
Compact Data Structures for
Large and Complex Datasets

Autor: Fernando Silva Coira
Tesis doctoral UDC / 2017

Directores:
Susana Ladra González
José Ramón Paramá Gabía

Compact Data Structures for
Large and Complex Datasets

Autor: Fernando Silva Coira
Tesis doctoral UDC / 2017

Directores:
Susana Ladra González
José Ramón Paramá Gabía

Programa Oficial de Doutoramento en Computación

PhD thesis supervised by
Tesis doctoral dirigida por

Susana Ladra González
Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1200
Fax: +34 981 167160
susana.ladra@udc.es

José Ramón Paramá Gabía
Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1241
Fax: +34 981 167160
jose.parama@udc.es

Susana Ladra González y José Ramón Paramá Gabía, como directores,
acreditamos que esta tesis cumple los requisitos para optar al título de doctor
internacional y autorizamos su depósito y defensa por parte de Fernando Silva Coira
cuya firma también se incluye.

iii

iv

A miña familia

v

vi

Acknowledgements

I must start these lines by thanking my advisors, Susana and Jose, who supported
me over the last few years to do this work, without them this would not be possible.
Thanks also for all the knowledge transmitted and the help I had. I also want to
thank Nieves for giving me the opportunity to join the research group.

Thanks to all members of the Database Laboratory, especially Alex, Cris, Adrian,
Daniil and Tirso, learning (and traveling) partners. And the friends and family that
accompanied me all this time. I should also thank Gonzalo for his help in my stay
in Chile and for everything I learned during these months.

Finally, my greatest gratitude to Lorena, for being by my side from the first day
and helping me when I needed it. Thank you for believing in me and being my
traveling partner, I could not do all this way without you.

This thesis has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement
No 690941; the European Regional Development Fund (ERDF) [ED431G/01];
Ministerio de Economía y Competitividad (PGE and ERDF) [TIN2016-78011-
C4-1-R; TIN2016-77158-C4-3-R; TIN2013-46238-C4-3-R; TIN2013-46801-C4-3-R],
Centro para el desarrollo Tecnológico e Industrial Programa CIEN 2014 (co-founded
with ERDF) [IDI-20141259; ITC-20151247]; and Xunta de Galicia (co-founded with
ERDF) [GRC2013/053].

vii

viii

Agradecimientos

Debo empezar estas líneas dando las gracias a mis directores de tesis, Susana y
Jose, que me guiaron a lo largo de los últimos años para realizar este trabajo, sin
ellos ésto no sería posible. Gracias también por todo el conocimiento transmitido y
los consejos y la ayuda que tuve mientras investigábamos juntos. También quiero
agradecer a Nieves por darme la oportunidad de unirme al grupo de investigación.

Gracias a todos los miembro del Laboratorio de Bases de Datos, especialmente a
Álex, Cris, Adrián, Daniil y Tirso, compañeros de aprendizaje (y de viajes). Y a los
amigos y familia que me acompañaron en todo momento. También debo agradecer
a Gonzalo por la ayuda prestada en mi estancia en Chile y por todo lo que aprendí
durante eses meses.

Por último, mi mayor gratitud a Lorena, por estar a mi lado desde el primer día
y ayudarme cuando lo necesitaba. Gracias por creer en mí y ser mi compañera de
viaje, no podría recorrer todo este camino sin ti.

Esta tesis ha recibido fondos del programa de investigación e innovación
de European Union’s Horizon 2020 en virtud del acuerdo de subvención Marie
Sklodowska-Curie No 690941; el Fondo Europeo de Desarrollo Regional (FEDER)
[ED431G/01]; Ministerio de Economía y Competitividad (PGE and FEDER)
[TIN2016-78011-C4-1-R; TIN2016-77158-C4-3-R; TIN2013-46238-C4-3-R; TIN2013-
46801-C4-3-R], Centro para el desarrollo Tecnológico e Industrial Programa CIEN
2014 (cofinancido con FEDER) [IDI-20141259; ITC-20151247]; y Xunta de Galicia
(cofinanciado con FEDER) [GRC2013/053].

ix

x

Abstract

In this thesis, we study the problem of processing large and complex collections of
data, presenting new data structures and algorithms that allow us to efficiently store
and analyze them. We focus on three main domains: processing of multidimensional
data, representation of spatial information, and analysis of scientific data.

The common nexus is the use of compact data structures, which combine in a
unique data structure a compressed representation of the data and the structures to
access such data. The target is to be able to manage data directly in compressed
form, and in this way, to keep data always compressed, even in main memory. With
this, we obtain two benefits: we can manage larger datasets in main memory and
we take advantage of a better usage of the memory hierarchy.

In the first part, we propose a compact data structure for multidimensional
databases where the domains of each dimension are hierarchical. It allows efficient
queries of aggregate information at different levels of each dimension. A typical
application environment for our solution would be an OLAP system.

Second, we focus on the representation of spatial information, specifically on
raster data, which are commonly used in geographic information systems (GIS) to
represent spatial attributes (such as the altitude of a terrain, the average temperature,
etc.). The new method enables several typical spatial queries with better response
times than the state of the art, at the same time that saves space in both main
memory and disk. Besides, we also present a framework to run a spatial join between
raster and vector datasets, that uses the compact data structure previously presented
in this part of the thesis.

Finally, we present a solution for the computation of empirical moments from a
set of trajectories of a continuous time stochastic process observed in a given period
of time. The empirical autocovariance function is an example of such operations.
In this thesis, we propose a method that compresses sequences of floating numbers
representing Brownian motion trajectories, although it can be used in other similar
areas. In addition, we also introduce a new algorithm for the calculation of the
autocovariance that uses a single trajectory at a time, instead of loading the whole
dataset, reducing the memory consumption during the calculation process.

xi

xii

Resumen

En esta tesis estudiamos el problema de procesar grandes colecciones de datos,
presentando nuevas estructuras de datos compactas y algoritmos que nos permiten
almacenarlas y analizarlas de forma eficiente. Nos centramos principalmente en tres
dominios: procesamiento de datos multidimensionales, representación de información
espacial y análisis de datos científicos.

El nexo común es el uso de estructuras de datos compactas, que combinan en
una única estructura de datos una representación comprimida de los datos y las
estructuras para acceder a dichos datos. El objetivo es poder manipular los datos
directamente en forma comprimida, y de esta manera, mantener los datos siempre
comprimidos, incluso en la memoria principal. Con esto obtenemos dos beneficios:
podemos gestionar conjuntos de datos más grandes en la memoria principal y
aprovechar un mejor uso de la jerarquía de la memoria.

En la primera parte proponemos una estructura de datos compacta para bases de
datos multidimensionales donde los dominios de cada dimensión están jerarquizados.
Nos permite consultar eficientemente la información agregada (suma, valor máximo,
etc.) a diferentes niveles de cada dimensión. Un entorno de aplicación típico para
nuestra solución sería un sistema OLAP.

En segundo lugar, nos centramos en la representación de la información espacial,
específicamente en datos ráster, que se utilizan comúnmente en sistemas de
información geográfica (SIG) para representar atributos espaciales (como la altitud
de un terreno, la temperatura media, etc.). El nuevo método permite realizar
eficientemente varias consultas espaciales típicas con tiempos de respuesta mejores
que el estado del arte, al mismo tiempo que reduce el espacio utilizado tanto en la
memoria principal como en el disco. Además, también presentamos un marco de
trabajo para realizar un join espacial entre conjuntos de datos vectoriales y ráster,
que usa la estructura de datos compacta previamente presentada en esta parte de la
tesis.

Por último, presentamos una solución para el cálculo de momentos empíricos a
partir de un conjunto de trayectorias de un proceso estocástico de tiempo continuo
observadas en un período de tiempo dado. La función de autocovariancia empírica
es un ejemplo de tales operaciones. En esta tesis proponemos un método que

xiii

xiv

comprime secuencias de números flotantes que representan trayectorias de movimiento
Browniano, aunque puede ser utilizado en otras áreas similares. En esta parte,
también introducimos un nuevo algoritmo para el cálculo de la autocovariancia que
utiliza una única trayectoria a la vez, en lugar de cargar todo el conjunto de datos,
reduciendo el consumo de memoria durante el proceso de cálculo.

Resumo

Nesta tese estudamos o problema de procesar grandes coleccións de datos,
presentando novas estruturas de datos compactas e algoritmos que nos permiten
almacenalas e analizalas de forma eficiente. Centrámonos en tres dominios principais:
procesamento de datos multidimensionais, representación de información espacial e
análise de datos científicos.

O nexo común é o uso de estruturas de datos compactas, que combinan nunha
única estrutura de datos unha representación comprimida dos datos e as estruturas
para acceder a tales datos. O obxectivo é poder manipular os datos directamente en
forma comprimida, e desta maneira, manter os datos sempre comprimidos, incluso na
memoria principal. Con esto obtemos dous beneficios: podemos xestionar conxuntos
de datos máis grandes na memoria principal e aproveitar un mellor uso da xerarquía
da memoria.

Na primera parte propoñemos unha estructura de datos compacta para bases de
datos multidimensionais onde os dominios de cada dimensión están xerarquizados.
Permítenos consultar eficientemente a información agregada (sumar valor máximo,
etc) a diferentes niveis de cada dimensión. Un entorno de aplicación típico para a
nosa solución sería un sistema OLAP.

En segundo lugar, centrámonos na representación de información espacial,
especificamente en datos ráster, que se utilizan comunmente en sistemas de
información xeográfica (SIX) para representar atributos espaciais (como a altitude
dun terreo, a temperatura media, etc.). O novo método permite realizar
eficientemente varias consultas espaciais típicas con tempos de resposta mellores que
o estado da arte, ao mesmo tempo que reduce o espazo utilizado tanto na memoria
principal como no disco. Ademais, tamén presentamos un marco de traballo para
realizar un join espacial entre conxuntos de datos vectoriais e ráster, que usa a
estructura de datos compacta previamente presentada nesta parte da tese.

Por último, presentamos unha solución para o cálculo de momentos empíricos
a partir dun conxunto de traxectorias dun proceso estocástico de tempo continuo
observadas nun período de tempo dado. A función de autocovarianza empírica
é un exemplo de tales operacións. Nesta tese propoñemos un método que
comprime secuencias de números flotantes que representan traxectorias de movemento

xv

Browniano, aínda que pode ser empregado noutras áreas similares. Ademais, tamén
introducimos un novo algoritmo para o cálculo da autocovarianza que emprega unha
única traxectoria á vez, en lugar de cargar todo o conxunto de datos, reducindo o
consumo de memoria durante o proceso de cálculo.

xvi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure of the Thesis . 4

2 Basic Concepts 7
2.1 Information Theory and Data Compression 7

2.1.1 Basic concepts on Information Theory 7
2.1.2 Data Compression: basic concepts 8

2.1.2.1 Classification of compression techniques 8
2.1.3 Measuring the efficiency of compression techniques 8
2.1.4 Compressing Integer Numbers 9

2.2 Compact data structures . 11
2.2.1 Rank and select over bitmaps 11
2.2.2 Compressed bitmap representation 12
2.2.3 Compressed tree representations: LOUDS 13

3 Previous work 15
3.1 Directly Addressable Codes (DACs) 15
3.2 The k2-tree . 16
3.3 The k2-treap . 18

I Multidimensional data 21

4 Introduction 23
4.1 Introduction . 24

4.1.1 Data Warehouses (DWs) . 24
4.1.1.1 Online Analytical Processing (OLAP) 24

4.2 Baseline for multidimensional data: the kn-treap 25
4.2.1 Construction . 26

xvii

xviii Contents

4.2.2 Data structures . 26
4.2.3 Queries . 26

4.2.3.1 Finding the value of a specific cell by its coordinates 27
4.2.3.2 Finding the sum of the cells in a submatrix 28

5 Our proposal: CMHD 29
5.1 Our proposal: CMHD . 29

5.1.1 Conceptual description . 29
5.1.2 Data structures . 31
5.1.3 Queries . 32

6 Experimental evaluation 35
6.1 Datasets . 35
6.2 Space requirements . 36
6.3 Query times . 36

6.3.1 Finding one precomputed values 37
6.3.2 Finding the sum of several precomputed values 38

7 Discussion 41
7.1 Main contributions . 41
7.2 Future work . 41

II GIS data 43

8 Introduction 45
8.1 Introduction . 45

8.1.1 Data model . 47
8.1.1.1 Representation of raster data 48
8.1.1.2 Classic formats . 49

8.2 Related work . 50
8.2.1 Quadtrees for raster data . 50
8.2.2 k2-acc . 52
8.2.3 k3-tree . 52
8.2.4 R-tree . 53

8.3 Spatial join . 55

9 Our proposal: k2-raster 57
9.1 k2-raster . 57

9.1.1 Construction and data structures 58
9.1.2 Query algorithms . 63
9.1.3 Hybrid variant . 70

9.2 Heuristic k2-raster: k2
H -raster . 71

Contents xix

9.2.1 Querying . 75

10 Spatial join: k2-raster and R-tree 79
10.1 Spatial join . 79

10.1.1 Basic components of the algorithm 81
10.1.1.1 Pointers . 81
10.1.1.2 Checking the overlapping 81

10.1.2 The algorithm . 83

11 Experimental evaluation 87
11.1 Raster data compression . 87

11.1.1 Experimental Framework . 87
11.1.2 Datasets . 88
11.1.3 Construction time . 90
11.1.4 Space requirements . 93
11.1.5 Query times . 93

11.1.5.1 Time of getCell . 93
11.1.5.2 Time of getWindow 94
11.1.5.3 Time of searchValuesInWindow 96
11.1.5.4 Time of checkValuesInWindow 96

11.2 Spatial Join . 99
11.2.1 Experimental Framework . 99
11.2.2 Datasets . 100
11.2.3 Memory usage . 100
11.2.4 Time performance . 101

12 Discussion 105
12.1 Main contribution . 105

12.1.1 Raster data compression . 105
12.1.2 Spatial Join . 105

12.2 Future work . 106

III Scientific data 107

13 Introduction 109
13.1 Introduction . 109
13.2 Brownian motion and autocovariance estimation 111

13.2.1 Brownian trajectories . 111
13.2.2 Autocovariance function estimation 111

13.3 Related Work . 113
13.3.1 Compressing Floating Point Numbers 113

xx Contents

14 Our proposal: CBM 115
14.1 Compact representation of Brownian Motion (CBM) 115
14.2 Memory-efficient computation of the sample autocovariance function 118

15 Experimental evaluation 121
15.1 Setup . 121
15.2 Dataset analysis . 122
15.3 Compression performance . 124
15.4 Memory consumption during the computation of the sample autoco-

variance function . 125
15.5 Time to compute the sample autocovariance function 127

16 Discussion 135
16.1 Main contributions . 135
16.2 Future work . 136

IV Summary of the thesis 137

17 Conclusions and future work 139
17.1 Main contributions . 139
17.2 Future work . 141

A Publications and other research results 143

B Resumen del trabajo realizado 145
B.1 Introducción . 145

B.1.1 Motivación . 146
B.2 Contribuciones y conclusiones . 149
B.3 Trabajo futuro . 152

Bibliography 153

List of Figures

2.1 rank, select and access over a bitmap B = 110110110. 12
2.2 LOUDS representation for a tree with 15 nodes. 14

3.1 Example of DACs encoding. 16
3.2 Example of binary matrix (left) and resulting k2-tree representation

(right), with k = 2. 17
3.3 Example of the construction of the k2-treap. 19

4.1 kn-treap with a highlighted range query. 27

5.1 Example of CMHD construction for a two-dimensional matrix. . . . 30

8.1 Example of a vector model and a raster model for the same data. . . 49
8.2 An image (left), where a number inside a square means that all pixels

in that square have that value, and the corresponding conceptual
quadtree showing the byte representation of each node using the
Treecodes strategy (right). 51

8.3 Example of raster matrix (top) and resulting k2-acc representation
(bottom). 53

8.4 Example of the k3-tree decomposition, with k = 2. 54
8.5 R-tree of 3 levels with 10 objects indexed. 54

9.1 Example of raster matrix (top). We indicate the minimum (light gray)
and maximum (dark gray) value of each submatrix for the four steps
of the recursive subdivision of the construction algorithm, using k = 2.
Conceptual tree representation obtained from the construction of the
k2-raster (bottom). Numbers at each node indicate the maximum
and minimum value of its corresponding submatrix. In the last level,
only the maximum is shown. 58

xxi

xxii List of Figures

9.2 Compact representation of the conceptual k2-raster using differences
for the maximum and minimum values (top). Data structures T ,
Lmax and Lmin used for representing compactly the k2-raster
(bottom). Global maximum and minimum values are also stored
separately. 60

9.3 Submatrix subdivision and conceptual tree example to illustrate
getCell and getWindow operations. We highlight the nodes used in
the examples. 64

9.4 Example of using different k values. We indicate the minimum (light
gray) and maximum (dark gray) values of each submatrix for the
three steps of the recursive subdivision of the construction algorithm
(top). Conceptual tree representation obtained from the construction
of the hybrid k2-raster with k1 = 4, k2 = 2 and n1 = 1 (bottom). . . 71

9.5 Example of raster matrix (top), conceptual tree representation
obtained from the construction of the k2

H -raster (center), and
conceptual tree using differential encoding (bottom). The last level
is represented using kLst × kLst submatrices, being kLst = 2 for this
example. 72

9.6 Compact representation of the conceptual k2
H -raster using differences

for the maximum and minimum values (top). Data structures T ,
Lmax, Lmin, V oc, isInV oc, encodedV alues and plainV alues used
for representing compactly the k2

H -raster (bottom). 77

10.1 The MBRs of an R-tree (left). A raster dataset with the divisions
of the k2-raster and its conceptual tree (right). The k2-raster uses a
hybrid configuration with n1 = 2, k1 = 2, and k2 = 4. The last level
of the k2-raster is omitted for clarity. 80

11.1 Construction time (left) and compression percentage (right) for
datasets of different nature. 91

11.2 Time results for getCell (left) and getWindow (right) over datasets
with different size and number of different values. We show average
time per cell retrieved in microseconds for getCell and nanoseconds
for getWindow. 95

11.3 Time results for searchV aluesInWindow using random windows
and ranges without any restriction (left) and when restricting the
maximum window size to 500 × 500 and the range length to 200
(right). Time results are measured in nanoseconds per retrieved cell. 97

11.4 Time results for weak (left) and strong (right) checkV aluesInWindow.
Time results are measured in microseconds per query. 98

11.5 MBR distributions of the vector datasets vects (left) and vecca (right).100
11.6 Memory consumption (in Megabytes) for rasters in Scenario I. . . . 101
11.7 Memory consumption (in Megabytes) for rasters in Scenario II. . . . 101

List of Figures xxiii

11.8 Processing time (in seconds) with rasters of Scenario I. 102
11.9 Processing time (in seconds) with rasters of Scenario II. 102

13.1 Four trajectories (curves) of a Brownian motion. 112

14.1 Compression process of a trajectory. 116

15.1 Memory consumption/computation time trade-off for the dataset of
size 30000× 30000. 130

15.2 Disk space/computation time trade-off for the dataset of size 30000×
30000. 131

15.3 Overall performance for the dataset of size 30000× 30000. 133

xxiv List of Figures

List of Tables

6.1 Space requirements of kn-treap and CMHD data structures (in KB)
for synthetic datasets. 37

6.2 Average query times (in µs) for queries finding one precomputed value
(original matrix cells) for synthetic datasets. 38

6.3 Average query times (in µs) for queries finding one precomputed value
(penultimate tree level) for synthetic datasets. 39

6.4 Average query times (in µs) for queries finding a sum of precomputed
value. 39

11.1 Properties of dataset eua, obtained from WorldClim datasets. It
includes raster matrices of different size and number of different
values of the input matrix. 90

11.2 Properties of datasets cat0 and cat3, obtained from DTM datasets.
They include raster matrices of different size and number of different
values. 90

11.3 Dataset MDTx, obtained from tile MDT05-0533-H30-LIDAR. It includes
raster matrices of the same size, but different number of values. . . 92

15.1 Dataset sizes and entropy. 123
15.2 Entropy of the files of differences. 123
15.3 Compression ratio. 124
15.4 Compression time (seconds). 125
15.5 Decompression time (seconds). 125
15.6 Memory consumption (in MBs) of the classical algorithm. 127
15.7 Memory consumption (in MBs) of the memory-efficient algorithm. . 127
15.8 Computation time (seconds) for the sample autocovariance function

with the classical algorithm. 128
15.9 Computation time (seconds) for the sample autocovariance function

with the memory-efficient algorithm. 129

xxv

xxvi List of Tables

List of Algorithms

9.1 Build(n, `, r, c) computes T , V max and V min of the k2-raster
representation from matrix M and returns (rMax, rMin) 62

9.2 getCell(n, r, c, z,maxval) returns the value at cell (r, c) 63
9.3 getWindow(n, r1, r2, c1, c2, z,maxval) returns all cells from region

[r1, r2] to [c1, c2] . 66
9.4 searchValuesInWindow(n, r1, r2, c1, c2, vb, ve maxval,minval, z)

returns all cell positions from region [r1, r2] to [c1, c2] containing
values within [vb, ve] . 69

9.5 BuildH(Lmax,PLst) computes isInV oc, encodedV alues, and
plainV alues . 76

9.6 getCellH(n, x, y, z,maxval) returns the value at cell (x, y) 78
10.1 Join (prRoot , pkRoot , [vb, ve]) . 84
14.1 Compression . 117
14.2 Decompression . 118
14.3 Autocovariance computation trajectory by trajectory 119

xxvii

xxviii List of Algorithms

Chapter 1

Introduction

1.1 Motivation
Recent advances in hardware and software technology have opened the possibility of
developing new applications. One of them is the field called Big Data, which involves
large-scale data analysis. Big Data introduces several new challenges, because many
of the conventional structures and algorithms are not capable of dealing with the
4 V’s: data volume too large (Volume), data rate too fast (Velocity), data too
heterogeneous (Variability), and data too uncertain (Veracity). In this thesis, we
focus on the first V , data volume too large.

The straightforward solution for managing huge datasets is to use parallel
processing [DG08, KEW13, DXS+15, SETM13], where a good set of tools are
available. However, there are other alternatives which involve the use of new data
structures and algorithms. Among them, we can highlight the in-memory data
management [Pla13, PZ12] and the compact data structures [Nav16]. The purpose
of both approaches is to fit, manipulate, and query much larger datasets in main
memory. Although the price of main memory has been reduced significantly, the
current size of the datasets requires the use of compression in order to be able to fit
them in main memory. Therefore, we need to efficiently process the compressed data
in main memory, thus, retrieving a given datum must not require decompressing the
dataset from the beginning. This restriction excludes most traditional compression
techniques.

By processing compressed data in main memory, we take advantage of the lower
latency and higher bandwidth of the upper levels of the memory hierarchy. This
applies even if the data without compression fit in main memory or if even the
compressed dataset does not fit in main memory.

A compact data structure approach is compatible with the use of parallel
techniques, moreover, it can improve the final result. In a parallel scenario, data

1

2 Chapter 1. Introduction

interchanges between nodes can slow down the process due to bottlenecks in the
network. Compression has been used to reduce bandwidth consumption [BR09] in
that scenario. Traditionally, compression methods applied for this context have
been designed to perform the compression and decompression processes very fast,
since data have to be decompressed prior to any process, and thus data should be
compressed before any data exchange and decompressed at the destination node.
With a compact data structure approach, data can be interchanged between nodes
in compressed form, and processed in that form at the destination node, saving
space and time.

Finally, another interesting feature of compact data structures is that many of
them are equipped with an index that, in the same compressed space, speeds up the
queries. This feature is known as “self-indexation”.

Our goal in this thesis is the study and design of new compact data structures
and algorithms to represent huge collections of data in three different domains, where
the use of large datasets is common. Our methods achieve better space/time results
than other techniques of the state of the art in those domains.

1.2 Contributions
Our contributions can be divided into five main blocks. We describe now each of
them and the problems they address:

Management of multidimensional data: Compact representa-
tion of Multidimensional data on Hierarchical Domains
Our first contribution consists in the design, analysis, implementation, and experimen-
tal evaluation of data structures for the compact representation of multidimensional
data, where the domain of each dimension is organized hierarchically, as in OLAP
systems. We propose a new compact data structure, called Compact representation
of Multidimensional data on Hierarchical Domains (CMHD), that represents
multidimensional data in compact space and allows us to improve the query time
over the data. Basically, CMHD divides the data according to the hierarchies of the
domains in each dimension and builds a tree that indexes aggregate information at
the different levels of each partition. This allows us to perform more efficient queries
since, using this aggregated information, it is not necessary to access the individual
cells to answer them.

In addition, we present a generic multidimensional structure called kn-treap,
an extension to multiple dimensions of a two-dimensional compact summarization
structure known as k2-treap. This is used as baseline for our experiments.

The conceptual description of both structures and the results of the applications
were published in the proceedings of the 23th International Symposium on String
Processing and Information Retrieval (SPIRE 2013) [BCPLL+16].

1.2. Contributions 3

Representation of GIS data: k2-raster
Our second contribution consists in the design, analysis, implementation, and
experimental evaluation of a new compact representation for raster data, called
k2-raster. Our structure is able to represent raster data in compact space and
provides an efficient mechanism to improve queries over the data. The k2-raster
recursively divides the matrixM (the raster dataset) into k2 equal-sized submatrices,
and builds a tree representing this recursive subdivision. Each of those divisions is
represented as a node of a tree, which keeps the minimum and the maximum values
of the corresponding partition.

We evaluate our new solution with the current state of the art, concretely, the
accumulated k2-tree (denoted as k2-acc) and the k3-tree. We show that k2-raster
improves the results of these techniques, especially when the number of different
values and the size of the dataset increase, which is critical when applying over real
datasets.

A preliminary work was published in the proceedings of the 28th International
Conference on Scientific and Statistical Database Management (SSDBM 2016)
[LPSC16].

Spatial join: k2-raster and R-tree
Our third contribution consists in the design, analysis, implementation, and
experimental evaluation of a framework that includes the data structures and
the algorithm to run a join between a raster and a vector dataset. We use a classical
R-tree to index the vector dataset and the k2-raster for the raster dataset.

In our experiments, we show that our approach obtains important savings in both
running time and memory consumption, compared with baselines that represent the
raster dataset in plain form. Our proposal is the first solution for solving a full join
between raster and vector data using compact data structures, and it shows very
good scalability properties.

Representation of scientific data: Compression of Brownian
Motion
Our fourth contribution consists in the design, analysis, implementation, and
experimental evaluation of a data structure for huge datasets of Brownian trajectories
or trajectories of continuous time stochastic processes. Our structure, called
Compressed Brownian Motion (CBM), is oriented to facilitate the efficient
computation of the sample autocovariance function. Each trajectory is first processed
with differencing encoding and the resulting sequence is compressed with an integer
compressor.

We study the behavior of CBM against the R package and a C program that
uses uncompressed data, obtaining important savings in running time.

4 Chapter 1. Introduction

Memory-friendly covariance function
The fifth contribution is a new memory-efficient algorithm to compute the sample
autocovariance function where it is only necessary to load a single trajectory at a
time, avoiding to keep the whole dataset in main memory. This considerably reduces
the space used for computing the covariance compared to the classical algorithm.

1.3 Structure of the Thesis
The structure of the thesis is as follows: First, in Chapter 2, we present some
basic concepts about data compression and compact data structures. In Chapter
3, we describe several data structures that are used in this thesis. After that, our
contributions are grouped into three parts:

• Part I addresses the problem of the efficient representation of multidimensional
data over hierarchical domains.

– Chapter 4 introduces the field of multidimensional data, more concretely,
the Data Warehouse databases and the OLAP systems. In addition,
we describe the kn-treap, a straightforward extension of the k2-treap to
manage multiple dimensions, which allows efficient summarization queries
along with generic ranges.

– Chapter 5 presents our new compact data structure called CMHD
(Compact representation of Multidimensional data on Hierarchical
Domains). By adapting the hierarchy to the domain of each dimension,
CMHD allows much more efficient queries than a generic multidimensional
structure.

– Chapter 6 presents the experimental evaluation of the kn-treap and the
CMHD over different datasets, varying the domain hierarchies and the
number of dimensions.

– Chapter 7 discusses the conclusions and some future works for our
contribution.

• Part II introduces a new compact data structure designed to store raster data,
which is commonly used to represent attributes of the space (temperatures,
pressure, elevation measures, etc.) in geographical information systems. In
addition, this part also introduces a framework that includes the data structures
and the algorithm to perform a spatial join between a raster and a vector
dataset, which uses a k2-raster to represent the raster dataset.

– Chapter 8 introduces the basic concepts of geographic information systems,
such as the different raster models or the spatial join. Also two previous
compact data structure for the representation of raster data are described,
the accumulated k2-tree (k2-acc) and the k3-tree.

1.3. Structure of the Thesis 5

– Chapter 9 presents our contribution called k2-raster. Our new technique
is not only able to store and directly access compressed data, but also
indexes its content, thereby accelerating the execution of queries over a
raster.

– Chapter 10 presents a framework to run a join between a raster (k2-raster)
and a vector dataset (R-tree).

– Chapter 11 includes the experimental evaluation, where k2-raster is
compared with the current state of the art over several real datasets.
Besides, the results of different experiments for the spatial join are shown.

– Chapter 12 summarizes the main contributions and other applications
for both proposals.

• Part III presents two main contributions. The first is a new compact
representation for huge sets of functional data or trajectories of continuous
time stochastic processes. The second contribution is a new memory-efficient
algorithm to compute the sample autocovariance function.

– Chapter 13 introduces the motivation of the problem, some notation, and
basic concepts of the Brownian motion.

– Chapter 14 presents our proposal to represent a set of trajectories of
Brownian motion, called CBM, and the memory-efficient algorithm to
compute the sample autocovariance function.

– Chapter 15 shows and discusses the experimental results for a set of float
point matrices of different sizes.

– Chapter 16 presents the main conclusions, other applications, and future
work.

In order to complete the thesis, Part IV includes the concluding Chapter 17 that
summarizes the contributions of our work and gives some general future lines of
research. Finally, Appendix A shows a list of publications with their cites and other
research activities related to this thesis; and Appendix B presents a summary of the
thesis in Spanish.

6 Chapter 1. Introduction

Chapter 2

Basic Concepts

This chapter introduces some basic concepts, notations, and basic compact data
structures that are used during this thesis. Section 2.1 gives some notions about
Information Theory. Section 2.1.2 introduces the basis of data compression and
different compression techniques for integers. Finally, Section 2.2 presents some
basic compact data structures, which are commonly integrated into other structures.

2.1 Information Theory and Data Compression
2.1.1 Basic concepts on Information Theory
The aim of Information Theory is to deal with the transmission of information
through communications channels. The basis of this field and many concepts used
nowadays were settled in Shannon’s work [Sha48]. One of the most important
concepts for this thesis is the measuring of the information in term of bits, i.e., the
minimum amount of space required to encode a message. This allows us to know
how complex to encode a piece of information is and also whether it is very repetitive
or not.

Let X be a discrete random variable with a probability mass function p(X) and
domain dx. We define I(x) = log 1

p(x) as the amount of information associated with
an outcome x ∈ dx. With this formula, it is intuited that an outcome with a high
probability of occurrence provides less information than one with a lower probability.
For instance, if a outcome x has probability p(x) = 1, there is no surprise when x
appears because it is expected and does not provide new information.

Another measure is the entropy of X, which gives us the amount of surprise that
is expected from X. The entropy of X is defines as:

H(X) = E[I(X)] =
∑
x∈dx

p(x) log 1
p(x) (2.1)

7

8 Chapter 2. Basic Concepts

The entropy H(X) measures the average amount of information obtained by
observing a random variable.

If the source of information is not an infinite source but just a message S, then
we can define the zero-order empirical entropy in terms of the Shannon entropy of
the observed probabilities of its symbols. Thus, given a sequence S[1, n] over an
alphabet Σ = [1 . . . σ] where each symbol s appears ns times in S, the zero-order
empirical entropy is defined as:

H0(S) =
∑

1≤s≤σ

ns
n

log n

ns
. (2.2)

2.1.2 Data Compression: basic concepts
Data compression appears by the necessity to represent large datasets in less space,
improving their manipulation and storage in any system. For example, using data
compression we can reduce the number of packets sent over a network in a distributed
system.

2.1.2.1 Classification of compression techniques

Compression techniques have two main methods: an encoding method that
transforms the original message into a compressed version, and a decoding method
that recovers the original message from the encoded message. We can classify
compression techniques in two categories depending of result of the decoding process.

• Lossy compression techniques perform an encoding process that does not
allow retrieving the original message but an approximate version of it. During
the encoding phase, some information of the original message is lost, which
implies that the decoded message will be very similar to the original message
but not exactly the same. These techniques are used in areas where it is not
necessary to receive the original message, but a similar version is sufficient.
For example, it is very common to use it to compress audio, images or videos,
where humans cannot detect small differences.

• Lossless compression techniques return an exact copy of original data.
Some scenarios do not allow any type of information loss and therefore these
techniques should be used. For example, in text compression we cannot lose
or change a character or a word, since the message may become meaningless.
In this thesis, we only deal with this type of compression techniques.

2.1.3 Measuring the efficiency of compression techniques
We can use two different types of measures to determine the efficiency of a compression
technique:

2.1. Information Theory and Data Compression 9

• The performance of the compression and decompression algorithms. The
theoretical complexity of those algorithms is a good measure that gives us an
approximation of how a technique behaves and allows us to compare it with
other techniques. In practice, another way is to measure the compression and
decompression times (usually in seconds).

• The compression achieved. The compression ratio is a good measure that
represents the percentage that the compressed dataset occupies with respect
to the original dataset. It is calculated as sizecompressed

sizeoriginal
× 100.

2.1.4 Compressing Integer Numbers
Let S = (s1, s2, . . . , sn) be a sequence of symbols over an alphabet Σ. A code is
an injective function C : Σ→ {0, 1}∗ that assigns a distinct sequence of bits C(si)
(codeword) to each symbol si ∈ Σ. A way to compress S is to order the symbols
of Σ by their frequency in S, and assign shorter codewords to the most frequent
symbols. This strategy is called statistical encoding. One example of this is Huffman
coding [Huf52], which is the best code that is univocally decodable.

If Σ is formed by integers, Huffman can be used. However, if the size of Σ
is large, since Huffman has to explicitly store the function C, that space may be
prohibitive. In this case, fixed or static codes can be used. These codes do not use
the probabilities, instead, each integer is always mapped to the same codeword, that
is, C does not depend on the exact input sequence S and therefore there is no need
to store it.

Still, the main idea is the same, compression is achieved by assigning shorter
codewords to more frequent integers, and it is assumed that these numbers are the
smallest integers. Therefore, better compression can be obtained if the original
sequence is preprocessed with relative or differencing encoding. Each integer, except
the first one, is replaced by its difference with the previous one. However, differences
can be negative, so this poses a problem as most codes for integers only work with
positive numbers. The first solution is to store all the integers in absolute value
and add 1 bit per integer to indicate whether the original integer was positive or
negative. This additional bit can be avoided by using the ZigZag encoding, which
maps signed integers to unsigned integers. The -1 is encoded as 1, 1 as 2, -2 as 3,
and so on. The problem with this approach is that numbers with a large magnitude
will have a codeword with an even greater magnitude.

Examples of fixed codes are the unary code, Elias codes (γ-codes and δ-codes)
[Eli75], or Golomb codes [Gol66]. The unary code, for example, represents a value
x as 1x0, that is, with x ones followed by a zero1. From the input sequence, the
Golomb encoder chooses one parameter m. The codeword assigned to a source
symbol si is composed of two parts. The first one is q = bsi/mc encoded in unary.

1Notice that the ones and zeros are interchangeable without loss of generality, so x can be
represented as 011 as well.

10 Chapter 2. Basic Concepts

The second part is r = si − qm encoded in minimal binary: being c = dlogme, the
first 2c − m values of r are encoded in binary using c − 1 bits, and the rest are
encoded in binary using c bits. Rice codes [Ric79] are a special case of Golomb
codes, in which the parameter m is chosen to be a power of two. This choice makes
their computation faster, and thus Rice codes are extensively used.

The codes shown so far produce codewords of arbitrary bit lengths. This causes
bit manipulations that slow down the encoding and decoding processes. To avoid
this, there is a family of codes that produce codewords formed by one or more chunks
of b bits, usually of 8 bits. The first example is Vbyte [WZ99]. The blog sic + 1
bits required to represent si in binary are split into blocks of b− 1 bits. The chunk
holding the most significant bits of si is completed with a bit set to 0 in the highest
position, whereas the rest are completed with a bit set to 1 in the highest position.
Therefore, using chunks of 8 bits, the first chunk of a codeword is always a number
between 0 and 127, and the rest are between 128 and 255. Therefore, we can split
the byte values into two types, the beginners (values between 0 and 127) and the
continuers (values between 128 and 255), where the beginners signal the begin of a
codeword. (s,c)-Dense Code (SCDC) [BFNP07] is similar to Vbyte. It also has two
types of chunks, but instead of beginners, it uses stoppers. A codeword is formed
by one stopper, and zero, one or more continuers. The stopper chunk signals the
end of a codeword, and thus, that the next chunk corresponds to the next codeword.
However, instead of using 128 values for each set, SCDC decides what is the best
distribution of the byte values between stoppers and continuers for a given input
sequence, in order to obtain the best compression.

Codes based on chunks are faster, but they pay a price in space. A different
family of codes tries to join the good space consumption of the bit-based codes and
the fast encoding and decoding of the byte-aligned codes. Instead of encoding and
decoding each source symbol, these codes treat short sequences of numbers and read
whole computer words from the input. For instance, PforDelta [ZHNB06] encodes a
fixed number of integers at a time (typically 128), using for all of them the number
of bits needed for the largest one. A fraction of the largest numbers (usually 10%)
is encoded separately, and the other 90% is used to calculate how many bits are
needed per number.

All codes we have seen do not provide direct access to positions, that is, we
cannot directly access the codeword representing the ith symbol in the original
sequence without decompressing from the beginning, because they use variable
length codewords. The classical solution to this problem is to use absolute pointers
to sampled elements, that is, to each hth-element of the sequence. These pointers
obviously suppose an overhead. However, there are techniques that avoid the use of
pointers. These techniques use a conventional code along with an additional structure
to allow direct access. Examples can be based on Elias-Fano codes [Mun96, OS07],
on Interpolative coding [Teu11], or on Vbyte [BLN13]. The latter approach is
denoted as Directly Addressable Codes (DACs), and they will be presented in more

2.2. Compact data structures 11

detail in Section 3.1, since they are used profusely in this thesis.
Other techniques make use of the wavelet tree [GGV03], which can also store the

variable length codewords of a sequence, allowing us to retrieve the ith codeword
without decompressing the previous codewords. It has been used with Huffman
[GGV03], Vbyte [BFLN08], Elias and Rice codes [Kül14], or Fibonacci codes [KS16].

2.2 Compact data structures
The main objective of compact data structures is to represent the data (text,
sequences of numbers, trees, etc.) in a compact way, using as little space as possible,
while enabling us to retrieve efficiently any datum without the need of decompressing
the whole dataset. These structures are designed to keep data always compressed,
even when are loaded into main memory, which improves the processing of larger
datasets. In addition to the benefit of saving disk space, the compact data structures
take better advantage of memory hierarchies, operating at the fastest levels of the
hierarchy to improve their performance. In many cases, they also provide indexes
that allow us to answer queries even faster than performing those queries over the
plain representation.

2.2.1 Rank and select over bitmaps
Let B[1, n] be a bitmap, that is, a sequence of bits. We can define three basic
operations:

• rankb(B, i) returns the number of occurrences of bit b ∈ {0, 1} in B[1, i].
Consider a bitmap B = 110110110. Therefore, rank0(B, 5) = 1, as only one 0
appears up to the position 5, whilst rank1(B, 5) = 4, since the sequence B[1,4]
has four 1s. When omitting b, rank operation returns the number of 1s up to
a given position, that is, rank(B, i) = rank1(B, i).

• selectb(B, i) locates the position of the ith occurrence of b in B. Following the
previous example, select0(B, 2) = 6 and select1(B, 2) = 2, which means that
the 2th 0 appears at position 6 and the 2th 1 at position two in sequence B.

• access(B, i) returns the bit value at position i. For instance, access(B, 5) = 1,
the 5th value of sequence B is a 1.

They are basic operations used in most of the compact data structures of the
literature [Nav16]. Figure 2.1 illustrates the three previous operations.

Jacobson, whose PhD thesis can be taken as the starting point of the study of
compact data structures [Nav16], showed that the rank operation can be answered
in constant time over plain bitmaps using a two-level directory structure [Jac89b].
Given a binary sequence B[1, n], the first level stores the result of rank1(B, j) for

12 Chapter 2. Basic Concepts

Figure 2.1: rank, select and access over a bitmap B = 110110110.

each j multiple of s = blognc blogn/2c, while the second level holds, for each k
multiple of b = blogn/2c, the relative rank within previous blocks of size s. We can
compute rank1(B, i) using those two directories. From the first level, we obtain
the rank value until the previous multiple of s, while the second level returns the
rank value until the previous multiple of b. Finally, the number of ones between the
previous multiple of b and j is calculated and added up to the final result. This can
be obtained in constant time by using a lookup table, which stores the result of rank
for all possible subsequences of size b. However, the select operation is computed in
O(log logn) time using binary searches.

In order to improve queries over the bitmap, Clark and Munro [Cla96, Mun96]
proposed a new solution that solves both operations in constant time using just o(n)
extra bits, therefore the final total cost is n+ o(n).

2.2.2 Compressed bitmap representation
Others solutions were presented to store a bitmap in a very compact way, while they
still provide the operations rank, select and access.

Pagh [Pag99] proposed a new approach that splits the bitmap in equal-sized
blocks. Then it explicitly stores the rank of the first element of each block. In
addition, the blocks are compressed with a schema that clusters adjacent blocks into
intervals of varying length. Extraction of rank information from this compressed
form is also done by using a lookup table and a two-level structure.

Raman et al. [RRR02] also divided the sequence into blocks but each of them
has associated a tuple (ci, oi), where ci identifies the class of the block (the number
of 1 bits that contains) and oi is the offset of that block inside the vocabulary of

2.2. Compact data structures 13

all possible blocks in the class ci (blocks with ci bits). Let b be the size of each
block, the cost of representing ci is dlog(b + 1)e bits and oi uses dlog(

(
b
ci

)
)e bits.

This solution provides rank and select operations in constant time.
Okanahora and Sadakane [OS07] presented several compact solutions specially

designed for sparse bitmaps (those where the number of 1s is much larger than the
number of 0s, or vice versa). They can achieve good compression for the bitmap
when it is truly sparse, besides providing efficient operations. Each of the solutions
is based on different ideas, so its behavior varies depending on the sequence. Other
strategy for sparse bitmaps is gap encoding, which encodes each 1 bit as the gap
between the previous 1 bit [Sad03, GWSV06, MN07].

2.2.3 Compressed tree representations: LOUDS
Level-ordered unary degree sequence (LOUDS) [Jac89a] is a tree representation for
ordered trees that appends the degree r of each node in (left-to-right) level order in
unary code (1r0). The sequence of degrees uniquely identifies the tree of n nodes
using 2n− 1 bits. For each node we have a 0 bit (when its degree is specified) and,
except the root node, a 1 bit (its father has a 1 bit for each child). By adding a
false super-root node, we can maintain the property that all the nodes of the tree,
including the root, correspond to one 1 bit. This fix only increases the final sequence
by 2 bits.

Figure 2.2 illustrates an ordered tree (top) and its LOUDS representation S
(bottom). The fake super-root node (in color gray) does not belong to the original
tree. The process follows a left-to-right level order starting by the super-root node.
That node has degree r = 1 (only one child), therefore, we append 1 in unary code
(1r0 = 10) to sequence S. Then, we continue with the next node labeled as “1” (the
real root node). Node “1” has degree r = 3, so we concatenate sequence of bits 1110
to S. Next, we jump to the next level and process the node labeled as “2”, which
has degree r = 2 and the sequence 110 is appended to S. The process continues
analogously with the remaining nodes of the tree and stops when the degrees of all
nodes are added to S. The final sequence is 1011101101110101100100110000000 (31
bits long).

This representation is navigated using rank and select operations. LOUDS
allows basic operations such as access to children, obtaining the position of the
father or counting the number of children, among others. Given a node x and the
position p of its corresponding 1 bit in the LOUDS representation, the first child of
x is located at c = select0(rank1(p)) + 1. For instance, the first child of the node
labeled “3”, whose 1 bit is at position 3 in the LOUDS sequence, is calculated as
c = select0(rank1(3)) + 1 = select0(3) + 1 = 8 + 1 = 9, which corresponds to the
position of the node labeled “1”. In order to access their other children we simply
add the offset of that child node. Following the previous example, its third child
(offset 2) is located at position c+ 2 = 3 + 2 = 5. On the other hand, the parent
of x is obtained as f = select1(rank0(p)). The parent of the node labeled “3” is

14 Chapter 2. Basic Concepts

Figure 2.2: LOUDS representation for a tree with 15 nodes.

f = select1(rank0(3)) = select1(1) = 0. Finally, to obtain the number of children of
node x, we have to locate the position of the first child and count the ones up to
the next zero.

Chapter 3

Previous work

In this chapter, we present several data structures highly related or directly included
in the contributions proposed in this thesis. Section 3.1 introduces Directly
Addressable Codes (DACs), an encoding scheme for sequence of integers that allows
direct access to any position of the sequence. Section 3.2 presents the k2-tree,
as some contributions of this thesis are based in this structure. The k2-tree was
designed to compress sparse binary matrices, originally for the representation of Web
graphs. Finally, Section 3.3 describes a compact data structure to represent grids of
integer values called k2-treap, which is basically constructed as an enrichment of a
k2-tree.

3.1 Directly Addressable Codes (DACs)
Directly Addressable Codes (DACs) [BLN13] is a variable-length code for sequences
of integers that supports fast direct access to any given position of the sequence, that
is, it allows decoding the ith integer without the need of decompressing the previous
integers. It obtains a very compact representation, if the sequence of integers has a
skewed frequency distribution, where the number of occurrences of smaller integer
values is higher than the number of occurrences of larger integer values.

Given a sequence of integers X = x1, x2, . . . , xm, DACs take the binary
representation of that sequence and rearrange it into a level-shaped structure as
follows: the first level B1 contains the first n1 bits (least significant) of the binary
representation of each integer. A bitmap C1 is added to indicate, for each integer,
whether its binary representation requires more than n1 bits or not. More precisely,
for each integer, there is a bit set to 0 if the binary representation of that integer
does not need more than n1 bits and a 1 otherwise. In the latter case, the second
level B2 stores the next n2 bits of the integers having a 1 in C1, and a bitmap
C2 marks the integers needing more than n1 + n2 bits, and so on. This scheme is

15

16 Chapter 3. Previous work

repeated as many levels as needed. The number of levels L and the number of bits
nl at each level l, with 1 ≤ l ≤ L, is calculated in order to achieve the maximum
compression. Figure 3.1 shows an example of DACs encoding for the first integers
of sequence.

Figure 3.1: Example of DACs encoding.

DACs can efficiently retrieve the integer encoded at given position by obtaining
the nl bits at each level that form the binary representation of the number. That
is, to recover the number, a top-down traversal is needed, and thus, the worst case
time for extracting a random codeword is O(L), being L the number of levels used.
The position of the corresponding bits at each level is obtained performing rank
operations over the bitmaps Bl.

We can adjust the number of levels and the number of bits used at each level (nl)
to obtain the maximum possible compression. However, this may lead to slow access
times, if it requires a large number of levels. DACs can be configured to obtain the
minimum possible space but limiting the number of levels L.

3.2 The k2-tree
The k2-tree [BLN14]is a data structure originally designed to compress Web graphs
that, as all compact data structures, allows accessing and querying the data without
decompressing it. This method follows a region quadtree decomposition [Sam06] to
subdivide the binary adjacency matrix of a graph and represents this subdivision
using a simplified LOUDS tree representation.

3.2. The k2-tree 17

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

01 1 1

1 1 10 0 0 0 0 0 01 1

1 1 1111 1 1 10 0 0 00 0 0 0 0 0 0

0100 01000011 0010 0010 10101000 0110 0010

Figure 3.2: Example of binary matrix (left) and resulting k2-tree
representation (right), with k = 2.

From a binary matrix of size n× n, and being k an input parameter, the k2-tree
is built as a non-balanced k2-ary tree, where each node describes a submatrix
resulting from a recursive division of the matrix into k2 submatrices of the same
size. The first partition divides the original matrix into k rows and k columns of
submatrices of size n2/k2. Each of those submatrices generates a child node of the
root having only one bit whose value is 1 iff there is at least one 1 in the cells of
that submatrix. A 0 child means that the submatrix has all 0s and then, the tree
decomposition ends there. The submatrices having at least one 1 are recursively
divided into k2 submatrices, producing each one a child node of the corresponding
parent. This process continues until reaching a submatrix full of 0s or until reaching
the cells of the original matrix (i.e., submatrices of size 1× 1). Figure 3.2 shows an
example of this subdivision (left) and the resulting k2-ary tree (right) for k = 2.

Instead of using a pointer-based representation, the tree is compactly represented
by just using two bitmaps T and L, whose values are the bit values resulting from a
breadth-first traversal of the tree. T stores all the bits of the k2-tree except those at
the last level of the tree, whereas L stores the last level of the tree, thus containing
the binary value of (some) original cells of the adjacency matrix. It is possible to
navigate this space-efficient representation by just accessing bitmaps T and L. In
particular, it is possible to retrieve any cell, row, column or region of the matrix in
a very efficient time. This navigation is obtained by means of top-down traversals in
the conceptual tree, which are simulated with rank operations over T .

The k2-tree has an excellent performance in both space and time when the binary
matrix is sparse, with large zones of 0s and where the 1s are clustered. There also
exists a variation of the k2-tree that compresses areas full of 1s [dBÁGB+13]. In this
variation the subdivision ends when the algorithm finds a submatrix full of 0s (white

18 Chapter 3. Previous work

zones) or full of 1s (black zones), adding a method to distinguish black and white
areas. Therefore the subdivision only continues when the submatrix has a mixture
of 0s and 1s (gray zones). This representation is more suitable for representing other
types of datasets different from Web graphs, such as binary images.

Apart from its original application, the k2-tree has been used for many different
purposes, among others, to support the compact representation of RDF datasets
[ÁGBF+15], moving objects [RBR12, BGBNP16], general graphs [ÁGBLP10], and
raster data [dBÁGB+13]. The approaches used to represent raster data using the
k2-tree as basis will be explained in Section 8.2.

3.3 The k2-treap
A k2-treap [BdBK+16] is a compact data structure designed to represent grids in
compact form, while supporting efficient general aggregated queries and other simple
range queries. It was originally described for the particular case of obtaining the
maximum points in a 2-dimensional matrix, also called top-k queries. This could
allow, for example, a GIS system to store a grid, representing a geographic area
containing the height of each point, and answer queries about the top-k highest
points in a given subregion.

Let M be a matrix of size n× n where each cell stores either an empty value or
a value v ≥ 0. The k2-treap recursively partitions M into k2 equal-sized submatrix,
following the same division technique used by the original k2-tree. We build
a conceptual tree representing this recursive partition, where a node stores the
maximum value of the submatrix and its coordinates in the corresponding submatrix.
Then, that value is removed from the matrix or settled empty. The process is as
follow: The root node is created and it keeps the maximum value of the whole
matrix and its coordinates, and sets that cell as empty. Then, the matrix is divided
into k2 submatrices and we append a child node to the root for each new partition.
We recursively repeat this process for each child until we find a empty submatrix or
reach the individual cells. The k2-treap uses a k2tree to represent its topology and
other two structure to store the values and their positions.

Figure 3.3 shows an example of k2-treap construction from a matrix of size
8× 8, using k = 2. The maximum value of each submatrix for the four steps of the
recursive subdivision is highlight with color gray (top). On the bottom of the figure,
we represent the conceptual tree from the construction of the k2-treap. Each node
stores the maximum value of its submatrix and the coordinate of the corresponding
cell. Note that in the last level of the tree, only the maximum value is necessary. In
the first iteration (under label “Step 1”), we created the root with the maximum
value of whole matrix (10) and its corresponding coordinates (1,1). Then, the cell is
removed from the matrix and continue with the next iteration (under label “Step
2”). We divide the matrix into four submatrices of size 4× 4 and add a child node to
the root for each one. Recall that nodes keep the local coordinates instead of global

3.3. The k2-treap 19

Figure 3.3: Example of the construction of the k2-treap.

coordinates, for example, the maximum value of the second submatrix (right-top) is
7 and the local coordinates in its submatrix are (0, 2). Also observe that the third
submatrix (left-bottom) is empty (marked with the symbol “-” in the tree), thus
we do not further subdivide the corresponding submatrix. In the next step (under
label “Step 3”), the process continues for the other three non-empty nodes. Nodes
of these submatrices are stored in the third level of the conceptual tree. Finally, the
process reaches the individual cells (under label “Step 4”) and each submatrix has a
child node for each of its cells.

In order to obtain the value of an individual cell, we only need to perform a
top-down traversal of the tree and compare the coordinates stored in the nodes
with the position of our query. If they are equal, we return the corresponding value
stored in the node, otherwise we go down through the branch where the cell would
be located. To resolve range queries, the process is very similar, but at each step,
we calculate all children with some cell in the range of the query.

There are several variants of the k2-treap, allowing to store, as precomputed
values in the internal nodes, the maximum, minimum, or aggregated values (sum,
average, number of non empty cells) of the corresponding subtree.

20 Chapter 3. Previous work

Part I

Multidimensional data

21

Chapter 4

Introduction

In this Part I, we consider the problem of representing multidimensional data where
the domain of each dimension is organized hierarchically, and the queries require
summary information at different levels of the hierarchy of each dimension.

We present a compact data structure that partitions the space according to the
hierarchies, instead of performing a regular partition like generic multidimensional
structures. Therefore, the queries of interest for OLAP applications, which combine
nodes of the different hierarchies, will require aggregating the information of just a
few nodes, much fewer than if we used a generic space partitioning method.

Our baseline for comparison will be an extension of the k2-treap to n dimensions,
the n-dimensional treap, called kn-treap.

The kn-treap will then be extended so that it can follow an arbitrary hierarchy, not
only a regular one. The topology of each hierarchy will be represented using LOUDS.
This new structure is called CMHD (Compact representation of Multidimensional
data on Hierarchical Domains). Although we focus on sum queries, it is easy to
extend our results to other kinds of aggregations, for example, the maximum value.
This new contribution is presented in Chapter 5.

We experiment with both structures, the kn-treap and CMHD, with different
datasets, by varying their hierarchies and number of dimensions. The results of
those experiments are shown in Chapter 6. Finally, in Chapter 7, we present our
conclusions and future work.

In this chapter, we introduce the motivation of our contribution and the
different domains where it can be applied. Section 4.1 presents a brief description
of multidimensional data, including the definition of Data Warehouses, and the
description of OLAP systems. Next, we present our baseline, the kn-treap, in
Section 4.2.

23

24 Chapter 4. Introduction

4.1 Introduction
In many application domains, data is organized into multidimensional matrices. In
some cases, like GIS and 3D modelling, the data are actually points that lie in a
two- or three-dimensional discretized space. There are, however, other domains such
as OLAP (Online Analytical Processing) systems [CCS93, CD97] where the data
are sets of tuples that are regarded as entries in a multidimensional cube, with one
dimension per attribute.

In this type of environments, it is very frequent to have to manage huge collections
of data, where several dimensions are involved. Moreover, it is necessary to
answer complex operations to obtain summaries about very specific regions of
the multidimensional cube, which involves retrieving a large number of cells. This
presents us two main challenges: we must reduce the space requirements of those
datasets and, at the same time, include some type of index to improve the efficiency
of summary queries.

4.1.1 Data Warehouses (DWs)
Data Warehouses (DWs) appeared due to the need to process and analyze large
amounts of data, since the classic database management systems (DBMSs) were not
suitable for this type of tasks. The most widespread definition is proposed by Bill
Inmon, considered one of the parents of DW [Inm93]:

A data warehouse is a subject-oriented, integrated, time-variant and non-
volatile collection of data in support of management’s decision making
process.

Unlike classic DBMSs, designed to maintain a balance between data integrity
and response time, Data Warehouses focus more on the speed of analysis than on
the integrity of the data, because these do not change over time. In addition, a Data
Warehouse stores the temporal evolution of the data, that is, when it receives a new
value, it does not delete the previous one, but keeps both. Another feature of DWs
is that it is very common to store aggregated values (summaries) of their data to
improve the speed of queries.

There are several additional tools that integrate with DW to perform data
analysis. The two main families of this type of tools are data mining and online
analytical processing (OLAP).

For this thesis, we are interested in OLAP tools, since our contribution can be
applied on this domain.

4.1.1.1 Online Analytical Processing (OLAP)

The term OLAP was proposed by Codd [CCS93], motivated by the design of a new
system to perform analysis on the data, with features other than transactional. Codd

4.2. Baseline for multidimensional data: the kn-treap 25

also established a series of characteristics, including the multidimensional conceptual
view. Although some authors defend the use of the E-R model, the majority of
authors are committed to using multidimensional data modeling. For this reason,
we will focus on the multidimensional data model.

Therefore, in OLAP system [CCS93, CD97], the data are sets of tuples that are
regarded as entries in a multidimensional cube, with one dimension per attribute.
The domains of those attributes are not necessarily numeric, but may have richer
semantics. A typical case in OLAP [KR02], in particular in snowflake schemes
[LL03], is that each tuple contains a numeric summary (e.g., amount of sales), which
is regarded as the value of a cell in the data cube. The domain of each dimension is
hierarchical, so that each value in the dimension corresponds to a leaf in a hierarchy
(e.g., countries, cities, and branches in one dimension, and years, months, and days
in another). Queries ask for summaries (sums, maxima, etc.) of all the cells that
are below some node of the hierarchy across each dimension (e.g., total sales in New
York during the previous month).

A way to handle OLAP data cubes is to linearize the hierarchy of the domain of
each dimension, so that each internal node corresponds to a range. Summarization
queries are then transformed into multidimensional range queries, which are solved
with multidimensional indexes [Sam06]. Such a structure is, however, more powerful
than necessary, because it is able to handle any multidimensional range, whereas the
OLAP application will only be interested in queries corresponding to combinations of
nodes of the hierarchies. There are well-known cases, in one dimension, of problems
that are more difficult for general ranges than if the possible queries form a hierarchy.
For example, categorical range counting queries (i.e., count the number of different
values in a range) require in general Ω(logn/ log logn) time if using O(npolylogn)
space [LvW13], where n is the array size, but if queries form a hierarchy it is easily
solved in constant time and O(n) bits [Sad07]. A second example is the range mode
problem (i.e., find the most frequent value in a range), which is believed to require
time Ω(n1.188) if using O(n1.188) space [CDL+12], but if queries form a hierarchy it
is easily solved in constant time and linear space [HSTV14].

4.2 Baseline for multidimensional data: the kn-
treap

The kn-treap is a straightforward extension of the k2-treap to manage multiple
dimensions. It uses a kn-tree (in turn, a straightforward extension of the k2-tree) to
store its topology, and stores separately the list of aggregate values obtained from
the sum of all values in the corresponding submatrix. Figure 4.1 shows a matrix
and the corresponding kn-treap. The example uses two dimensions, but the same
algorithms are used for more dimensions. The domains hierarchies are shown (light
gray), although these do not affect the construction of the kn-treap but helps us

26 Chapter 4. Introduction

to visualize the use of the kn-treap in this type of environment, that is, an OLAP
system.

4.2.1 Construction
Consider a hypercube of n dimensions, where the length of each dimension is len = ki

for some i. If the lengths of the dimensions are different, we can artificially extend
the hypercube with empty cells, with a minimum impact in the kn-treap size. The
kn-trees, which will be used to represent the kn-treap topology, are very efficient to
represent wide empty areas. The algorithm to build the kn-treap starts storing at
its root level the sum of all values of the matrix. It then splits each dimension into
k equal-sized parts, thus giving a total of kn submatrices. We define an ordering
to traverse all the submatrices (in the example, rows left-to-right, columns top-to-
bottom). Following this ordering, we add a child node to the root for each submatrix.
The algorithm works recursively for each child node that represents a non-empty
submatrix, storing the sum of the cells in this submatrix, splitting it and adding
child nodes. For empty sumatrices, the node stores a sum of 0. The implemented
algorithm is recursive and each sum is actually computed only once, when returning
from the recursive calls.

As we can see in Figure 4.1, the root node stores 104, the sum of all values in the
matrix, and it is decomposed into 4 matrices of size 8× 8, thus adding 4 children to
the root node. The algorithm proceeds recursively for the four children of the root
node. The first child then is subdivide into 4× 4 equal-sized matrices of size 4 and
so on. Notice that the first submatrix (top-left) is full of zeroes, so this node just
stores a sum of 0 and is not further decomposed.

4.2.2 Data structures
The final data structures used to represent the kn-treap are the following:

• Values (V): It is an integer array containing the aggregated values (sums) for
each (sub)matrix, as they would be obtained by a levelwise traversal of the
kn-treap. It is encoded using DACs.

• Tree structure (T): It is a kn-tree that stores a bitmap T for the whole tree
except its leaves. In this case, the usual bitmap L for the leaves in a standard
kn-tree is not used, because the information about which cells have or not a
value is already represented in V . Therefore L is not needed.

4.2.3 Queries
The navigation through the kn-treap is basically a depth-first traversal. Finding the
child of a node can be done very efficiently by using rank and select operations as
in the standard k2-tree. The typical queries in this context are: finding the value

4.2. Baseline for multidimensional data: the kn-treap 27

Figure 4.1: kn-treap with a highlighted range query.

of an individual cell, and finding the sum of the values in a given range of cells,
specified by the initial and final coordinates that define the submatrix of interest.

4.2.3.1 Finding the value of a specific cell by its coordinates

In order to find the value of the cell, the search starts at the root node and in each
step goes down through the children of the matrix overlapping the searched cell until
reaching the individual cell or an empty node. When the search process reaches an
empty submatrix, then the query stops and returns the value 0.

For example, for finding the value of cell at coordinates (3,10) in Figure 4.1,
which corresponds to tablets sales in Seville, the search goes through the second

28 Chapter 4. Introduction

child node (with value 25 in the figure). The correspond submatrix is not empty, so
the process continues through the third child node (with value 13), then through
its fourth child (with value 6) and finally through the third child, reaching the leaf
node with value 6, which is the value returned by the query.

4.2.3.2 Finding the sum of the cells in a submatrix

The second type of query looks for the aggregated value of a range of cells, like
the hatched area in Figure 4.1. This is implemented as a depth-first multi-branch
traversal of the tree. If the algorithm finds that the range specified in the query fully
contains a submatrix of the kn-treap that has a precomputed sum, it will use this
sum and will not descend to its child nodes. If the process reaches an empty node
(with value 0), the process ends for that branch and continues with the remaining
branches.

The figure highlights the branches of the kn-treap that are used for searching
the aggregated value of the hatched area (in the OLAP environment, this area
corresponds to sales of beverages in Italy). Notice that this query completely
includes the submatrix with values {0, 2, 1, 5}, which has its sums (8) explicitly
stored at the fourth level of the tree. Therefore, the algorithm does not need to
reach the leaf levels of the tree for this matrix. Notice also that there is an empty
submatrix that intersects with the region of the query (the fourth child of the first
child of the root), so the algorithm also stops before reaching the leaf level in this
submatrix.

Chapter 5

Our proposal: CMHD

In this chapter, we present a new compact data structure to represent multidi-
mensional data where the domains in each dimension are hierarchical. It will be
called Compact representation of Multidimensional data on Hierarchical Domains
(CMHD).

5.1 Our proposal: CMHD
CMHD divides the matrix following the natural hierarchy of the elements in each
dimension. In this way, we allow the efficient answer of queries that consider the
semantic of the dimensions. This structure is much more efficient than a generic
multidimensional structure, since queries are resolved by aggregating much fewer
nodes of the tree.

5.1.1 Conceptual description
Consider an n-dimensional matrix where each cell contains a weight (e.g., product
sales, credit card movements, ad views, etc.). The CMHD recursively divides the
matrix into several submatrices, taking into account the limits imposed by the
hierarchy levels of each dimension.

Figure 5.1 depicts an example of a CMHD representation for two dimensions.
The matrix records the number of product sales in different locations. For each
dimension, a hierarchy of three levels is considered. In particular, cities are aggregated
into countries and continents, while products are grouped into sections and good
categories. The tree at the right side of the image shows the resulting conceptual
CMHD for that matrix. Observe that each hierarchy level leads to an irregular
partition of the grid into submatrices (each of them defined by the limits of its
elements), having as associated value the sum of product sales of the individual cells

29

30 Chapter 5. Our proposal: CMHD

Audio

CMHD data structures

d1 =

d2 =

1110 110 110 1110 110 1110 110 110 110 1110 110

110 110 1110 11110 110 1110 111110 110

Ta =

Tc =

 V =

1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0

1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0

1) Dimensions hierarchies

2) Matrix data

104 8 0 25 27 0 44 0 0 0 8 13 0 0 12 0 0 ... 0 0 20 0 0 0 6 18 0 0 2 0 1 5 0 … 1 3 4 7 5 0 ... 2 3 1 6 2 4

8 0 25 27 440

104

0 0 0 8 13 0 0 12 0 0 0 0 27 0 0 0 0 0 20 0 0 0 6 18 0

32 11 0 00 60 2 015 0 1 26 3 6010 7 53 10 4 13 475 0 0 23 1 2316 2 4

Conceptual CMHD

0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 0 2 0 0 0 0 0 1 2 0 0 0 0 0

0 0 1 5 0 0 0 0 0 6 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 2 3 1 0 0

0 0 0 0 0 0 0 0 0 3 1 6 2 4 0 0

Food Beauty Electron.

Meals Bever.

P
iz

.

S
a
l.

W
in

e

W
a
t.

B
e
e
r

M
a
k
.

L
ip

.

S
u
n
.

M
o

is
.

L
a
p
t.

T
a
b

l.

C
o

m
.

B
ri
d

g
.

R
e
f.

H
e
a

d
.

S
p
e
a

.

Face Body Com. Camer.

Mad

Bcn

Val

Sev

Ro

Mil

Tor

Mont

Vanc

NY

LA

Mia

Chi

SFO

Sant

Conc

A
m

e
ri

c
a

E
u
ro

p
e

U
S

A
C

a
n
.

It
a

ly
S

p
a
in

C
h

ile

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 5.1: Example of CMHD construction for a two-dimensional matrix.

inside it. Thus, the root of the tree stores the total amount of sales in the complete
matrix. Then the matrix is subdivided by considering the partition corresponding
to the first level of the dimension hierarchies (see the bold lines). Each of the
submatrices will become a child node of the root, keeping the sum of values of the
cells in the corresponding submatrix. The decomposition procedure is repeated for
each child, considering subsequent levels of the hierarchies (see the dotted lines), as
explained, until reaching the last one. Also notice that, as happens in the kn-treap,
the decomposition concludes in all branches when empty submatrices are reached
(that is, in this scenario, when a submatrix with no sales is found). See, for example,
the second child of the root.

Note that CMHD assumes the same height in all the hierarchies that correspond
to the different dimensions. Observe that, for each crossing of elements of the
same level from different dimensions, an aggregate value is stored. Notice also that
artificial levels can be easily added to a hierarchy of one dimension by subdividing all
the elements of a level in just one element (itself), thus creating a new level identical
to the previous one. This feature allows us to arbitrarily match the levels of the
different hierarchies, and thus to flexibly adapt the representation of aggregated data
to particular query needs. That is, by introducing artificial intermediate levels where
required, more interesting aggregated values will be precomputed and stored. For

5.1. Our proposal: CMHD 31

example, assume we have two dimensions: (d1) with levels for department, section
and product; and (d2) with levels for year, season, month and day. If we were
interested in obtaining the number of sales per section for seasons, but also for
months, we could devise a new level arrangement for d1, which will have now the
levels department, section, section’, product; where each particular section of the
second hierarchy level results into just one section’ child, which is actually itself. In
this way, aggregated values will be computed and stored considering sales for section
in each season, but also sales for section’ in each month.

5.1.2 Data structures
The conceptual tree that defines the CMHD is represented compactly with different
data structures, for the domain hierarchies and for the matrix data itself.

• Domain hierarchy representation. The hierarchy of a dimension domain is
essentially a tree of C nodes. We represent this tree using LOUDS, which uses
2C − 1 bits, and can be efficiently navigated, as we have seen in Section 2.2.3.
Figure 5.1 illustrates the hierarchy encoding of the dimensions used in that
example (see d1 and d2). For instance, the degree of the first node for the
products dimension (d1) is 3, so its unary encoding is 1110. Unlike the original
LOUDS, we do not represent the last level (leaf nodes generate a single 0, so
it would be formed by only 0s.) because we know, in advance, the number
of levels of the tree and we can determine where the tree ends. Note that
each node (i.e., element of a dimension placed at any level of its hierarchy) is
associated with one 1 in the encoded representation of the degree of its parent.
We also use a hash table to associate the domain nodes (i.e., labels such as
“USA” in Figure 5.1) with the corresponding LOUDS node position. Therefore,
the hash table will have an entry for each label in the hierarchy.

• Data representation. To represent the n-dimensional matrix, we use the
following data structures:

– Tree structures (Ta and Tc): to navigate the CMHD, we need to use two
different data structures in conjunction. First, Ta, a bitmap that, similarly
to the kn-treap, provides a compact representation of the conceptual tree
independently of the node values, for all the tree levels, except the last
one1. That is, internal nodes whose associated value is greater than 0,
will be represented with a 1. In other case, they will be labeled with a 0.
Observe that, for the kn-treap, the use of this data structure is enough
to navigate the tree, taking advantage of the regular partition of the
matrix into equal-sized submatrices. Instead, CMHD follows different

1We do not actually need to represent the nodes of the last level in Ta. This data structure will
be used to first identify a node whose children will be later located in another bitmap (Tc). But
these already constitute matrix cells, with no children.

32 Chapter 5. Our proposal: CMHD

hierarchy partitions, which results into irregular submatrices. Therefore,
a second data structure, Tc, is also required to traverse the CMHD. This
is a bitmap aligned to Ta, which marks the limits of each tree node in
Ta (this time, it also considers the last tree level). If the next tree node
in Ta has z children, we append 1z−10 to Tc. Notice that each node of
Ta is associated with a 0 in Tc, which allows navigating the trees using
rank and select on Ta and Tc: say we are at a node in Ta that starts at
position i; then it has a kth child iff Ta[i+ k− 1] = 1, and if so this child
starts at position select0(Tc, rank1(Ta, i+ k − 1)) + 1.

– Values (V): the CMHD is traversed levelwise storing the values associated
with each node (either corresponding to original matrix cells, or to data
aggregations) in a single sequence, which is then represented with DACs.

5.1.3 Queries
Queries in this context give the names of elements of the different dimensions and
ask for the sum of the cells defined for those values. Depending on the query, we
can answer it by just reporting a single aggregated value already kept in V, or by
retrieving several stored values, and then adding them up. The first scenario arises
when the elements (labels) of the different dimensions specified in the query are
all at the same level in their respective hierarchies. The second situation arises
from queries using labels of different levels. In both contexts, top-down traversals
of the conceptual CMHD are required to fetch the values. The algorithm always
starts searching the hash tables for the labels provided by the query for the different
dimensions, to locate the corresponding LOUDS nodes. From the LOUDS nodes,
we traverse each hierarchy upwards to find out its depth and the child that must be
followed at each level to reach it.

This information is then used to find the desired nodes in Ta. For example,
with two dimensions, we start at the root of Ta and descend to the child number
k1 + a1 · k2, where ki is the child that must be followed in the ith dimension to reach
the queried node, and ai is the number of children of the root in the ith dimension (ai
is easily computed with the LOUDS tree of its dimension). We continue similarly to
the node at level 2, and so on, until we reach one of the query nodes in a dimension,
say in the first. Now, to reach the other (deeper) node in the second dimension, we
must descend by every child in the first dimension, at every level, until reaching the
second queried node. Finally, when we have reached all the nodes, we collect and
sum up the corresponding values from V . Note that, if all the queried nodes are at
the same level, we perform a single traversal in Ta. Note also that, if we find any
zero in a node of Ta along this traversal, we immediately prune that branch, as the
submatrix contains no data.

For example, we want to retrieve the total amount of speaker sales in Montreal, in
Figure 5.1. Since both labels belong to the same level in both dimension hierarchies

5.1. Our proposal: CMHD 33

(the last one), we will have to retrieve a single stored value in that level. The path
to reach it has been highlighted in the conceptual tree of the image. To perform
the navigation, we must start at the root of the tree (position 0 in Ta). In the first
level, we need to fetch the sixth child (offset 5), as it corresponds to the submatrix
including the element to search, in that level. Hence we access position 5 in Ta. Since
Ta[5] = 1, we must continue descending to the next level. Recall that we have a 1 in
Ta for each node with children, and that each node is associated with just one 0 in Tc.
So the child starts at position select0(Tc, rank1(Ta, 5)) + 1 = select0(Tc, 4) + 1 = 22
in Ta. In this level, we must access the third child (offset 2), so we check Ta[24] = 1.
Again, as we are in an internal node, we know that its children are located at position
select0(Tc, rank1(Ta, 24)) + 1 = select0(Tc, 9) + 1 = 59. Finally, we reach the third
and last level of the tree, where we know that the corresponding child is the fourth
one (at Ta[59 + 3] = Ta[62]). Recall, however, that this last level is not represented
in Ta. To perform this final step, we look directly in array V : V [62 + 1] = V [63] = 7
is the answer.

In case of queries combining labels of different levels, the same procedure would
apply, but having to get the values corresponding to all the possible combinations
with the element of the lowest hierarchy level (e.g., if we want to obtain the number of
meal sales in America, we must first recover the values associated with meal-Canada,
meal-USA, and meal-Chile, and then sum them up).

34 Chapter 5. Our proposal: CMHD

Chapter 6

Experimental evaluation

In this chapter, we analyze empirically the behavior of our proposed data structure,
the CMHD. As baseline, we use the kn-treap, presented in Section 4.2. Both
representations have been implemented in C/C++, and the compiler used was GCC
4.6.1. (option -O9). We ran our experiments in a dedicated Intel(R) Core(TM)
i7-3820 CPU @ 3.60GHz (4 cores) with 10MB of cache, and 64GB of RAM. The
machine runs Ubuntu 12.04.5 LTS with kernel 3.2.0-99 (64 bits).

6.1 Datasets
We generate different datasets, all of them synthetic, to evaluate the performance of
the two data structures, varying the number of dimensions and the number of items
for each dimension. These datasets have been labeled as <dim#>D_<item#>, thus
referring to their size specifications in the own name. For example, dataset 5D_16
has 5 dimensions, and the number of items on each dimension is 16. The total size
of this dataset is 165 = 1048576 elements.

In order to show the CMHD advantage of considering the domain semantics,
and computing the aggregate values according to the natural limits imposed by
the hierarchy of elements in each dimension, the dimensions hierarchies have been
generated in two different ways for each dataset. First, the binary organization, which
corresponds to a regular partition. That is, the hierarchies of each dimension are
exactly the same as those produced by a kn-treap matrix partition into equal-sized
submatrices. In this way, both data structures store exactly the same aggregated
values. We named it binary because we use a value of k = 2. Second, the irregular
organization, which arbitrarily groups data, on each dimension, into different and
irregular hierarchies (different number of divisions, and also different size at each
level). The last scenario simulates what would be a matrix partition following the
semantic needs of a given domain. In this case, the aggregated values stored by

35

36 Chapter 6. Experimental evaluation

the CMHD will be different from those stored by the kn-treap, and therefore more
appropriated to answer queries using the same “semantic”, which means, in our
context, queries considering regions that exactly match the natural divisions of each
dimension at some level of the hierarchies.

To test the structures behavior, we have also considered four different datasets,
with a different number of empty cells, for each size specification: with no empty
cells, and with 25%, 50% and 75% of empty cells, respectively.

6.2 Space requirements
First we analyze the space requirements of both data structures for all the datasets
(see Table 6.1). Of course, the size decreases as the number of empty cells increases,
in both cases. Moreover, we can also observe that the kn-treap size is slightly lower
than the CMHD size. This is expected, because CMHD has to store the LOUDS
representation of each dimension hierarchy, while dimensions are implicit for the
kn-treap. Additionally, CMHD uses a second bitmap (Tc) to navigate the conceptual
tree, which is not necessary when using the kn-treap.

We must also clarify a small issue about the sizes of the kn-treaps: the size
of a standard kn-treap for a specific dataset is always the same, regardless of the
organization of its dimensions (binary or irregular). However, Table 6.1 shows some
difference in the sizes. For example, for 4D_32, the size for the binary organization
is 588.89, but it is 588.61 for the irregular one. The reason for this variation is
that all queries are performed by taking dimension labels as input, so we need a
vocabulary to translate each label into a range of cells. We have included that
vocabulary (dimension labels and cell ranges) into the size of the kn-treaps, and the
vocabulary for the irregular organization is usually smaller, as it has less levels and
less dimension labels (because each node in the conceptual tree can have more than
two children in the irregular organization, whereas the binary organization always
has two).

6.3 Query times
Regarding query times, we have run several sets of queries for all the datasets.
As previously mentioned, queries are posed in this context by giving one element
name (label) for each different dimension, as it is the natural way to query a
multidimensional matrix defined by hierarchical dimensions. Since the kn-treap does
not directly work with labels, each query has been translated into the equivalent
ranged query, establishing the initial and final coordinates for each dimension. The
following types of queries have been considered:

• Finding one precomputed value. This value can be a specific cell of the matrix
(so forcing the algorithms to reach the last level of the tree), or a precomputed

6.3. Query times 37

Table 6.1: Space requirements of kn-treap and CMHD data structures (in
KB) for synthetic datasets.

0% Zeroes 25% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 39.54 47.13 39.54 45.65 34.49 40.77 34.49 40.43
4D_32 588.89 729.39 588.61 689.74 483.86 597.66 483.57 590.15
5D_16 553.79 690.81 553.79 673.41 488.54 608.51 488.54 612.64
5D_32 17608.33 22044.29 17607.79 21205.93 14589.71 18248.49 14589.18 18056.06
6D_16 8526.21 10708.68 8526.26 10529.12 7520.25 9440.07 7520.29 9446.53

50% Zeroes 75% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 28.25 32.96 28.25 33.35 18.75 21.57 18.75 21.79
4D_32 366.12 450.67 365.84 452.93 232.11 287.18 231.83 295.70
5D_16 388.39 483.51 388.39 496.62 241.62 308.70 241.62 324.82
5D_32 10949.27 13688.31 10948.73 14381.19 6907.18 8783.36 6906.64 9694.66
6D_16 6042.99 7621.09 6043.03 7797.71 3913.45 5124.84 3913.50 5383.60

value that corresponds to an internal node of the conceptual tree.

• Finding the sum of several precomputed values. This kind of query must obtain
a sum that is not precomputed and stored in the data structure itself. In turn,
it must access several of these aggregated values and then add them up. Given
that we are specifying the queries by dimension labels, this type of query is
defined by using labels that belong to different levels of the hierarchies across
the dimensions. The lowest level, which corresponds to individual cells, is not
used for this scenario.

Each created set contains 10, 000 randomly generated queries of the two previous
types for each dataset. Tables 6.2–6.4 show the average query times (in microseconds
per query) for both data structures, taking into account the two different matrix
partitions of the datasets (binary or irregular) and also the percentage of empty
cells.

6.3.1 Finding one precomputed values
We first show the results obtained for queries that just need to retrieve one
precomputed value, at different levels. On the one hand, Table 6.2 displays query
times for specific matrix cells, that is, located at the last level of the conceptual tree.
In this case, the kn-treap performs better than the CMHD in almost all cases. This
is an expected outcome as both data structures must reach the leaf level to get the
answer, and the depth first navigation of the tree is simpler in the kn-treap (just

38 Chapter 6. Experimental evaluation

Table 6.2: Average query times (in µs) for queries finding one precomputed
value (original matrix cells) for synthetic datasets.

0% Zeroes 25% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 0.84 2.37 0.85 2.39 0.81 2.29 0.81 2.33
4D_32 1.12 3.18 1.12 3.23 1.06 3.02 1.06 3.11
5D_16 1.04 3.04 1.04 3.09 0.99 2.94 0.98 3.03
5D_32 1.37 4.14 1.37 4.19 1.31 3.93 1.32 4.06
6D_16 1.23 3.78 1.24 3.88 1.20 3.66 1.20 3.78

50% Zeroes 75% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 0.76 2.18 0.77 2.26 0.72 2.03 0.72 2.08
4D_32 0.97 2.82 0.97 2.93 0.91 2.59 0.91 2.77
5D_16 0.98 2.83 0.99 2.93 0.87 2.63 0.85 2.73
5D_32 1.23 3.68 1.23 3.86 1.19 3.44 1.18 3.73
6D_16 1.20 3.56 1.21 3.72 1.10 3.33 1.11 3.46

products and rank operations). In any case, CMHD also performs quite well, using
just a few microseconds to answer any of the queries.

On the other hand, Table 6.3 shows the average query times for queries of
the same type, but now considering precomputed values stored in nodes of an
intermediate level of the tree (in particular, the penultimate level). Note that this
fact holds for both data structures when working with a regular partition of the
matrix (that is, the binary scenario). Thus, in this case, the kn-treap gets better
results than CMHD, but with slight time differences. Yet, observe that this is not
the actual scenario when dealing with meaningful application domains, where rich
semantics arise. This situation is that corresponding to what we called irregular
datasets. In this case, CMHD excels, as expected, given that this data structure
has been particularly designed to manage hierarchical domains. Results show that
CMHD is able to perform up to 4 times faster than kn-treap (for the best case).

6.3.2 Finding the sum of several precomputed values
Finally, Table 6.4 presents the average query times for the second type of queries
(that is, those having to recover several precomputed values and then adding them
up to provide the final answer). As results show, the kn-treap displays a better
performance than CMHD for the binary scenario. However, again this is not the
most interesting situation in real domains. If we observe the results obtained for the
irregular datasets, we will appreciate that CMHD clearly outperforms the kn-treap
in this scenario, thus demonstrating the good capabilities of our proposal to cope
with the aim of this work.

6.3. Query times 39

Table 6.3: Average query times (in µs) for queries finding one precomputed
value (penultimate tree level) for synthetic datasets.

0% Zeroes 25% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 0.67 1.82 2.53 1.79 0.67 1.78 2,23 1.83
4D_32 0.93 2.49 4.47 2.48 0.91 2.44 3,87 2.50
5D_16 0.81 2.27 5.72 2.32 0.82 2.26 5.05 2.32
5D_32 1.14 3.20 10.87 3.13 1.15 3.10 9.38 3.15
6D_16 0.96 2.78 13.42 2.81 0.97 2.77 11.89 2.80

50% Zeroes 75% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 0.70 1.77 1.87 1.84 0.67 1.72 1.73 1.73
4D_32 0.89 2.36 3.24 2.42 0.84 2.24 2.83 2.37
5D_16 0.83 2.26 5.44 2.31 0.78 2.16 3.94 2.22
5D_32 1.11 3.04 7.43 3.12 1.07 2.95 6.73 3.08
6D_16 0.99 2.77 12.96 2.84 0.93 2.68 9.62 2.70

Table 6.4: Average query times (in µs) for queries finding a sum of
precomputed value.

0% Zeroes 25% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 1.76 6.42 10.52 6.70 1.74 6.29 9.16 6.82
4D_32 3.63 14.20 34.89 13.44 3.47 13.42 29.67 13.58
5D_16 2.07 7.73 28.17 8.27 2.08 7.69 24.41 8.36
5D_32 4.30 16.95 98.54 14.91 4.16 16.13 82.80 15.16
6D_16 2.45 9.16 73.32 9.98 2.41 9.01 64.13 9.86

50% Zeroes 75% Zeroes
Binary Irregular Binary Irregular

name kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD
4D_16 1.92 6.26 7.39 6.81 1.71 5.68 6.72 6.16
4D_32 3.60 12.54 23.30 12.73 3.12 11.01 20.23 11.76
5D_16 2.31 7.66 26.90 8.20 2.03 6.88 18.47 7.48
5D_32 4.38 15.47 62.90 14.77 3.92 13.96 56.52 14.11
6D_16 2.67 9.04 71.32 10.14 2.42 8.40 52.02 9.16

40 Chapter 6. Experimental evaluation

Chapter 7

Discussion

7.1 Main contributions
We have presented a multidimensional compact data structure that is tailored to
perform aggregate queries on data cubes over hierarchical domains, rather than
general range queries. The structure represents each hierarchy with a succinct tree
representation, and then partitions the data cube according to the product of the
hierarchies. This partition is represented with an extension of the k2-treap to higher
dimensions and to non-regular partitions. The resulting structure, dubbed CMHD,
is much faster than a regular multidimensional k2-treap when the queries follow the
hierarchical domains. This makes it particularly attractive to represent OLAP data
cubes compactly and efficiently answer meaningful aggregate queries.

7.2 Future work
As future work, we plan to experiment on much larger collections. This would make
the vocabulary of hierarchy nodes much less significant compared to the data itself
(especially for the CMHD). We also plan to test real datasets (for example, coming
from data warehouses) and real query workloads. We also expect to compare our
results with established OLAP database management systems, and to enrich our
prototype with other kinds of queries and data.

41

42 Chapter 7. Discussion

Part II

GIS data

43

Chapter 8

Introduction

In this Part II, we present a new compact data structure designed to represent raster
datasets, called k2-raster, and an improved version that we call heuristic k2-raster
(k2
H -raster). This data structure is based on the k2-tree, which has been previously

described in Section 3.2. Unlike previous compact data structures designed to deal
with raster data, our proposal exhibits good scalability when the number of different
values in the raster increases, in addition to obtaining better memory consumption
than the techniques of the literature. In addition, in this part, we also show an
algorithm to perform a spatial join between a k2-raster and a vector dataset.

The next chapters of this part are organized as follow: Chapter 8 introduces
a brief description of geographic information systems, previous compact data
structures to represent raster information, and a brief description of the spatial join
between raster and vector datasets. Chapter 9 describes in detail the k2-raster and
its variations. Chapter 10 includes the definition and implementation of the spatial
join between raster data, represented with k2-raster, and vector data. In Chapter 11
we test our contributions with real data and the structures are compared with the
current state of the art. Finally, we summarize the work presented in this part and
propose new research lines in the Chapter 12.

This chapter is structured as follows: Section 8.1 introduce some previous concepts
of interest for the rest of the thesis. The related work is presented in Section 8.2.
Finally, we introduce the spatial join operation in Chapter 8.3.

8.1 Introduction
A geographic information system (GIS) is any computer system that lets us store,
manipulate, analyze and display spatial or geographic data [WD04]. Nowadays, GIS
tools have been established in many organizations for both commercial and research

45

46 Chapter 8. Introduction

use, generating and storing a multitude of geographic data. This means that more
and more geographic data are made public and that it is easier to access them for our
own analysis and manipulation. In addition, with the increase of devices with GPS
and other location systems, and the popularity of their use in many applications,
GIS systems need new methods and structures to store and process the data in a
much more efficient way.

Research on efficient management of spatial information has produced several
spatial data models. On the conceptual level, these models describe the space
using two different approaches: object-based spatial models and field-based spatial
models [WD04]. Considering the logical level, spatial data models can be divided
into two categories: vector models that represent geographic information using finite
sequences of points and line segments, and raster models that represent geographic
information partitioning space into a finite grid of cells and assigning a value to each
cell [LGMR05].

The first contribution of this part deals with spatial information represented
with a raster model. This involves images -including remotely sensed imagery-,
engineering, modeling, representations of parameters of the land surface such as
pollution levels, atmospheric pressure, rain precipitations, land elevation, vegetation
indices, etc. Thanks to the advances in remote sensing and instrumentation, the
amount and size of raster datasets are increasing rapidly. For example, it has been
estimated that each day, remotely sensed imagery is acquired at the rate of several
terabytes per day [LB07], and the archived amount of raster data of this type is
slowly approaching the zettabyte scale [QG13].

In this field, as usual, compression has been used to save space and bandwidth
[Wal91, LI06]. There exists vast research focused on compressing raster datasets,
proposing both lossless [HV14, SJS+12, ZYG15] and lossy [Wal91] approaches. In
addition, there have been efforts in creating indexes on raster data to improve query
and processing performance [Sam84, Duv09, ZY10]. However, there is much less
work on data structures capable of compressing and indexing data at the same time.
The first exponent is the quadtree [Kli71, KD76], which was originally designed
as a method to compress images. It allows the manipulation of the compressed
image directly in main memory and, in addition, it spatially indexes the values of
the raster. However, it does not provide indexation over the values of each cell of
the raster. To the best of the authors’ knowledge, only two recent compact data
structures [dBÁGB+13] were designed to represent raster datasets and combined
these three features: it compresses the data, indexes the space, and indexes the
values of the cells. These techniques work well when the number of different values
in the raster is low, however, if that number grows, both the space consumption and
the query performance degrade dramatically. Observe that this is an important
problem when dealing with rasters, since they are usually obtained from a real
continuous phenomenon as temperature, atmospheric pressure, etc. Therefore, these
previous approaches, which are described in Section 8.2, are not useful in many real

8.1. Introduction 47

data scenarios.

This big increase in the variety, richness and amount of spatial data has also
led to new information demands. Nowadays, many application areas require to
combine data stored in different formats [GRS00]. Obviously, combining different
data models efficiently becomes harder when huge amounts of data are involved.

Therefore, several challenges arise. First, at the conceptual and logical levels, new
data models and query languages can be developed in order to accommodate those
new information requirements [SH91, BDF+98, VZ09]. Second, at the physical level,
new data structures and algorithms are needed to implement the aforementioned
data models and query languages [Kai91, GG98].

Although there is a large body of research regarding those three problems, in
most cases that research is focused either in the vector model or in the raster model
separately. The two models are rarely handled together. For instance, the usual
solution for queries that involve (together) raster and vector datasets is to transform
the vector dataset into a raster dataset, and then use a raster algorithm to solve the
query. This is the solution for the zonal statistics operation of Map Algebra in, at
least, ArcGIS and GRASS [Zon16, GRA16].

However, some previous works focus on a joint approach. In [GRS00], for example,
a single data model and language is proposed to represent and query both vector and
raster data at the logical level. Even a Join operator is suggested, such that it allows
to combine, transparently and interchangeably, vector datasets, raster datasets, or
both. As an example, the authors propose the query “return the coordinates of
the trajectory of an aircraft when it was over a ground with altitude over 1,000”.
Unfortunately, no implementation details are given.

Other previous contributions deal with the implementation of query operators
explicitly defined to query datasets in different formats [CVM99, CTVM08,
BdBG+17]. All those contributions include the definition of a Join operator between
a vector and a raster dataset. Unfortunately, all of them suffer from serious limitations
(data structures not complex enough, too restrictive join operations, size problems)
that will be explained more in detail in the Section 8.3.

8.1.1 Data model
Geographical information systems can use different data models to manage spatial
information [Cou92]. At the conceptual level, there are two possibilities: object-based
models and field-based models.

• Object-based models describe a space containing discrete and identifiable entities
(objects), each with a geospatial position and well-defined boundaries. It is
useful to represent geographic information about objects. Typically, buildings,
roads, rivers and other man-made objects are represented with object-based

48 Chapter 8. Introduction

models. The typical operations involve the topological relationship between
their objects, for example, if one object intersects with another one.

• Field-based models can be seen as a continuous mathematical function that
for each position of the space returns a value. It represents a distribution
of spatial attributes or phenomenas over a space whose value depends on its
spatial position, such as land elevation, temperature, atmospheric pressure,
etc. Some basic operations are to obtain the minimum, maximum or average
value of an area.

Object-based models and field-based models are used for different proposes. The
first one is focused on the specific form of the object and its location in the space
whilst field-based models are suitable for attributes of the space.

The two previous models cannot be used for the digital representation of the
space, since they only define the data in a conceptual way and not as the computer
processes that information. The logical model allows us to represent the conceptual
models in a system. From the logical level point of view there are also two types of
models: vector models and raster models.

• Vector models represent the spatial information using points and line segments.
A point is defined by its coordinate in the space, whereas for a segment a
starting and an ending points are needed. Other more complex representations,
such as curves or polygons, are composed of sets of connected segments, so
these objects can be defined by a set of points.

• Raster models consider the space as a regular tessellation of disjoint cells,
usually squares, each having a value [LGMR05]. Given that any image can
be seen as a raster, the use of this data model is massive. Other examples
of application of raster datasets could be pollution control, weather forecast,
satellite imagery, remote sensing capture, 3D modeling, engineering, etc.

In theory, any logical spatial model can be used to represent any conceptual
spatial model, however, in practice it is common to use vector models to represent
object-based models and raster models for field-based models.

Figure 8.1 shows an example of two representations of the same data with two
different models. In Figure 8.1(a) we use the vector model. The lake and the forest
are described with two polygons and the road with a line. The output of this model
is a set of points for each object in the space. In the other Figure 8.1(b), we use
the raster mode, dividing the space into cells and assigning one value for each one.
In this example, the blue cells mark where the lake is, the green cells indicate the
location of the forest, whilst the gray cells define the route of a road.

8.1.1.1 Representation of raster data

The simplest way to represent raster data is with a binary matrix, which determines
the existence or not of a spatial feature. Therefore, each cell of the matrix contains

8.1. Introduction 49

(a) Vector model (b) Raster model

Figure 8.1: Example of a vector model and a raster model for the same
data.

the value 1 or 0 depending on whether the corresponding area contains the feature
or not. For example, clouds or location of an oil spot on the sea can be represented
with a binary matrix. But it is not enough to some kind of spatial features, such the
temperature, where we need to keep one value per cell (not only 1s and 0s). For these
cases, a general raster is used, where each cell stores a value with a predetermined
precision (32-bit or 64-bit integers, floating-points values, etc).

8.1.1.2 Classic formats

Several formats were proposed for representing raster data:

• GeoTIFF is a public standard that embeds geographic information (such as
the map projection or the coordinate systems used) to TIFF (Tagged Image
File Format) files. The GeoTIFF specification defines a set of new tags to
describe cartographic and geographical information. It divides the image into
separated tiles or strips that support several compression methods such as
LZW or RLE (Run-Length encoding).

• NetCDF (Network Common Data Form) is a standard proposed by the Open
Geospatial Consortium (OGC) for geospatial data. The file contains a metadata
header that includes a descriptor of the data and the temporal and spatial
properties of the data stored. NetCDF can compress the data using DEFLATE.

• Esri grid is a file format designed for representing raster data created by Esri
organization. It has two formats, a binary format and an ASCII format. The

50 Chapter 8. Introduction

binary format is used by Esri programs, as ArcGIS, and divides the raster
data in rectangular tiles. Each tile is independently stored and compressed
using RLE (Run-Length encoding). On the other hand, the ASCII format
stores the data in plain text and is widely used to export and share a raster
file. A header is included with basic information of the rater (number of row
and columns, max/min value, etc).

Another way to store raster data is to use general image file formats as JPEG or
PNG. These formats are only able to represent the values of the raster, therefore, it
is necessary to keep the spatial information separately (for example, as metadata).

8.2 Related work
8.2.1 Quadtrees for raster data
There are many different variants of the quadtree and with different purposes
[Sam84, Sam06], but the compression of images using region quadtrees was one of
its original targets [Kli71, KD76]. In this scenario, the quadtree was designed as a
representation of images not only for storage or transmission purposes but to process
them directly in main memory [Sam84]. To fit the structure in main memory, the
size is a relevant issue, and thus since it is a tree, pointer-less representations were
introduced [Sam85, OW83]. These pointerless representations use a locational code
that for each leaf of the tree gives its position in the space [Sam85] or an implicit
ordering [OW83]. For our work, it is of special interest the latter case, denoted
as Treecodes. The region quadtree is represented by a sequence of numbers, each
representing a node of the conceptual region quadtree. Each of these numbers has 5
bits, the most significant bit indicates whether the corresponding node is a leaf or
not, and the remaining 4 bits store a value. In the case of a leaf node, that number
is the value corresponding to a pixel of the image; in non-leaf nodes, it is the average
value of the pixels contained in the region represented by such a node. This average
value is used to give a preview of the image during a slow transmission through a
network. The quadtree is stored as a sequence of bytes, each storing a 5-bit number,
where the correspondence of each byte with the nodes of the conceptual tree is given
by the ordering of the sequence, which is a breadth-first traversal of the tree. The
representation of the image of Figure 8.2 is the sequence of bytes: 20, 3, 18, 4, 7, 0,
1, 2, 5. The first 20 corresponds to the root node, which is an inner node signaled
with a 1 in the fifth bit, the next 4 bits store the average value of all pixels in the
image (4), and thus we have a 10100 (20). The third byte (18) corresponds to the
quadrant further divided into subquadrants, therefore it represents an internal node
(fifth bit set to one) and the next four bits store the average value (2).

Our compact structure also uses an implicit ordering using a breadth-first
traversal, but we separate the topology of the tree (the most significant bit in
the 5-bit number) from the content (the remaining 4 bits). Thanks to this split,

8.2. Related work 51

0 1

2 5

4

3

7

20

3 18 4 7

0 1 2 5

Figure 8.2: An image (left), where a number inside a square means that
all pixels in that square have that value, and the corresponding conceptual
quadtree showing the byte representation of each node using the Treecodes
strategy (right).

we can use more appropriate methods to represent these two types of information.
The topology (the bit indicating whether a node is a leaf or not) is represented
with a k2-tree, which uses 1 bit per node and it is a very efficient structure to
navigate. With respect to the content, the first difference is that, in non-leaf nodes,
instead of storing the average value of the corresponding subquadrant (only useful
for pre-visualization purposes), we store the min-max values to index the values at
the cells of the raster. The second difference is that the cell values (corresponding to
leaves) and the min-max values of inner levels are stored using DACs and differential
encoding, which can achieve good compression and allow fast access times.

As explained, the quadtree has been used with different purposes, although the
use of the quadtree to compress rasters (including images) [Woo84, Lin97, CC03,
CLY06, ZYG15] is one of the main research lines. Another use of the quadtree is to
index rasters, although much less effort was devoted to this feature [ZYG10, ZY13].
The best known example is the linear quadtree, which is a disk-resident index for
rasters [RSV02].

The region quadtree indexes the space allowing spatial searches, however in
[ZYG10], the inner nodes of a quadtree, called Binned Min-Max Quadtree, are
enriched with the min-max values of the region represented by such a node, thus
indexing the values of the raster dataset as well. However, there are several differences
with respect our work. First, the values stored at the leaf nodes and the corresponding
min-max values at inner nodes are not the actual values in the raster. They use a
binned or histogram strategy, which consists in assigning a code to ranges of possible
values, for example, 0 encodes the values between -50 and -10, 1 encodes the values
between -9 and 0, and so on. Then to perform searches, first we have to encode
our search value, and then use that encoded value to take decisions at the nodes of
the quadtree. This implies that the quadtree is simply a classical index and thus
we have to store the original raster separated from the quadtree, using a classical
representation, that is, the quadtree is an auxiliary structure of the main data file.
In addition, the quadtree with binned codes limits the pruning capacity of the tree

52 Chapter 8. Introduction

to the boundaries of the ranges defined by the binned strategy. Finally, this previous
work is mainly focused on search capacity, and thus there are no worries about space,
using a naive pointer-based implementation. Later, the same team presented a new
data structure, called Cache Conscious Quadtree [ZYG10], which is a quadtree where
all nodes are placed in a one-dimensional array to avoid non-continuous memory
allocations, in order to improve constructions times. Each node has a field indicating
the position of its first child in the array and the min-max values. It uses again a
binned strategy, and thus, it is just an auxiliary index.

As a summary, we can point out that the main difference of our approach with
respect to these works is that while these works are either focused on representing
the raster using compression or on designing an auxiliary index of the raster data,
our work focuses on joining these two worlds. We present a structure for representing
the raster data in a compressed form, and at the same time, it indexes both the
space and the values of cells. Thus, our proposal can be consider a self-index for
raster data.

8.2.2 k2-acc
Another way to represent a raster having values in the range v1 < v2 < · · · < vt
is to use a k2-tree for each value. Then, the representation is formed by t k2-trees
K1,K2, . . . ,Kt, where each Ki has a value 1 in those cells whose value is v ≤ vi in
the original raster. Observe that the k2-trees corresponding to the bigger values
(those close to vt) will have large areas full of 1s, therefore the variant of the k2-tree
that compresses also the areas full of 1s is used. In fact, the k2-tree corresponding to
the largest number can be omitted, Kt, as it always represents a matrix full of ones.
This approach is called accumulated k2-trees or k2-acc. This is the first compact
data structure able to represent raster data and capable of indexing the space and
the values stored at the cells.

To obtain the value at a given cell, a binary search over the collection
K1,K2, . . . ,Kt is needed. This approach is very efficient returning the cells having
a value in a given range [vb, ve], since it only needs to check Kb and Ke. To obtain
the cells having a given value is also solved accessing two k2-trees.

Figure 8.3 illustrates a raster data (top) and the resulting k2-acc representation
(bottom). This raster has 5 different values, therefore the k2-acc representation
needs four k2-trees. In this example, the k2-tree labeled as “K1” has a one in cells
whose original value is 1 or less. Then, cells of the next k2-tree labeled as “K2”
contains a one if the original value is 2 or less, and so on. The final structure is a
set of 4 k2-trees.

8.2.3 k3-tree
Another compact data structure for raster datasets is the k3-tree, which is an
extension of the k2-tree where we add one extra dimension. It stores a binary cube

8.2. Related work 53

Figure 8.3: Example of raster matrix (top) and resulting k2-acc
representation (bottom).

using the same partitioning and representation strategies used in the k2-tree. When
applied to raster datasets, the k3-tree stores points 〈x, y, z〉, where the first two
values represent the position in the 2D space, and the third component is the value
stored in that cell.

It is possible to efficiently navigate the k3-tree, basically using the same procedures
used in the k2-tree, but extended to three dimensions. If we want to obtain the
value stored at a given position, we just fix that position in the 2D space (x and
y) and then we check the corresponding z value. To obtain the cells with a given
value or a range of values, we fix the value(s) of z, and we search the values of (x, y)
having the given value(s).

An example of k3-tree is shown in Figure 8.4. The conceptual k3-tree cube
(Figure 8.4(a)) represents a raster dataset as seen before. The corresponding tree is
shown in Figure 8.4(b).

Comparing k2-acc and k3-tree, the first one is better for retrieving cells containing
a given value or range of values, whereas the k3-tree obtains better space consumption
and time results when retrieving the value at a given position.

8.2.4 R-tree
An R-tree [Gut84] is a tree data structure, similar to B-tree, for indexing multi-
dimensional information and speeding up queries over a vector dataset. R-tree
groups spatial objects (lines, polygons or point) using minimum bounding rectangles
(MBRs), that is, the smallest n-dimensional rectangle that contains those objects.

54 Chapter 8. Introduction

(a) k3-tree cube (b) k3-tree tree

Figure 8.4: Example of the k3-tree decomposition, with k = 2.

The R-tree is dynamic, that is, objects can be inserted and removed from the tree
at any time.

Each node of the R-tree is stored in a disk page and its capacity is determined
by the page size (upper bound) and the space utilization of the tree (lower bound).
In the case of leaf nodes, their entries hold information about the indexed object.
Each entry usually stores a unique identifier object (called OID) and the MBR that
encloses the object. On the other hand, internal nodes contains pointers to other
nodes. Each entry of an internal node stores, in addition to the pointer to the child,
the corresponding MBR of the child node.

(a) Objects (b) R-Tree

Figure 8.5: R-tree of 3 levels with 10 objects indexed.

Figure 8.5 shows an R-tree of 3 levels and 3 entries as maximum capacity of the
nodes that indexes 10 different objects. The MBRs A, . . . , J enclose the 10 objects
and correspond with the leaf nodes of the R-tree. Internal nodes contain other
MBRs of the tree. For example, MBR N3 have 3 entries (A, B and C) and is the
minimum rectangle that contains those 3 entries. Also observed that MBRs N5 and
N6 overlaps.

8.3. Spatial join 55

Given a query defined by a rectangle, the search process performs a top-down
traversal of the tree. It starts at the root node and checks its entries to determine
if they intersect with the given rectangle. The process continues for each node
that intersects with the query and repeats the same steps. If the process reaches a
leaf node, each entry of the leaf node whose MBR intersects with the rectangle is
added to a list of candidates. Finally, when the process ends, we need to check the
actual geometry of each object in the list of candidates to determinate if it actually
intersects with the query.

Others variants of the R-tree were presented to improve some characteristics.
Beckmann et al. [BKSS90] propose the R∗-tree, which obtains better query
performance than the standard R-tree. Nascimento et al. [NST99] introduce the
HR-tree, a data structure for the representation of moving objects based on the
R-tree. Other example is the MV 3R-tree described by Tao and Papadias [TP01].

8.3 Spatial join
Few data models consider the possibility of using both the object-based and the
field-based spatial models of space. Even international standards separate both
views [ISO03, ISO05]. The same situation can be found at the logical level, where
international standards [OGC10, OGC12] separate again both views and do not
provide languages, data structures and algorithms to perform queries that use
information from both data models simultaneously.

Many real systems supporting raster datasets adopt the operations of Map
Algebra [TB79, Tom90]. In some systems, as for example ArcGIS, QGis, or GRASS,
the zonal statistics operation of Map Algebra admits as one of its operands a vector
dataset. However, as explained, at least in ArcGIS and in GRASS, the vector dataset
is converted to raster before running the query [Zon16, GRA16].

Some research works do provide models and languages that include data types
and operators to represent and query vector and raster data in traditional database
models [SH91, BDF+98, VZ09]. These models specify two different sets of operations,
one for vector data and another one for raster data.

In [GRS00], a single data model and language is used to represent vector and
raster data. It includes spatial versions of the relational model operations like
Projection, Selection, and Join. These operations can manipulate vector and raster
information without having to separate or distinguish the type of operands. In
[Bro10], it is presented a model based on multidimensional arrays to manage scientific
data that is able to manage vector and raster data.

However, these proposals only describe data types and operators to process raster
information, and, in some cases, to manipulate jointly raster and vector information,
yet no details of implementation issues are provided (including neither the structures
nor the algorithms needed to support the model and the queries).

56 Chapter 8. Introduction

Corral et al. [CVM99] presented five algorithms for processing a join between
an R-tree and a linear region quadtree [Gar82]. In [CTVM08], it is shown the
predictive join between regions and moving objects. It uses again a linear region
quadtree for the raster information, and for the moving objects it uses the variation
of the R-tree called TPR*-tree. Unfortunately, both works deal with binary rasters,
and therefore they have a very limited real application.

Recently, Brisaboa et al. [BdBG+17] presented a framework to store and manage
compressed vector and raster data, as well as an algorithm to solve a query that,
given a vector and a raster dataset, returns the minimum bounding rectangles
(MBRs) of the vector dataset overlapping regions of the raster that fulfill a range
constraint over the raster dataset. For example, having a vector dataset representing
the neighborhoods of a city and a raster storing the amount of nitrogen oxides in
the air, a query could be “return the neighborhoods overlapping points where the
concentration of nitrogen oxide is above 0.053 ppm”. However, their solution does
not return the exact cells of the raster fulfilling the range constraint, as the output
can only include values of the vector dataset. The vector dataset is indexed with an
R-tree and the raster dataset is represented and indexed with a k2-acc. To solve
the query, the algorithm just requires the k2-trees representing the values at the
extremes of the range and the R-tree. The search starts at the root of the three trees
and then proceeds in parallel through the three trees using a top-down traversal,
pruning the branches of the trees when possible. The k2-acc has two problems.
It works well for range queries, that is, those specifying a range of values of the
raster dataset (like the nitrogen oxide example just exposed). However, it obtains
modest response times for other queries like, for example, obtaining the value of a
given cell. The other problem of the k2-acc concerns the size of the dataset. It is
a compact data structure, and gives good compression rates when the number of
different values in the dataset is low. But when the number of different values is
large, the dataset occupies much more space than the uncompressed representation,
as we will see in Chapter 11.

Chapter 9

Our proposal: k2-raster

In this chapter, we present the k2-raster, a new compact data structure that
represents raster datasets in compressed space, and at the same time, indexes the
space and the values stored at cells. In Section 9.1, we describe the technique in
detail, including algorithms that support several queries over the raster data. In
Section 9.2, we propose an improvement of the technique, the heuristic k2-raster,
or k2

H -raster.

9.1 k2-raster
Let M be a raster matrix of size n× n, being n a power of k, where each cell Mij

stores a value v ≥ 0. 1

The k2-raster uses the same partitioning strategy used by the original k2-tree,
that is, it recursively divides M into k2 submatrices, and builds a tree representing
this recursive subdivision. In k2-raster, the recursive division stops when all the cells
in a submatrix have the same value. The nodes of the tree store the minimum and
the maximum values of the corresponding submatrix in order to index the values at
cells. Therefore, the k2-raster puts together the quadtree spatial index, the min/max
indexing of rasters, and a compressed representation of the data. As explained,
the k2-raster joins in a unique data structure two desirable properties: indexing
capabilities and an efficient representation of the values in the cells and the values
at the nodes, making our approach a compact and self-indexed representation.

1In case that the input matrix is of size n ×m, being n and m any integer, we conceptually
extend the input matrix to the right and to the bottom, making it of size n′ × n′ such that
n′ = kdlogk max{n,m}e, that is, we round n and m up to the next power of k of their maximum
value. This does not cause a significant overhead because our technique effectively compresses large
areas of equal values.

57

58 Chapter 9. Our proposal: k2-raster

Figure 9.1: Example of raster matrix (top). We indicate the minimum
(light gray) and maximum (dark gray) value of each submatrix for the four
steps of the recursive subdivision of the construction algorithm, using k = 2.
Conceptual tree representation obtained from the construction of the k2-raster
(bottom). Numbers at each node indicate the maximum and minimum value
of its corresponding submatrix. In the last level, only the maximum is shown.

9.1.1 Construction and data structures

The first step of the construction process is the creation of the root node that stores
the minimum and maximum values (rMin, rMax) of the complete matrix. If rMin
and rMax are equal, only one value is stored as the maximum, and the process
ends here. Otherwise, the two values are stored and the matrix is divided into
k2 submatrices, each adding a child node to the parent, in this case, to the root
node. For each generated submatrix, the process is recursively repeated, until the
maximum and minimum values become equal, or until the decomposition reaches
the last level, that is, when the decomposition of a submatrix obtains submatrices of
just one cell. Observe that, being n× n the size of the matrix, the tree has a height
of at most h = dlogk ne levels.

Figure 9.1 shows an example that illustrates the process. Under the label “Step
1”, we can see an 8 × 8 raster matrix, and below it, the corresponding k2-raster
using k = 2. The root node stores the maximum and minimum values of the matrix,
since these values are different, the 8× 8 raster matrix is divided into 4 submatrices
of 4 × 4 cells. Under the label “Step 2”, we can see those submatrices and their
maximum (marked in dark gray) and the minimum (marked in light gray) values.
For each subdivision, one child node is added to the root node of the tree, storing
those values. Observe that in the case of the bottom-right submatrix, the maximum

9.1. k2-raster 59

and the minimum values are the same (2), therefore such node becomes a leaf node
and its corresponding matrix is not further subdivided. The other three submatrices
are then subdivided, shown under label “Step 3”, each displaying its maximum and
minimum values. The level 2 contains the nodes corresponding to those submatrices,
and again, those containing only one value produce a leaf node, and the rest are
further subdivided. Finally, at level 3, the process reaches the cell level, and thus,
for each subdivision, its node has one child for each of its cells, storing the value of
that cell.

The previous description is a high level description of the k2-raster. The actual
representation uses several succinct data structures strategies to obtain compression.
More specifically, we represent the topology of the tree and the maximum and
minimum values, which make up the k2-raster, as follows:

• The topology of the tree is stored separately from the rest of the information.
For this sake, k2-raster uses a data structure similar to that of a k2-tree. In
contrast to the original k2-tree, a 0 in a node of a k2-raster means that all
values in the corresponding submatrix are equal, and a 1 means that there are
two or more different values. In addition, while the original k2-tree is divided
into two bitmaps T and L, where L represents nodes of the last level and
T the rest of nodes of the tree, k2-raster does not need bitmap L because it
would be completely composed of 0s, since the maximum and minimum values
of a leaf node will always be equal, as there is just one value at those nodes.

• The maximum values of the nodes of the tree are also treated separately. In
order to save space, all values, except the value of the root, are encoded as the
difference with respect to the maximum value of their parent nodes. Observe
that those differences will never be a negative value because the maximum
value of a parent node is always equal or greater than the maximum value of
its children. We obtain a tree composed of differences, which are stored as a
unique array, denoted Lmax, where the positions of the values are determined
by the breadth-first traversal of that tree. That sequence is composed of
differences, which tend to be small, which is precisely the situation where
DACs can provide good compression and direct access to any given position.
The maximum value of the root (rMax) is stored separately as an integer in
plain form.

• The construction of the structure for the minimum values uses the same
technique as for the maximum values. The minimum values are again encoded
as differences with respect to the minimum value stored at the parent, again
we have always positive values given that the minimum value of a node is
always equal or greater than the minimum value of the parent node.2 The

2The minimum value of a node could also be represented as a difference with respect to the
maximum value of that node. In fact, since only differences greater than zero are represented, we

60 Chapter 9. Our proposal: k2-raster

Figure 9.2: Compact representation of the conceptual k2-raster using
differences for the maximum and minimum values (top). Data structures
T , Lmax and Lmin used for representing compactly the k2-raster (bottom).
Global maximum and minimum values are also stored separately.

only difference is that we do not need to store the minimum values at the leaf
nodes, as the maximum value is enough to represent it. We denote Lmin this
array containing the differences for the minimum values, which is also encoded
using DACs. The minimum value of the root (rMin) is also stored separately
as an integer in plain form.

If T has t bits, Lmax has at least t values, and in the first t values of Lmax,
the ith value corresponds to the maximum value in the submatrix represented by
the ith bit of T , as Lmax has one maximum value for each internal node of the
tree. That is, they are aligned, since both sequences use the same breadth-first
traversal to determine the ordering. However, usually Lmax has more elements,
namely the values required for the last level of the tree (which are represented
in Lmax but not in T). Lmin only contains values for those internal nodes z
with T [z] = 1, since nodes with T [z] = 0 have a minimum value equal to their
maximum value, which is already stored in Lmax. Since the first t values of
T and Lmax are aligned, given a position z of T , its corresponding value in
Lmax is the zth number, and we can easily obtain its position in Lmin as rank(T, z).

Figure 9.2 shows in the upper part a conceptual tree representing a k2-raster.
It corresponds to the same raster used in Figure 9.1. This conceptual tree has an
improvement with respect to that in Figure 9.1, namely the maximum and minimum

could subtract 1 to this difference value. This variant has also been proved experimentally and it
obtained comparable results.

9.1. k2-raster 61

values stored at each node are now encoded using differences with respect to the
values of its parent. The conceptual tree is just shown for illustrative purposes, as
we only store the data structures shown in the bottom part of the figure. Observe
that when the maximum and minimum values are equal, only the maximum value is
stored. Using differences instead of the actual values causes that the final sequence of
integers to encode is mostly composed of small numbers (assuming some uniformity
among the values of the input raster matrix), and this will be exploited by DACs
encoding.

Construction

The construction of k2-raster can be easily done using a recursive procedure. The
algorithm consists in a depth-first traversal of the tree that outputs, separately for
each level ` of the tree, the bit array of the tree representation T` and the lists
of maximum and minimum values for the nodes of that level `, which we will call
V max` and V min`. Then, T can be obtained by concatenating bitmaps T` for all
levels of the tree, and Lmax and Lmin can be obtained from V max` and V min`
respectively, by obtaining the differences between parents and children, concatenating
the sequences of all levels, and encoding the final sequences using DACs. The total
time of the algorithm is linear in the number of cells of the matrix, that is, O(nm).
In fact, it is optimal, since it processes the raster accessing each cell only once.

The algorithm proceeds as follows: for any level except for the last level of the
tree, it performs k2 recursive calls, each one for the k2 submatrices resulting from a
subdivision. When it reaches the last level of the tree, that call processes k2 leaf
nodes of the tree, which correspond to cells of the original matrix. It checks whether
the k2 cells are all equal. If they are all equal, it just returns that value as maximum
and minimum values; otherwise, it appends those k2 values to V max`, compute
their maximum and minimum values and return them as result of the call.

When returning after a recursive call, the algorithm obtains the maximum and
minimum values of its k2 children. For each child, if these values are different, it
appends these values to V max` and V min` lists and sets up a 1 in the T` of that
level. If the maximum and minimum values are equal, it appends the value to
V max` and sets up a 0 in T`. After processing the k2 children, it checks whether all
the maximum and minimum values are equal, which indicates that all the children
contain the same value. Thus, the algorithm must undo the last operations, as these
nodes will not have a representation in the data structure. This can be easily done
by removing the last k2 positions of T` and V max`, or just moving the pointer that
indicates their last written position, k2 positions backwards. Finally, the algorithm
returns the maximum and minimum values to its parent.

Algorithm 9.1 shows the pseudocode of the construction process. It is invoked
as Build(n, 1, 0, 0), where the first parameter is the (possibly extended) raster
matrix size, the second is the current level, the third is the row offset of the current

62 Chapter 9. Our proposal: k2-raster

Algorithm 9.1 Build(n, `, r, c) computes T , V max and V min of the k2-raster
representation from matrix M and returns (rMax, rMin)
1: minval←∞
2: maxval← 0
3: for i← 0 . . . k − 1 do
4: for j ← 0 . . . k − 1 do
5: if ` = dlogk ne then . last level
6: if minval > Mr+i,c+j then
7: minval←Mr+i,c+j

8: end if
9: if maxval < Mr+i,c+j then
10: maxval←Mr+i,c+j

11: end if
12: V max`[pmax`]←Mr+i,c+j

13: pmax` ← pmax` + 1
14: else . internal node
15: (childmax, childmin)← Build(n/k, ` + 1, r + i · (n/k), c + j · (n/k))
16: V max`[pmax`]← childmax
17: if maxval <> minval then
18: V min`[pmin`]← childmin
19: pmin` ← pmin` + 1
20: T`[pmax`]← 1
21: end if
22: pmax` ← pmax` + 1
23: if minval > childmin then
24: minval← childmin
25: end if
26: if maxval < childmax then
27: maxval← childmax
28: end if
29: end if
30: end for
31: end for
32: if minval = maxval then
33: pmax` ← pmax` − k2

34: end if
35: return (maxval, minval)

submatrix, and the fourth is its column offset. It assumes that k, T`, V max`, and
V min` are global variables, and that T`, V max`, and V min` have been initialized
as empty sequences. In addition, the global variables pmax` and pmin` are used to
know the last written position of V max` and V min` respectively. After running the
algorithm, all T` must be joined to make up T , the same must be done with V max`
and V min` to obtain V max and V min, which, in turn, must be converted into

9.1. k2-raster 63

Algorithm 9.2 getCell(n, r, c, z,maxval) returns the value at cell (r, c)
1: z ← rank(T, z) · k2

2: z ← z + br/(n/k)c · k + bc/(n/k)c
3: val← accessDACs(Lmax, z)
4: maxval← maxval − val
5: if z ≥ |T | or T [z] = 0 then . leaf
6: return maxval
7: else . internal node
8: return getCell(n/k, r mod (n/k), cmod (n/k), z, maxval)
9: end if

Lmax and Lmin by computing the differences and encoding with DACs. Observe
that the algorithm returns the maximum and minimum values of the input matrix,
that is, rMax and rMin, which must be represented in plain form.

9.1.2 Query algorithms

We describe in this section the algorithms that navigate the k2-raster to solve queries
over the raster matrix. We include pseudocodes and examples for some queries to
better illustrate the most important procedures.

Obtaining a cell value

To obtain the value of a given cell, the algorithm performs a top-down traversal of
the tree. It traverses the node at each level corresponding to the submatrix that
contains the queried cell. During the descent through the tree, the algorithm should
decode the maximum values stored at the traversed nodes, by subtracting each value
from that in the parent. This is needed, since once we reach the queried cell, the
stored value is kept as a difference with respect to the maximum value stored at the
parent.

Algorithm 9.2 shows the pseudocode of this query. To obtain the value stored at
cell (r, c) of the raster matrix, that is, cell Mrc at row r and column c, it is invoked
as getCell(n, r, c,−1, rMax), where n is the size of the matrix, (r, c) is the position
of the queried cell, −1 corresponds to the position in T of the node to process (the
initial −1 is an artifact because T does not represent the root node), and rMax is
the maximum value in the whole raster. T , Lmax, and k are global variables. It is
assumed that rank(T,−1) = 0.

This query has a worst-case time O(logk n · L), which corresponds to a full
traversal from the root node to the last level of the k2-raster requiring to decode a
value from Lmax at each level. L denotes the number of levels used in DACs for
representing Lmax, which depends on the largest number encoded in the sequence.

64 Chapter 9. Our proposal: k2-raster

Figure 9.3: Submatrix subdivision and conceptual tree example to illustrate
getCell and getWindow operations. We highlight the nodes used in the
examples.

This time will be lower when the queried cell is surrounded by cells with the same
value.

To illustrate how this query is computed, we will obtain the value at position
(5, 1) of the raster shown in Figure 9.3,which is the cell surrounded with a circle.
In the bottom part of the figure we include the corresponding conceptual tree,
which is represented using the data structures shown in Figure 9.2. We invoke the
algorithm with getCell(8, 5, 1,−1, 5). Having as input the node corresponding to
the whole 8× 8 matrix, the first step (lines 1–2) is to find the position in T (and
thus in Lmax) of the node corresponding to the submatrix 4 × 4 that contains
the queried cell, which in our example is the submatrix q2 of the Figure 9.3, that
is, z ← rank(T,−1) · 4 + 5/4 · 2 + 1/4 = 2. Then, the maximum value of q2 is
obtained (lines 3–4) as follows. First the algorithm obtains the value stored in Lmax
as val ← accessDACs(Lmax, 2) = 1, and then it subtracts that value from the
maximum value received as a parameter maxval← 5−1 = 4. Next, the condition of
line 5 is checked to determine whether we are in an internal node or not. Since z = 2 <
|T | = 16 and T [2] = 1, it recursively invokes getCell(8/2, 5mod 4, 1mod 4, 2, 4) =
getCell(4, 1, 1, 2, 4). Then, the algorithm repeats the same procedure in the next
level, this time having as input the node corresponding to submatrix q2.

Lines 1–2 find the position in T and Lmax of the submatrix of q2 containing
the queried cell as z ← rank(T, 2) · 4 + 1/2 · 2 + 1/2 = 12 + 0 + 0 = 12, which
corresponds to the submatrix q20 of Figure 9.3. Then, the algorithm obtains
the maximum value of q20 as val ← accessDACs(Lmax, 12) = 0, maxval ←

9.1. k2-raster 65

4 − 0 = 4. Since z = 12 < |T | and T [12] = 1, the algorithm recursively invokes
getCell(4/2, 1mod 2, 1mod 2, 12, 4) = getCell(2, 1, 1, 12, 4).

Having the node corresponding to submatrix q20 as input, the algorithm obtains
the position of the submatrix that contains the queried cell (this time is a 1 × 1
submatrix only containing that cell) as z ← rank(T, 12) · 4 + 1/1 · 2 + 1/1 = 39, and
its value as val← accessDACs(Lmax, 39) = 1, maxval← 4− 1 = 3. Finally, since
z = 39 ≥ |T | = 16, a 3 is returned, which is the content of cell (5, 1).

In the conceptual tree of Figure 9.3, we highlight the nodes affected by this
example with ellipses drawn with solid lines.

Obtaining all the values of a region

Obtaining a region of the raster matrix can be done more efficiently than just
obtaining its cells individually using getCell, since the same top-down traversal of
the tree can be used for extracting values from adjacent positions. Thus, decoding
maximum values is performed just once per traversed node, instead of once per cell.

Algorithm 9.3 shows the pseudocode for this query, which is also a recursive
procedure. To obtain all the cells contained inside a window [r1, r2]× [c1, c2], the
algorithm is invoked as getWindow(n, r1, r2, c1, c2,−1, rMax). Again, k, T , and
Lmax are considered global variables.

Let us illustrate the algorithm with an example using the raster matrix shown
in Figure 9.3. We want to know the cell values in the range [5, 6] × [0, 1], which
is the submatrix surrounded with a square with dotted lines in the figure. In the
conceptual tree of Figure 9.3, we highlight the nodes affected by this example with
rectangles drawn with dotted lines.

The algorithm is invoked with getWindow(8, 5, 6, 0, 1,−1, 5), that is, having as
input the whole matrix M , the position of the queried range in M , the position in T
of the node representing M (a −1, since the root node is not represented), and the
maximum value of M . First, the algorithm computes the position in T and Lmax of
the first children of the root node as z ← rank(T,−1) = 0. Then, the algorithm has
to determine which submatrices of the first level have to be further inspected to solve
the query, that is, which submatrices overlap the queried region. In our case, we only
have to inspect the bottom-left submatrix of the current submatrix (corresponding
to i = 1, j = 0 in line 12), which is the submatrix denoted as q2. Lines 3–6 and
8–9 give the relative position of the queried range inside q2, in our example, the
queried region is the submatrix [1, 2]× [0, 1] of q2, that is, it covers rows 1 and 2 and
columns 0 and 1 of q2. Line 12 obtains the position z′ in T and Lmax corresponding
to the submatrix q2 as z′ ← 0 + 2 · 1 + 0 = 2. Next, the algorithm computes the
maximum value of q2 as maxval′ ← 5− accessDACs(Lmax, 2) = 5− 1 = 4. Since
T [2] = 1 and 2 < |T |, that node is an internal node, and thus the recursive call
getWindow(4, 1, 2, 0, 1, 2, 4) is launched. That is, to solve our query, it has to
return the cells in the region [1, 2]× [0, 1] of the 4× 4 submatrix q2.

66 Chapter 9. Our proposal: k2-raster

Algorithm 9.3 getWindow(n, r1, r2, c1, c2, z,maxval) returns all cells from region
[r1, r2] to [c1, c2]
1: z ← rank(T, z) · k2

2: for i← br1/(n/k)c . . . br2/(n/k)c do
3: if i = br1/(n/k)c then r′

1 ← r1 mod (n/k)
4: elser′

1 ← 0
5: end if
6: if i = br2/(n/k)c then r′

2 ← r2 mod (n/k)
7: elser′

2 ← (n/k)− 1
8: end if
9: for j ← bc1/(n/k)c . . . bc2/(n/k)c do
10: if j = bc1/(n/k)c then c′

1 ← c1 mod (n/k)
11: elsec′

1 ← 0
12: end if
13: if j = bc1/(n/k)c then c′

1 ← c1 mod (n/k)
14: elsec′

1 ← 0
15: end if
16: if j = bc2/(n/k)c then c′

2 ← c2 mod (n/k)
17: elsec′

1 ← 0
18: end if
19: if j = bc2/(n/k)c then c′

2 ← c2 mod (n/k)
20: elsec′

2 ← (n/k)− 1
21: end if
22: z′ ← z + k · i + j
23: maxval′ ← maxval − accessDACs(Lmax, z′)
24: if z′ ≥ |T | or T [z] = 0 then . leaf
25: Output maxval ((r′

2 − r′
1) + 1) · ((c′

2 − c′
1) + 1) times

26: return
27: else . internal node
28: getWindow(n/k, r′

1, r′
2, c′

1, c′
2, z′, maxval′)

29: end if
30: end for
31: end for

This call starts by computing the position of T and Lmax where the children of
q2 start as z ← rank(T, 2) · 4 = 3 · 4 = 12. The for of line 2 iterates i over 0..1 and
the for of line 7 iterates j only over 0. Therefore, at this call, we have to treat two
submatrices of q2, the top-left and the bottom-left submatrices, which we denote as
q20 and q22 in Figure 9.3.

• q20: lines 3–6 and 8–9 give the relative position of the queried range inside q20.
Observe that the part of the queried range that overlaps q20 is the submatrix
[1, 1]× [0, 1] within q20, which corresponds to submatrix [5, 5]× [0, 1] in the
original matrix. Now, the algorithm obtains the position in T and Lmax of the

9.1. k2-raster 67

information corresponding to q20 as z′ ← 12 + 2 · 0 + 0 = 12 and we obtain the
new maximum value as maxval′ ← 4− accessDACs(Lmax, 12) = 4− 0 = 4.
Given that T [12] = 1 and 12 < |T |, that node is an internal node, and thus
the recursive call getWindow(2, 1, 1, 0, 1, 12, 4) is performed.
The execution of this call starts by computing the position in Lmax where the
children of q20 start, z = rank(T, 12) · 4 = 36. The for of line 2 iterates i only
over 1 and the for of line 7 iterates j over 0..1. That is, this call has to process
the bottom-left and bottom-right submatrices of q20. Those submatrices only
contain one cell, that is, they are leaves. For the bottom-left leaf, the algorithm
computes its position in Lmax as z′ ← 36 + 2 · 1 + 0 = 38, and thus it obtains
its value as maxval′ ← 4−accessDACs(Lmax, 38) = 4− 0 = 4. On the other
hand, for the bottom-right leaf, its position in Lmaxer is z′ ← 36+2·1+1 = 39,
its value is maxval′ ← 4− accessDACs(Lmax, 39) = 4− 1 = 3.

• q22: lines 3–6 and 8–9 obtain the relative position of the queried range inside
q22. Observe that the part of the queried range that overlaps q22 is the relative
submatrix [0, 0]× [0, 1] ([6, 6]× [0, 1], if we consider the whole matrix).
Recall that at the start of this call, z was set to 12, then we compute the
position in T and Lmax of the information associated with the submatrix q22
as z′ ← 12 + 2 · 1 + 0 = 14. Then we can obtain the maximum value of that
submatrix as maxval′ ← 4− accessDACs(Lmax, 14) = 4− 3 = 1.
Given that T [14] = 0, the node corresponding to q22 is a leaf node, therefore
line 15 returns the value of maxval′ ((0 − 0) + 1) · ((1 − 0) + 1) = 2 times.
That is, since all cells of q22 have the same value (1), then it is represented
as a leaf node, and the part of q22 that overlaps the queried region contains 2
cells, and then this call returns two 1s.

Retrieving cells with a given value or range of values

We describe now how to obtain the positions of all cells within the region [r1, r2]×
[c1, c2] that contain values in the range [vb, ve]. If we want to run the query for the
whole matrix, we just adjust [r1, r2]× [c1, c2] to the complete matrix, and if we want
to search the cells having a particular value v, we adjust the range to [v, v].

The algorithm to solve this query combines the functionality of the original
k2-tree to solve range queries, which is able to efficiently obtain cells with 1s within
a given rectangle, with the indexing capabilities offered by the k2-raster, thanks
to the storage of the maximum and minimum values at the nodes of the tree. As
in previous queries, the search involves a top-down traversal of the tree, but it
requires to perform two checks at each level. After obtaining the branches of the
tree corresponding to submatrices overlapping the queried region, it has to check
whether the maximum and minimum values in those quadrants are compatible with
the queried range, discarding those that fall outside the range of values sought.

68 Chapter 9. Our proposal: k2-raster

Algorithm 9.4 shows the pseudocode for this query. It is again a recursive proce-
dure invoked as searchValuesInWindow(n, r1, r2, c1, c2, vb, ve, rMax, rMin,−1),
if we want to retrieve the cells inside the window [r1, r2]× [c1, c2] having values in
the range [vb, ve]. For this algorithm, k, T , Lmax, and Lmin are considered global
variables.

Lines 1–14 of Algorithm 9.4 are exactly the same as those in getWindow. If
the condition of line 14 is true, we have reached a leaf node that corresponds to a
submatrix that overlaps the queried region. In the case of getWindow, the algorithm
immediately returns the values of the cells in that region, but now the algorithm
searchValuesInWindow has to perform the second test (line 16) to check whether the
values of the cells in that region have values in the range of values [vb, ve]. Observe
that when reaching this point, all cells in the considered region have the same value,
or it is a region with only one cell, and thus the algorithm only has to return the
position of the cells of the submatrix that overlaps the queried region.

In case of an internal node (lines 20–29), we have to obtain the minimum value of
that submatrix, and compare the maximum and minimum values of the submatrix
with the queried range:

• If the minimum and maximum values of the submatrix are within the range
[vb, ve]: then all cells meet the condition of the query; thus, all cells inside the
queried region must be returned.

• If the minimum value of the submatrix is greater than ve or the maximum
value is smaller than vb: then no cell in the submatrix meets the criteria; thus
nothing is returned.

• If the values in the cells of the considered submatrix partially match [vb, ve]:
then we have to perform a recursive call to further inspect the submatrix.

Note that this query returns the positions of the values that meet the criteria. If
it is required to know the exact values of those positions, they could be retrieved
with getCell, or in a more efficient way by adding calls to getWindow when we report
that a submatrix has all its elements within the query range.

Checking the existence of a given value or range of values

Given a value or range of values and a region of the raster matrix, the k2-raster
can determine if inside that region, there exits at least one cell with a value in the
queried range or if all cells have values within the queried range. The first case is
known as weak semantics, whereas the latter is known as strong semantics.

This query can be done more efficiently than retrieving all the values of the
region and then checking if they lie within the range of values. This is basically a
simplification of Algorithm 9.4 that, in the case of weak semantics, as soon as it
finds that a submatrix of the queried region has values in the range [vb, ve] returns

9.1. k2-raster 69

Algorithm 9.4 searchValuesInWindow(n, r1, r2, c1, c2, vb, ve maxval,minval, z)
returns all cell positions from region [r1, r2] to [c1, c2] containing values within [vb, ve]
1: z ← rank(T, z) · k2

2: for i← br1/(n/k)c . . . br2/(n/k)c do
3: if i = br1/(n/k)c then x′

1 ← r1 mod (n/k)
4: elser′

1 ← 0
5: end if
6: if i = br2/(n/k)c then r′

2 ← r2 mod (n/k)
7: elser′

2 ← (n/k)− 1
8: end if
9: for j ← bc1/(n/k)c . . . bc2/(n/k)c do
10: if j = bc1/(n/k)c then c′

1 ← c1 mod (n/k)
11: elsec′

1 ← 0
12: end if
13: if j = bc2/(n/k)c then c′

2 ← c2 mod (n/k)
14: elsec′

2 ← (n/k)− 1
15: end if
16: z′ ← z + k · i + j
17: maxval′ ← maxval − accessDACs(Lmax, z)
18: if z ≥ |T | or T [z] = 0 then . leaf
19: minval′ ← maxval′

20: if minval′ ≥ vb and maxval′ ≤ ve then . all cells meet the condition in
this branch

21: Output corresponding region of cells
22: return
23: end if
24: else . internal node
25: minval′ ← minval + accessDACs(Lmin, rank(T, z))
26: if minval′ ≥ vb and maxval′ ≤ ve then . all cells meet the condition in

this branch
27: Output corresponding region of cells
28:
29: return
30: end if
31: if minval′ > ve or maxval′ < vb then
32: return . no cells meet the condition in this branch
33: end if
34: if minval′ < vb or maxval′ > ve then

searchValuesInWindow(n/k, r′
1, r′

2, r′
1, r′

2, vb, ve, maxval′, minval′, z′)
35: end if
36: end if
37: end for
38: end for

70 Chapter 9. Our proposal: k2-raster

true. This can be done in a non-leaf node without the necessity of reaching the
leaves, with just the minimum and maximum values stored at that node.

In the case of strong semantics, the query is basically the same, but now, as
soon as we find that there is, at least, one cell of a submatrix within the queried
region that is not within the range, the algorithm stops returning false.

The k2-raster also allows for other efficient queries, such as obtaining the
maximum value or the minimum values of region, etc.

9.1.3 Hybrid variant

As seen, most queries require a top-down traversal from the root node to some leaves
at the last level of the tree; therefore, the number of levels has an important impact
in query times. To reduce the height of the tree, we present a modification of the
basic k2-raster that significantly reduces the time of some queries with the cost of
slightly increasing the space requirements of the structure.

This version allows us to modify how the matrix is partitioned during the first
levels of the tree, by allowing the use of two different values of the k parameter, k1
and k2; k1 is used in the subdivision of the first levels, and k2 for the rest. The
target is to obtain a smaller tree, by dividing each quadrant into more submatrices
in the first levels, that is, we obtain a wider and smaller tree.

Now, instead of k, the construction algorithm needs the two k1, k2 parameters
and another new parameter n1, which is the number of levels where the subdivision
is done using k1. More precisely, when creating the first n1 levels, each submatrix is
partitioned into k2

1 submatrices and for levels n1 + 1 until the leaf nodes is divided
into k2

2 submatrices. From now on, this is the standard version of k2-raster.
In Figure 9.4, we can see a k2-raster built with k1 = 4, k2 = 2, and n1 = 1.

Observe that in the first level (given that n1 = 1), the matrix is divided into
k2

1 = 16 submatrices, each producing a child node of the root and storing the
maximum and minimum values in that submatrix. Therefore, the root has
16 children. The second level uses k = 2, and thus each submatrix is divided
into 4 submatrices, which in this case are individual cells. As it can be seen
in the figure, the tree is wider and smaller, thus producing faster top-down traversals.

This hybrid variant can be generalized by using a different k value for each level,
such that we subdivide level ` into k2

` submatrices. Using just two values of k, a
larger one for the first levels and a smaller one for the last levels of the tree, works
well in practice.

9.2. Heuristic k2-raster: k2
H -raster 71

Figure 9.4: Example of using different k values. We indicate the minimum
(light gray) and maximum (dark gray) values of each submatrix for the
three steps of the recursive subdivision of the construction algorithm (top).
Conceptual tree representation obtained from the construction of the hybrid
k2-raster with k1 = 4, k2 = 2 and n1 = 1 (bottom).

9.2 Heuristic k2-raster: k2
H-raster

The original k2-tree structure has a variant that uses a compressed representation
of the last level of the tree, which is composed of the submatrices of the original
adjacency matrix resulting from the last subdivision. This compression allows the
use of a large k in the last level, which shortens the tree and improves navigational
times, without increasing the space requirements of the structure. In fact, this
compression generally causes an improvement on the space results. Thus, following
the same strategy used for k2-trees, we also propose a variant of k2-raster that
uses a compressed representation of the last level of Lmax, that is, the entries
corresponding to the submatrices of size kLst × kLst of the original raster matrix
resulting from last subdivision, where Lst denotes the last level of the conceptual
tree built by the k2-raster recursive subdivision of the raster matrix and kLst the
value of k used for that level.

More concretely, we will compress Lmax[Lst], which denotes the portion of
Lmax representing the cells in Lst, that is, it represents the values of the kLst×kLst
non-equal submatrices of the original raster matrix that appear in the last level of
the conceptual tree. In the Figure 9.2, Lmax[Lst] is the part of Lmax labeled as
L3.

Figure 9.5 shows the problem we want to address: we maintain the same

72 Chapter 9. Our proposal: k2-raster

Figure 9.5: Example of raster matrix (top), conceptual tree representation
obtained from the construction of the k2

H -raster (center), and conceptual
tree using differential encoding (bottom). The last level is represented using
kLst × kLst submatrices, being kLst = 2 for this example.

conceptual representation for the raster matrix except for the last level of the tree,
where we want to compactly represent its submatrices of size kLst × kLst. We use
kLst = 2 for this example, but this technique allows us to use larger k values for the
last level of the tree for real datasets.

To compress Lmax[Lst], one possibility is to create a vocabulary by extracting all
the different kLst × kLst last-level submatrices, sorting the vocabulary by frequency,
and substituting the kLst × kLst contiguous values in Lmax corresponding to each

9.2. Heuristic k2-raster: k2
H -raster 73

submatrix by a pointer to its entry in the frequency-sorted vocabulary. However, this
strategy, which is the one used for the binary last-level submatrices in the original
k2-tree, is not suitable for k2-raster, since there are many possible kLst × kLst
different integer submatrices, some of them appearing just once, and therefore, the
vocabulary becomes very large. Since the compressed representation of Lmax[Lst]
consists not only of the pointers but also of the vocabulary, we obtain no compression
in case of large vocabularies with many submatrices that are not repeated.

In the example of Figure 9.5, we would have a vocabulary composed of the five
2 × 2 different submatrices existing at the last level of the conceptual tree. The
vocabulary, sorted by frequency, would be v = {〈0001〉 , 〈1001〉 , 〈0011〉 , 〈0100〉 ,
〈2021〉}. If we represented Lmax[Lst] with the vocabulary approach, it would
require the list of pointers to each vocabulary entry, that is, p = {0, 2, 0, 1, 3, 1, 0, 4},
in addition to v. Thus, for those submatrices appearing just once in Lmax[Lst],
that is, 〈0011〉 , 〈0100〉 , 〈2021〉, we would require their plain representation in v plus
a pointer in Lmax[Lst]. The basic k2-raster presented in the previous section would
represent these submatrices by simply storing their content, without the overhead of
the pointer. Thus, this compression approach would require more space for these
submatrices, which may lead to worse space results.

Thus, compressing Lmax[Lst] requires a more refined approach, where we
evaluate if including a submatrix in the vocabulary will save space in the final
representation. We use an entropy-based heuristical approach to estimate these
savings. Thus, we call this improved variant of the technique heuristic k2-raster or
k2
H -raster.
More specifically, to obtain the k2

H -raster of a given raster matrix, we first build
the normal k2-raster, and then:

1. We traverse all kLst × kLst submatrices corresponding to Lmax[Lst], and
compute their frequency. Simultaneously, we also compute the frequency for
all the individual values that appear in those submatrices.

2. We estimate the average number of bits needed for representing a submatrix
using the vocabulary-based approach. Simultaneously, we estimate the average
number of bits needed for representing an individual cell value when using
DACs to represent them.

3. We sort the vocabulary of submatrices by frequency.

4. For each submatrix of the vocabulary:

(a) We estimate the cost of representing it as a compressed submatrix using
the vocabulary: we multiply its frequency by the average number of bits
required for representing a submatrix and we add the space needed to
store it in the vocabulary.

74 Chapter 9. Our proposal: k2-raster

(b) We estimate the cost of representing it as individual values using DACs:
we multiply the frequency of the submatrix by its size (i.e., k2

Lst cells)
and by the average number of bits required for representing an individual
number.

(c) We choose the representation with minimum cost. In case of choosing
the vocabulary-based approach, we assign a new correlative codeword to
the submatrix, which is a pointer to its position in the vocabulary.

We use the zero-order empirical entropy (see Section 2.1.1) to estimate the
average number of bits needed to encode the submatrices and the individual values.
When we estimate the average number of bits to represent a matrix, the alphabet is
the list of different submatrices (the vocabulary of submatrices) in Lmax[Lst]. In
the case of individual values, the alphabet is formed by the list of different integers
appearing in Lmax[Lst].

Then, for a given submatrix si having the values v1, v2, . . . vk2
Lst

in its cells, we
estimate the size (in bits) required to represent that submatrix as Esi

= (fsi
·

H0(Ss)) + (k2
Lst · w), where fsi

is the frequency of appearance of si in Lmax[Lst],
H0(Ss) is the average number of bits to represent a submatrix using an alphabet of
submatrices, and w is the machine word size. fsi ·H0(Ss) is an estimation of the
size of the pointers that substitute the values of the submatrices in Lmax[Lst]. In
addition, we also need to store an entry in the vocabulary with the k2

Lst values of
the submatrix in plain form.

On the other hand, if we use all the individual values to represent the content of
submatrix si, we estimate the size as Evi

= fsi
· k2
L ·H0(Sv), where H0(Sv) is the

average number of bits to represent each individual value. If Esi
< Evi

, we represent
the occurrences of si in Lmax[Lst] with pointers to the entry of the vocabulary of
submatrices corresponding to si, otherwise we use the original method, that is, we
represent its values individually using DACs.

Once we have decided which submatrices will be represented with the vocabulary,
we need to create the structures to implement a new Lmax[Lst] where some
submatrices are represented as pointers to entries in a vocabulary and others as a
list of individual values. For this sake, we create three additional structures:

• Bitmap isInVoc, which indicates whether one submatrix is represented with a
pointer to the vocabulary or not.

• Array encodedValues, which includes the codewords (pointers) for the
submatrices that are represented using the vocabulary.

• Array plainValues, which includes the encoding for the individual values of
the submatrices that are not represented using the vocabulary.

Then, we traverse again Lmax[Lst] and for each submatrix:

9.2. Heuristic k2-raster: k2
H -raster 75

• If it is in the list of submatrices to be represented with vocabulary, we set to 1
its corresponding bit in isInVoc and append its codeword to encodedValues.

• Otherwise, we set to 0 its corresponding bit in isInVoc and append all its
values to plainValues.

Algorithm 9.5 shows the pseudocode of the algorithm that obtains the bitmap
isInV oc, and the arrays encodedV alues and plainV alues. The inputs of the
algorithm are Lmax, and the position of Lmax where Lmax[Lst] starts (the
parameter PLst). The value of k for the last level of the tree, that is, kLst, is a
global variable. For the computation of these structures, we create a temporary
vocabulary for all the submatrices (s) where we store their values, frequency and
codeword. When this procedure ends, we need to add rank support to bitmap
isInVoc and compact arrays encodedValues and plainValues using DACs. In addition,
we need to create the final vocabulary (V oc) by removing the submatrices that are
represented in plain form.

To better understand this variant, we show in Figure 9.6 the compact
representation (bottom) resulting from a conceptual tree (top). Notice that the
codeword for each submatrix at the vocabulary is implicit and it does not consume
space in the representation, as it corresponds to its position in the sorted vocabulary.
In this example, only 〈0001〉 and 〈1001〉 have been selected for the vocabulary, as the
others only have one appearance in the last level and representing their individual
values directly saves more space than including them in the vocabulary and using a
codeword.

When processing the last level of leaves from left to right, the first leaf is 〈0001〉,
which is one of the leaves that should be represented as a pointer to the vocabulary,
therefore the first bit of isInV oc is set to 1. In addition, the algorithm adds the
codeword that represents 〈0001〉 in the first position of encodedV alues, that is, it
inserts a 0, since that is the position of 〈0001〉 in the frequency-sorted vocabulary.
The second submatrix is 〈0011〉, which should be represented in plain form, then
the second bit of isInV oc is set to 0 and the four values (〈0011〉) are stored in the
first four position of plainV alues. Next, we have a 〈0001〉, therefore the third bit of
isInV oc is set to 1, and the second entry of encodedV alues is filled with a 0, and
so on.

9.2.1 Querying
The navigation over this variant differs from the navigation over the original k2-raster
when accessing the last level of Lmax. Instead of directly obtaining its values, the
k2
H -raster requires accessing to the bitmap that indicates whether the submatrix is

stored compressed or in plain form, and accessing the corresponding sequence of
encoded or plain values. We illustrate how we access the last-level submatrices by
showing how the query getCell is done. Algorithm 9.6 shows the pseudocode of the

76 Chapter 9. Our proposal: k2-raster

Algorithm 9.5 BuildH(Lmax,PLst) computes isInV oc, encodedV alues, and
plainV alues

1: s← subMatricesFreq(Lmax,PLst,kLst) . Compute the frequency of each different
kLst × kLst submatrix in Lmax

2: v ← valuesFreq(Lmax,PLst) . Compute the frequency of each different value in
Lmax

3: Hs ← entropy(s) . Compute the entropy of the submatrices
4: Hv ← entropy(v) . Compute the entropy of the values
5: for i← 0 . . . |s| − 1 do
6: if ((Hs · s[i].freq) + (k2

Lst · w)) < (Hv · s[i].freq · k2
Lst) then

7: s[i].cdwd←computeNextCodeword()
8: else
9: s[i].cdwd← −1
10: end if
11: end for
12: j ← 0
13: posInEncoded← 0
14: posInP lain← 0
15: while j < |Lmax| do
16: si ←searchInS(Lmax[Lst][PLst + j . . . PLst + j + k2

Lst − 1]) . Obtains the data in
s of the current submatrix

17: if si.cdwd = −1 then . The submatrix should be stored in plain
18: isInV oc[j/k2

Lst]← 0
19: for t← 0 . . . k2

Lst − 1 do
20: plainV alues[posInP lain + t]← si.values[t]
21: end for
22: posInP lain← posInP lain + k2

Lst . The submatrix should be stored
compressed

23: else
24: isInV oc[j/k2

Lst]← 1
25: encodedV alues[posInEncoded]← si.cdwd
26: posInEncoded← posInEncoded + 1
27: end if
28: j ← j + k2

Lst

29: end while

query. Notice that line 3 from Algorithm 9.2 has been replaced with lines 3–15. For
the sake of simplicity, we use k for all levels, but k may have different values at each
level of the tree.

To illustrate this with an example, let us obtain the value of the cell at position
(5,1) of our running example. The algorithm is invoked as getCellH(8,5,1,−1,5).
Lines 1–2 obtain the position in T and Lmax of the value corresponding to the
4× 4 that contains the queried cell, z ← rank(T,−1) · 4 + 5/4 · 2 + 1/4 = 2, which
corresponds to the bottom-left submatrix. Since 2 < |T |, we are in a level that is

9.2. Heuristic k2-raster: k2
H -raster 77

Figure 9.6: Compact representation of the conceptual k2
H -raster using

differences for the maximum and minimum values (top). Data structures
T , Lmax, Lmin, V oc, isInV oc, encodedV alues and plainV alues used for
representing compactly the k2

H -raster (bottom).

not the last one, and thus the flow reaches line 14. Here, the process is the same as
in the case of the normal k2-raster, that is, the algorithm accesses the normal Lmax
to obtain the maximum value of that submatrix: val← accessDACs(Lmax, 2) = 1,
and then it subtracts that value from the maximum value received as a parameter
maxval ← 5 − 1 = 4. Then, the condition of line 17 is checked, and since the
current node is not a leaf, the flow reaches line 20, performing a recursive call
getCellH(8/2, 5mod 4, 1mod 4, 2, 4) = getCellH(4, 1, 1, 2, 4). In the recursive
call, lines 1–2 find the position in T and Lmax corresponding to the node
representing the submatrix of the second level that contains the queried cell:
z ← rank(T, 2) · 4 + 1/2 · 2 + 1/2 = 12 + 0 + 0 = 12. Again, this node is not in
the last level of the tree, then the algorithm obtains the maximum value of that
submatix val← accessDACs(Lmax, 12) = 0, maxval← 4− 0 = 4 and performs a
recursive call getCellH(4/2, 1mod 2, 1mod 2, 12, 4) = getCellH(2, 1, 1, 12, 4). In
the next recursive call, z ← rank(T, 12) ·4+1/1 ·2+1/1 = 39. Now, z > |T |, that is,
we are accessing a leaf in the last level. Line 4 obtains the corresponding submatrix
among those at the last level: pos ← b(39 − |T |)/4c = b(39 − 16)/4c = 5. Line 5
checks if that position is stored as a pointer to the vocabulary or is stored in plain
form. Since isInV oc[5] = 1, that submatrix is stored as a pointer to the vocabulary.

78 Chapter 9. Our proposal: k2-raster

Algorithm 9.6 getCellH(n, x, y, z,maxval) returns the value at cell (x, y)
1: z ← rank(T, z) · k2

2: z ← z + bx/(n/k)c · k + by/(n/k)c
3: if z ≥ |T | then . last level
4: pos← b(z − |T |)/k2c
5: if isInV oc[pos] = 1 then . encoded in Voc
6: pos← rank1(isInV oc, pos)− 1
7: code← accessDACs(encodedV alues, pos)
8: val← V oc[code][x · k + y]
9: else . plain form
10: pos← rank0(isInV oc, pos) · k2 + x · k + y
11: val← accessDACs(plainV alues, pos)
12: end if
13: else . not last level
14: val← accessDACs(Lmax, z)
15: end if
16: maxval← maxval − val
17: if z ≥ |T | or T [z] = 0 then . leaf
18: return maxval
19: else . internal node
20: return getCellH(n/k, xmod (n/k), y mod (n/k), z, maxval)
21: end if

Then the algorithm obtains the position of its codeword in encodedV alues as
pos ← rank1(isInV oc, 5)− 1 = 3. Next, the algorithm accesses encodedValues to
obtain the codeword of the submatrix: code← accessDACs(encodedV alues, 3) = 1.
Thus, the algorithm must obtain the queried cell from the submatrix encoded at
position 1 of V oc as val← V oc[1][1 · 2 + 1] = V oc[1][3] = 1. With that value, line
14 obtains maxval ← 4 − 1 = 3. Finally, since z ≥ |T | (39 ≥ 16), a 3 is returned,
which is the content of cell (5, 1).

The rest of query algorithms are easily modified in the same way, that is, only
modifying the accesses to the last level of Lmax in order to deal with the submatrices
in the vocabulary.

Chapter 10

Spatial join: k2-raster and
R-tree

In this section, we present an algorithm to compute the join between a raster and a
vector dataset, allowing a range constraint on the values of the raster. That is, the
query returns the elements of a vector dataset (polygons, lines, or points) and the
cells of the raster dataset that overlap each other, such that the cells have values
in a given range [vb, ve]. It is also possible to apply spatial restrictions on both
datasets, that is, restricting the join to windows or regions of the vector and the
raster dataset.

10.1 Spatial join
The proposed algorithm requires, as input, the R-tree indexing the MBRs enclosing
the vector dataset and the k2-raster that stores and indexes the raster dataset.

In the case of the vector data, the R-tree contains only the MBRs of the spatial
objects because their actual representation requires a much larger space and more
complex computations, which would make the index useless. Therefore, for the
rest of the thesis we will consider the vector dataset as a collection of MBRs. The
vector answer of the query will be composed of two lists of MBRs: a list of definitive
results and a list of probable results. The MBRs in the list of definitive results fully
intersect a region in the raster with values in the queried range, whereas MBRs in
the second list intersect a region in the raster with some cells fulfilling the range
constraint. Thus, the elements enclosed by the MBRs in the second list require an
additional refinement task that uses the complete geometry of each spatial object
inside the MBR to check whether the intersection holds or not with the returned cells.
This additional procedure is not considered in the algorithm and the experimental
evaluation, as usual when spatial indexes are evaluated.

79

80 Chapter 10. Spatial join: k2-raster and R-tree

f

q
1

q
2

q
3

q
4

f

A

B C

q
33

q
34

5-1

5-1 3-1 5-1 4-1

5-3 4-1 4-1 2-2 3-1 3-2 2-2 3-2 4-1 3-2 5-3 5-2 4-2 4-3 4-1 4-3

q
32

q
42

q
44

q
41

Figure 10.1: The MBRs of an R-tree (left). A raster dataset with the
divisions of the k2-raster and its conceptual tree (right). The k2-raster uses
a hybrid configuration with n1 = 2, k1 = 2, and k2 = 4. The last level of the
k2-raster is omitted for clarity.

On the other hand, in the case of the raster dataset, the k2-raster stores and
indexes the complete data. Thus, the algorithm can return the exact cells of the
raster dataset that fulfill the query without any additional task.

Figure 10.1 shows a running example that will help us during our explanations.
In the left part of the figure, we can see six polygons and the MBRs of an R-tree
enclosing them. The rectangles A, B, and C are the MBRs of the children of the
root of the R-tree. These rectangles are depicted with very sparse and thick dotted
lines. The rectangles a, b, c, d, e, and f are the MBRs of the children of A, B, and
C. These rectangles are depicted with solid lines.

On the right, we can see a raster dataset. The densely dotted lines are the
divisions of the space used by the k2-raster. It uses a k2-raster hybrid version,
where n1 = 2, k1 = 2, and k2 = 4. The first level division creates four quadrants,
labeled q1, q2, q3, and q4 in the figure. These four quadrants are delimited with
thick and densely dotted lines. Each of these four quadrants is divided into other
four quadrants, for example, q4 is divided into q41, q42, q43, and q44, and they are
delimited with thinner densely dotted lines. These quadrants are 4 × 4 matrices
and they are subdivided, when their minimum and maximum values differ, into 16
submatrices of size 1× 1, since n1 = 2 and k2 = 4. Below the raster matrix, we also

10.1. Spatial join 81

show the conceptual tree of the k2-raster. We intentionally omit the last level of the
tree, composed of the 1× 1 submatrices, in order to simplify the figure and since
the values of the leaves are those shown in the raster. We also depict the MBRs of
the vector dataset, superposed on the raster matrix and using solid lines. In this
way, we can easily see when an MBR fulfills the query constraints.

10.1.1 Basic components of the algorithm
Next, we present some basic elements that will be used later in the description of
the algorithm.

10.1.1.1 Pointers

Being pr a pointer to an R-tree node, pr.MBR returns the MBR of that node and
pr.ref returns the list of references to its children. Being pk a pointer to a k2-raster
node, pk.quad returns the quadrant of that node.

10.1.1.2 Checking the overlapping

The most frequent operation of the algorithm will be to check whether the MBR of
a node of the R-tree overlaps a region of the k2-raster having cells with values in
the queried range. For doing that, we need first to identify the smallest quadrant of
the raster completely overlapping the MBR; and then, we need to check if any cell
inside the quadrant, and overlapping also the MBR, stores one of the query values.
A negative result means that it is possible to prune subtrees of both indexes.

It is critical that such a check be fast. Being a recurrent task in the algorithm, a
slow check would spoil the running times. So, we will perform, when possible, a fast
and "course-grained" check (checkQuadrant), and only when this is not enough, a
more thorough, and thus more costly, "fine-grained" check (checkMBR).

The operation checkQuadrant(pr, pk, Range) takes a pointer pr to an R-tree
node, a pointer pk to a node of the k2-raster, and the query range. It returns a pair
〈pkd, typeOverQuad〉. The component pkd is a pointer to the deepest descendant
of the node pointed by pk that completely contains pr.MBR. The component
typeOverQuad can have one the following values:

• None means that pkd.quad does not have cells with values in the queried range.
Therefore, we can conclude without any further inspection that pr.MBR does
not overlap a portion of the raster having cells with values in the queried range,
and thus the subtree rooted at pr can be pruned.

• Possible means that pkd.quad contains cells with values in the queried range,
but it also contains cells with values outside of the queried range. This value
does not allow to take a decision and thus the algorithm has to perform a
deeper analysis.

82 Chapter 10. Spatial join: k2-raster and R-tree

• Full means that pkd.quad contains exclusively cells with values in the queried
range. Therefore, this value also allows to take a decision, as all the MBRs
in leaves of the subtree rooted at pr and the overlapping cells are part of the
solution, actually of the definitive list, and the check of that subtree can be
stopped.

The operation checkMBR(pr, pk,Range) takes a pointer pr to an R-tree node,
a pointer pk to a node of the k2-raster, and the query range. It returns a value of
typeOverMBR, with the following meaning:

• None means that the geometry of pr.MBR does not overlap cells having values
in the queried range. Therefore pr.MBR is not part of the solution.

• Partial means that pr.MBR overlaps cells with values in the queried range,
but it also overlaps cells with values outside of the queried range. Therefore,
pr.MBR and its overlapping cells with values in the queried range are part of
the list of probable results.

• Full means that pr.MBR overlaps exclusively cells with values in the queried
range. Therefore, pr.MBR and its overlapping cells are part of the list of
definitive results.

The operation checkQuadrant is very fast, since it only checks the min-max
values of the internal nodes of the k2-raster. From the node of the k2-raster provided
as input, it traverses the tree downwards following the unique child that completely
contains the input MBR, as long as the query range intersects the range delimited by
the minimum and maximum values of the node. Once it reaches a node where none
of its children completely contains the MBR or the query range does not intersect
the range defined by the minimum and maximum values stored at the node, then
the operation ends.

The operation checkMBR is more complex because it must navigate downwards
all the k2-raster branches that intersect with the MBR and retrieve all the cells
in the k2-raster that intersect the MBR, which may require extracting portions of
different quadrants.

Let us illustrate this operation with the example at Figure 10.1. Let us suppose
that we have a pointer to the node with MBR b, a pointer to the root node of
the k2-raster (which encloses the whole raster), and the query range [4–5]. Then,
checkQuadrant checks if the min-max values of the root define a range overlapping or
including the queried range. Since min = 1 and max = 5, then the search continues
and it checks if one of its children completely encloses b. This is true for the child
corresponding to quadrant q2. Next, it checks if values from q2 are contained within
the queried range. Since min = 2 and max = 3 for q2, therefore, checkQuadrant
ends and the result is typeOverQuad= None. Observe that without checking the
actual cells of the raster, and already at the second level of the k2-raster, we can
discard b as part of the solution.

10.1. Spatial join 83

Now, let us suppose another example taking as input a pointer to the node with
MBR d, a pointer to the root of the k2-raster, and the query range [4–5]. As before,
the range defined by the min-max values of the root overlaps (but not includes)
the query range, then the search continues. The child of the root including d is
q3. Again, we check if the min-max values of q3 overlap or include the query range.
Quadrant q3 is the deepest node that completely contains d and the min-max values
at q3 are min=1 and max=5, thus, typeOverQuad = Possible. Since checkQuadrant
cannot determine the result of the join for this case, it will be necessary to use
checkMBR, which takes as input a pointer to the node of d and a pointer to q3. The
answer will be typeOverMBR= Full, and thus d and its overlapping cells are added
to the definitive list.

10.1.2 The algorithm
Algorithm 10.1 shows the pseudocode of the algorithm. It receives a pointer to the
root of both trees, and the queried range. Line 1 defines the variables holding the
output. Each list is formed by entries with an MBR, the object (or objects) in that
MBR, and the list of overlapping cells. Line 2 defines a stack that keeps pairs of
pointers that have to be processed.

Lines 3–4 fill the stack with pairs, each of which has a pointer to the root of the
k2-raster and to one of the children of the root of the R-tree. Lines 5–22 are the
main loop, which starts extracting the top of the stack and, with the two extracted
pointers, calls checkQuadrant. If typeOverQuad is Full, then lines 9–12 add all the
descendant leaves of the pointed node of the R-tree, together with their lists of
object identifiers and the overlapping cells of the raster having values in the queried
range, to the list of definitive results.

If typeOverQuad is Possible, the search must continue. Line 14 checks if the
pointed node of the R-tree is a leaf or an internal node. If it is internal, the algorithm
adds the children of that node along with pkd, the pointer to the k2-raster returned
by checkQuadrant, to the stack and the flow returns to line 5.

If pr is a leaf node, as explained, the algorithm has to perform a more detailed
analysis in order to take a decision. Then it calls checkMBR. If the answer is Full,
the MBR, its objects ids, and its overlapping cells having values in the queried range
are added to the definitive list. If the output is Partial, the answer is added to the
list of probable results.

Observe that the algorithm tries always to solve the query at the higher possible
level of both trees, and that any call to checkMBR is delayed as much as possible.

Let us illustrate the algorithm with our running example of Figure 10.1 using
[4–5] as query range. The stack starts with three entries containing a pointer to
the root of the k2-raster and, respectively, the pointers to the entries holding the
MBRs A, B, and C. checkQuadrant with A returns q2 and None, since the min and
max values of q2, which are 1 and 3, do not overlap the queried range, and thus it is
discarded. For B, it returns q3 and Possible. Since B is not in a leaf, then Line 16

84 Chapter 10. Spatial join: k2-raster and R-tree

Algorithm 10.1 Join (prRoot , pkRoot , [vb, ve])
1: Let D and P be lists of elements 〈MBR, ListOfOids, ListOfCells〉 . The list of definitive and

probable results
2: Let S be a stack with entries 〈pr, pk〉 . pr is a pointer to an R-tree node and pk a pointer to a

k2-raster node
3: for all prRef ∈ prRoot .ref do
4: push(S, 〈prRef , pkRoot〉) . Inserts in the stack the children of the root node of the R-tree

with a pointer to the root of the k2-raster
5: end for
6: while S 6= empty do
7: 〈pr, pk〉 ← pop(S)
8: 〈pkd,typeOverQuad〉 ← checkQuadrant(pr, pk, [vb, ve])
9: if typeOverQuad = Full then
10: if isLeafNode(pr) then
11: add(pr, ExtractCells(pr, pkd), D) . Adds the MBRs, objects, and overlapping cells

to the definitive list D
12: else
13: addDescendants (pr.ref , pkd, D) . Adds all MBRs, objects, and overlappings cells

in descendant leaves to the definitive list D
14: end if
15: else if typeOverQuad = Possible then
16: if isInternalNode(pr) then
17: for all prRef ∈ pr.ref do
18: push(S, 〈prRef , pkd〉)
19: end for
20: else
21: typeOverExact← checkMBR(pr, pkd, [vb, ve])
22: if typeOverMBR = Full then
23: add(pr, ExtractCells(pr, pkd), D) . Adds the MBRs, objects, and overlapping

cells to the definitive list D
24: else if typeOverMBR = Partial then
25: add(pr, ExtractCells(pr, pkd), P) . Adds the MBRs, objects, and overlapping

cells to the probable list P
26: end if
27: end if
28: end if
29: end whilereturn 〈D,P〉

adds to the stack the children of B, that is, d,c, along with a pointer to q3. With C,
the answer is q4 and Possible, then e and f are added to the stack coupled with a
pointer to q4.

With c and q3, checkQuadrant returns q32 and None, and thus this pair is
discarded. With d, checkQuadrant returns q3 again (no child of q3 completely
contains d) and Possible. Since d is already in a leaf, checkQuadrant does not allow
to take a decision, and a more detailed analysis is needed. Then, in Line 18, the
algorithm calls checkMBR, which returns a Full value, and thus d along with the
overlapping cells are added to the list of definitive results.

The checkQuadrant call of e and q4 returns q4 and Possible. Therefore, checkMBR

10.1. Spatial join 85

is used again, obtaining a Partial value, and thus e is added to the probable list in
Line 22. With f and q4 the output of checkQuadrant is q44 and Possible, so again,
the algorithm runs checkMBR, which returns Partial, and then f is added to the
probable list.

86 Chapter 10. Spatial join: k2-raster and R-tree

Chapter 11

Experimental evaluation

11.1 Raster data compression
We measured the space and time results obtained by the two different versions of
the proposed data structure, k2-raster and k2

H -raster, and compared them to those
obtained by previous compact data structures for raster datasets: k2-acc and k3-tree.

11.1.1 Experimental Framework
We ran different experiments to measure the space consumption, construction time,
and the navigational time to answer these four types of queries:

• getCell: given a position in the raster matrix, this query obtains its cell value.
The time was measured by performing 1,000,000 different random queries and
we report the average time per query (in microseconds).

• getWindow: given a region or window of the raster matrix, this query retrieves
all cell values within that window. We measured the time for 100 random
queries and report the average time per retrieved cell (in nanoseconds).

• searchValuesInWindow: given a range of values and a region of the matrix, this
query retrieves all raster positions belonging to the given region whose value
lies within that range. We have defined two variants of this query: without
any restriction for the range of values and window size, and limiting the range
length to 200 and the window size to 500× 500. In the first case, we measure
the time for 10,000 random queries, and for the second case we measure the
time for 100,000 random queries. We report the average time per retrieved
cell (in nanoseconds).

• checkValuesinWindow: given a region and a range, this query checks if all
cell values of the region are within the range of values (we call this variant

87

88 Chapter 11. Experimental evaluation

strong checkValuesinWindow) or if there exists at least one cell value in the
region whose value lies within the range of values (weak checkValuesinWindow).
The time was measured by performing 1,000,000 random different queries and
obtaining the average time per query (in microseconds).

Queries getCell and getWindow illustrate the impact on the time to access
and recover the original information when we represent the raster matrix with
each of the techniques, since they keep the information compressed. Queries
searchValuesInWindow and checkValuesInWindow illustrate the indexing capabilities
of each representation.

All the experiments were run on a dedicated Intel® CoreTM i7-3820 CPU @
3.60GHz (4 cores) with 10MB of cache, and 64GB of RAM. It ran Ubuntu 12.04.5
LTS with kernel 3.2.0-115 (64 bits), using gcc version 4.6.4 with -O9 options. Time
results refer to cpu user time. Space consumption was measured in compression
percentage, computed as the ratio (in percentage) between the uncompressed size
of binary file containing the original raster matrix and the size of the compressed
representation.

We used a hybrid configuration for k2-raster and for k2
H -raster, with

k1 = 4, k2 = 2, n1 = 4. They used an implementation for supporting rank
operations that adds 5% of extra space on top of the bit sequence T and provides
fast queries [GGMN05]1. In addition, Lmax and Lmin were encoded using the
version of DACs that optimizes the space usage while restricting the maximum
number of levels. More precisely, we have limited the number of levels to 3. We
compared both variants of our proposal with k2-acc and k3-tree using the same
hybrid configuration. In addition, we configured parameter S = 14 for k2-acc, which
is a parameter used to divide the input raster into 2S subrasters, each one producing
a set of k2-trees.

11.1.2 Datasets
We used real data in our experiments. More concretely, we used data of different
nature from the following two sources:

• WorldClim2 dataset [HCP+05], which provides a set of layers with global
climate information. The whole world is divided into equal-spaced tiles, and
each cell of a tile is an integer number and has a resolution of about 1 square
kilometer. Specifically, we have used the dataset containing the value of the
mean temperature, which was measured in degrees Celsius with one decimal,
and is represented using integers by multiplying the value by 10.

1If more space and less time are desired, one could replace the implementation by another that
that uses 37.5% extra space and is much faster.

2http://www.worldclim.org/tiles.php

11.1. Raster data compression 89

• Spanish Geographic Institute3 (SGI), which includes several DTM (Digital
Terrain Model) data files that contain the spatial elevation data of the terrain
of Spain, stored as rectangular equal-spaced tiles with 5 meters of spatial
resolution. Each cell of a tile contains a real number of at most three decimal
digits.

In our experiments, we analyzed the scalability and behavior of each technique
when varying the size of the input raster matrix and the number of different values
included in the raster. Thus, we have created several collections of datasets of
different nature with different properties of size and number of different values.
More specifically, we have joined different adjacent tiles to create raster matrices of
different sizes, and we have considered different precision by using different number
of decimal digits, in the case of the dataset of spatial elevation values, to obtain
variability on the number of different values. Table 11.1 and Table 11.2 show the
average values of the main properties (size, number of rows, number of columns and
number of different values) for the collection of datasets generated. Specifically, 1×1
matrices were built using just 1 tile, 2×2 matrices were built using 2×2 adjacent
tiles, and so on. Each collection was created using a set of different adjacent tiles.
For example, cat0-1×1 is composed of 25 datasets, each corresponding to a different
tile, and the data shown below represent the mean values obtained by those 25
datasets. This allows us to report the average space and time results obtained in
the experiments for each collection, avoiding the dependence on the selection of a
unique matrix. The dataset at Table 11.1 will be denoted as eua in the experiments,
while the datasets at Table 11.2 will be denoted cat0 and cat3. The subscript for
these datasets indicates how many digits of the decimal digits were considered. By
considering more or less, we increase or decrease, respectively, the number of different
values existing in the raster matrix. Thus, we will report the results when using 0
decimal digits (cat0) and 3 decimal digits (cat3). Notice that cat3 corresponds to
raster matrices of the original dataset.

In addition, to analyze the behavior of the methods when only the number of
different values is varied, but not the matrix size, we generated a collection of matrices
from just one random tile (namely, the one denoted as MDT05-0533-H30-LIDAR).
More concretely, we have first truncated the original values by taking only the
two most significant decimal digits. Then we have created other 5 raster matrices
MDT05-0533-H30-LIDAR�x by shifting x bits of the value of each cell, for x =
1, 3, 5, 7, 9. By doing this, we have generated a collection of matrices with the same
size and different number of different values.4 We have not used the original values
with all their precision due to the problems of k2-acc and k3-tree for running over
datasets with a high number of different values. We denote this dataset as MDTx in
the experiments, and show its properties in Table 11.3.

3http://www.ign.es
4Notice that by shifting x bit each value is divided by 2x, thus decreasing the number of different

values in the raster.

90 Chapter 11. Experimental evaluation

Table 11.1: Properties of dataset eua, obtained from WorldClim datasets.
It includes raster matrices of different size and number of different values of
the input matrix.

different
Name size (MB) #rows #cols values
eua-1×1 49.44 3,600 3,600 252
eua-2×2 197.75 7,200 7,200 413
eua-3×3 444.95 10,800 10,800 474
eua-4×4 791.02 14,400 14,400 498

Table 11.2: Properties of datasets cat0 and cat3, obtained from DTM
datasets. They include raster matrices of different size and number of different
values.

different
Name size (MB) #rows #cols values
cat0-1×1 91.49 4,100 5,849 868
cat0-2×2 369.03 8,242 11,737 1,201
cat0-3×3 834.76 12,403 17,643 1,503
cat0-4×4 1,488.94 16,564 23,564 1,761
cat3-1×1 91.49 4,100 5,849 779,405
cat3-2×2 369.03 8,242 11,737 1,066,043
cat3-3×3 834.76 1,2403 17,643 1,304,704
cat3-4×4 1,488.94 16,564 23,564 1,545,248

11.1.3 Construction time

Figure 11.1(left) shows the comparison among all the methods when measuring the
construction time. Plots only show the results for k2-raster, k2

H -raster, and k3-tree, as
the times obtained by k2-acc were more than 2 order of magnitude slower. Moreover,
k3-tree and k2-acc were not able to create the compressed representation of those
raster matrices with a large number of different values, more concretely, they failed
when constructing the compressed representation for MDT05-0533-H30-LIDAR�0,
MDT05-0533-H30-LIDAR�1, and all the matrices from dataset cat3.

The construction process for k2-raster and k2
H -raster is the same, except for the

last level of the representation. k2-raster processes this last level analogously to the
rest, whereas k2

H -raster needs to create a vocabulary to compress the submatrices

11.1. Raster data compression 91

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

227 903 3606 14415 57586 114966

T
im

e
 (

s
)

Number of different values

k
3
-tree

k
2
-raster

k
2

H
-raster

(a) MDTx – construction time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

227 903 3606 14415 57586 114966

C
o
m

p
re

s
s
io

n
 (

%
)

Number of different values

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(b) MDTx – compression

 0

 10

 20

 30

 40

 50

 60

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

s
)

Raster size

k
3
-tree

k
2
-raster

k
2

H
-raster

(c) eua – construction time

 0

 2

 4

 6

 8

 10

 12

 14

3600x3600 7200x7200 10800x10800 14400x14400

C
o
m

p
re

s
s
io

n
 (

%
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(d) eua – compression

 0

 20

 40

 60

 80

 100

 120

 140

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

s
)

Raster size

k
3
-tree

k
2
-raster

k
2

H
-raster

(e) cat0 – construction time

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

4100x5849 8242x11737 12403x17643 16564x23564

C
o
m

p
re

s
s
io

n
 (

%
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(f) cat0 – compression

 0

 10

 20

 30

 40

 50

 60

 70

 80

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

s
)

Raster size

k
2
-raster

k
2

H
-raster

(g) cat3 – construction time

 46

 48

 50

 52

 54

 56

 58

 60

 62

4100x5849 8242x11737 12403x17643 16564x23564

C
o
m

p
re

s
s
io

n
 (

%
)

Raster size

k
2
-raster

k
2

H
-raster

(h) cat3 – compression

Figure 11.1: Construction time (left) and compression percentage (right)
for datasets of different nature.

92 Chapter 11. Experimental evaluation

Table 11.3: Dataset MDTx, obtained from tile MDT05-0533-H30-LIDAR. It
includes raster matrices of the same size, but different number of values.

different
Name size (MB) #rows #cols values
MDT05-0533-H30-LIDAR�9 86.48 3,881 5,841 227
MDT05-0533-H30-LIDAR�7 86.48 3,881 5,841 903
MDT05-0533-H30-LIDAR�5 86.48 3,881 5,841 3,606
MDT05-0533-H30-LIDAR�3 86.48 3,881 5,841 14,415
MDT05-0533-H30-LIDAR�1 86.48 3,881 5,841 57,586
MDT05-0533-H30-LIDAR�0 86.48 3,881 5,841 114,966

corresponding to Lmax[Lst]. Thus, at that point, the construction time differs
between the two structures. To analyze their behavior, we ran two types of
experiments, one where we only varied the number of different values, and another
where we also varied the size of the input matrices.

For the first experiment we used dataset MDTx, described at Table 11.3. This
dataset contains raster matrices of the same size that differ on the number of
different values. The results are shown in Figure 11.1(a). The y-axis shows the time
consumption for constructing the compressed representation (in seconds) and the
x-axis shows the number of different values for each dataset.

As expected, when increasing the number of different values, the construction
time worsens. This happens because it is more likely that a submatrix has more
than a single value, which must be divided and processed again. k2-raster and
k2
H -raster behave similarly, and clearly outperform k3-tree, which shows a scalability

problem. As previously mentioned, k2-acc was not included in the plot due to its
bad performance. k2

H -raster achieves better results when there is a small number of
different values, but it becomes worse than k2-raster for higher values of different
values. This is due to the fact that the size of the vocabulary grows when the
number of different values increases, thus, the construction process, explained in
Section 9.2, becomes slower. There are no scalability issues due to this parameter
for our proposed structures, as times become almost constant when increasing the
number of different values.

We show in Figures 11.1(c), 11.1(e), and 11.1(g) the time consumption to build
datasets from collections eua, cat0, and cat3 respectively. The y-axis shows the
construction time (in seconds) and the x-axis shows the size of each dataset. We can
also see that k2-raster and k2

H -raster obtain similar results, and better than those
obtained by the methods of the state of the art. Neither k3-tree nor k2-acc are able

11.1. Raster data compression 93

to create the compressed representation for collection cat3, which includes raster
matrices with a high number of different values. Hence, our proposals show again
that are more convenient for real datasets containing a high number of different
values.

11.1.4 Space requirements
Figure 11.1(right) shows the compression obtained by the four methods, k2-acc, k3-
tree, k2-raster and k2

H -raster over all the datasets. Figure 11.1(b) shows the results
for dataset MDTx, where the number of different values grows while maintaining the
size of the raster matrix. With 227 values, the four methods obtained a similar
result, around 3% of the original collection size. When the number of different values
grows up to 903 values, k2

H -raster begins to obtain better results regarding the other
methods. k2

H -raster achieves a compression of 7.5% while for the rest of the structures
is around of 9%. With the third raster matrix, which contains 3606 different values,
the compression of k2-acc is significantly worse (43%). Again, k2

H -raster obtains
the best compression (16%), followed by the k2-raster (19%) and k3-tree (32%).
This tendency continues with the fourth raster matrix of the dataset. Thus, using a
vocabulary-based approach and a selection heuristic improves the compression up to
9% with respect to the standard k2-raster and both structures obtain better results
than the techniques of the state of the art. In addition, our techniques were able to
create the compressed representation for all datasets, including those with a high
number of different values.

We also show the comparison of the compression obtained over the other three
collections. As expected, k2

H -raster obtains the best compression for all datasets.
Moreover, k2-acc can only represent the smallest matrices from datasets cat0, and
none from cat3, whereas k3-tree is not able to represent any matrix from dataset
cat3. These experiments demonstrate that our solutions can deal with large datasets,
rather than the current state of the art. In addition, k2-raster and k2

H -raster maintain
good compression ratios even when the number of values of the dataset grows.

11.1.5 Query times
In this section we show the results of the experiments for the queries described in
Section 11.1.1. Again, we used datasets MDTx, eua, cat0, and cat3, and compared
the results obtained by our two methods, k2-raster and k2

H -raster, to those obtained
by the techniques of the state of the art, k3-tree and k2-acc.

11.1.5.1 Time of getCell

Figure 11.2(left) shows the average time to retrieve the value of a given cell (in
microseconds). k2

H -raster outperforms the rest of the techniques for all cases, followed

94 Chapter 11. Experimental evaluation

closely by the standard version of k2-raster. Our versions are up to 6 times faster
than k3-tree and 9 times faster than k2-acc.

The query time of our techniques depends on the height of the tree; in the worst
case, it needs to descend up to the last level of the tree, checking one node per level.
As we can see in Figure 11.2(a), query times of k2

H -raster, and also of k2-raster,
are almost constant even when the number of different values is high. In addition,
k2
H -raster uses a vocabulary, which decreases the number of tree levels; thus, the

time for retrieving an individual cell becomes smaller than using k2-raster, since
searching inside the vocabulary is very efficient given that the values are kept in
plain form.

From the results, we can observe that k2-acc and k3-tree are not suitable for
datasets with a large number of different values. To retrieve a value of a cell, k2-acc
performs a binary search among all its k2-trees, and the number of k2-trees depends
on the number of different values. Thus, for datasets with a large number of different
values, obtaining the cell value is slow. In the case of k3-tree, the z dimension
increases according to the number of different values; thus, the searching time by
this dimension also grows.

Figure 11.2(c), Figure 11.2(e), and Figure 11.2(g) show the behavior for datasets
with different input size. Again k2

H -raster and k2-raster obtain the best results.

11.1.5.2 Time of getWindow

Figure 11.2(right) represents the average time consumption to retrieve all values of
a window (measured in nanoseconds per retrieved value). k2

H -raster performs better
than the other three methods for all datasets. k3-tree gets time results similar to
those of k2-raster when the number of different values is small, but k2-raster obtains
better results with a high number of values, as it is shown in Figure 11.2(b). The
other three plots of Figure 11.2(right) represent the behavior with different sizes
for the input matrix. As expected, k2

H -raster has the best performance. k2-raster
and k3-tree obtain similar result whilst the time of k2-acc is still the slowest by far.
While the other methods know where to find the values of each cell, the k2-acc needs
to search all its k2-trees until it finds the values corresponding to the cells that is
searching, which is a very slow process.

An alternative procedure to obtain all the values of a region is to retrieve each
value cell per cell. Comparing the results measured in time per cell retrieved by
getCell at Figure 11.2(left) with those obtained by getWindow at Figure 11.2(right),
the query getWindow takes advantage of the fact that it is possible to obtain adjacent
cell values with the same top-down traversal of the tree. Our structures obtain the
final value of a cell when reaching a leaf node. If a leaf node, which represents a
submatrix with all values equal, belongs to upper levels of the tree, k2-raster and
k2
H -raster can complete part of the final result in just one step, without obtaining

each value cell per cell.

11.1. Raster data compression 95

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

227 903 3606 14415 57586 114966

T
im

e
 (

µ
s
)

Number of different values

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(a) MDTx – getCell

 1

 10

 100

 1000

 10000

227 903 3606 14415 57586 114966

T
im

e
 (

n
s
)

(l
o
g
 s

c
a
le

)

Number of different values

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(b) MDTx – getW indow

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

µ
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(c) eua – getCell

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(d) eua – getW indow

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(e) cat0 – getCell

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(f) cat0 – getW indow

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

Raster size

k
2
-raster

k
2

H
-raster

(g) cat3 – getCell

 30

 40

 50

 60

 70

 80

 90

 100

 110

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-raster

k
2

H
-raster

(h) cat3 – getW indow

Figure 11.2: Time results for getCell (left) and getWindow (right) over
datasets with different size and number of different values. We show average
time per cell retrieved in microseconds for getCell and nanoseconds for
getWindow.

96 Chapter 11. Experimental evaluation

11.1.5.3 Time of searchValuesInWindow

This query retrieves all cells whose values lie within a given range. Figure 11.3
shows the time consumption per retrieved cell in nanoseconds. We show the results
obtained when we do not limit the size of the window nor the range length (left part
of the figure), and when limiting the range length to 200 and the window size to
500× 500 (right). We distinguish these two distinct scenarios, as time results show
different behaviors. When selecting random ranges without any restriction, these
ranges become larger when the number of different values grows. Thus, if the range
is large, the query is usually answered in the upper levels of the representation, as
there exist a vast amount of valid values that meet the search condition. In addition,
the number of retrieved cells is higher, making the time/cell ratio smaller. On the
other hand, if we limit the range length to 200, we avoid these two effects; thus,
searching times worsen as the number of different values in the raster matrix grows,
as the query becomes more selective. Collection eua contains very few different
values (less than 500 different values); thus, all techniques behave similarly in these
two scenarios, as restricting the range length to 200 produces almost no effect.

Our solutions perform better than the state of the art in all cases. With the
indexation of the minimum and maximum values in the nodes of the tree, our
structures are able to determinate if a region has any valid cell or even if all cells lie
within the given range of values by only checking one node; in other case, they skip
that node and continue the process with the rest of tree. Comparing the techniques
from the state of the art, k2-acc gets better results than k3-tree in most datasets,
especially when the number of different values is high, as it is shown in Figure
11.3(a). This is due to the fact that the k2-acc only needs to check two k2-trees,
that is, the k2-tree of the minimum value and the k2-tree of the maximum value of
the given range.

11.1.5.4 Time of checkValuesInWindow

Figure 11.4 shows the time to check if there exists at least one cell in the region
whose value lies within the range of values (left) or if all cells of the region are within
the range of values (right).

For the first case, which corresponds to weak checkValuesInWindow, k2-raster,
k2
H -raster, and k2-acc obtain very close results. k2-acc obtains the best time for

some datasets containing a small number of different values, more specifically, for
datasets from collection eua, and some from collection cat0. However k2-raster, and
k2
H -raster are able to answer this query efficiently over datasets with a large number

of different values or a large size. k3-tree runs up to 40 times slower. This is the
unique query where the standard k2-raster is faster than k2

H -raster in some case.
In the case of strong checkValuesInWindow, k2

H -raster, k2-raster and k2-acc
obtain similar results, while k3-tree behaves constantly worse. Our structures use
the information on the nodes (the maximum and minimum values) to check if the

11.1. Raster data compression 97

 0

 20

 40

 60

 80

 100

 120

 140

 160

227 903 3606 14415 57586 114966

T
im

e
 (

n
s
)

Number of different values

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(a) MDTx – no restriction

 0

 50

 100

 150

 200

 250

 300

 350

 400

227 903 3606 14415 57586 114966

T
im

e
 (

n
s
)

Number of different values

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(b) MDTx – restricted

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(c) eua – no restriction

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(d) eua – restricted

 0

 10

 20

 30

 40

 50

 60

 70

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(e) cat0 – no restriction

 0

 10

 20

 30

 40

 50

 60

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-acc

k
3
-tree

k
2
-raster

k
2

H
-raster

(f) cat0 – restricted

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-raster

k
2

H
-raster

(g) cat3 – no restriction

 3500

 4000

 4500

 5000

 5500

 6000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

n
s
)

Raster size

k
2
-raster

k
2

H
-raster

(h) cat3 – restricted

Figure 11.3: Time results for searchV aluesInWindow using random
windows and ranges without any restriction (left) and when restricting the
maximum window size to 500×500 and the range length to 200 (right). Time
results are measured in nanoseconds per retrieved cell.

98 Chapter 11. Experimental evaluation

 0.1

 1

 10

 100

227 903 3606 14415 57586 114966

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Number of different values

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(a) MDTx – weak checkV aluesInW indow

 0.1

 1

 10

 100

 1000

227 903 3606 14415 57586 114966

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Number of different values

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(b) MDTx – strong
checkV aluesInW indow

 1

 10

 100

 1000

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Raster Size

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(c) eua – weak checkV aluesInW indow

 0.1

 1

 10

 100

 1000

3600x3600 7200x7200 10800x10800 14400x14400

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Raster size

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(d) eua – strong checkV aluesInW indow

 1

 10

 100

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Raster Size

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(e) cat0 – weak checkV aluesInW indow

 0.1

 1

 10

 100

 1000

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

(l
o
g
 s

c
a
le

)

Raster size

k
2
-acc

k
3
-tree

k
2
--raster

k
2

H
-raster

(f) cat0 – strong checkV aluesInW indow

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

Raster Size

k
2
--raster

k
2

H
-raster

(g) cat3 – weak checkV aluesInW indow

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

4100x5849 8242x11737 12403x17643 16564x23564

T
im

e
 (

µ
s
)

Raster size

k
2
--raster

k
2

H
-raster

(h) cat3 – strong checkV aluesInW indow

Figure 11.4: Time results for weak (left) and strong (right)
checkV aluesInWindow. Time results are measured in microseconds per
query.

11.2. Spatial Join 99

cells meet the conditions of the query. They are generally able to answer a query in
the upper levels of the tree, without the need to descend to the last levels. This is
the reason why k2-raster obtains very similar results to those of k2

H -raster for most
of the datasets, as they only differ in the last levels of representation, which is rarely
accessed in this query.

11.2 Spatial Join
We ran different experiments to measure the space consumption and processing time
for answering join queries over raster and vector data of different nature.

11.2.1 Experimental Framework

All the experiments were run on a dedicated Intel® CoreTM i7-3820 CPU @ 3.60GHz
(4 cores) with 10MB of cache, and 64GB of RAM. It ran Ubuntu 12.04.5 LTS with
kernel 3.2.0-115 (64 bits), using gcc version 4.6.4 with -O9 options. Time results
refer to cpu user time (in seconds). Space consumption was measured as the peak
memory usage ((VmPeak, in Megabytes). We report the average time and space
results after executing 100 queries, were we varied randomly the queried range.
We used the R-tree implementation from the libspatialindex library5, setting the
page size to 4 KB and the fill factor to 70%. We set a hybrid configuration for the
k2-raster, with n1 = 4, k1 = 4, and k2 = 2, that is, it uses k = 4 for the first 4
levels and k = 2 for the rest. To navigate the tree, we used an implementation for
supporting rank operations that adds 5% of extra space on top of the bit sequence
T and provides fast queries [GGMN05]. In addition, we stored the maximum and
minimum values using the version of DACs that optimizes the space usage while
restricting the maximum number of levels to 3.

The closest related works cannot be compared against our approach, since the
proposal in [CVM99] only considers binary rasters, and the proposal in [BdBG+17]
returns just the values of the vector dataset. Therefore, in order to evaluate our
framework, we developed also two baselines implementing the join operation over
raster matrices which are stored uncompressed and processed directly in main
memory (row by row). The first one, denoted as RasterInt, used 32-bit integers to
represent the value of each cell in the raster. The second one, denoted as RasterBits,
used dlog(v)e bits, being v the number of different values in the original matrix.

We compared our proposal to two baselines where the raster matrices were stored
uncompressed and processed directly in main memory (row by row). The first one
used 32-bit integers to represent the value of each cell in the raster. The second one
used dlog(v)e, being v the number of different values in the original matrix.

5https://libspatialindex.github.io

100 Chapter 11. Experimental evaluation

−106 −104 −102 −100 −98 −96 −94 −92 −90 −88
36

37

38

39

40

41

42

43

44

(a) vects

−126 −124 −122 −120 −118 −116 −114
32

34

36

38

40

42

44

(b) vecca

Figure 11.5: MBR distributions of the vector datasets vects (left) and
vecca (right).

11.2.2 Datasets
We used real data in our experiments, both for the raster data and also for the
vector data. The raster and vector datasets were scaled and translated in such a
way that they cover the same space.

To properly analyze the performance and scalability of our approach, we have
used two different sets of raster matrices defined in Section 11.1.2:

• Scenario I: varying the size of the input raster matrix, which also produces
a slight variation of the number of different values appearing in the matrix.
Table 11.2 shows the main properties (number of rows, columns, different
values, and size with each technique) of this dataset.

• Scenario II: varying only the number of different values. We show their
properties in Table 11.3.

The vector datasets were obtained from the ChoroChronos.org6 web site. More
concretely, we used Tiger Streams (vects) and California Roads (vecca). Figure
11.5 shows the distribution of the MBRs in these two datasets. We chose them
because of the variety on their number of elements: 194,971 and 2,249,727 MBRs,
respectively. They have been also used in the previously mentioned related work of
Brisaboa et al. [BdBG+17].

11.2.3 Memory usage
We measured the main memory required to perform a join operation using our
approach, and compared it to the memory required by the two baselines for both

6http://www.chorochronos.org/

11.2. Spatial Join 101

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400

M
b
y
te

s

Raster size (in million of cells)

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(a) vects

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

M
b
y
te

s

Raster size (in million of cells)

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(b) vecca

Figure 11.6: Memory consumption (in Megabytes) for rasters in Scenario I.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000 120000

M
b
y
te

s

different values

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(a) vects

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000 120000

M
b
y
te

s

different values

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(b) vecca

Figure 11.7: Memory consumption (in Megabytes) for rasters in Scenario
II.

scenarios.
Figure 11.6 shows the results obtained for Scenario I, where we vary the size

of the raster matrices. We can observe that our approach obtains always the best
space, and it scales better than other approaches. Figure 11.7 shows than, when
varying only the number of different values in the raster matrix in Scenario II, our
algorithm also outperforms the baselines for both vector datasets, obtaining high
compression especially when the number of values is low, and using around half the
space than the 32-bit integer representation.

11.2.4 Time performance
We also measured time performance when computing join operations for Scenario I
and Scenario II. As we can see in Figures 11.8 and 11.9, our framework obtains the
best time results and scalability properties for both scenarios.

The baseline using 32-bit integers, which requires much more space than the

102 Chapter 11. Experimental evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400

(s
e
c
s
.)

Raster size (in million of cells)

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(a) vects

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400

(s
e
c
s
.)

Raster size (in million of cells)

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(b) vecca

Figure 11.8: Processing time (in seconds) with rasters of Scenario I.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20000 40000 60000 80000 100000 120000

(s
e
c
s
.)

different values

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(a) vects

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000 120000

(s
e
c
s
.)

different values

(R−tree/k
2
−raster)

(R−tree/RasterInt)

(R−tree/RasterBits)

(b) vecca

Figure 11.9: Processing time (in seconds) with rasters of Scenario II.

one using dlog(v)e bits, obtains the best processing times among both baselines.
However, it is clearly outperformed by our approach. Our algorithm using k2-raster
scales much better in Scenario I, when increasing the size of the raster matrix,
and obtains also good processing times when increasing the number of different
values in Scenario II. These results demonstrate than k2-raster not only obtains a
compressed representation of the raster matrix, but also indexes the data, such that
the join query can be computed much faster than using a plain (and fast) 32-bit
representation.

We cannot directly compare our framework with the proposal in [BdBG+17]
using k2-acc, as we solve real join queries, returning those raster cells that satisfy
each query, and not only the MBRs. But Scenario II, when increasing the number
of different values in the raster matrix, allows us an indirect comparison. Remember
that k2-acc requires even more space than the uncompressed data with a large
number of different values. Scenario II probes that our framework clearly scales
much better than the uncompressed baselines. Moreover, we must take into account
that if the framework of [BdBG+17] required the exact cells satisfying the query,

11.2. Spatial Join 103

their time results would be even significantly worse, as they would require processing
the MBRs to check whether the intersection holds or not for each cell, which is a
costly task.

104 Chapter 11. Experimental evaluation

Chapter 12

Discussion

12.1 Main contribution
12.1.1 Raster data compression
In this thesis we propose a new compact data structure, denoted k2-raster, which
represents raster data in compressed way and offers efficient indexing capabilities.
Our technique supports, within reduced space, fast retrieval of single cell values,
decompression of regions of cells and also supports advanced searches, such as
retrieving cells inside a region containing some specific value or checking the existence
of values inside regions of the raster data. We have also presented a variant of
the structure, called k2

H -raster, which uses an entropy-based heuristic to create a
vocabulary of common patterns in order to obtain further compression.

We have empirically compared our two variants with existing techniques from
the literature, showing that both proposals clearly outperform the techniques from
the state of the art. They not only obtain better space usage and query performance,
but they also scale better when increasing the size of the input data or when the
raster matrix contains a large number of different values. The scalability property
is of extreme importance, as these characteristics appear when using real raster
data. When comparing the two proposed variants, k2

H -raster is the clear choice in
all scenarios. The simpler proposal, k2-raster, obtains better construction times, but
the heuristic version obtains better spatio-temporal results.

12.1.2 Spatial Join
The possibility of managing raster and vector datasets in geographical information
systems is a convenient feature, since it is well-known that each model is more
adequate depending on the nature of the spatial data [Cou92]. However, commercial
and open-source systems, and even the OGC standard [OGC10, OGC12], separate

105

106 Chapter 12. Discussion

both views and do not provide languages, data structures, and algorithms to perform
queries that use information from both models.

The exception to this rule could be the zonal statistics operation of Map Algebra
[Tom94] that is included in several systems. However, those systems internally
translate the vector dataset into a raster dataset before running the operation.

In this part, we presented a framework that includes two data structures and an
algorithm for running a join between vector and raster datasets, with no previous
transformation of none of them. The good properties shown by this new approach
are due to the use of compact data structures, which allows efficient processing in
little space.

The closest related work cannot be compared against our approach, since the
work in [CVM99] only considers binary rasters, and the proposal in [BdBG+17] does
not perform a complete join. Thus, we compared our approach to two baselines
that store and process the complete raster dataset in main memory using a row
by row filling curve. One of the baselines uses 32-bit numbers for each cell and
the other uses dlog(v)e bits per number, being v the number of different values
in the original matrix. The first is very fast, as it is byte-aligned, whereas the
second is space-efficient. In any case, our experiments show that our proposal clearly
outperforms the two baselines in both main memory space and running time.

12.2 Future work
As future work, we will extend the proposed structure to other dimensions, for
instance, to be used for spatio-temporal or 3D datasets. In addition, we will also
study the adaptation of our data structure to distributed or dynamic environments.

Another interesting future research line would be to integrate our structure to
perform queries of spatial data in the semantic web using, for example, the standard
GeoSPARQL1. The current tools for this type of queries have several drawbacks,
either they do not implement all the functionality or the query performance is very
poor. We believe that our structure could improve both problems.

The election of the R-tree for indexing the vector dataset is a pragmatic choice,
since it is the de facto standard for this type of data. However, as future work we
will consider the use of modern compact data structures as a substitution for the
R-tree.

1http://www.opengeospatial.org/standards/geosparql

Part III

Scientific data

107

Chapter 13

Introduction

This part presents two main contributions. The first is a compact representation of
huge sets of functional data or trajectories of continuous time stochastic processes,
which allows keeping the data always compressed, even during the processing in
main memory. It is oriented to facilitate the efficient computation of the sample
autocovariance function without a previous decompression of the dataset, by using
only partial local decoding. This structure, which we call Compact representation of
Brownian Motion (CBM), is presented in Section 14.1. The second contribution is
a new memory-efficient algorithm to compute the sample autocovariance function,
which is described in detail in Section 14.2.

We compare our C++ implementation, which receives as input CBM compressed
data, with two baselines: i) the R implementation (in fact a C program), and ii) our
own C implementation, both operating on plain data. The results of our empirical
evaluation are shown in Chapter 15. Finally, Chapter 16 presents our conclusions
and directions of future work.

The outline of this chapter is as follows. Section 13.1 presents the motivation for
the use of compression in the context of empirical autocovariance computation for
Brownian motion trajectories. More details about trajectories of Brownian motion
are described in Section 13.2. Finally, Section 13.3 shows some related work in the
compression field.

13.1 Introduction
In the last decade, we are attending to an exceptionally growing demand for large-
scale data analysis, which is linked to the new field called Big Data. The need to
process huge collections of data poses several challenges. On one hand, statistics and
artificial intelligence communities continue to develop new methods and techniques

109

110 Chapter 13. Introduction

to analyze data. On the other hand, computer scientists have to adapt analytical
algorithms to datasets with data volume too large, data rate too fast, data too
heterogeneous, and data too uncertain the so-called Volume, Velocity, Variability,
and Veracity.

Researchers or professionals working in Big Data must master many different
techniques and skills. To facilitate their work, several packages appeared, mainly
SAS1, MATLAB2, and R3. These packages are very useful, but they have scalability
problems [KEW13]. For example, the installation and administration manual of R
recommends loading into main memory datasets that occupy only 10–20% of the
available RAM and warns that if the dataset exceeds 50% of the available RAM,
the system will be unusable due to operation overhead, even the simplest ones.
The solution to these problems is, in most cases, the use of parallel processing
[DG08, KEW13, DXS+15, SETM13]. Parallel processing is a straightforward
solution, probably due to the existence of a good set of available tools. However,
while putting most of the efforts in this strategy, one is missing chances to improve the
scalability by means of other techniques. The use of more evolved data structures
and algorithms is losing the role that they had in the past when the hardware
technology was more limited.

Compression of floating point numbers has been proven difficult, mainly
because the datasets usually contain many distinct values and with few repetitions.
These two features make sequences of floating point numbers poorly skewed
and, as a consequence, the entropy of those sequences is high, making them
virtually incompressible with statistical compressors. Therefore, general purpose
compressors may not succeed over sequences of floating point numbers. Instead,
there are compressors that take advantage of properties of the data domain.
Thus, there are compressors specially designed for images, video, or sound
[Wal91, MPFL96, LR04, LI06], for general scientific data [EFF00, RKB06], or for
more specific domains [YS08, MHP+11].

Although our method can be used for trajectories of any continuous time
stochastic process, in this thesis, we rely on the characteristics of Brownian motion
to develop data structures and algorithms especially suited for these data. Since the
seminal work by Einstein [Ein06], the Brownian motion has been extensively used
to model the movements of particles subject to instantaneous imbalanced combined
forces exerted by collisions. Brownian motion and related stochastic processes have
been successfully used to model the movement of colloidal particles or the trajectory
of pollen grains suspended in water. Over the past forty years, starting with the
papers by [BS73], the Brownian motion and related processes have been used to
model option pricing and plenty of financial time series (see, for instance, [Hul09]).

Our method is designed to efficiently compute empirical moments from a sample

1http://www.sas.com/
2http://www.mathworks.com/products/matlab
3http://www.r-project.org

13.2. Brownian motion and autocovariance estimation 111

of observed trajectories of the stochastic process. One example of these moments is
the empirical autocovariance function, which is a very important tool for functional
principal component analysis. It can be used for dimension reduction, as in the
Karhunen-Loève decomposition.

13.2 Brownian motion and autocovariance estima-
tion

In real life, the Brownian motion can be used to model plenty of phenomena. It can
be observed in microscopic particles that, when floating in a fluid, exhibit continuous
but very jittery and erratic motion, since they are continuously bombarded by the
fluid molecules. This natural phenomenon was formalized by Norbert Wiener in a
rigorous mathematical way, as a stochastic process with continuous time.

The Brownian motion is a notion of central importance in probability theory, and
it is used as a building block for a number of related random processes that are of great
importance in a variety of applications in many fields, in pure Mathematics and in
Applied Mathematics. Economics is one of the main applications of Brownian motion.
It is used, for example, to predict the prices of financial products. In Medicine, it has
been used in image analysis. Brownian motion has many applications in Engineering.
For example, it can be used to model noise in electronics and instrument error. In
Physics, for example, it is used to model the movement of little particles in a fluid
or a gas, like in the aerosol transport phenomena.

13.2.1 Brownian trajectories
A Brownian trajectory (or curve) is just an observation of a Brownian motion
stochastic process. In practice, this can be one of the components of a 3D motion,
for example, the height of the particle, X(t). These values make up a trajectory, and
thus a trajectory is a function that, for every time instant, t, gives a real number.
In practice, time is discretized and a trajectory is also discretized as a sequence
of floating point numbers. Figure 13.1 shows an example of several Brownian
trajectories.

13.2.2 Autocovariance function estimation
Brownian trajectories are randomly observed functions, so statistical analysis of them
can be included in the field of functional data analysis. This is a very active research
topic in modern statistics that focuses on analyzing complex and high dimensional
data structures [RS05, FV06, HK12]. Classical important problems in this field
are dimension reduction and supervised classification. These can be addressed
using functional principal component analysis and functional data discriminant
analysis (see [RS05, LGPBJ+08] among many other). To carry out these techniques,

112 Chapter 13. Introduction

0 200 400 600 800 1000

−
4

−
2

0
2

4

0 200 400 600 800 1000

−
4

−
2

0
2

4

0 200 400 600 800 1000

−
4

−
2

0
2

4

0 200 400 600 800 1000

−
4

−
2

0
2

4

Figure 13.1: Four trajectories (curves) of a Brownian motion.

estimation of autocovariance functions or autocorrelation functions is needed. These
are the extension of covariance matrices or correlation matrices to the context of
functional data.

In this thesis, as an example of a statistical process that operates on functional
data, we consider the autocovariance function estimation for Brownian trajectories.
For a collection of trajectories X1, X2, . . . , Xn, the value each one has at time
t ∈ T , is represented by X1(t), X2(t), . . . , Xn(t), and the autocovariance function is
estimated using Equation (13.1):

Ĉ (s, t) = 1
n

n∑
i=1

(
Xi (s)−X (s)

) (
Xi (t)−X (t)

)
, T , (13.1)

for every s, t ∈ T , where X (s) = 1
n

∑n
i=1Xi (s). It is clear that direct

computation of Equation(13.1), based on a large number of trajectories, n, for
a large number, m, of instants t ∈ T is a time-consuming process and it requires
plenty of memory and disk. This is an important problem in Big Data analysis.

13.3. Related Work 113

13.3 Related Work
13.3.1 Compressing Floating Point Numbers
General-purpose compressors may not perform well over floating point data, thus
compression methods specifically designed to compress those numbers were developed
following two main strategies. The first one is based on allowing some loss of
precision [Wal91, MPFL96, MHP+11]. The second one uses a predictor that, before
compressing a symbol, obtains a prediction of its value based on previous values,
and then stores the difference between the prediction and the actual value [EFF00].
Space saving is obtained because such a difference is a smaller value than the
original one and, in addition, it is usually compressed with some sort of encoder.
Following this strategy, the well-known ALS compression method [LR04] of MPEG-4
combines two predictors and Golomb-Rice or Block Gilbert Moore coding. Lindstrom
and Isenburg [LI06] presented a lossless compression method that uses a predictor,
called Lorenzo, and encodes the difference with a two level compression scheme.
The method proposed by [FM12] selects the best predictor from an available set,
based on the values immediately compressed before the current value. In [YS08], a
regression line computed from the last compressed values is used to predict the next
value. The works in [RKB06, BR09, BR10] use a forecast system based on jump
address predictors for CPUs.

Moreover, most compression methods designed for floating point numbers are not
valid for in-memory processing, since they require to decompress from the beginning,
and in some cases, they obtain slow compression and/or decompression times.

Several alternatives for compressing and indexing sequences of floating point
numbers were presented in [FOP14]. This work uses data structures designed to
index and compress text, but adapted to be used with the most significant part of
the numbers, whereas the remainder part of the number is stored in plain form.

Concerning Brownian motion values and compression, [ABG+02] is the only
related work. In this contribution, compression methods were used, but the target
was to predict future values of stock shares, and not space saving.

114 Chapter 13. Introduction

Chapter 14

Our proposal: CBM

In this chapter, we introduce a new compact data structure, called Compact
representation of Brownian Motion (CBM), for representing Brownian motion
trajectories, which includes mechanisms to improve the calculation of empirical
moments (more concretely, the sample autocovariance function). We explain our
structure in Section 14.1, describing the construction process as well as the steps
that must be followed for the calculation of the autocovariance function.

We also present a new memory-efficient algorithm to compute the sample
autocovariance function that can be implemented using each trajectory only once.
The pseudocode of this algorithm is described in Section 14.2.

14.1 Compact representation of Brownian Motion
(CBM)

CBM is based on a very simple compression method, the differencing encoding.
However, this technique cannot be directly applied. Observe that if we subtract two
32-bits floating point numbers, we obtain a new floating point number and therefore
we still need 32 bits to represent it. To avoid this problem, we translate the floating
point numbers into integers. As we will see later, we only deal with positive numbers,
then we simply cast the floating point numbers to the integer that has the exact
same 32-bit binary representation.

Next, we have to reduce the size of those 32-bit numbers. Using the typical
prediction strategy to compress floating point numbers is a challenge since Brownian
motion values are used precisely to model the randomness. Nevertheless, the
processed values have an interesting characteristic, they come from a Brownian
motion, and thus two consecutive values cannot differ too much. This fits quite
nicely with the differencing encoding method, however, we do not use it directly. The
differences of CBM are not with respect to the previous number, but to the previous

115

116 Chapter 14. Our proposal: CBM

Figure 14.1: Compression process of a trajectory.

number plus the average of the differences between each pair of consecutive numbers
of its trajectory. In other words, we use a prediction strategy, where the prediction
computed to encode a given number is the previous number plus the average of the
differences between each pair of consecutive numbers of the considered trajectory.
That is, for each trajectory Xi, we compute the average of the differences between
consecutive values at times t−δ and t for all t ∈ T (avgDiff (Xi)). Then, to compress
the value of that trajectory at time t ∈ T , denoted by Xi(t), we make a prediction
Pi(t) from the previous value Xi(t− δ) as: Pi(t) = Xi(t− δ)+avgDiff (Xi), so we
encode Xi(t) as the prediction minus the actual value to encode (Pi(t)−Xi(t)).

CBM considers all numbers in absolute value, since the difference between two
numbers of different sign yields larger differences. Observe, for example, that the
difference between 1 and -2 is 3, whereas the difference between 1 and 2 is only 1.

Therefore, the first step of CBM translates the original numbers into positive
values. For this, we have to options:

• To use a bitmap (bitMapS) to mark the positions of negative numbers.

• To use ZigZag encoding.

Figure 14.1 shows an example using bitmaps.

14.1. Compact representation of Brownian Motion (CBM) 117

Algorithm 14.1 Compression
1: function Compression(t trajectories, #Points)
2: for each trajectory ti do
3: First[ti] = ti[1] . Store first value of each trajectory
4: for p← 2,#Points do
5: if ti[p] < 0 then bitMapS[ti, p− 1]← 1 . Mark the positions of negative values
6: end if
7: diffs[ti, p− 1]← |ti[p]| − |ti[p− 1]| . Compute differences
8: if diffs[ti, p− 1] < 0 then
9: bitMapP[ti, p− 1]← 1 . Mark the positions of negative values
10: diffs[ti, p− 1]← |diffs[ti, p− 1]| . Change of sign
11: end if
12: end for
13: avgDiff ← avg(diffs[ti]) . Compute the average difference of the current trajectory
14: for p← 1,#Points− 1 do
15: diffs[ti, p]←diffs[ti, p]− avgDiff . Subtract the average difference
16: if diffs[ti, p] < 0 then
17: bitMapA[ti, p]← 1 . Mark the positions of negative values
18: diffs[ti, p]← |diffs[ti, p]| . Change of sign
19: end if
20: end for
21: end for
22: Compression of bitMapS, bitMapP, and bitMapA
23: Compression of diffs with a compressor for integers.
24: end function

The second step takes the 32-bit number representing each floating point number
and casts it into an unsigned integer without any change in the bit number. Step
3 computes the differences between consecutive numbers and obtains the average
difference of the trajectory, which in our example is 12. Observe that the first value
of the sequence must be kept in plain.

Step 4 transforms the differences into positive values again. Therefore, we can
use either a bitmap (bitMapP) or a ZigZag encoding.

Step 5 shows the result of subtracting the average difference from each difference.
Converting the resulting values to absolute values requires the addition of another
bitmap (shown in step 6), or the use of a ZigZag encoding again. Finally, the
sequence of differences is compacted with a compressor for integers, the bitmaps (if
they exist) are compacted with a bitmap compressor [GGMN05], and the first value
of each trajectory and the average difference are stored in plain.

Algorithm 14.1 shows the pseudocode of the compression algorithm, where the
bitmaps can be avoided by using ZigZag encoding. Since the compression method is
based on differences, it is obvious that the decompression must start at a position
with a number in plain form. In our method, we only store in plain form the first
number of each trajectory, but we could store numbers in plain form at regular
intervals, in order to be able to start the decompression at those points. This feature
allows us to decompress portions of the input dataset. In our case, we can decompress
trajectories individually. This allows saving main memory during the computation
of any algorithm over the compressed sequence, since we can decompress only the
trajectories needed at a given step of the algorithm. For this, it is important to have

118 Chapter 14. Our proposal: CBM

Algorithm 14.2 Decompression
1: function Decompression(#trajectories, #Points)
2: for t← 1,#trajectories do
3: Values[t][1]←First[t] . Get first value of each trajectory
4: lastProcNumber←First[t]
5: avgDiff ←AvgDiffs[t] . Get the average difference of the current trajectory
6: for p← 2,#Points do
7: number←diffs[t, p− 1] . Get the difference between points
8: if bitMapA[t][p− 1] then . Check if is added or subtracted to average difference
9: number←avgDiff−number
10: else
11: number←avgDiff+number
12: end if
13: if bitMapP[t][p− 1] then . Check if is subtracted or added to the previous number
14: number←lastProcNumber+number
15: else
16: number←lastProcNumber−number
17: end if
18: lastProcNumber←number . The number is saved to calculate the next
19: if bitMapS[t][p− 1] then . Check if real number was negative
20: number←-number
21: end if
22: Values[t][p]←number
23: end for
24: end for
25: return Values
26: end function

a fast decompression algorithm; otherwise, the computation times could be harmed.
Algorithm 14.2 shows the decompression algorithm. This process starts by

taking the first number of a trajectory in plain. In line 5, we obtain the average
difference of that trajectory, which was stored in plain for each trajectory during the
compression procedure. Next, for each number in the compressed file, we perform
the reverse process of that shown in the compression procedure. For decompressing
a given number, we read the difference corresponding to that number and we add
(or subtract) the average difference of the trajectory. Then that value is added (or
subtracted) to the previous number. Finally, if the number was originally a negative
value, then the sign is changed.

14.2 Memory-efficient computation of the sample
autocovariance function

To compute the sample autocovariance function shown in Section 13.1, at two time
instants, s and t, the values of all trajectories in these two time instants are needed.
In addition, the classical implementation of that equation forces the use of each
trajectory many times. In this way, the classical algorithms, implemented in R for
example, maintain the whole dataset in memory. However, the equation can be
implemented using each trajectory only once, accumulating in each entry of the
output matrix the contribution to the sum due to the considered trajectory, as shown

14.2. Memory-efficient computation of the sample autocovariance function 119

Algorithm 14.3 Autocovariance computation trajectory by trajectory
1: function Covariance computation(t trajectories, #P oints)
2: for each trajectory ti do
3: for p← 1, #P oints do . Traverses all the time instants
4: for q ← p, #P oints do . Traverses the time instants from p to the end
5: cov[p, q]← cov[p, q] + ((ti[p]− avgp) ∗ (ti[q]− avgq))
6: cov[q, p]← cov[p, q]
7: end for
8: end for
9: end for
10: for p← 1, #P oints do
11: for q ← 1, #P oints do
12: cov[p, q]← cov[p, q]/#trajectories
13: end for
14: end for
15: end function

in Algorithm 14.3.
However, the algorithm requires the average value of all trajectories at all time

instants (avgt). To obtain those values, for each time instant, we would require
loading the value of all trajectories in that time instant. This process should be
performed in advance, which yields to a worsening of the running times. Instead, we
compute this value during the compression process, and we add it to the compressed
sequence, indeed it is required by the decompression procedure. In this way, the
autocovariance computing process can read it from the compressed file.

CBM uses a compact data structure strategy, as it enriches the compact
representation to improve the manipulation of the data. It takes advantage of
the compression process to perform pre-calculations that will be useful during
further processing of the dataset.

Note that this algorithm is not linked to CBM or the Brownian motion, as it
can be used for trajectories of any continuous time stochastic process.

120 Chapter 14. Our proposal: CBM

Chapter 15

Experimental evaluation

The experimental evaluation of our contributions is presented in this chapter. We
compare the CBM (implemented in C++) with two baselines operating over plain
data. More concretely, we use the autocovariation function included in the R package
and our own C implementation of the algorithm.

This chapter is organized as follows: The setup of the experiments is shown in
Section 15.1. Section 15.2 describes the collection of datasets used in the experimental
evaluation and an analysis performed on them to give an idea about the behavior and
distribution of the data. Next sections present the compression performance of CBM
(Section15.3) and the experimental results of the execution of the autocovariance
function, that is, the memory consumption (Section 15.4) and the computation time
(Section 15.5).

15.1 Setup
Our test machine has an Intel® CoreTM i7-3820@3.60GHz CPU (4 cores/8 siblings)
and 64GB of DDR3 RAM. It runs Ubuntu Linux 12.04 (kernel 3.2.0- 121-generic).
The hard disk was a Seagate ST3000DM001.

As compressor for integers, we used the following techniques: DACs (see Section
3.1), SCDC, PforDelta, and Kulekci using Rice and Elias encoding (see Section
2.1.4). We tested other compressors for integers, but they yield worse values.

By default, we used the three bitmaps: bitMapA, bitMapP , and bitMapS. For
DACs and Kulekci with Rice encoding, we also provide the values substituting
bitMapP and bitMapS by ZigZag encoding (we denote “-ZZ” these variants). We
tested this approach for the rest of techniques, but the results were worse than the
full bitmap versions or they did not run. We only substituted bitmaps bitMapP and
bitMapS, since if we use ZigZag encoding in the step corresponding to the bitMapA,
the numbers will have a larger magnitude, and thus, since compressors for integers

121

122 Chapter 15. Experimental evaluation

are designed to compress small integers, most of them did not work, or if they ran,
the results were poor.

We compare CBM against: i) GNU gzip1, a Ziv-Lempel-based compressor; ii)
p7zip2, which is an LZMA compressor with a dictionary of up to 4 Gigabytes; and
iii) fpzip3, a compressor specially designed to compress floating point numbers. In
the case of gzip, we used the default level of compression.

15.2 Dataset analysis
Table 15.1 shows the details of the datasets used in this study. Several thousands
(n = 10000, 20000, 30000) of Brownian motion trajectories were simulated in m =
1000, 2000, 10000, 15000, 20000, 30000 time instants in T = [0, 10]. The Brownian
motion considered has zero mean and covariance function c(s, t) = min{s, t}. It has
been simulated by using independent normally distributed increments for contiguous
time instants.

The first column of Table 15.1 shows the number of trajectories (n) and the
number of time instants (m), with the form n×m. The second column shows its
size in MBs.

In order to give an idea of the hardness of compressing those datasets, we
use Shannon’s information theory (see Section 2.1.1) to measure the amount of
information in those datasets. In particular, we used the zero-order empirical entropy
(in bits/number).

To compute the entropy, we regarded the source file as a sequence of 1-byte,
2-byte, and 4-byte integers. The latter case considers the original numbers, but
regarded as integers. For each case, we provide the empirical entropy in bits per
number and the value of log(|Σ|), where |Σ| denotes the size of the alphabet, that is,
the list of distinct values found in the dataset. blog(|Σ|)c+ 1 gives the minimum
number of bits required to represent each number using binary codes of the same
length, which is adequate for uniform distributions.

When the original dataset is processed considering integers of 1 byte, the empirical
entropy is around 7.38 bits per number, whereas log(|Σ|) is exactly 8, since in all
datasets, the 256 possible 1-byte values are present. When the dataset is regarded
as a sequence of 2-byte integers, the entropy is around 14.22 bits per number and
log(|Σ|) is 16. Finally, in the case of 4-byte integers, the values of the empirical
entropy are between 22.75–26.50 bits per integer. In this case, log(|Σ|) is not 32,
since not all possible 32-bit values are present in the datasets.

Observe that in the case of 1-byte integers and 4-byte integers, the empirical
entropy is very close to log(|Σ|), whereas in the case of 2-byte integers, there is
a little gap. This is probably due to the nature of Brownian trajectories and the

1http://www.gzip.org/
2http://p7zip.sourceforge.net/
3http://computation.llnl.gov/projects/floating-point-compression-zfp-fpzip

15.2. Dataset analysis 123

Table 15.1: Dataset sizes and entropy.

1-byte integers 2-byte integers 4-byte integers

Dataset size Size (MBs)
Entropy
(bits/
1b-int)

log(|Σ|)
Entropy
(bits/
2b-int)

log(|Σ|)
Entropy
(bits/
4b-int)

log(|Σ|)

10000× 1000 38.15 7.38 8 14.22 16 23.14 23.17
20000× 2000 152.59 7.39 8 14.22 16 24.83 24.94
10000× 10000 381.47 7.39 8 14.21 16 25.66 25.86
10000× 15000 572.20 7.38 8 14.22 16 25.93 26.18
20000× 20000 1525.88 7.38 8 14.22 16 26.34 26.71
30000× 30000 3433.23 7.39 8 14.22 16 26.50 27.00

Table 15.2: Entropy of the files of differences.

1-byte integers 2-byte integers 4-byte integers

Dataset size
Entropy
(bits/
1b-int)

log(|Σ|)
Entropy
(bits/
2b-int)

log(|Σ|)
Entropy
(bits/
4b-int)

log(|Σ|)

10000× 1000 6.60 8 12.07 16 21.53 21.86
20000× 2000 6.54 8 11.89 16 21.56 22.39
10000× 10000 6.37 8 11.44 16 20.79 22.47
10000× 15000 6.33 8 11.32 16 20.59 22.65
20000× 20000 6.29 8 11.24 16 20.46 23.30
30000× 30000 6.24 8 11.13 16 20.25 23.75

internal format of floating point numbers. In a Brownian trajectory, differences
between close numbers are small, thus the most significant 16-bits of the 32-bit
floating point numbers will vary less since that part includes the sign (1 bit), the
exponent (8 bits) and the most significant part of the mantissa (7 bits). Therefore,
the first 16-bit numbers will have a more skewed distribution and this is precisely
where CBM obtains compression, like all compressors designed for floating point
data.

Anyhow, it seems that the chances to compress are low, since the simple binary
representation of the numbers is close to the amount of information they carry.
This indicates that the original sequence has an almost flat distribution and a large
amount of distinct numbers, and this is precisely the worst scenario to achieve
compression. This is not surprising, since values simulated from a Brownian motion
are inherently random.

Recall that our strategy can be divided in two main steps: first, we preprocess
the original dataset in order to obtain a sequence of differences and second, we
compress such sequence using a compressor for integers. The sequence of differences
(shown at Step 6 in Figure 14.1) is analyzed in Table 15.2. We can see a decrease
in the entropy, and thus the integer compressor will be more successful in this new
preprocessed file. As an example, if we apply the SCDC compressor over the original
sequence, the output is even bigger than the original file, around 125%, whereas if

124 Chapter 15. Experimental evaluation

Table 15.3: Compression ratio.

CBM
DACs Kulekci Pfor

Dataset size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 92.61 80.81 72.42 85.13 84.73 89.78 95.85 99.13 132.88 83.20
20000× 2000 92.30 79.05 70.82 81.41 81.05 87.58 92.15 91.22 105.33 80.84
10000× 10000 90.35 75.01 66.85 76.23 75.91 85.63 89.16 84.08 79.20 76.00
10000× 15000 89.66 73.98 65.79 75.32 75.00 85.43 88.88 83.39 76.30 75.16
20000× 20000 89.15 73.21 64.96 74.61 74.29 85.26 88.76 83.03 74.59 74.59
30000× 30000 88.47 72.12 n/a 73.76 73.44 85.07 88.61 82.66 72.67 73.93

we apply it over the sequence of differences, the compression ratio is around 85% in
large files, including the auxiliary bitmaps. These auxiliary bitmaps are the price
that CBM has to pay, in part, for that decrease of entropy, which in the case of
the SCDC version represents 11− 11.5% of the compressed dataset, and between
11.5− 13.34% in case of using DACs.

Another interesting effect of the preprocessing is that, when the original dataset
is considered as a sequence of 4-byte integers, the entropy grows as the size of dataset
increases. However, in the sequence of differences, the entropy decreases as the size
of dataset increases, and this will be reflected in the compression ratio, as it will be
shown next.

15.3 Compression performance
Table 15.3 shows the compression ratio. As we can see, fpzip obtains the best results,
between 15% and 21% better than CBM, except in the largest dataset, where fpzip
did not run. p7zip obtains also good results, yet CBM is very close, especially for
the largest dataset, where the Kulekci-Elias version is on a par, and the PforDelta
version is at most 8% worse. However, neither fpzip nor p7zip support partial
decompression, essential to directly use the compressed data in main memory.

Comparing CBM variants, we observe that PforDelta and DACs-ZZ generally
outperform the rest, although in the largest dataset the best result is obtained by
the Kulekci-Elias version. SCDC and Kulekci-Rice obtain worse compression.

Table 15.4 shows the performance in compression time. Again the best method
is fpzip, except in the largest dataset, where it did not run, and then gzip is the
fastest. CBM pays the price of performing a compression process per trajectory.
If CBM compressed the data of all trajectories in a unique run of the integer
compressor, and thus producing a unique compressed dataset, it would be even
faster than fpzip. However, in order to be able to load into memory the data of only

15.4. Memory consumption during the computation of the sample autocovariance
function 125

Table 15.4: Compression time (seconds).

CBM
DACs Kulekci Pfor

Dataset size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 1.59 6.28 0.74 1208.92 4848.92 14.21 5.30 5.31 6.30 11.46
20000× 2000 6.31 25.81 3.29 2721.44 10514.35 39.04 14.84 14.93 18.75 44.46
10000× 10000 17.17 66.07 8.39 1578.49 6191.75 73.53 24.42 24.84 33.46 103.31
10000× 15000 26.13 98.36 12.83 1596.06 6232.87 102.14 34.99 34.83 47.69 152.22
20000× 20000 68.38 365.18 37.71 3246.89 13229.90 256.13 91.02 91.31 123.80 401.15
30000× 30000 155.19 915.98 n/a 4968.80 21806.09 518.64 198.20 197.19 271.69 889.26

Table 15.5: Decompression time (seconds).

CBM
DACs Kulekci Pfor

Dataset size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 0.45 2.02 0.72 0.26 0.24 0.19 0.94 1.59 8.42 0.14
20000× 2000 2.14 7.97 2.80 1.08 0.89 0.69 4.24 6.14 32.39 0.60
10000× 10000 5.19 19.36 6.89 2.52 2.07 1.61 8.20 10.49 75.07 1.45
10000× 15000 7.78 28.74 9.98 3.74 3.14 2.40 10.68 13.62 109.90 2,16
20000× 20000 13.21 81.34 28.13 10.69 8.14 6.42 28.18 34,81 289.06 5.98
30000× 30000 50.36 187.55 n/a 22.06 18.24 14.68 59.55 71.64 633.63 13.01

one compressed trajectory, the trajectories have to be compressed isolatedly, which
means a slower compression.

For our purpose of using compressed data in main memory, the key feature is
the decompression performance, since a slow decompression process will harm the
processing. Table 15.5 shows the decompression times. CBM-PforDelta is the fastest
technique, between 2.2 and 3.9 times faster than gzip, which compresses between 9
and 15 percentage points less. fpzip, which obtains the best compression, is around
5 times slower than CBM-PforDelta. CBM-SCDC and CBM-DACs-ZZ also obtain
good performances.

15.4 Memory consumption during the computa-
tion of the sample autocovariance function

Table 15.6 shows the maximum virtual memory4 consumption during the
computation of the sample autocovariance function using the classical algorithm

4This includes the complete space of addresses of the process.

126 Chapter 15. Experimental evaluation

(see Section 13.2.2). With this approach, the whole input dataset is stored in main
memory.

We compare the R implementation, using plain data (binary representation
of numbers), our own C implementation, and our implementations using CBM
compressed data as input.

We also performed another experiment, which supposes that the dataset is
stored on disk compressed with a classical compressor. Therefore, a previous full
decompression is needed in order to obtain the uncompressed version, which is then
processed with the normal C program. In this case, we give the highest value of
memory consumption between the decompression process and the computation of
the sample autocovariance function. These values correspond to the columns labeled
as “C+gzip”, “C+p7zip”, and “C+fpzip”.

The C and CBM implementations are basically the same C program. Both
programs maintain the whole dataset in main memory, but the CBM version keeps
the dataset in compressed form and only decompresses an individual trajectory when
the algorithm requires those data in a given step.

The C implementation is on a par with CBM, there are two reasons for this.
First, in both cases the output is kept in main memory uncompressed, and this is
the biggest component of the memory consumption. Observe in Table 15.6 that
when processing the dataset of size 30000×30000, both alternatives consume around
10 GBs. The input dataset requires around 3.3 GBs uncompressed and 2.5 GBs
compressed. The output is stored in doubles (in order to be fair with R), and then it
occupies 6.6 GBs, the biggest part. The second factor is that the advantage of CBM
in the input size (0.8 GBs) is compensated by the fact that, at a given step of the
algorithm, the CBM version has to decompress a treated trajectory, and therefore,
that trajectory is stored twice in main memory. In addition, some auxiliary data
structures are needed to perform the decompression.

Considering the experiment where the data are compressed with a classical
compressor, the decompression process of gzip and p7zip has a smaller memory
footprint than the computation of the sample autocovariance function. However,
fpzip, which is the best compressor in disk space, consumes a large amount of
memory, between 1.76 and 3.7 times more than CBM, and indeed it did not run
with the largest file.

Finally, the R implementation is the worst one. It consumes between 1.87 and
3.71 times more memory than CBM.

The memory consumption of the memory-efficient version, which uses Algorithm
14.3, is shown in Table 15.7. Except for the small files, where the C implementation
consumes less space than CBM, for the larger datasets they are on a par again.

In the case of “C+gzip” and “C+p7zip”, even using the memory-efficient
algorithm to compute the sample autocovariance function, the decompression process
consumes less main memory, except with p7zip in small files. Obviously, now the

15.5. Time to compute the sample autocovariance function 127

Table 15.6: Memory consumption (in MBs) of the classical algorithm.

CBM
C + DACs Kulekci Pfor

Dataset size R C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 223 50 50 50 254 60 60 60 60 60 60 60
20000× 2000 648 187 187 187 982 197 197 197 197 197 197 197
10000× 10000 2545 1149 1149 1149 3204 1159 1159 1159 1159 1159 1159 1158
10000× 15000 4060 2293 2293 2293 3777 2303 2303 2303 2303 2303 2303 2303
20000× 20000 9096 4582 4582 4582 12782 4592 4592 4592 4592 4592 4592 4592
30000× 30000 19358 10305 10305 10305 n/a 10315 10314 10315 10315 10315 10314 10315

Table 15.7: Memory consumption (in MBs) of the memory-efficient
algorithm.

CBM
C + DACs Kulekci Pfor

Dataset size C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 12 12 37 254 25 23 25 25 23 25 25
20000× 2000 35 35 37 982 59 49 60 59 49 59 59
10000× 10000 767 767 767 3204 814 789 814 814 789 814 814
10000× 15000 1721 1721 1721 3777 1787 1749 1787 1787 1749 1787 1787
20000× 20000 3130 3130 3130 12782 3216 3116 3216 3216 3116 3216 3216
30000× 30000 6919 6919 6919 n/a 7219 6994 7219 7219 6994 7219 7219

gap between “C+fpzip” and CBM is even bigger: CBM consumes between 87% and
5% of the space used by “C+fpzip”.

15.5 Time to compute the sample autocovariance
function

Table 15.8 shows the time required to compute the sample autocovariance function.
In the experiments “C+gzip”, “C+p7zip”, and “C+fpzip”, the displayed values
correspond to the addition of the decompression times and the computation times
of the sample autocovariance function using the C program over the uncompressed
data.

CBM does not improve the results obtained by the C implementation regarding
memory consumption, however in this experiment, CBM clearly beats the C
implementation. There are two reasons for this. First, the computation of the
covariance function requires the average value of all trajectories at all time instants
(see Section 13.2.2). In the case of CBM, those values are computed during

128 Chapter 15. Experimental evaluation

Table 15.8: Computation time (seconds) for the sample autocovariance
function with the classical algorithm.

CBM
C + DACs Kulekci Pfor

Dataset size R C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 5 6 7 8 7 4 4 4 5 5 12 4
20000× 2000 42 50 52 58 53 31 31 30 34 36 63 30
10000× 10000 515 612 618 632 619 372 375 372 379 383 447 371
10000× 15000 1155 1374 1382 1403 1384 834 845 834 844 854 942 834
20000× 20000 4134 4863 4876 4944 4891 2945 2965 2948 2982 2994 3240 2947
30000× 30000 14006 16488 16538 16676 n/a 9952 10233 9945 9984 10022 10847 9938

compression and stored in the compressed file. However, the C program has to
calculate those values before running the main loop implementing Equation (13.1).
The second factor is the memory hierarchy. While the output has a big impact in
the memory footprint, that space is not critical for the running times. However, the
input data is read repeatedly; thus, making the input data available to the processor
as quickly as possible has a big impact in the running times. A smaller input has
more chances of being stored at higher levels of the memory hierarchy.

With the largest dataset, the C implementation of the classical algorithm
consumes up to 10 GBs of virtual memory, while the maximum resident memory5,
is 6.8 GBs. Therefore, the remaning 3.2 GBs must be stored on disk in the swap
area. Moreover, those data are interchanged between disk and memory during
the computation, implying an important slowdown. Even in the smallest dataset,
the virtual memory peak was 50 MBs, while the resident memory peak was 44
MBs. These values are similar for the CBM version, but the number of interchanges
between memory and disk could have an important impact. The same applies for
the interchanges between memory and the different levels of processor cache, where
the number of reads that are successfully solved in low level caches has a big impact.

CBM is between 50% and 66% faster than the C implementation and between
13% and 40% faster than R. Observe that R is faster than the C program. The
reason is probably again the memory hierarchy: R uses almost twice as much main
memory space as the C program.

If we consider that a previous decompression is needed before running the C
program, the improvements are obviously better, CBM is between 1.67 and 2 times
faster.

This experiment shows that the decompression required by CBM is really fast
and therefore the computation time is not harmed.

5The space of RAM used by the process.

15.5. Time to compute the sample autocovariance function 129

Table 15.9: Computation time (seconds) for the sample autocovariance
function with the memory-efficient algorithm.

CBM
C + DACs Kulekci Pfor

Dataset size C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 3 4 5 4 6 4 4 5 5 12 4
20000× 2000 42 45 50 45 44 44 45 47 49 75 43
10000× 10000 487 493 507 494 490 520 507 519 518 583 488
10000× 15000 1131 1139 1160 1141 1109 1139 1141 1158 1155 1267 1105
20000× 20000 4088 4101 4169 4116 4015 4028 4085 4092 3982 4373 3936
30000× 30000 14258 14308 14446 n/a 13744 15220 13838 14301 13587 15853 13568

Table 15.9 shows the times when using the memory-efficient version of the
algorithm. Now, the gap between CBM and the C implementation is shorter. They
are almost on a par, and only in the largest files, CBM is around 3.5% faster. In a
given step of the algorithm, only one trajectory is loaded into memory, therefore,
the C implementation has more chances to fit that trajectory in the upper levels of
the memory hierarchy.

Again, resident memory usage supports this explanation. In the largest dataset,
the peak consumption of virtual memory was 6,919 MBs, while the maximum
resident memory consumption was 6,915 MBs. This implies that interchanges
between the swap area and memory are almost inexistent, and then the memory-
efficient algorithm using CBM is even faster than the C implementation of the
classical algorithm, even though intuition says that should be faster since it has the
complete dataset uncompressed in main memory.

If we consider the experiment where the data were compressed with a classical
compressor, then CBM is up to 13 % faster.

In Figure 15.1, we show the trade-off between memory consumption and
computation time using the largest dataset with the two algorithms to compute
the sample autocovariance function (classical and memory-efficient ones). We only
provide the values of some of the versions of CBM to avoid cluttering the figure.
In addition, results for “C+fpzip” are not present since fpzip did not run in this
dataset.

With the classical algorithm, we can see that CBM has clearly the best balance,
as it has almost the same memory consumption as the C implementation, but better
running times. Observe that R has by far a worse memory consumption.

In the memory-efficient version plot, R is not present. The differences are shorter,
having the C implementation a slight advantage in memory consumption, and the
CBM-DACs-bitmap and CBM-PforDelta versions a slight advantage in time.

Figure 15.2 shows the trade-off between disk space and the time needed to

130 Chapter 15. Experimental evaluation

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 9000 10000 11000 12000 13000 14000 15000 16000 17000

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

M
B

s
)

Time (secs.)

R
C

C+gzip
C+p7zip

CBM DAC bit
CBM DAC ZZ

CBM PforDelta

(a) Classical Algorithm

 6900

 6950

 7000

 7050

 7100

 7150

 7200

 7250

 13400 13600 13800 14000 14200 14400 14600 14800 15000 15200 15400

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

M
B

s
)

Time (secs.)

C
C+gzip

C+p7zip
CBM DAC bit
CBM DAC ZZ

CBM PforDelta

(b) Memory-Efficient Algorithm

Figure 15.1: Memory consumption/computation time trade-off for the
dataset of size 30000× 30000.

15.5. Time to compute the sample autocovariance function 131

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 9000 10000 11000 12000 13000 14000 15000 16000 17000

D
is

k
 s

p
a

c
e

 (
M

B
s
)

Time (secs.)

R
C

C+gzip
C+p7zip

CBM DAC bit
CBM DAC ZZ

CBM PforDelta

(a) Classical Algorithm

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 13400 13600 13800 14000 14200 14400 14600 14800 15000 15200 15400

D
is

k
 s

p
a

c
e

 (
M

B
s
)

Time (secs.)

C
C+gzip

C+p7zip
CBM DAC bit
CBM DAC ZZ

CBM PforDelta

(b) Memory-Efficient Algorithm

Figure 15.2: Disk space/computation time trade-off for the dataset of size
30000× 30000.

132 Chapter 15. Experimental evaluation

compute the sample autocovariance function. With the classical algorithm, CBM
is again the best alternative by far in both disk space and time. “C+p7zip”
occupies a bit less space in disk, but requires much more time to compute the
sample autocovariance function. When using the memory-efficient algorithm,
CBM-PforDelta shows the best balance.

Figure 15.3 shows the final picture, by comparing R and the classical C
implementation with our proposal: the use of CBM and a new memory-efficient
algorithm to compute the sample autocovariance function. With respect to memory
consumption, the efficient versions have the lowest memory consumption. The
memory-efficient C implementation consumes 2.8 times less memory than R. In the
case of the C program and CBM, the use of the memory-efficient algorithm implies
a reduction of around 48% in the memory footprint with respect to the classical
implementations.

In disk space, the best option is p7zip, but its fastest version (using the memory-
efficient algorithm) is 45% slower than CBM-PforDelta with the classical algorithm,
which is the version that shows a best balance in this plot.

Finally, the classical implementation of CBM-PforDelta is 40% faster than R
and 65% than the classical C implementation.

15.5. Time to compute the sample autocovariance function 133

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 9000 10000 11000 12000 13000 14000 15000 16000 17000

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

s
)

Time (secs.)

R
C Class

C Effi
C+p7zip Class

C+p7zip Effi
CBM PforDelta Class

CBM PforDelta Effi

(a) Memory consumption

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 9000 10000 11000 12000 13000 14000 15000 16000 17000

D
is

k
 s

p
a

c
e

 (
M

B
s
)

Time (secs.)

R
C Class

C Effi
C+p7zip Class

C+p7zip Effi
CBM PforDelta Class

CBM PforDelta Effi

(b) Disk space

Figure 15.3: Overall performance for the dataset of size 30000× 30000.

134 Chapter 15. Experimental evaluation

Chapter 16

Discussion

16.1 Main contributions

We have shown that parallel processing is not the only way to improve the scalability
of a large-scale analysis system. Even though it is an easy way, as there are many
hardware and software tools available, we still have the opportunity to squeeze more
by the use of efficient data structures and algorithms. This approach was common
in the early times of computer science, where the hardware and software resources
were much more limited. More specifically, we apply a compact data structures
strategy to improve the scalability of the analysis of Brownian motion trajectories,
although our solutions can be applied to any continuous time stochastic process.
Our techniques do not prohibit the use of parallelization, on the contrary, they are
even more suitable, since each node can process one trajectory independently from
the others and data interchanges consume less bandwidth.

CBM is a strategy to represent Brownian trajectories in a compressed way using
around 75% of the original space. The novelty is that this saving is also applicable
to main memory space, since we can keep the data compressed all the time, decoding
an isolated trajectory when needed and keeping the rest of the representation in
a compressed form. Moreover, one isolated trajectory can be extracted from the
compressed file in disk, loaded into main memory, and decompressed. In this way,
the empirical autocovariance function is computed using up to 13 times less main
memory space than when using the traditional method on plain data.

The new approach does not only save space in disk and main memory, but it
also obtains reductions in running times. We use two strategies for this. First,
the average value of all trajectories in all time instants, which is needed in the
computation of the autocovariance function, is computed during the compression
and stored in the compressed file. Second, the savings in main memory allow a better
usage of the memory hierarchy. Therefore, our approach is up to 65% faster than

135

136 Chapter 16. Discussion

running a classical C program. Moreover, we have shown that our memory-efficient
version of the algorithm is even faster than the classical setup, that is, storing the
complete input dataset in main memory

In addition, thanks to the possibility of decompressing parts of CBM compressed
data, we can apply the memory-efficient algorithm without a previous decompression.
If we have to decompress the input dataset before the application of a C program,
that process is up to 67% slower than computing the sample autocovariance function
using directly CBM compressed data.

16.2 Future work
As future work, we plan to improve the compression ratio of the method. Another
line of research would be to test the method with other continuous time stochastic
processes (other than the Brownian motion) and measure the time and memory
consumed, comparing the results with those included in this thesis. Finally, we could
include other interesting statistics to be computed from the sample of trajectories.

Part IV

Summary of the thesis

137

Chapter 17

Conclusions and future work

17.1 Main contributions

In recent years, the amount of digital information stored and processed by computer
systems has grown constantly. This is due to important advances in sensors and
computing power, while Internet makes the data available to many persons or
organizations. In addition, the Big Data phenomenon has extended analytical
techniques such as data mining or OLAP systems, where huge amounts of data are
exploited to obtain new data and knowledge. Therefore, designing new techniques
to process and access huge amounts of information is a major challenge in many
different areas.

There are several lines of research that try to improve the processing of large
amounts of data, such as the design of new hardware or the parallel processing. A
newly emerging research area is the compact representation of data. We will focus
on this, also called design of compact data structures, which allows the execution of
complex operations directly on compressed data. Compact data structures combine
in a unique data structure a compressed representation of a dataset and the access
methods that allow us to retrieve any given datum, without the need of decompressing
the dataset from the beginning. The idea is to keep data always compressed, even
in main memory. The benefits are obvious, in addition to the typical savings in disk
space and bandwidth, we can process larger datasets, and moreover, this processing
can be more efficient thanks to a better usage of the memory hierarchy. In many
cases, compact data structures, in addition to a compressed representation, provide
some sort of self-indexation, which allows us to answer queries even faster than
performing that query over the plain representation and within the same compressed
space.

In this thesis we are focused on the compact representation of large and complex
datasets. Concretely, we are interested in three main areas; the representation

139

140 Chapter 17. Conclusions and future work

of multidimensional data, where the domain of each dimension is organized
hierarchically, the management of spatial data, and the efficient execution of complex
operations over scientific data.

This section summarizes the main contributions of this thesis:

1. We presented the kn-treap, a straightforward extension of the k2-treap to
manage multiple dimensions.

2. We designed a new representation of multidimensional data. This structure
can be seen as an extension of the kn-treap which eliminates its strict regular
partitioning of the hypercube, by allowing a new flexible division that depends
on the domain hierarchies. It is particularly attractive to represent OLAP data
cubes compactly and efficiently answer meaningful aggregate queries. This
structure was initially designed to support aggregate sums, but it is easy to
extend our results to other kinds of aggregations, such as the average or the
maximum, or combine several of them. We also studied its applicability and
its drawbacks in several scenarios, showing a superior time performance than
a generic multidimensional structure.

3. We introduced the k2-raster, which is a new compact data structure designed
to store raster data. This spatial data model is commonly used to represent
attributes of the space (temperatures, pressure, elevation measures, etc.) in
geographical information systems. As it is common in compact data structures,
our new technique is not only able to store and directly access compressed
data, but also indexes its content, thereby accelerating the execution of queries.
We have also included two variants: the hybrid k2-raster and the heuristic k2-
raster. The hybrid k2-raster allows us to modify how the matrix is partitioned
ateach level of tree. The other variant, the heuristic k2-raster is an improved
version that obtains better compression and even faster query times.
Our experiments show that our methods improve previous approaches in all
aspects, especially when the number of different values is large, which is critical
when applying over real datasets.

4. We proposed a new framework for running a spatial join between a raster
dataset and a vector dataset. It allows us to specify a range constraint on the
values of the raster to refine queries. Our spatial join retrieves all elements of
a vector dataset and the cells of the raster with a value in the queried range,
which overlap each other.
In our experiments, we show that our approach obtains important savings in
both running time and memory consumption.

5. We developed a new compact representation of huge sets of functional
data or trajectories of continuous time stochastic processes, called Compact
representation of Brownian Motion (CBM). In this thesis, we focus on

17.2. Future work 141

trajectories of Brownian Motion, but our contribution is able to represent any
continuous time stochastic process. CBM includes mechanisms to improve
the computation time of empirical moments, for example, the empirical
autocovariance function.

6. We presented a new memory-efficient algorithm to compute the sample
autocovariance function, where each trajectory is only used once. The major
benefit of this algorithm is that it does not keep the whole dataset in memory,
thus reducing the memory consumption considerably. The application of this
method is not limited to CBM and the trajectories of Brownian motion, it can
also be used to computate the autocovariance of any type of trajectories of
continuous time stochastic processes.
Finally, we presented a set of experiments that showed that our approach
obtains better space/time trade-offs than the state of the art.

17.2 Future work
In this section, we introduce some interesting future plans. We will present the most
important ones for our contributions:

• The CMHD and the kn-treap have been tested with several synthetic datasets.
We plan to extend these experiments with real collections. We also plan to
compare our contribution with an established OLAP database management
system.

• In this thesis, the k2-raster was designed for two-dimensional datasets. We plan
to extend the structure for datasets with higher dimensionality, for example
spatio-temporal datasets. In addition, we believe that our structure can be
adapted to other type of environments, such as distributed environments or
the semantic web.
In the case of the semantic web, there is a standard, called GeoSPARQL, for
running queries on spatial data. However, current tools for this standard have
drawbacks, either they do not implement all the functionality or the query
performance is very poor.

• In the framework for the spatial join, the choice of the R-tree to index the
vector dataset was because it is the standard for this type of data. A new
research line to improve our framework is to substitute the R-tree by modern
compact data structures. Another interesting proposal is to increase the power
of the framework by adding new operations.

• We plan to add new interesting statistics to expand CBM to include other types
of computations, apart from autocovariance. In addition, more experiments
with other continuous time stochastic processes can be tested.

142 Chapter 17. Conclusions and future work

Appendix A

Publications and other
research results

Publications
Journals

• Nieves R. Brisaboa, Ana Cerdeira-Pena, Gonzalo Navarro, Miguel R. Penabad,
and Fernando Silva-Coira Efficient Representation of Multidimensional Data
over Hierarchical Domains. Manuscript to be submitted.

• Susana Ladra, José R. Paramá, and Fernando Silva-Coira: Scalable and
Efficient Compressed Self-Index for Raster Data. Submitted to Information
Systems.

• Nieves R. Brisaboa, Ricardo Cao, José R. Paramá, and Fernando Silva-Coira:
Scalable processing and autocovariance computation of big functional data.
Submitted to Software Practice and Experience.

International conferences

• Susana Ladra, José R. Paramá, and Fernando Silva-Coira: Compact and
Queryable Representation of Raster Datasets. In Proceedings of the 28th
International Conference on Scientific and Statistical Database Management
(SSDBM), pages 1–12, 2016.

This paper has been cited by:

– Alejandro Pinto, Diego Seco, and Gilberto Gutiérrez: Improved Queryable
Representations of Rasters. In Proceedings of Data Compression
Conference (DCC), 2017

143

144 Appendix A. Publications and other research results

• Nieves R. Brisaboa, Ana Cerdeira-Pena, Narciso López López, Gonzalo Navarro,
Miguel R. Penabad, and Fernando Silva-Coira: Efficient Representation of
Multidimensional Data over Hierarchical Domains. In Proceedings of the
International Symposium on String Processing and Information Retrieval
(SPIRE), pages 191–203, 2016.

• Susana Ladra, Juan R. López, José R. Paramá, and Fernando Silva-Coira:
Efficient Spatial Join between Raster and Vector Datasets. Submitted to ACM
SIG SPATIAL.

International research stays
• March, 2017 - May, 2017. Research stay at Universidad de Chile, Departa-

mento de Ciencias de la Computación (Santiago, Chile).

Appendix B

Resumen del trabajo
realizado

En este capítulo se presenta un resumen del trabajo realizado durante la tesis. En la
sección B.1 se presenta una breve introducción y la motivación para la realización de
esta tesis. Además, se resume brevemente cada una de las áreas donde trabajamos,
indicando cada uno de los principales problemas que tratamos de solucionar mediante
nuestras contribuciones. En la sección B.2 se exponen y discuten cada una de las
estructuras y algoritmos desarrollados. Finalmente, este capítulo se cierra con la
sección B.3, donde se abordan diferentes líneas de investigación para mejorar y
ampliar en un futuro nuestras contribuciones aquí expuestas.

B.1 Introducción
En los últimos años, con la aparición de un nuevo campo llamado Big Data, la
demanda de análisis de cantidades enormes de información se ha incrementado
considerablemente, como, por ejemplo, la minería de datos (Data Mining) o los
sistemas OLAP para el análisis de datos sobre almacenes de datos (Data Warehouses).
Uno de los principales motivos de que esto suceda es el incremento de la capacidad
de almacenamiento de los discos y su bajo coste. Pero esto ha creado nuevos retos
en el procesado de grandes colecciones de datos, ya que las estructuras de datos y
los algoritmos convencionales no están adaptados para esa cantidad de información.
Los conjuntos de datos de este campo poseen las llamadas 4V ′s: volumen de datos
demasiado grande (Volumen), velocidad de datos demasiado rápida (Velocidad),
datos demasiado heterogéneos (Variabilidad) y datos demasiado inciertos (Veracidad).
En esta tesis nos hemos centrado en la primera V : volumen de datos demasiado
grande.

145

146 Appendix B. Resumen del trabajo realizado

Actualmente existen varias líneas de investigación que tratan de mejorar el
procesamiento de grandes volúmenes de datos, como el diseño de hardware específico
para ese propósito o el paralelismo de aplicaciones, donde los datos son distribuidos
en diferentes núcleos para ser procesados paralelamente. Por otro lado, existen otras
líneas de investigación alternativas que se centran en el diseño de estructuras y
algoritmos específicos. Entre ellas podemos destacar dos estrategias distintas pero
con un mismo objetivo: la gestión de datos en memoria y las estructuras de datos
compactas. El propósito de ambas es poder manipular un conjunto de datos en
memoria principal y evitar los costosos accesos a disco. Mientras que la gestión de
datos en memoria se centra más en las bases de datos tradicionales, el dominio de
las estructuras de datos compactas es mucho más amplio, ya que cada una de ellas
es diseñada y adaptada al entorno donde opera.

Las estructuras de datos compactas surgieron dentro del campo de la compresión
de datos. En la mayoría de los casos, las técnicas de compresión de datos tienen
como objetivo principal disminuir el espacio necesario para almacenar los datos
y reducir el consumo de banda ancha durante la trasmisión de información. Sin
embargo, las técnicas usadas tradicionalmente no permiten procesar o consultar
los datos originales cuando están representados en forma comprimida, obligando a
ejecutar previamente un proceso de descompresión. Este procesamiento adicional
aumenta el tiempo de consulta considerablemente, especialmente en el ámbito del Big
Data. Es ante este problema donde la nueva familia de estructuras, las denominadas
estructuras de datos compactas, ha cambiado el uso clásico de la compresión de
información. La representación compacta de datos es una línea de investigación
que está ganando mucha importancia ya que permite el acceso y la ejecución de
operaciones complejas directamente sobre los datos en forma comprimida, evitando la
necesidad de descomprimir todo el contenido. Nuestra tesis se centra en esta línea de
investigación, también llamada diseño de estructuras compactas. Estas estructuras,
al reducir su tamaño, están concebidas para ser ejecutadas en memoria principal,
aprovechando los niveles superiores de la jerarquía de memoria, que son mucho
más rápidos que la memoria secundaria. Esto permite que a veces las operaciones
procesadas sobre la estructura de datos compacta sean más rápidas incluso que en
su representación en plano.

B.1.1 Motivación
La principal motivación de esta tesis es diseñar, implementar y evaluar experi-
mentalmente estructuras de datos compactas que permitan representar de forma
comprimida y autoindexada grandes volúmenes de datos. Se han estudiado tres
escenarios diferentes donde es necesario el procesado y análisis eficiente de grandes
cantidades de información:

• Datos multidimensionales o almacenes de datos (Data Warehouses).
Existen muchas áreas donde los datos son representados en más de dos

B.1. Introducción 147

dimensiones, por ejemplo, imágenes 3D o en sistemas de información geográfica
(GIS). Nosotros consideramos el problema de la representación eficiente de datos
multidimensionales donde el dominio de cada dimensión está jerarquizado.

Este es el caso de las bases de datos Data Warehouse, concretamente en sistemas
de análisis OLAP (siglas en inglés de procesamiento analítico en línea). En
este tipo de entornos es muy frecuente tener que manipular y analizar grandes
colecciones de datos donde están involucradas varias dimensiones. En un
sistema OLAP, los datos son conjuntos de tuplas que se consideran entradas
en un cubo multidimensional, con una dimensión por atributo. Un caso típico
en OLAP es que cada tupla contiene un resumen numérico (por ejemplo, la
cantidad de ventas), que se considera como el valor de una celda en el cubo
multidimensional. El dominio de cada dimensión es jerárquico, de manera
que cada valor en la dimensión corresponde a una hoja en una jerarquía (por
ejemplo, países, ciudades y tiendas en una dimensión y años, meses y días en
otra). Además, es necesario responder operaciones complejas que requieren
resúmenes (sumas, máximos, etc.) a diferentes niveles de cada dimensión (por
ejemplo, ventas totales en Nueva York durante el mes anterior o cantidad de
ordenadores vendidos en Europa hace 2 años), lo cual puede involucrar acceder
a un gran número de celdas.

Esto nos presenta dos retos principales: debemos reducir el tamaño requerido
para almacenar este tipo de colecciones y, al mismo tiempo, incluir algún tipo de
índice que nos ayude a mejorar el tiempo de respuesta de las consultas. Hasta
donde sabemos, no existen antecedentes de estructuras de datos compactas
diseñadas específicamente para tratar este tipo de datos.

• Datos espaciales. Los sistemas de información geográficos pueden manipular
información espacial usando distintos modelos de datos. En el nivel conceptual
tenemos dos alternativas: modelo basados en objetos y modelos basados en
campos. Un modelo basado en objetos considera que el espacio contiene
entidades discretas e identificables, cada una con una posición geoespacial.
Por otro lado, los modelos basados en campos se pueden ver como una función
matemática que por cada posición del espacio devuelve un valor. Por ejemplo,
un modelo basado en objetos contiene carreteras, edificios y cualquier otro
tipo de objeto, mientras que un modelo basado en campos está generalmente
más relacionado con propiedades físicas, como la elevación del terreno, la
contaminación ambiental, la medición de temperaturas, etc. Si consideramos
el nivel lógico, podemos encontrar otros dos modelos distintos: el modelo
vectorial y el modelo ráster. El primero, el model vectorial, representa la
información geográfica usando puntos y segmentos, mientras que un modelo
ráster representa dicha información dividiendo el espacio, normalmente en
cuadrículas de igual tamaño, donde cada celda tiene un valor. Aunque cualquier
modelo conceptual puede ser representado mediante cualquier modelo lógico,

148 Appendix B. Resumen del trabajo realizado

es común que los modelos vectoriales sean usados para representar modelos
basado en objetos y los modelos ráster se asocian habitualmente a modelos
basado en campos.

Nuestro objetivo es diseñar nuevas estructuras para la representación de
información espacial, más concretamente, datos espaciales que usan un modelo
ráster. Cualquier imagen dada puede ser vista como un ráster, por lo tanto,
el uso de este modelo es masivo. Otros ejemplos de aplicación de conjuntos
de datos ráster podrían ser el control de la contaminación, el pronóstico del
tiempo, la captura de imágenes por satélite, la captación de sensores remotos,
la modelización 3D, la ingeniería, etc. Todos estos escenarios tienen algo en
común, tienen que tratar con grandes conjuntos de datos ráster. Aunque ya
existen estructuras de datos compactas para este tipo de datos, su aplicabilidad
sobre conjuntos de datos reales es limitada. El nuevo método propuesto se ha
diseñado para evitar los problemas de las técnicas anteriores.

Además, otro reto dentro de este campo es la realización de consultas donde
estén involucrados datos ráster y un datos vectoriales. Algunos trabajos
anteriores proponen tipos de datos y operadores que pueden utilizar operandos
de ambos tipos. Entre ellos, podemos destacar la operación de join espacial
entre datos representados con un modelo ráster y otro vectorial. Esta operación
devuelve los elementos de un conjunto de datos vectorial (polígonos, líneas o
puntos) y las celdas del ráster que tienen un valor dentro de un rango definido
por el usuario. Sin embargo, pocos trabajos se ocupan de las estructuras de
datos y los algoritmos necesarios para implementar esa operación. Nosotros
proponemos un framework que permite realizar joins espaciales entre un R-tree
(que indexa los objetos con un modelo de datos vectorial) y una de nuestras
contribuciones de esta tesis, el k2-raster (para representar los datos ráster).

• Trayectorias de procesos estocásticos de tiempo continuo. Uno de
los principales inconvenientes para los investigadores durante el procesado de
datos científicos es que los tamaños de las colecciones son muy grandes y los
métodos y estructuras convencionales no están adaptados para ellas. Por lo
tanto, mientras que la comunidad científica sigue desarrollando nuevos métodos
y técnicas para analizar datos, los científicos informáticos tienen que adaptar
los algoritmos analíticos a conjuntos de información que poseen las llamadas
4V ′s, es decir, los principales problemas del Big Data.

En esta tesis hemos introducido un nuevo método para representar efi-
cientemente trayectorias de procesos estocásticos de tiempo continuo, más
concretamente, trayectorias de movimiento Browniano. Lo que proponemos es
aplicar una estrategia de estructuras de datos compactas para poder acelerar los
cálculos sobre dichas colecciones, como el cálculo de la función de covarianza.

B.2. Contribuciones y conclusiones 149

B.2 Contribuciones y conclusiones
En esta tesis nos hemos centrado en la representación compacta y eficiente de
conjuntos de datos grandes y complejos, como el propio título indica. Nosotros
proponemos nuevas estructuras de datos compactas y nuevos algoritmos que pueden
ser aplicados en diferentes dominios para resolver problemas relacionados con la
manipulación de enormes cantidades de datos. Como ya hemos comentado en el
apartado anterior, nos centramos principalmente en tres áreas: la representación de
datos multidimensionales donde cada dimensión está organizada de forma jerárquica,
el procesado de datos espaciales (principalmente datos ráster) y la representación
compacta de datos científicos que nos permita realizar operaciones complejas
eficientemente. En esta sección resumimos las contribuciones más importantes
propuestas en la tesis:

1. Nuestra primera contribución es el diseño, implementación y evaluación exper-
imental del kn-treap, una extensión del k2-treap para múltiples dimensiones.
Además, hemos adaptado esta estructura para que pueda resolver consultas
donde la entrada se compone de un conjunto de etiquetas, una por cada
dimensión del hipercubo. Esto nos permite realizar consultas como las que
se ejecutan en un sistema OLAP o sobre cualquier otra matriz definida por
dimensiones jerárquicas. Para ello, antes de realizar la consulta sobre sus
datos, el kn-treap es capaz de traducir las etiquetas de las jerarquías de las
dimensiones en una región del cubo definida por un conjunto de puntos. Esta
estructura es principalmente usada como línea base para la experimentación
con los datos multidimensionales.
La descripción conceptual del kn-treap y los resultados de los experimentos
han sido publicados en las actas del 23th International Symposium on String
Processing and Information Retrieval (SPIRE 2013) [BCPLL+16].

2. Nuestra segunda contribución es el diseño, implementación y evaluación
experimental de una nueva estructura compacta, llamada Compact repre-
sentation of Multidimensional data on Hierarchical Domains (CMHD), para
la representación de datos multidimensionales, teniendo en cuenta el dominio
jerárquico de cada dimensión. Se basa en el kn-treap, pero elimina la restricción
de que sus divisiones sean estáticas, es decir, en vez de partir una matriz en k2

submatrices de igual tamaño, CMHD utiliza las jerarquías de cada dimensión
para decidir cómo realiza dicha división en cada nivel. El uso de esta estructura
es particularmente atractiva para representar datos de un sistema OLAP de
forma compacta y responder de forma eficiente consultas sobre agregaciones
de celdas. Aunque inicialmente esta estructura fue diseñada para soportar
consultas de suma de valores de una agregación de celdas, es muy sencillo
extender nuestros resultados a otro tipo de consultas, como por ejemplo obtener
el valor medio o el valor máximo de una región, o incluso integrar varios tipos

150 Appendix B. Resumen del trabajo realizado

de consultas en la misma estructura. También estudiamos su aplicabilidad y
sus inconvenientes en diferentes escenarios.
La estructura propuesta es en general mucho más eficiente que una estructura
multidimensional genérica, como el kn-treap, ya que las consultas son resueltas
agregando muchos menos nodos del árbol.
Tanto la descripción conceptual de CMHD como los resultados de los
experimentos han sido publicados en las actas del 23th International
Symposium on String Processing and Information Retrieval (SPIRE 2013)
[BCPLL+16].

3. Nuestra tercera contribución es el diseño, implementación y evaluación
experimental de una nueva estructura que permite la representación compacta
y eficiente de información espacial, más concretamente de datos ráster, llamada
k2-raster. Los datos ráster se presentan como una matriz de dos dimensiones
donde cada celda contiene un valor positivo y representan atributos del espacio
(temperatura, presión, elevaciones del terreno, etc.). Nuestra propuesta tiene
dos variantes: el hybrid k2-raster y el heuristic k2-raster. El hybrid k2-raster
(en español, k2-raster híbrido) nos permite modificar cómo es particionada la
matriz durante los primeros niveles del árbol y durante los últimos niveles del
árbol, utilizando dos parámetros (k1 y k2) distintos para cada uno de ellos. La
otra variante, el heuristic k2-raster (k2

H -raster, en español k2-raster heurístico),
es una mejora de la versión anterior y usa una técnica de vocabulario para
codificar las submatrices del último nivel. Con la ayuda de una función
heurística basada en la entropía, determina si la partición es incluida en el
vocabulario o, contrariamente, se codifica usando un compresor de enteros
llamado DACs. El objetivo es que el vocabulario esté compuesto por las
submatrices más frecuentes, cuya frecuencia de aparición compense el coste de
la representación de su entrada en el vocabulario de submatrices.
Nuestro experimentos demuestran que nuestros métodos mejoran el estado del
arte actual en todos los aspectos, especialmente cuando el número de valores
diferentes contenidos en el ráster es grande, lo cual es crítico cuando se aplica
sobre datos de un entorno real.
Una versión preliminar de este trabajo fue publicada en las actas del 28th
International Conference on Scientific and Statistical Database Management
(SSDBM 2016) [LPSC16].

4. Nuestra cuarta contribución es el diseño, implementación y evaluación
experimental de un framework que soporta la ejecución de la operación join
espacial entre un conjunto de datos ráster (en nuestro caso utilizamos el k2-
raster mencionado en el punto anterior) y un conjunto de datos vectoriales
(indexado mediante un R-tree). Además, las consultas se pueden acotar para
un rango de valores concretos. Nuestra operación de join espacial devuelve

B.2. Contribuciones y conclusiones 151

todos los elementos del conjunto de datos vectorial y las celdas del k2-raster
que solapan con esos elementos, y donde las celdas del ráster contienen valores
dentro de un rango especificado en la consulta.

En nuestros experimentos mostramos que nuestra solución obtiene grandes
mejoras, reduciendo tanto el tiempo de ejecución de la operación como la
memoria consumida durante el proceso.

5. Nuestra quinta contribución es el diseño, implementación y evaluación experi-
mental de una nueva estructura compacta, llamada Compact representation of
Brownian Motion (CBM), para la representación de enormes conjuntos de datos
compuestos de trayectorias correspondientes al movimiento Browniano, aunque
puede ser usada para cualquier tipo de trayectorias de procesos estocásticos
de tiempo continuo. Su principal objetivo, además de reducir el tamaño que
ocupan los datos, es mejorar el tiempo de cálculo de las operaciones realizadas
sobre ellos. Nosotros nos hemos centrado en el cálculo de la autocovarianza.
Para mejorar el tiempo de cálculo de operaciones complejas, durante el proceso
de codificación se calcula información adicional sobre los datos, como el valor
medio de cada instante de tiempo, que será almacenada junto a los datos
comprimidos. Para permitir la descompresión parcial de los datos, se codifica
cada una de las trayectorias de forma separada.

Los experimentos demuestran que las trayectorias de movimiento Browniano
son muy difíciles de comprimir, ya que por su naturaleza siguen una progresión
aleatoria, por lo que las técnicas de compresión no pueden explotar la repetición
de valores. Aun así, nuestros resultados muestran que nuestra nueva estructura
puede reducir tanto el tamaño del conjunto de datos como el tiempo de cálculo
de la covarianza, que es el objetivo principal.

6. Nuestra sexta contribución, diseñada durante el desarrollo de la estructura
anterior, es un nuevo algoritmo para el cálculo de la autocovarianza, donde no es
necesario cargar todo el conjunto de datos al completo, sino que solo es necesario
mantener en memoria una única trayectoria a la vez. Este algoritmo no es
exclusivo de nuestra estructura ni tampoco de las trayectorias de movimiento
Browniano, sino que puede ser usada para calcular la autocovarianza de
cualquier otro tipo de conjunto.

Hemos comparado nuestra nueva técnica con el algoritmo clásico de cálculo
de la covarianza y medido el consumo de tiempo y espacio para ambos casos.
Los resultados demuestran que nuestra técnica es mucho más eficiente en el
consumo de memoria, e incluso consigue reducir el tiempo de cálculo cuando
los conjuntos de datos son más grandes.

152 Appendix B. Resumen del trabajo realizado

B.3 Trabajo futuro
En esta sección proponemos varias consideraciones que pueden ser interesantes para
un futuro de cara a mejorar la aplicabilidad y rendimiento de nuestras contribuciones.
Entre ellas podemos destacar las siguientes líneas de investigación:

• Tanto el CMHD como el kn-treap han sido probados con varios conjuntos de
datos, variando sus tamaños y el número de dimensiones. Para completar el
análisis del comportamiento de ambas estructuras, planeamos extender estos
experimentos con nuevos conjuntos de datos aún más grandes, además de añadir
nuevos datos reales para no solo probar con datos generados sintéticamente.
También creemos que las pruebas se pueden ampliar comparando nuestra
estructura con un sistema OLAP y mostrar el rendimiento de ambos para
un mismo conjunto de datos. Con estas consideraciones, los experimentos se
enriquecerían al cubrir un amplio abanico de casos distintos.

• En esta tesis, el k2-raster fue diseñado para representar matrices de datos
en dos dimensiones. Nosotros proponemos extender nuestra estructura para
conjuntos de datos con mayor dimensión, por ejemplo, para ser usado con
información espacio-temporal, donde es necesario al menos 3 dimensiones.
Además, creemos que nuestra estructura puede ser adaptada para operar sobre
otros tipos de dominios, como pueden ser los sistemas distribuidos. Otra
consideración que se puede tener en cuenta es la aplicación del k2-raster en
la web semántica para realizar consultas espaciales, por ejemplo, siguiendo el
estándar GeoSPARQL. Las herramientas actuales para este tipo de consultas
presentan varios inconvenientes, debido a que o bien no implementan toda la
funcionalidad o bien el rendimiento de las consultas es muy pobre. Creemos
que nuestra estructura podría mejorar ambos problemas.

• La elección del R-tree en nuestro framework de consultas espaciales entre datos
de tipo ráster y datos vectoriales se debe a que es el estándar para este tipo
de datos. Una nueva línea de investigación para mejorar nuestro framework es
añadir estructuras de datos más modernas además del R-tree estándar. Otra
propuesta interesante es aumentar la potencia del framework añadiendo nuevas
operaciones entre el k2-raster y un conjunto de datos vectoriales.

• Inicialmente el CBM está diseñado para reducir el tiempo de cálculo de la
autocovarianza. Un nuevo plan para esta estructura es ampliarla con nuevos
tipos de cálculos aparte de la autocovarianza. Además, sería interesante realizar
experimentos con otros tipos de procesos estocásticos de tiempo continuo (otros
además del movimiento Browniano). En relación a la compresión obtenida por
la técnica, se podría probar la estructura con otros compresores de enteros
para codificar las diferencias de cada trayectoria.

Bibliography

[ABG+02] S. Azhar, G. J. Badros, A. Glodjo, M. Y. Kao, J. H. Reif, and H. Reif.
Data compression techniques for stock market prediction. In Proc. of
the Data Compression Conference (DCC), pages 72–82, 2002.

[ÁGBF+15] S. Álvarez-García, N. R. Brisaboa, J. D. Fernández, M. A. Martínez-
Prieto, and G. Navarro. Compressed vertical partitioning for efficient
RDF management. Knowledge and Information Systems, 44(2):439–
474, 2015.

[ÁGBLP10] S. Álvarez-García, N. R. Brisaboa, S. Ladra, and O. Pedreira. A
compact representation of graph databases. In Proc. of the Eighth
Workshop on Mining and Learning with Graphs (MLG), pages 18–25,
2010.

[BCPLL+16] N. R. Brisaboa, A. Cerdeira-Pena, N. López-López, G. Navarro,
M. R. Penabad, and F. Silva-Coira. Efficient Representation of
Multidimensional Data over Hierarchical Domains. In Proc. of the
Symposium on String Processing and Information Retrieval (SPIRE),
volume 9954 LNCS, pages 191–203, 2016.

[BdBG+17] N. R. Brisaboa, G. de Bernardo, G. Gutiérrez, M. R. Luaces, and J. R.
Paramá. Efficiently querying vector and raster data. The Computer
Journal, 2017.

[BdBK+16] N. R. Brisaboa, G. de Bernardo, R. Konow, G. Navarro, and D. Seco.
Aggregated 2D Range Queries on Clustered Points. Information
Systems, pages 34–49, 2016.

[BDF+98] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann.
The multidimensional database system RasDaMan. In Proc. of the
ACM SIGMOD Record, volume 27 of SIGMOD ’98, pages 575–577,
jun 1998.

153

154 Bibliography

[BFLN08] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Reorganizing
compressed text. In Proc. of the International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), pages
139–146, 2008.

[BFNP07] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Lightweight
Natural Language Text Compression. Information Retrieval, 10(1):1–
33, 2007.

[BGBNP16] N. R. Brisaboa, A. Gómez-Brandón, G. Navarro, and J. R. Paramá.
GraCT: A Grammar based Compressed representation of Trajectories.
In Proc. of the 23rd Int. Symp. on String Processing and Information
Retrieval (SPIRE 2016) - LNCS 9954, pages 218–230, 2016.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-
tree: an efficient and robust access method for points and rectangles.
In Proc. of the 1990 ACM SIGMOD international conference on
Management of data (SIGMOD), volume 19, pages 322–331, 1990.

[BLN13] N. R. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing
direct access to variable-length codes. Information Processing &
Management, 49(1):392–404, jan 2013.

[BLN14] N. R Brisaboa, S. Ladra, and G. Navarro. Compact representation
of Web graphs with extended functionality. Information Systems,
39(1):152–174, 2014.

[BR09] M. Burtscher and P. Ratanaworabhan. FPC: A High-Speed
Compressor for Double-Precision Floating-Point Data. IEEE
Transactions on Computers, 58(1):18–31, jan 2009.

[BR10] M. Burtscher and P. Ratanaworabhan. gFPC: A Self-Tuning
Compression Algorithm. In Proc. of the Data Compression Conference
(DCC), pages 396–405, 2010.

[Bro10] P. G. Brown. Overview of sciDB: large scale array storage, processing
and analysis. In Proc. of the 2010 international conference on
Management of data (SIGMOD), page 963, 2010.

[BS73] F. Black and M. Scholes. The Pricing of Options and Corporate
Liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

[CC03] Y. K. Chan and C. C. Chang. Block image retrieval based on
a compressed linear quadtree. In Proc. of the 4th International
Conference on Information, Communications and Signal Processing
and 4th Pacific-Rim Conference on Multimedia (ICICS-PCM),
volume 1, pages 31–35, 2003.

Bibliography 155

[CCS93] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line
Analytical Processing) to User-Analysts: An IT Mandate. E. F. Codd
and Associates, 1993.

[CD97] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and
OLAP Technology. SIGMOD Rec., 26(1):65–74, 1997.

[CDL+12] T. Chan, S. Durocher, K. Larsen, J. Morrison, and B. Wilkinson.
Linear-Space Data Structures for Range Mode Query in Arrays. In
Proc. of the 29th International Symposium on Theoretical Aspects of
Computer Science (STACS), pages 290–301, 2012.

[Cla96] D. Clark. Compact {PAT} Trees. PhD thesis, University of Waterloo,
Canada, 1996.

[CLY06] K.-L. Chung, Y.-W. Liu, and W.-M. Yan. A hybrid gray
image representation using spatial- and DCT-based approach with
application to moment computation. J. Vis. Commun. Image
Represent., 17:1209–1226, dec 2006.

[Cou92] H. Couclelis. People manipulate objects (but cultivate fields): Beyond
the raster-vector debate in GIS. In Theories and Methods of
Spatiotemporal Reasoning in Geographic Space, volume 639, pages
65–77, 1992.

[CTVM08] A. Corral, M. Torres, M. Vassilakopoulos, and Y. Manolopoulos.
Predictive join processing between regions and moving objects. In
Proc. of the 12th East-European Conference on Advances in Databases
and Information Systems (ADBIS), pages 46–61, Pori, Finland, 5-7
September 2008. Springer-Verlag Berlin, Heidelberg, Germany.

[CVM99] A. Corral, M. Vassilakopoulos, and Y. Manolopoulos. Algorithms for
joining r-trees and linear region quadtrees. In Proc. of Advances in
Spatial Databases (SSD), pages 251–269, Hong Kong, China, 20-23
July 1999. Springer-Verlag Berlin, Heidelberg, Germany.

[dBÁGB+13] G. de Bernardo, S. Álvarez-García, N. R. Brisaboa, G. Navarro, and
O. Pedreira. Compact Querieable Representations of Raster Data. In
Proc. of the 20th Int. Symp. on String Processing and Information
Retrieval (SPIRE 2013) - LNCS 8214, pages 96–108. 2013.

[DG08] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communication of ACM, 51(1):107–113, 2008.

[Duv09] B. Duvenhage. Using an implicit min/max KD-tree for doing efficient
terrain line of sight calculations. In Proc. of the International

156 Bibliography

Conference on Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa (AFRIGRAPH), volume 1, page 81, 2009.

[DXS+15] S. Dudoladov, C. Xu, S. Schelter, A. Katsifodimos, S. Ewen,
K. Tzoumas, and V. Markl. Optimistic Recovery for Iterative
Dataflows in Action. In Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1439–1443,
2015.

[EFF00] V. Engelson, D. Fritzson, and P. Fritzson. Lossless Compression of
High-Volume Numerical Data from Simulations. In Proc. of the Data
Compression Conference (DCC), page 574, 2000.

[Ein06] A. Einstein. On the theory of the Brownian movement. Annalen der
Physik, 19(4):371–381, 1906.

[Eli75] P. Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[FM12] N. Fout and K. L. Ma. An adaptive prediction-based approach to
lossless compression of floating-point volume data. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2295–2304, 2012.

[FOP14] A. Fariña, A. Ordóñez, and J. R. Paramá. Indexing and Self-
indexing sequences of IEEE 754 double precision numbers. Information
Processing & Management, 50(6):857–875, nov 2014.

[FV06] F. Ferraty and P. Vieu. NonParametric Functional Data Analysis:
Theory and Practice. Springer, 2006.

[Gar82] I. Gargantini. An effective way to represent quadtrees. Communica-
tions of the ACM, 25(12):905–910, dec 1982.

[GG98] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, jun 1998.

[GGMN05] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical
Implementation of Rank and Select Queries. In Proc. of the 4th
Workshop on Efficient and Experimental Algorithms (WEA), volume
0109, pages 27–38, 2005.

[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed
Text Indexes. In Proc. of the 14th annual ACM-SIAM symposium
on Discrete algorithms (SODA), volume 2068 of SODA ’03, pages
841–850, 2003.

Bibliography 157

[Gol66] S. W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory,
IT-12:399–401, 1966.

[GRA16] Grass gis manual:v.rast.stats. https://grass.osgeo.org/grass72/manuals/
v.rast.stats.html, 2016. 6 dec 2016.

[GRS00] S. Grumbach, P. Rigaux, and L. Segoufin. Manipulating interpolated
data is easier than you thought. In Proc. of the 26th International
Conference on Very Large Data Bases (VLDB), VLDB 2000, pages
156–165, 2000.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In Proc. of the 1984 ACM SIGMOD international conference on
Management of data (SIGMOD), volume 14, page 47, 1984.

[GWSV06] A. Gupta, Wing-Kai H., R. Shah, and S. Vitter. Compressed Data
Structures: Dictionaries and Data-Aware Measures. In Proc. of the
Data Compression Conference (DCC), pages 213–222, 2006.

[HCP+05] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis.
Very high resolution interpolated climate surfaces for global land areas.
International Journal of Climatology, 25(15):1965–1978, 2005.

[HK12] L. Horvath and P. Kokoszka. Inference for Functional Data with
Applications. Springer, 2012.

[HSTV14] W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Space-
Efficient Frameworks for Top-k String Retrieval. Journal of the ACM,
61(2):9:1—-9:36, 2014.

[Huf52] D. A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. In Proc. of the I.R.E. (Institue of Radio Engineers
Inc.), volume 40, pages 1098–1101, 1952.

[Hul09] J. Hulll. Options, Futures, and other Derivatives. Pearson Prentice
Hall, 2009.

[HV14] P. G. Howard and J. S. Vitter. Fast and efficient lossless image
compression. In Proc. of the Data Compression Conference (DCC),
pages 351–360, 2014.

[Inm93] W. H. Inmon. Building the data warehouse. Wiley, 1993.

[ISO03] ISO. Geographic information – Spatial schema. International
Organization for Standardization (TC 211), 2003.

158 Bibliography

[ISO05] ISO. Geographic information – Schema for coverage geometry and
functions. International Organization for Standardization (TC 211),
2005.

[Jac89a] G. Jacobson. Space-efficient static trees and graphs. In Proc. of
the 30th Annual Symposium on Foundations of Computer Science
(FOCS), SFCS ’89, pages 549–554, 1989.

[Jac89b] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie-
Mellon, 1989.

[Kai91] W. Kainz. A Review of: “The Design and Analysis of Spatial
Data Structures” by h. samet. International Journal of Geographical
Information Systems, 5(2):253–253, jan 1991.

[KD76] A. Klinger and C. R. Dyer. Experiments on picture representation
using regular decomposition. Computer Graphics and Image
Processing, 5(1):68–105, mar 1976.

[KEW13] M. Kane, J. Emerson, and S. Weston. Scalable Strategies for
Computing with Massive Data. Journal of Statistical Software, 55(1):1–
19, 2013.

[Kli71] A. Klinger. Pattern and search statistics. Academic Press, 1971.

[KR02] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc., 2nd edition,
2002.

[KS16] S. T. Klein and D. Shapira. Random access to Fibonacci encoded
files. Discrete Applied Mathematics, 212:115–128, 2016.

[Kül14] M. Oguzhan O. Külekci. Enhanced variable-length codes: Improved
compression with efficient random access. Data Compression
Conference Proceedings, pages 362–371, 2014.

[LB07] Y. Li and T. R. Bretschneider. Semantic-Sensitive Satellite Image
Retrieval. IEEE Transactions on Geoscience and Remote Sensing,
45(4):853–860, 2007.

[LGMR05] P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind.
Geographic information science and systems. Wiley, 2005.

[LGPBJ+08] F. López-Granados, J. M. Peña-Barragán, M. Jurado-Expósito,
M. Francisco-Fernández, R. Cao, A. Alonso-Betanzos, and O. Fontenla-
Romero. Multispectral classification of grass weeds and wheat
(Triticum durum) crop using linear and nonparametric functional

Bibliography 159

discriminant analysis, and neural networks. Weed Research, 48:28–37,
2008.

[LI06] P. Lindstrom and M. Isenburg. Fast and efficient compression
of floating-point data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):1245–1250, sep 2006.

[Lin97] T.-W. Lin. Compressed quadtree representations for storing similar
images. Image and Vision Computing, 15(11):833–843, nov 1997.

[LL03] M. Levene and G. Loizou. Why is the Snowflake Schema a Good Data
Warehouse Design? Information Systems, 28(3):225–240, 2003.

[LPSC16] S. Ladra, J. R. Paramá, and F. Silva-Coira. Compact and queryable
representation of raster datasets. In Proc. of the 28th International
Conference on Scientific and Statistical Database Management
(SSDBM), pages 1–12, 2016.

[LR04] T. Liebchen and Y. A. Reznik. MPEG-4 ALS: an emerging standard
for lossless audio coding. In Proc. of the Data Compression Conference
(DCC), pages 439–448, 2004.

[LvW13] K. G. Larsen and F. van Walderveen. Near-Optimal Range Reporting
Structures for Categorical Data. In Proc. of the 24th Symposium on
Discrete Algorithms (SODA), pages 265–276, 2013.

[MHP+11] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S.
Ravi. SQUISH: An Online Approach for GPS Trajectory Compression.
In Proc. of the International Conference on Computing for Geospatial
Research & Applications (COM.Geo), pages 13:1—-13:8, 2011.

[MN07] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 387(3):332–347, 2007.

[MPFL96] J. L. Mitchell, W. B. Pennebaker, C. E. Frogg, and D. J. Legall.
MPEG Video Compression Standard. Chapman and Hall, 1996.

[Mun96] J. I. Munro. Tables. In Proc. of the Conference Foundations of
Software Technology and Theoretical Computer Science (FSTTCS),
pages 37–42, 1996.

[Nav16] G. Navarro. Compact Data Structures – A practical approach.
Cambridge University Press, 2016.

[NST99] M. A. Nascimento, J. R. O. Silva, and Y. Theodoridis. Evaluation
of Access Structures for Discretely Moving Points. pages 171–189.
Springer, Berlin, Heidelberg, 1999.

160 Bibliography

[OGC10] OGC. OpenGIS Web Feature Service 2.0 Interface Standard. Open
Geospatial Consortium, Inc., 2010.

[OGC12] OGC. OpenGIS Web Coverage Service 2.0 Interface Standard - Core:
Corrigendum. Open Geospatial Consortium, Inc., 2012.

[OS07] D. Okanohara and K. Sadakane. Practical Entropy-Compressed
Rank/Select Dictionary. In Proc. of the Workshop on Algorithm
Engineering and Experiments, (ALENEX), 2007.

[OW83] M. A. Oliver and N. E. Wiseman. Operations on Quadtree Encoded
Images. The Computer Journal, 26(1):83–91, jan 1983.

[Pag99] R. Pagh. Low Redundancy in Static Dictionaries with O(1) Worst Case
Lookup Time. In Proc. of the International Colloquium on Automata,
Languages and Programming (ICALP), volume LNCS 1644, pages
595–604, 1999.

[Pla13] H. Plattner. A Course in In-Memory Data Management: The Inner
Mechanics of In-Memory Databases. Springer, 2013.

[PZ12] H. Plattner and A. Zeier. In-Memory Data Management: Technology
and Applications. Springer, 2012.

[QG13] M. Quartulli and I. G. Olaizola. A review of EO image information
mining, 2013.

[RBR12] M. Romero, N. R. Brisaboa, and M. A. Rodríguez. The SMO-index: a
succinct moving object structure for timestamp and interval queries. In
Proc. of the 20th International Conference on Advances in Geographic
Information Systems (SIGSPATIAL), page 498, 2012.

[Ric79] R. F. Rice. Some practical universal noiseless coding techniques.
Technical Report 79-22, Jet Propulsion Laboratory, 1979.

[RKB06] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast Lossless
Compression of Scientific Floating-Point Data. In Proc. of the Data
Compression Conference (DCC), pages 133–142, 2006.

[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. of
the Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.

[RS05] J. O. Ramsay and B. W. Silverman. Functional Data Analysis.
Springer, 2005.

[RSV02] P. Rigaux, M. O. Scholl, and A. Voisard. Spatial Databases: With
Application to GIS. 2002.

Bibliography 161

[Sad03] K. Sadakane. New Text Indexing Functionalities of the Compressed
Suffix Arrays. ALGORITHMS: Journal of Algorithms, 48, 2003.

[Sad07] K. Sadakane. Succinct data structures for flexible text retrieval
systems. Journal of Discrete Algorithms, 5:12–22, 2007.

[Sam84] H. Samet. The Quadtree and Related Hierarchical Data Structures.
ACM Computing Surveys, 16(2):187–260, jun 1984.

[Sam85] H. Samet. Data structures for quadtree approximation and
compression. Communications of the ACM, 28(9):973–993, 1985.

[Sam06] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Order A Journal On The Theory Of Ordered Sets And Its
Applications, di(August):0–1, 2006.

[SETM13] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. "All Roads Lead to
Rome": Optimistic Recovery for Distributed Iterative Data Processing.
In Proc. of the ACM International Conference on Information &
Knowledge Management (CIKM), pages 1919–1928, 2013.

[SH91] P. Svensson and Z. Huang. Geo-SAL: A query language for spatial
data analysis. In Proc. of the Advances in Spatial Databases (SSD),
volume 525, pages 119–140, 1991.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:370–423,623–656, 1948.

[SJS+12] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.S. Chang, S.-H. Ku,
S. Ethier, S. Klasky, R. Latham, R.t Ross, and N. F. Samatova.
ISOBAR Preconditioner for Effective and High-throughput Lossless
Data Compression. In Proc. of the IEEE International Conference on
Data Engineering (ICDE), pages 138–149, apr 2012.

[TB79] C. D. Tomlin and J. K. Berry. A Mathematical Structure for
Cartographic Modeling in Environmental Analysis. In Proc. of the 39th
Symposium of the American Conference on Surveying and Mapping
(ACSM), pages 269–283, 1979.

[Teu11] J. Teuhola. Interpolative coding of integer sequences supporting log-
time random access. Information Processing Management, 47(5):742–
761, 2011.

[Tom90] C. D. Tomlin. Geographic information systems and cartographic
modeling. Prentice Hall, 1990.

162 Bibliography

[Tom94] C. D. Tomlin. Map algebra: one perspective. Landscape and Urban
Planning, 30(1-2):3–12, 1994.

[TP01] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access
Method for Timestamp and Interval Queries. pages 431–440, 2001.

[VZ09] A. Vaisman and E. Zimányi. A multidimensional model representing
continuous fields in spatial data warehouses. In Proc. of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS), SIGSPATIAL 2009, page 168, 2009.

[Wal91] G. K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30–44, apr 1991.

[WD04] M. Worboys and M. Duckham. GIS : a computing perspective. CRC
Press, 2004.

[Woo84] J. R. Woodwark. Compressed Quad Trees. The Computer Journal,
27(3):225–229, 1984.

[WZ99] H. E. Williams and J. Zobel. Compressing Integers for Fast File
Access. The Computer Journal, 42(3):193–201, mar 1999.

[YS08] Y. You and M. Y. Sung. Haptic data transmission based on the
prediction and compression. IEEE International Conference on
Communications, pages 1824–1828, 2008.

[ZHNB06] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proc. of the International Conference
on Data Engineering, (ICDE), pages 59–71, 2006.

[Zon16] Zonal statistics help|arcgis for desktop.
http://webhelp.esri.com/arcgisdesktop/9.3/
index.cfm?TopicName=Zonal_Statistics, 2016. 1 dec 2016.

[ZY10] J. Zhang and S. You. Supporting Web-Based Visual Exploration of
Large-Scale Raster Geospatial Data Using Binned Min-Max Quadtree.
In Proc. of the International Conference on Scientific and Statistical
Database Management (SSDBM), pages 379–396, 2010.

[ZY13] J. Zhang and S. You. High-performance quadtree constructions on
large-scale geospatial rasters using GPGPU parallel primitives. In-
ternational Journal of Geographical Information Science, 27(11):2207–
2226, 2013.

[ZYG10] J. Zhang, S. You, and L. Gruenwald. Indexing Large-Scale Raster
Geospatial Data Using Massively Parallel GPGPU Computing.
Parallel Computing, (c):0–3, 2010.

Bibliography 163

[ZYG15] J. Zhang, S. You, and L. Gruenwald. Quadtree-based lightweight data
compression for large-scale geospatial rasters on multi-core CPUs. In
Proc. of the IEEE International Conference on Big Data (Big Data),
pages 478–484, oct 2015.

	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Basic Concepts
	Information Theory and Data Compression
	Basic concepts on Information Theory
	Data Compression: basic concepts
	Classification of compression techniques

	Measuring the efficiency of compression techniques
	Compressing Integer Numbers

	Compact data structures
	Rank and select over bitmaps
	Compressed bitmap representation
	Compressed tree representations: LOUDS

	Previous work
	Directly Addressable Codes (DACs)
	The k2-tree
	The k2-treap

	I Multidimensional data
	Introduction
	Introduction
	Data Warehouses (DWs)
	Online Analytical Processing (OLAP)

	Baseline for multidimensional data: the kn-treap
	Construction
	Data structures
	Queries
	Finding the value of a specific cell by its coordinates
	Finding the sum of the cells in a submatrix

	Our proposal: CMHD
	Our proposal: CMHD
	Conceptual description
	Data structures
	Queries

	Experimental evaluation
	Datasets
	Space requirements
	Query times
	Finding one precomputed values
	Finding the sum of several precomputed values

	Discussion
	Main contributions
	Future work

	II GIS data
	Introduction
	Introduction
	Data model
	Representation of raster data
	Classic formats

	Related work
	Quadtrees for raster data
	bold0mu mumu k2k2subsectionk2k2k2k2-acc
	bold0mu mumu k3k3subsectionk3k3k3k3-tree
	R-tree

	Spatial join

	Our proposal: k2-raster
	k2-raster
	Construction and data structures
	Query algorithms
	Hybrid variant

	Heuristic k2-raster: k2H-raster
	Querying

	Spatial join: k2-raster and R-tree
	Spatial join
	Basic components of the algorithm
	Pointers
	Checking the overlapping

	The algorithm

	Experimental evaluation
	Raster data compression
	Experimental Framework
	Datasets
	Construction time
	Space requirements
	Query times
	Time of getCell
	Time of getWindow
	Time of searchValuesInWindow
	Time of checkValuesInWindow

	Spatial Join
	Experimental Framework
	Datasets
	Memory usage
	Time performance

	Discussion
	Main contribution
	Raster data compression
	Spatial Join

	Future work

	III Scientific data
	Introduction
	Introduction
	Brownian motion and autocovariance estimation
	Brownian trajectories
	Autocovariance function estimation

	Related Work
	Compressing Floating Point Numbers

	Our proposal: CBM
	Compact representation of Brownian Motion (CBM)
	Memory-efficient computation of the sample autocovariance function

	Experimental evaluation
	Setup
	Dataset analysis
	Compression performance
	Memory consumption during the computation of the sample autocovariance function
	Time to compute the sample autocovariance function

	Discussion
	Main contributions
	Future work

	IV Summary of the thesis
	Conclusions and future work
	Main contributions
	Future work

	Publications and other research results
	Resumen del trabajo realizado
	Introducción
	Motivación

	Contribuciones y conclusiones
	Trabajo futuro

	Bibliography

