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Abstract: Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are
populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical
algorithms must be adapted towards distributed computing methodologies that leverage the underlying
computational power of these platforms. Here, a parallel, scalable, and optimized design for self-organized
maps (SOM) is proposed in order to analyze massive data gathered by the spectrophotometric sensor of
the European Space Agency (ESA) Gaia spacecraft, although it could be extrapolated to other domains.
The performance comparison between the sequential implementation and the distributed ones based on
Apache Hadoop and Apache Spark is an important part of the work, as well as the detailed analysis of
the proposed optimizations. Finally, a domain-specific visualization tool to explore astronomical SOMs
is presented.

Keywords: remote sensing; computational astrophysics; distributed computing; fast self-organized
maps; Apache Hadoop; Apache Spark

1. Introduction

Nowadays, information management systems have to be capable of handling enormous volumes
of data, so that they can be appropriately captured, stored, managed, and analyzed. This is usually
called the era of Big Data, where data scientists need to operate with very large amounts of information
by means of Data Mining techniques that allow for running software applications in parallel
environments, rather than using standalone applications run on personal computers. This means
that typical software packages and algorithms must be adapted towards distributed computing
platforms [1,2].

Examples of Big Data environments are the comprehensive all-sky astronomical surveys that
capture hundreds of Gigabytes through the on-board sensors, such as the on-going Earth-based
Sloan Digital Sky Survey (SDSS) [3], the ESA Gaia space mission [4], and the future surveys planned
with the Large Synoptic Survey Telescope (LSST) [5] currently under construction. Gaia is one of
the most promising missions of the ESA, and it is expected to become a milestone in Astronomy.
Its main objective is to provide accurate positional and kinematical information (position, parallax,
proper motion, and radial velocity) of all stars in the Milky Way up to a limiting apparent visible
magnitude close to G = 21, with G being the light passband of Gaia photometric instrument [6,7].
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Such a complete, non-biased map of the Galaxy will allow researchers to study the properties of the
different stellar populations and will provide a reliable picture of the past history of star formation
and chemical and dynamic evolution. However, deriving such information from anonymous stars
is not very useful, and this is why Gaia is equipped with two low-resolution spectrophotometer
sensors: one for the blue wavelengths (BP) and the other for the red wavelengths (RP), which together
provide the spectral energy distribution (SED) of all the observed objects from 330 to 1050 nm, sampled
with a dispersion varying between 4 to 32 nm pixel−1 [6]. The main physical properties of each
individual star observed by Gaia can be derived from their SEDs by the use of different algorithms
based, for instance, on statistical or pattern matching approaches.

Gaia tracks not only stars but also extragalactic objects, such as galaxies and quasars. Because of
the distinctive features in their SEDs, the photometric observations obtained with the blue and
red sensors will allow for the classification of the sources among the different astronomical object
types: single or binary stars, white dwarfs, galaxies, and quasars. Figure 1a shows examples of
typical BP/RP spectra for different astronomical objects. Obviously, most of the measurements
will correspond to stars, and the combined use of astrometry and photometry from the BP and RP
sensors are expected to provide information to accurately derive their astrophysical characteristics,
such as effective temperature, surface gravity, and chemical composition. Figure 1b shows BP and RP
synthetic photometry for several extreme type stars from very cold and faint ultra-cool stars, chemically
anomalous carbon stars, to massive and blue large stars (type O – type B). Once the astrophysical
parameters are determined, the use of models will allow us to determine stellar ages and masses
and subsequently describe the chemical and dynamical evolution of the Galaxy over a wide range of
distances, which is the ultimate objective of the Gaia mission.

(a)

(b)

Figure 1. Examples of simulated Gaia spectrophotometric data: Blue Photometer (BP) and Red
Photometer (RP). (a) simulated Gaia BP/RP data for different object types; (b) simulated Gaia BP/RP
data for different star types.
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The satellite was launched in December 2013, and it started its five years of routine operations
in June 2014. Since then, the spacecraft has been gathering approximately 40 Gigabytes every
day from the on board instruments, building the widest and most complete census of the Galaxy,
sampling astrometric properties and spectral energy distributions of 1.3 billion stars, and turning
into the most accurate survey ever made [8]. Taking into account that the spacecraft will observe
these objects over 75 epochs on average, the volume of the final Gaia database is expected to be
around a Petabyte, becoming a challenge in Computational Astrophysics. Such a catalog will contain
calibrated measurements from all Gaia instruments (integrated magnitudes in different filters, spectral
energy distributions, parallaxes, proper motions, etc.), as well as estimated astrophysical quantities.
This processing and analysis is the main goal of Gaia Data Processing and Analysis Consortium
(DPAC), an international scientific network composed of around 450 scientists and engineers, which
was promoted in 2005 by the ESA. The consortium is arranged in a hierarchical structure composed
of nine coordination units (CU), which are responsible for a part of the whole data processing effort,
and six data processing centers (DPC), where the information is actually processed by software
algorithms; the latter are designed and implemented by a number of work packages (WP) or modules
related to a certain CU according to their purpose. The final Gaia catalog is foreseen for 2023;
however, some intermediate releases are published in the meantime: the first one took place in
September 2016 [4,9], whereas the second one took place in April 2018.

This paper is framed in the Astrophysical Parameters Inference System (Apsis, CU8) [10], and the
Catalog Access (CU9):

1. Apsis is devoted to the classification of all the observed sources [11–13] by means of several work
packages enclosed within this CU, the Discrete Source Classifier (DSC) [13] being the main one.
It processes the whole Gaia dataset in order to classify the sources into a known astronomical type
(star, quasar, galaxy, etc.) by means of Support Vector Machines (SVM) [14], tagging as outliers
those sources that do not appropriately fit these models. The rest of the modules are aimed at
more specific classification tasks for subgroups of sources that satisfy certain requirements.
This article is associated with one of these packages, Outlier Analysis (OA, Figure 2), which is
devoted to the analysis, using unsupervised Artificial Intelligence methods on spectrophotometric
data (BP/RP spectra), of those sources tagged by the DSC module [13] as outlier sources because
either they cannot be fitted into any of the models used by DSC so they are considered photometric
outliers, or they cannot be classified with enough probability, i.e., weakly classified sources.
These outlier sources are expected to be of the order of 10% of the whole Gaia dataset, i.e.,
approximately 108 sources (100 Terabytes), which will be processed by the OA module in order
to throw some light on their nature, pretending to provide not only plain astronomical object
types (stars, ultra-cool dwarfs, white dwarfs, planetary nebulae, quasars, and galaxies), but also
sub-types [11].

2. The Catalog Access aims to design and implement the Gaia Archive, providing tools for the
astronomical community in order to access the Gaia catalog, visualize data, or even perform
data processing tasks. A Data Mining tool based on the OA module will be published, so that
scientists can run their own unsupervised analysis on Gaia data. Finally, a visualization tool
(Section 4) will be also released to ease the post-analysis stage for OA-based results.

Dealing with outlier sources is a complex task because they may be damaged observations or
even objects whose nature is completely unknown, so the information available about them does not
have a direct interpretation. In addition, the high dimensionality of the data, which always happens
when working with spectrophotometric data, makes the analysis even tougher. According to these
issues, two approaches are typically used to analyze outliers:

1. Dimensionality reduction lowers the number of features that is used to explore the data,
making the process lighter and therefore faster without losing too much information. Principal
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Component Analysis (PCA) [15] and Linear Discriminant Analysis (LDA) [16] are the most
popular algorithms for dimensionality reduction.

2. Clustering organizes objects into a number of groups with no prior information, just according to
the nature of the data. There are many different algorithms available, and they must be carefully
selected according to the particular problem under study [17].

Figure 2. Outlier Analysis (OA) module context: processes Gaia observed data that have been classified
as outliers by the Discrete Source Classifier (DSC) package.

Therefore, an algorithm that combines both features would be a great approach to analyze
outliers, and this is what we achieved using Self-Organized Maps (SOM) [18,19], and an Artificial
Neural Network that projects the input data into a two- or three-dimensional grid, which can be
intuitively explored using a dedicated visualization tool. Each processed source belongs to a certain
cluster according to its nature, and each cluster has a prototype that represents all the data grouped in
such a cluster. The prototypes are adapted over an iterative learning or training procedure that starts
from a random distribution of the clusters and finalizes with an ordered representation of the data.
There are several variants of the learning algorithm proposed by Kohonen in 1982 [18] that have been
empirically found to perform really well in Astronomy [20–26].

The enormous volumes of information collected in the Gaia mission require the applied algorithms
to analyze such data to be adapted in order to process them using a reasonable amount of time and
resources. In order to conduct some performance tests a Gaia-based dataset is described in Section 2.
Then, we present in Section 3 a custom version of Kohonen’s batch algorithm for optimization, and
distributed computing implementations for Apache Hadoop [2] and Apache Spark [1] are proposed
in Section 3.1. In addition, it is imposed that all Apsis algorithms are compliant with the System
of Accommodation of Gaia Algorithms (SAGA) framework [27,28], an Apache Hadoop abstraction
specifically developed for the Gaia software processing pipeline in order to execute the algorithms at
the Centre National d'Études Spatiales (CNES) in Toulouse, France. Consequently, the OA module has
been also implemented in SAGA, according to its scheme (Section 3.2). Regarding the analysis of the
results, a domain-specific visualization tool is introduced in Section 4, and a performance comparison
among all the algorithm versions is made in Section 5. Finally, some conclusions and future lines of
work are discussed in Sections 6 and 7, respectively.

2. The Gaia Data

All the information gathered by Gaia and its on-board sensors will be published along with the
Gaia catalog by means of several incremental Data Releases. By this time, the first Gaia Data Release
was delivered in September 2016 and the second one in April 2018, but no Gaia spectrophotometric
data is included in these releases. It is expected that such data is added to the catalog during the third
Data Release, foreseen for 2020.

Although the algorithm is being internally tested, using real Gaia data for validation purposes,
DPAC explicitly prohibits the publication of any real data or results based on them before its official
publication in the Data Releases. Therefore, the data used and the results presented here are based on
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semi-empirical observations from Sloan Digital Sky Survey (SDSS) DR7 [29]; it contains 10,125 sources
labeled as “unknown” by the SDSS spectroscopic classification system, which were adapted to the BP
and RP photometric format using the Gaia Object Generator (GOG) [30,31]. GOG was designed by
DPAC in order to simulate the end-of-mission catalog, including observational errors, with the objective
to probe the performance of the analysis algorithms under development. In [31], a full description
of GOG is provided, including the models assumed for the performance of Gaia spectrophotometers.
In the case of simulated spectrophotometry, GOG transforms “true” object properties, i.e., the SED
obtained from a model or from suited spectroscopic observations, into “Gaia observed” fluxes that
have an associated error that depends on the object’s properties, Gaia’s BP/RP instrument response,
and the type and number of observations made.

The proposed dataset has been studied in detail in [21]: it is a very representative sample of
outlying data for the Gaia Outlier Analysis task due to the nature of these sources, which are mainly
very faint and damaged observations. However, in order to test the performance and scalability of
the OA module on big datasets, such as that of Gaia, it would be necessary to work with different
datasets, from a small one (i.e., the one presented above) to huge datasets containing millions of
sources. Hence, we decided to take the SDSS semi-empirical dataset as the baseline and repeat it
several times so as to build larger datasets whose dimensionality is of the order of those expected for
the upcoming Data Releases. This does not really influence the tests conducted, as long as the quality
of the clustering is not being assessed in this work. For further details on clustering quality provided
by the algorithm, see [21].

BP/RP Spectra Preprocessing for Outlier Analysis

Before working with the data, they must be treated in order to make them compliant with the
specifications of the algorithms. Furthermore, applying an appropriate preprocessing may significantly
increase the overall performance in terms of both the quality of the results and the processing time.

For the Outlier Analysis module, a preprocessing stage on BP/RP spectra was defined in order to
enhance the results provided by the SOM. Among all the configurations explored, the following steps,
which are summarized in Figure 3, were empirically found to offer a better performance:

1. The low signal-to-noise ratio (SNR) pixels that lie on the extremes of BP/RP spectra are discarded
due to the low efficiency of the passbands (less than 5%). It may be remarked that this is a common
step for almost all the CU8 algorithms.

2. The BP/RP spectra are sanitized, interpolating those pixels where the passband efficiency is
acceptable and whose flux value is missing or wrong, such as negative values.

3. GOG data is oversampled, and a downsampling is done on the given BP/RP spectra in order to
reduce their dimensionality from 180 pixels to 60 pixels. Despite losing some information, it does
save up to 60% of processing time and the clustering quality is not significantly affected by this
decision (less than 1% effect in the tests conducted). Apart from OA, a number of modules are
also taking similar approaches to speed up their execution.

4. Both BP and RP spectra are joined into a single spectrum, removing the overlapping region to
avoid redundant wavelengths at a cut point, which is empirically determined by a domain expert
according to the response of the satellite’s instrument. Currently, the same cut point is being used
for all the objects, although this may vary in the future since the flux and wavelengths calibration
for the spectrophotometry is not final yet.

5. The Cardelli extinction model [32] is applied to the joint spectrum in order to minimize the impact
of interstellar reddening on the classification.

6. Finally, the treated spectrum is scaled to fix its area to one unit, so that sources with different
brightness can be compared using similarity distance functions on their spectra:

F′i =
Fi

∑i∈S(Fi),
(1)
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where Fi is the flux of a spectrum in band i, and S represents the bands of the spectrum.

(a) (b)

Figure 3. Gaia spectrophotometric data preprocessing for the Outlier Analysis (OA) module: the spectra
provided by the Blue and the Red Photometers (BP/RP) are sanitized, downsampled, clipped,
and joined into a single spectrum. Finally, the extinction is treated by applying a Cardelli extinction
model [32] and the flux is normalized to unit area. (a) original Gaia BP/RP spectra; (b) preprocessed
spectrum for OA.

3. Analyzing Gaia Outliers by Means of Self-Organized Maps

Self-Organized Maps (SOM) [18,19] were chosen because of their ability to process
high-dimensional data, such as the Gaia spectrophotometric data, and because they can be explored
by the domain experts by means of a dedicated visualization tool for astronomical SOMs (Section 4).
However, despite being a general Machine Learning method, SOM must be configured or adapted
according to the domain.

The Outlier Analysis module will handle approximately 108 sources, around 100 Terabytes, so
it must be parallelizable in order to make its computation feasible. We opt for the batch method
(Figure 4) because it allows for parallelization at iteration level by processing the whole dataset at
once before updating the SOM prototypes [33]. This makes the algorithm even more stable because it
does not take into account the order within the dataset. On the contrary, the online family does an
observation-by-observation processing and updating of the map, making its parallelization unfeasible.
In addition, the Kohonen’s batch algorithm was sped up by the use of FastSOM [20], that, once the map
has become topologically ordered after the first iterations, reduces the search space for determining
the neuron that better resembles each input source (Figure 4). These neurons are usually called
winner neurons and they are found by means of a similarity distance function, such as the Euclidean
or Manhattan distances. In spite of slightly decreasing the quality of the results (less than 5% for
reference datasets), FastSOM allows us to speed up the algorithm by reducing the number of distance
computations, looking for the winner neuron within the immediate neighborhood of the previous
winner (Figure 5b) instead of exploring the whole map (Figure 5a).

The metric has a high impact on both the execution time of the algorithm (since distances are
evaluated many times) as the quality of the classification. Therefore, there must be a balance between
both items. It was found that the squared Euclidean distance achieves a slightly better performance
than others, such as the Chebyshev or Manhattan distances. Another parameter that must be selected
is the neighborhood function, which determines how the neighbors of the winner neurons are affected
during the weight update calculation. It determines how many neighbors are considered (usually
called radius), and it must progress from a large value during the first iterations (denoted by σ0) to
zero (that is the winner neuron itself), progressively shrinking as the iterations succeed (controlled by
a parameter denoted by T, the neighborhood decay). A better performance was empirically obtained
for the Gaussian neighborhood function, and σ0 = 30 and T = 50.
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Figure 4. Fast Self-Organized Map (SOM) batch learning algorithm [20]: it starts with a random
initialization of the neurons, followed by an adaptation over an iterative process. This includes, for
each input source, determining the winner neuron using a distance function and calculating the weights
update needed for the winner neuron and the neighbors involved. Once the whole dataset is processed,
the weights update is finally committed to the SOM and the convergence criteria are analyzed to check
whether it needs to continue iterating or not.

(a) (b)

Figure 5. Differences in Self-Organized Map search spaces to determine a winner neuron for the current
iteration. The search spaces are highlighted in yellow, whereas the winner neuron in the previous
cycle is colored in orange. (a) regular SOM: the winner neuron is searched within the whole map;
(b) fast SOM: The search space is restricted to the immediate neighborhood of the previous winner.
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There are two remaining hyper-parameters of the SOM that must be set up: the dimensions
of the map, and the convergence criteria. Since the results of the OA module must be explored by
the scientific community, a two-dimensional grid was preferred for visualization purposes, and the
number of rows and columns was empirically determined using the Elbow method [34]. It studies
how much information is gained by adding more clusters until a significant drop is obtained. In this
case, the optimal configuration is found to be around 900 clusters arranged in a 30× 30 grid. Finally,
it can be considered that the algorithm converges when it is stable and no further mutation is required
on the prototypes. However, if such a condition is not reached, a maximum of 500 iterations is allowed
to guarantee that it stops at some point.

3.1. A Parallel Self-Organized Maps Learning Algorithm

The main objective of distributing the SOM training stage is to implement a version of the
algorithm capable of handling vast amounts of high-dimensional data in order to process and analyze
them in a reasonable period of time. A wide variety of distributed computing frameworks are available,
from low-level solutions, such as Message Passing Interface (MPI) [35], to high-level abstractions such
as Apache Hadoop [2] or Apache Spark [1]. In order to process the Gaia data, both Apache frameworks
were chosen by DPAC coordination units 8 and 9, respectively.

The actual implementation is mainly based on the Map-Reduce paradigm [36], which is
a general-purpose parallel programming model intended for spreading the workload over a number
of machines arranged in a cluster. Firstly, during the map stage, the data are distributed across the
machines, so that each chunk is processed individually. Once the map tasks are over, the reduce phase
takes place, gathering and processing all the outputs produced by the map tasks. This paradigm is
highly configurable and flexible and further details can be found in [1,2,36].

The behavior of such tasks can be controlled by user-defined functions and driver programs that
take care of the overall algorithm. For the Map-Reduce implementation of the SOM, the map task
computes the winner neuron for each input preprocessed source, while the reduce task calculates
partial prototype updates for each winner neuron according to the sources that belong to it, as is
illustrated in Figure 6. The driver program takes care of the iterative process itself, as well as it merges
and commits the weight updates to the SOM. In the case of Apache Hadoop [2] the implementation
is straightforward, defining the map and reduce functions as stated above. On the contrary, Apache
Spark [1] is not really based on the Map-Reduce paradigm, but on Resilient Distributed Datasets
(RDDs). An RDD is an in-memory distributed collection of observations, which can be transformed
or operated in order to compute a result. Therefore, although the map task can be implemented
directly using Spark RDD’s equivalent function, the reduce task needs to be translated into a Spark
RDD’s combine procedure. In addition, the driver is also optimized by using the built-in Spark RDD’s
reduce procedure.

Figure 6. Map-Reduce design for Self-Organized Maps: the map task determines the winner neuron for
each input source, whereas the reduce task calculates partial weight updates for each winner neuron;
the driver commits the weight updates and takes care of the learning process.
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3.2. Integration into SAGA Software Pipeline

The Outlier Analysis algorithm will be ultimately executed under the System of Accommodation
of Gaia Algorithms (SAGA) platform [27,28], which is actually a framework on top of Apache Hadoop
to handle all Gaia software executed at the Centre National d’Études Spatiales (CNES). Hence, the OA
algorithm has to be compliant with SAGA requirements and constraints, and consequently the parallel
design discussed in Section 3.1 was adapted towards SAGA’s facade-based paradigm (Figure 7), rather
than the previous Map-Reduce one. These facades are directly handled by SAGA and translated into
several Apache Hadoop jobs, with little control from the developer side.

The approach used for SAGA is slightly different from the pure Map-Reduce one, as is shown
in Figure 7. Firstly, the observations are divided into chunks, which are processed individually in
the “process chunk” step, computing partial prototype updates for each chunk. Then, these updates
are merged into a single one using a hierarchical procedure implemented through “combine updates”
steps. Finally, the merged update is committed to the SOM in the “update prototypes” step.

It must be noticed that such a design is intended for SAGA and, despite the fact that it is possible
to translate it into a pure Apache Hadoop or Apache Spark solution, it is certainly an arduous task as
it requires to implement some high level operations to handle data that are provided by the SAGA
framework. In any case, SAGA design has been found to consume many more resources than the
others due to the overhead introduced by SAGA itself, as will be discussed in Section 5.

Figure 7. System of Accommodation of Gaia Algorithms (SAGA) facades design for Self-Organized
Maps (SOM) that will run at the Centre National d'Études Spatiales (CNES).

4. A Visualization Tool to Explore Astronomical Self-Organized Maps

Self-Organized Maps are meant to be analyzed by experts in the field, i.e., astrophysicists, and
this procedure can be really arduous without any help, since the SOM itself is just a large amount of
numbers that must be somehow interpreted. One of the typical ways to explore SOMs is to visualize
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them using partitioning schemes, which, in this case, are mainly created using pre-built templates
based on external catalogs and synthetic data. In order to display this information, a dedicated
visualization tool for exploring SOMs built on astronomical data has been proposed [37]. Such a tool
provides several SOM representations that display the inner structure of the data and the relationships
they contain, so that any user can visualize not only the classical hits or u-matrix views, but also more
sophisticated ones:

• Catalog labels (Figure 8a) shows the most probable astronomical class associated with each
cluster, according to an offline cross-match performed on external astronomical databases, such
as Simbad [38], using the web service provided by the database to perform a radial search on the
sources’ celestial positions (right ascension and declination), and keeping just the closest one.
The application can handle different cross-matches simultaneously, so that the user can visualize
and compare them.

• Color distribution (Figure 8b) displays how the sources are distributed among the neurons
according to their color. Magnitude differences at blue and red wavelengths are depicted in the
map using a color gradient.

(a) (b)

(c) (d)

Figure 8. Specialized views for astronomical Self-Organized Maps supported by the visualization tool.
(a) catalog labels: representative object type for each cluster using a Simbad external catalog; (b) color
distribution: magnitude differences on blue and red wavelengths for Gaia BP/RP spectrophotometry;
(c) category distribution: percentage of ultra-cool dwarfs populating the neurons; (d) template labels:
labels determined using a template matching method based on Gaia simulations.

• Category distribution (Figure 8c) represents a particular type of astronomical object (i.e., stars,
white dwarfs, quasars, etc.), displaying how such sources are distributed among the neurons.

• Combined visualizations (Figure 9) allow the user to explore different views by means of
three-dimensional graphs, where a qualitative property (labels, category, etc.) is shown as
the baseline, and a quantitative property (hits, distance, etc.) is represented as height bars.
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Information displayed from different perspectives allows the user to discover new relationships
within the data.

• Template labels (Figure 8d) allow the user to observe the representative label associated with each
neuron. These classes are determined by a template matching procedure on different pre-built
model sets, and the user can select which one to display. In Figure 8d, a set on reference models
based on Gaia simulations are displayed on top of the original dataset described in Section 2.

Figure 9. Combined view: the color related to each bar indicates the representative label determined
by a template matching procedure on Gaia simulated data, whereas the height of the bar represents the
number of elements populating such a cluster.

This tool offers many other detailed views to analyze SOMs. For example, it is possible to
explore the content of a certain neuron, studying the spectra of the sources that belong to it, and some
statistics about their astrophysical parameters. Additionally, it is possible to perform a cross-match
with external catalogs, to work with different labels based on template matching or external catalogs,
and to communicate with other astronomical tools through the Simple Application Messaging Protocol
(SAMP) [39].

5. Performance Evaluation

Self-Organized Maps have been proved to be a powerful tool for clustering analysis on
astronomical datasets [21,25,26]. Although it is not the main goal of the present work, a brief summary
about the scientific results obtained for such a dataset is presented here: the SOM succeeded in ordering
the sources and grouping them by similarity of their SED. Different object types are placed in clearly
different regions in the map (Figures 8d and 9). Despite working with outlier observations, only
15% were misclassified (“undefined”) or not classified at all (“unknown”) by our SOM. Due to the
constraints imposed by DPAC, it is not possible to publish results based on any real data; even so,
during the first tests conducted for validation purposes the scientific results produced by the algorithm
were meaningful and scientifically consistent.

Now, setting aside the scientific results produced by the SOM, the performance obtained for the
different implementations proposed in Section 3 will be assessed, running them over exactly two
hundred iterations. Consequently, a common environment is defined in Table 1 in order to conduct all
those tests under similar conditions. It must be noticed that the SAGA framework is hosted by CNES
in Toulouse (France) and it is exclusively intended for official Gaia data processing, so we have limited
access to it and only the SAGA compliant algorithm can be tested during the validation and operations
runs scheduled by DPAC. The Apache Hadoop and Apache Spark implementations are tested using
a much more modest local cluster located at our research laboratory at the University of A Coruna.
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Table 1. Execution environment used for the tests. All these machines are under Oracle Java 8.

# of Cores Memory (GB)

Local single machine 32 128
Local cluster 104 392

SAGA-CNES cluster ∼1100 6050

Firstly, the impact of the use of the FastSOM approach instead of the regular one is assessed. It can
be clearly observed in Table 2 and Figure 10a that the FastSOM approach provides a noticeable speed
up, reducing execution times up to 60%. It must be also noticed that the larger dataset is processed or
the larger number of iterations are completed, the more speed up is obtained with respect to the regular
algorithm. This behavior is caused by the reduction of the winner neuron search space (Figure 5),
and its impact becomes much greater as the number of winner neuron searches is increased (i.e., more
data, or more iterations).

Table 2. Performance comparison between regular and fast SOM algorithms using a sequential
approach executed in a single local machine (hh:mm:ss).

10 k 100 k 1 M 10 M 100 M

Regular 00 : 03 : 43 00 : 37 : 55 06 : 22 : 29 64 : 34 : 56 654 : 57 : 13 ∗

Fast 00 : 01 : 23 00 : 13 : 53 02 : 21 : 00 24 : 13 : 42 246 : 29 : 25 ∗

* These values were estimated.

(a) (b)

Figure 10. Performance comparison among the different Self-Organized Maps’ implementations
described in Section 3. (a) speed up obtained by the FastSOM compared to the regular one using
a sequential approach; (b) scalability of the FastSOM algorithm for the proposed implementations.
* These values were estimated.

Taking into account the considerable speed up achieved by the FastSOM method, and the
insignificant loss of precision, which was found to be less than 5% using a reference dataset (see [20] for
further details), we come to the conclusion that it is worth using such an optimization to analyze
outliers in the Gaia mission. Therefore, from now on, the performance and scalability results are just
shown for the FastSOM algorithm (Table 3 and Figure 10b).

It can certainly be observed that the application of distributed algorithms for processing small
datasets provides lower execution times than using a sequential approach. Such a behavior is due to
the frameworks internal operations (i.e., initialization, communication among the nodes, finalization,
etc.), which consume a certain amount of resources apart from the actual algorithm computation.
A threshold can be identified for each of the parallel implementations so that it is worth its execution
rather than the sequential one. For the studied dataset, the Apache Hadoop threshold can be set up at
around a million sources, whereas Apache Spark can use a lower value, close to fifty thousand sources.
In the case of SAGA, the overhead is considerably higher, so that it requires much larger datasets at
around a hundred million objects to benefit from such platform.
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In general terms, the Apache Spark based algorithm tends to be significantly faster than the
Apache Hadoop one for small and medium size datasets, but, for much larger datasets, it becomes less
beneficial. The underlying cause of this behavior is the way these frameworks handle data internally:
Apache Hadoop makes an extensive use of disk, whereas Apache Spark runs mainly in memory.
Thus, for small datasets, the usage of memory rather than disk makes Apache Spark much faster,
similar to the sequential implementations, but when the dataset becomes huge, it turns unstable and
quite dependent on the underlying platform resources, requiring a fine-tuning of the tasks. In return,
Apache Hadoop is more stable when it has to deal with enormous volumes of data, as it uses disk
storage whose capacity is usually larger and cheaper than memory, but of course it penalizes the
overall performance.

Table 3. Time measurements to study the scalability of the FastSOM algorithm using the proposed
implementations (hh:mm:ss).

10 k 100 k 1 M 10 M 100 M

Local Sequential 00 : 01 : 23 00 : 13 : 53 02 : 21 : 00 24 : 13 : 42 246 : 29 : 25 ∗

Local Apache Hadoop 01 : 13 : 16 01 : 35 : 06 02 : 16 : 15 06 : 57 : 57 30 : 56 : 28
Local Apache Spark 00 : 02 : 16 00 : 07 : 04 00 : 26 : 49 02 : 40 : 31 45 : 24 : 12

SAGA-CNES 23 : 27 : 35 - - 36 : 36 : 33 145 : 33 : 42 ∗

* These values were estimated.

Regarding SAGA-CNES runs, it is necessary to mention and to make clear that it is not possible
to run the wide benchmark used in the local cluster, since it is a shared platform for the entire Gaia
software pipeline across several coordination units and, therefore, it can only be used to analyze real
Gaia data for operations and validation purposes, as scheduled by DPAC. The performance observed
using SAGA was not as good as expected, as it was found to add a considerable overhead due to the
initialization of the processes and input/output internal operations. However, it must be noticed that
the runs under consideration were the first ones for the OA module since its integration, and it is
expected to evolve and improve the execution times once the platform configuration is appropriately
tuned. Additionally, CNES is continuously working to improve SAGA implementation and new
patches are expected to enhance its overall performance.

In any case, the enormous computational power provided by the SAGA-CNES cluster is expected
to allow the algorithm to scale well on huge datasets. This scalability is achieved by using chunks,
so that the chunk size must be appropriately tuned in order to make use of all the CPUs of the cluster,
taking advantage of the underlying computational power. According to the estimations made in the
present work, it would be possible to process a hundred million sources in approximately six days
(considering the worst case scenario based on a real 28 million objects execution, which took two days),
accomplishing the outlier analysis task in very reasonable terms.

6. Conclusions

The extensive and complex datasets that are being gathered these days in Astronomy as well as
in other fields of research led to a change in the perspective of algorithm and software development
towards distributed computing methodologies that can appropriately handle such volumes of data.
This is the case of the Gaia mission that is collecting approximately 40 Gigabytes per day and, therefore,
it requires a parallel implementation for all the related software developments.

This article addresses the design and implementation of an unsupervised clustering algorithm
based on Self-Organized Maps (SOM) in order to conduct an analysis of outlier sources in the Gaia
mission through the Outlier Analysis (OA) module. To this purpose, the algorithm was implemented
using the frameworks chosen by DPAC to implement their algorithms: Apache Spark and an ad hoc
framework based on Apache Hadoop.
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Regarding the proposed design (Section 3) and the performance obtained by the algorithm
(Section 5), the following conclusions can be highlighted:

• The use of the FastSOM algorithm can considerably speed up the execution, saving up to 60% of
the run time compared to the regular implementation, without losing precision (less than 5% for
reference datasets).

• A scalable and distributed design was achieved for the SOM learning algorithm, allowing for the
analysis of very large data volumes in a reasonable term (Section 5).

• The Apache Spark implementation was found to be really beneficial for small and medium
size datasets. However, for enormous volumes of data the intensive memory usage causes the
algorithm to become unstable and eventually resource dependent, needing a fine-tuning to avoid
excessive memory consumption that could make the algorithm crash at some point.

• The Apache Hadoop version is capable of handling and processing huge datasets in reasonable
times, providing a scalable and stable solution for processing vast volumes of information.

• The OA module has been successfully integrated into the CU8 software pipeline (SAGA), and it
is planned to produce its first scientific results for the third Gaia Data Release around 2020.
According to the tests conducted during the validation stage, OA is expected to take approximately
six days to be executed over a hundred million sources (a 10% of the whole Gaia dataset).

• The Apache Spark implementation will be available to the astronomical community as a DPAC
CU9 Data Mining tool in order to conduct their own analysis on Gaia data.

• Finally, a visualization tool to explore astronomical SOMs will be published along with the Gaia
Data Releases, so that the OA module results, as well as other samples of Gaia data processed
using the CU9 Data Mining tool, can be further analyzed by the community.

7. Future Work

Although the proposed algorithm is already integrated into the Gaia software pipeline in order to
produce scientific results in the upcoming third Gaia Data Release, some key points that could improve
this work have been identified:

• Regarding the quality of the scientific results, alternative preprocessing stages are being studied,
as well as different postprocessing methods oriented to the visualization tool (Section 4).

• The overhead caused by SAGA internal operations is expected to be significantly reduced in
the upcoming SAGA implementations, so that it will speed up the execution of the modules,
including the OA module.

• In order to improve the performance of the algorithm, some very promising CPU/GPU mixed
computing tests have been conducted for an implementation based on Nvidia Compute Unified
Device Architecture (CUDA) (Santa Clara, CA, USA) [40]. Although SAGA does not support
GPU computing, this paradigm may be suitable for both Apache Hadoop and Apache Spark and
it is currently being studied.

• Our clustering analysis tool based on Self-Organized Maps is being applied to study
outlier sources in the Gaia mission, but it could be used to analyze other complex
databases, even from other domains. Very promising results have been found for intrusion
detection over communication networks, as well as for user profile identification in online
marketing environments.
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