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Abstract 

Background: Volume overload is frequent in diabetics undergoing peritoneal dialysis (PD), and may play a 

significant role in the excess mortality observed in these patients. The characteristics of peritoneal water 

transport in this population have not been studied sufficiently.  

Method: Following a prospective, single-center design we made cross-sectional and longitudinal comparisons of 

peritoneal water transport in 2 relatively large samples of diabetic and nondiabetic PD patients. We used 

3.86/4.25% glucose-based peritoneal equilibration tests (PET) with complete drainage at 60 min, for these 

purposes.  

Main Results: We scrutinized 59 diabetic and 120 nondiabetic PD patients. Both samples showed relatively 

similar characteristics, although diabetics were significantly more overhydrated than nondiabetics. The baseline 

PET disclosed lower ultrafiltration (mean 439 mL diabetics vs. 532 mL nondiabetics, p = 0.033) and sodium 

removal (41 vs. 53 mM, p = 0.014) rates in diabetics. One hundred and nine patients (36 diabetics) underwent a 

second PET after 12 months, and 45 (14 diabetics) underwent a third one after 24 months. Longitudinal analyses 

disclosed an essential stability of water transport in both groups, although nondiabetic patients showed a trend 

where an increase in free water transport (p = 0.033) was observed, which was not the case in diabetics.  

Conclusions: Diabetic patients undergoing PD present lower capacities of ultrafiltration and sodium removal 

than their nondiabetic counterparts. Longitudinal analyses disclose an essential stability of water transport 

capacities, both in diabetics and nondiabetics. The clinical significance of these differences deserves further 

analysis. 
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Introduction 

Diabetes mellitus (DM) has become the leading cause of end-stage kidney disease (ESKD) 

worldwide [1] . Diabetic patients with ESKD undergo an increased risk or mortality related, for the 

most part, to a high incidence of cardiovascular events [2, 3]. 

 

The compared outcomes of diabetic ESKD patients treated with peritoneal dialysis (PD) or 

hemodialysis are a matter of controversy. The results of several large studies [4–9] have suggested 

that PD may have higher risk of mortality in older, comorbid diabetics, while the outcomes may be 

more equilibrated, or even favorable to PD, for younger, non-comorbid patients. Some detrimental 

consequences of long-term PD, including metabolic disorders and chronic volume overload, could 

contribute to the reported handicap of PD in high-risk subsets of diabetics on dialysis. Variable 

degrees of volume overload are frequent in patients on PD, even at inception of therapy [10], and 

prevalent PD patients may be more overhydrated than matched control populations undergoing 

hemodialysis [11]. The reasons for these findings are complex, but decline of residual kidney 

function and disorders of peritoneal water transport, either present at baseline or those that appear 

during the course of treatment, may play significant roles. How these factors perform in the specific 

case of diabetics is another controversial issue. Previous studies comparing the characteristics of 

peritoneal transport in diabetics and nondiabetics are surprisingly scarce, and have yielded conflicting 

results [12, 13]. In particular, few studies have investigated the time course of peritoneal function, 

and more specifically of water transport, in these patients. The modified peritoneal equilibration test 

(PET) with hypertonic glucosebased dialysate and complete drainage at 60 min may represent an 

appropriate tool to clarify these questions [14].  

 

We have undertaken a prospective, observational study, with the main objective of comparing the 

characteristics of peritoneal water transport in a relatively large sample of diabetics undergoing 

chronic PD therapy in a single center.  

Population and Method  

General Description  

Following an observational, prospective design, we investigated all patients treated with PD in the 

University Hospital of A Coruna (Spain) between July 2009 and December 2016. We accepted to 

include patients incident or prevalent on this therapy. Our main purpose was to compare the 

characteristics of peritoneal water transport in diabetic and nondiabetic patients, using the modified 

PET with complete drainage at 60 min as the main instrument of the study, which we performed at 

baseline, and then yearly during-follow-up. We performed both cross-sectional and longitudinal 

analyses to disclose a potentially differentiated impact of diabetes on the outcome of peritoneal 

membrane function.  

 

The main outcome variables were peritoneal ultrafiltration (UF) and its fractions (free water 

transport [FWT] and small pore UF), during PET. For incident patients, follow-up was started since 

the baseline PET, performed during the second month of PD therapy, while for prevalent patients, the 

starting point was the first scheduled PET during the study period.  

 

The study complied with the ethical requirements for observational, prospective studies in our 

center. Oral informed consent was obtained from all participating patients.  

  



Population  

We considered for the study all patients incident or prevalent on PD during the above-mentioned 

period. Exclusion criteria included: 

 

 Age younger than 18 years  

 Peritoneal infection, abdominal surgery or significant hemoperitoneum less than 3 months before 

the initiation of the study  

 Major clinical event less than 3 months before the initiation of the study  

 Expected death or kidney transplantation <6 months after the initiation of the study  

 Inability to provide informed consent for the study  

 Unwillingness to participate in the study  

 For longitudinal analysis we included only patients with at least 2 yearly PET studies.  

Study Variables  

Summary variables were obtained at the time the baseline PET was performed. These included 

time on dialysis, previous episodes of peritoneal infection, urea distribution volume (Watson), 

bioelectrical impedance analysis (BIA) (BCM, Fresenius Medical Care, Bad Homburg, Germany), 

systolic blood pressure and diastolic blood pressure (at the time of PET study), serum C reactive 

protein (immunoturbidimetry), serum albumin (autoanalyzer), mean daily UF (clinical records), 

glomerular filtration rate (mean of urea and creatinine renal clearances), Kt/V and estimated protein 

intake (PD Adequest software, Baxter, Deerfield, Illinois, USA), proteinuria, daily peritoneal protein 

excretion (pyrogalol red), drug therapies (including diuretics, renin-angiotensin-aldosterone axis 

antagonists and statins), and PD prescription conditions (peritoneal glucose load, icodextrin, amino 

acid-based solutions).  

 

A standard, modified PET with 3.86% glucose-based dialysate and complete drainage at 60 min 

was performed at baseline, and then repeated on a yearly basis until the end of follow-up. The test 

was performed after an overnight 2.27% glucose-based exchange, using the patient’s usual dwell 

volume. The abdominal cavity was drained for at least 20 min, with the patient in the sitting and then 

in the upright position. Dextrose-based dialysate (3.86%) was then instilled, with the patient rolling 

from side to side every few minutes to promote intraperitoneal mixing of dialysate; dialysate samples 

were collected at times 0, 60 (complete drainage), 120, and 240 min, and a blood sample was 

collected at the start of the procedure. All blood and dialysate samples were sent to the central 

laboratory and processed within 24 h. Dialysate concentration of creatinine was corrected for 

interference with glucose in the effluent. The D/P creatinine at 240 min (D/PCr) was calculated as the 

ratio of the dialysate concentration of creatinine at 240 min to the serum concentration, the D/D0 

glucose at 240 min (D/D0g) was calculated as the ratio of dialysate concentration of glucose at 240 

min to time 0, and the UF volume was calculated from the difference in the weights of the bag before 

and after the test. The following PET parameters were recorded: D/PCr, D/D0g, UF at 60 min and 

240 min, small pore UF and FWT, the latter corrected for diffusion [15] , sodium sieving at 60 min, 

total sodium removal during PET (mass balance) and peritoneal protein excretion. In the case of 

diabetic patients, finger prick blood glucose levels were estimated at 0, 120, and 240 min, and 

subcutaneous short-acting insulin was administered, as needed. 

Data Analysis 

Numerical variables are presented as mean values ± SD or median values with range, as needed. 

Categorical variables are presented as total number and percentages.  

 

We first compared the results of the baseline PET in diabetics and nondiabetics, overall and 

separately for incident and prevalent patients. We used Student t test, analysis of variance, Mann-

Whitney’s test, χ
2
 distribution, Fisher’s exact test, and Spearman’s correlation coefficient, for these 

comparisons. To counteract potential imbalances between the compared populations, we applied 



forward multiple regression analysis, controlling for 3 covariates for peritoneal transport rates, 

namely, age, serum C-reactive protein and time on PD. In a second step, we compared the time 

course of peritoneal transport in the study groups. For this purpose, we applied a paired analysis 

strategy, using repeated measures analysis of variance to check variations over time in the same 

cohorts.  

 

The statistical significance level was set at 0.05. All analyses were performed with the SPSS 22.0 

statistical software.  

Results 

Overview 

One hundred and seventy nine patients were included in the study. The essential characteristics of 

the study population at baseline are presented in Tables 1 and 2. The mean glycated hemoglobin in 

diabetic patients was 6.6 ± 1.3%, at baseline Incident diabetics were comparable to incident 

nondiabetics, except for an older age (65.8 ± 10.2 vs. 58.8 ± 15.2 years, p = 0.015) and a higher 

degree of overhydration during the baseline BIA study (1.9 ± 1.5 vs. 0.9 ± 1.6 L, p = 0.004; all other 

variables in Tables 1, 2 not significant [NS] for this subgroup). On the other hand, we also observed 

some minor differences at baseline between prevalent patients with or without diabetes, including 

glomerular filtration rate (6.6 ± 4.2 vs. 4.3 ± 3.3 mL/min, respectively, p = 0.015) and fat tissue mass 

(BIA; 15.1 ± 4.4 vs. 12.7 ± 3.1 kg, p = 0.02).  

Table 1. Baseline characteristics of the study population 

 Diabetes (n = 59) No diabetes (n = 120) p value 

    

Age, years, mean ± SD  63.1±14.7 58.7±15.5 0.16 

Gender, men, %  76.3 65.0 0.14 

Time on in dialysis, months, mean ± SD  11.2±18.0 14.9±22.5 0.27 

Cause of ESKD, %    
Diabetes  84.7 0 0.0005 

Glomerular disease  3.4 20.0  

Interstitial disease  0 7.5  
Cystic 0 10.8  

Systemic  3.4 7.5  

Vascular  1.7 10.8  
Undetermined  6.8 43.4  

Charlson’s comorbidity score, mean ± SD  7.9±2.2 5.8±2.5 0.001 

Incident/prevalent, %  67.8/32.2 60.0/40.0 0.22 
Number of previous peritonitis, mean ± SD  0.42±1.01 0.47±1.03 0.77 

Modality of PD, %    

Manual  83.1 78.3 0.73 
Automated  16.9 21.7  

Use of amino acid-based solutions, %  27.1 20.0 0.21 

Use of icodextrin, %  69.5 59.2 0.18 
Peritoneal glucose load, g/24 h, mean ± SD  87.2±43.5 78.2±42.0 0.14 

Statins, %  84.7 62.5 0.003 

RAAS antagonists, %  54.2 38.3 0.034 
Furosemide, %  69.4 59.2 0.08 

    

 
ESKD, end-stage kidney disease; PD, peritoneal dialysis; RAAS, renin-angiotensin-aldosterone system. 

  



Table 2. Laboratory, adequacy, and clinical characteristics of the patients at baseline evaluation 

 Diabetes (n = 59) No diabetes (n = 120) p value 

    

Laboratory    
Sodium, mmol/L  138±3.2 139±3.4 0.16 

Albumin, g/dL  3.6±0.4 3.7±0.5 0.45 

C-reactive protein, mg/dL  0.53 (0.01/6.34) 0.47 (0.01/8.32) 0.30 
Anthropometric    

Urea distribution volume, L  37.8±5.3 36.6±7.0 0.44 

Body composition (bioimpedance)    
Fat body mass, kg  14.6±4.5 12.6±4.0 0.01 

Lean body mass, kg  12.9±2.5 13.8±3.5 0.09 

Intra/extracellular water  1.02±0.11 1.00±0.19 0.70 
Intracellular water, L  18.9±4.7 18.9±4.7 0.30 

Extracellular water, L  16.7±3.3 17.8±2.8 0.06 

Overhydration, L  1.9±1.6 0.9±1.4 0.0005 
Blood pressure, mm Hg    

Systolic  138.3±19.8 130.2±20.3 0.012 

Diastolic  74.6±12.9 76.9±13.1 0.28 
Residual kidney function    

Diuresis  1,424±623 1,249±878 0.13 

GFR, mL/min  8.4±4.0 6.3±4.0 0.02 
Adequacy    

24-h ultrafiltration, mL  744±330 819±412 0.31 

Kt/V  2.41±0.61 2.31±0.57 0.22 
Protein metabolism    

nPNA, g/kg  1.22±0.29 1.21±0.27 0.84 

Proteinuria, g/24 h  1.7±1.3 1.3±1.5 0.096 
Peritoneal protein excretion, g/24 h  6.4±2.4 6.1±2.1 0.50 

    

 
GFR, glomerular filtration rate (mean renal clearance); nPNA, normalized protein nitrogen appearance. 

Figures denote mean ± SD or median value with range (C-reactive protein). 

All patients underwent a baseline PET. One hundred and nine underwent a second PET 1 year 

later, and 45 had a third PET study 2 years later. The reasons for patient censoring during follow-up 

are presented in Table 3.  

Table 3. Reasons for censoring for follow-up PETs 

 Diabetes No diabetes 

   

Patients who did not undergo a 2nd   

PET study   
Death  8 (13.6) 10 (8.3) 

Kidney transplantation  5 (8.4) 17 (14.2) 

PD drop-out  2 (3.4) 5 (4.2) 
Follow-up <12 months  8 (13.6) 15 (12.6) 

Patients who did not undergo a 3rd   

PET study   
Death  12 (20.3) 12 (10.0) 

Kidney transplantation  5 (8.5) 13 (10.9) 

PD drop-out  2 (3.4) 5 (4.2) 
Follow-up <24 months  4 (6.8) 10 (8.4) 

   

 
Figures denote number of patients (%). 

  



Cross-Sectional Comparisons  

Comparative values of baseline peritoneal transport characteristics in diabetics and nondiabetics 

are presented in Table 4. Most differences were subtle, although we observed clear trends to lower 

UF and sodium removal rates at 240 min in diabetics. Interestingly, the same differences persisted on 

cross-sectional comparisons 1 year later (Table 5). Multivariate analyses of baseline data confirmed 

that after controlling for age, C-reactive protein, and time on PD, diabetics still presented lower rates 

of UF at 240 min (B = –110.1 mL, 95% CI –219.1/–9.33, p = 0.024) and sodium removal during PET 

(B = –14.5 m M , 95% CI –25.5/–2.8, p = 0.018; other variables NS). Comparisons made in separate 

for incident and prevalent patients disclosed similar, nonsignificant trends, seemingly due to the 

expected loss of statistical power (data not shown).  

Table 4. Results of the baseline PET 

 Diabetes (n = 59) No diabetes (n = 120) p value 

    

Ultrafiltration, 60 min, mL  295.4±159.5 303.4±180.1 0.88 
Ultrafiltration, 240 min, mL  438.6±243.3 531.5±281.1 0.033 

Ultrafiltration <400 mL at 240 min, %  45.8 31.7 0.07 

Free water transport, 60 min (corrected), mL  171.6±83.6 173.0±68.9 0.91 
Small pore ultrafiltration, 60 min, mL  154.1±127.8 163.2±140.6 0.70 

Sodium sieving, 60 min, mM  8.3±3.8 7.8±3.7 0.33 

Total sodium removal during PET, mM  40.9±28.0 53.0±31.5 0.014 
Peritoneal protein excretion, PET, mg  1,584±550 1,517±512 0.32 

D60/D0 glucose  0.71±0.18 0.73±0.14 0.51 

D120/D0 glucose  0.55±0.15 0.56±0.13 0.49 
D240/D0 glucose  0.32±0.11 0.32±0.10 0.98 

D/P creatinine 60’  0.39±0.11 0.37±0.10 0.36 

D/P creatinine 120’ 0.52±0.11 0.52±0.10 0.88 
D/P creatinine 240’  0.70±0.11 0.70±0.10 0.90 

    

 
Figures denote mean ± SD, except percentage of patients with UF failure. 

D/D0, dialysate glucose at 60 (D60/D0), 120 (D120/D0) or 240 (D240/D0) min vs. the dialysate glucose at time zero. D/P 

creatinine: dialysate-to-plasma creatinine concentration ratio at 60, 120, and 240 min. 

  



Table 5. Results of the second and third PET studies 

 Second PET (n = 109)  Third PET (n = 41) 

 
diabetes  

(n = 36) 

no diabetes  

(n = 73) 
p value  

diabetes  

(n = 14) 

no diabetes  

(n = 33) 
p value 

        
UF, 60’, mL  255.2±169.0 313.1±169.5 0.08  223.1±150.9 282.2±134,9 0.14 

UF, 240’, mL  425.0±244.6 545.8±260.9 0.008  417.9±230.1 482.1±224.0 0.30 

UF <400 mL at 240’, %  51.3 26.4 0.003  42.9 30.3 0.25 
FWT, 60’, mL  163.3±75.8 188.8±96.3 0.20  170.1±80.1 166.6±80.9 0.68 

SPUF, 60’, mL  129.3±145.6 147.7±123.3 0.28  70.1±112.3 130.5±111.7 0.27 

Na sieving, 60’, mM  8.3±3.6 9.1±4.4 0.27  8.6±3.2 9.2±3.7 0.61 
Total Na removal, mM  38.7±29.3 51.8±20.6 0.029  37.7±29.9 46.1±22.8 0.49 

Peritoneal protein excretion, mg  1,587±458 1,399±555 0.16  1,444±820 1,190±555 0.44 

D60/D0 glucose  0.72±0.15 0.78±0.14 0.19  0.70±0.12 0.76±0.12 0.14 
D120/D0 glucose  0.56±0.16 0.60±0.14 0.16  0.56±0.12 0.61±0.13 0.30 

D240/D0 glucose  0.34±0.12 0.34±0.11 0.94  0.34±0.09 0.37±0.12 0.50 

D/P creat 60’  0.38±0.10 0.37±0.10 0.44  0.36±0.10 0.34±0.10 0.40 
D/P creat 120’  0.52±0.11 0.52±0.11 0.98  0.51±0.11 0.52±0.10 0.53 

D/P creat 240’  0.71±0.10 0.70±0.12 0.77  0.73±0.10 0.67±0.11 0.11 

        

 
Figures denote mean ± SD, except percentage of patients with UF failure. 

UF, ultrafiltration; FWT, free water transport (corrected); SPUF, small pore ultrafiltration; D/D0, dialysate glucose at 60 

(D60/D0), 120 (D120/D0) or 240 (D240/D0) min vs. the dialysate glucose at time zero. D/P creatinine: dialysate-to-plasma 
creatinine concentration ratio at 60, 120, and 240 min. 

For the whole group of patients, the degree of overhydration (BIA) correlated significantly with 

UF at 240 min, both at baseline (r = –0.18, p = 0.037) and during the second PET (r = –0.34, p = 

0.002), and the same applied for D/P creatinine (r = –0.46, p = 0.001 at baseline; r = –0.46, p = 0.002 

second PET) and D/D0 glucose at 240 min (r = 0.32, p = 0.003 at baseline; r = 0.43, p = 0.001 second 

PET; Spearman).  

 

PET-related hyperglycemia was relatively frequent in diabetics. During the baseline PET, 

glycemia was >200 mg/dL in 6 patients (11.1%), and >300 mg/dL in 3 cases (5.6%). At 120 min, 20 

patients (37.0%) presented glycemia >200 mg/dL, and 6 (11.1%), >300 mg/dL. After 240 min, 16 

patients (29.6%) still had glycemia >200 mg/dL, and 4 (7.4%), >300 mg/dL. Remarkably, we found 

no correlation between glycemia at 120 min and UF obtained at 60 min (r = –0.07, p = 0.90) or 240 

min (r = –0.19, p = 0.30), in these patients. 

Longitudinal Comparisons 

Fourteen diabetics (38.9%) and 28 nondiabetics (38.5%) presented at least one episode of 

peritoneal infection between the baseline and the second PET ( p = 0.95), and 5 diabetics (35.7%) and 

15 nondiabetics (45.4%) presented at least one episode of peritoneal infection between the second 

and third PET studies (p = 0.34). Twelve patients changed their PD modality between the first and 

second PET, basically from continuous ambulatory PD to automated PD. Stratification of incident 

and prevalent patients did not show differences between diabetics and nondiabetics.  

 

Analysis of the time courses of peritoneal transport characteristics in diabetics (Table 6) and 

nondiabetics (Table 7) revealed an essential stability in both groups. Interestingly, FWT increased 

during the first year in nondiabetics but did not change significantly in diabetics.  

  



Table 6. Longitudinal follow-up of diabetic patients 

 Baseline PET 2nd year PET 3rd year PET p value 

     

Ultrafiltration, 60’, mL  272.7±187.6 306.0±165.2 213.64±162.9 0.35 
Ultrafiltration, 240’, mL  450.9±242.3 425.0±244.6 418.2±254.2 0.55 

Free water transport 60’ (corrected), mL  170.7±79.6 161.8±74.2 171.9±82.9 0.38 

Small pore ultrafiltration, 60’, mL  157.9±121.2 130.1±145.6 76.9±143.3 0.29 
Na sieving, 60’, mM  8.18±4.5 8.55±3.80 8.81±3.31 0.86 

Total Na removal, mM  50.6±32.6 42.9±24.5 38.3±31.5 0.45 

Peritoneal protein excretion, mg  1,812.6±349.3 1,595.2±440.1 1,496.4±803.3 0.25 
D240/D0 glucose  0.32±0.11 0.34±0.13 0.34±0.09 0.019 

D/P creatinine  240 0.69±0.10 0.71±0.10 0.71±0.10 0.98 

     

 
Figures denote mean ± SD, except percentage of patients with UF failure. 

D240/D0, dialysate glucose at 240 (D240/D0) min vs. the dialysate glucose at time zero. D/P creatinine 240: dialysate-to-

plasma creatinine concentration ratio at 240 min. 

Table 7. Longitudinal follow-up of nondiabetic patients 

 Baseline PET 2nd year PET 3rd year PET p value 

     
Ultrafiltration, 60’, mL  303.22±181.0 327.9±183.8 274.4±128.8 0.31 

Ultrafiltration at 240 min, mL  541.9±285.5 544.8±263.5 491.7±199.2 0.19 

Free water transport 60’/corrected, mL  170.1±66.4 187.7±96.6 162.6±86.5 0.03 
Small pore ultrafiltration, 60’, mL  165.1±144.1 145.8±124.1 145.3±114.5 0.90 

Na sieving, 60’, mM  7.8±3.6 10.0±9.7 53.5±30.7 0.04 

Total Na removal, mM  53.5±30.7 50.8±27.4 45.4±23.5 0.42 
Peritoneal protein excretion, mg  1,545.6±387.0 1,469.5±387.0 1,469.5±453.7 0.06 

D240/D0 glucose  0.32±0.10 0.34±0.11 0.37±0.12 0.19 

D/P creatinine 240  0.70±0.10 0.70±0.12 0.70±0.12 0.36 
     

 
Figures denote mean ± SD, except percentage of patients with UF failure. 

D240/D0, dialysate glucose at 240 (D240/D0) min vs. the dialysate glucose at time zero. D/P creatinine 240: dialysate-to-

plasma creatinine concentration ratio at 240 min. 

When patients were stratified according to time on dialysis, we observed that prevalent, but not 

incident patients, showed trends to a decrease in UF at 60 min (p = 0.03), sodium sieving (p = 0.013) 

and protein removal (p = 0.047), between the baseline and second PETs. These trends were similarly 

apparent for diabetic and nondiabetic patients.  

Discussion 

It has long been recognized that there is a large variability in the characteristics of water and 

solute transport across the peritoneal membrane and that in some individuals, these conditions change 

over time [16–19]. This variability may have important clinical consequences, and monitoring these 

parameters is essential, to guide prescription and improve patient outcomes [20].  

 

Several studies have compared small solute transport characteristics in diabetic and nondiabetic 

patients undergoing PD, with conflicting results. Some groups have detected faster transport rates in 

diabetics [21–24], while others have not observed differences with nondiabetics [12, 18, 25]. On the 

other hand, studies comparing peritoneal water transport characteristics in these 2 groups are 

remarkably scarce. Chou et al. [12] did not detect a difference in the capacity of UF of 40 diabetics 

and 122 nondiabetics, either incident or prevalent on PD. However, the authors estimated this 

parameter using the classic 2.27/2.5% glucose-based PET, which may not be accurate for this 

purpose. As expected, UF fractions could not be scrutinized in this study. Using the Standard 

Peritoneal Permeability Analysis method, Serlie et al. [13] compared peritoneal transport in 11 

diabetic and 11 nondiabetic patients starting PD. The observed transcapillary UF rate was lower in 



diabetics. Smit et al. [26] evaluated FWT in, 10 diabetic and 10 nondiabetic patients at the start of 

PD. They did not detect differences in net UF, fluid absorption, FWT, or peritoneal small solute 

transport rates between the study groups. Finally, Graff et al. [27] reported no differences in the 

clearance of albumin, overall PET results or UF capacity in diabetics and nondiabetics. In this 

particular case, patients were not stratified according to time on PD.  

 

In our study, baseline comparisons disclosed a lower capacity of UF and sodium removal in 

diabetic than in nondiabetic patients, while small solute transport rates were similar in both groups. 

Neither did we observe a different distribution of water transport across small and ultrasmall pores 

(Table 4). These compared features persisted after 1 year of follow-up (Table 5). The reasons for 

these apparent discrepancies are not clear. It could be tempting to attribute them to the effects of the 

diabetic milieu on the peritoneum, but this explanation may be speculative because the well-known 

toxicity of intraperitoneal glucose for the peritoneal membrane [28] cannot be directly extrapolated to 

the case of DM-related hyperglycemia. In their classic study, Williams et al. [29] did not detect 

differences in the interstitial and vascular changes observed in peritoneal biopsies from diabetic and 

nondiabetic patients on PD. On the contrary, a more recent study [30] detected an increased thickness 

of the submesothelial space and a higher capillary density in peritoneal biopsies from diabetics 

starting PD. These changes could exert an additive effect to impair transperitoneal water transport, 

with less predictable effects on small solute transport, which essentially agrees with our results. On 

the other hand, PET-related hyperglycemia in diabetics could provide an alternative explanation for 

our findings by reducing the effective osmotic gradient for UF during the test. The design of this 

study does not permit to clarify this hypothesis, but we were unable to disclose a correlation between 

PET-related hyperglycemia and UF in our patients with DM. Finally, a higher lymphatic absorption 

rate in diabetics could also help to explain our observations. Unfortunately, we did not investigate 

this parameter. The only previous study assessing this question did not detect differences between 

diabetics and nondiabetics [13].  

 

To our knowledge, there are no previous longitudinal studies evaluating peritoneal water transport 

characteristics in patients on PD based on the presence or absence of DM. Our data suggest an 

essential stability over time in both groups (Tables 6, 7) in most peritoneal features evaluated, 

although nondiabetics displayed a trend to an increase in FWT during follow-up, which was not 

observed in diabetics. These findings are in agreement with previous studies on PD patients overall 

[31, 32]. Del Peso et al. [33] did not find a different evolution of peritoneal small solute transport 

rates after 1 year of follow-up in diabetics and nondiabetics.  

 

In this study, overhydration was more frequently observed in diabetic than in nondiabetic patients 

(Table 2), in agreement with previous reports [10]. The reasons for this difference are seemingly 

complex, but the lower capacity of UF observed in these patients is a likely contributor. The 

significant correlation, detected in our patients, between the degree of overhydration, on the one 

hand, and the observed characteristics of UF and small solute transport, on the other hand, lend 

support to this hypothesis.  

 

Our study has some significant limitations, including a single-center design. Separate analyses for 

diabetics and nondiabetics, as also for incident and prevalent patients had a detrimental effect on the 

statistical power of the analyses. Moreover, a significant proportion of patients were lost during 

follow-up, a common drawback on longitudinal studies on patients treated with PD. Lack of 

information on lymphatic reabsorption rates represents another significant limitation. Among the 

strengths of the study, we should mention here that this is the first study comparing the time course of 

peritoneal water transport and its fractions in diabetic and nondiabetic PD patients.  

 

In summary, diabetic patients undergoing PD present lower capacities of UF and sodium removal 

than their nondiabetic counterparts. The time course of water transport characteristics are seemingly 

similar in both groups, although nondiabetics show a trend to an increase in FWT, which is not 

observed in nondiabetics. The reasons and potential consequences of these differences deserve further 

research.  
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