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Abstract Video encoding and decoding are comput-
ing intensive applications that require high performance
processors or dedicated hardware. Video decoding of-

fers a high parallel processing potential that may be
exploited. However, a particular task challenges paral-
lelization: entropy decoding. In H.264 and SVC video

standards, this task is mainly carried out using arith-
metic decoding, an strictly sequential algorithm that
achieves results close to the entropy limit. By accel-

erating arithmetic decoding, the bottleneck is removed
and parallel decoding is enabled. Many works have been
published on accelerating pure binary encoding and de-

coding. However, little research has been done into how
to integrate binary decoding with context managing
and control without losing performance. In this work

we propose a FPGA-based architecture that achieves
real time decoding for high-definition video by sustain-
ing a 1 bin per cycle throughput. This is accomplished

by implementing fast bin decoding; a novel and area
efficient context-managing mechanism; and optimized
control scheduling.
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1 Introduction

The new H.264/AVC [15] video coding standard repre-
sents a significant improvement in quality and compres-
sion ratio over previous standards such as MPEG-2 and

MPEG-4 Part 2. This advantage comes with a price as
H.264 is characterized by high computational complex-
ity.

In H.264, the Context-based Adaptive Binary Arith-
metic Coding (CABAC) algorithm offers a significant
compression gain with respect to the baseline method

(&10%). However, this algorithm cannot be parallelized
to a significant extent.

Sequential tasks pose a threat on performance as
they limit the available parallelism due to Amdahl’s

law. This problem is addressed in [3] where some solu-
tions are proposed, such as high clock frequency pro-
cessors that are allocated to sequential tasks, or recon-

figurable accelerators.

The need for hardware acceleration in arithmetic de-
coding (AD) has been addressed in [1] and [13] among

others. Subsequently, the remaining decoding tasks are
carried out in parallel using either reconfigurable hard-
ware, or a number of programmable processors in a

manycore system.

FPGA is a mature technology that allows accelerat-
ing computing tasks without coming into the high non-
recurring costs and lack of flexibility of ASICs. Recon-

figurability is a key factor, as the combination of pro-
grammable and reconfigurable parallel processing pro-
vides the adaptability required by modern multi-media

platforms that must implement multiple standards.
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Several architectures have been proposed for AD

in recent years that apply different strategies. In [8,
12, 14, 19] the goal is to decode one bit of informa-
tion (bin) per cycle. More recent papers acquiesce in

higher complexity in order to decode several bins each
cycle [2,6,9,10,18,20,21]. Actual throughput, however,
varies widely. In this way, only [21] actually decodes

more than 2 bins and only [2, 9, 10] sustain more than
1 bin. In many works, throughputs in the 0.25 - 0.75
range are obtained.

In general, just a few of the works found in the liter-
ature deal with the complexity of implementing context

modeling and inverse binarization for several bins in the
same cycle. In [2, 8, 18,19, 21] this is addressed in more
or less detail, but most of the best performing architec-

tures [9,10] do not even consider this subject. In many
works, complexity is reduced by decoding multiple bins
only under certain conditions. This leads to low and

input-dependent throughput, as mentioned in the pre-
vious paragraph. Also, the convenience of multiple bin
decoding is difficult to assess as none of those papers

details how much the cycle length increases compared
to a single bin architecture.

In this work, a new FPGA-based architecture is pro-
posed for single bin arithmetic decoding. The strengths
of this architecture are: a sustained throughput of 1

bin per cycle is achieved, independently of the video se-
quence, by eliminating stalls; context modeling is fully
implemented; inverse binarization is performed for all

the syntax-elements; the scheduling is carried out con-
sidering all the macroblock types; a novel scheme based
on simple transpositions is used to evaluate all data de-

pendencies; and the characteristics of FPGAs are ex-
ploited in order to achieve an efficient implementation.

In Section 2, the arithmetic coding and decoding al-
gorithms are presented. Section 3 explains the decoding

challenges at macro-block level. Section 4 describes the
architecture, focusing on the high level control. Section
5 describes syntax-elements and bin decoding. Section

6 presents the results and compares with other archi-
tectures.

2 Arithmetic decoding in H.264

The Context-based Adaptive Binary Arithmetic Cod-

ing (CABAC) [11] is the preferred entropy coding al-
gorithm in H.264 Main and High profiles. CABAC en-
codes the different pieces of information produced by

the H.264 encoder, such as motion vectors, transform
coefficients and flags, referred to as syntax-elements.
The binary arithmetic coder in CABAC deals only with

bit-size data, called bins. Therefore, all syntax-elements

bin 1 1 1 1 1 1 1 1 1 0 0 0

context
offset

0,1,
or 2

3 4 5 6 6 6 6 6

1 1

meaning > 0 > 1 > 2 > 3 > 4 > 5 > 6 > 7 > 8 < 17 +0  4 +0  2 +1 neg

exp-golomb codes
no context used

Fig. 1 Decoding of value -10 as a motion vector

are converted to a sequence of bins before compression
in a process called binarization.

Hence, decoding consist of both recovering bins from

the bitstream, and also reconstructing the original syntax-
elements and take further decoding decisions. In this
section, the encoding procedures will be explained first,

and decoding details will be provided therafter.

Syntax-elements are binarized by applying some ba-
sic rules as described in [11]. As an example, Fig. 1
shows the breakdown of value -10 as a motion vector

coordinate, consisting of unary code of 9 bits, followed
by an Exp-Golomb code of 4 bits, and the sign.

Each bin is compressed using arithmetic coding, ex-
ploiting the statistics of the source, that is, the propor-
tion between the number of 0’s and 1’s. CABAC deals

with the statistical properties of the bins using 2 vari-
ables: mps (most probable symbol) which signals with
a single bit whether 0 or 1 has the highest probability

at a given time; and state, which is a 6-bit measure of
the skewness of the mps probability. Both values are
updated using transition tables every time a bin is en-

coded. The combination of mps and state is called a
context.

2.1 Contexts

In CABAC, more than 400 contexts are used to reflect

the different statistics of the different types of bins. In
the last row in Fig. 1 we see which context is used for
each bin in the example (actually, an offset with respect

to a base context is shown). Some bins share the same
context as they have similar statistics, and some others
do not have a context assigned. The latter ones are the

bypass bins, for which 0 and 1 are equally probable.
Another kind of bins with a fixed probability, ”final”,
also exist.

As it can be seen in Fig. 1, the first bin is encoded us-

ing 1 out of 3 possible contexts. This is done in CABAC
because the statistics are dependent on the value of
neighboring syntax-elements. This is further addressed

in Section 3.
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2.2 Encoding

The encoding process itself uses 2 variables: low and
range. For every bin that is encoded, they are updated

as follows:

MPS lownew = low

rangenew = range− rLPS (1)

LPS lownew = low + range− rLPS

rangenew = rLPS (2)

where LPS stands for least probable symbol and rLPS

is the probability of LPS scaled to the current value
of range. The rLPS is read from a look-up-table using
range and state. The value of range is a 9-bit number

that must be in [256, 511]. If it drops below 256, it is
left-shifted (normalized) as many bits as needed to put
it back in the right interval. The value of low is shifted

in the same way as range. The bits shifted out of low
form the resulting bitstream.

2.3 Decoding

CABAC decoding consists of reversing the encoding

process shown above. The steps to follow are listed be-
low:

1. Find out which syntax-element to decode
2. Determine which context to use for the next bin

3. Decode the bin using Eq. 3
4. Update the context
5. Update low and range similarly to Eq. 1 or 2

6. Decide if the syntax-element is fully decoded. If pos-
itive, go to 1)

7. If it is not decoded yet, go to 2)

When Eq. 3 produces a non negative result, an MPS
is decoded. A negative outcome will result in a LPS.

The actual value of the bin will be 0 or 1 depending
on which one is the mps for the current context. After-
wards, Eq. 1 or 2 are used to update low and range.

Finally, normalization may require taking bits from the
bitstream and appending them to low, contrarily to the
encoder.

low − range+ rLPS ≥ 0 ⇔ MPS

< 0 ⇔ LPS (3)

3 Macro-block processing

The main coding unit in H.264 is the 16x16 pixel macro-

block (MB). Decoding a MB produces a variable num-

Table 1 Characteristics of MB types

I MB P MB B MB

On slices... I, P, B P, B B
Skip MB none skip skip &

direct
Partitions 4x4, PCM, 16x16, 8x16, 16x16, 8x16,

16x16 16x8, 8x8 16x8, 8x8
Sub- none 8x4, 4x8, 8x4, 4x8,
partitions 4x4 4x4

Intra-mode 4x4 & none none
prediction 16x16

8x8 only if 4x4 yes yes
transform prediction

Motion none only forward forward &
vectors backward

Reference none one list two lists
frames

ber of syntax-elements: motion vectors, transform coef-
ficients and flags, depending on the MB type and its

complexity. In this section we introduce the syntax-
elements that make a MB and explain how contexts
are chosen using information from neighboring MBs.

In H.264, there are 3 kinds of frames, slices and
MBs: intra (I), forward (P) and bi-directionally (B)

predicted. Table 1 summarizes their characteristics: the
kind of slice in which they can appear, partitions sizes,
prediction types, transform size and motion vectors.

Decoding a MB may require as few as one bin (the

skip flag) and as many as hundreds or thousands. In
general, an I-frame will require decoding the MB type;
followed by 2, 5 or 17 prediction modes, up to several

hundreds of flags; and a variable number of transform
coefficients (up to 384). For a typical P-frame, the skip
flag and MB type are decoded. Then, 4 partition types

and reference frames, followed by up to 16 motion vec-
tors. Again, the number of flags and transform coeffi-
cients may be up to several hundreds for the most com-

plex MBs. For B-frames, the number of reference frames
and motion vectors may be up to 8 and 32 respectively.

Motion vectors and transform coefficients (residual
information) are the most important pieces of informa-

tion in CABAC as they take most of the bins in the
bitstream. The rules to decode them are complex and
will be explained in latter sections. As an example, Fig.

2.(a), shows a variety of partition types (8x8, 8x4, 4x8
and 4x4) in the same MB for which 9 motion vectors
must be decoded. Fig. 2.(b) tries to reflect the com-

plexity of decoding non-zero transform coefficients and
locating them within a MB. A more detailed description
of the different syntax-elements may be found in [11].

Scheduling the decoding of the different syntax-ele-

ments poses some challenges as:
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(a)

+ 6 empty sub-blocks

positions          values

(b)

Fig. 2 Example of MB complexity. Variety of partitions (a)
and location of the residual coefficients within a MB (b)

(a) (b) (c) (d) (f)(e) (g)

Fig. 3 Neighborhood relations for different syntax-elements

– Contexts are computed by analyzing neighboring
MBs, blocks (8x8) and/or sub-blocks (4x4) depend-

ing on the types of partitions
– The value of a just-decoded bin or syntax-element

is usually needed to decode the next one

– Most syntax-elements are made of a variable num-
ber of bins

3.1 Neighboring MBs

As said before, information from neighboring MBs is
needed to decode the current one. Fig. 3 shows all the
possible cases. Depending on the syntax-element, only

the last processed MB may be needed (Fig. 3.(a)); or
both the left and top MBs (Fig. 3.(b)). In other cases,
8x8 blocks are used (Fig. 3.(c)). Therefore, decoding

those blocks depends on both the neighbor MBs and
blocks from the current MB that have been already
decoded. Finally, some syntax-elements are decoded at

4x4 sub-block level (Fig. 3.(d)). Moreover, irregular pat-
terns are possible as shown in Fig. 3.(f). Figs. 3.(e) and
3.(g) show the scanning order in those cases.

The bins in a syntax-element are decoded using a
fixed set of contexts, like a road map for each syntax-
element. However, in most cases, the context to use for

the first bin, and only the first bin, depends on neigh-
boring values. Usually, the first bin encodes if the value
is zero or not, so the context is chosen after checking if

neighboring values are zero or not.

Table 2 Context selection

Syntax-element Type Equation Total bits

skip MB a+ α 1
direct MB a+ α 1

intra mode MB a+ α 1
dqp MB a 1

chroma pred. MB a+ α 1
cbp chroma MB a+ 2α 1

cbp chroma AC MB a+ 2α 1
cb-flag chroma DC MB a+ 2α 1
cb-flag luma DC MB a+ 2α 1

cbp luma block a+ 2α 2
cb-flag chroma AC block a+ 2α 2x2

ref. MB block a+ 2α 2x2
cb-flag luma (AC) sub-block a+ 2α 4
dif. motion vectors sub-block complex 2x2x24

If we call a to the left neighbor and α to the top
one, the context offset is obtained as either a, a+ α or
a+ 2α depending on the syntax-element. As an excep-

tion, finding the context offset to decode motion vectors
follows a more complex procedure. Table 2 summarizes
how context offsets are obtained for different syntax-

elements and whether they are evaluated at MB, block
or sub-block level.

4 High-level decoder

In previous sections we have highlighted the relevance of
sequencing the different decoding operations. We pro-

pose a control structure in 2 levels. The high-level con-
trol decides which syntax-element has to be decoded
at a given time and which initial context to use. The
initial context is assessed by analyzing the value of the

same syntax-elements in neighbor MBs, blocks or sub-
blocks. The low-level control decodes syntax-elements
proceeding bin by bin, using the information provided

by the high-level control for the first bin, but deciding
by itself which contexts to use for the remaining bins.

4.1 Implementation of the control in two levels

Control realization must consider the different chal-
lenges for each level. The high-level decoder deals with a

moderate number of syntax-elements that are sequenced
following complex rules. Also, contexts are assigned in
different ways for each syntax-element. The low-level

decoder, on the contrary, deals with a large number of
bins and syntax-elements that, however, are decoded
following a set of simple rules.

Therefore, we chose to realize high-level control us-
ing a cluster of Distributed Decoder Modules (DDM).
Each of them is speciallized in dealing with a particu-

lar syntax-element or a set of related ones. At a given
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High-level control: Distributed Decoding Modules (DDMs)

decoder's feedback broadcast (upward arrows)

range & low updating

context updating

bin & syntax-element
decoding feedback

iterationiteration

Fig. 4 Global architecture including neighbors storage, high-level control and low-level control for syntax-elements decoding

time, only one DDM will be active and interchanging
information with the low-level control. After finishing

its tasks, the active DDM will pass an activation signal
to the appropriate DDM and switch itself into a wait
state.

The low-level control is implemented using a micro-
programmed approach that will be detailed in Section

5. The micro-program consists of a set of subroutines
that are called by the DDMs in the high-level control.
Each subroutine decodes a given syntax-element by exe-

cuting a set of micro-instructions. Each of them decodes
1 bin and sequence the next micro-instruction.

This scheme is shown in Fig. 4. The high-level con-

trol is made of several DDMs. Some of them are seen
in Sections 4.3, 4.4 and 4.5. Lets suppose that the skip
DDM (on the left in the figure) is active. The DDM

will issue an starting address to the low-level control
(bottom of the figure). All the other DDMs are inac-
tive and issuing zeros. The low-level control will execute

a portion of the micro-program and report the decoded
value to the high-level control. The skip DDM will get
the decoded flag and pass the activation signal to an-

other DDM (MB-type P, MB-type B, or skip again).

On the bottom part of Fig. 4, the low-level control

and the decoding iteration are coarsely described. The
iteration basically consists of updating range and low
as seen in Section 2. The micro-programmed control

contains the program memories and the logic for se-
quencing the instructions. A more detailed description
will be given in Section 5.

4.2 Neighbors management

A novel and efficient management mechanism is pro-
posed for accessing and updating neighbors information

at MB, block and sub-block levels (Fig. 3). Contexts

Block RAM

Left-MB information (registers)

full-row information (RAM)

load/store manager

Top-MB information (registers)

a b g d

a b c d

write
list

read
list

(a)

Up

Left
b

b

c

g

d

d

a

a

(b)

Fig. 5 Neighboring MBs information storage

may be evaluated in a simple manner and just-decoded

syntax-elements are readily accounted for future decod-
ing operations.

When decoding a syntax-element, some information
is needed from the MBs, blocks or sub-blocks on the left

and on top of the current one in order to evaluate which
contexts to use for the first bin.

The DDMs in the high-level control store that in-

formation in registers, and each DDM will prompt the
low-level control to decode all the syntax-elements re-
lated with the information it stores. Indeed, the DDMs

are built around the registers that store the neighbors
information they must manage.

For the left neighbors, information is always kept

in registers within the DDM. Managing this informa-
tion is simple as, after decoding a syntax-element, this
will become the left neighbor of the next one. For top

neighbors, however, information is produced and con-
sumed with a gap of a whole row of MBs. Therefore,
that information is stored in RAM, and it is loaded in

the DDM registers when needed. This scheme is shown
in Fig. 5.(a) and also in Fig. 4.

The number of bits needed for each neighbor is sum-

marized in Table 2. First, it depends on whether the
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Fig. 6 Neighborhood relations for different syntax-elements
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Fig. 7 Neighbor information managing for blocks (a) and
sub-blocks (b)

syntax-element applies to a MB (1), block (2) or sub-
block (4). Part of the chrominance (colour) related in-

formation applies to U and V components thus, a 2x
factor is applied. For motion related information, up to
2 lists of reference frames are needed. Also, motion vec-

tors, that will be further explained in this section, have
2 components (x and y).

The total amount of information is quite high, there-
fore, the load/store manager in Fig. 5.(a) deals with

read and write lists in order to optimize memory ac-
cesses.

4.2.1 Neighbors addressing in the Distributed Decoder
Modules

Whereas managing neighbors information at MB level
is simple, some challenges arise when dealing with blocks
and sub-blocks. This is illustrated in Fig. 5.(b), where

the shaded boxes represent the left and top registers,
while the white boxes represent the information being
decoded for that MB. The first sub-block fetches infor-

mation from the shaded boxes, but the following ones
not. Addressing the required neighbors is not straight-
forward [5], especially when mixed block-sizes are used.

We propose an efficient implementation that only

deals with the left and top registers, which content is

updated by means of simple transpositions in such a

way that the required information is always located in
the same place. In Fig. 6 we show all the transposi-
tions needed to manipulate the neighbors at block and

sub-block levels. The way in which elementary transpo-
sitions are combined is now explained.

In Fig. 7.(a) the sequence of transpositions at block
level is shown. The intent is to decode x, y, z and t

given a, b, α and β. We actually only store the top
row and the leftmost column. Only 2 transpositions are
needed, Insert and Shift. As it can be seen, the cor-

rect neighbors are always located in the top-left corner.
Additionally, after the last transpositions, the row and
column contain the information that will be needed for

future MBs. The transposition pairs (Ins, Shf) and (Shf,
Shf) must be interpreted as (column, row).

In Fig. 7.(b), the same procedure is shown for 4x4
sub-blocks. Here, Insert and Shift are redefined to trans-

pose 4 elements and a new transposition is introduced,
Cross. In the figure, the 4 xi values are decoded as
shown. The other values: yi, zi and ti are decoded in a

similar way. The transpositions in bold font are used to
change from x4 to y1, y4 to z1, z4 to t1 and t4 to the
final arrange.

Transpositions In2 and Sh2 are used when motion

vectors are decoded for 8x8 blocks. All the transposi-
tions can be combined, so that it is perfectly possible
to decode motion vectors for 8x8 blocks mixed with 4x4

sub-blocks.

As only a small number of transpositions are needed,
a simple implementation using just a few multiplexers,
is possible. On top of solving the addressing issue, we

avoid storing all the decoded values. Instead, only the
ones that will be needed in the future are kept. The
other ones are sent to be processed in other stage, away

from the critical path, where they should be stored more
efficiently in RAM. In this way, we achieve a 66% reg-
ister saving withing the arithmetic decoder.

4.3 Simple syntax-element decoding

The DDM for decoding the skip flag is shown in Fig. 8.
As just 1 bin is decoded, there are only 2 states: wait
and active. When active, the FSM sends a decoding

address (bold line) to the low level control. In the same
cycle, the decoded bin is received (bold line), the FSM
goes inactive and propagates the activity signal to the

MB-type P or B FSMs, or starts with a new MB.

The decoding address differs for P and B frames.
Also, and according with Table 2, the value of the left
and top neighbors is added. This is a simple case of a

flag at MB level. As said before, the left and top values
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Fig. 8 Distributed Decoder Module for skip flag decoding
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Fig. 9 Distributed Decoder Module for luminance cbp flags
decoding

are kept in registers, but the top value is loaded from

the neighbors memory for every MB, and stored back
there before proceeding with a new one.

Fig. 9 shows the slightly more complex case of the

luma coded-bit-pattern, for which 4 bins must be de-
coded. The decoding address is calculated from a base
address and the values in a and α. The muxes imple-

ment the transpositions Insert and Shift, updating the
content of the registers each cycle. After 4 cycles, the
FSM goes inactive and passes the activation signal to

the cbp chroma FSM.

4.4 Motion information decoding

Motion vectors and reference frames are some of the
most important syntax-elements. We focus on the most

complex case: B-frames, that are predicted using both
frames from the past (backward prediction) and from
the future (forward prediction). Depending on the MB
type, forward, backward or bidirectional prediction can

be used. For each direction, one list of reference frames
is kept. Thus, motion vectors and reference frames may
belong to any of the 2 lists.

From the control implementation point of view, the
following data structures are needed to store informa-
tion from neighboring MBs and also blocks and sub-

blocks within the current MB:

– 1 MB type
– 4 block types

– 4 reference frames for each list
– 8 differential motion vectors for each list

It must be said that the AD works with differential
motion vectors. Actual motion vectors are obtained out-

side the AD following an elaborated prediction process.

block typesblock sub-block

- 8x8
- 8x4
- 4x8
- 4x4

mvd(y) list 1 ref. frame list 1

MB-type block
-
-
-

Direct
16x16
16x8

- 8x16

- transposition
- component
- next

- list
- end

ref. frame list 0mvd(x) list 1mvd(y) list 0mvd(x) list 0

- transposition
- component
- next

- list
- end

Fig. 10 Distributed Decoder Module for differential motion
vectors decoding

Due to the complexity of this DDM, the explanation
will be focussed on the data structures involved, instead
of the logic required to transpose data and generate

signals. Fig. 10 depicts the basic data structures in the
DDM.

The top-left enclosure deals with all the MB parti-

tion sizes excepting 8x8 and smaller. A 1-bit counter it-
erates over the 2 partitions, if needed. The top-right en-
closure deals with the small partition sizes. Two coun-

ters are needed to iterate over the 4 blocks and up to
4 sub-blocks. The MB and block types have been de-
coded previously by other DDMs and loaded into this

one. When a block has been processed, the buffer that
contains the block types is shifted and a new block is
processed. This is the case depicted in Fig. 3.(f).

The part of the DDM represented by the 2 top en-
closures issues control signals to the bottom enclosures
indicating which transitions to apply and to which list

and component (x or y). Internally, signals for switching
to another partition and ending the process are gener-
ated.

The bottom part of Fig. 10 shows the data struc-
tures that store the reference frames and differential
motion vectors. Each of them is a combination of regis-

ters (see Table 2 and Fig. 5.(a)) and logic, that applies
the transpositions. For reference frames, contexts are
easily computed. For differential motion vectors, how-

ever, the number of bits involved is larger and the rules
to obtain the context are complex. The following equa-
tions show how the context offset is computed:

e(a, α, comp) = |mvd(a, comp)|+ |mvd(α, comp)| (4)

ctx mvd(comp) =


0, e(a, α, comp) < 3
1, 3 6 e(a, α, comp) 6 32
2, e(a, α, comp) > 32

(5)

For neighbors a and α, the absolute values of vector
component comp are summed up obtaining e(a, α, comp).
Depending on the magnitude of e, a different context

is used, provided that finding a zero value surrounded
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by small values is quite probable, but it becomes less

probable as surrounding values increase.

Despite obtaining e is relatively complex, it does not

introduce any data hazard, provided that components
x and y of the motion vectors are decoded alternately.
Hence, there is a least one whole cycle available to com-

pute e for the next x component while y is decoded, and
reversely.

Computing absolute values is not needed as the dif-
ferential motion vectors are decoded in sign-magnitude
format. As it can be seen, values above 32 do not make

any difference. Therefore, all decoded values are satu-
rated to 32. Each time a differential motion vector is
decoded, its magnitude and sign are transmitted, but

the DDM just keeps the magnitude saturated to 32.
Hence, 6 bits are needed per component. In total, 96
bits must be stored for each neighbor. Despite this num-

ber is large, it actually represents a 66% saving with
respect to a straightforward implementation.

4.5 Residual information

Residual information makes for a significant part of the

bins in a MB. It basically, consists of the transformed
and quantized values obtained in the encoder after mo-
tion compensation or intra-mode prediction. Four basic

types of syntax-elements must be decoded:

– Coded Block Pattern (cbp), that identifies empty

blocks
– Coded Block Flags (cb-flag), that pinpoint empty

sub-blocks

– Significance map, that locate zero-valued coefficients
– Non-zero coefficients

In the example in Fig. 2.(b), the cbp is 1011 and the
cb-flag is 1110 0111 1111. The significance map is made

of zeros, non-zeros, last and no-last flags following a zig-
zag pattern. For the first sub-block it would be nz-nl,
z, z, z, nz-nl, nz-l. Next, the non-zero coefficients are

encoded/decoded similarly to the motion vector in Fig.
1. However, contexts are assigned in a quite complex
way that depends on the relative position of the values.

In must be taken into account that, in H.264, up to 6
types of transform functions are used (Fig. 11). Decod-

ing follows different rules depending on the transform
type. The required data structures to book-keep cbp
and cb-flag for all transform types are displayed in Fig.

12.(a).

Fig. 12.(b) summarizes the decoding process, where

3 different routes are shown depending on the MB type.

For the special case of 16x16 intra-prediction, the

leftmost route is followed (F ,G), as cbp is not decoded

(a). Luma
4 x 8x8

(b). Luma
16 x 4x4

(c). Luma AC
(intra 16x16)

16 x 4x4 (15 coeff)

(d). Luma DC
(intra 16x16)

4x4

(e). Chroma DC
2x2

(f). Chroma AC
4x4

Fig. 11 Transform types

cb-flag
luma (AC)

cbp
luma

cb-flag
chroma
DC U

cb-flag
chroma
DC V

cbp
chroma

cb-flag
chroma
AC U

cb-flag
chroma
AC V

cbp
chroma

AC

(a)

decode cb-flag chroma AC U

if 1: decode
chroma AC 4x4

looploop

decode cb-flag chroma AC V

if 1: decode
chroma AC 4x4

looploop

decode cb-flag chroma DC U

if 1: decode chroma DC 2x2

if cbp chroma = 0

if cbp chroma AC = 0

decode cb-flag chroma DC V

if 1: decode chroma DC 2x2

decode cb-flag luma DC

if 1: decode
luma DC 4x4

decode cb-flag luma AC

if 1: decode
luma AC 4x4

looploop

if cbp luma = 0

Intra 16x16 All the others Only P & B

decode
dqp

decode
cbp luma

decode
cbp chroma

decode
cbp chroma AC

decode dct size
(not-intra)

decoded
cbp luma

decode luma 8x8

looploop

decoded
cbp luma

decode cb-flag luma

if 1: decode
luma 4x4looploop

(   )(   )

(   )(   )

(   )

(   )

(   )
(   ) (   )

(   )

(b)

Fig. 12 Residual information decoding. Data structures (a)
and Distributed Decoder Module (b)

and transform decoding is done according to Fig. 11.(c)
and (d).

For all the other cases, the route starts on the top-
right corner, where the 4 cbp luma bits (A) are decoded
first (Section 4.3). Each of them applies to a 8x8 block

in Fig. 11.(a) and (b). For P and B MBs, the transform
size (D) must be decoded after cbp chroma (B, C). If
8x8 transform is used, coefficients are directly decoded

for not-empty blocks (H). In other case, up to 16 cb-flag
bits are decoded (I), followed by transform coefficients
for not-empty sub-blocks.

Decoding chrominance components (J ) is performed
in the same way in all the cases and bears some differ-
ences with respect to luminance decoding: cbp chroma

is made of just 2 bits (DC and AC) for both the U and
V components; and DC values use a 2x2 transform size
(Fig. 11.(e)).

The high-level control does not deal directly with
the significance map and the transform coefficients. In-

stead, it decides which blocks and/or sub-blocks to de-
code based on the MB type, cbp and cb-flags while
the low-level control (Section 5) iterates through those

syntax-elements.
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program
memory

state
memory

High-level control

start MB-type I

start MV

start CBP

logic

binary decoder

(a)

action empty1 00

action empty1 10

action state0 m
ps normal

bypass

final

state mem.action empty1 s1 s

(b)

Fig. 13 Program-based control (a) and instruction formats
(b)

5 Low-level decoding for syntax-elements

In this section, syntax-element decoding is explained,
consisting of 2 parts: low-level control and arithmetic

decoding.

5.1 Low-level control implementation

The low-level control follows a micro-programmed ap-
proach, in which there is one instruction for each bin

to decode. One instruction is executed each cycle and,
provided that no stalls happen between instructions
or syntax-elements, a 1 bin per cycle throughput is

achieved.

Fig. 4 shows the position of low-level decoding in the
global architecture, and Fig. 13.(a) locates the micro-
program within the lovel-level decoder.

The process of calling a subroutine in the micro-

program from the high-level control was described in
Section 4.1. In this section we will focus on: how context
information is stored within the micro-instructions and

the state memory; the format of the micro-instructions;
and the special case of decoding residual information.

In order to ease the understanding, we will antici-
pate that a micro-instruction consists of 2 parts: con-

text information; and the action to take after decoding.

5.1.1 Context coding

There are a number of works [4] [9] [21] [18] that ad-
dress the challenging task of loading and updating con-

text information. In a straight implementation, the con-
text number is read first, then the context itself (state
and mps), next rLPS and, eventually, the context is

updated.

In order to reduce the number of memory accesses,

we propose that the instructions do not contain a con-
text number, but the state and mps. Therefore, load-
ing the instruction brings also the context information.

The value of rLPS is then read from distributed RAM in
the FPGA. More aggressive optimizations can be found
in [4, 17], but they incur in significantly higher cost.

Context updating consists, actually, in writing the

last instruction back in memory with updated values
of state and mps. As FPGA block-memories are mainly
double ported, it is possible to load an instruction and

write an old one at the same time. When the same
instruction is executed in consecutive cycles, a simple
buffer avoids using an outdated value.

5.1.2 State memory

As contexts are now attached to an instruction, there
should not be 2 instructions using the same context.
This poses a serious problem, as some contexts need to

be reused (Fig. 1 gives us a good example).

Therefore, contexts are divided in 2 classes. In the
first class, there are a vast majority of contexts (>85%)
that are used by only one instruction and, therefore, fol-

low the scheme explained above. In the second class, a
few contexts are stored in a separated state memory
which is governed by a state logic. Thus, some instruc-

tions do not contain the state of a context, but an escape
code that asks a value to the state logic. The state mem-
ory is complemented with a one-element buffer that al-

lows using the same context in 2 consecutive cycles.

This scheme solves the problem stated above. An ex-
ample of syntax-element that heavily requires the state
FSM is the significance map for 8x8 transform size, for

which contexts are shared by more than 4 coefficients
on average.

5.1.3 Instructions and program format

The format of the instructions is shown in Fig. 13.(b).

As it can be seen, bypass and final bins do not need to
store state and mps as they are implicit. Those instruc-
tions that take the state from the state memory have

also a hint (ss) for the state logic.

Some examples of actions are: stop; stop if 0 or 1;
continue; branch if 0 or 1; or decode while 1.

Fig. 14.(a) shows the flowgraph for decoding a dif-
ferential motion vector component as in Fig. 1. Up to 7

different contexts offsets (labeled 0 to 6) are used. De-
pending on the initial context offset, 3 entry points are
possible (0, 1 or 2), and exit points are signaled with a

curly arrow.
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1

1

1 1 1 1 1 1

0 2

6 6 6 66543

1

0

sign

0 0

1 1

1 1 1

1

byp byp byp byp

byp bypbyp bypbyp byp

1

0 0 0 0 0 0 00

0 0 0 0

in in in

(a)

context action decodes

0 skip 2 / stop

1 skip 1 / stop

2 stop if 0 is 0

> 4

is 0

3 skip 3 if 0 > 1

sign

is 0

4 skip 2 if 0 > 2

> 5

5 skip 1 if 0 > 3

> 6

6 skip 1 if 1

...

bypass stop

6 skip 3 if 0

6 skip 2 if 0

... ...

(b)

m s s s s s s

s s s s s s

s s s s s s

1 1 1 1 0 0 m s s s s s s

1 1 1 0 1 0 m s s s s s s

0 0 0 1 0 0 m s s s s s s

1 0 0 1 0 0

1 0 0 0 1 0 m

1 0 0 0 0 0 m

1 1 0 0 0 1 1 0 1

0 0 0 0 1 1 0 0

1 0 0 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1

... ...

(c)

Fig. 14 Motion vector decoding flowgraph and program

Fig. 14.(b) translates part of the flowgraph to the

control program in a symbolic manner, whereas Fig.
14.(c) represents the same program in a binary way. We
highlight that context 6 is used more than once, so it is

stored in the state memory, not in the program. Bypass
bins are a special case for which the state is implicit.
This is actually one of many possible implementations

of the program.

5.1.4 Residual information decoding

This is an special case that is implemented using addi-
tional hardware: 2 small counters that record the num-
ber of non-zero coefficients and trailing ones [11], and a

small amount of logic. The significance map is decoded
as a single syntax-element. Next, each non-zero coeffi-
cient is decoded. From the high-level control this is seen

as a single syntax-element decoding.

rLPS LUT

state
mem.

program
memory

state
updating

logic
n bits

address

starting address

state

M
P

SrLPS

lowrange

range pre-low

input byte

bit input

range updating

pre-low

nbits

Fig. 15 Proposed architecture for binary decoding

5.2 Binary decoder architecture

The architecture can be divided in 2 parts: low-level
control and context management; and pure binary de-

coding. The first part encompasses the program and
state memories and the logic for sequencing the instruc-
tions and updating the contexts. The second part in-

cludes implementing Eq. 3 for decoding MPS or LPS,
and updating and normalizing range and low according
to Eq. 1 and 2.

Fig. 15 provides a detailed view, where both parts
are separated by a divisory line. Processing starts by
reading the program memory. The address comes either

from the high-level control or the local logic. Context in-
formation is read from the just loaded micro-instruction
or overridden by the state memory. Next, the rLPS is

read from table implemented using distributed memory,
and the state is updated.

For range and low updating, Eq. 1 and 2 are imple-
mented in parallel, and one of the results is eventually
selected. The cycle should end with the normalization

of range and low and the input of new bits [12]. How-
ever, these tasks are delayed to the beginning of the
next cycle in order to overlap with the memory access

(top right in Fig. 15).

Our architecture is made of just 2 stages: high-level

control and syntax-element decoding, as we have found
out that further pipelining does not reduce cycle length
significantly, while increases complexity and may in-
troduce stalls. In this sense, using the same cycle for

reading the context and decoding the bins is crucial. In
other works, memory is accessed in a separated cycle
and, despite speed is increased to some extent, pipeline

hazards arise and stalls undermine performance.

Hence, our critical path is largely defined by access-

ing the program memory and fetching rLPS (≈ 75%).
However, as most of the operations overlap with mem-
ory access (those involving rLPS are the main excep-

tion), the cycle length is kept short.
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Table 3 Area and speed figures

Clock Slices Memory Registers Power
100 MHz 646 (0.7%) 3 BRAM ∼ 250 72 mW

6 Evaluation and comparison

Our proposal has been synthesized on a Xilinx Virtex-

4 LX-200 FPGA [16]. The results are briefly summa-
rized in Table 3. A 100 MHz clock frequency has been
achieved. One block of RAM is used to store the micro-

program, another one for the state memory and a third
one for storing top neighbors information. A significant
part of the area is devoted to the registers as described

in Fig. 5. In our previous paper [12] this was not fully
implemented and the figures were lower. It must be con-
sidered, however, that our neighbor management strat-

egy allows for a 66% reduction in the number of reg-
isters. The dissipated power has been stimated using
Xilinx XPower Analyzer. According to it, dynamic dis-

sipation is 72 mW, whereas static (quiescent) dissipa-
tion is 1.5 W. Therefore, the consumption of our archi-
tecture is not significant within the context of a whole

video decoding architecture.

As the clock frequency of this architecture is just

moderate, the throughput per cycle is a crucial met-
ric. As said before, decoding one bin always takes one
cycle. Also, the low-level decoder is able to decode a

whole syntax-element without stalls, and the high-level
decoder does not require any waiting cycle between
syntax-elements. Hence, a 1 bin per cycle, or 100 Mbin

per second, throughput is achieved, which qualifies for
HD Blu-Ray video decoding (100 Mbin/s ≥ 40 Mbit/s).
In our previous work [12], stalls happened between a

skipped or direct MB and the next one, but that prob-
lem has been solved in the present work.

In Table 4 we present a comparison with the most

relevant works found in the literature. All of them de-
code multiple bins per cycle but, as explained in the
introduction, the maximum throughput is seldom achie-

ved. Columns 3, 4 and 5 show the performance using
different metrics.

In column 6 (Multiple bin), the ways in which mul-
tiple bins can be decoded are shown. They range from
brute force [10] to restricting to bins in the same syntax-

element (SE) [2,9,18]. In [21] a different strategy is used,
consisting of decoding up to 16 MPS per cycle.

Area figures are similar and they do not include

memory. In [10] contexts can be accessed in parallel
by implementing all the storage using registers. This is
an expensive solution, that it is partially implemented

in [9] (254 contexts in registers) and [21] (57 contexts).

In [2] two overlapping RAM blocks are used, in [18]

and [17] caches store, respectively, 9 and 44 contexts.

The last column shows how syntax-element decod-
ing and context managing are addressed in each pa-
per. The most complete descriptions are found in [2]

and [21], whereas other works just focus on bin decod-
ing. We extend our review on these works in the follow-
ing paragraphs.

The main strength of [2] is the high throughput it

achieves. This is mainly due to using 130 nm technology,
as the throughput lags behind the targeted 2 bins/cycle.
Context managing is correctly addressed but not at the

same level as this paper.

The architecture in [21] allows HD decoding with
low power dissipation. Despite precise figures are not
provided in the paper, consumption must be extremely

low at just 45 MHz. The performance is very similar
to ours, but using a completely different platform and
architecture. Mainly, context control is performed in

the Probability Propagation modules in a hardwired
manner as opposite to our programmed approach. The
main advantages of our architecture are: it is tailored

for FPGA implementation, and programmability makes
easier to design new decoders for future video stan-
dards. Distinctively, [21] is better suited for ASIC im-

plementation, it offers low power dissipation, and a high
level of performance that may scale with technology.

Finally, despite of the advantages of using reconfig-

urable logic, few FPGA implementations of CABAC
decoding have been found in the literature. In [17],
a Stratix TM-based multiple bin architecture is pre-

sented. Both Virtex-4 and Stratix TM use 4-input LUTs
thus, a fair comparison can be made. Up to 2 regular
and a bypass bin can be decoded in the same cycle,

but only when decoding the absolute value of trans-
form coefficients. The actual throughput is, however,
not disclosed. For storing rLPS, a 64x112-bit table is

used, which partially explains the large area.

Performance comparisons between standard-cells
and FPGA implementations are arguable. However, ac-
cording to [7], ASICs should be, on average, 3.5 faster

than FPGAs. Hence, as a conservative estimation, the
performance of our architecture may be doubled, if needed,
by targeting an ASIC implementation.

The most remarkable features of our work are: the

targeted performance of 1 bin per cycle has been achie-
ved by means of a balanced design and avoiding stalls.
Syntax-elements decoding and context managing are ef-

ficiently implemented. Neighbors management is imple-
mented using a solution based on a reduced number of
registers and an efficient transposition scheme. FPGA

characteristics are integrated in the design: double port
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Table 4 Results comparison with other works

Work Tech. ThP Freq. ThP Multiple Area Ctx. memory SE decoding
(nm) (bin/cyle) (MHz) (Mbin/s) bin (gates) architecture & ctx. control

Lin [10] 90 1.98 222 440 2 always 82-k registers no
Liao [9] 90 1.83 264 483 2 in SE 42-k regs + RAM no
Hong [6] 130 0.73-1.08 333 243-360 2 or 4 bypass 47-k RAM + cache no
Yu [20] 180 ∼0.6 150 ∼90 2 + byp. 0.3mm2 RAM partial

Yang [18] 180 0.86 140 120 2 in SE 35-k RAM + cache partial
Chen [2] 130 1.02-1.32 238 243-314 2 in SE 44-k 2 overl. RAM yes

Zhang [21] 180 2.27 >45 >102 up to 16 42-k regs + RAM yes
Xu [17] FPGA n.a. 80.5 n.a 2 + byp. 7020 LUT RAM + cache partial
This FPGA 1 100 100 single 1372 LUT RAM yes

RAMs in FPGAs are as fast as logic and we take ad-
vantage of putting memory access in the critical path.

7 Conclusions

In this work, a high-speed FPGA-based architecture for

arithmetic decoding has been proposed that matches
the requirements for HD real-time decoding. We prove
that a pipeline with just 2 stages obtains high perfor-

mance and works without stalls. To this end, the 2-level
control is crucial.

We have introduced novel solutions for storing and

accessing neighbors information; managing contexts and
reducing the latency of bin decoding. Our neighbor man-
agement strategy allows for a 66% reduction in reg-

isters. Moreover, our architecture makes use of spe-
cific FPGA characteristics, such as fast dual-port block-
RAM and distributed memory.
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