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Abstract:  

The first “growth hormone secretagogues” (GHSs) were discovered by Bowers et al. in 1977. In 1996 the GHSs 

receptor (GHS-R 1a) was cloned. The endogenous ligand for this receptor, ghrelin, was not identified until 1999. 

Synthetic molecules termed GHSs are substances that stimulate growth hormone (GH) release, via a separate 

pathway distinct from GH releasing hormone (GHRH)/somatostatin. Ghrelin displays strong GH-releasing activity 

through the activation of the GHS-R 1a. Apart from stimulating GH secretion, ghrelin and many synthetic GHSs: 1) 

stimulate prolactin and ACTH secretion; 2) negatively influence the pituitary-gonadal axis; 3) stimulate appetite and 

positive energy balance; 4) modulate pancreatic endocrine function and affect glucose levels; 5) have cardiovascular 

actions. The control of ghrelin secretion is not well established at present, although nutrition is an important 

regulator. Investigators have exploited the ability of GHSs and ghrelin to release GH by mechanisms different from 

GHRH as a diagnostic tool, which is the present main clinical use of some GHSs. As an alternative to GH, GH 

deficient conditions could be treated with any substance which would release endogenous GH, such as synthetic 

GHSs. It is likely that GHSs, acting as either agonists or antagonists on different pathophysiological processes, might 

have some other clinical impact and therapeutic potential. At least theoretically ghrelin receptor antagonists could be 

anti-obesity drugs, as blockers of the orexigenic signal from the gastrointestinal tract to the brain. Inverse agonists of 

the ghrelin receptor, by blocking the constitutive receptor activity, might lower the set-point for hunger between 

meals.  
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INTRODUCTION 

Ghrelin is a 28-amino-acid peptide predominantly produced by the stomach that shows a unique 

structure with an n-octanoyl ester at its third serine residue, which is essential for its potent stimulatory 

activity on somatotroph secretion [1] (Fig. 1). Ghrelin, identified as an endogenous ligand for the growth 

hormone secretagogue receptor, functions as a somatotrophic and orexigenic signal from the stomach [1, 

2]. Synthetic molecules termed “growth hormone secretagogues” (GHSs) are substances that stimulate 

and amplify pulsatile pituitary growth hormone (GH) release, via a separate pathway distinct from GH 

releasing hormone (GHRH)/somatostatin. The GH-releasing activity of GHSs is marked, dose related and 

reproducible after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHSs 

on GH release is synergistic with that of GHRH, while it is only partially refractory to inhibitory 

influences, which nearly abolish the effect of GHRH. The activity of GHSs is not fully specific for GH 

secretion, since they also have slight releasing activity on other pituitary hormones and mediate GH 

independent biological activities through specific receptor subtypes in other central and peripheral 

endocrine and nonendocrine tissues [3].  

 
 

 
Fig (1). Primary sequence structure of human ghrelin. 

The first GHSs were discovered by Bowers et al. in 1977 [4], when GHRH itself was not known yet. 

Experimenting with the enkephalin molecule he was able to identify, through systematic structural 

modification, a group of non-opioid peptides with GH releasing capabilities. Subsequently, through 

theoretical low-energy conformational calculations, computer modelling and structural modification, a 

series of small peptides able to stimulate GH secretion was produced [5]. In 1996 the G-protein-coupled 

seven transmembrane receptor (GHS-R 1a) through which these compounds acted was cloned [6]. The 

endogenous ligand for this receptor, ghrelin, was not identified until 1999 [1]. The discovery of ghrelin, 

therefore, started with the synthesis of its analogs and ended with the discovery of the natural ligand, via 

the discovery of the natural receptor. There are also other natural ligands of GHS-R 1a, apart from ghrelin 

[7], and GHS-R 1a is unlikely to be the only GHSs receptor. Ghrelin is most abundantly expressed in 

specialized cells in the oxyntic glands of the gastric epithelium, originally termed X/A-like cells [8]. 

Approximately 60-70% of circulating ghrelin is secreted by the stomach, and most of the remainder 

originates in the small intestine [8]. It has been suggested that low-level ghrelin expression also occurs in 

several tissues outside the gut, including pancreatic islet cells, hypothalamus (arcuate nucleus and 

paraventricular nucleus), pituitary, lung, adrenal cortex, kidney, bone, testis and placenta [1, 7, 9].  

 

There are different circulating molecular forms of ghrelin. The active form of ghrelin in terms of 

endocrine actions seems to need an n-octanoyl group at serine 3 [7, 10], since the unacylated form of 

ghrelin does not bind the GHS-R1a and is devoid of endocrine activity [1, 7, 11]. However, unacylated 

ghrelin is not biologically inactive [7, 11, 12] (Table 1). 

Table 1. Ghrelin General Characteristics. GPCR: G-Protein-Coupled Receptor [7, 11] 

Structure 28 Aminoacids Peptide 

  
Chromosomal gene locus 3p25-26 

Synthesis Gastric mucosa X/A like cells 

Main stimulators Preprandial, weight loss 
Main inhibitors Calories, obesity, somatostatin, insulin 

Target organs Hypothalamus, pituitary 

Main actions Growth, energy balance 
Receptor GHS-R (GPCR with 7 transmembrane domains) 

  

  



On the basis of the bioinformatic prediction that another peptide also derived from the precursor 

proghrelin exists, a hormone named obestatin was isolated from the rat stomach. Treatment of rats with 

obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. 

Obestatin bound to the G-proteincoupled receptor GPR39. Thus, two peptide hormones with opposite 

actions in weight regulation are derived from the same ghrelin gene. [13]. Some of the initial results 

obtained with obestatin have not been confirmed by other groups [14-16], although it could participate in 

thirst regulation [17], and the physiological importance of obestatin is unclear at the present time. In 

human studies an increased circulating preprandial ghrelin to obestatin ratio has been found in obesity, 

suggesting that this ratio could be involved in the pathophysiology of obesity [18].  

GHRELIN SECRETION  

Ghrelin levels in blood increase during fasting and decrease during periods of feeding. Plasma ghrelin 

levels increase before meals and at night, and are rapidly suppressed by food intake, particularly by high 

calorie or high carbohydrate meals [19, 20].  

 

The mechanisms responsible for postprandial suppression of ghrelin are unclear at present, and 

conflicting results have been obtained in different experimental situations. Diet composition influences 

postprandial ghrelin. Most studies have used mixed or carbohydrate rich test meals, which classically 

suppress ghrelin levels [21, 22]. After a solid carbohydrate-rich test meal and after an oral glucose load 

ghrelin levels clearly decreased, a fat-rich meal also decreased plasma ghrelin; protein intake, however, 

stimulated plasma ghrelin and there was no change in ghrelin after modified sham feeding or gastric 

distension [23]. Acylated ghrelin significantly fell after the ingestion of both a balanced and a high 

protein meal [24]. Greenman et al. found that ghrelin levels decreased significantly following a glucose 

load or a lipid meal, but protein did not affect ghrelin [25]. The calorie content of food is another factor 

regulating postprandial ghrelin. Increasing the calorie content of meals in normal-weight subjects 

progressively lowered nadir levels of ghrelin [26]. The depth of postprandial ghrelin suppression has been 

found proportional to the ingested caloric load [22]. Obese patients have lower fasting ghrelin levels, and 

the reduction after the consumption of different test meals was less than in the normal-weight subjects. 

The lowest postprandial levels in the obese were not different from the nadir in normal-weight volunteers 

after 1000-, 2000-, and 3000-kcal meals. Obese subjects demonstrate a much reduced ghrelin postprandial 

suppression [26]. Cephalic-vagal mechanisms could contribute to ghrelin regulation and modified sham 

feeding has been employed to test this hypothesis. Circulating ghrelin concentrations have been found to 

decrease by modified sham feeding as they are by real feeding in humans [27], although others did not 

find any significant change of ghrelin levels after modified sham feeding or gastric distension [23]. In 

other clinical model, chronic renal failure patients, ghrelin secretion has been found partially refractory to 

the acute inhibitory effect of oral feeding [28].  

 

Different studies have found that insulin plays an important role in postprandial ghrelin regulation. 

Total and acylated ghrelin significantly fell after the ingestion of a mixed meal and acylated ghrelin levels 

correlated negatively with the postprandial insulin levels [28, 29]. After a carbohydrate-enriched 

breakfast the percentage of decrease in ghrelin between 0 and 30 min was inversely correlated with the 

percentage of increase in insulin and glucose [30]. It has also been found in adult men and women that 

meal-induced ghrelin suppression correlated with the postprandial rise in insulin [31]. In contrast with the 

previous studies, others could not find a clear relationship between postprandial ghrelin and insulin. 

During intravenous administration of glucose, representing fasting and postprandial conditions, a 

reduction in ghrelin was obtained only at supraphysiological insulin concentrations. This finding suggests 

that postprandial suppression of ghrelin is not directly regulated by glucose or insulin [32, 33]. In normal 

subjects we have found that postprandial plasma levels of both total and acylated intact ghrelin are 

suppressed after a mixed meal. Total ghrelin (expressed as percentage of baseline) and acylated ghrelin 

(expressed as percentage of baseline) after a mixed meal positively correlated with basal insulin 

resistance, suggesting that basal insulin resistance diminishes postprandial total and acylated ghrelin 

suppression. In contrast, the nadir of total ghrelin and the AUC of total ghrelin after the meal negatively 

correlated with the insulin peak and the AUC of insulin after a mixed meal, suggesting that postprandial 

insulin could be a major suppressor of total ghrelin after feeding [29]. These data suggest that insulin is a 

more likely candidate for ghrelin regulation, although it is possible that there are unidentified circulating 

factors that are associated with both high insulin and low ghrelin concentrations.  

  



Although obese patients with Prader-Willi syndrome, characterized by hyperphagia and obesity, have 

elevated ghrelin levels [34], the concentrations of fasting ghrelin are increased in anorexia and cachexia 

but reduced in idiopathic obesity [20, 21, 34, 35] and plasma ghrelin levels negatively correlated with 

body mass index, body fat mass and plasma leptin, insulin and glucose levels [36]. Insulin resistance has 

been postulated to play a role in determining this lower fasting plasma ghrelin in obese subjects [37]. 

 

Recent studies have raised the different biological actions of acylated and unacylated ghrelin. 

Barazonni et al. studied acylated and desacylated ghrelin levels in patients with metabolic syndrome. 

Plasma insulin and HOMA-IR were associated negatively with totalghrelin and desacylated-ghrelin but 

positively with acylated-ghrelin and acylated to desacylated ghrelin ratio. Compared with nonobese, 

obese metabolic syndrome patients had lower total-ghrelin and desacylated- ghrelin but comparable 

acylated-ghrelin and higher acylated/ desacylated-ghrelin ratio. They conclude that obesity could alter 

circulating ghrelin profile, and relative acylated-ghrelin excess could contribute to obesity-associated 

insulin resistance in metabolic syndrome [38].  

 

All these data support an important role of ghrelin in the longterm regulation of energy homeostasis 

[21, 39]. Cholinergic stimulation leads to increased plasma ghrelin levels. Combined GHRHarginine 

administration similarly leads to increased plasma ghrelin levels [40]. In contrast, oral or intravenous 

glucose, insulin, glucagon and somatostatin suppress systemic ghelin levels [21, 41, 42].  

 

Due to the well established GH-releasing activity of ghrelin [1, 6, 43, 44], it could be possible that GH 

regulates ghrelin secretion through a classical feedback system. In that sense it has been found that GH 

administration to GH-deficient patients induces a decrease in ghrelin levels [45]. Most, although not all, 

studies suggest that GH does not participate in the regulation of ghrelin secretion in humans [42, 46, 47]. 

Leptin could participate in the postprandial regulation of ghrelin. The percentage of changes in ghrelin 

concentrations after a carbohydrate rich meal between 30 and 180 min were correlated with the 

percentage of changes in leptin [30], although most of the studies did not suggest a significant role for 

leptin in ghrelin regulation [37].  

 

Short-term infusions of peptide YY, oxyntomodulin, and urocortin, all putative appetite suppressing 

peptides, led to a decrease in plasma ghrelin levels [40]. Low systemic ghrelin has been reported in 

untreated hyperthyroidism, in male hypogonadism, in the polycystic ovary syndrome, in the presence of 

Helycobacter pylori-induced gastritis, or after total gastrectomy [40, 48]. The effect of exercise on ghrelin 

secretion has been studied in lean and obese adolescents. Total ghrelin was not affected by exercise; in 

contrast acylated ghrelin significantly increased after exercise, and this increase was greater in lean than 

in obese adolescents. Higher acylated ghrelin correlated with an increase in markers of appetite [49] 

(Table 2).  

Table 2. Factors and Clinical Situations Associated with Changes in Circulating Ghrelin Levels [40] 

Decreased Ghrelin Increased Ghrelin 

  

Obesity Preprandial 

Postprandial Weight loss 
Gastrectomy Anorexia nervosa 

Gastric bypass surgery Cachexia 

Helicobacter pylori-induced gastritis Prader-Willi syndrome 
Insulin Cholinergic stimulation 

Somatostain  

  

 

  



GHRELIN ACTIONS 

The biological activity of ghelin depends on an n-octanylation at position Ser3, at least in terms of GH 

release. Non-acylated ghrelin, which circulates in amounts far greater than the acylated form, does not 

displace radiolabeled ghrelin from its hypothalamic or pituitary binding sites and is unable to release GH 

in rats. Non-acylated ghrelin seems to be devoid of any endocrine action [50], although it exerts 

antiproliferative effects and is able to interact with specific receptors in cardiac muscle. Ghrelin displays 

strong GH-releasing activity [44] through the activation of the GH secretagogue receptor type 1a (GHS-R 

1a). GHS-Rs are concentrated in the hypothalamus-pituitary unit but are also distributed in other central 

and peripheral tissues. Apart from stimulating GH secretion, ghrelin and many synthetic GHSs: 1) 

stimulate prolactin and ACTH secretion; 2) negatively influence the pituitary-gonadal axis; 3) stimulate 

appetite and positive energy balance; 4) modulate pancreatic endocrine function and affect glucose levels, 

5) have cardiovascular actions [6] (Table 3).  

Table 3. Ghrelin Actions [7, 11] 

 
Stimulate GH secretion 

Stimulate food intake 

Stimulate weight gain 
Stimulate prolactin and corticotrophin secretion 

Stimulate gastrointestinal motility 

Stimulate gastric acid secretion 
Increase cardiac output 

Decrease blood pressure 

Modulate insulin-glucose homeostasis 
Modulate inflammation 

Modulate cell proliferation 
 

 

PITUITARY ENDOCRINE ACTIONS  

Ghrelin has a direct effect on pituitary somatotroph secretion in vitro and acts synergistically with 

GHRH to stimulate GH secretion [1, 51]. Ghrelin may have direct hypothalamic effects to further induce 

GH secretion. In high doses, ghrelin may also stimulate prolactin, corticotrophin, and cortisol secretion 

[51]. Animal studies that involve genetic ablation suggest that neither ghrelin nor its classic GHS receptor 

is required for growth [52]. The relevance of these observations to human physiology is uncertain and is 

being challenged by the recent report of familial short stature in association with a GHS receptor 

mutation, leading to decrease binding to the mutant receptor [53]. The effect of ghrelin has been 

compared with that of hexarelin (HEX, a synthetic GHS) and GHRH. The GH response to ghrelin was 

clearly higher than that recorded after GHRH and even significantly higher than after hexarelin. Ghrelin 

administration also induced an increase in PRL, ACTH, and cortisol levels; these responses were higher 

than those elicited by HEX. The endocrine responses to ghrelin were not modified by the 

coadministration of HEX. On the other hand, the coadministration of ghrelin and GHRH had a real 

synergistical effect on GH secretion [7]. Ghrelin exerts a strong stimulatory effect on GH secretion in 

humans, releasing more GH than GHRH. The most important clinical application of GHSs at present is its 

use as a diagnostic tool in suspected GH deficiency. GHSs, when administered together with GHRH, 

exert a synergistic action on GH secretion and this combined administration is the most potent GH 

releaser to date. Clinical studies have demonstrated that the GHS-GHRH administration may be 

considered an optimal test of GH reserve in humans, as the GH secretion so elicited is not altered by 

gender, adiposity, or age [43, 54]. The combined administration of GHRH plus GHS is able to 

discriminate between healthy subjects and patients with adult GH deficiency, suggesting a considerable 

utility in the clinical setting [54-56]. Ghrelin has been used in adult patients with isolated childhood-onset 

GH deficiency. In this condition, however, the somatotroph response is markedly reduced while the 

lactotroph and corticotroph responsiveness to ghrelin is fully preserved, indicating that this endocrine 

activity is fully independent of the mechanisms underlying the GH-releasing effect. These results do not 

support the hypothesis that ghrelin deficiency is a major cause of isolated GH deficiency but suggest that 

ghrelin might represent a reliable provocative test to evaluate the maximal secretory capacity provided 

that appropriate cut-off limits are assumed [57]. The combined GHS-GHRH administration may be 



employed as a diagnostic test in other clinical situations. The use of GH secretagogues plus GHRH is an 

easy, reliable and accurate way of assessing GH secretion in cranially irradiated patients. Impairment of 

the GH releasable pool in irradiated patients, with a maximal provocative test, reflects alterations in the 

hypothalamic-pituitary unit caused by radiotherapy [58]. Synthetic GHSs have been used to increase GH 

secretion for longer periods. Maccario et al. showed that two or three daily sc injections of hexarelin 

augmented 24 h GH secretion. IGF-I levels were not modified by these 1-day hexarelin treatment 

schedules [59].  

REGULATION OF ENERGY BALANCE  

In experimental animals, central or systemic ghrelin administration stimulates food intake [2, 60]. In 

humans, ghrelin infusion that leads to an increase in plasma ghrelin to preprandial levels stimulates 

hunger and spontaneous food intake [61]. Ghrelin is the only peripheral orexigenic factor, clearly 

established in the human [62]. Postprandial suppression of serum ghrelin is less robust in obese 

individuals, possibly contributing to the pathogenesis of obesity [19, 20].  

 

In addition to its putative role as a short-term signal that regulates meal initiation and satiety, ghrelin 

appears to have a role as a longterm signal of nutritional status [63]. Systemic ghrelin levels are 

negatively associated with body adiposity and increase with weight loss induced by low calorie diet, 

exercise, cachexia or malignancy [19, 21, 36, 39]. Weight gain leads to decreased systemic ghrelin levels 

[36]. Long-term ghrelin administration leads to weight gain in experimental animals by stimulating food 

intake, decreasing energy expenditure and spontaneous activity, and promoting adipogenesis [2, 7, 60, 

61]. Several human studies support the hypothesis that ghrelin is important in the long-term regulation of 

energy balance. Patients with Prader-Willi syndrome have very high systemic ghrelin levels, hyperphagia, 

and extreme obesity, suggesting a role of ghrelin in the pathogenesis of obesity in this disease [34]. 

Postprandial suppression of serum ghrelin is less robust in patients with Prader-Willi syndrome as 

compared to matched obese and healthy controls [64]. Systemic ghrelin levels decrease in morbidly obese 

patients after gastric bypass surgery, suggesting that ghrelin may be involved in the mechanisms that lead 

to weight loss [20]. This observation has been confirmed in most, but not all subsequent studies [40, 65]. 

In experimental animals, ghrelin is more potent in stimulating appetite when administered centrally rather 

than systemically [2, 60, 61]. Ghrelin leads to c-fos activation in arcuate hypotathalamic neurons that 

express the GHS receptor and are known to have an important role in energy homeostasis [60]. The 

expression of appetite-stimulating peptides neuropeptide Y (NPY) and agouti-related protein (AgRP) is 

increased by ghrelin in the arcuate nucleus [40, 66].  

PANCREATIC ENDOCRINE ACTIONS  

Studies in animals report conflicting results regarding the influence of ghrelin on insulin secretion 

[67-69]. In fact, ghrelin was able to stimulate insulin secretion from isolated rat pancreatic islets [68] and 

in vivo [69, 70]. On the other hand, insulin secretion from isolated rat pancreas was found to be blunted 

by exposure to ghrelin [67]. Again in agreement with the assumption that ghrelin negatively modulates 

pancreatic �-cell secretion, at least transiently, it has been found that ghrelin induces a slight but 

significant increase in plasma glucose levels and a reduction in insulin secretion in normal subjects in 

some [71-74] but not all studies [75, 76]. Recent studies have shown in rats, that systemic ghrelin 

administration decreased plasma insulin concentrations [77]. In rat islets, ghrelin receptor antagonist 

increased and exogenous ghrelin suppressed glucose-induced insulin release. Glucose-induced insulin 

release from islets was greater in ghrelin-knockout than wild-type mice [77].  

CARDIOVASCULAR ACTIONS  

Human data suggest that there is an association between systemic ghrelin levels and cardiovascular 

indexes [78]. In addition, ghrelin infusion has acute hemodynamic effects in healthy human volunteers, 

increasing cardiac index and stroke volume and decreasing blood pressure [79]. The effects of GHSs on 

left ventricular function and myocyte contractility have been studied in a model of congestive heart 

failure in pigs. With GHS treatment, the ratio of left ventricular mass to body weight increased by 44% 

from untreated values. Steady-state myocyte velocity of shortening was increased with GHS treatment. 



The improved left ventricular pump function that occurred with GHS treatment in this model was most 

likely a result of favourable effects on left ventricular myocardial remodelling and contractile processes 

[80]. Ghrelin improves cardiac structure and function, and attenuates the development of cardiac cachexia 

in rats with heart failure [11, 81]. The hemodynamic and hormonal effects of ghrelin were studied in 

healthy men. Ghrelin elicited a marked increase in circulating GH (15-fold). Injection of ghrelin 

significantly decreased mean arterial pressure. Ghrelin significantly increased cardiac index and stroke 

volume index. GHS-R mRNA was detectable in the rats´ aorta, left ventricles, and left atria, suggesting 

that ghrelin may cause cardiovascular effects through GH-independent mechanisms. These data suggest 

that human ghrelin elicited a potent, long-lasting GH release and had beneficial hemodynamic effects via 

reducing cardiac afterload and increasing cardiac output, without an increase in heart rate [79]. In patients 

with coronary artery disease undergoing by-pass surgery, the acute administration of hexarelin clearly 

improves cardiac performance, it increases left ventricular ejection fraction, cardiac index and cardiac 

output. The cardiotropic effect of hexarelin is not shared by GHRH or by rhGH, indicating that it is not 

mediated by the increase in circulating GH levels but more likely reflects activation of specific 

cardiovascular GH secretagogue receptors [82]. There are results that suggest that ghrelin might have 

some role in cardiovascular control during normal pregnancy and in pregnancy-induced hypertension 

[83]. These studies together with the presence of GHSR in the heart suggest that GHS could have some 

future role as cardiovascular drugs due to their important hemodynamic effects.  

RENAL ACTIONS  

In patients with chronic renal failure, total ghrelin are increased, while those of acylated ghrelin are 

not [28]. Plasma total ghrelin levels decreased modestly and plasma acylated ghrelin more markedly after 

a standardized oral feeding, in patients with chronic renal failure treated with peritoneal dialysis. 

However, these changes were significantly attenuated, when compared with those observed in healthy 

controls, indicating that ghrelin secretion is partially refractory to the acute inhibitory effect of oral intake, 

in these patients. A hypertonic glucose-based dialysate peritoneal dialysis exchange was able to reduce 

significantly plasma levels of total and acylated ghrelin [28]. These alterations could contribute to early 

satiety and malnutrition, in these patients.  

 

In a surgical model of chronic kidney disease in rats, treatment with ghrelin and ghrelin receptor 

agonists resulted in increased food intake and an improvement in lean body mass accrual that was related 

in part to a decrease in muscle protein degradation. Additionally, there was a decrease in circulating 

inflammatory cytokines. The authors conclude that ghrelin treatment in uremia results in improved lean 

mass accrual in part due to suppressed muscle proteolysis and possibly related to antiinflammatory effects 

[84]. In other experimental model in young uraemic rats, ghrelin increases appetite but not 24- h food 

intake, stimulates GH secretion and does not improve growth [85]. In summary, in chronic renal failure 

ghrelin secretion is altered and has a potential therapeutic use. 

OTHER ACTIONS  

Ghrelin modulates gastrointestinal motility and gastric acid secretion [40]. Ghrelin stimulates gastric 

motility [86], which makes it a candidate as a prokinetic drug to treat postoperative ileus. Some evidence 

suggests that ghrelin may have direct anti-inflammatory effects [40], directly influence osteoblast growth 

[9], and modulate proliferation of neoplastic cells [7].  

TYPES OF GHSS  

Growth hormone secretagogues can have a peptide (growth hormone- releasing peptides, GHRPs) or a 

non-peptide structure. The first synthesized GHS were nonnatural peptides. Since peptides have low oral 

availability, extensive research has been carried out to synthesize non-peptidyl analogs, with better oral 

bioavailability and longer half-lives [87] (Table 4, 5).  

  



Table 4. Some of the More Relevant Peptidyl, Non-Peptidyl GHSs and Ghrelin, and the Year they were Synthesized or Discovered 

[7] 

Year  Peptidyl GHSs (GHRPs) Nonpeptidyl GHSs 

   
1977  (D-Trp2)-metenkephalin  

1984  GHRP-6  

1991  GHRP-1  
1992   L-692,429 

1993  GHRP-2  

1994  Hexarelin L-692,585 
1995   MK-0677 

1996  EP-51389  

1998   
1999   NN-703 

2000   CP-424,391 

2001   SM-130686 
2002   EP-01572 

   

 

Table 5. Comparative Structures of Selected Growth Hormone Releasing Peptides and Met-Enkephalin. DbetaNal: D-2-

Naphthylalanine. DmeTrp: D-Methyl-Tryptophan [87] 

Aminoacid  1 2 3 4 5 6 7 

        

Met-enkephalin  Tyr Gly Gly Phe Met-NH2   

GHRP-6  His DTrp Ala Trp Dphe Lys-NH2  
GHRP-1  Ala His DbetaNal Ala Trp Dphe Lys-NH2 GHRP-2 

Dala  DbetaNal Ala Trp DPhe Lys-NH2  Hexarelin 

His  DMeTrp Ala Trp DPhe Lys-NH2   
        

 

Peptidic Growth Hormone Secretagogues (GHRPs)  

Growth hormone-releasing peptides are a series of tetra (e.g. G- 7134), penta (e.g. G-7039), hexa 

(GHRP-2, GHRP-6, hexarelin), and heptapeptides (GHRP-1) that have been shown to effectively release 

GH in animals and humans.  

 

Tripeptides with substantial GH-releasing potency have also been synthesized [88] suggesting that the 

primary structure of a basic amino group and two aromatic amino acids is sufficient for this purpose. 

Although potent stimulants of GH release when administered parenterally, the hexapeptide GHRPs have 

modest oral bioavailability. Modifications of the GHRP structure and the synthesis of partial peptides 

increase oral bioactivity of these drugs.  

GHRP-6  

GHRP-6 was the first hexapeptide that demonstrated to actively release GH in vivo. It is the most 

widely studied GHRP and is specific for GH release in a variety of species, including man. One of its 

properties is that it shows strong GH-releasing activity after oral administration, although it has low 

bioavailability and a short-lasting effect. As a diagnostic tool, which is the actual most important clinical 

utility of GHSs, the combined administration of GHRH plus GHRP-6, both at saturating doses, is 

currently the most powerful releaser of growth hormone, devoid of side effects and convenient for the 

patient.  

  



GHRP-2  

GHRP-2 has been shown to be effective in stimulating GH secretion in adults and children via the 

oral, intranasal as well as the iv route [89]. It was well tolerated, able to stimulate GH secretion and 

enhanced growth velocity without side effects or toxicities in an eight months trial of prepubertal children 

with growth failure [90]. It has recently been shown that subcutaneous administration of GHRP-2 to lean, 

healthy males, like ghrelin, increases food intake [91].  

Hexarelin  

Directly derived from GHRP-6 by substitution of 2-methyltryptophan for tryptophan [92], this 

compound is more rapidly absorbed than GHRP-6 due to its more lipophilic character and/or it is more 

resistant to degradation. This compound is more potent, has more chemical stability and less toxicity than 

GHRP-6. It is effective after intravenous, subcutaneous or intranasal administration. Apart from its 

capability to stimulate GH secretion, hexarelin displays a strong heart-protective activity against 

myocardial stunning in senescent rats, which seems to be specific to hexarelin or related GHRPs. 

Hexarelin also stimulates lactotroph and corticotroph secretion, stimulates feeding in the rat and has 

antiproliferative effects in human CALU-1 lung carcinoma cells.  

Hexarelin Derivatives  

By truncating hexarelin, the tripeptide EP-51389 was identified [93]. This tripeptide is more potent 

than hexeralin in stimulating GH secretion and is orally active in man. EP-51389 was further modified at 

its C-terminal region to incorporate a gem-diamino tryptophan residue [94], which was formylated to give 

EP-01572. This peptidomimetic GHS shows a very potent and selective GH-releasing activity after 

subcutaneous and even oral administration of very low doses [95].  

Other Peptidic Growth Hormone Secretagogues  

Ipamorelin is a pentapeptide derived from GHRP-1 with deletions of residues 4 and 5 [96]. It was 

identified within a series of compounds lacking the central dipeptide Ala-Trp of GHRP-1. In in vitro and 

in vivo animal studies ipamorelin released GH with a potency and efficacy similar to GHRP-6, did not 

affect FSH, LH, PRL or TSH levels, and, unlike GHRP-6 and GHRP-2, did not increase levels of ACTH 

or cortisol. Tabimorelin is a pseudo-peptide GHS that is orally active. It results from truncating 

ipamorelin and simultaneously reducing the hydrogen-bonding potential by incorporating of backbone 

isosteres. Parallel combinatorial chemistry was used to optimize these compounds, synthesizing 

tabimorelin [97]. This compound showed potency and efficacy similar to that of GHRP-6 in animal cell 

assays. After a single oral dose it did not stimulate ACTH, LH, FSH, TSH, PRL or cortisol secretion, 

which seemed to make it a promising potential candidate for treatment of GH deficiency. Nevertheless in 

a recently published study, a majority of GH deficient adults did not respond to NN703 [98]. 

Non-Peptidic Growth Hormone Secretagogues  

Synthesis of non-peptide compounds with three-dimensional configurations in common with GHRP-6 

but of diverse chemical structure, with GH-releasing activity by parenteral or oral administration and with 

enhanced and prolonged biologic activity, led to the nonpeptidic GHSs [99].  

 

Researchers at Merk & Co Inc discovered compounds that mimiced the structure of GHRP-6, the 

benzolactams. The replacement of the carboxylic acid moiety and the resolution of the C(3)-chiral centre 

in the compound 11 led to the (R)-enantiomer L-692,429. This compound, when administered 

intravenously, stimulated release of GH in several animal models and in healthy young males without 

inducing significant changes in other pituitary hormones. In an attempt to discover substances with good 

oral bioavailability and more power, many analogs of L-692,429 were synthesized. The identification of 

L-739,943, was obtained from zwitterionic L-692,429. L-739,943 is orally active for the release of growth 

hormone in beagle dogs at doses as low as 0.5 mg/kg. L-739,943 represents a significant breakthrough in 



terms of both potency and oral bioavailability, as compared to the prototype benzolactam L-692,429 

[100].  

 

Ye et al. reported the design, synthesis and biological activities of quinazolinone-based compounds as 

a new class of non-peptidic human GH secretagogue receptor agonists [101]. Introduction of a phenyl 

group at the C-6 position of the quinazolinone core and extension of the amine side-chain improved the 

binding activity of lead compound 4 against the GH secretagogue receptor. In all quinazolinone- type 

analogues, activities on the human GH secretagogue receptor increased when a phenethyl group was 

positioned at the C-2 position. Quinazolinones, such as compound 21, provide a potent alternative to the 

privileged structure based dipeptide design exemplified by MK-0677.  

 

In an intensive research to discover potent oral GHSs, Merck synthesized a series of substances based 

on a spiroindanylpiperidine structure. L-162,752 (compound 17) produced good GH secretion after oral 

administration to dogs. Modifications were introduced on L-162,752 to increase its potency while 

retaining its oral bioavailability. In compound 18 the D-tryptophan residue was replaced by an Obenzyl- 

D-serine residue and a methane-sulfonylamide was introduced in the spiroindoline part of the structure. 

This secretagogue had high potency and excellent oral activity. MK-0677 [102, 103] is the mesylate salt 

of compound 18. It is stable to peptidase degradation and shows a long-acting activity, which makes these 

GHs different from the benzolactam-based growth hormone secretagogues, which had a short duration of 

action and short half-lives, and from GHRP-6 or examorelin. Clinical studies using MK-0677 have been 

performed in healthy, both young and elderly, individuals. Sustained elevations in plasma GH and IGF-1 

have been achieved after once-a-day oral dose. Fasting blood glucose, insulin and PRL also increased. 

Several sleep parameters have been reported to improve with treatment with MK- 0677.  

 

Some oxindole derivates are potential GHSs. Modification of an oxindole derivative led to an entirely 

new class of non-peptidic GHSs represented by SM-130686 [104], which are structurally different from 

GHRP-6, hexarelin, MK-677 and NN703. SM-130686 has potent activity and a good pharmacokinetic 

profile in rats and might be a partial agonist for GHS-R 1a [105]. Repetitive administration of SM-130686 

to rats, similar to repetitive administration of GH, significantly increased the fat free mass by an amount 

almost equal to the gain in body weight.  

PHARMACOLOGICAL USES OF GHRELIN AND GHSS 

Investigators have exploited the ability of GHSs to release GH by mechanisms different from GHRH 

as a diagnostic tool [54-56], which is the present main clinical use of some GHSs. Since the 

commercialization of GH many studies have shown other potential medical uses of GH, apart from 

treatment of GH deficient children. Specifically, GH has been studied to treat physiological or 

pathological conditions characterized by a deficient GH secretion and conditions which are improved by 

the anabolic effects of GH. Nevertheless GH is expensive and has to be administered parenterally. As an 

alternative, these conditions could be treated with any substance which would release endogenous GH, 

such as synthetic GHSs. GHSs are being evaluated as potential therapeutic agents for enhancing 

circulating GH levels in patients with intact hypothalamic-pituitary axis, including children with growth 

hormone deficiency, as well as adults with catabolic states. Different studies have examined the 

intravenous and oral effects of GHSs. Recently the pharmacokinetics and hormonal effects of oral and 

intraduodenal EP01572, a synthetic ghrelin agonist, has been tested. The results revealed that oral and 

intraduodenal administration of EP01572 induced a rapid and dose-dependent increase in plasma drug 

concentrations and a potent GH release in healthy male volunteers [106]. Some new GHSs share some of 

the physiological actions of ghrelin without stimulating GH secretion. It is likely that GHSs, acting as 

either agonists or antagonists on different physiological and pathophysiological processes, might have 

some other clinical impact and therapeutic potential.  

 

At present, ghrelin is the only peripheral orexigenic factor that is effective upon its intravenous 

administration [62]. At least theoretically ghrelin receptor antagonists could be anti-obesity drugs, as 

blockers of the orexigenic signal from the gastrointestinal tract to the brain. Inverse agonists of the ghrelin 

receptor, by blocking the constitutive receptor activity, might lower the set-point for hunger between 

meals [107]. Other mechanisms to decrease ghrelin activity could also be effective for the treatment of 

obesity [108]. In contrast, ghrelin and GHSs may be useful as orexigenic agents for the treatment of 

eating disorders such as anorexia nervosa [10]. Administration of ghrelin or GHSs can stimulate appetite 

and improve the nutritional status of these patients. However, plasma ghrelin concentrations in anorexia 



nervosa are high, indicating a situation of ghelin resistance. These drugs could also be useful in all the 

clinical situations associated with cachexia, such as malignancy, advanced cardiac failure, renal failure, 

postoperative patients and human immunodeficiency virus-lipodystrophy.  

 

Ghrelin receptor antagonists could be useful for the treatment of diabetes. Ghrelin, through action on 

its receptor, GHS-R1a, exerts a variety of metabolic functions. Esler et al. examined the effects of novel 

small-molecule GHS-R1a antagonists on insulin secretion, glucose tolerance, and weight loss. Ghrelin 

dose-dependently suppressed insulin secretion from dispersed rat islets. This effect was fully blocked by a 

GHS-R1a antagonist. Consistent with this observation, a single oral dose of a GHS-R1a antagonist 

improved glucose homeostasis in an ip glucose tolerance test in rat. Improvement in glucose tolerance 

was attributed to increased insulin secretion. Daily oral administration of a GHS-R1a antagonist to diet-

induced obese mice led to reduced food intake and weight loss due to selective loss of fat mass. 

Consistent with the hypothesis that ghrelin regulates feeding centrally, the anorexigenic effects of potent 

GHS-R1a antagonists in mice appeared to correspond with their brain exposure. These observations 

demonstrate that GHS-R1a antagonists have the potential to improve the diabetic condition by promoting 

glucosedependent insulin secretion and promoting weight loss [109].  

 

Ghrelin stimulates gastric motility [86], which makes it a candidate as a prokinetic drug to treat 

postoperative ileus. Administration of ghrelin improves cardiac structure and function, and attenuates the 

development of cardiac cachexia in rats with heart failure [11, 81]. These results suggest that ghrelin has 

cardiovascular protective effects through GH-dependent and –independent mechanisms. Thus ghrelin and 

GHSs may be new therapeutic agents for the treatment of severe chronic heart failure. Other claimed 

clinical uses of ghelin and GHSs include improvement of sleep quality and treatment of fractures, 

osteoporosis, aging, lupus erythematous, inflammatory bowel disease and central nervous system 

diseases, among others. Some of these indications have not been made for the nonpeptide GHSs, maybe 

because of their lower affinity for the GHS-R 1a or because the peptides bind to a yet unidentified 

receptor [7] (Table 6).  

Table 6. Potential Therapeutic Uses of Ghrelin and GHSs Agonists and Antagonists [40] 

Ghrelin and GHSs Agonists Ghrelin and GHSs Antagonists 

  

Diagnosis of GH deficiency Obesity 

Treatment of GH deficiency Prader-Willi syndrome 
Anorexia nervosa  

Cachexia of malignancy  
Other cachexias  

Chronic heart failure  

Gastrointestinal motility disorders  
Osteoporosis  

  

 

In summary, ghrelin is the endogenous compound and GHSs are synthetic molecules that stimulate 

and amplify pulsatile pituitary growth hormone release and stimulate food intake. Ghrelin and GHSs is a 

field of continuous extensive research, to synthesize GHSs with better oral bioavailability and longer half-

lives. The potential applications of Ghrelin and GHSs are numerous and probably many more will be 

claimed in the future. GHSs are being evaluated as potential therapeutic agents for enhancing circulating 

GH levels in patients with intact hypothalamic-pituitary axis, including children with growth hormone 

deficiency, as well as adults with catabolic states.  
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