MarDRe: efficient MapReduce-based removal of
duplicate DNA reads in the cloud

Roberto R. Expdsito, Jorge Veiga, Jorge Gonzdlez-Dominguez, Juan Tourifio

Grupo de Arquitectura de Computadores, Universidade da Coruiia
Campus de A Coruiia, 15071 A Coruiia, Spain

Abstract—This paper presents MarDRe, a de novo cloud-ready
duplicate and near-duplicate removal tool that can process single-
end and paired-end reads from FASTQ/FASTA datasets. MarDRe
takes advantage of the widely adopted MapReduce programming
model to fully exploit Big Data technologies on cloud-based
infrastructures. Written in Java to maximize cross-platform com-
patibility, MarDRe is built upon the open-source Apache Hadoop
project, the most popular distributed computing framework for
scalable Big Data processing. On a 16-node cluster deployed on
the Amazon EC2 cloud platform, MarDRe is up to 8.52 times
faster than a representative state-of-the-art tool. Source code in
Java and Hadoop as well as a user’s guide are freely available
under the GNU GPLv3 license at http://mardre.des.udc.es.

I. INTRODUCTION

The unprecedented deluge of data produced by Next Gen-
eration Sequencing (NGS) platforms cannot be coped with
traditional data processing systems, which has spurred the use
of Big Data and cloud computing technologies [1]. On the
one hand, MapReduce [2] is Google’s solution for scalable
Big Data analysis on commodity hardware, being Hadoop the
most popular open-source implementation. Hadoop uses its
own distributed file system (HDFS) to store large datasets
across the locally attached disks of the computing nodes. The
Hadoop scheduler tries its best to co-locate computing tasks
on the nodes where the input data reside, improving data
locality while minimizing data movements across the network.
This data-parallel model differs widely from that of traditional
High Performance Computing (HPC), which generally relies
on the Message Passing Interface (MPI) and the availability
of network/parallel file systems (e.g., Lustre), where data
are distributed from dedicated storage nodes to computing
nodes over the network. Furthermore, Hadoop provides built-
in fault-tolerance capabilities, while MPI cannot deal with
node failures. On the other hand, cloud computing allows
users to hire infrastructure over the Internet on a pay-as-
you-go basis, thereby avoiding huge capital investments and
maintenance costs. Public cloud providers are proving very
popular for Big Data analysis by offering easy-to-use cloud
services that enable to set up elastic virtual clusters to exploit
supercomputing-level power. Deployment of a Hadoop cluster
in the cloud has gained increasing attention in recent years
as a convenient, cost-effective and scalable way to store and
analyze biological data [3].

Given the rapidly increasing size of NGS datasets, pre-
processing is often required to either reduce their sizes or
ensure the necessary data quality for further analysis. One
preprocessing step is the removal of duplicate DNA reads that
are introduced, for instance, due to PCR amplification [4],
being the de novo strategy the preferred one when a com-
plete reference genome is not available for mapping-based
tools [5]. However, existing de novo removal tools that can
be deployed on distributed systems do not fully exploit Big
Data and cloud computing technologies. ParDRe [6] is a
hybrid MPI/multithreaded tool intended for HPC systems.
Nevertheless, its performance on cloud platforms is heavily
limited by its poor data access efficiency, caused by the limited
network bandwidth and the unavailability of high-performance
file systems in the cloud. Fulcrum [7] is a Python-based tool
that provides two distributed modes: (1) local-network mode,
which uses the parallel Python library; and (2) MapReduce
mode, which uses HiveQL and Python over Hadoop streaming.
However, the MapReduce mode is not publicly available in
the bundle distribution, which lacks the required source files.
Furthermore, Fulcrum only supports FASTQ datasets, and its
performace has proved to be significantly worse than ParDRe
according to the experimental evaluation of [6], mainly due to
its inefficient sequential way of grouping similar sequences.

This paper presents MarDRe, a de novo MapReduce-based
parallel tool to remove duplicate and near-duplicate reads
through the clustering of single-end and paired-end sequences
from FASTQ/FASTA datasets. MarDRe can be considered the
Big Data counterpart of ParDRe, but significantly improving
its performance on distributed systems, especially on cloud-
based infrastructures.

II. IMPLEMENTATION

MarDRe is a Java-based tool that implements a prefix-
suffix approach [7] which considers as potentially duplicate
reads those with an identical prefix. Once the reads have
been clustered according to their prefixes, their suffixes are
compared. This prefix-clustering approach is conceptually well
suited for MapReduce-style chunk processing, as each cluster
can be generated in parallel during the map phase, while those
reads in the same cluster can be compared during the reduce
phase.

TABLE I
RUNTIME AND ACCURACY RESULTS FOR ParDRe AND MarDRe REMOVING NEAR-DUPLICATE READS ON A 16-NODE AMAZON EC2 CLUSTER. SPEEDUPS
SHOWN ARE THE MarDRe RUNTIMES OVER THE ParDRe ONES.

Single-end: SRR377645 (213 million 100-bp reads) Paired-end: SRR948355 (69 million 202-bp reads)
Prefix #Mis- ParDRe MarDRe Speed ParDRe MarDRe Speed
Length matches | Runtime %Removed Runtime %Removed PeCCUP | Runtime %Removed Runtime %Removed peedup
15 1 2320 sec 8.35% 440 sec 8.35% 5.27 1300 sec 8.55% 157 sec 8.44% 8.28
15 3 2508 sec 11.61% 511 sec 11.60% 4.91 1283 sec 10.37% 155 sec 10.28% 8.28
25 1 2160 sec 8.15% 272 sec 8.14% 7.94 1301 sec 8.49% 153 sec 8.38% 8.50
25 3 2097 sec 10.90% 292 sec 10.90% 7.18 1286 sec 10.25% 151 sec 10.16% 8.52

MapReduce jobs typically process data chunks in line-based
text formats, where identifying individual records is simple as
line boundaries are denoted by newline characters. However,
FASTQ/FASTA are text-based formats that involve multiple
lines per sequence. Therefore, MarDRe implements custom
Hadoop input formats and record readers in order to properly
parse the reads from those widely adopted sequence formats.

A. Single-end mode

This mode has been implemented using one MapReduce
job followed by a copy-merge operation to provide a single
output file. The input dataset is first partitioned into a number
of HDFS blocks, with each map task operating on a single
block at a time. During the map phase, mappers process
in parallel their corresponding input blocks and emit key-
value pairs where the value is the parsed read and the key is
generated by the first [encoded bases, being [the prefix length
specified by the user in the command line. The clustering
itself is naturally performed by the underlying grouping-by-
key operation of the MapReduce pipeline, where the key-
value pairs are first partitioned across the available reducers
according to their keys (i.e., their prefixes), and then they are
sorted by key within each partition (i.e., within each cluster).
In the reduce phase, each reducer is in charge of computing
different clusters according to the default Hadoop hash-based
partitioner. For each cluster, reducers take the first read as
a seed and compare its suffix with that of the other reads,
computing the number of mismatches (i.e., the distance) for
each one. Next, only those reads whose distance difference
is less or equal than m are actually compared, being m the
number of allowed mismatches specified by the user. This
comparison step has been optimized by using a 4-bit encoding
for the suffix bases and a bitwise XOR operation to avoid
base-per-base comparisons, just as done in ParDRe. Finally,
non-duplicate reads are written to HDFS (one output file per
reducer).

After the MapReduce job has finished, an HDFS-level
operation is performed to merge all the intermediate output
files into the final output. This step can be disabled via a
configurable option, which can be useful for subsequent data
processing (e.g., sequence alignment) on HDFS.

B. Paired-end mode

This mode requires two input datasets with a one-to-one
mapping between the forward (or “left”) and reverse (“right”)
reads of each sequence. Before paired-end reads can be

clustered, both reads must first be joined, which involves
chaining two MapReduce jobs. The first job performs this join-
like operation by parsing both input files as separate single-
end datasets. Thus, mappers emit each forward/reverse read as
value and its starting position in the input file (i.e., the offset)
as key. In this way, the two reads of each sequence are sent
to the same reducer, which outputs key-value pairs to HDFS,
where the value consists of both reads and the key is the prefix
of the “left” read.

The second job carries out the duplicate removal, being
similar to that of the single-end mode but taking as input the
output files of the former job. First, paired-end reads are parsed
from HDFS during the map phase, emitting the prefix of the
“left” read as key to perform the clustering. Next, reducers
compare the paired-end reads that belong to the same cluster
in a similar way as before, but taking into account both ends
of each read.

III. PERFORMANCE EVALUATION

The experiments have been carried out on the Amazon EC2
cloud using a 16-node virtual cluster based on the c3.8xlarge
instance type. Each instance provides 32 cores, 60 GB of
memory, 2 local SSD disks and 10 Gigabit Ethernet network.
The Linux distribution selected for the performance evaluation
was Amazon Linux 2016.09 with kernel 4.4.51. ParDRe v1.3.5
was compiled with GNU v4.8.3 (-O3 flag) and Open MPI
v1.10.5, using the hybrid MPI/multithreaded mode with the
best combination of processes and threads. The network file
system for ParDRe was Amazon FElastic File System (EFS),
which provides EC2 instances with shared, low-latency access
to an NFSv4-like storage system. Regarding MarDRe, Hadoop
v2.7.3 was used. The number of map and reduce slots on each
node was set to the number of cores, which is a common
setting for Hadoop clusters. The HDFS block size was set
to 512 MB while the Java environment used was OpenJDK
v1.8.0_121.

Two different sets of experiments have been conducted on
the Amazon EC2 cloud. On the one hand, the runtime and ac-
curacy (i.e., the percentage of removed reads) of the tools have
been analyzed on the 16-node EC2 cluster (Section III-A).
These experiments have evaluated both single-end and paired-
end modes using FASTQ datasets while varying the prefix
length (I) and the number of allowed mismatches (m). On the
other hand, the second set of experiments consists of analyzing
the strong scalability of the tools (Section III-B). For doing
so, the paired-end mode has been evaluated using 1, 2, 4,

TABLE II
STRONG SCALABILITY RESULTS FOR ParDRe AND MarDRe REMOVING NEAR-DUPLICATE READS OF A PAIRED-END DATASET AND ALLOWING ONE
MISMATCH ON AMAZON EC2. SPEEDUPS SHOWN ARE THE MarDRe RUNTIMES OVER THE ParDRe ONES.

Paired-end: SRR948355 (69 million 202-bp reads)
#Nodes #Cores Prefix Length = 10 Prefix Length = 15 Prefix Length = 25
)) ParDRe MarDRe | Speedup | ParDRe MarDRe | Speedup | ParDRe MarDRe | Speedup
1 32 1014 sec 1435 sec 0.71 1015 sec 1179 sec 0.86 1008 sec 1041 sec 0.97
2 64 840 sec 782 sec 1.07 845 sec 686 sec 1.23 831 sec 653 sec 1.27
4 128 901 sec 511 sec 1.76 911 sec 524 sec 1.74 915 sec 478 sec 1.91
8 256 1126 sec 267 sec 4.22 1120 sec 234 sec 4.79 1115 sec 233 sec 4.79
16 512 1306 sec 169 sec 7.73 1300 sec 157 sec 8.28 1301 sec 153 sec 8.50

8 and 16 nodes (i.e., from 32 up to 512 cores). Scalability
results are shown for three different prefix length values while
allowing only one mismatch. Finally, the reported runtimes
for both tools are the mean value of 10 executions for each
experiment.

A. Runtime and accuracy results

Table I summarizes the runtime to remove near-duplicate
reads for single-end and paired-end modes using four different
configurations, also reporting the percentage of removed reads.
As can be observed, there are negligible differences in levels
of removed duplicates, caused by the different order when
comparing the reads within the cluster, as Hadoop always
sorts key-value pairs by key after the map phase. Regard-
ing execution times, the results show that MarDRe clearly
outperforms ParDRe, being the average speedups 6.33 and
8.40 for single-end and paired-end modes, respectively. As
mentioned in Section I, the main reason is the poor I/O
efficiency of ParDRe due to the limited network bandwidth
in a virtualized cloud environment. In ParDRe, all processes
read the input files completely, discarding those reads that do
not belong to their corresponding clusters. This causes high
network overhead and heavy EFS contention. In MarDRe,
mappers only parse their corresponding HDFS blocks that are
generally stored on local disks, which provides better data
locality and avoids contention for shared storage resources.

B. Scalability results

Table II shows the strong scalability results removing near-
duplicate reads of a paired-end dataset using three different
prefix length values and allowing one mismatch. As can be
seen, ParDRe is the fastest tool on 1 node, especially for
the lowest prefix length value, while MarDRe outperforms
ParDRe from 2 nodes on. In fact, ParDRe is not able to scale
from this point, obtaining roughly similar runtimes on two
nodes (64 cores) as on four (128 cores). Moreover, ParDRe
runtimes are worse on eight and sixteen nodes than on one
node. However, MarDRe is able to scale reasonably well
using all the available cores. More specifically, the average
speedup for MarDRe when using 16 nodes vs 1 is around 7.60.
Furthermore, MarDRe runtimes using 16 nodes significantly
outperform the best results for ParDRe (i.e., using 2 nodes).
In this case, the average speedup (i.e., MarDRe-16 nodes
vs ParDRe-2 nodes) is 5.26. The main conclusion that can
be drawn from these results is that while ParDRe can be

considered the fastest tool for multicore systems, MarDRe
would be the preferred choice on distributed ones.

ACKNOWLEDGMENT

This work was supported by the Ministry of Economy and
Competitiveness of Spain [TIN2016-75845-P (AEI/FEDER,
UE)]; and by the FPU Program of the Ministry of Education
of Spain [FPU014/02805].

REFERENCES

[1] A. O’Driscoll, J. Daugelaite, and R. D. Sleator, “‘Big data’, Hadoop
and cloud computing in genomics,” Journal of Biomedical Informatics,
vol. 46, no. 5, pp. 774-781, 2013.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

[3] Q. Zou et al., “Survey of MapReduce frame operation in bioinformatics,”
Briefings in Bioinformatics, vol. 15, no. 4, pp. 637-647, 2013.

[4] M. T. Ebbert et al., “Evaluating the necessity of PCR duplicate removal
from next-generation sequencing data and a comparison of approaches,”
BMC Bioinformatics, vol. 17, no. 7, p. 239, 2016.

[5] L. Pireddu, S. Leo, and G. Zanetti, “SEAL: a distributed short read
mapping and duplicate removal tool,” Bioinformatics, vol. 27, no. 15,
pp. 2159-2160, 2011.

[6] J. Gonzilez-Dominguez and B. Schmidt, “ParDRe: faster parallel dupli-
cated reads removal tool for sequencing studies,” Bioinformatics, vol. 32,
no. 10, pp. 1562-1564, 2016.

[71 M. S. Burriesci, E. M. Lehnert, and J. R. Pringle, “Fulcrum: condensing
redundant reads from high-throughput sequencing studies,” Bioinformat-
ics, vol. 28, no. 10, pp. 1324-1327, 2012.

