP data is streamed in several iterations from
the FPGA RAM to the first PE in the chain. The first
SNP arriving at each PE is simply stored in the local
RAM. Any further SNPs are streamed to the next ele-
ment in the chain. This way all £ PEs contain the first
k SNPs in their local RAM where k denotes the total
number of PEs. The contingency table in each PE is
created while streaming SNP data to the next PE. Each
genotype of the data in the stream is compared to the
corresponding genotype of the SNP stored in the local
RAM and the appropriate counter of the contingency
table is incremented. When all genotypes of either
cases or controls of one SNP have been streamed, the
contents of the contingency table are provided via
the bus transfer unit to a FIFO buffer collecting all

tables from all PEs, and the local counters are reset.
The calculation of the KSA value starts the moment
the tables for cases and controls of a SNP-pair are
complete (see Section 5.2). After all SNP data from
both intervals have been streamed, the next iteration
begins. Each iteration starts streaming all SNPs from
both intervals omitting the first k¥ SNPs of the previous
iteration and all SNPs which were omitted before as
well. The process is finished when all SNPs of the first
interval have to be omitted. This way the partitioning
of SNP data into two intervals for each FPGA creates
the base for an efficient distribution of SNPs among
all FPGAs. Each FPGA computes the statistics for
all possible SNP pairings in the first interval and all
pairings between the first and the second interval.

Figure 5 illustrates how this process works for a PE-
chain with three PEs on a small dataset with six SNPs.
The distribution of SNPs among FPGAs is discussed
in Section 5.3.

5.2 KSA Filter Pipeline

The FPGA implementation of the KSA filter is de-
signed in a completely unrolled pipeline allowing
to get the result of one test every 18 clock cycles
(i.e. the number of entries in a contingency table)
after a certain latency. In order to achieve an efficient
FPGA implementation using the available resources,
we have transformed the calculation of Lg — Lxsa as

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 6

tg: 012345 tg:

012345 ty

012345

0 0 0
1 —1 1
2 2 —2
3 3 3
4 4 4
5 5 5
tg: 012345 t,;; 012345 t;: 012345
0 0 0
1 1 1
2 2 2
—3 3 3
4 — 4 4
5 5 —5
tg: 012345 t;: 012345 tg: 012345
0 0 0
1 1 1
2 2 2
—3 3 3
4 — 4 4
5 5 —5 ﬁ

Fig. 5. Sequence of processing an example dataset of six SNPs with a chain of three PEs in nine time steps.
Black squares indicate SNP pair combinations to be processed while white squares indicate already processed
pairs. Grey squares are currently being processed while an arrow on the vertical axis indicates the currently

streamed SNP.

follows:
Ls— Lgsa =n- Dk, (#ijnllDisk) 8)
. Tijk
:nz |jﬁ'jk log 74? ‘| (9)
ijk Pijk
Nijk
Nijk n
=n)_ [. logW] (10)
ijk n T TG Tk
Nijk
=D [niselog M] (11)
ijk L n ni.n.n.g
=5 e (10g PRI T T
ijk - / M. Mg kT ik
+ log %)] (12)
=3 i log mwnank}
ijk - M. MG Tk
+n(logn —logn) (13)

Equation (13) is directly implemented into the hard-
ware description of the FPGA with the following
optimizations. Firstly, the accumulations 7., and n;.x
are calculated on-the-fly and stored into separate
FIFOs while receiving n;;, from the PE-chain. The
sums n;;., n.;. and n,.. can then be calculated using a
simple adder resource each at the corresponding FIFO
outputs. Secondly, a divider resource is required to
calculate 7. It is easy to see, that each fraction in (5)

is between zero and one (if none of the factors in the
denominator is zero). Hence, an efficient divider unit
is implemented which generates a fixed point format
with 32 fraction bits. The special case, if one of the
factors in the denominator is zero, directly triggers
a division-by-zero error and regards the calculated
value as insignificant.

To save further resources, only two logarithm units
are implemented. Both units iteratively generate a
fixed point format with 8 integer and 56 fraction bits.
The first one directly calculates the logarithm of a
fraction (i.e. log §) to save another divider unit. The
second calculates log 7. logn is a constant and can be
precalculated.

This way after several latency cycles, each clock
cycle produces one summand of the left part in (13)
and one summand of 7 in (5). After 18 cycles the ac-
cumulations are complete and the result of the whole
equation is obtained and compared to a user defin-
able threshold. Of each significance value passing the
threshold the identifier to the corresponding SNP pair
is stored in a FIFO. Due to the pipeline nature of
this design, the calculation of each significance value
can be started every 18 clock cycles. There is no
need to ever block the data flow, resulting in very
fine-grained concurrent processing and therefore very
efficient utilization of FPGA resources.

Since the log-linear filter still has to be applied
to the SNP-pairs passing the KSA filter, the CPU
concurrently fetches the corresponding IDs from the

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 7

FPGA FIFOs and stores them in a local buffer. The
items in the buffer are submitted to a number of CPU
worker threads calculating the necessary log-linear
tests. In most cases, (i.e. if the threshold is not set too
low) the FPGA processing time dominates the CPU
runtime. Therefore, the log-linear filter computation
does usually not influence the overall execution time.

The log-linear filter is not implemented on the
FPGA for two reasons. Firstly, the additional resources
would only be used very infrequently, but would
reduce the number of available PEs for the cost of
concurrency. Since the number of iterations in the log-
linear test is unpredictable, they would potentially
create pipeline stalls increasing the runtime as well.
Secondly, the CPU is idle during the FPGA process-
ing. Hence, its resources can positively be utilized to
concurrently calculate log-linear tests.

5.3 Distribution of Data

Due to the limited amount of memory available on
each FPGA, it is generally not possible to store the
complete input data in their memory modules. In
addition, the speed of the bus system connecting the
FPGAs and the host is limited and there is no implicit
shared memory. Thus, a scheme is required to reduce
the traffic between host and FPGAs. This implies
that a dynamic workload distribution approach, as
described for the GPUs in Section 6.3, cannot be ap-
plied for the FPGAs efficiently, since it would require
continous traffic on the RIVYERA bus. Our solution
therefore uses broadcast to transfer the complete input
data only once for initialization while each FPGA
picks only those parts of data that it requires for the
whole run. Since in our FPGA design each SNP pair
requires the same amount of runtime, a well-balanced
workload can be accomplished by equally distributing
the number of SNP-pairs to be processed on each
FPGA. We achieve this by assigning two intervals of
input data to each FPGA as described in the following.

The number of SNP-pairs each FPGA processes
directly results from the sizes of the two intervals of
SNPs. We set the size of the first interval of FPGA i to
a;. The size of the second interval is then calculated
by Z;;B a; starting with ap = 0. To calculate a;
the total number of SNP-pairs n(n — 1)/2 is equally
distributed over all FPGAs resulting in n(n — 1)/(2t)
SNP pairs to be processed by each FPGA (with ¢t
denoting the number of available FPGAs). Then, the
following equations hold for i > 0:

nin—1) a2
o —?+ai2aj (14)
7=0
i—1
-1
& 0= af + 2a; Z a; — ’I’L(?’Lt) (15)

0
FPGA 748
as=a
78 FPGA 5+6
~ az=a
< < |77 |a
g g
w w a,
—
g FPGA 5 a3 I for FPGA 3
g a
(% a
Y— 2
(o]
—
(] <
a
£ = @ 2 I, for FPGA 3
=] © a <
c [T
£ k) £
= S |FPGA G FPGA 2 |4,
E FPGA 1
n-1 a
SNPs 0 n-1

Fig. 6. Example SNP distribution among 8 FPGAs.
The two intervals I; and I, for SNP processing of
FPGA 3 are exemplarily marked.

1 g 2
i— i— 1
= ai:fZaj+ Zaj +%(16)

=0 =0

It is likely for larger datasets, that for some FPGAs
the calculated SNP intervals do not fit into the local
FPGA memory. In this case, the second interval is split
over multiple FPGAs and the interval sizes are recal-
culated considering the adjusted size of the second
interval. Unfortunately, it has to be taken into account
that the SNP pairs from the first interval are then
processed multiple times. This amount of redundant
calculations has to be considered for the total SNP
distribution. Furthermore, redundant results need to
be removed.

The particular SNPs are mapped directly to the
calculated interval sizes and are assigned to the cor-
responding FPGAs for an equal workload. Figure 6
illustrates an example distribution.

If the total number of SNPs exceeds the maximum
possible number of SNPs that can be distributed
among the FPGAs, the whole dataset is partitioned.
Each partition is then processed iteratively.

6 MAPPING ONTO THE GPU-
ACCELERATED COMPUTING SYSTEM
6.1 CUDA Kernel

Instead of separating the creation of the contingency
tables and the filters, a single kernel that performs
the whole analysis of a set of SNP-pairs is developed.
Therefore, the values of the contingency tables do not
need to be saved in the device memory, as they are
discarded as soon as the tests are performed. The SNP
information is stored in the device pinned memory

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 8

previously to any kernel call. The GPU computation
is divided into batches, i.e. the CPU calls the GPUs
several times to analyze all the pairs by batches. In
every kernel call:

o The kernel receives the first pair of the batch as
well as the batch size as input.

o Depending on this size, each thread calculates
the KSA filter for several pairs within each ker-
nel call. Consecutive threads analyze consecutive
SNP-pairs.

o If the pair passes the KSA filter, the thread also
computes the subsequent log-linear filter.

o The kernel output is a binary value for each pair
that indicates whether it presents epistasis or not.

Unlike the FPGA implementation, our GPU ap-
proach does not implement the rearranged equation
of the KSA filter, but the same way as it is done
in GBOOST. Moreover, when assigning the GPU re-
sources to the different parts of the code, we give the
highest priority to the KSA filter. Therefore, this filter
is implemented mainly using registers and avoiding
direct accesses to the device memory.

Depending on the results of the KSA filter, GPU
threads that test pairs discarded by this preliminary
filter would be idle while other threads are perform-
ing the log-linear filter. For instance, in a scenario
where the probability of a SNP-pair passing the KSA
filter is 0.01, 99% of threads would finish their compu-
tation in the kernel after the KSA filter, but for the re-
maining 1% all threads in the respective warps have to
wait. GBOOST addresses this thread divergence prob-
lem by performing the log-linear filter on the CPU.
Although this approach eliminates CUDA thread di-
vergence, it significantly decreases performance if a
large percentage of SNP-pairs passes the first filter.
An alternative solution would be the distribution of
the computation into two different kernels: the first
one for the generation of the contingency tables and
the KSA filter (performed for all SNP-pairs), and the
second kernel for the log-linear filter. However, the
overhead of copying the corresponding contingency
tables to global memory between kernels would cause
a significant performance overhead. Therefore, our
multi-GPU approach maintains only one kernel with
the whole computation. The experiments shown in
Section 7.2 prove that our solution is superior to the
GBOOST approach.

6.2 Reordering Information for Coalesced Ac-
cesses

For a dataset with n SNPs from m individuals, the
naive representation uses an n x m table where each
row represents one SNP and each column represents
one sample. Each element needs 2 bits to distinguish
among the three genotypes ({wh,v}). GBOOST ap-
plies a boolean representation of genotype data in
order to calculate the values of the 18 cells of the

TABLE 2
Values of the contingency tables calculated with
logical AND operations on the GPUs

controls SNP A cases SNP A
(k=0) w h v (k=1) w h A\
/M w 71000 - 71020 m W | noo1 - ne21
L AT
@ v 1200 - 1220 @ v n201 - n221

contingency tables in a fast manner. Three rows per
SNP are used, each one consisting of two-bit strings,
one for the case samples and the other for the controls.
Each bit in the string represents one sample, and
its value indicates whether the individual has the
corresponding genotype. The main advantage of this
approach is that the creation of the contingency table
can be performed using only logical AND operations.
See [7] for more details.

We modify this approach for our GPU implemen-
tation by reducing the information loaded into the
GPU memory and, thus, increasing the size of the
datasets that fit in the device memory. For each SNP,
only strings for the homozygous wild (w) and the
homozygous variant (v) are created. Moreover, for
each SNP the information is packed into two arrays
with entries of 32 bits (one for the “w” and one
for the “v” genotypes). The length of each array is
m/32 entries. Using only logical AND operations we
explicitly calculate 8 cells of the contingency table
(shown without “-” in Table 2). Additionally, when
loading the datasets, the sums of all the “w” and “v”
biallelic values are calculated per SNP. These “sums”
can then be used to calculate the remaining cells of the
table if needed by the statistical filters. There are two
advantages of this modification. Firstly, we reduce
the device memory consumption compared to the
GBOOST approach, as we only store 8 of the 18 cells
during the kernel. Moreover, performance is also re-
duced because only 8 complete AND operations must
be always performed. Although some filters may need
to calculate some of the other cells, they only need
to apply two arithmetic operations to integer values
(very efficient on GPUs) instead of the whole AND
operation to all the individual values.

Figure 7 shows how each one of the two arrays
would look like if the entries of each SNP were con-
secutively ordered. In most cases consecutive threads
also analyze consecutive SNPs. However, as there
are m/32 entries per SNP (and m might be very
large, in the order of several thousands of samples),
we would generate uncoalesced memory accesses on
the GPU because consecutive threads would access
positions of the arrays with distance m/32. Thus, we
reorder the data of the two arrays when loading it
into pinned device memory, following the structure
shown in Figure 8. In this case consecutive threads can

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 9

SNP 1 SNP 1 . SNP 1 SNP 2 SNP 2 . SNP 2 SNP 3 SNP 3 .
Entry 1 Entry 2 Entry m/32| Entry 1 Entry 2 Entry m/32 | Entry 1 Entry 2
Fig. 7. Example of one array with the information of one SNP without reordering the entries.
SNP 1 SNP 2 . SNP 1 SNP 2 SNP 3 . SNP 1 SNP 2 SNP 3 L
Entry 1 Entry 1 Entry 2 Entry 2 Entry 2 Entry m/32 |Entry m/32| Entry m/32
Fig. 8. Example of one array with the information of one SNP when reordering the entries.
also access consecutive memory positions, increasing CPU GPU 1 GPU 2

the coalescing of the accesses and, thus, significantly
improving performance.

6.3 Dynamic Work Distribution among GPUs

As explained in Section 6.1, the analysis of the SNP-
pairs is divided into batches. Every time the CUDA
kernel is launched it performs the filters for a certain
batch, specified by the initial pair and the batch size.
Unlike previous GPU-accelerated GWAS tools, our
implementation is able to utilize several GPUs within
the same system. The generation of the batches and
their assignment to the GPUs is dynamically per-
formed by the CPU. Figure 9 illustrates the CPU/GPU
interactions when working on a system with 2 GPUs.
The CPU starts assigning a different initial batch of
SNP-pairs to each GPU and launches the kernel. Once
a GPU completes the filter of all the pairs within
the batch, it returns the pairs with interaction to the
CPU and requests another batch. The CPU controls
the assignment of pairs to GPUs in a flexible way,
since the GPUs can finish their computation in any
order. At the end of the computation the CPU stores
a list with all SNP-pairs showing epistasis.

This dynamic distribution is of importance espe-
cially for systems with different types of GPUs. As, the
most powerful GPUs finish their computation earlier
than slower ones, they can request more batches from
the CPU. Therefore, the most powerful GPUs analyze
more SNP-pairs, maximizing their resource utiliza-
tion. On homogeneous systems all GPUs perform the
same amount of analyses and the performance would
be similar than using a static distribution that assigns
the batches to the GPUs in advance.

As for the FPGA version, our GPU implementation
is able to analyze very large datasets, even if they do
not fit in the device memory. In these cases the CPU
splits the information and, while assigning batches
to the GPUs, it also keeps trace of which SNPs are
stored in the memory of each GPU. If the information
necessary to compute a batch is not available in GPU
memory, the CPU transfers the remaining part.

| Launch kernel with | |
initial batch -

I "l |

Launch kernel with initial batch

>~
| | i
|, Return SNP-pairs Iwith epistasis |
Launch kernel with next batch ~
T
I Return SNP-pairs I |
_with epistasis
|\Launch kernel with | |
next batch S
. Return SNP-pairs with epistasis |
T~
! Launch kernel wiJh next batch ~
T
n L]
| | |
L] L]

Fig. 9. Interactions between the CPU and two GPUs
to perform GWAS.

7 PERFORMANCE EVALUATION
71

The complete FPGA design has been implemented on
a Spartan6-LX150 using Xilinx ISE 14.7 and the VHDL
programming language. Half of the resources are
assigned to the creation of the contingency tables and
the other half to compute the KSA filter. Limited by
the FPGA resources, we have managed to implement
a PE-chain with 56 PEs. The clock frequency for the
PEs as well as for the KSA filter is 133 MHz. The
host software including the log-linear filter has been
implemented using the C++ programming language
and the gcc compiler v4.4.7. The design has been
tested on a RIVYERA S6-LX150 system as described
in Section 4.2. The runtimes shown in this section also
include the log-linear filter on the CPU.

The multi-GPU version has been tested on two
types of compute nodes. Both nodes have a dual

Experimental Setup

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 10

TABLE 3
Performance comparison of different approaches when looking for epistasis in the WTCCC dataset. Results
obtained from the corresponding publications are marked with (*). The results for CPU versions are estimated
from a smaller dataset (**)

Design Architecture Runtime | Speed (10° pairs/s) | Energy consumption (kWh)
FPGA RIVYERA S6-LX15 6 m 348.01 0.07
multi-GPU 4 GTX Titan 9m 208.81 0.15
multi-GPU 4 Telsa K20m 12m 139.20 0.18
multi-GPU 1 GTX Titan 35 m 56.43 0.15
multi-GPU 1 Tesla K20m 47 m 38.67 0.18
GBOOST 1 GTX Titan 1h15m 34.23 0.31
GBOOST 1 Tesla K20m 1h26m 24.28 0.32
EpiGPU* 1 GTX 580 2h55m 11.90 0.71
SHESsisEPT* 1 GTX 285 27 h 1.29 5.51
PThreads** | Intel Core i7-3930K (6 cores) 19 h 1.82 247
BOOST** Intel Core i7-3930K (1 core) 7 d 0.21 21.84

octa-core Intel(R) Xeon(R) E5-2670 CPU (16 cores)
with a clock rate of 2.60 GHz. Each node further
contains four Kepler-based GPUs with the following
characteristics:

o NVIDIA Tesla K20m with 5 GB of memory,
208 GB/s of device memory bandwidth, and
2,496 CUDA cores (grouped into 13 SMs) running
at 706 MHz.

o« NVIDIA GTX Titan, which has 14 SMs (2688
CUDA cores) with a clock rate of 875.5 MHz. De-
vice memory is of size 6 GB and can be accessed
with a bandwidth of up to 288 GB/s.

The GPU kernel has been compiled with the CUDA

v5.5 based on the gcc compiler v4.6.2.

7.2 Performance Comparison

Firstly, we tested our designs with the real-world
WTCCC dataset [34] with 3,004 controls from the
1958 British Birth Cohort and 2,005 cases with bipo-
lar disorder (BD) genotyped at 500,568 SNPs. We
have initially compared the calculated significance
values from our implementations against the origi-
nal BOOST. As expected, our multi-GPU approach
obtains the same results, as it uses exactly the same
equation. Nevertheless, due to our imprecise calcu-
lation using fixed-point arithmetics on the FPGAs,
we expected a slight deviation of our results from
the original. However, the total error of the KSA
filter score has never been greater than 0.01. After
application of the exact log-linear test on the CPU,
the output list of SNP-pairs with espistasis on the
RIVYERA is identical to the one returned by GBOOST.

Table 3 shows the performance of our implementa-
tions on the described platforms, specifying the run-
time and the speed in terms of the number of analyzed
pairs per second. It also includes the total power
consumption. Regarding the related work, GBOOST
has been executed utilizing only one GPU per node,
as it does not support computation for multiple GPUs.

Furthermore, we have included additional results for
two other GPU-based tools (EpiGPU [15] and SHE-
sisEPI [13]) in the table, obtained from the corre-
sponding publications. Finally, we have measured the
execution time for CPU-based approaches. On the one
hand, we have run BOOST on an Intel Core i7 ana-
lyzing a smaller simulated dataset (40,000 SNPs and
5,009 individuals) with the same ratio of pairs with
potential epistasis as the WTCCC dataset. Assuming
quadratic increase of runtime with the number of
SNPs, we have estimated that BOOST would need
more than 7 days to process the WTCCC dataset. On
the other hand, we have implemented an efficient
PThreads version of the whole algorithm (creation
of contingency tables, KSA and log-linear filters). We
have followed the same approach as for BOOST to
estimate that this implementation would need more
than 19 hours to process the WTCCC dataset using
the 6 cores of the Intel Core i7 machine.

Additionally, we have simulated a dataset with
2M SNPs and 10,000 individuals in order to test the
behavior of the parallel designs for large-scale GWAS.
The results shown in Table 4 are obtained with a
threshold of 7 = 28 for the filters, which generates
a similar percentage of SNP-pairs with potential epis-
tasis as the default threshold (r = 30) for the WTCCC
dataset. GBOOST runtimes are not included because
this tool is not able to analyze such a large dataset
due to out-of-bounds problems in the internal arrays.

The experimental results further show that our
CUDA implementation is faster than GBOOST. The
improvement of the CUDA kernel and the device
memory accesses (increasing coalescence) make our
approach 1.83 and 2.14 times faster than GBOOST
when analyzing the WTCCC dataset for the Tesla
K20 and the GTX Titan, respectively. Although results
for EpiGPU and SHEsisEPI must be treated carefully
since the comparison is performed on older architec-
tures, we can infer that they are significantly slower

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 11

TABLE 4
Performance comparison of different approaches when looking for epistasis in a simulated dataset with 2M
SNPs and 10,000 individuals.

Design Architecture Runtime | Speed (10° pairs/s) | Energy consumption (kWh)
FPGA RIVYERA S6-LX15 3h07m 178.25 2.19
multi-GPU 4 GTX Titan 4h08m 134.41 4.13
multi-GPU 4 Telsa K20m 4h43 m 117.79 4.25
multi-GPU 1 GTX Titan 16 h 02 m 34.65 4.01
multi-GPU 1 Tesla K20m 18 h 39 m 29.79 4.20
WTCCC dataset 2M SNPs and 10,000 individuals
50 1200
¥(1.83) —¥— Tesla K20m —¥— Tesla K20m
45 F}-- GTX Titan [1100 --f£F-- GTXTitan [
40 1000

Runtime (min)

Number of GPUs

Number of GPUs

Fig. 10. Runtimes of the multi-GPU version for a varying number of GPUs on the nodes with Tesla K20m and
GTX Titan GPUs. The label of each point shows the speedup compared to GBOOST (running on the respective

single GPU).

than any of our designs. An additional advantage of
our multi-GPU design is that it is able to work with
the four GPUs available on each node to significantly
decrease the runtime. The speedups over GBOOST
of our multi-GPU implementation are 7.17 and 8.33
using four Tesla K20 and four GTX Titan, respec-
tively. Figure 10 shows the runtimes and scalability
of our multi-GPU implementation depending on the
number of employed GPUs. Speedups over GBOOST
are included in brackets for the WICCC dataset. The
achieved parallel efficiency on four GPUs is higher
than 90%.

The runtimes of our multi-GPU implementation
with four GTX Titan (9 minutes for the WTCCC
dataset and about 4 hours for the large simulated
dataset) are still higher than the execution time of our
FPGA counterpart on the RIVYERA S6-LX150 system
(6 minutes and about 3 hours, respectively). The
corresponding speedups are 1.5 and 1.3. According
with the estimation of the CPU-based BOOST runtime
shown in Table 3, the FPGA version obtains a speedup
of more than 1,680 against a 3 GHz CPU. Speedup
over the efficient Pthread implementation that uses
the 6 cores is still higher than 190. Furthermore, the
energy efficiency of the FPGA version is around 2
times higher than the best multi-GPU implementa-
tion.

Although our FPGA implementation targets the
RIVYERA system, it can generally be adapted to

any FPGA platform assuming it provides enough
resources to implement the KSA filter and DRAM to
store a significant part of the input data. In addition,
our distribution scheme is not limited to a specific
number of FPGAs. The length of the chain of PEs
is only limited by available resources. Due to the
multitude of available FPGA types and platforms it is
impossible to provide a performance estimation for all
of them. Hence, we have kept at the Spartan6 FPGAs
of the RIVYERA system to produce a representative
result. However, we have inspected the ability to map
our design to a more up-to-date FPGA of the Xilinx’
Kintex7 series. A Kintex7-480T offers more than three
times more LUT resources than a Spartan6-LX150,
and due to a high amount of integrated DSPs and
the new 28 nm manufacturing technology we expect
a doubling of the available clock frequency. Therefore,
we estimate that a system equipped with 128 FPGAs
of this type would reduce the runtime of pairwise
SNP analysis by a factor of around 6. Although porta-
bility of VHDL code may be difficult in general, our
design uses generic variables for parameters such as
the number of PEs etc. Therefore, the adaption to a
Kintex7-FPGA would require only top-level interface
changes.

7.3 Scalability Analysis

We have simulated additional datasets with differ-
ent numbers of SNPs and individuals in order to

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 12

10,000 individuals
300

—K— 4xTesla K20m k
--fF-- 4xGTX Titan
250 H --- - RIVYERA I
:'.
0
250K 500K ™ oM

Number of SNPs

Fig. 11. Runtimes for datasets with 10,000 individuals
and varying number of SNPs.

study the behavior of our parallel implementations
depending on these parameters. Figure 11 shows the
scalability in terms of number of SNPs. The number
of individuals is fixed to 10,000 and the threshold to
T = 28, in order to obtain a percentage of SNP-pairs
with potential epistasis similar to the WICCC dataset.
As the number of pairs to compute is n(n — 1)/2,
a linear increase of the number of SNPs leads to
a quadratic increase of the number of pairs. Hence,
as expected, this reflects in a quadratic increase of
runtime.

Figure 12 shows the runtimes for datasets with
500,000 SNPs, varying the number of individuals,
and the same percentage of SNP-pairs with potential
epistasis. In this case the increase of runtime is linear
and, the more individuals are in the dataset, the more
significant this increase is. The graph shows that the
slope of the FPGA line is higher than for the multi-
GPU. This means that the performance of the FPGA
version is more affected by the number of individuals.
The total runtime can be modeled by the addition of
the time for calculating the contingency tables and for
filtering: T' = Tyqp + T'ti1- The filtering part (1) does
not depend on the number of individuals. Therefore,
only the creation of the contingency tables (1i4) is
influenced by the number of individuals. The increase
of runtime is more significant on the FPGAs than
on the GPUs. This indicates that T3,; takes a lower
percentage of time on the latter architectures.

7.4

Finally, we have analyzed the impact of the thread
divergence on the multi-GPU runtimes by varying
the threshold of the filters. The lower the threshold,
the more pairs pass the KSA filter and need to be
evaluated with the log-linear filter. Table 5 shows the
percentage of interactions found by our implementa-
tions depending on the value of 7. Table 6 compares
the speedup over GBOOST of our multi-GPU design
for different thresholds. Using a threshold lower than

Impact of Thread Divergence

500,000 SNPs

—K— 4xTesla K20m
--fF-- 4xGTX Titan
-k RIVYERA

25 H

35

30 H

E 20 et
5] Rt
£ /K///’:.".
< 15 // ___E,«‘._‘..
o B
10 et :
¥ (5 IS
P12 "
OT | |
2,500 5,000 10,000 20,000

Number of individuals

Fig. 12. Runtimes for datasets with 500,000 SNPs and
varying number of individuals.

TABLE 5
Percentage of pairs with potential epistasis for the
WTCCC dataset depending on the threshold.

Threshold 7 | Percentage of pairs with potential epistasis
20 8.28 x 102
30 1.13 x 1073
40 9.22 x 1075
50 4.59 x 10~°

20 makes no sense for this dataset as the output
would have so many pairs with potential epistasis
that it would be unfeasible for biologists to further
analyze all of them. The speedups are higher for
lower thresholds (more computations of the log-linear
filter). It proves that, although our approach presents
thread divergence due to gathering both filters in a
single CUDA kernel (see Section 6.1), it outperforms
GBOOST, which needs to transfer the contingency
table to global memory in order to compute the log-
linear filter on the CPU.

8 CONCLUSION

Recent advances in high-throughput genotyping tech-
nologies establish the need for fast implementations
of statistical epistasis in GWAS. In this article we de-
scribe parallel implementations for FPGA and GPU-
accelerated systems that increase the computational
speed and allow us to analyze large-scale input
datasets in reasonable time. Both designs exhaus-
tively measure the interaction of all SNP-pairs by
creating their contingency tables and by subsequently
applying statistical tests based on regression models.
Specifically, they apply the KSA and log-linear filters
present in (G)BOOST. This tool has been determined
as one of the fastest available GWAS method and
presents high accuracy. Nevertheless, since contin-
gency table creation is common to most epistasis tools,
our implementations can also be used to accelerate
a large variety of tools by simply interchanging the
statistical test.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY

TABLE 6
Speedups of the multi-GPU implementation over GBOOST for different thresholds using the WTCCC dataset.

Threshold 7 | Tesla K20 | 4xTesla K20 | GTX Titan | 4xGTX Titan
20 2.18 8.57 2.44 9.52
30 1.83 717 2.14 8.33
40 1.80 6.75 2.11 8.22
50 1.78 6.67 2.11 8.22

Although other tools already support GPU com-
putation, our CUDA design is optimized by trans-
forming the kernel and reordering the information
to increase the coalescing of the memory accesses.
Moreover, up to our knowledge, we have designed
the first GWAS tool that is able to run on multiple
GPUs. Our FPGA design uses a workload distribution
that is able to exploit the resources of hundreds of
FPGAs. Additionally, it adapts the formula of the KSA
filter that allows designing a pipeline which computes
the result of one test every 18 clock cycles.

The presented parallel designs have been evaluated
using a real-world dataset from the WTCCC associa-
tion with 500,568 SNPs and 5,009 individuals. While
(G)BOOST needs more than 7 days on an Intel Core
i7 CPU and 75 minutes on a NVIDIA GTX Titan GPU,
our multi-GPU implementation is able to analyze this
moderately-sized dataset in only 9 minutes running
on four GTX Titan GPUs. Morever, our version is
more than two times faster than GBOOST even using
only one GPU. The FPGA version is even faster and
only needs 6 minutes for this GWAS analysis on a
RIVYERA S6-LX150 system with 128 Xilinx Spartan6-
LX150 FPGAs. Furthermore, we simulated a large-
scale dataset with 2M SNPs and 10,000 samples. The
multi-GPU implementation completely analyzed it in
4 hours and 8 minutes using the four GTX Titan
GPUs. The FPGA-based version reduced this time to 3
hours and 7 minutes on the RIVYERA system. Finally,
our implementations are as accurate as (G)BOOST, as
they always obtain the same list of SNP-pairs with
potential epistasis.

Since both architectures (GPU and FPGAs) have
their benefits as well as drawbacks, our future
research includes investigating a hybrid approach
where tasks are distributed among both architectures
such that each one processes only those parts which
it suits best. However, this would require a fast direct
connection between FPGAs and GPUs which is un-
fortunately not the case in the setup described here.

ACKNOWLEDGMENTS

This study makes use of data generated by the Well-
come Trust Case-Control Consortium. A full list of
the investigators who contributed to the generation of
the data is available from http://www.wtccc.org.uk.
Funding for the project was provided by the Wellcome
Trust under award 076113 and 085475.

The project was supported through the DFG Clus-
ters of Excellence “Inflammation at Interfaces”.

REFERENCES

[1] B. Maher, “Personal Genomes: the Case of the Missing Heri-
tability,” Nature, vol. 456, no. 7218, pp. 18-21, 2008.

[2] J. H. Moore, F. W. Asselbergs, and S. M. Williams, “Bioin-
formatics Challenges for Genome-Wide Association Studies,”
Bioinformatics, vol. 26, no. 4, pp. 445455, 2010.

[3] H.]J. Cordell, “Detecting Gene-Gene Interactions that Underlie
Human Diseases,” Nature Review Genetics, vol. 10, no. 6, pp.
392-404, 2009.

[4] K. van Steen, “Travelling the World of Gene-Gene Interac-
tions,” Briefings in Bioinformatics, vol. 13, no. 1, pp. 1-19, 2011.

[5] Y. Wang, G. Liu, M. Feng, and L. Wong, “An Empirical
Comparison of Several Recent Epistatic Interaction Detection
Methods,” Bioinformatics, vol. 27, no. 21, pp. 2936-2943, 2011.

[6] J. Marchini, P. Donnelly, and L. R. Cardon, “Genome-wide
Strategies for Detecting Multiple loci that Influence Complex
Diseases,” Nature Genetics, vol. 37, pp. 413-417, 2005.

[71 X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. L. Tang, and
W. Yu, “BOOST: A Fast Approach to Detecting Gene-Gene
Interactions in Genome-wide Case-Control Studies,” American
Journal of Human Genetics, vol. 87, no. 3, pp. 325-340, Sep. 2010.

[8] M. D. Ritchie, L. W. Hahn, N. Roodi, L. R. Bailey,
W. D. Dupont, F. E Parl, and J. H. Moore, “Multifactor-
Dimensionality Reduction Reveals High-Order Interactions
among Estrogen-Metabolism Genes in Sporadic Breast Can-
cer,” American Journal of Human Genetics, vol. 69, no. 1, pp.
138-147, Jul. 2001.

[9] F V. Lishout, J. M. M. John, E. S. Gusareval, V. Urrea, I. Cley-
nen, E. Théatre, B. Charloteaux, M. L. Calle, L. Wehenkel,
and K. V. Steen, “An Efficient Algorithm to Perform Multiple
Testing in Epistasis Screening,” BMC Bioinformatics, vol. 14, no.
138, 2013.

[10] J. Piriyapongsa, C. Ngamphiw, A. Intarapanich, S. Kulawon-
ganunchai, A. Assawamakin, C. Bootchai, P. J. Shaw, and
S. Tongsima, “iLOCi: a SNP Interaction Prioritization Tech-
nique for Detecting Epistasis in Genome-Wide Association
Studies,” BMC Genomics, vol. 13, no. Suppl 7, pp. S2+, 2012.

[11] L. S. Yung, C. Yang, X. Wan, and W. Yu, “GBOOST: a GPU-
based tool for detecting gene-gene interactions in genome-
wide case control studies,” Bioinformatics, vol. 27, no. 9, pp.
1309-1310, 2011.

[12] X. Wan, C. Yang, Q. Yang, H. Zhao, and W. Yu, “The Complete
Compositional Epistasis Detection in Genome-Wide Associa-
tion Studies,” BMC Genetics, vol. 14, no. 7, 2013.

[13] X. Hu, Q. Liu, Z. Zhang, Z. Li, S. Wang, L. He, and Y. Shi,
“SHEsisEpi, a GPU-Enhanced Genome-Wide SNP-SNP Inter-
action Scanning Algorithm, Efficiently Reveals the Risk Ge-
netic Epistasis in Bipolar Disorder,” Cell Research, vol. 20, pp.
854-857, 2010.

[14] B. Goudey, D. Rawlinson, Q. Wang, F. Shi, H. Ferra, R. M.
Campbell, L. Stern, M. T. Inouye, C. S. Ong, and A. Kowalczyk,
“GWIS - Model-Free, Fast and Exhaustive Search for Epistatic
Interactions in Case-Control GWAS,” BMC Genomics, vol. 14,
no. Supl 3, 2012.

[15] G. Hemani, A. Theocharidis, W. Wei, and C. Haley, “EpiGPU:
Exhaustive Pairwise Epistasis Scans Parallelized on Consumer
Level Graphics Cards,” Bioinformatics, vol. 27, no. 11, pp. 1462—
1465, 2011.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY 14

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

S. Prabhu and 1. Pe’er, “Ultrafast Genome-Wide Scan for
SNPSNP Interactions in Common Complex Disease,” Genome
Research, vol. 22, no. 11, pp. 2230-2240, 2012.

X. Wan, C. Yang, Q. Yang, H. Xue, N. L. Tang, and W. Yu,
“Predictive Rule Inference for Epistatic Interaction Detection
in Genome-Wide Association Studies,” Bioinformatics, vol. 26,
no. 1, pp. 30-37, 2010.

C. Yang, Z. He, X. Wan, Q. Yang, H. Xue, and W. Yu, “SNPHar-
vester: a Filtering-Based Approach for Detecting Epistatic
Interactions in Genome-Wide Association Studies,” Bioinfor-
matics, vol. 25, no. 4, pp. 504-511, 2009.

X. Zhang, S. Huang, E. Zou, and W. Wang, “TEAM: Efficient
Two-Locus Epistasis Tests in Human Genome-Wide Associa-
tion Study,” Bioinformatics, vol. 26, no. 12, pp. 217-227, 2010.
J. Wu, B. Devlin, S. Ringquist, M. Trucco, and K. Roeder,
“Screen and Clean: a Tool for Identifying Interactions in
Genome-Wide Association Studies,” Genetic Epidemiology,
vol. 34, no. 3, pp. 275-285, 2010.

J. Bedo, D. Rawlinson, B. Goudey, and C. S. Ong, “Stability
of bivariate GWAS biomarker detection,” PLOS One, vol. In
Press, 2014.

R. L. Milne, J. Herranz, K. Michailidou, and et al, “A Large-
Scale Assessment of Two-Way SNP Interactions in Breast Can-
cer Susceptibility Using 46,450 Cases and 42,461 Controls from
the Breast Cancer Association Consortium,” Human Molecular
Genetics, vol. 23, no. 7, pp. 1934-1946, 2014.

M. Chu, R. Zhang, Y. Zhao, and et al, “A Genome-Wide Gene-
Gene Interaction Analysis Identifies an Epistatic Gene Pair for
Lung Cancer Susceptibility in Han Chinese,” Cancinogenesis,
vol. 32, no. 3, pp. 572-577, 2014.

J. Bi, J. Gelernter, J. Sun, and H. R. Kranzler, “Comparing
the Utility of Homogeneous Subtypes of Cocaine Use and
Related Behaviors with DSM-IV Cocaine Dependence as Traits
for Genetic Association Analysis,” American Journal of Medical
Genetics, vol. 165, no. 2, pp. 148-156, 2014.

M. Xie, J. Li, and T. Jiang, “Detecting Genome-Wide Epistases
Based on the Clustering of Relatively Frequent Items,” Bioin-
formatics, vol. 28, no. 1, pp. 5-12, 2012.

Y. Chen, B. Schmidt, and D. L. Maskell, “A Hybrid Short Read
Mapping Accelerator,” BMC Bioinformatics, no. 14, 2013.

S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerat-
ing Compute-Intensive Applications with GPUs and FPGAs,”
in SASP20808. Springer, 2008, pp. 101-107.

K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian,
“High Performance Biological Pairwise Sequence Alignment:
FPGA versus GPU versus Cell BE versus GPP,” International
Journal of Reconfigurable Computing, vol. 2012, 2012.

L. Pechan and]. Feher, “Molecular Docking on FPGA and GPU
Platforms,” in FPL2011. Springer, 2011, pp. 474-477.

G. Pfeiffer, S. Baumgart,]. Schroder, and M. Schimm-
ler, “A Massively Parallel Architecture for Bioinformatics,”
in ICCS2009, Lecture Notes in Computer Science, vol. 5544.
Springer, 2009, pp. 994-1003.

E. Lindholm, J. Nickolls, S. Oberman, and]. Montrym,
“NVIDIA Tesla: a Unified Graphics and Computing Architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39-55, 2008.

“NVIDIAs Next Generation CUDA Compute Architecture:
Fermi,” NVIDIA Corporation Whitepaper, USA, Tech. Rep.,
2009.

“NVIDIAs Next Generation CUDA Compute Architecture:
Kepler,” NVIDIA Corporation Whitepaper, USA, Tech. Rep.,
2012.

The Wellcome Trust Case Control Consortium, “Genome-wide
Association Study of 14,000 Cases of Seven Common Diseases
and 3,000 Shared Controls,” Nature, vol. 447, no. 7145, pp. 661—
78, Jun. 2007.

Jorge Gonzalez-Dominguez received the
B.Sc., M.Sc. and PhD degrees in Computer
Science from the University of A Corufa,
Spain, in 2008, 2010 and 2013, respectively.
He is currently a postdoctoral researcher
in the Parallel and Distributed Architectures
Group at the Johannes Gutenberg University
Mainz, Germany. His main research interests
are in the areas of high performance com-
puting for bioinformatics and PGAS program-
ming languages.

Lars Wienbrandt received his M.Sc. (Dipl-
Inf.) in Computer Science from the Christian-
Albrechts-University of Kiel, Germany, in
2009. He is currently a research assistant
at the Technical Computer Science group at
the CAU and working on his PhD. His re-
search area includes the parallelization and
implementation of bioinformatics algorithms
on FPGA architectures.

Jan Christian Késsens received his M.Sc.
in Computer Science from the Christian-
Albrechts-University of Kiel, Germany, in
2012. He is currently a research assistant
at the Technical Computer Science group
at the CAU and working on his PhD. His
research focus lies on hardware/software co-
development, hardware-assisted paralleliza-
tion and FPGA technology.

David Ellinghaus received his M.Sc. (Dipl.-
Bioinf.) in Bioinformatics from the University
of Hamburg, Germany, in 2007. In 2012 he
earned his PhD from the Christian-Albrechts-
University of Kiel, Germany. He is currently
a postdoctoral researcher at the Institute
of Clinical Molecular Biology in Kiel. His
main research interests are in the areas of
genetic/epidemiological studies for immune-
mediated diseases, bioinformatics and statis-
tical genetics.

Manfred Schimmler received his diploma
in Computer Science in 1980 and his PhD
in 1991 from the CAU Kiel, Germany. Later
he became professor in Stralsund, Braun-
schweig, and Kiel, where he currently works
as head of the group Technical Computer
Science. His main research interests are
massively parallel architectures and low en-
ergy computers, as well as bioinformat-
ics and financial prognostics as application
fields.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. #, NO. #, MMMMMMMM YYYY

Bertil Schmidt (M'04-SM’07) is tenured Full
Professor and Chair for Parallel and Dis-
tributed Architectures at the University of
Mainz, Germany. Prior to that he was a
faculty member at Nanyang Technological
University (Singapore) and at University of
New South Wales (UNSW). His research
group has designed a variety of algorithms
and tools for Bioinformatics mainly focusing
on the analysis of large-scale sequence and
short read datasets. For his research work,
he has received a CUDA Research Center award, a CUDA Academic
Partnership award, a CUDA Professor Partnership award and the
Best Paper Award at IEEE ASAP 2009. Furthermore, he serves
as the champion for Bioinformatics and Computational Biology on
gpucomputing.net.

