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Abstract 

Several reports on the characterization of 5S ribosomal DNA (5S rDNA) in various animal groups have been 

published to date, but there is a lack of studies analyzing this gene family in a much broader context. Here, 

we have studied 5S rDNA variation in several molluskan species, including bivalves, gastropods, and 

cephalopods. The degree of conservation of transcriptional regulatory regions was analyzed in these lineages, 

revealing a conserved TATA-like box in the upstream region. The evolution of the 120 bp coding region 

(5S) was also studied, suggesting the occurrence of paralogue groups in razor clams, clams, and cockles. In 

addition, 5S rDNA sequences from 11 species and 7 genus of Mytilidae Rafinesque, 1815 mussels were 

sampled and studied in detail. Four different 5S rDNA types, based on the nontranscribed spacer region were 

identified. The phylogenetic analyses performed within each type showed a between-species gene clustering 

pattern, suggesting ancestral polymorphism. Moreover, some putative pseudogenized 5S copies were also 

identified. Our report, together with previous studies that found high degree of intragenomic divergence in 

bivalve species, suggests that birth-and-death evolution may be the main force driving the evolution of 5S 

rDNA in these animals, even at the genus level. 
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Ribosomal gene families play a very important role in the synthesis of proteins and development, and 

therefore in the fitness, of organisms and in the evolution of species. One of these families, the 5S ribosomal 

DNA (5S rDNA), encodes the 5S ribosomal RNA (5S rRNA) molecule, which is part of the large ribosomal 

subunit (LSU) in eukaryotes, together with 5.8S and 28S rRNAs, and several proteins. 
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One of the main goals of previous studies was to figure out how 5S rDNA was transcribed and which 

elements (trans- and cis-acting) regulate this process in the cell. Experimental work was carried out in 

different organisms such as fungi (Tyler 1987; Challice and Segall 1989; Ihmels et al. 2005), animals 

(Morton and Sprague 1984; Pieler et al. 1987; Sharp and García 1988; Reynolds and Azer 1988; Oei and 

Pieler 1990; Felgenhauer et al. 1990; Nielson et al. 1993), and plants (Wyszko and Barciszewska 1997; Leal-

Klevezas et al. 2000; Hammond et al. 2009). 5S rDNA belongs to type I promoters, characterized by the 

presence of transcription control elements within the transcribed region (for a review, see Paule and White 

2000). However, it is becoming quite clear that the internal promoter is not self-sufficient to carry on the 

transcription. In fact, it is known that the 5S rDNA also presents upstream transcriptional regulatory regions 

in several taxa. A TATA-like motif located at around −30 to −25 nucleotides is essential for efficient 

transcription in vitro in Caenorhabditis elegans and C. briggsae (Nelson et al. 1998), Neurospora 

crassa (Tyler 1987), and Drosophila melanogaster (Sharp and García 1988). In razor shells, a conserved 

TATA-like box was also found at −25 nt (Vierna et al. 2011). Therefore, and due to the versatility of 5S 

rDNA transcription, it is interesting to analyze and identify conserved motifs in different lineages that may 

have a function in transcription. According to Smirnov et al. (2008) and Sun and Caetano-Anollés (2009), 

sequence analyses should be accompanied by the prediction of secondary structures, which will contribute to 

better understand the 5S rRNA functionality and its evolutionary pathways in eukaryotes. 

The 5S rDNA has a plastic genome organization because it was found to be organized 1) in clusters 

composed of similar or distinct tandemly arranged copies (Shippen-Lentza and Vezza 1988), 2) in clusters 

linked either to other gene families or to other 5S rDNA copies (Aksoy et al. 1992; Eirín-López et al. 

2004; Vierna et al. 2011), 3) dispersed throughout the genome (Wood et al. 2002), and 4) both in clusters and 

dispersed (Little and Braaten 1989). The evolution of ribosomal gene families has recently been the subject 

of controversy due to the heterogeneous outcomes observed when it was analyzed in various taxa. For a long 

time, the concerted evolution model (Brown et al. 1972) was assumed to be the common mode of ribosomal 

gene family evolution, mainly due to the observed lack of intraspecific polymorphism and the tandem 

organization of repeats (Dover 1982; Arnheim 1983; Li 1997; Nei and Rooney 2005; Eickbush TH and 

Eickbush DG 2007). The lack of variability in coding regions was explained by the action of unequal 

crossover and gene conversion (Li 1997), and the fixation of copies by genetic drift (Dover 1982; Arnheim 

1983; Dover and Tautz 1986). However, the observed heterogeneity and the dispersed distribution of genes 

within some taxa (e.g., in filamentous fungi, Rooney and Ward 2005) pointed to other mechanisms possibly 

generating variation. It may happen that the homogenizing mechanisms are not strong enough to counteract 

this variation. For instance, in razor clams, it was suggested that a higher homogenization efficiency exists 

within the ITS1-5.8S-ITS2 region compared with 5S rDNA, as the latter ribosomal gene family could be 

more dispersed in the genome (Vierna et al. 2010). In agreement with these observations, several studies 

have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA in distantly 

related taxa (Rooney and Ward 2005; Fujiwara et al. 2009; Vierna et al. 2009, 2011; Freire et al. 2010). 

In previous reports, different 5S rDNA types have been usually defined according to the sequence length that 

is directly connected with their nontranscribed spacers (hereafter, NTSs), given that the 5S rRNA-coding 

region (hereafter, 5S) is invariable in length. However, according to the types identified in this study, this 

definition should be reconsidered because sequences with similar lengths could belong to different types. As 

stated by Rooney and Ward (2005), the model of ribosomal gene family evolution can be detected by the 

topology of phylogenetic trees and by the degree of divergence between sampled sequences. Under a 

divergent evolutionary scenario, the long-term persistence of the ribosomal gene family members succeeds 

(Ota and Nei 1994) and species share the same ribosomal types. However, under the birth-and-death model, 

it is expected that each species does not enclose all different types because some duplicated genes are 

maintained in the genome for a long time, whereas others are deleted or become nonfunctional through 

deleterious mutations (pseudogenes) (Nei and Rooney 2005). Finally, under concerted evolution, all 

sequences of a particular ribosomal type show a within-species gene clustering pattern. 



 
 

In mollusks, 5S rDNA sequences have been obtained for several gastropods, cephalopods, and bivalves 

(Fang et al. 1982; Walker and Doolittle 1983; Komiya et al. 1986; Hendriks et al. 1987; Insua et al. 

1999, 2001; Cross and Rebordinos 2005; Freire et al. 2005, 2010; González-Tizón et al. 2008; López-Piñón 

et al. 2008; Vierna et al. 2009, 2011; Fernández-Tajes and Méndez 2009). However, in bivalves, 5S rDNA 

has been studied in much more detail. In this paper, we analyze all available molluskan 5S rDNA sequences 

and study the degree of conservation of upstream, internal, and downstream transcriptional regulatory 

regions. We provide consensus secondary structures for all groups considered (cephalopods, gastropods, 

bivalves, and Mytilidae mussels) and study the long-term evolution of the 5S region in the phylum Mollusca. 

Since molluskan lineages started to diverge either in the Ediacaran period or in the Cambrian Era, the lapse 

of time considered dates back to these periods (Fedonkin and Waggoner 1997). Moreover, we obtained 44 

new mussel sequences and analyzed 5S rDNA within the family Mytilidae Rafinesque 1815 (Mollusca: 

Bivalvia) in detail. The evolution of 5S rDNA has been only recently studied within families in razor clams 

(Vierna et al. 2011). Our report, together with what was found in these animals, suggests that birth-and-death 

evolution may be the main force driving the evolution of 5S rDNA in bivalve mollusks, even at the genus 

level, or at least, that this mode of evolution is much more common than it was previously thought. Taking 

into account the remarkable number of surveys reporting high intragenomic divergence within 5S rDNA in 

molluskan species, we discuss the role played by birth-and-death processes in the generation of the extant 

variation that we see today within this gene family. 

 

Materials and Methods 

Sampling and Molecular Procedures 

All mussels were sampled in the intertidal area (localities and accession numbers are shown in Table 1) and 

stored in 100% ethanol. Extraction of genomic DNA, PCR amplification, agarose gel electrophoresis, 

bacterial cloning, and sequencing were performed as in Vierna et al. (2009). A multiband pattern was 

obtained (band size ranged from 300 to 900 bp, approximately), and each band was cloned and sequenced 

independently, obtaining 44 sequences in total. The number of clones per band per individual can be 

retrieved from http://www.udc.es/grupos/gibe/uploads/gibe/supplementary-material/vizoso2011.zip. 

In addition, all molluskan 5S rDNA sequences, including those from bivalve, cephalopod, and gastropod 

species, were downloaded from the DNA Data Bank of Japan (DDBJ)/European Molecular Biology 

Laboratory(EMBL)/GenBank and included in several analyses. The accession numbers of all molluskan 

sequences studied and the analysis in which they were involved are recorded in Supplementary Table S1. 

Alignments and Sequence Analysis 

The quality of the electropherograms was checked in BioEdit 7.0.9.0. (Hall 1999). To determine the 

similarities of the sequences obtained with other 5S rDNA sequences from DDBJ/EMBL/GenBank, a search 

was performed at the National Center for Biotechnology Information web-based Blast service (Altschul et al. 

1990). Sequence alignments were carried out in ClustalX 2.08 (Larkin et al. 2007), and they were adjusted 

for local optimization in BioEdit 7.0.9.0. (Hall 1999). Two programs, the BLAST2 Sequences tool (Tatusova 

and Madden 1999) and Gblocks (Castresana 2000), were employed to evaluate the local similarities between 

pairs of sequences and to eliminate poorly aligned positions and divergent regions. The BLAST2 Sequences 

searching parameters were modified according to Menlove et al. (2009). 
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Table 1. Taxa and accession numbers used in the phylogenetic analyses of 5S rDNA in Mytilidae. 

 

  Accession number 

Taxa  Sampling site  Type α  Type β  Type sβ  Type γ  Type δ  Type ε  

Family Mytilidae  
Rafinesque, 1815  

              

Subf. Lithophaginae  

(Soot-Ryen, 1955)  

              

Lithophaga lithophaga 

(Linnaeus, 1758)  

BE, Spain  FN687820  N. A.  N. A.  N. A.  N. A.  FN687819, 

FN687821, 

FN687822 

Subf. Modiolinae  
Keen, 1958  

              

Modiolus capax  

(Conrad 1837)  

CH, Peru  N. A.  N. A.  N. A.  N. A.  FN687828-

FN687830  

N. A.  

Subf. Mytilinae  

Rafinesque, 1815  

              

Aulacomya ater  
(Molina, 1782)  

CA, Peru  FN687818  FN687817  N. A.  N. A.  N. A.  N. A.  

Choromytilus chorus 
(Molina, 1782)  

CO, Chile  N. A.  FN687826, 

FN687827, 

FN687825*  

N. A.  N. A.  N. A.  N. A.  

Mytilus coruscus 

Gould, 1861 

OT, Japan N. A. N. A. N. A. N. A. FN687811- 

FN687816 

N. A. 

      FN561857-
FN561861 

 

Mytilus californianus 

Conrad, 1837 

PP, Canada N. A. FN687808 FN561844-

FN561850 

FN561835-

FN561837 

N. A. N. A. 

   FN561851-

FN561856 

    

Mytilus edulis  

(Linnaeus, 1758) 

PE. Canada FN687810 FN687809 N. A. FN561838-

FN561840 

N. A. N. A. 

 YE, Holland AJ312081-
AJ312083 

AJ312084-
AJ312087 

N. A.  N. A. N. A. 

Mytilus galloprovincialis 

Lamarck, 1819 

VA, Spain AJ312075-

AJ312077, 

AY267739 

AJ312078-

AJ312080 

N. A. FN561841-

FN561843 

N. A. N. A. 

Mytilus trossulus  
Gould, 1850 

EL, Canada FN687796, 

FN687797, 

FN687799 

FN687798, 

FN687802 

N. A. FN561832-
FN561834 

N. A. N. A. 

  FN687800, 

FN687801, 

FN687803 

FN561828-

FN561831 

    

  FN561823-
FN561827 

     

 BB, Canada FN687804, 

FN687806, 

FN687807 

FN687805 N. A. N. A. N. A. N. A. 

 BS, Poland FN561814-

FN561816 

FN561817-

FN561819 

N. A. FN561820-

FN561822 

N. A. N. A. 

Perna canaliculus 

(Gmelin, 1791) 

GB, New 

Zealand 
FN687823 FN687824* N. A. N. A.  N. A. N. A. 

Semimytilus algosus 

(Gould, 1850) 

CH, Peru N. A. N. A. N. A. N. A. FN687831-

FN687839 

N. A. 

 

Accession numbers in bold denoted sequences obtained experimentally in this study. Collection site names: BE, Benicarló, 

Valencia; CH, Chiclayo; CA, Callao; CO, Concepción; OT, Otsuchi Bay; PP, Point no Point, Vancouver Island; PE, Prince 

Edward Island; YE, Yerseke; VA, Valcovo, La Coruña; EL, Esquimalt Lagoon, Vancouver Island; BB, Bedford Basin; BS, Baltic 

Sea; GB, Golden Bay. N. A., no amplification with corresponding primers. (*) β degenerated copy. 

 



 
 

Putative 5S rDNA transcriptional regulatory motifs were identified via the TOUCAN workbench (Aerts et al. 

2003) establishing a comparison with reference sequences from the Eukaryotic Promoter 

(http://www.epd.isb-sib.ch/) and JASPAR databases (http://jaspar.genereg.net/) and selecting those predicted 

features that were statistically overrepresented (nucleotide stretches within the upstream region of the 

sequence, with a positive significance value). The screening of the repetitive elements linked to 5S rDNA 

was made by CENSOR (Kohany et al. 2006), and the program tRNAscan-SE 1.21 (Lowe and Eddy 1997) 

was used to define and predict the secondary structure of the transfer RNA (tRNA) sequence that we found. 

Each 5S sequence was folded in RNAstructure 5.1 (Reuter and Mathews 2010) to obtain the predicted 

secondary structures, applying constrictions at 15 °C, and using the EFN2 function to recalculate ΔG values 

(Mathews et al. 1999). All the consensus secondary structures were obtained from the RNAalifold webserver 

(Hofacker 2003). 

Polymorphism and Phylogenetic Analyses 

The analysis of mussel nucleotide polymorphism was performed in DnaSP 5.0 (Librado and Rozas 2009), 

calculating the nucleotide diversity (Π) within species for each of the 5S rDNA types obtained. For that, we 

also took into account the geographic localities where mussels were sampled due to they may introduce 

variation in the π value. We also estimated the number of polymorphic sites (S) and the number of fixed 

differences between 5S rDNA types. 

Eighty-five mussel sequences, belonging to α, β, and δ types (Table 1), were subjected to maximum 

parsimony (MP) and maximum likelihood (ML) analyses. Both MP and ML trees were constructed in 

PAUP* 4.0 b10 (Swofford 2002) using the heuristic approach and 1000 bootstrap replicates. Bootstraps 

above 85% were interpreted as high statistical support. Gaps were treated as newstate under MP and as 

missing information under ML. In all analyses, starting trees were obtained via stepwise addition with 

random addition of sequences (10 replicates). For ML analyses, the best-fit model of nucleotide substitution 

was selected by statistical comparison of 88 different models using jModeltest 0.01 (Posada 2008) and 

applying the Akaike information criterion corrected for small samples (AICc). The models were F81+G 

(−lnL = 581.3032, AICc = 1305.1518) for sequences classified as α type; TPM3uf+G (−lnL = 3516.6318, 

AICc = 7194.8499) for β type sequences; and HKY+G (−lnL = 1052.6409, AICc = 2220.7196) for the δ 

type. Pairwise distances were also calculated according to these models. Gaps were not considered in these 

analyses. All trees were displayed in FigTree 1.2.2 (Andrew Rambaut, 

http://tree.bio.ed.ac.uk/software/figtree/). 

All available molluskan 5S sequences, including the new mussel sequences and those obtained from 

DDBJ/EMBL/GenBank, were subjected to a neighbor-net analysis (Bryant and Moulton 2004) implemented 

as part of the SplitsTree4 package (Huson and Bryant 2006), using general time reversible distances and 

1000 bootstrap replicates. 

 

Results 

Characterization of Mytilidae Sequences 

We studied a set of 106 mussel 5S rDNA sequences, including 44 new sequences and 62 from 

DDBJ/EMBL/GenBank (Table 1). The 5S rDNA consisted of a highly conserved sequence of 120 bp (5S) 

and a highly polymorphic NTS that defines the type of 5S rDNA (α, β, sβ, γ, δ, and ϵ). The guanine-cytosine 

(GC) content of the 5S region of all mussels analyzed ranged from 50.4% to 55.5%, and the NTS region 

displayed a higher degree of variation both in length and in GC content (Table 2). 

 

http://www.epd.isb-sib.ch/
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Table 2. Length and guanine/cytosine content of the 5S rDNA nontranscribed spacer region. 

 

5S types  NTS length  GC content  

α  138–145  20.00–22.46  

β  596–674  33.98–36.65  

sβ  119  25.21–26.05  

γ  861–894  35.54–37.93  

δ  186–195  28.13–33.16  

ϵ  585  36.67  

 

Because length variation may be a problem when performing alignments, we eliminated poorly aligned 

positions and divergent regions, as they may not be homologous. In order to allow the program (Gblocks) to 

select more sites, we applied the following (less restricted) conditions: minimum length of a block = 5 and all 

gap positions allowed. After doing so for the NTS region, only 20% of the nucleotide positions were 

selected. Therefore, we performed a statistical evaluation of the local similarities between NTS sequences 

following Pearson and Wood (2001), in order to classify the sequences into the correct 5S type following a 

statistical criterion. First, we checked by eye the alignment of all sequences and separated them into groups 

according to their similar NTS regions and lengths. Then, we performed pairwise comparisons between 

sequences within the groups and among the groups, taking notice of the expectation values (E values), 

ranged between 0 and 1. They provide an estimate of how likely it is that the alignment occurred by random 

chance. After that, if the E value obtained in a pairwise comparison of 2 sequences selected at random was 

between 1 and 4 × 10
−09

 (the lower median E value obtained for pairwise comparisons among the groups), 

we considered that sequences belonged to different types, whereas if the E value was between 0 and 3 × 

10
−65

 (the upper median E value obtained for pairwise comparisons within the groups), the sequences were 

classified into the same type, regardless of the length. 

The sequences experimentally obtained belonged to the previously described α and β 5S rDNA types (Insua 

et al. 2001) and to 2 new types that we named δ and ϵ. Two clones were retrieved from Choromytilus 

chorus and Perna canaliculus differing in nucleotide sequence in respect to the β type but being similar in 

length. As they displayed some sequence similarity in respect to β sequences (mean p-distances of 0.55 and 

0.46, respectively), we thought convenient to consider them as β degenerated copies. Mussel sequences from 

DDBJ/EMBL/GenBank belonged to α, β, small-β (sβ), and γ types (the last 2 types were described by Freire 

et al. [2010]). 

Considering the alignments and the bootstraps obtained in the phylogenetic analyses (see below), we 

established an arbitrary division of the sequences based on supergroups and groups. 1) We split α clones into 

supergroups 1 and 2 according to a conserved GT duplication at the beginning of the NTS. 2) β clones were 

split into 3 supergroups as follows: supergroup 1 NTSs had a conserved CTCTC insertion close to the 5′ end 

and they were subdivided into 2 groups (group A could be differentiated from group B according to a 

conserved duplication AGCT and to an AT-rich insertion of 14 bp occurring in the middle of the NTS); 

supergroup 2 sequences (which belonged either to group C or to group D) displayed a (TATA)3 motif close 

to the 3′ end of the NTS; and supergroup 3 sequences were split into 2 groups, E and sβ, the latter being 

characterized by a big deletion. 3) δ clones were divided into supergroup 1 (sequences split in 3 

nonsupported groups) and supergroup 2, according to some point mutations within the NTS region. 

 

 



 
 

Polymorphism and Phylogenetic Analyses in Mytilidae Mussels 

Nucleotide diversity analyses revealed that α NTSs showed few differences per site (the Mytilus 

trossulus clones from the American Atlantic coast were the most dissimilar; 0.058 ± 0.028). The β NTSs 

displayed high nucleotide diversity levels (e.g., C. chorus, 0.177 ± 0.089; European M. trossulus, 0.143 ± 

0.002). And the same was found for δ NTSs (e.g., M. coruscus, 0.144 ± 0.028). 

These results were complementary to evolutionary distances (Supplementary Tables S2A–C). According to 

the α and β pairwise distances, M. trossulus was clearly separated from the other species (e.g., clone α3 BB) 

and even showed high divergence among their own members (e.g., β group B versus β group D). 

Similarly, M. edulis and C. chorus β clones also displayed high divergence among their own members. Other 

divergent clones were reported within the β type in M. californianus (e.g., sβ group) and in the δ type in M. 

coruscus (e.g., supergroup 2). 

We identified 15 polymorphic sites within the Mytilidae 5S sequences and 3 fixed differences 

(Supplementary Figure S3). Position +59 separated all ϵ sequences from all α and β sequences. Positions +59 

and +68 separated sβ sequences from ϵ ones, and position +68 distinguished the sβ type from the α type. The 

analysis of the NTS region revealed 23 polymorphic sites within α NTSs, 213 within β NTSs, 3 within sβ 

NTSs, 161 within γ NTS, 75 within δ NTS, and 64 within ϵ NTS. The most polymorphic group of sequences 

regarding the NTSs was the δ type (number of polymorphic sites per length of NTS, 0.41). 

According to the 3 phylogenies obtained (α, β, and δ, Figures 1–3), many sequences showed a between-

species gene clustering pattern (e.g., α type topology, Figure 1). In fact, an M. edulis (PE) clone clustered 

with clones belonging to Lithophaga lithophaga and Aulacomya ater individuals, and it was separated from 

their European partners that clustered with M. galloprovincialis clones. However, both M. trossulus and M. 

galloprovincialis clones grouped according to a within-species gene clustering pattern supported by high 

bootstraps. In the β type phylogeny (Figure 2), M. edulis (YE), C. chorus, and M. trossulus (EL, BB, and BS) 

clones were intermixed in supergroups 1 and 2. But, once again, clones of M. galloprovincialis (group A) 

and M. californianus (group E and small β group) clustered following a within-species gene clustering 

pattern. This phylogenetic tree included several putative pseudogenes in the small β group. With respect to 

the 2 new types, we performed a phylogenetic analysis of only δ type sequences because the others included 

only L. lithophaga clones. This was the only type in which some dimers and a trimer sequence were 

identified (all of them belonging to the δ type). A dimer is composed of the last 88 nucleotides of a 5S, a 

complete NTS, a complete 5S, a complete NTS, and the first 32 of the last 5S. Similarly, a trimer has an 

additional 5S+NTS in between. Sequences belonging to each supergroup (1 and 2) were reciprocally 

monophyletic with the highest support (Figure 3). Supergroup 1 included several clones of the 3 species, in 

comparison with supergroup 2, represented by only M. coruscus clones. This phylogeny also included 2 

pseudogenes belonging to S. algosus species. In all cases, both MP and ML analyses yielded similar 

topologies. 

Identification of a tRNA-Arg Gene Linked to a Degenerated 5S rDNA Sequence Belonging to C. chorus 

The presence of one tRNA-Arg gene linked to a 5S rDNA repeat (a β degenerated copy) was identified in 

a C. chorus clone and organized in an opposite direction compared with 5S rDNA. The tRNA-Arg gene was 

located into the NTS, starting 150 bp downstream of the first 5S and ending at 376 bp upstream of the 

contiguous 5S. The secondary structure of the tRNA-Arg gene (Figure 4) displayed the A and B boxes 

involved in the transcription by RNA pol III (Paule and White 2000), which sequences were 

TGGCCCAATGG and GTTCGAGTC, respectively. Although CENSOR defined it as a pseudogene, the 

tRNAscan-SE scores pointed out that it was a functional gene (cove score 61.42 bits, Hidden Markov Model 

score 44.44 bits, and 2′Str score 16.98 bits). 

 



 
 

 

Figure 1. ML bootstrap consensus tree of the α 5S rDNA sequences reconstructed using the F81+G model. Bootstrap 

values are indicated at the nodes when ≥50. Sequences obtained from DDBJ/EMBL/GenBank are denoted by (*). 

Species: A. ater, Aulacomya ater; L. lithophaga, Lithophaga lithophaga; M. edulis, Mytilus edulis; M. 

galloprovincialis, Mytilus galloprovincialis; M. trossulus, Mytilus trossulus; P. canaliculus, Perna canaliculus. 

 

 

Figure 2. ML bootstrap consensus tree of the β 5S rDNA sequences reconstructed using the TPM3uf+G model. 

Bootstrap values are indicated at the nodes when ≥50. Sequences obtained from DDBJ/EMBL/GenBank are denoted by 

(*). Species: M. galloprovincialis, Mytilus galloprovincialis; C. chorus, Choromytilus chorus; M. edulis, Mytilus edulis; 

M. trossulus, Mytilus trossulus; M. californianus, Mytilus californianus; A. ater, Aulacomya ater. 



 
 

 

Figure 3. ML bootstrap consensus tree of the δ 5S rDNA sequences reconstructed using the HKY+G model. Bootstrap 

values are indicated at the nodes when ≥50. Sequences obtained from DDBJ/EMBL/GenBank are denoted by (*). 

Species: S. algosus, Semimytilus algosus; M. capax, Modiolus capax; M. coruscus, Mytilus coruscus. Pseudogenes are 

denoted by Ψ. 

 

 

Figure 4. Predicted secondary structure for the tRNA-arginine (tRNA-arg) gene linked to a degenerated sequence 

from Choromytilus chorus. The anticodon for arginine (gray box) and the boxes involved in the tRNA transcription 

(empty and full circles) are indicated in the figure. 



 
 

Transcription Regulatory Elements in Mollusks 

A graphical representation of the 5S internal promoters and their consensus sequences is shown in Figure 5. 

The 4 internal control regions (ICRs) involved in the transcription of 5S rDNA (Sharp and García 1988) 

were identified in the Mytilidae 5S sequences. Therefore, positions 3–18, 37–44, 48–61, and 78–98 showed 

high similarity with their orthologues of D. melanogaster (see Figure 5). We also identified the sequence 

elements described in Xenopus laevis (Pieler et al. 1987) that are functionally equivalent to the ICRs: 

positions 50–61 (box A), 67–72 (intermediate element), and 80–90 (box C), which displayed a high degree 

of similarity (see Figure 5). In the same way, molluskan consensus internal regulatory regions are recorded 

in Figure 5, showing higher variability, as expected. 

 

 

Figure 5. Schematic comparison of the control elements involved in the transcription of 5S rDNA. The top sequences 

represent the ICRs and sequence elements (box A, intermediate element, and box C) of D. melanogaster (D. m.) 

and Xenopus laevis (X. l.). The bottom sequences represent the consensus molluskan and Mytilidae orthologues. 

Differences between Mollusca and Mytilidae stretches are indicated in boldface and similarities respect to the consensus 

sequences described for D. melanogaster and X. laevis (Pieler et al. 1987; Sharp and García 1988, respectively) are 

denoted by (*). 

 

 

Table 3. Sequences of the upstream conserved TATA-like motif in bivalves. 

Taxa Position  Sequence 

Clams −30 to −25  TATATA (1, 6%)  

 −29 to −26  TATA (9, 53%)  

Oysters −30 to −24  TATATT (9, 82%) 

Cockles −28 to −23  TAAATA (48, 98%)  

Scallops −28 to −23  TAAATA (3, 21%) 

 −30 to −25  TATAAA (6, 43%) 

Razor clams −28 to −23  TAAATA (74, 61%)  

Mussels −28 to −23  TATATA (67, 63%) 

 −28 to −25  TATA (21, 20%)  

 

Numbers in brackets indicate the absolute frequency and percentage of 

sequences containing this motif, respectively. 

 

 



 
 

The NTS region of mussel species contained some conserved elements that may be involved in 5S 

transcription initiation (Supplementary Figure S4) and termination, some of them previously described 

by Morton and Sprague (1984) and Campbell and Setzer (1992), respectively. The NTS sequences of α and β 

types displayed the complete blocks TATATA and AATTTT at the 3′ end. However, the sβ NTSs retained 

the TATATA motif but not the other one because 2 insertions A(C)ATT(G)T occurred within. In respect to δ 

NTSs, supergroup 1 clones lacked the integral TATATA motif because of a point mutation (TAAATA) and 

supergroup 2 clones presented a shorter TATA-like motif, but all of them displayed the AATTTT block. 

Finally, all NTSs, except sβ ones, displayed the oligo (dT)≥4 at the 5′ end (data not shown). We also analyzed 

the upstream elements from sequences of several molluskan lineages, with the exception of cephalopods, 

whose 5S rDNA sequences consisted of only the 5S region. Many sequences displayed a TATA-like motif 

(see Table 3) and some of them (razor clams) also contained an element similar to the vertebrate E-box 

(CANNTG). However, we did not find any statistically overrepresented motif between a TATA-like box and 

the transcription start site for gastropods, clams, cockles, oysters, or scallops. 

Secondary Structures and Pseudogenes 

After applying several constrictions (see http://www.udc.es/grupos/gibe/uploads/gibe/supplementary-

material/vizoso2011.zip), most of the predicted secondary structures (Figure 6, Supplementary Figure 

S5A,B) were consistent with the general eukaryote 5S rRNA structure (Luehrsen and Fox 1981; Fang et al. 

1982; Smirnov et al. 2008; Sun and Caetano-Anollés 2009). The Mytilidae consensus secondary structure 

was compared with the consensus obtained for Cephalopoda, Gastropoda, and Bivalvia (Figure 6). In the 

consensus predicted secondary structures of these molluskan lineages, we identified the 5 helices (I to V), the 

2 hairpin loops (C and E), the 2 internal loops (B and D), and the hinge region A. Remarkably, the 4 

consensus secondary structures obtained showed highly conserved base pairs at both the beginning and the 

end of the 5 helices, whereas the base pair changes were restricted to the internal helix regions. 

In agreement with Luehrsen and Fox (1981), most of the sequences (Supplementary Figure S5) could be 

folded into a structure with a total distance between helices I and V of 16 bp separated by a G-U pair. Helix 

IV maintained the 3 contiguous G-U pairs, loop C was formed by 12 bp, and loop E contained the conserved 

A-G-U-A motif. Moreover, loop E also presented 2 conserved A, which were preceded by a G in most of the 

sequences. However, several sequences did not fulfill some of the criteria mentioned above. All the mussel 

clones belonging to the sβ type, except clone 2, could not be properly folded (see their predicted 5S rRNA 

structures and ΔG values in Supplementary Figure S5). They presented a transition (T → C) that modified 

loop B, a mismatch within helix V, and ΔG values as high as −25.5 kcal/mol, probably due to point 

mutations within ICRs I and II. Otherwise, a clone belonging to Semimytilus algosus (ΔG = −43.0 kcal/mol) 

did not contain the 2 conserved A preceded by a G within loop E. The clone S. algosus δ2.2 (ΔG = −39.6 

kcal/mol) showed a hinge region 6 bp larger compared with the rest of the sequences, and helix I was shorter 

due to a transition in position 8 within ICR I. Moreover, the distance between helices I and V was 13 bp. 

Finally, a clone of C. chorus (β degenerated copy; ΔG = −44.3 kcal/mol) could not properly form loops B, C, 

and E, nor could helix III, due to a deletion in position 47. Furthermore, it presented an insertion in the hinge 

region that altered the secondary structure and the total length between helices I and V (13 bp). 

Mytilidae 5S sequences were considered to be functional when they fulfilled the following criteria: the 

length was 120 bp, and they could correctly be folded into the eukaryotic secondary structure model 

(Luehrsen and Fox 1981; Smirnov et al. 2008), with a maximum free energy of −43.0 kcal/mol or lower. 

Sequences not fulfilling at least one of these criteria were considered putative pseudogenes. 
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Figure 6. Predicted consensus secondary structures of cephalopods (A), gastropods (B), bivalves (C), and Mytilidae 

mussels (D) 5S rRNA. Helices are named with Roman numerals, and letters correspond to loops, following Smirnov et 

al. (2008). Red indicates that there was only one type of base pair (e.g., GC), and ochre, 2 types of base pairs (e.g., GC 

or GT). Pale colors indicate pairs that cannot be formed by all sequences. 



 
 

Phylogenetic Analysis of the 5S Region in Mollusks 

The phylogenetic analysis of the 5S region of several bivalves and some gastropods and cephalopods (Figure 

7) showed that sequences clustered according to the class they belong to (Bivalvia, Gastropoda, and 

Cephalopoda). Nevertheless, within bivalves, 5S sequences from some systematic groups did not cluster 

together. In the network performed, razor clam sequences were split into 3 different groups, one with 

sequences from the species Ensiculus cultellus, another one with Siliqua patula and Ensis 

directus sequences, and the last one with sequences from E. directus, E. macha, E. magnus, E. minor, E. 

ensis, and Pharus legumen. Similarly, in clams, we distinguished one group with sequences from the 

species Donax vittatus and D. semiestriatus, another one with Venerupis decussatus, and the last with D. 

trunculus, V. pullastra, V. aurea, and V. rhomboideus. Finally, cockle sequences clustered in 3 groups, 2 of 

them represented by the species Cerastoderma edule and C. glaucum, and another containing sequences 

from only C. edule. Mussel sequences clustered together, the same as oyster sequences. In the case of scallop 

species, sequences were split into 2 closely related groups in the network, one containing sequences 

from Mimachlamys varia, Aequipecten opercularis, Pecten maximus, and Chlamys distorta and the other 

with sequences from the species A. opercularis, P. maximus, and C. distorta. 

 

 

Figure 7. Phylogenetic network of the 5S rDNA coding region of mollusks. Sequences from the following species were 

included: gastropods (Aplysiidae: Aplysia kurodai; Helicidae: Helix pomatia; Muricidae: Hexaplex trunculus; 

Haliotidae: Haliotis rufescens; Arionidae: Arion rufus), cephalopods (Ommastrephidae: Illex illecebrosus; 

Spiidae: Sepia officinalis; Octopodidae: Octopus vulgaris), and bivalves. Bivalves species are referred to according to 

their common name: mussels (Mytilidae: Mytilus edulis, M. galloprovincialis, M. trossulus, M. californianus, M. 

coruscus, Semimytilus algosus, Perna canaliculus, Choromytilus chorus, Aulacomya ater, Modiolus capax, Lithophaga 

lithophaga), clams (Veneridae: Venerupis pullastra, V. rhomboideus, V. decussates, V. aurea; Donacidae: Donax 

vittatus, D. semiestratus, D. trunculus; Astartidae: Astarte borealis), cockles (Cardiidae: Cerastoderma glaucum, C. 

edule), razor clams (Pharidae: Ensis directus, E. macha, E. magnus, E. siliqua, E. ensis, E. goreensis, E. 

minor, Ensiculus cultellus, Pharus legumen, Siliqua patula), oysters (Ostreidae: Crassostrea gigas, C. angulata), and 

scallops (Pectinidae: Pecten maximus, Chlamys distorta, Mimachlamys varia, Aequipecten opercularis). Genetic 

distances were calculated using the general time reversible model, and shaded areas denote paralogue groups. 

 

Discussion 

Transcriptional Regulatory Regions of Molluskan 5S rDNA 

Many molluskan 5S rDNA sequences displayed all the motifs necessary for RNA pol III recognition 

(internal control and upstream elements), and therefore they may be transcriptionally functional copies. 

Genes transcribed by RNA pol III are classified into 3 categories depending on the promoter type, according 



 
 

to which upstream elements also change. Basically, type I and type II promoters (e.g., for 5S rDNA and 

tRNA transcription, respectively) contain ICRs, and it seems that they do not always need specific upstream 

control elements. However, type III promoters (e.g., U6 snRNA transcription) are characterized by 3 

upstream stretches at least: a TATA box, a proximal sequence element, and a distal sequence element. 

Remarkably, the transcription of type III promoter genes is closely related to the transcription of class II 

genes (genes transcribed by RNA pol II) due to the fact that these upstream elements can interact with RNA 

pol II–like transcriptional factors, such as Oct1 and STAF (Paule and White 2000). Interestingly, we 

identified an upstream putative regulatory region (TATA-like box), in agreement with what was reported 

for D. melanogaster (Sharp and García 1988), Neurospora crassa (Tyler 1987), Bombyx mori (Morton and 

Sprague 1984), and several fish species (Martins and Galetti 2001). It has recently been proposed that this 

region could be involved in RNA pol III transcription together with RNA pol II–like transcriptional factors 

(Raha et al. 2010). However, it was less conserved in Mytilidae δ type sequences and in razor clam, scallop, 

and cockle sequences (Table 3). Therefore, this could imply that 1) the 5S rDNA transcription in these 

molluskan groups could not specifically be regulated by RNA pol II–like transcriptional factors, 2) they 

could present lower transcriptional activities, or 3) they do not require the same level of sequence specificity. 

Interestingly, we identified another highly conserved motif in Mytilidae sequences, the AATTTT block. This 

suggests that it should be involved in the 5S rDNA transcription in this family in some way, and any 

modification could mean important transcriptional restrictions. Nevertheless, the block was not conserved in 

sβ clones or in the other molluskan 5S rDNA sequences. This motif was previously found to be involved in 

the regulation of rRNA processing genes in Saccharomyces cerevisiae, and it is accepted as a cis-regulatory 

element of mitochondrial ribosomal protein genes in Candida albicans (Ihmels et al. 2005). Morton and 

Sprague (1984) also demonstrated the requirement of the AATTTT block for the 5S rDNA transcriptional 

activity in the silkworm B. mori. We found that this element showed high similarity with an AT-hook 

from S. cerevisiae (SUM1; ID MA0398.1), which usually serves as docking for high-mobility group proteins 

that can act as transcriptional factor cofactors (Aravind and Landsman 1998). Therefore, our results suggest 

that these proteins could play an important role in the transcription of Mytilidae 5S rDNA (e.g., opening the 

chromatin for transcription). Furthermore, a regulatory upstream element, very common in the eukaryotic 

genome (Corre and Galibert 2005), was identified within the razor clam lineage in place of the AATTTT 

block in this study. This motif, the E-box, is a DNA-binding site for basic helix-loop-helix transcription 

factors (e.g., upstream stimulating factors), some of them involved in the recruitment of chromatin 

remodeling enzymes and in the interaction with coactivators and members of the transcription pre-initiation 

complex of TATA-directed genes transcription (Corre and Galibert 2005). Therefore, in razor clams, this 

motif could act in a similar way as the AATTTT element. In conclusion, the presence of highly conserved 

(putative) regulatory elements points to the 3′ end of the NTS region being under the action of selective 

pressures. In fact, it could happen that specific point mutations within these transcriptional hot spots imply 

serious transcriptional alterations. 

5S rDNA in Mollusks 

For this work, we obtained the consensus secondary structures of the 5S region for several molluskan 

lineages in order to analyze the degree of conservation. The folding of the helices and loops in a 

noncanonical way would probably involve changes in functionality according to remarks by Smirnov et al. 

(2008): helix I is necessary for the interaction with transcription factor IIIA, and helix III drives the 5S rRNA 

integration into the LSU; loop B has structural functions, loop C interacts with ribosomal proteins, and loop 

D is responsible for the interaction of 5S rRNA with 23S rRNA and is involved in the integration of the 

LSU. Interestingly, helix III (the shortest one) was perfectly conserved in all the predicted consensus 

secondary structures, whereas the other helices maintained intact their base pair ends (see Figure 6). 

According to our results, it seems that there is a bias in the degree of nucleotide conservation of the 5S rRNA 

helices, the most conserved being the base pair ends, to preserve the correct loop formation and their 

assembling functions. 



 
 

Intragenomic divergence within 5S rDNA has previously been reported in other mollusks, such as the 

gastropod Hexaplex trunculus (González-Tizón et al. 2008) and the bivalves Cerastoderma glaucum (Freire 

et al. 2005), Aequipecten opercularis (López-Piñón et al. 2008), various razor clam species (Vierna et al. 

2009), and some Mytilus mussels (Insua et al. 2001; Freire et al. 2010). Nevertheless, this is not restricted to 

molluskan species because intragenomic divergence within this gene family has also been found in other 

animals, plants, and fungi (e.g. Danna et al. 1996; Martins and Galetti 2001; Daniels and Delany 

2003; Rooney and Ward 2005; Keller et al. 2006; Caradonna et al. 2007; Fujiwara et al. 2009; Baum et al. 

2009). Therefore, it seems clear that the action of mechanisms generating intragenomic variation (i.e., gene 

duplications) is often more powerful than the action of the homogenizing mechanisms (i.e., unequal crossing 

overs, gene conversions, and selection), and this is more evident for the portions of the NTS region that 

appear not to be subjected to selection. 

The phylogenetic analysis of the 5S region of several molluskan lineages has shown that sequences cluster 

according to the class they belong to (Bivalvia, Gastropoda, and Cephalopoda). Nevertheless, within 

bivalves, the clustering pattern of razor clams, clams, cockles, and, to a lesser extent, scallops reveals that 

some paralogue groups may occur in bivalve species. Paralogue groups of other multicopy genes have been 

described in metazoans (5S rDNA, Peterson et al. 1980; 18S rDNA, Carranza et al. 1999; spliceosomal 

genes, Marz et al. 2008). Taking into account that razor clams, clams, and cockles belong to the order 

Veneroidea, the pattern we observe may be the result of an ancient duplication that has been maintained until 

the present, perhaps due to positive selection. Remarkably, the occurrence of 2 types of 5S rDNA sequences 

has been described for several fish species (see Martins and Galetti 2001) and constitutes a conserved 

character. Nevertheless, it is unclear whether each type is differentially regulated, as in the case of the 

frog Xenopus, in which oocyte and somatic 5S rDNA types were found to be tissue specific (Peterson et al. 

1980). 

The Case of Mytilidae Mussels 

The analysis of polymorphism in the 5S region within family Mytilidae revealed low variability in contrast 

to what was reported in the razor clam family Pharidae, in which 32 polymorphic sites were identified 

(Vierna et al. 2011). Nevertheless, the nucleotide polymorphism could have been somewhat underestimated 

due to the fact that in some sequences obtained from DDBJ/EMBL/GenBank the primer annealing regions 

were not provided. As a consequence of the primer design (annealing in the 5S region with opposite 

orientation), we showed that the copies of Mytilidae 5S rDNA were organized in tandem arrays in all 

species, in agreement with Insua et al. (2001), who obtained intense 5S rDNA Fluorescence in 

situ Hybridization spot-signals in Mytilus mussels. However, the occurrence of dispersed 5S rDNA in the 

genomes of these species cannot be ruled out. Another interesting issue was the unequal GC content 

observed between the 5S and the NTS regions: the very low GC content of the NTSs contrasted with the high 

GC content of the internal transcribed spacers (ITS1 and ITS2) of the major ribosomal genes of bivalve 

species (Insua et al. 2003; Cheng et al. 2006; Vierna et al. 2010). This could be due to the fact that the NTS 

region is not transcribed or folded into a secondary structure, whereas both ITSs are transcribed and have 

known secondary structures. Perhaps the high GC content is related to secondary structure stability. 

The linkage of 5S rDNA genes with other gene families, such as the trans-spliced leader (Aksoy et al. 1992), 

histone genes (Eirín-López et al. 2004), and U1 snDNA (Vierna et al. 2011), has been proposed as evidence 

of the capability of 5S rDNA to move from one location to another in the eukaryote genome. We identified a 

tRNA-Arg gene linked to a 5S rDNA defective copy of C. chorus. A homologue tRNA has recently been 

found in the Mytilus species (Freire et al. 2010). Our finding reveals that it is not a species-specific character, 

and the linkage may be also occurring in the genomes of other species from subfamily Mytilinae. 

The 5S rDNA diversification that we found within the Mytilinae lineage is quite surprising if we compare it 

with the Modiolinae and Lithophaginae species. If Modiolus capax and L. lithophaga were monophyletic 



 
 

compared with the Mytilinae, this may imply a loss of 5S rDNA types in their lineage. However, the pattern 

observed may also be the result of limited sampling. 

The 5S rDNA sequences from M. coruscus seemed to be the most divergent ones within Mytilus species. 

However, Martínez-Lage et al. (2005) suggested that M. californianus is the most divergent species within 

the genus according to satellite DNA. Other studies supported this idea, even though they did not include M. 

coruscus (Kenchington et al. 1995; Distel 2000; Eirín-López et al. 2002). 

According to Cox et al. (1969), family Mytilidae and subfamily Modiolinae originated in the Early 

Devonian, whereas subfamily Lithophaginae originated in the Early Permian, and Mytilinae, in the Early 

Triassic. This would imply that the δ type is the oldest one, as it is shared by Modiolinae and Mytilinae 

species and should date back to the Early Devonian (in this period, the Modiolinae and the Mytilinae were 

already split in different lineages). In the same way, the α type predates the Early Permian, as in this period, 

Lithophaginae and Mytilinae should have already been different lineages. Finally, the β type seems to be the 

most recent, as its origin should predate the split of the Mytilinae lineages (approximately during the Early 

Eocene). However, we should also be cautious here regarding possible sampling limitations. 

As explained above, a remarkable number of surveys reported high intragenomic divergence within 5S 

rDNA in mollusks, but only a few studies explained it in the light of a birth-and-death evolutionary scenario. 

The idea of birth-and-death as the main force driving 5S rDNA molecular evolution was reinforced by the 

presence of pseudogenes, according to the remarks proposed by Rooney and Ward (2005). Despite its low 

polymorphism, the mutations observed in the 5S region led us to evaluate the presence of pseudogenes 

according to 5S rRNA predictions following Harpke and Peterson (2008). So, it is now clear that the long-

term evolution of Mytilidae 5S rDNA has been driven by birth-and-death processes, which are responsible 

for the variation detected. However, homogenizing mechanisms may have probably been taking part too. 

Some species showed a high degree of intraspecific homogenization (e.g., M. trossulus, and M. 

galloprovincialis α and β clones; M. californianus β clones, and S. algosus and M. coruscus δ clones). In this 

sense, the α and β phylogenies revealed a lack of interspecific admixture between M. trossulus and the other 

species of the M. edulis complex. However, hybrids of M. edulis × trossulus and M. 

galloprovincialis × trossulus have been reported to occur off American coasts (Rawson et al. 1999; Toro et 

al. 2002), indicating that they must have diverged recently. There are 3 possible explanations for this 

observation: 1) different loci were homogenized by unequal crossovers, gene conversions, and/or purifying 

selection (in the functional regions); 2) the sequences obtained were organized in different loci formed by a 

recent duplication event (in the cases in which rapid gene turnover occurs, in the phylogenetic tree we can 

observe species-specific gene clusters), or 3) the sequences were allelic copies of the same locus (less likely). 

 

Conclusions 

According to our results, 1) the upstream TATA-like box appears to be involved in transcription regulation 

and 2 other upstream regulatory elements may be acting as transcriptional factor-cofactor–binding sites, 

although their functional role was not demonstrated experimentally; 2) the phylogenetic network performed 

showed a clustering pattern in which the 5S sequences of each of the classes considered (Bivalvia, 

Gastropoda, and Cephalopoda) grouped together. However, within bivalves, a duplication event before the 

radiation of the veneroids seems to have occurred, as revealed by the paralogue groups described; 3) birth-

and-death processes seem to be stronger than the homogenizing mechanisms in many molluskan species, and 

they may be responsible for the extant intragenomic divergence that we see today within 5S rDNA in several 

bivalves; 4) at least 1, 2, or 3 5S rDNA types occurred in the genomes of Mytilidae species, and evidence of 

ancestral polymorphism has been found as some NTSs were more closely related to NTSs from other species 

(and genera) than to NTSs from the species they were retrieved from; 5) putative pseudogenes were 



 
 

characterized within β and δ sequences; and 6) birth-and-death processes are the main force driving the long-

term evolution of 5S rDNA in family Mytilidae (since the Early Ordovician, 480–470 million years ago), in 

agreement with what has recently been found for Mytilus species and the razor clam family Pharidae. 
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