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Abstract 

Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest 

mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet 

how and why most of these abilities are produced.  

Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both 

understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make 

computers process information similarly to the brain. Important technological developments and vast 

multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a 

human brain.  

Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate 

and/or emulate the human brain. They employ different types of computational models using parallel computing: 

digital models, analog models and hybrid models. This review includes the current applications of these works, as 

well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others 

which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most 

outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this 

review points out the importance of considering not only neurons: Computational models of the brain should also 

include glial cells, given the proven importance of astrocytes in information processing. 

Keywords: Parallel computation, Brain emulation, Neuromorphic chip, Brain computational models, Neuron-

astrocyte networks. 

 

 

 

 

  



1. INTRODUCTION 

The human brain is made up of around 86 billion neurons [1] which communicate through synapses. 

Each neuron is connected to thousands of other neurons, giving rise to trillions of synapses. Each synapse 

can make around 200 operations per second, so the human brain could compute approximately 20 billion 

operations per second [2-6]. Some authors think that these values underestimate the brain capacity, and 

calculated around 10
21

 operations per second [7]. Moreover, some of the main characteristics of the brain 

are the fault and noise tolerance, concurrence, flexibility and high level of parallelization of the 

calculations. In spite of its huge calculation capacity and its amazing characteristics, the adult human 

brain only consumes around 400 Kcal per day, which represents nearly 25 Watts of energy output [8]. 

 

The first computational neural models were created with the goal of reproducing this extraordinary 

organ, in order to understand and mimic the way the information is processed, as well as its energy 

efficiency. In 1943, McCulloch and Pitts [9] proposed the threshold logic units (artificial neurons), which 

receive binary inputs with associated weights to the connection and they produce a binary output which 

depends on the threshold value. The interconnections of these artificial neurons form what is known as 

Artificial Neural Networks (ANN) or Connectionist Systems. Many neural models have been developed 

from this basic model. Some of the main initial contributions came from Turing [10], Minsky [11-13], 

Von Neumann [2, 14] Hebb [15], Rosenblatt [16], Hodgkin and Huxley [17], Widrow and Hoff [18], 

Hubel and Wiesel [19], Rall [20], Marr [21], Rumelhart and McClelland [22]. From these works, 

basically two scientific disciplines emerge: the connectionism branch of Artificial Intelligence, which is 

aimed at developing algorithms based on neural networks to process the information, and Computational 

Neuroscience which seeks to create realistic models of the brain. In the seventies the field of Brain 

Machine Interface (BMI) emerged, whose purpose was to create systems that connected the brain directly 

toan external device. At the same time, a branch of Neuroscience, known as Neuroprosthetics, was 

formed, which sought to build artificial devices to replace the functions of nervous systems which are 

dam-aged in patients. At the end of the eighties, Carver Mead [23, 24] proposed the concept of 

Neuromorphic Engineer to de-scribe the use of Very Large Scale Integration (VLSI) systems which 

contained analog circuits to mimic the neurons.  

 

All these scientific disciplines have tried to model the brain in one way or another. Over the past 

century, many experts in these fields have predicted that in 10 or 20 years a computational system 

comparable to the human brain would be built. But all these predictions had failed because of the 

technological limitations and the underestimation of the brain capacity. Although in this review it will be 

observed that IBM ran the first simulation with approximately the same number of neurons as the human 

brain, the neuron models were very simple and the simulation was x1542 times slower than in real time 

[25]. 

 

However, it should be pointed out that until now in most computational brain models the capacity to 

process the in-formation from the other half of the brain, containing 84 billion glial cells [1], has not been 

taken in consideration. According to the Neural Doctrine, neurons are the only cells in the nervous system 

involved in information processing, and the glial cells only play a support role. But over the past two 

decades this theory has started to be seriously debated. Some discoveries have demonstrated the capacity 

of the glial cells to participate in information processing [26-29]. A lot of studies suggest the existence of 

bidirectional communication between neurons and astrocytes, a type of glial cells of the central nervous 

system [30]. These evidences have led to the proposal of the concept of tripartite synapse [31], formed by 

three functional elements: presynaptic neuron, postsynaptic neuron and perisynaptic astrocyte (Fig. 1). 

The relation between these three elements is very complex and there are different pathways of 

communication: astrocytes can respond to different neurotransmitters (glutamate, GABA, acetylcholine, 

ATP or noradrenaline) [32] liberating an intracellular Ca
+2

 signal, that could be transmitted to other 

astrocytes. In addition, astrocytes may release gliotransmitters that activate presynaptic and postsynaptic 

neuronal receptors, leading to a regulation of the neural excitability, synaptic transmission and plasticity 

[33, 34]. The possibility of a quad-partite synapse, in which microglia are engaged [35], has recently been 

proposed. At the end of this review, further importance is placed on the computational models, besides 

neurons and synapses between the latter. Additionally, the works focused on implementing artificial 

astrocytes in the brain models are presented.  

  



 
 

 
Fig. (1). Tripartite synapse. 

In the next subsections, the motivations to create and develop brain models are listed. Then, it is 

explained how and why the classification of the projects was performed in this review. Finally, it is 

shown how information processing is parallelized in different brain models. 

1.1. Motivations for Brain Modeling  

Taking into account that the different scientific branches mentioned above have as a goal brain 

modeling, and according to Cattell and Parker [36], the reasons to build brain models are the following: 

 

a) Computational Neuroscience: to understand how the brain works from a neurochemistry perspective, 

how cells and the different brain areas communicate or how synapses are created and modified, 

allowing the learning process to occur. Some of the projects focused on those aims are the Human 

Brain Project [37] or SPAUN [38]. 

 

b) Artificial Intelligence: to build new algorithms, inspired by the brain, to process the information better 

and develop systems with more intelligent behaviors. This is the case of the most recent models of 

ANN such as Deep Neural Networks. Over the past decade, a Machine Learning technique known as 

Deep Learning (DL) [39, 40] was developed, inspired by the high-level abstraction of the brain (Fig. 

2). In recent years DL has shown the best results in pattern recognition, for example winning the 

ImageNet Large Scale Visual Recognition Competition [41]. Some of the applications of the DL 

techniques are: speech recognition and audio processing [42], object recognition and computer vision, 

signal processing, natu-ral language processing [43], information retrieval and multimodal [44] and 

multi-task learning [45, 46].  

 

c) Neuromorphic Engineering: to build new hardware computer architectures based on the massive 

parallelism and adaptability of the brain. Nowadays the fastest supercomputer is the Tianhe-2 from 

China [47], with a performance of 33.86 Petaflops per second on the Lin-pack benchmark [48]. It has 

three million processors and consumes 17.8 MW. According to Moore's law, the number of transistors 

per unit area in integrated circuits is doubled every 18 months. This law has been fulfilled since it was 

proposed by Gordon Moore in 1965. At the present time, to simulate a human brain in real time using 

basic models, around 8.4GW would be necessary [49]. In accordance to Moore's law power-feasible 

brain-scale simulations would not be possible on conventional supercomputers unless the transistor 

dimensions sur-passed the atomic scale. But at this scale, around 1.2 nanometers, the phenomenon of 

quantum tunneling oc-curs. This effect allows a leakage of electron current that prevents the normal 

performance of the current transistors (MOSFET) [50]. Although Moore's law has its limits in the 

quantum scale, the Law of Accelerated Re-turns, proposed by Ray Kurzweil [51], stated that the 



exponential growth affects not only the number of transistors per chip, but the entire information 

technology and communications. There are different lines of research to design new processors: 

quantum processors [52-56], 3D processors, carbon nanotubes transistors, 3D graphene transistors 

[57-59]. This paper describes the neuromorphic chips that are based on the processing performed by 

brain cells, similarly to that carried out in the following projects: SyNAPSE [60], SpiNNaker [61], 

Neurogrid [62], BRAIN Initiative [63], BrainsScaleS [64]. There is also another line of research, 

aimed at developing brain inspired computing machines, the so-called Universal Memcomputing 

Machines [65]. 

 

d) BMI and Neuroprosthetics: to make devices which help people with different types of nervous system 

impairment; in this field, the hardest part is finding a proper way to connect the nervous system and 

the artificial de-vice; works that allow for progress in this respect are, for example, the 

implementation of MEAS in vivo [66] or the recent design of a simple artificial neuron that be-haves 

the same as a real one and could be applied to therapies for neurologic disorders: the critical role of 

transduction of chemical-electrical-chemical signal [67]. In this review we do not discuss projects 

with this motivation because aim to create only partial models with specific functions of the brain: 

BMI [68-70] and Neuro-prosthetics [71-74]. 

 
 

 
Fig. (2). Deep learning technique.  



1.2. Projects Classification 

Classifications can be performed from different perspectives using the works and projects that seek to 

model the human brain. In this paper, an updated review of relevant works is presented, with the aim of 

replicating the behavior of the brain, using parallel computing. Different computer models that have been 

classified by us from the point of view of signal processing by hardware are currently under development, 

such as: digital models, analog models and hybrid models. 

 

This classification is shown in Fig. (3). Each type of model has some of the above-mentioned reasons 

or even several of them. 

 

 Digital models: they compute information using the bi-nary system to simulate and parallelize the 

behavior of the brain cells. From the software models, the realistic computer models are first 

considered, which are those shaping the internal structure of the cells (ion channels, organelles, etc.) 

allowing the study of their functions/operations. The generation of action potentials, activation of 

neurons, and synapse creation are simulated by mathematical equations implemented in the software, 

with specifically-designed tools. Examples of such tools which develop realistic models are NEURON 

[75], Genesis [76], Nest [77], etc. In addition, the connectionist models are taken into account, which, 

given a known behavior is expected to be achieved, such as a classification, object recognition in 

images, regression, etc., allow searching for a structure of artificial process elements (neurons and/or 

astrocytes) that give sufficient rise to such behavior. With regard to digital hardware models, they are 

mainly explained by the above-mentioned point "c", as they propose new computer architectures 

based on brain functioning. 

 

 Analog models: they consist of neuromorphic hardware elements where information is processed with 

analog signals, that is, they do not operate with binary values, as information is processed with 

continuous values. This allows computation to be more efficient, so that analog computation could be 

used in applications where energy efficiency is very important. 

 

 Hybrid models: they have been classified as such those assembled using hardware composed of both 

analog and digital components. These models seek to make the most of each type of computer. 

 
 

 
Fig. (3). Projects classification. 

  



1.3. Paralellization 

This classification has also been conducted because it allows understanding the need for 

parallelization and the as-sorted ways to parallelize the information processing from the modeled cells: 

 

 Software Simulations with parallel processing: the models are implemented with software specifically 

designed for simulations. Their tasks are parallelized to run on different processing elements (central 

processing units -CPU, graphical processing units -GPU). Parallel calculations, necessary to simulate, 

for example, synaptic communication between cortical microcolumns of thousands of pyramidal 

neurons, are performed with CPUs of the Blue Gene supercomputer within the Human Brain Project 

(previously within the Blue Brain Project) [78]. An-other example is parallel training of an ANN with 

DL for pattern recognition using a cluster of GPUs [79]. These simulations are useful to study the 

quantitative behavior of neural networks. But they are not efficient enough to implement systems 

which behave appropriately in real time or large simulations of neural systems. Customized digital 

systems which make use of the GPU parallelism or the field programmable gate arrays (FPGAs) can 

act in real time, but they still lack the density, energy efficiency and resilience of neurons and 

synapses [80]. 

 

 Parallel Hardware (Neuromorphic architectures): the term 'neuromorphic' refers to hardware systems 

whose architecture and/or design principles are based on the nervous system [23, 24]. They usually 

comprise a large number of parallel arrays of simple processing elements in which the memory and 

computation are colocalized. In these architectures, the information is not processed with a clock 

frequency of the order of GHz, but rather the in-formation processing is spike event-driven. It means 

that the artificial neuron only computes when it receives an input. Thus, these systems reduce energy 

consumption by several orders of magnitude compared to systems employing the clock frequency 

[81]. Within this technique of parallelization, digital chips, analog chips and hybrid digital-analog 

chips can be distinguished: 

 

o Digital Chips: the neuromorphic chips that employ digital signals can be connected to each other 

and programmed to perform many tasks in parallel, for example, application-specific integrated 

circuits (ASICs) like SpiNNaker or SyNAPSE, which subsequently will be discussed in detail. 

Other examples of digital chips, which will also be mentioned briefly, are the special-purpose 

digital hardware, built with FPGAs [82, 83] and the recently proposed BRIC project which is 

aimed at using 3D technology to build a very efficient supercomputer [84]. 

 

o Analog chips: they are neuromorphic chips in parallel, where the internal signal processing in the 

emulated neuron is analog. Such chips are based on the works carried out by Misha Mahowald 

[85-88] and Carver Mead [23, 24], and are based on the theory that the brain computes the 

information in an analog manner. The main drawbacks of analog computation are that it is 

inaccurate and sensitive to environment and manufacturing variations [36]. Within the analog 

chips a physical computation takes place, that is, it is computed by simply obeying the laws of 

physics. This should be considered in contrast to digital systems, which run a pre-given algorithm 

within a formal sys-tem, created to solve equations that are meant to de-scribe the behavior of a 

system. Put differently, in analog computers there is no separation between hardware and software, 

because the hardware configuration of a computer is in charge of performing all the computation 

and can modify itself [89]. Besides, these chips al-low investigating the strict real-time interaction 

of the system with its environment [90-94] [80]. 

 

o Hybrid digital-analog chips. Parallel models are used by interconnecting neuromorphic chips with 

analog and digital components. Neuromorphic circuits that process information in an analog mode 

and perform communication in a digital mode are commonly used. In this way, neurons are 

represented by analog circuits and connections are made with digital communications, usually 

Address Event Representation (AER), a communication protocol proposed by Sivilotti in 1991 

[95, 96]. The Neurogrid project and the Qualcomm Zeroth Platform from the BRAIN Initiative 

[97] should be mentioned as examples in this sense, detailed further on. 

  



Therefore, this classification is considered globally for the development of this review, as well as the 

research projects to be addressed. In each specific section of the paper, the main projects/models of each 

type are described. Since there are already numerous publications and some reviews that describe the 

characteristics and objectives of many projects focused on brain modeling, the entire development of each 

work is beyond the scope of this study. To summarize them, an outline of the key features of each 

job/project to be treated is shown in subsection 2.2. In this table, along with the most relevant aspects 

taken into consideration with regard to computational modeling, the most recent leading studies outlining 

these projects are listed. Thus, this article is focused on the recent developments of each brain model 

analyzed. 

 

The structure of this paper is as follows: Section 1 is the present introduction. Section 2 describes the 

context and state of the art of the reviews and articles on computational modeling of the brain. Section 3 

is devoted to present the progress of the works and projects that carried out digital models of the brain. 

Section 4 points out the progress made with analog models and their differences with digital models. 

Section 5 presents the projects that use hybrid models of the brain. Section 6 covers the approach to the 

introduction of the glial cells in the computational models of the brain. Finally, some concluding remarks 

and a few predictions are made about what could be achieved in this field in the future. 

2. STATE OF THE ART 

2.1. Other Surveys 

Currently, there are several interesting reviews published on brain modeling. The reviews analyzed 

were classified by us as shown in Table 1: 

 

 Those focused on opinion and criticism of the models; 

 Those describing and listing research projects which are carried out to model the brain; 

 Those focused on analyzing existing models and theories about the brain; 

 Those describing and analyzing analog neuromorphic systems; 

 Interesting books with different opinions about the feasibility of brain simulation. 

Table 1. Other surveys about brain modeling. 

State of the Art References 

  

Opinion & criticism [98-100] 
Projects [36, 101-105] 

Model & Theories [106-112] 

Analog Chips [80, 81, 113-116] 
Books [2, 89, 117-123] 

  

 

2.1.1. Opinion & Criticism 

In the review conducted by Eliasmith [98], technology, theoretical and empirical developments 

relating to the construction of sophisticated cognitive machines were analyzed. It also proposed and 

argued a timeline of progress in this field over the next 50 years. Based on these predictions, a system 

which simulates the entire human brain with 1011 neurons will be created by 2040. Finally, some of the 

ethical and philosophical problems that arose while developing this technology were analyzed.  

 

Eliasmith and Trujillo [99] proposed two guidelines for large-scale models of the brain: first, 

consisting of a union of the models with the behavior, and second, the need to create models that can vary 

the level of detail of the simulation. Moreover, they made a list of the pros and cons of bottom-up and 

top-down models. They criticized bottom-up models which expected intelligent behavior to ‘emerge’ 

from models which were large enough.  



The review performed by Matteo Colombo [100] argued that certain large-scale simulations of the 

brain were unable to obtain new knowledge about the brain. The author stated that new information could 

be obtained only about the computing performance and operation of the system itself.  

2.1.2. Projects  

In the review written by Cattell and Parker [36] the motivations and challenges of brain simulation are 

presented. It summarizes the main projects and compares them in terms of neural models, synaptic 

connections, learning and scalability.  

 

Boris Tomas [101] presented a brief summary of brain simulation projects and raised some interesting 

questions such as: ’Is it possible to create a form of swarm intelligence artificially using network of 

simple nodes?’  

 

Researchers from the Politecnico di Torino [102] wrote a review of the HBP neuromorphic computing 

project. They explained the difference between emulation and simulation strategies. In addition, this 

review summarizes the current status and objectives of the two Neuromorphic Computing Systems: 

Neuromorphic Physical Model (NM-PM) (FACETS- BrainScales) and Neuromorphic Multicore (NM-

MC) (SpiNNakers).  

 

Xiamen University researchers published a review in two parts. The first one [103] showed an 

analysis of the most important projects of brain simulation. Moreover, they presented a comparison of the 

simulation concept employed in each one. In the second part [104] they presented a summary of the 

BICA (Biologically Inspired Cognitive Architectures) classifying them into four categories: primarily 

symbolic architectures (e.g. ACT-R); emergent architectures (e.g. DeSTIN); developmental robotics 

architectures (e.g. IMCLEVER); and their central focus, hybrid architectures (e.g. LIDA, CLARION, 

4D/RCS, DUAL, MicroPsi and Open- Cog).  

 

Finally, Sandberg and Bostrom [105] carried out an extensive analysis of the concept of “Whole Brain 

Emulation” and the problems that could arise. In addition, a roadmap was included to this end, explaining 

the neuroscientific basis in depth. Different neural models, computational requirements and brain imaging 

technologies were summarized. 

2.1.3. Models & Theories 

A comprehensive review of the different neural models was written by Izhikevich [106], who 

compared the computational cost of the models and their ability to handle 20 characteristic behaviors 

observed in neurons in vivo. The computational cost is measured in number of floating point operations 

necessary (FLOPS). Izhikevich concluded that if the aim of the study was to find out how the 

physiological parameters influenced the behavior of neurons, the best model would be Hodgkin-Huxley 

[17]. But if the goal was to simulate a large number of neurons maintaining the highest degree of realism 

possible, the most appropriate model would be the “leaky integrate and fire”. The author proposed an 

enhanced “leaky integrate and fire” model that a reasonable computational cost was capable of displaying 

the 20 neural behaviors analyzed [36]. The same author published a review on the hybrid models of 

spiking neurons [107].  

Table 2. Computational cost in FLOPS of neural models. 

Neural Models FLOPS 

  

Integrate and fire 5 
Quadratic integrate and fire 7 

Integrate and fire or bust 13 

Izhikevich 13 
Hodgkin-Huxley 1200 

  

 

  



Piccinini and Bahar [108] presented an analysis of neural computation and computational theory of 

cognition. It was proposed that neurons did not use an analog or digital computation, but rather the neural 

computation was sui generis.  

 

D’Angelo et al. [109] reviewed the realistic simulation strategies from the perspective of the research 

of brain diseases and neuro-robotics, using as example the cerebellar networks.  

 

Wim van Drongelen [110] presented an overview of the different computer models of neurons and 

networks, focusing first on the Hodgkin-Huxley model, and subsequently on the activity of neural 

networks. Finally, the author analyzed how these models were used in the study of diseases such as 

epilepsy.  

 

The authors of this review [111] performed a classification of neural models according to two criteria: 

the complexity of the model and workflow management (bottom-up and top-down).  

 

Brette et al. [112] performed a review of the strategies of simulation of spiking neural networks and 

algorithms implemented. The advantages and disadvantages of different open-source simulators were 

analyzed. In addition, various types of networks of spiking neurons were implemented in different 

simulators and the code used was described.  

2.1.4. Neuromorphic Chips 

Chicca et al. [81] conducted a review of the implementations of neurons and synapses in silico used to 

build autonomous cognitive systems, and made a description of the electronic circuits that emulated the 

brain.  

 

Hasler and Marr [113] showed an analysis of analog neuromorphic hardware systems and compared 

them with the digital and biological systems.  

 

Indiveri et al. [80] described the “building block” and the most common techniques to implement 

neurons in silico. Moreover, different design methodologies were compared and the experimental results 

demonstrated their features.  

 

Misra and Saha [114] conducted a review of hardware implementations of neural networks, 

classifying them into: digital, analog, hybrid and FPGA. Models of ANN, hardware designs and 

applications were discussed.  

 

Xue [115] presented the recent developments in analog computation. These systems were explained 

from their basic elements, such as memory and arithmetic elements, to architecture and system design. 

 

Boahen et al. [116] summarized the modeling of the nervous system and the advantages of the analog 

neuromorphic computing chips.  

2.1.5. Books  

There are a vast number of books on simulation/ emulation of the brain. Some of the most optimistic 

authors claimed that in the coming decades it would be possible to simulate a human brain in its entirety 

and that this simulation would replicate a real brain [2, 117-120]. However, other authors believe that it 

will be impossible to simulate the brain on a Turing machine [89, 121-123].  

  



2.2. Classification and Characteristics of the Models  

The classification of the types of works and computational models that have been discussed in this 

article is shown in Fig. (3). As mentioned in the Introduction section, the classification is based on the 

type of signal treatment of the computational model: digital, analog or hybrid.  

 

Considering the reviews described above and various existing studies, Table 3 shows an overview of 

key features of each work/project discussed in this paper. In this table they are grouped according to the 

classification referred to:  

 

Project name: it usually contains words like ‘neuron’, ‘spike’ or ‘brain’.  

 

Institution: it is observed that most institutions are universities, but there are some projects developed 

in companies, such as IBM (SyNAPSE) or QUALCOMM (BRAIN Initiative). Most modeling works are 

coordinated by groups of the prestigious American universities, like Stanford (Neurogrid). There are also 

projects coordinated in prestigious European universities like University of Lausanne (HBP) or 

University of Manchester (SpiNNaker). The project funding for the European universities is mainly 

supported through the European Union, while in the case of US projects, funding comes from DARPA 

and NIH (National Institutes of Health). The most important difference between European and American 

projects is that Europeans try to increase scientific knowledge about the brain. However, the major 

American projects are rather focused on carrying out a revolution in the computer industry, laying the 

foundation for future computer systems.  

 

Number of neurons: the simulation with the largest number of neurons was made by the SyNAPSE 

project in 2012 with 5.4x10
11

 neurons, a quantity even higher than a human brain, which is around 

8.6x10
10

 [1]. It should be noted that this simulation is not expected to be realistic and uses very simplified 

neuronal models. Furthermore, the simulation runs x1542 times slower than real time and 1.5 million 

BlueGene/Q cores [124] were necessary.  

 

Types of Neurons: there are many types of neuronal models with different levels of realism and 

complexity. These implementations can be either software or hardware based. When it comes to software 

connectionist models, artificial neurons are simple processing elements which operate following sigmoid 

or threshold mathematical functions [125], although there are progressively more software models using 

built-in spiking neurons [112] that simulate action potentials. In the case of realistic models, usually 

present ion channels responsible for the spike generation. The Hodgkin- Huxley model [17] requires more 

computational resources because it simulates Ca
+2

, K
+
 and Na

+
 currents. It is used in the HBP [37], 

Neurogrid [62] and NeuroDyn [126]. When the 3D arrangement of axons and dendrites is considered, the 

simulation becomes significantly more complicated, as a space-time integration is necessary. For the sake 

of simplicity, Rall’s Cable Theory [20] and compartment models [127] are used. For more information 

about these models, please refer to [128]. The simplest model is “Integrate-and-fire point neuron”, which 

adds the inputs to the associated weights and compares the sum to a threshold, resulting in a binary 

decision of either generating a spike output or not. There is an extension of this model that uses a charge 

decay, known as “leaky integrate and fire”. It is used for example in SPAUN [38], SpiNNaker [61] and 

SyNAPSE [60]. Other ways to improve the models are: non-linear sum, time dependent threshold, 

programmable delay in the release of the spikes and other variations.  

 

Simulated synapses: in 2012 the SyNAPSE project achieves 1.37x10
14

 simulated synapses [25], 

roughly the same number as in the human brain. A problem encountered by the models is the synaptic 

connectivity because of the large number of existing connections in the brain. In addition, the connections 

between neurons are formed during development, but they change daily to allow learning. To date, the 

most common solution involves using networks with AER architecture [95, 96] that make neurons 

communicate only when they need to send a spike. The information is sent in a package that contains only 

the address of the neuron that fires the spike. The synaptic connectivity is stored in tables that are used by 

the network routers. [36]. In analog models, the nearby connections between neurons are usually done 

through a direct cable. However, for long-distance connections AER is necessary, for which 

Analog/Digital and Digital/Analog converters are employed. This is a problem because the circuit that the 

neuron needs for conversion and routing is much larger than the neuron circuit itself. The brain modeling 

projects use supercomputer and CPU [78] or GPU clusters [79]. Moreover, others use neuromorphic chips 

specifically designed to process information emulating the brain, both digital (SpiNNaker [61], TrueNorth 

[60]) and analog (HICANN [64]), and even hybrid (Neurogrid [62], Zeroth [97]). One of the advantages 



of the neuromorphic systems is that, as they are implemented within the hardware, they eliminate the 

overhead of the simulation software, providing a more accurate output in a shorter space of time. 

Furthermore, the emulation speed and communication in neuromorphic solutions can be run faster than 

the biological equivalent. Another advantage of the neuromorphic solutions is that they have a lower 

consumption per emulated neuron. Although the analog model is faster, it has not been shown that its 

fixed neural structure adequately captures biological neural behavior.  

 

Project duration: these are very complex modeling projects and works and, therefore, their time span 

is long. The case of Blue Brain Project should be pointed out, which began in 2005 and later became part 

of the Human Brain Project which is still underway. The older projects (started 10 or more years ago) 

include: Spinnaker, HiAER-IFAT or NeuroDyn. As seen in Table 1, the most recent is SPAUN. All of 

them are still under development, except for FACETS and BrainScales.  

 

Objectives: most brain models described in the next sections of this paper are not completed, 

although some projects have already built parts of them that have been applied to certain fields or specific 

studies. On the one hand, the projects which are mainly focused on understanding some aspects of the 

brain were divided as follows: HBP is trying to simulate the effect of new drugs for brain diseases; 

SPAUN is testing neuroscientific hypotheses related to behavior studies; and the Neurogrid project is 

aimed at figuring out how cognition arises. On the other hand, there are models which allow automatic 

processing of large amounts of data using intelligent software (SyNAPSE, SpiNNaker). There are also 

projects that develop new processing hardware architectures, such as BrainScales, SpiNNaker, SyNAPSE. 

Finally, there are also some which allow even building devices to help disabled people, as in the case of 

the SpiNNaker project. 

 

Fundamental and most recent papers about the projects/models: some fundamental papers, where 

the projects were announced for the first time, are presented, along with those showing the most recent 

developments. 

 

The following sections outline some recent developments for some of the most important projects.



Table 3. Overview of key features of relevant projects discussed in this paper. Objectives: 1. Help to understand some aspects of the brain - Computational Neuroscience; 2. Develop brain models to process large 

amounts of data - Artificial Intelligence; 3. Create processing hardware architecture inspired by the brain, neuromorphic chips; 4. Build devices to help disablepeople. 

Projects Project name Institution 
Num. 

neurons 
Type of neurons 

Simulated 

synapses 
Objectives 

Project 

duration 
Refs. 

          

D
ig

it
a

l 
M

o
d

e
ls

 

S
o

ft
w

a

r
e 

Human Brain 
Project 

European Union 106 Hogdking & Huxley 5x108 1, 2, 3, 4 2013-2023 
[37, 129-

140] 

SPAUN Univ. Waterloo 2.5x106 Leaky integrate-and-fire 1012 1 2012 – 
[38, 141-

150] 

H
a

r
d

w

a
r
e 

SpiNNaker Univ. Manchester 2.5x105 
Point neuron models, leaky integrate-and fire, Izhikevich's 

models 
8x107 1, 2, 3, 4 2005 – 

[61, 161-
184] 

SyNAPSE IBM 1011 Improved leaky integrate-and-fire. 1014 2, 3 2008 – 
[25, 60, 

185-195] 

Analog Models 

BrainScales European Union 4x106 Adaptive exponential integrate and fire neurons 109 1, 2, 3 2011-2015 
[64, 132, 
206-208] 

HiAER-IFAT 
Univ. California at 

San Diego 
250.000 Integrate-and-fire with two compartments for neuron 5x106 1, 2, 3, 4 2004 – [209-213] 

NeuroDyn 
Univ. California at 

San Diego 
4 Hogdking & Huxley. 384 parameters and 24 channels. 12 1 2004 – [209-213] 

Hybrid Models 

Neurogrid Stanford University 106 
Quadratic integrateand-fire somatic compartment + Dendritic 

compartment model with 4 Hogdking & Huxley channels 
109 1, 3, 4 2007 – 

[62, 221-

226] 

BRAIN Initiative Qualcomm not public not public not public 1, 2, 3 2013 – 
[63, 97, 

227] 

        

 

 

 



3. DIGITAL BRAIN COMPUTATIONAL MODELS  

On the one hand, studies and projects that build digital models should be pointed out, where 

simulation is performed using specific software and, on the other hand, those using neuromorphic 

hardware. As mentioned in the Introduction section, the specific simulation software is run in parallel by 

CPUs or GPUs. Those which use digital neuromorphic hardware build models mainly by means of 

special integrated digital circuits and inspired by the architecture of the brain networks.  

3.1. Software Simulation  

3.1.1. The Human Brain Project  

The European Union approved in 2013 the Human Brain Project (HBP) project as part of the FET 

Flagship with a budget of 1000 million euros [37, 129, 130]. It is a continuation of the Blue Brain Project, 

which began in the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, in 2005 and whose 

principal investigator was Henry Markram [78, 131]. The strategic project partner is IBM and currently 

they use the Blue Gene/Q supercomputer [124] for the simulations. But they also collaborate with other 

projects to develop neuromorphic chips (FACETS [132], BrainScaleS [64] and SpiNNaker [61]). In 

March 2015 the Mediation Report [133] was published, which was commissioned by the EU following an 

open letter signed by more than 800 researchers [134]. They criticized the structure and leadership of the 

project, as well as the narrow focus on the brain simulation objective, since the cognitive and 

neuroscience systems were left aside. From our perspective, one of the main problems of the HBP is the 

little importance granted to the glial cells in the project. Here it is a brief cite from the HBP website [135]: 

 

“What about glia? Building unifying brain models means taking account of every aspect of biology. 

Glia are a key component of the brain, supporting neurons and controlling metabolism and blood flow. 

This will be a step-by-step process. First we will build models that include the basic molecular machinery 

of cells and synapses. Then we will use detailed synchrotron scans to map out the detailed vasculature of 

the brain. Finally we will be able to model glia.”  

3.1.1.1. Objectives  

The main objectives of the project are the following:  

 

 Simulate the brain  

 Develop Brain-Inspired Computing and Robotics  

 Develop Interactive Supercomputing  

 Map Brain Diseases 

 Perform Targeted Mapping of the Mouse Brain and the 

 Human Brain 

 Develop a Multi-Scale Theory for the Brain 

 Catalyse Revolutionary New Research 

 Drive Collaboration with other Research Initiatives 

 Drive Translation of HBP Research Results into Technologies, 

 Products and Services 

 Pursue a Policy of Responsible Research and Innovation 

  



3.1.1.2. Structure 

This project involves 112 partners in 24 countries and has 256 leading scientists. Due to the large size 

of the consortium, the project has been subdivided into 13 sub-projects: 

 

SP1 - Strategic Mouse Brain Data 

SP2 - Strategic Human Brain Data 

SP3 - Cognitive Architectures 

SP4 - Theoretical Neuroscience 

SP5 - Neuroinformatics 

SP6 - Brain Simulation 

SP7 - High Performance Computing 

SP8 - Medical Informatics 

SP9 - Neuromorphic Computing 

SP10 - Neurorobotics 

SP11 - Applications 

SP12 - Ethics and Society 

SP13 – Management 

3.1.1.3. Information and Communications Technology Platforms 

To promote collaboration, the HBP will develop six platforms of information technology and 

communications that will contribute to the development of different types of computer models:  

 

 Brain Simulation: building ICT models and simulations of brains and brain components. The HBP 

uses parallelized versions of Neuron [75], STEPS [136] and NEST [77]. The simulations were run in 

parallel on multiple processors. The behavior of axons, dendrites, cell bodies, is modeled with all 

kinds of internal details that mimic the real neurons. Each neuron is represented by hundreds of 

separate compartments, each producing an output based on ion channels and adjacent regions. To 

compute the potential of each compartment the Hodgkin-Huxley equations are used, which consider 

only realistic values of the parameters. The models used are based on anatomical and 

electrophysiological experimental data. To validate the models they use new data that have not been 

used to create the model. They consider the cortical microcolumn (MCC) as the smallest functional 

unit of the neocortex [137-139]. The MCC is a cylinder with a diameter of 0.5 mm and height of 2 

mm. For each cylinder, there are 60,000 neurons in humans and 10,000 neurons in rats. The HBP 

roadmap established that by 2018 it is expected that a complete rodent brain is simulated at the 

cellular level. Another aim is to create molecular level simulations to test the effectiveness of different 

drugs in order to cure diseases of the nervous system, including Alzheimer's or Parkinson. The 

ultimate goal for 2023 is to create a simulation of the entire human brain with realistic multiscale 

models.  

 

 Neuromorphic Computing: ICT that mimics the functioning of the brain. Furthermore, with respect to 

neuromorphic models, this platform is based on the FACETSBrainScaleS projects for Neuromorphic 

Physical Model (NM-PM), and Spinnaker for Neuromorphic Many-Core system (NM-MC). The NM-

PM incorporates 8-inch silicon wafer in 180nm process technology with 200,000 realistic neurons and 

50x10
6
 synapses. The ML-MC system with a chip can simulate 16,000 neurons with 8 million 

synapses in real time and consuming 1W. For future versions of these systems, t high-density 

packaging technologies, and novel techniques of Computer Aided Design are currently under 

development.  

 

 Neuroinformatics: a data repository, including brain atlases.  

 

 Medical Informatics: bringing together information on brain diseases. 

 

 Neurorobotics: testing brain models and simulations in virtual environments.  

 

 High-Performance Computing: hardware and software to support the other platforms.  

  



3.1.1.4. Cajal Blue Brain Project  

The Spanish contribution [140] to the Blue Brain Project should also be mentioned, which began in 

January 2009, led by the Polytechnic University of Madrid (UPM) and the Cajal Institute of the Spanish 

National Research Council (CSIC). The project objectives are: (1) decode the detailed map of synaptic 

connections in a cortical column and rebuild all components, (2) investigate the hypothesis that some 

diseases are related to cortical columns, (3) develop new methods for processing and analyzing 

experimental data and (4) develop methods for the study of neural functions using graphical tools and 

visualization techniques. A secondary objective is to understand the involvement of glial cells and blood 

vessels in the organization of the cortical column.  

3.1.2. SPAUN  

Semantic Pointer Architecture Unified Network (SPAUN) [141, 142] is the only simulation able to 

perform a variety of perceptual, motor and cognitive tasks in the real world without any change in the 

system [143-145]. It has 2.5 million neurons and 60 million synapses, and uses a spike-timing- dependent 

plasticity learning rule. It takes approximately 2.5 h of simulation time to generate 1 s of behavior on a 

high-end workstation. It uses the neural engineering framework (NEF) [146-148], a mathematical theory 

that provides methods for systematically generating biologically plausible spiking networks to implement 

non-linear and linear dynamical systems. Besides, the Semantic Pointer Architecture (SPA) [149] is 

proposed, a hypothesis regarding some aspects of the organization, function, and representational 

resources used in the mammalian brain. A software tool known as Neural ENGineering Objects (Nengo) 

[150] was developed, which allows for the synthesis and simulation of neural models efficiently on the 

scale of SPAUN, and provides support for constructing models using the NEF and the SPA.  

 

This is a top-down simulation in which the objective is to perform different tasks without any change 

in its structure, rather than achieving fidelity between the simulated neurons and the real ones. The human 

brain regions and their functions were simulated (Fig. 4): PPC, posterior parietal cortex; M1, primary 

motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral prefrontal 

cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral 

striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, 

substantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, 

secondary visual cortex; V4, extrastriate visual cortex.  

 

SPAUN can perform 8 different tasks: (1) Image recognition; (2) Copy drawing; (3) Reinforcement 

Learning (RL); (4) Serial Working Memory; (5) Counting; (6) Question answering; (7) Rapid variable 

creation and (8) fluid reasoning.  

  



 
 

 
Fig. (4). Anatomical and functional architecture of Spaun [141]. (A) The anatomical architecture of Spaun 

shows the major brain structures included in the model and their connectivity. (B) The functional architecture 
of Spaun. 

3.1.3. Artificial Neural Networks 

 It is known that ANN or connectionist systems are digital models of the brain. The connectionist 

branch of Artificial Intelligence tries to emulate the brain (its elements and connections), fundamentally, 

to process information. The connectionist systems are oriented towards solve real world problems, just 

like the human brain does. These systems are trained to solve different kind of problems (classification, 

prediction, regression, pattern recognition, etc.) [151-153]. The advances in these systems help making 

them more effective and efficient in their tasks. Some researchers try to achieve this goal by mimicking 

the brain. They build models inspired by the latest discoveries in Neuroscience, not only related to the 

neurons, but also to glia cells and their role in the information processing. There is a double advantage in 

using this line of research. On the one hand, Computer Science benefits from the development of systems 

with new information processing capacities. On the other hand, Neuroscience develops even further 

because these systems allow modeling in computers behaviors that are not yet fully understood by the 

neuroscientific community.  

 

The main recent breakthrough in this field was made by DL [39, 40, 42-46]. This refers to a brain-

inspired technique used to create connectionist systems with several layers, allowing a great level of 

abstraction, similar to that observed in the visual system of the brain [19, 154-156]. DL is a class of 

machine-learning algorithms that allow computational models composed of multiple processing layers to 

learn representations of data with multiple levels of abstraction. Layers that have been used in DL include 

hidden layers of an ANN and sets of complicated propositional formulas. Another recent ANN model that 

is expected to get closer to brain function is Spike Neural Networks (SNN) [112, 157- 160]. It falls into 



the third generation of neural network models, increasing the level of realism in a neural simulation. In 

addition to neuronal and synaptic state, SNNs also incorporate the concept of time into their operating 

model. The idea is that neurons in the SNN do not fire at each propagation cycle (as it happens with 

typical multi-layer perceptron networks), but rather fire only when a membrane potential – an intrinsic 

quality of the neuron related to its membrane electrical charge – reaches a specific value. When a neuron 

fires, it generates a signal that travels to other neurons which, in turn, increase or decrease their potentials 

in accordance with this signal.  

 

Connectionist systems must be trained with considerable amounts of data and subsequently they are 

tested with many real data. It is a process that requires multiple executions and thousands of simulations. 

This process requires a high computational consumption. Thus, multi-processor supercomputers or 

clusters of machines are used for running tests and simulations. Therefore, this is a field in which the 

parallel computing is justified. Note here the use of the GPUs for running connectionist systems. The 

general-purpose computing on graphics processing units (GPGPU) is a relatively recent trend in computer 

engineering research. GPUs are coprocessors that have been heavily optimized for computer graphics 

processing. The computer graphics processing is a field dominated by data parallel operations, including 

linear algebra and matrix operations. At first, GPGPU programs generally used graphics API to run 

programs. However, several new programming languages and platforms have been constructed for 

general-purpose computing on GPUs. This situation was used to run thousands of simulations with 

connectionist systems. For example, for their large computational needs the simulation of ANN with DL 

on GPUs [79] is commonly employed.  

3.2. Hardware  

3.2.1. SpiNNaker  

SpiNNaker is a project of the University of Manchester, whose principal investigator is Steve B. 

Furber [161]. Within this project, chips which contain many small CPUs were produced. Each CPU is 

designed to simulate about 1000 neurons, such as leaky integrate and fire or Izhikevich’s model, which 

communicate spike events to other CPUs through a network package. Each chip consists of 18 ARM968 

processors, one of them acting as a processor monitor. In 2015 a cabinet with 5760 chips was created, 

which can simulate 100 million point neurons with approximately 1000 synapses per neuron [162]. The 

chips are connected with adjacent chips by 2-dimensional toroidal mesh network and each chip has 6 

network ports [163-165]. This system is expected to mimic the features of biological neural networks in 

various ways: (1) Native parallelism - each neuron is a primitive computational element within a 

massively parallel system [166]; (2) Spiking communications - the system uses AER, thus the 

information flow in a network is represented as a time series of neural identifiers [167]; (3) Event-driven 

behavior - to reduce power consumption the hardware was put in “sleep” mode, waiting for an event [168, 

169]; (4) Distributed memory - this system uses memory local to each of the cores and an SDRAM local 

to each chip; (5) Reconfigurability - the SpiNNaker architecture allows on-the-fly reconfiguration [170]. 

 

In order to configure a large number of cores, with millions of neurons and synapses, PACMAN [171] 

was developed. It is a software tool that helps the user to create models, translate and execute in the 

spinnaker. This allows the user to work with neural languages like PyNN [172] or Nengo [150, 173].  

 

Until 2013 the SpiNNaker presented the possibility to simulate simple models in real-time on the 

SpiNNaker neuromimetic architecture. However, such models were “static”, the algorithm performed was 

defined at design time. In 2013 a paper [174] was published, in which a novel learning rule was 

presented, describing its implementation into the SpiNNaker system, which enables models designed with 

the NEF to learn the function to be performed using a supervised framework. The authors showed that the 

proposed learning rule, belonging to the Prescribed Error Sensitivity class, is able to learn effectively both 

linear and non-linear function.  

 

The main applications of this piece of neuromorphic hardware are: 

 

 Interface with Nengo (SPAUN): using NEF [146] functions and dynamic systems can be encoded in 

networks of spiking neurons, allowing to create complex cognitive systems such as SPAUN [141]. 

Spinnaker has been connected to Nengo [175], enabling users to create neural networks and specify 

the functions that are computed.  



 Deep Belief Networks: networks of deep learning may be implemented, obtaining an accuracy rate of 

95% in the classification of the MNIST database of handwritten digits. 0.06% less than the software 

implementation is obtained, but the consumption is only 0.3 W [176].  

 

 Convolutional Neural Networks: they possess a "weight sharing" property, so that many neuron-to-

neuron connections share the same weight value. Therefore, a much reduced amount of memory is 

required to define all synaptic weights, which can be stored on local SRAM DTCM (data-tightly-

coupled-memory) at each ARM core. This way, DRAM can be used extensively to store traffic data 

for off-line analyses. A 5 layers deep learning network is implemented to recognize symbols which 

are obtained through a Dynamic Vision Sensor (DVS). Each ARM core can accommodate 2048 

neurons. The full chip could contain up to 32,000 neurons [177].  

 

 Interface with AER sensors: in 2015 a paper with a new framework on the SpiNNaker platform has 

been published, which allows simulation of spiking networks and plasticity mechanisms using a 

completely asynchronous and event-based scheme running with a microsecond time resolution [178]. 

In collaboration with the Microelectronics Institute of Seville (Instituto de Microelectronica, Seville, 

Spain) the authors have connected a silicon retina to SpiNNaker using an FPGA [179]. Analogous 

interfaces with AER sensors have been developed in collaboration with the Institute of 

Neuroinformatics (Zurich, Switzerland; using the DVS [180] and the ‘‘silicon cochlea’’ [181]), with 

the Biology Group at the University of Osaka (Osaka, Japan; using a sensor inspired by the sustained 

and transient responses of the retina [182]), and with the Institute of Vision (Paris, France; using the 

ATIS silicon retina [183]). 

 

 Integration with robotic platforms: the robotic platform can be used with PyNN [172] or Nengo [150, 

173], whereas the system is automatically configured with PACMAN [171], enabling message 

transmission to and from the robot and the sensors through a small customized interface board [184]. 

The robot is a customized omnidirectional mobile platform, with embedded low level motor control 

and elementary sensory systems, developed by the Neuroscientific System Theory group of the 

Technische Universität München (Munich, Germany). The overall system is a standalone, 

autonomous, reconfigurable robotic platform with no personal computer in the loop.  

 

 Simulation in real time of cortical circuits: 4 SpiNNaker chips are used to simulate 10,000 spiking 

neurons and 4 million synapses in real time and consuming only 100 nJ per neuron per millisecond 

[49]. 

 

Some future plans for the SpiNNaker project are [162]: (1) work with the Human Brain Project; (2) 

prove that it can withstand SPAUN in real time, for which approximately 32,832 processors (36 boards 

spinnaker) would be needed; (3) build the final extension that would house a system with 10 cabinets and 

a total of 1,036,800 ARM processors.  

3.2.2. SyNAPSE  

The DARPA SyNAPSE initiative (System of Neuromorphic Adaptive Plastic Scalable Electronics) 

selected and funded the proposal “Cognitive Computing via Synaptronics and Supercomputing (C2S2)” 

of the Cognitive Computing Group at IBM Research Lab Alamaden directed by Dharmendra Modha 

[185]. The project is based on the design and creation of a neuromorphic chip called TrueNorth, a non-

von Neumann, modular, parallel, distributed, event-driven, scalable architecture- inspired by the function, 

low power, and compact volume of the organic brain (Fig. 5). It is a versatile substrate for integrating 

spatio-temporal, real-time cognitive algorithms for multi-modal, sub-symbolic, sensor-actuator systems 

[186]. Currently in the final phase of the project, the researchers have created a board with 16 TrueNorth 

neuromorphic chips, capable of simulating 16 million neurons and 4 billion synapses. In 2015 they 

planned to create a system with 128 chips and simulate 128 million neurons [187].  

  



 
 

 
Fig. (5). TrueNorth architecture [185]. Panels are organized into rows at three different scales (core, chip, and multichip) and into 

columns at four different views (neuroscience inspiration, structural, functional, and physical). 

The TrueNorth prototype was created in 2011 [188], and it was a neurosynaptic core with 256 digital 

leaky integrate-and-fire neurons and up to 256000 synapses. Each core brings memory (“synapses”), 

processors (“neurons”), and communication (“axons”) in close proximity, wherein intercore 

communication is carried by all-or- none spike events. This allows an efficient implementation of a 

parallel asynchronous communication and AER. In 2012 Compass [189] was developed, a simulator to 

design neural networks to be implemented in the neuromorphic chip. Compass is a multithreaded, 

massively parallel functional simulator and a parallel compiler. It uses the C++ language, sends spikes 

event via MPI communication and uses OpenMP for thread-level parallelism. A simulator for GPGPU 

[190] was also developed. Modha’s team simulated in 2007 the brain of a rat in an IBM BlueGene/L 

supercomputer [191]. In 2010 they simulated a monkey brain [192] in IBM BlueGene/P supercomputers 

from a network map of long-distance neural connections in the brain obtained with 410 anatomical 

studies (Collation of Connectivity data on the Macaque brain) [132]. Later that same year, they published 

the results of a simulation with Compass of 2048 billion neurosynaptic cores and 5,4x10
11

 neurons and 

1,37x10
14

 synapses [25]. The execution was x1542 times slower than real time, and 1.5 million Blue 

Gene / Q supercomputers were needed.  

3.2.2.1 Neuron Model  

The chip uses a simple digital spiking neuron model that is versatile and reconfigurable [194]. This 

allows one-to-one equivalence between hardware and simulation, using only 1272 ASIC gates. The 

classic model of leaky integrate and fire model was improved by adding: (a) configurable and 

reproducible stochasticity to the input, the state, and the output; (b) four leak modes that bias the internal 

state dynamics; (c) deterministic and stochastic thresholds; and (d) six reset modes for rich finite-state 

behavior. Moreover, over 50 neural behaviors were included in a library, to hierarchically compose 

complex computations and behaviors. This neural model can qualitatively replicate the 20 most 

biologically relevant behaviors of neuronal dynamics. The chip allows using binary code, populations, 

time-to-spike code and code rate.  

  



3.2.2.2 Programming Paradigm  

A TrueNorth program is a complete specification of a network of neurosynaptic cores, and all external 

inputs and outputs to the network, including the specification of the physiological properties (neuron 

parameters, synaptic weights) and the anatomy (inter- and intra-core connectivity) [186]. The 

programming paradigm has four levels: (1) a corelet, namely an abstraction that represents a TrueNorth 

program that only exposes external inputs and outputs while encapsulating all the other details of the 

network of neurosynaptic cores; (2) an object-oriented Corelet Language for creating, composing, and 

decomposing corelets; (3) a Corelet Library that acts as an ever-growing repository of reusable corelets 

from which to compose new corelets; and (4) an end-to-end Corelet Laboratory that is a programming 

environment that integrates with the TrueNorth architectural simulator, called Compass, and supports all 

aspects of the programming cycle from design, through development, debugging, and into deployment. 

 

The library is a repository of consistent, verified, parameterized, scalable and composable functional 

primitives. The corelets currently in the Corelet Library include scalar functions, algebraic, logical, and 

temporal functions, splitters, aggregators, multiplexers, linear filters, kernel convolution (1D, 2D and 3D 

data), finite-state machines, non-linear filters, recursive spatio-temporal filters, motion detection, optical 

flow, saliency detectors and attention circuits, color segmentation, a Discrete Fourier Transform, linear 

and nonlinear classifiers, a restricted Boltzmann machine, a liquid state machine, and more.  

 

The library is a repository of consistent, verified, parameterized, scalable and composable functional 

primitives. The corelets currently in the Corelet Library include scalar functions, algebraic, logical, and 

temporal functions, splitters, aggregators, multiplexers, linear filters, kernel convolution (1D, 2D and 3D 

data), finite-state machines, non-linear filters, recursive spatio-temporal filters, motion detection, optical 

flow, saliency detectors and attention circuits, color segmentation, a Discrete Fourier Transform, linear 

and nonlinear classifiers, a Restricted Boltzmann Machine, a Liquid State Machine, and more.  

3.2.2.3 Algorithms and Applications  

Algorithms which include convolution networks for spatial feature extraction, spectral content 

estimators for time-domain to frequency-domain conversion, liquid state machines for feature extraction 

in time-varying signals, restricted Boltzmann machines (RBMs) for spatial feature extraction, hidden 

Markov models as an example of finite-state machines, looming detectors, temporal pattern matching, 

and various classifiers (logistic regression, backpropagation, stackable covariance-based) were 

implemented. The same corelet algorithm is often used across multiple applications, and multiple corelet 

implementations are possible for the same algorithm, showcasing the composability and flexibility of 

corelet construction [195].  

 

TrueNorth was used in seven applications that include speaker recognition, music composer 

recognition, digit recognition, sequence prediction, collision avoidance, optical flow, and eye detection.  

3.2.3. Other Projects  

This section summarizes some smaller-scale projects, whose goals are also to develop hardware 

models with applications in various areas.  

 

 The Robotics and Computer Laboratory Technology at the University of Seville [83] has been 

dedicated, since 1984, to Robotics, Neuromorphic Engineering, Architecture Embedded Systems and 

Computer Networks. The group began its work developing neuromorphic chips in 2001 within the 

VICTOR project (Vision by convolutions in real time) [196] that ended in 2005. Between 2002 and 

2006 CAVIAR (AER vision Convolution architecture) [197] was developed, a massively parallel 

hardware implementation for recognizing and tracking objects in real time. The system uses an 

asynchronous communication that employs AER. The system simulates 45,000 neurons, 5 million 

synapses and performs 12,000 million synaptic operations per second, which enables it to recognize 

and track objects with milliseconds latencies. In 2012 two projects were completed, VULCANO 

(ultra-fast frame-less vision by events. Application to automotion and anthropomorphic cognitive 

robotics) [198] which was begun in 2010, and SAMANTA I and II (Multi-chip address-event-

representation Vision system for robotics platform I & II) [199] which was begun in 2003. Currently, 

the group is working on the BIOSENSE project (Bioinspired event-based system for sensory fusion 

and neurocortical processing) [200] which aims to create a robotic platform based on modular AER 

technology. The system emulates the hierarchy of the cerebral cortex to integrate sensory information 



received from several 3D vision cameras and hearing cochlea, and produces a motor response in the 

order of milliseconds. The system used spike time dependent plasticity learning (STDP) techniques. 

The project is aimed at demonstrating two possible applications for this technology. First, monitoring 

the behavior of the driver inside the vehicle and subsequently a robot to pick up and manipulate 

objects moving at high speed.  

 

 The University of Cambridge carried out the BIMPA project (Biologically-inspired massively-parallel 

architectures) [82], which was begun in 2008 and ended in June 2014. The project's goal was to create 

a machine with a large cost-effectiveness to investigate the emergent behaviors, adaptability and fault 

tolerance of such systems. To this end, Bluehive [201-203] was developed, a system consisting of 64 

FPGA that can simulate 64,000 Izhikevich neurons, each with 1000 synapses.  

 

 Ahmed Hemani and Nasim Farahini published a paper in 2013 on the concept of a new customized 

multichip supercomputer called BRIC [84]. The technology is estimated to be available between 2015 

and 2020 [204], and it would be used to simulate real-time models of the complete human brain, using 

spiking Bayesian Confidence Propagation Neural Network (BCPNN). This system could be an 

improvement in efficiency from 2 to 3 orders of magnitude compared to the general-purpose 

supercomputer, due to innovation in algorithms, architecture, customization and 3D integration [205].  

4. ANALOG BRAIN COMPUTATIONAL MODELS  

4.1. BrainScales  

The BrainScales (Brain-inspired multiscale computation in neuromorphic hybrid systems) project [64] 

was funded by the EU, it was started on January 1, 2011 and ended on March 31, 2015. It involved 19 

research groups from 10 European countries and represents a continuation of the FACETS project (Fast 

Analog Computing with Emergent Transient States) [132] that took place from 2005 to 2010. First, the 

researchers developed a neuromorphic ASIC chip called "Spikey". Subsequently, they created HICANN 

(High Input Count Analog Neural Network) [206], a multi-chip CMOS wafer that employs adaptive 

exponential integrate and fire neural models. They developed a software tool to automatically translate a 

PyNN design into hardware implementation optimized for HICANN [207]. In a wafer 200,000 neurons 

and 50 million synapses can be simulated, 10,000 times faster than real time. The chip allows short- and 

longterm plasticity.  

 

The PAX (Plasticity Algorithm Computation System) project [208] was part of the FACETS projects 

and later of BrainScales. This project involved Sylvie Renaud and Sylvain Saïghi (Université de 

Bordeaux), who develop a hybrid brain model. They collaborated with Karlheinz Meier’s group from the 

University of Heidelberg to develop and validate these rules of synaptic plasticity, especially STDP, for 

their use in HICANN.  

 

Currently, BrainScales is part of the HBP, and a system with 20 wafers in 65nm CMOS will be 

created by 2017, which is expected to simulate 4 million neurons and one billion synapses. By 2022, the 

researchers’ intention is to create a system with 500 or 5,000 wafers to simulate between 500 and 5,000 

billion neurons.  

4.2. HiAER-IFAT & NeuroDyn  

A group of researchers at the University of California, San Diego, have created two different 

neuromorphic chips, HiAER-IFAT (Hierarchical AER Integrate and Fire Array Transceiver) [209-210], 

which can simulate 250,000 neurons, and NeuroDyn [212], which emulates four neurons and 12 synapses 

with a great level of detail. NeuroDyn uses the Hodgkin-Huxley model with 384 parameters in 24 

channels. They have also proposed a memristor for spiking neurons [213].  

 

The IFAT chips have several applications: Laplacian filters to isolate edges in images, spatial filters to 

process spikes in training an artificial retina [36]. The NeuroDyn chip allows simulating the patch-

clamping experiments performed in real neurons. 

  



4.3. Other Projects  

The Institute of Neuroinformatics at the University of Zurich sought to create cognitive neuromorphic 

VLSI systems for specific applications. In 2009 the Neuromorphic Cognitive System group [214] was 

established. The director is Giacomo Indiveri, who edited a remarkable book, “Event Based 

Neuromorphic Systems” [215]. Nowadays this group participates in several projects based on 

neuromorphic chips: neuroP (Neuromorphic Processors), SCANDLE (acoustic SCene ANalysis for 

Detecting Living Entities), EMorph (Event-Driven Morphological Computation for Embodied Systems), 

nAttention (Neuromorphic Attention), SoundRec (Real-time sound recognition using neuromorphic 

VLSI), Optic Flow (Implementation of biomimetic control principles using neuromorphic optic flow 

sensors) and other long-term projects. The research group has published extensively on the developed 

systems: a neuromorphic vestibular system [216], Brain Machine Interface [217], Recurrent Neural 

Networks [218], autonomous robots [219] and a reconfigurable chip for online learning [220].  

5. HYBRID BRAIN COMPUTATIONAL MODELS  

5.1. Neurogrid  

The Neurogrid [221] is a project developed by Stanford University [62], led by Kwabena Boahen. It is 

a neuromorphic system aimed at simulating large-scale neural models in real time. It is able to simulate a 

million neurons with a trillion synaptic connections in real time, using 16 neurocores (each NeuroCore 

simulates 65,000 neurons) integrated into a plate that consumes 3 Watts. The Neurogrid uses a two-level 

simulation model for neurons. A quadratic integrated-and-fire model is employed for the somatic 

compartment. Dendritic compartments are modeled with up to four Hodgkin- Huxley channels [17]. The 

system emulates all the neural elements (axonal tree, synapses and dendritic tree) with shared electronic 

circuits except the soma (comparator), so the number of synapses is maximized. In addition, it is hybrid 

because all electronics are analog, except for the axonal trees to optimize energy efficiency. The neural 

arrays are interconnected in a multicast tree network to maximize performance [222, 223].  

 

The architecture of shared dendrites and the tree router topology can be fully exploited by neural 

models that meet two requirements: firstly, they should be arranged in layers so that neighboring neurons 

in the same layer have essentially the same inputs as the cortical maps feature. This allows using shared 

dendrites. Secondly, they should be organized into columns so that neurons at corresponding locations, in 

different layers, have translation-invariant connectivity, as in cortical columns.  

 

A limitation of the architecture of shared dendrites involves the lack of synaptic plasticity because 

neighboring neurons receive the same input. But Neurogrid architecture also supports shared synapses, 

allowing the modification of the individual weights of the connections, stored on the motherboard RAM, 

using STDP.  

 

The Neurogrid was used to control an articulated robot in task-space [224]. NEF is also used to 

perform mathematical computations [225]. In addition, NEF is employed to integrate the Neurogrid with 

BMI in an experiment with a rhesus monkey [226].  

5.2. BRAIN Initiative  

The BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative was 

presented by the US president, Barack Obama, in April 2013 [63]. The project aims to accelerate progress 

in Neuroscience through the development and application of innovative technologies. The participating 

researchers focused on understanding the brain function and finding new treatments for brain diseases.  

 

Five federal agencies are involved in the project: FDA (Food and Drug Administration), IARPA 

(Intelligence Advanced Research Projects Activity), NIH, NSF (National Science Foundation) and 

DARPA (Defense Advanced Research Projects Agency).  

  



In addition, foundations, universities and private companies are also collaborating. The Carnegie 

Mellon University is among the many universities involved. One of its goals is to seek ways to increase 

the multidisciplinary Neuroscience collaboration between engineering, computer science and biology. 

The researchers’ aim is to unite Neuroscience and behavior through the application of machine learning, 

statistical and computational models. They also plan to commercialize new technologies and applications 

inspired by the brain.  

 

One of the most important companies participating in this initiative is Google. It is collaborating with 

the Allen Institute for Brain Science to develop scalable computational solutions to make progress with 

regard to the scientific knowledge about the brain. Google has also started to collaborate with the Howard 

Hughes Medical Institute's Janelia Research Campus and other academic institutions. It is also developing 

the necessary software and infrastructure to analyze datasets of petabytes scale generated by the BRAIN 

initiative and the Neuroscience community.  

 

Another prominent company is Qualcomm [97], which contributes to the BRAIN initiative with its 

experience in the field of wireless communication, necessary for future Neuroscience tools. They are also 

developing a neural simulator (Neuromorphic hardware) that enables large-scale simulations in real time 

to the development and analysis of neural models. Qualcomm has a co-development agreement with 

Brain Corporation [227], a company co-founded by Eugene Izhikevich and Allen Gruber in 2009. The 

company has already developed several robotic products inspired by the brain, bStem (Plate processor 

Qualcomm Snapdragon S4- Pro, sensors and cameras to serve as the robots’ brains), BrainOs (operating 

system for robots based on supervised learning) and the robot eyeRover. Currently they are developing a 

digital neuromorphic chip that includes a platform called Zeroth which mimics the brain in terms of 

encoding and transmitting information with electrical spikes. Qualcomm’s aim is to incorporate the 

processor into their chip to process information from various sensors and create intelligent devices. There 

are no public papers on the technical aspects of the chip.  

6. COMPUTATIONAL MODELS WITH GLIA  

So far there was no study including astrocytes in a neuromorphic chip. There were only realistic 

computational models [228-236] and connectionist ones [158] which have taken glial cells into account. 

Currently, there are two projects aimed at implementing astrocytes in neuromorphic chips, one is BioRC 

developed by the University of Southern California and the other project is carried out by the University 

of Tehran and University of Kermanshah (Iran). Moreover, there is a project under development at the 

University of A Coruña, which extends classical ANN by incorporating recent findings and suppositions 

regarding the way information is processed via neural and astrocytic networks in the most evolved living 

organisms.  

 

Considering the works published over the past two decades on the multiple modes of interaction 

between neurons and glial cells [26-29], it would be a very interesting approach if most of these groups 

tried to implement these behaviors in computer models. In addition, it is worth noting that glial cells have 

evolved more than neurons. For example, in mammals there are no major differences between neurons of 

different species. However, a rodent’s astrocytes may include between 20,000 and 120,000 synapses, 

while a human’s may include up to 2 million synapses [237, 238]. Furthermore, the ratio between neurons 

and glial cells varies in different brain regions (see Fig. 6). In the cerebellum, for instance, there are 

almost 5 times more neurons than astrocytes. However, in the cortex, there are 4 times more glial cells 

than neurons [1, 239]. All these data suggest that the more complex the task, performed by either an 

animal or a brain region, the greater number of glial cells is involved.  

  



 
 

 

Fig. (6). Amount of neurons and glial cells in different brain regions. 

6.1. BioRC 

As part of the BioRC (Biomimetic Real-Time Cortex) project at the University of Southern California, 

in 2011 the researchers have developed the first CMOS neuromorphic circuit which emulates the 

microdomains glia [240], including several interconnected neurons in a small network. Astrocytes 

influence neuronal behavior, stimulating it to fire. Without the intervention of the glia, neurons would not 

have enough postsynaptic potential to shoot. The circuit represents a first order model of reciprocal 

feedback between neurons and astrocytes including gliotransmitters and neurotransmitters, and calcium 

concentrations induced in astrocytes.  

 

This group has presented several papers with new behaviors of astrocytes. They simulate reception of 

neurotransmitters by astrocytes [241] and the slow inwards currents caused in the neurons by the 

astrocytes [242, 243]. The group is also developing BioRC carbon nanotube transistors [244-251] to 

simulate neuromorphic circuits. They also published a very interesting paper about the future of artificial 

brains and the challenges in mimicking the brain in order to build neuromorphic chips [36].  

6.2. University of Tehran and University of Kermanshah  

The University of Tehran and the University of Kermanshah (Iran) are collaborating in the 

development of a neuromorphic digital circuit to study neuron-astrocyte interactions [249-251]. The firing 

dynamics of the neuron is described by Izhikevich’s model and calcium dynamics of each astrocyte is 

represented by a functional model proposed by Postnov and colleagues [252]. To implement the signals 

between neurons and astrocytes, the Single Constant Multiply (SCM) technique is used, as well as linear 

approximations, for a greater efficiency. The system was first simulated in MATLAB and then 

implemented into FGPA. 

6.3. University of A Coruña  

The RNASA-IMEDIR group from University of A Coruña (Spain) developed Artificial Neuron-Glia 

Networks (ANGN) [253-257]. The ANGN are software connectionist systems including artificial neurons 

and astrocytes (Fig. 7). Artificial astrocytes control the neuron activation and modify the connection 

weights according to the neurons activation level. The design of ANGNs is based on feed-forward 

multilayer architectures which are totally connected, without backpropagation or lateral connections, and 

oriented towards classification and pattern recognition. The design of the first ANGNs was focused on 



solving classification problems by means of simple networks, i.e. multilayer networks, although further 

research may lead to the design of models in more complex networks.  

 
 

 
Fig. (7). Artificial neuron-glia network architecture. 

CONCLUSION  

This review has shown that there are a great variety of projects and models of the brain. Research 

centers around the world have taken great interest in brain modeling. The main area of interest pertains to 

the scientific, social and economic field. Parallel computing is crucial and extremely beneficial for these 

projects. The development of digital, analog and hybrid models is expedient and allows for advances in 

Neuroscience and Artificial Intelligence.  

 

Of all the models reviewed, the SyNAPSE project should be pointed out for its great scope, results 

and applications already achieved. The TrueNorth chip could be the first neuromorphic chip 

commercialized. In addition, the SpiNNaker has already had various applications and a very interesting 

future lies ahead. Moreover, the BrainScaleS should also be emphasized for its speed and great potential 

within Neuroscience research.  

 

With regard to the cerebral phenomena emulated by computer models, the importance of considering 

the glial system should be stressed. Such system is crucial for the development of complex cognitive 

capacities of human beings. Therefore, it should be part of brain models to be truly realistic.  

 

In the short and medium term, the modeling of the brain and neuromorphic chips will advance the 

development of prosthetic devices and Brain-Machine Interface. The Computer Science and Artificial 

Intelligence fields are the areas which benefit mostly from brain modeling. However, all the brain 

simulations that will be performed within this period will use very simplified models. It is therefore 

questionable that the whole brain could be analyzed through realistic simulations.  

 

In the long term, it is more difficult to make predictions about the brain simulations, as their approach 

is rather philosophical than scientific. The question of creating an artificial brain is old, but today there is 

a clear division between scientists who believe it is possible, and could even be accomplished within the 

next two decades, and those who believe it will never be possible.  

 

Finally, there is growing interest in the study and simulation of the brain. This is due to the fact that 

the aging population and increased life expectancy will lead to age-related mental diseases such as 

dementia, Alzheimer's or Parkinson's, which affect more and more people. This will be a huge social 

problem and a high economic cost. Therefore, it is necessary to invest in brain research now in order to 

mitigate the future costs of mental diseases. On the other hand, this is a great opportunity for businessmen 

and entrepreneurs, as neuromorphic chips will support the third industrial revolution, setting a new 

programming paradigm. Nowadays, computers are tools that need to be programmed to perform a task; 



however neuromorphic systems can learn tasks without specific programming. Thus, there is no need to 

know the steps to execute the task, solely to know which inputs and outputs are needed to train the 

system. This will then create systems characterized by an ever greater number of cognitive abilities, 

capable of surpassing the human brain.  

CONFLICT OF INTEREST  

The authors confirm that this article content has no conflict of interest.  

ACKNOWLEDGEMENTS  

This work is supported by the General Directorate of Culture, Education and University Management 

of Xunta de Galicia (Ref. GRC2014/049) and the European Fund for Regional Development (FEDER) in 

the European Union, the Galician Network for Colorectal Cancer Research (REGICC) funded by the 

Xunta de Galicia (Ref. R2014/039) and by the “Collaborative Project on Medical Informatics (CIMED)” 

PI13/00280 funded by the Carlos III Health Institute from the Spanish National plan for Scientific and 

Technical Research and Innovation 2013–2016 and the European Regional Development Funds 

(FEDER). We also want to acknowledge its resources to Supercomputation Center of Galicia (CESGA), 

Spain.  

REFERENCES 

[1] Azevedo, F. A. C.; Carvalho, L. R. B.; Grinberg, L. T.; Farfel, J. M.; Ferretti, R. E. L.; Leite, R. E. P.; Jacob 

Filho, W.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human 

Brain an Isometrically Scaled-up Primate Brain. J. Comp. Neurol. 2009, 513 (5), 532–541.  

[2] Neumann, J. von; Kurzweil, R. The Computer and the Brain; 2012.  

[3] Kurzweil, R. How to Create a Mind: The Secret of Human Thought Revealed; 2012.  

[4] Kurzweil, R. The Singularity Is Near: When Humans Transcend Biology; 2005.  

[5] Merkle, R. How Many Bytes in Human Memory? Foresight Updat. 1988, 4.  

[6] Merkle, R. C. Energy Limits to the Computational Power of the Human Brain. Foresight Updat. 1989, 6.  

[7] Deep Learning blog https://timdettmers.wordpress.com/2015/07/27/brain-vs-deeplearning- singularity/ (Accessed 

August 1, 2015)  

[8] Human Brain Evolution: The Influence of Freshwater and Marine Food Resources; John Wiley & Sons, 2010; 

Vol. 0.  

[9] McCulloch, W. S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 

1943, 5 (4), 115–133.  

[10] Turing, A. Computing Machinery and Intelligence. Mind 1950, 49, 433–460.  

[11] Minsky, M. Steps toward Artificial Intelligence. Proc. IRE 1961, 49 (1), 8–30.  

[12] Minsky, M.; Papert, S. Perceptrons. 1969.  

[13] Minsky, M.; Papert, S. Artificial Intelligence Progress Report. 1972.  

[14] Von Neumann, J. The General and Logical Theory of Automata. Cereb. Mech. Behav. 1951, 1–41.  

[15] Hebb, D. The Organization of Behaviour: A Neuropsychological Theory. 1949.  

[16] Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. 

Psichol. Rev. 1958, 65 (6), 386.  

[17] Hodgkin, A. L.; Huxley, A. F. A Quantitative Description of Membrane Current and Its Application to 

Conduction and Excitation in Nerve. J. Physiol. 1952, 117 (4), 500–544.  

[18] Widrow, B.; Hoff, M. E. Adaptive Switching Circuits. 1960.  

[19] Hubel, D. H.; Wiesel, T. N. Shape and Arrangement of Columns in Cat’s Striate Cortex. J. Physiol. 1963, 165, 

559–568.  

[20] Rall, W. Branching Dendritic Trefaes and Motoneuron Membrane Resistivity. Exp. Neurol. 1959, 1 (5), 491–

527.  

[21] Marr, D. Artificial intelligence—A Personal View. Artificial Intelligence, 1977, 9, 37–48.  

[22] Rumelhart, D. E.; McClelland, J. L.; PDP Research Group, C. Parallel Distributed Processing: Explorations in 

the Microstructure of Cognition, Vol. 1: Foundations. 1986.  

[23] Sivilotti, M. A.; Emerling, M. R.; Mead, C. A. VLSI Architectures for Implementation of Neural Networks, 

1986.  

[24] Mead, C. Analog VLSI and Neural Systems; Addison-Wesley, 1989.  

[25] Wong, T. M.; Preissl, R.; Datta, P.; Flickner, M.; Singh, R.; Esser, S. K.; Mcquinn, E.; Appuswamy, R.; Risk, 

W. P.; Simon, H. D.; Modha, D. S.; Jose, S.; Berkeley, L. 1014 IBM Journal Report. 2012, 10502, 13–15.  



[26] Fields, R. D. The Other Brain: From Dementia to Schizophrenia, How New Discoveries about the Brain Are 

Revolutionizing Medicine and Science; Simon and Schuster, 2009.  

[27] Koob, A. The Root of Thought: Unlocking Glia--the Brain Cell That Will Help Us Sharpen Our Wits, Heal 

Injury, and Treat Brain Disease; FT Press, 2009.  

[28] Fields, R. D.; Araque, A.; Johansen-Berg, H.; Lim, S.-S.; Lynch, G.; Nave, K.-A.; Nedergaard, M.; Perez, R.; 

Sejnowski, T.; Wake, H. Glial Biology in Learning and Cognition. Neuroscientist 2014, 20 (5), 426–431.  

[29] Perea, G.; Sur, M.; Araque, A. Neuron-Glia Networks: Integral Gear of Brain Function. Front. Cell. Neurosci. 

2014, 8, 378.  

[30] Haydon, P. G.; Nedergaard, M. How Do Astrocytes Participate in Neural Plasticity? Cold Spring Harb. Perspect. 

Biol. 2015, 7 (3), a020438.  

[31] Araque, A.; Parpura, V.; Sanzgiri, R. P.; Haydon, P. G. Tripartite Synapses: Glia, the Unacknowledged Partner. 

Trends Neurosci. 1999, 22 (5), 208–215.  

[32] Zorec, R.; Araque, A.; Carmignoto, G.; Haydon, P. G.; Verkhratsky, A.; Parpura, V. Astroglial Excitability and 

Gliotransmission: An Appraisal of Ca2+ as a Signalling Route. ASN Neuro 2012, 4 (2).  

[33] Araque, A.; Carmignoto, G.; Haydon, P. G.; Oliet, S. H. R.; Robitaille, R.; Volterra, A. Gliotransmitters Travel 

in Time and Space. Neuron 2014, 81 (4), 728–739.  

[34] Ben Achour, S.; Pascual, O. Glia: The Many Ways to Modulate Synaptic Plasticity. Neurochem. Int. 2010, 57 

(4), 440–445.  

[35] Schafer, D. P.; Lehrman, E. K.; Stevens, B. The “Quad-Partite” Synapse: Microglia-Synapse Interactions in the 

Developing and Mature CNS. Glia 2013, 61 (1), 24–36.  

[36] Cattell, R.; Parker, A. Challenges for Brain Emulation: Why Is Building a Brain so Difficult? 2012, 1–28.  

[37] Human Brain Project: https://www.humanbrainproject.eu/ (Accessed August 10, 2015)  

[38] Spaun: http://models.nengo.ca/spaun (Accessed August 23, 2015)  

[39] Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Networks 2014, 61, 85–117.  

[40] Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. 

Pattern Anal. Mach. Intell. 2013, 35 (8), 1798–1828.  

[41] ImageNet Large Scale Visual Recognition Competition: http://image-net.org/challenges/LSVRC/2015/ 

(Accessed August 25, 2015)  

[42] Deng, L.; Hinton, G.; Kingsbury, B. New Types of Deep Neural Network Learning for Speech Recognition and 

Related Applications: An Overview. In 2013 IEEE International Conference on Acoustics, Speech and Signal 

Processing; IEEE, 2013; pp 8599– 8603.  

[43] Hirschberg, J.; Manning, C. D. Advances in Natural Language Processing. Science. 2015, 349 (6245), 261–266.  

[44] Srivastava, N.; Salakhutdinov, R. R. Multimodal Learning with Deep Boltzmann Machines. In Advances in 

neural information processing systems; 2012; pp 2222–2230.  

[45] Deng, L. Deep Learning: Methods and Applications. Found. Trends® Signal Process. 2014, 7 (3-4), 197–387.  

[46] Deng, L. A Tutorial Survey of Architectures, Algorithms, and Applications for Deep Learning. APSIPA Trans. 

Signal Inf. Process. 2014, 3, e2.  

[47] TOP500 Supercomputing Sites: http://www.top500.org/ (Accessed August 23, 2015)  

[48] TOP500 Supercomputing Sites: http://www.top500.org/project/linpack/ (Accessed August 23, 2015)  

[49] Sharp, T.; Galluppi, F.; Rast, A.; Furber, S. Power-Efficient Simulation of Detailed Cortical Microcircuits on 

SpiNNaker. J. Neurosci. Methods 2012, 210 (1), 110–118.  

[50] Dimitrijev, S. Principles of Semiconductor Devices; Oxford university press, 2012.  

[51] Kurzweil, R. The Law of Accelerating Returns; Springer, 2004.  

[52] Awschalom, D. D.; Loss, N. S.; Semiconductor Spintronics and Quantum Computation; Springer Science & 

Business Media, 2013.  

[53] Awschalom, D. D.; Bassett, L. C.; Dzurak, A. S.; Hu, E. L.; Petta, J. R. Quantum Spintronics: Engineering and 

Manipulating Atomlike Spins in Semiconductors. Science 2013, 339 (6124), 1174– 1179.  

[54] Devoret, M. H.; Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science 

2013, 339 (6124), 1169–1174.  

[55] Monroe, C.; Kim, J. Scaling the Ion Trap Quantum Processor. Science 2013, 339 (6124), 1164–1169.  

[56] Stern, A.; Lindner, N. H. Topological Quantum Computation--from Basic Concepts to First Experiments. 

Science 2013, 339 (6124), 1179–1184.  

[57] Zhang, Y.; Li, L.; Lu, Z.; Jantsch, A.; Gao, M.; Pan, H.; Han, F. A Survey of Memory Architecture for 3D Chip 

Multi-Processors. Microprocess. Microsyst. 2014, 38 (5), 415–430.  

[58] Sun, D.-M.; Liu, C.; Ren, W.-C.; Cheng, H.-M. A Review of Carbon Nanotube- and Graphene-Based Flexible 

Thin-Film Transistors. Small 2013, 9 (8), 1188–1205.  

[59] Avouris, P.; Chang, J. B.; Haensch, W. E.; Liu, F.; Liu, Z.; Wu, Y.; Zhu, W. Graphene Devices and 

Semiconductor Field Effect Transistors in 3D Hybrid Integrated Circuits. U.S. Patent 8748871 B2, June 10, 2014.  

[60] IBM Research. Cognitive Computing. Neurosynaptic chips. http://www.research.ibm.com/cognitive-

computing/neurosynapticchips. shtml#fbid=IcooSM9Q3jV (Accessed August 10, 2015)  

[61] SpiNNker Wiki: https://spinnaker.cs.manchester.ac.uk/tikiindex. php (Accessed August 10, 2015)  

[62] Stanford University. Brains in silicon: http://web.stanford.edu/group/brainsinsilicon/neurogrid.html (Accessed 

August 10, 2015)  

[63] BRAIN Initiative: http://www.braininitiative.nih.gov/ (Accessed August 10, 2015)  

[64] BrainScaleS: http://brainscales.kip.uni-heidelberg.de/ (Accessed August 10, 2015)  

[65] Traversa, F. L.; Di Ventra, M. Universal Memcomputing Machines. IEEE Trans. neural networks Learn. Syst. 

2015.  



[66] Alvarellos, A.; Veiguela, N.; R Munteanu, C.; Dorado, J.; Pazos, A.; B Porto-Pazos, A. The Ability of MEAs 

Containing Cultured Neuroglial Networks to Process Information. Curr. Bioinform. 2011, 6 (2), 199–214.  

[67] Simon, D. T.; Larsson, K. C.; Nilsson, D.; Burström, G.; Galter, D.; Berggren, M.; Richter-Dahlfors, A. An 

Organic Electronic Biomimetic Neuron Enables Auto-Regulated Neuromodulation. Biosens. Bioelectron. 2015, 

71, 359–364.  

[68] Nicolas-Alonso, L. F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors (Basel). 2012, 12 (2), 1211–

1279.  

[69] Shih, J. J.; Krusienski, D. J.; Wolpaw, J. R. Brain-Computer Interfaces in Medicine. Mayo Clin. Proc. 2012, 87 

(3), 268–279.  

[70] Rothschild, R. M. Neuroengineering Tools/applications for Bidirectional Interfaces, Brain-Computer Interfaces, 

and Neuroprosthetic Implants - a Review of Recent Progress. Front. Neuroeng. 2010, 3, 112.  

[71] Tucker, M. R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; Millán, J. D. R.; Riener, R.; Vallery, 

H.; Gassert, R. Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review. J. Neuroeng. 

Rehabil. 2015, 12, 1.  

[72] Emerging Theory and Practice in Neuroprosthetics; IGI Global, 2014.  

[73] Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation; Jensen, 

W., Andersen, O.  

[74] Borton, D.; Micera, S.; Millán, J. del R.; Courtine, G. Personalized Neuroprosthetics. Sci. Transl. Med. 2013, 5 

(210), 210rv2.  

[75] NEURON Yale: https://www.neuron.yale.edu/neuron/ (Accessed August 6, 2015)  

[76] GENESIS simulation: http://genesis-sim.org/ (Accessed August 6, 2015)  

[77] Nest Initiative: http://www.nest-initiative.org/ (Accessed August 6, 2015)  

[78] The Blue Brain Project EPFL, in silico experiments: http://bluebrain.epfl.ch/page-58125-en.html (Accessed 

August 6, 2015)  

[79] Vasilache, N.; Johnson, J.; Mathieu, M.; Chintala, S.; Piantino, S.; LeCun, Y. Fast Convolutional Nets With 

Fbfft: A GPU Performance Evaluation. 2014.  

[80] Indiveri, G.; Linares-Barranco, B.; Hamilton, T. J.; van Schaik, A.; Etienne-Cummings, R.; Delbruck, T.; Liu, 

S.-C.; Dudek, P.; Häfliger, P.; Renaud, S.; Schemmel, J.; Cauwenberghs, G.; Arthur, J.; Hynna, K.; Folowosele, 

F.; Saighi, S.; Serrano-Gotarredona, T.; Wijekoon, J.; Wang, Y.; Boahen, K. Neuromorphic Silicon Neuron 

Circuits. Front. Neurosci. 2011, 5 (May), 73.  

[81] Chicca, E.; Stefanini, F.; Bartolozzi, C.; Senior, G. I. Neuromorphic Electronic Circuits for Building 

Autonomous Cognitive Systems. 2014, X (X), 1–19.  

[82] University of Cambridge, BIMPA Project: http://www.cl.cam.ac.uk/research/comparch/research/bimpa.html 

(Accessed August 15, 2015)  

[83] Robotics & technology of computers lab. Universidad de Sevilla, Neuromoprhic engineering: 

http://www.rtc.us.es/neuromorphicengineering/ (Accessed August 15, 2015)  

[84] Farahini, N.; Hemani, A. A Conceptual Custom Super-Computer Design for Real-Time Simulation of Human 

Brain. In Electrical Engineering (ICEE), 2013 21st Iranian Conference on; IEEE, 2013; pp 1–6.  

[85] Mahowald, M. The Silicon Retina. In An Analog VLSI System for Stereoscopic Vision; Springer, 1994; pp 4–

65.  

[86] Mahowald, M. VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function, 1992.  

[87] Douglas, R.; Mahowald, M.; Mead, C. Neuromorphic Analogue VLSI. Annu. Rev. Neurosci. 1995, 18, 255–281.  

[88] Mahowald, M.; Douglas, R. A Silicon Neuron. Nature 1991, 354 (6354), 515–518.  

[89] Nicolelis, D. M. a. The Relativistic Brain: How It Works and Why It Cannot Be Simulated by a Turing Machine; 

On Demand Publishing, LLC-Create Space, 2015.  

[90] Indiveri, G. Modeling Selective Attention Using a Neuromorphic Analog VLSI Device. Neural Comput. 2000, 

12 (12), 2857–2880.  

[91] Le Masson, G.; Renaud-Le Masson, S.; Debay, D.; Bal, T. Feedback Inhibition Controls Spike Transfer in 

Hybrid Thalamic Circuits. Nature 2002, 417 (6891), 854–858.  

[92] Vogelstein, R. J.; Tenore, F.; Guevremont, L.; Etienne-Cummings, R.; Mushahwar, V. K. A Silicon Central 

Pattern Generator Controls Locomotion in Vivo. Biomed. Circuits Syst. IEEE Trans. 2008, 2 (3), 212–222.  

[93] Indiveri, G.; Chicca, E.; Douglas, R. J. Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons 

to Neuromorphic Cognition. Cognit. Comput. 2009, 1 (2), 119–127.  

[94] Mitra, S.; Fusi, S.; Indiveri, G. Real-Time Classification of Complex Patterns Using Spike-Based Learning in 

Neuromorphic VLSI. Biomed. Circuits Syst. IEEE Trans. 2009, 3 (1), 32–42.  

[95] Sivilotti, M. A. Wiring Considerations in Analog VLSI Systems, with Application to Field-Programmable 

Networks, 1990.  

[96] Computational Intelligence and Bioinspired Systems; Cabestany, J., Prieto, A., Sandoval, F., Eds.; Lecture Notes 

in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; Vol. 3512.  

[97] Qualcomm Zeroth Platform, cognitive technologies: 

https://www.qualcomm.com/invention/cognitivetechnologies/ zeroth (Accessed August 30, 2015)  

[98] Eliasmith, C. On the Eve of Artificial Minds. In Open MIND; Metzinger, T. K., Windt, J. M., Eds.; MIND 

Group: Frankfurt am Main. 2015  

[99] Eliasmith, C.; Trujillo, O. The Use and Abuse of Large-Scale Brain Models. Curr. Opin. Neurobiol. 2014, 25, 1–

6.  

[100] Colombo, M. Why Build a Virtual Brain? Large-Scale Neural Simulations as Test-Bed for Artificial 

Computing Systems. 2015.  



[101] Tomas, B.; Tomâs, B. Cortex Simulation System Proposal Using Distributed Computer Network 

Environments. arXiv Prepr. arXiv1403.5701 2014.  

[102] Calimera, A.; Macii, E.; Poncino, M. The Human Brain Project and Neuromorphic Computing. Funct. Neurol. 

2013, 28 (3), 191–196.  

[103] De Garis, H.; Shuo, C.; Goertzel, B.; Ruiting, L. A World Survey of Artificial Brain Projects, Part I: Large-

Scale Brain Simulations. Neurocomputing 2010, 74 (1), 3–29.  

[104] Goertzel, B.; Lian, R.; Arel, I.; De Garis, H.; Chen, S. A World Survey of Artificial Brain Projects, Part II: 

Biologically Inspired Cognitive Architectures. Neurocomputing 2010, 74 (1), 30–49.  

[105] Sandberg, A.; Bostrom, N. Whole Brain Emulation: A Roadmap, Future of Humanity Institute, 2008.  

[106] Izhikevich, E. M. Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Netw. 2004, 15 (5), 

1063–1070.  

[107] Izhikevich, E. M. Hybrid Spiking Models. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 2010, 368 

(1930), 5061–5070.  

[108] Piccinini, G.; Bahar, S. Neural Computation and the Computational Theory of Cognition. Cogn. Sci. 2013, 37 

(3), 453–488.  

[109] D’Angelo, E.; Solinas, S.; Garrido, J.; Casellato, C.; Pedrocchi, A.; Mapelli, J.; Gandolfi, D.; Prestori, F. 

Realistic Modeling of Neurons and Networks: Towards Brain Simulation. Funct. Neurol. 2013, 28 (3), 153.  

[110] Van Drongelen, W. Modeling Neural Activity. ISRN Biomath. 2013, 2013, 1–37.  

[111] Gerstner, W.; Sprekeler, H.; Deco, G. Theory and Simulation in Neuroscience. Science. 2012, 338 (6103), 60–

65.  

[112] Brette, R.; Rudolph, M.; Carnevale, T.; Hines, M.; Beeman, D.; Bower, J. M.; Diesmann, M.; Morrison, A.; 

Goodman, P. H.; Harris Jr, F. C. Simulation of Networks of Spiking Neurons: A Review of Tools and Strategies. 

J. Comput. Neurosci. 2007, 23 (3), 349–398.  

[113] Hasler, J.; Marr, B. Finding a Roadmap to Achieve Large Neuromorphic Hardware Systems. Front. Neurosci. 

2013, 7 (September), 118.  

[114] Misra, J.; Saha, I. Artificial Neural Networks in Hardware: A Survey of Two Decades of Progress. 

Neurocomputing 2010, 74 (1-3), 239–255.  

[115] Xue, Y. Recent Development in Analog Computation-A Brief Overview. arXiv Prepr. arXiv1504.00450 2015.  

[116] Silver, R.; Boahen, K.; Grillner, S.; Kopell, N.; Olsen, K. L. Neurotech for Neuroscience: Unifying Concepts, 

Organizing Principles, and Emerging Tools. J. Neurosci. 2007, 27 (44), 11807–11819.  

[117] Kaku, M. The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind; 2014.  

[118] Dehaene, S. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts; 2014.  

[119] Kurzweil, R. How to Create a Mind: The Secret of Human Thought Revealed; 2012.  

[120] Kurzweil, R. The Singularity Is Near: When Humans Transcend Biology; 2005.  

[121] Penrose, R.; Shimony, A.; Longair, M.; Cartwright, N.; Hawking, S. The Large, the Small and the Human 

Mind; Cambridge University Press, 2000.  

[122] Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics; OUP Oxford, 

1999.  

[123] Penrose, R. Shadows of the Mind: A Search for the Missing Science of Consciousness; Oxford University 

Press, 1994.  

[124] IBM Blue Gene/Q: http://www-03.ibm.com/systems/ technicalcomputing/solutions/bluegene/ (Accessed 

September 2, 2015)  

[125] Basheer, I. A.; Hajmeer, M. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. 

Microbiol. Methods 2000, 43 (1), 3–31.  

[126] Yu, T.; Cauwenberghs, G. Analog VLSI Biophysical Neurons and Synapses with Programmable Membrane 

Channel Kinetics. IEEE Trans. Biomed. Circuits Syst. 2010, 4 (3), 139–148.  

[127] Herz, A. V. M.; Gollisch, T.; Machens, C. K.; Jaeger, D. Modeling Single-Neuron Dynamics and 

Computations: A Balance of Detail and Abstraction. Science. 2006, 314 (5796), 80–85.  

[128] Koch, C.; Segev, I. Methods in Neuronal Modeling: From Ions to Networks; MIT press, 1998.  

[129] Markram, H. The Human Brain Project. Sci. Am. 2012, 306 (6), 50–55.  

[130] Markram, H.; Meier, K.; Lippert, T.; Grillner, S.; Frackowiak, R.; Dehaene, S.; Knoll, A.; Sompolinsky, H.; 

Verstreken, K.; DeFelipe, J. Introducing the Human Brain Project. Procedia Comput. Sci. 2011, 7, 39–42.  

[131] Markram, H. The Blue Brain Project. Nat. Rev. Neurosci. 2006, 7 (2), 153–160.  

[132] FACETS (Fast Analog Computing with Emergent Transient States): http://facets.kip.uni-heidelberg.de/ 

(Accessed September 2, 2015)  

[133] Human Brain Mediation Report: http://www.fzjuelich. de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03- 

09hbpmediation. html;jsessionid=BE4F5917ECDF2E5F8CC0ED6380219 726 (Accessed September 5, 2015)  

[134] Open letter to the European Commision: http://www.neurofuture.eu/ (Accessed September 5, 2015)  

[135] Human Brain Project Faq Neuroscience: https://www.humanbrainproject.eu/es/faq/neuroscience (Accessed 

September 10, 2015)  

[136] STEPS (Stochastic Engine for Pathway Simulation): http://steps.sourceforge.net/STEPS/default.php (Accessed 

September 10, 2015)  

[137] Markram, H.; Perin, R. Innate Neural Assemblies for Lego Memory. Front. Neural Circuits 2011, 5 (May), 6.  

[138] Perin, R.; Berger, T. K.; Markram, H. A Synaptic Organizing Principle for Cortical Neuronal Groups. Proc. 

Natl. Acad. Sci. U. S. A. 2011, 108 (13), 5419–5424.  



[139] Hill, S. L.; Wang, Y.; Riachi, I.; Schürmann, F.; Markram, H. Statistical Connectivity Provides a Sufficient 

Foundation for Specific Functional Connectivity in Neocortical Neural Microcircuits. Proc. Natl. Acad. Sci. U. S. 

A. 2012, 109 (42), E2885–E2894.  

[140] Cajal Blue Brain Project: http://cajalbbp.cesvima.upm.es/ (Accessed September 2, 2015)  

[141] Eliasmith, C.; Stewart, T. C.; Choo, X.; Bekolay, T.; DeWolf, T.; Tang, Y.; Tang, C.; Rasmussen, D. A Large-

Scale Model of the Functioning Brain. Science 2012, 338 (6111), 1202–1205.  

[142] Eliasmith, C. How to Build a Brain: A Neural Architecture for Biological Cognition; Oxford University Press, 

2013.  

[143] Stewart, B. T. C.; Eliasmith, C.; Stewart, T. C.; Eliasmith, C. Large-Scale Synthesis of Functional Spiking 

Neural Circuits. Proc. IEEE 2014, 102 (5), 881–898.  

[144] Eliasmith, C. Building a Behaving Brain. 2015, No. 3.  

[145] Stewart, T. C.; Choo, F.-X.; Eliasmith, C. Spaun: A Perception- Cognition-Action Model Using Spiking 

Neurons. In Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012); 2012; pp 

1018–1023.  

[146] Eliasmith, C.; Anderson, C. H. Neural Engineering: Computation, Representation, and Dynamics in 

Neurobiological Systems; MIT Press, 2004.  

[147] Eliasmith, C. A Unified Approach to Building and Controlling Spiking Attractor Networks. Neural Comput. 

2005, 17 (6), 1276– 1314.  

[148] Stewart, T. C.; Bekolay, T.; Eliasmith, C. Neural Representations of Compositional Structures: Representing 

and Manipulating Vector Spaces with Spiking Neurons. Conn. Sci. 2011, 23 (2), 145– 153.  

[149] Eliasmith, C. How to Build a Brain: A Neural Architecture for Biological Cognition; Oxford University Press, 

2013.  

[150] Stewart, T. C.; Tripp, B.; Eliasmith, C. Python Scripting in the Nengo Simulator. Front. Neuroinform. 2009, 3.  

[151] Kasabov, N. Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and 

Intelligent Machines; Springer Science & Business Media, 2013.  

[152] Bahrammirzaee, A. A Comparative Survey of Artificial Intelligence Applications in Finance: Artificial Neural 

Networks, Expert System and Hybrid Intelligent Systems. Neural Comput. Appl. 2010, 19 (8), 1165–1195.  

[153] Angelov, P.; Filev, D. P.; Kasabov, N. Evolving Intelligent Systems: Methodology and Applications; John 

Wiley & Sons, 2010; Vol. 12.  

[154] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. 

Going Deeper with Convolutions. arXiv Prepr. arXiv1409.4842 2014.  

[155] LeCun, Y. Learning Invariant Feature Hierarchies. In Computer vision–ECCV 2012. Workshops and 

demonstrations; Springer, 2012; pp 496–505.  

[156] Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A Deep Convolutional 

Activation Feature for Generic Visual Recognition. arXiv Prepr. arXiv1310.1531 2013.  

[157] Goodman, D.; Brette, R. Brian: A Simulator for Spiking Neural Networks in Python. Front. Neuroinform. 

2008, 2.  

[158] Porto Pazos, A. B. Advancing Artificial Intelligence through Biological Process Applications; IGI Global, 

2008.  

[159] Ghosh-Dastidar, S.; Adeli, H. Spiking Neural Networks. Int. J. Neural Syst. 2009, 19 (04), 295–308.  

[160] Ghosh-Dastidar, S.; Adeli, H. A New Supervised Learning Algorithm for Multiple Spiking Neural Networks 

with Application in Epilepsy and Seizure Detection. Neural Networks 2009, 22 (10), 1419–1431.  

[161] Furber, S. B.; Galluppi, F.; Temple, S.; Plana, L. The SpiNNaker Project. Proc. IEEE 2014, 102 (5), 652–665.  

[162] Navaridas, J.; Luján, M.; Plana, L. a.; Temple, S.; Furber, S. B. SpiNNaker: Enhanced Multicast Routing. 

Parallel Comput. 2015, 45, 49–66.  

[163] Furber, S. B.; Lester, D. R.; Plana, L. A.; Garside, J. D.; Painkras, E.; Temple, S.; Brown, A. D. Overview of 

the SpiNNaker System Architecture. IEEE Trans. Comput. 2013, 62 (12), 2454–2467.  

[164] Navaridas, J.; Luján, M.; Miguel-Alonso, J.; Plana, L. A.; Furber, S. Understanding the Interconnection 

Network of SpiNNaker. In Proceedings of the 23rd international conference on Conference on Supercomputing - 

ICS ’09; 2009; pp 286–295.  

[165] Plana, L.; Furber, S. B.; Temple, S.; Khan, M.; Shi, Y.; Wu, J.; Yang, S. A GALS Infrastructure for a 

Massively Parallel Multiprocessor. Des. Test Comput. IEEE 2007, 24 (5), 454–463.  

[166] Furber, S.; Brown, A. Biologically-Inspired Massively-Parallel Architectures - Computing Beyond a Million 

Processors. In 2009 Ninth International Conference on Application of Concurrency to System Design; 2009; pp 

3–12.  

[167] Davies, S.; Navaridas, J.; Galluppi, F.; Furber, S. Population-Based Routing in the SpiNNaker Neuromorphic 

Architecture. In The 2012 International Joint Conference on Neural Networks (IJCNN); 2012; pp 1–8.  

[168] Rast, A. D.; Jin, X.; Galluppi, F.; Plana, L. a.; Patterson, C.; Furber, S. Scalable Event-Driven Native Parallel 

Processing: The Spinnaker Neuromimetic System. Proc. 7th ACM Int. Conf. Comput. Front. 2010.  

[169] Stromatias, E.; Galluppi, F.; Patterson, C.; Furber, S. Power Analysis of Large-Scale, Real-Time Neural 

Networks on SpiNNaker. In The 2013 International Joint Conference on Neural Networks (IJCNN); 2013; pp 1–

8.  

[170] Galluppi, F.; Lagorce, X.; Stromatias, E.; Pfeiffer, M.; Plana, L.; Furber, S. B.; Benosman, R. B. A Framework 

for Plasticity Implementation on the SpiNNaker Neural Architecture. Front. Neurosci. 2014, 8 (January), 429.  

[171] Galluppi, F.; Davies, S.; Rast, A.; Sharp, T.; Plana, L. A.; Furber, S. A Hierachical Configuration System for a 

Massively Parallel Neural Hardware Platform. In Proceedings of the 9th conference on Computing Frontiers - CF 

’12; ACM Press: New York, New York, USA, 2012; p 183.  



[172] Davison, A. P. PyNN: A Common Interface for Neuronal Network Simulators. Front. Neuroinform. 2008, 2.  

[173] Stewart, T. C.; Tripp, B.; Eliasmith, C. Python Scripting in the Nengo Simulator. Front. Neuroinform. 2009, 3 

(March), 7.  

[174] Davies, S.; Stewart, T.; Eliasmith, C.; Furber, S. Spike-Based Learning of Transfer Functions with the 

SpiNNaker Neuromimetic Simulator. In The 2013 International Joint Conference on Neural Networks (IJCNN); 

2013; pp 1–8.  

[175] Galluppi, F.; Davies, S.; Furber, S.; Stewart, T.; Eliasmith, C. Real Time on-Chip Implementation of 

Dynamical Systems with Spiking Neurons. In Proceedings of the International Joint Conference on Neural 

Networks; 2012; pp 10–15.  

[176] Stromatias, E.; Neil, D.; Pfeiffer, M.; Galluppi, F.; Furber, S. B.; Liu, S.-C. Robustness of Spiking Deep Belief 

Networks to Noise and Reduced Bit Precision of Neuro-Inspired Hardware Platforms. Front. Neurosci. 2015, 9, 

222.  

[177] Serrano-Gotarredona, T.; Linares-Barranco, B.; Galluppi, F.; Plana, L.; Furber, S. ConvNets Experiments on 

SpiNNaker. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS); IEEE, 2015; pp 2405–

2408.  

[178] Lagorce, X.; Stromatias, E.; Galluppi, F.; Plana, L. a.; Liu, S.-C.; Furber, S. B.; Benosman, R. B. Breaking the 

Millisecond Barrier on SpiNNaker: Implementing Asynchronous Event-Based Plastic Models with Microsecond 

Resolution. Front. Neurosci. 2015, 9 (June), 1–14.  

[179] Galluppi, F.; Brohan, K.; Davidson, S.; Serrano-Gotarredona, T.; Carrasco, J.-A. P.; Linares-Barranco, B.; 

Furber, S. A Real-Time, Event-Driven Neuromorphic System for Goal-Directed Attentional Selection. In Neural 

Information Processing; Springer, 2012; pp 226–233.  

[180] Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128× 128 120 dB 15 Μs Latency Asynchronous Temporal Contrast 

Vision Sensor. Solid- State Circuits, IEEE J. 2008, 43 (2), 566–576.  

[181] Chan, V.; Liu, S.-C.; Van Schaik, A. AER EAR: A Matched Silicon Cochlea Pair with Address Event 

Representation Interface. Circuits Syst. I Regul. Pap. IEEE Trans. 2007, 54 (1), 48–59.  

[182] Kameda, S.; Yagi, T. An Analog VLSI Chip Emulating Sustained and Transient Response Channels of the 

Vertebrate Retina. Neural Networks, IEEE Trans. 2003, 14 (5), 1405–1412.  

[183] Posch, C.; Matolin, D.; Wohlgenannt, R. A QVGA 143dB Dynamic Range Asynchronous Address-Event 

PWM Dynamic Image Sensor with Lossless Pixel-Level Video Compression. In ISSCC; 2010; pp 400–401.  

[184] Denk, C.; Llobet-Blandino, F.; Galluppi, F.; Plana, L. A.; Furber, S.; Conradt, J. Real-Time Interface Board for 

Closed-Loop Robotic Tasks on the Spinnaker Neural Computing System. In Artificial Neural Networks and 

Machine Learning–ICANN 2013; Springer, 2013; pp 467–474.  

[185] Merolla, P. a; Arthur, J. V; Alvarez-Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, 

N.; Guo, C.; Nakamura, Y.; Brezzo, B.; Vo, I.; Esser, S. K.; Appuswamy, R.; Taba, B.; Amir, A.; Flickner, M. 

D.; Risk, W. P.; Manohar, R.; Modha, D. S. Artificial Brains. A Million Spiking-Neuron Integrated Circuit with a 

Scalable Communication Network and Interface. Science 2014, 345 (6197), 668–673.  

[186] Amir, A.; Datta, P.; Risk, W. P.; Cassidy, A. S.; Kusnitz, J. A.; Esser, S. K.; Andreopoulos, A.; Wong, T. M.; 

Flickner, M.; Alvarez- Icaza, R.; McQuinn, E.; Shaw, B.; Pass, N.; Modha, D. S. Cognitive Computing 

Programming Paradigm: A Corelet Language for Composing Networks of Neurosynaptic Cores. In Proceedings 

of the International Joint Conference on Neural Networks; 2013; pp 1–10.  

[187] Cassidy, A. S.; Alvarez-Icaza, R.; Akopyan, F.; Sawada, J.; Arthur, J. V.; Merolla, P. a.; Datta, P.; Tallada, M. 

G.; Taba, B.; Andreopoulos, A.; Amir, A.; Esser, S. K.; Kusnitz, J.; Appuswamy, R.; Haymes, C.; Brezzo, B.; 

Moussalli, R.; Bellofatto, R.; Baks, C.; Mastro, M.; Schleupen, K.; Cox, C. E.; Inoue, K.; Millman, S.; Imam, N.; 

Mcquinn, E.; Nakamura, Y. Y.; Vo, I.; Guok, C.; Nguyen, D.; Lekuch, S.; Asaad, S.; Friedman, D.; Jackson, B. 

L.; Flickner, M. D.; Risk, W. P.; Manohar, R.; Modha, D. S. Real- Time Scalable Cortical Computing at 46 Giga-

Synaptic OPS/watt with ∼100× Speedup in Time-to-Solution and ∼100,000× Reduction in Energy-to-Solution. 

In Proceedings of the international conference for high performance computing, networking, storage and analysis; 

IEEE Press, 2014; pp 27–38.  

[188] Merolla, P.; Arthur, J.; Akopyan, F.; Imam, N.; Manohar, R.; Modha, D. S. A Digital Neurosynaptic Core 

Using Embedded Crossbar Memory with 45pJ per Spike in 45nm. Proc. Cust. Integr. Circuits Conf. 2011, 1–4.  

[189] Preissl, R.; Wong, T. M.; Datta, P.; Flickner, M. D.; Singh, R.; Esser, S. K.; Risk, W. P.; Simon, H. D.; Modha, 

D. S. Compass: A Scalable Simulator for an Architecture for Cognitive Computing. 2012 Int. Conf. High 

Perform. Comput. Networking, Storage Anal. 2012, 1–11.  

[190] Minkovich, K.; Thibeault, C. M.; O’Brien, M. J.; Nogin, A.; Cho, Y.; Srinivasa, N. HRLSim: A High 

Performance Spiking Neural Network Simulator for GPGPU Clusters. IEEE Trans. Neural Networks Learn. Syst. 

2014, 25 (2), 316–331.  

[191] Ananthanarayanan, R.; Modha, D. S. Anatomy of a Cortical Simulator. Proc. 2007 ACM/IEEE Conf. 

Supercomput. (SC ’07) 2007, No. c, 1.  

[192] Modha, D. S.; Ananthanarayanan, R.; Esser, S. K.; Ndirango, A.; Sherbondy, A. J.; Singh, R. Cognitive 

Computing. Commun. ACM 2011, 54 (8), 62.  

[193] Modha, D. S.; Singh, R. Network Architecture of the Long- Distance Pathways in the Macaque Brain. Proc. 

Natl. Acad. Sci. U. S. A. 2010, 107 (30), 13485–13490.  

[194] Cassidy, A. S.; Merolla, P.; Arthur, J. V; Esser, S. K.; Jackson, B.; Alvarez-Icaza, R.; Datta, P.; Sawada, J.; 

Wong, T. M.; Feldman, V.; Amir, A.; Rubin, D. B.; Akopyan, F.; McQuinn, E.; Risk, W. P.; Modha, D. S. 

Cognitive Computing Building Block: A Versatile and Efficient Digital Neuron Model for Neurosynaptic Cores. 

In The 2013 International Joint Conference on Neural Networks (IJCNN); 2013; pp 1–10.  



[195] Esser, S. K.; Andreopoulos, A.; Appuswamy, R.; Datta, P.; Barch, D.; Amir, A.; Arthur, J.; Cassidy, A.; 

Flickner, M.; Merolla, P.; Chandra, S.; Basilico, N.; Carpin, S.; Zimmerman, T.; Zee, F.; Alvarez- Icaza, R.; 

Kusnitz, J. a.; Wong, T. M.; Risk, W. P.; McQuinn, E.; Nayak, T. K.; Singh, R.; Modha, D. S. Cognitive 

Computing Systems: Algorithms and Applications for Networks of Neurosynaptic Cores. In The 2013 

International Joint Conference on Neural Networks (IJCNN); 2013; pp 1–10.  

[196] Serrano-Gotarredona, R.; Serrano-Gotarredona, T.; Acosta- Jiménez, A.; Serrano-Gotarredona, C.; Pérez-

Carrasco, J.; Linares- Barranco, B.; Linares-Barranco, A.; Jiménez-Moreno, G.; Civit- Ballcels, A. On Real-Time 

AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing. Neural Networks, IEEE 

Trans. 2008, 19 (7), 1196–1219.  

[197] Serrano-gotarredona, R.; Oster, M.; Lichtsteiner, P.; Linaresbarranco, A.; Paz-vicente, R.; Gómez-rodríguez, 

F.; Camuñasmesa, L.; Berner, R.; Rivas-pérez, M.; Delbrück, T.; Liu, S.; Douglas, R.; Häfliger, P.; Jiménez-

moreno, G.; Ballcels, A. C.; Serrano- gotarredona, T.; Acosta-jiménez, A. J.; Linares-barranco, B. CAVIAR : A 

45k Neuron , 5M Synapse , 12G Connects / S AER Hardware Sensory – Processing – Learning – Actuating 

System for High-Speed Visual Object Recognition and Tracking. 2009, 20 (9), 1417–1438.  

[198] M. Domínguez-Morales, A. Jiménez-Fernández, R. Paz-Vicente, A. L.-B. and G. J.-M. Current Advancements 

in Stereo Vision; Bhatti, A., Ed.; InTech, 2012.  

[199] Linares-Barranco, A.; Gómez-Rodríguez, F.; Delbruck, T.; Lichtensteiner, P. Using FPGA for Visuo-Motor 

Control with a Silicon Retina and a Humanoid Robot. In Circuits and Systems, 2007. ISCAS 2007. IEEE 

International Symposium on; IEEE, 2007; pp 1192–1195.  

[200] Perez-Peña, F.; Morgado-Estevez, A.; Linares-Barranco, A.; Jimenez- Fernandez, A.; Gomez-Rodriguez, F.; 

Jimenez-Moreno, G.; Lopez-Coronado, J. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to 

Robot Motor Open-Loop Control through Spike-VITE. Sensors (Basel). 2013, 13 (11), 15805–15832.  

[201] Moore, S. W.; Fox, P. J.; Marsh, S. J. T.; Markettos, A. T.; Mujumdar, A. Bluehive - A Field-Programable 

Custom Computing Machine for Extreme-Scale Real-Time Neural Network Simulation. In 2012 IEEE 20th 

International Symposium on Field- Programmable Custom Computing Machines; 2012; pp 133–140.  

[202] Naylor, M.; Fox, P. J.; Markettos, a. T.; Moore, S. W. Managing the FPGA Memory Wall: Custom Computing 

or Vector Processing? In 2013 23rd International Conference on Field Programmable Logic and Applications, 

FPL 2013 - Proceedings; 2013; pp 1–6.  

[203] Bassett, D. S.; Greenfield, D. L.; Meyer-Lindenberg, A.; Weinberger, D. R.; Moore, S. W.; Bullmore, E. T. 

Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and 

Computer Circuits. PLoS Comput. Biol. 2010, 6 (4), e1000748.  

[204] Hoefflinger, B. Chips 2020: A Guide to the Future of Nanoelectronics; Springer Science & Business Media, 

2012.  

[205] Sheibanyrad, A.; Pétrot, F.; Jantsch, A. 3D Integration for NoCBased SoC Architectures; Springer, 2011.  

[206] Schemmel, J.; Brüderle, D.; Grübl, A.; Hock, M.; Meier, K.; Millner, S. A Wafer-Scale Neuromorphic 

Hardware System for Large- Scale Neural Modeling. ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst. Nano-

Bio Circuit Fabr. Syst. 2010, 1947–1950.  

[207] Ehrlich, M.; Wendt, K.; Zühl, L.; Schüffny, R.; Brüderle, D.; Müller, E.; Vogginger, B. A Software Framework 

for Mapping Neural Networks to a Wafer-Scale Neuromorphic Hardware System. In ANNIIP; 2010; pp 43–52.  

[208] Renaud, S.; Tomas, J.; Lewis, N.; Bornat, Y.; Daouzli, A.; Rudolph, M.; Destexhe, A.; Saïghi, S. PAX: A 

Mixed Hardware/ software Simulation Platform for Spiking Neural Networks. Neural Netw. 2010, 23 (7), 905–

916.  

[209] Park, J.; Yu, T.; Maier, C.; Joshi, S.; Cauwenberghs, G. Live Demonstration: Hierarchical Address-Event 

Routing Architecture for Reconfigurable Large Scale Neuromorphic Systems. In Circuits and Systems (ISCAS), 

2012 IEEE International Symposium on; IEEE, 2012; pp 707–711.  

[210] Joshi, S.; Deiss, S.; Arnold, M.; Park, J.; Yu, T.; Cauwenberghs, G. Scalable Event Routing in Hierarchical 

Neural Array Architecture with Global Synaptic Connectivity. In Cellular Nanoscale Networks and Their 

Applications (CNNA), 2010 12th International Workshop on; IEEE, 2010; pp 1–6.  

[211] Yu, T.; Park, J.; Joshi, S.; Maier, C.; Cauwenberghs, G. 65k- Neuron Integrate-and-Fire Array Transceiver with 

Address-Event Reconfigurable Synaptic Routing. In Biomedical Circuits and Systems Conference (BioCAS), 

2012 IEEE; IEEE, 2012; pp 21–24.  

[212] Yu, T.; Cauwenberghs, G. Analog VLSI Biophysical Neurons and Synapses with Programmable Membrane 

Channel Kinetics. IEEE Trans. Biomed. Circuits Syst. 2010, 4 (3), 139–148.  

[213] Al-Shedivat, M.; Naous, R.; Cauwenberghs, G.; Salama, K. N. Memristors Empower Spiking Neurons With 

Stochasticity. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5 (2), 242–253.  

[214] University of Zurich, Neuromorphic Cognitive Systems, Institute of Neuroinformatics: http://ncs.ethz.ch/ 

(Accessed September 8, 2015)  

[215] Liu, S.-C.; Indiveri, G. Event-Based Neuromorphic Systems; John Wiley & Sons, 2015.  

[216] Corradi, F.; Zambrano, D.; Raglianti, M.; Passetti, G.; Laschi, C.; Indiveri, G. Towards a Neuromorphic 

Vestibular System. IEEE Trans. Biomed. Circuits Syst. 2014, 8 (5), 669–680.  

[217] F. Corradi; G. Indiveri. A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-

Interfaces. Biomed. Circuits Syst. IEEE Trans. 2015.  

[218] J. Binas; G. Indiveri; M. Pfeiffer. Local Structure Helps Learning Optimized Automata in Recurrent Neural 

Networks. In International Joint Conference on Neural Networks, IJCNN 2015; IEEE, 2015.  

[219] Mandloi, N. K.; Bartolozzi, C.; Indiveri, G. Smart Motion Sensing for Autonomous Robots. In 2014 IEEE 

Biomedical Circuits and Systems Conference (BioCAS) Proceedings; IEEE, 2014; pp 520– 523.  



[220] Qiao, N.; Mostafa, H.; Corradi, F.; Osswald, M.; Stefanini, F.; Sumislawska, D.; Indiveri, G. A Reconfigurable 

on-Line Learning Spiking Neuromorphic Processor Comprising 256 Neurons and 128K Synapses. Front. 

Neurosci. 2015, 9 (141), 141.  

[221] Benjamin, B. V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A. R.; Bussat, J. M.; Alvarez-Icaza, 

R.; Arthur, J. V.; Merolla, P. a.; Boahen, K. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-

Scale Neural Simulations. Proc. IEEE 2014, 102 (5), 699–716.  

[222] Merolla, P.; Arthur, J.; Alvarez, R.; Bussat, J. M.; Boahen, K. A Multicast Tree Router for Multichip 

Neuromorphic Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61 (3), 820–833.  

[223] Silver, R.; Boahen, K.; Grillner, S.; Kopell, N.; Olsen, K. L. Neurotech for Neuroscience: Unifying Concepts, 

Organizing Principles, and Emerging Tools. J. Neurosci. 2007, 27 (44), 11807–11819.  

[224] Menon, S.; Fok, S.; Neckar, A.; Khatib, O.; Boahen, K. Controlling Articulated Robots in Task-Space with 

Spiking Silicon Neurons. In Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS 

International Conference on; IEEE, 2014; pp 181–186.  

[225] Choudhary, S.; Sloan, S.; Fok, S.; Neckar, A.; Trautmann, E.; Gao, P.; Stewart, T.; Eliasmith, C.; Boahen, K. 

Silicon Neurons That Compute. In Artificial neural networks and machine learning– ICANN 2012; Springer, 

2012; pp 121–128.  

[226] Dethier, J.; Nuyujukian, P.; Eliasmith, C.; Stewart, T. C.; Elasaad, S. A.; Shenoy, K. V; Boahen, K. A. A Brain-

Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm. In Advances in 

neural information processing systems; 2011; pp 2213–2221.  

[227] Brain Corporation: http://www.braincorporation.com/ (Accessed September 8, 2015)  

[228] Linne, M.-L.; Havela, R.; Saudargienė, A.; McDaid, L. Modeling Astrocyte-Neuron Interactions in a Tripartite 

Synapse. BMC Neurosci. 2014, 15 (Suppl 1), P98.  

[229] Tewari, S. G.; Majumdar, K. K. A Mathematical Model of the Tripartite Synapse: Astrocyte-Induced Synaptic 

Plasticity. J. Biol. Phys. 2012, 38 (3), 465–496.  

[230] De Pitta, M.; Volman, V.; Berry, H.; Parpura, V.; Volterra, A.; Ben-Jacob, E. Computational Quest for 

Understanding the Role of Astrocyte Signaling in Synaptic Transmission and Plasticity. Front. Comput. Neurosci. 

2012, 6.  

[231] Min, R.; Santello, M.; Nevian, T. The Computational Power of Astrocyte Mediated Synaptic Plasticity. Front. 

Comput. Neurosci. 2012, 6.  

[232] De Pittà, M.; Volman, V.; Berry, H.; Ben-Jacob, E. A Tale of Two Stories: Astrocyte Regulation of Synaptic 

Depression and Facilitation. PLoS Comput. Biol 2011, 7 (12), e1002293.  

[233] Wade, J. J.; McDaid, L. J.; Harkin, J.; Crunelli, V.; Kelso, J. A. Bidirectional Coupling between Astrocytes and 

Neurons Mediates Learning and Dynamic Coordination in the Brain: A Multiple Modeling Approach. PLoS One 

2011, 6 (12), e29445.  

[234] Mitterauer, B. Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model. Cognit. 

Comput. 2012, 4 (2), 181–194.  

[235] Wade, J.; McDaid, L.; Harkin, J.; Crunelli, V.; Kelso, S. Self- Repair in a Bidirectionally Coupled Astrocyte-

Neuron (AN) System Based on Retrograde Signaling. Front. Comput. Neurosci. 2012, 6.  

[236] Wallach, G.; Lallouette, J.; Herzog, N.; De Pittà, M.; Jacob, E. Ben; Berry, H.; Hanein, Y. Glutamate Mediated 

Astrocytic Filtering of Neuronal Activity. PLoS Comput. Biol. 2014, 10 (12), e1003964.  

[237] Oberheim, N. A.; Goldman, S. A.; Nedergaard, M. Heterogeneity of Astrocytic Form and Function. Methods 

Mol. Biol. 2012, 814, 23–45.  

[238] Oberheim, N. A.; Takano, T.; Han, X.; He, W.; Lin, J. H. C.; Wang, F.; Xu, Q.; Wyatt, J. D.; Pilcher, W.; 

Ojemann, J. G.; Ransom, B. R.; Goldman, S. A.; Nedergaard, M. Uniquely Hominid Features of Adult Human 

Astrocytes. J. Neurosci. 2009, 29 (10), 3276–3287.  

[239] Sherwood, C. C.; Stimpson, C. D.; Raghanti, M. A.; Wildman, D. E.; Uddin, M.; Grossman, L. I.; Goodman, 

M.; Redmond, J. C.; Bonar, C. J.; Erwin, J. M.; Hof, P. R. Evolution of Increased Glia- Neuron Ratios in the 

Human Frontal Cortex. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (37), 13606–13611.  

[240] Joshi, J.; Parker, A. C.; Tseng, K. An in-Silico Glial Microdomain to Invoke Excitability in Cortical Neural 

Networks. 2011 IEEE Int. Symp. Circuits Syst. 2011, 681–684.  

[241] Irizarry-valle, Y.; Parker, A. C.; Joshi, J. A CMOS Neuromorphic Approach to Emulate Neuro-Astrocyte 

Interactions. 2013.  

[242] Irizarry-Valle, Y.; Parker, A. C. Astrocyte on Neuronal Phase Synchrony in CMOS. Circuits and Systems 

(ISCAS), 2014 IEEE International Symposium on, 2014, 261–264.  

[243] Irizarry-valle, Y.; Parker, A. C. An Astrocyte Neuromorphic Circuit That Influences Neuronal Phase 

Synchrony. IEEE Trans. Biomed. Circuits Syst. 2015, 9 (2), 175–187.  

[244] Joshi, J.; Parker, A. C.; Hsu, C.-C. A Carbon Nanotube Cortical Neuron with Spike-Timing-Dependent 

Plasticity. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference 

of the IEEE; IEEE, 2009; pp 1651–1654.  

[245] Joshi, J.; Hsu, C.; Parker, A. C.; Deshmukh, P. A Carbon Nanotube Cortical Neuron with Excitatory and 

Inhibitory Dendritic Computations. In IEEE/NIH LIfe Science Systems and Applications Workshop; 2009.  

[246] Parker, A. C.; Joshi, J.; Hsu, C.-C.; Singh, N. A. D. A Carbon Nanotube Implementation of Temporal and 

Spatial Dendritic Computations. In Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on; 

IEEE, 2008; pp 818–821.  

[247] Friesz, A. K.; Parker, A. C.; Zhou, C.; Ryu, K.; Sanders, J. M.; Wong, H.-S. P.; Deng, J. A Biomimetic Carbon 

Nanotube Synapse Circuit. In Biomedical Engineering Society (BMES) Annual Fall Meeting; 2007; Vol. 2, p 29.  



[248] Parker, A. C.; Friesz, A. K.; Pakdaman, A. Towards a Nanoscale Artificial Cortex. In CDES; Citeseer, 2006; pp 

227–241.  

[249] Nazari, S.; Amiri, M.; Faez, K.; Amiri, M. Multiplier-Less Digital Implementation of Neuron-Astrocyte 

Signalling on FPGA. Neurocomputing 2015, 164, 281–292.  

[250] Nazari, S.; Faez, K.; Amiri, M.; Karami, E. A Digital Implementation of Neuron–astrocyte Interaction for 

Neuromorphic Applications. Neural Networks 2015, 66, 79–90.  

[251] Nazari, S.; Faez, K.; Karami, E.; Amiri, M. A Digital Neurmorphic Circuit for a Simplified Model of Astrocyte 

Dynamics. Neurosci. Lett. 2014, 582, 21–26.  

[252] Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V. Dynamical Patterns of 

Calcium Signaling in a Functional Model of Neuron-Astrocyte Networks. J. Biol. Phys. 2009, 35 (4), 425–445.  

[253] Porto, A.; Pazos, A.; Araque, A. Artificial Neural Networks Based on Brain Circuits Behaviour and Genetic 

Algorithms. In Computational Intelligence and Bioinspired Systems; Springer, 2005; pp 99–106.  

[254] Porto, A.; Araque, A.; Rabuñal, J.; Dorado, J.; Pazos, A. A New Hybrid Evolutionary Mechanism Based on 

Unsupervised Learning for Connectionist Systems. Neurocomputing 2007, 70 (16), 2799– 2808.  

[255] Porto-Pazos, A. B.; Veiguela, N.; Mesejo, P.; Navarrete, M.; Alvarellos, A.; Ibáñez, O.; Pazos, A.; Araque, A. 

Artificial Astrocytes Improve Neural Network Performance. PLoS One 2011, 6 (4).  

[256] Alvarellos-González, A.; Pazos, A.; Porto-Pazos, A. B. Computational Models of Neuron-Astrocyte 

Interactions Lead to Improved Efficacy in the Performance of Neural Networks. Comput. Math. Methods Med. 

2012.  

[257] Mesejo, P.; Ibáñez, O.; Fernández-Blanco, E.; Cedrón, F.; Pazos, A.; Porto-Pazos, A. B. Artificial Neuron–Glia 

Networks Learning Approach Based on Cooperative Coevolution. Int. J. Neural Syst.  


