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Abstract 

Artificial Intelligence allows the improvement of our daily life, for instance, speech and handwritten text 

recognition, real time translation and weather forecasting are common used applications. In the livestock 

sector, machine learning algorithms have the potential for early detection and warning of problems, which 

represents a significant milestone in the poultry industry. Production problems generate economic loss that 

could be avoided by acting in a timely manner. 

In the current study, training and testing of support vector machines are addressed, for an early detection of 

problems in the production curve of commercial eggs, using farm’s egg production data of 478,919 laying 

hens grouped in 24 flocks. 

Experiments using support vector machines with a 5 k-fold cross-validation were performed at different 

previous time intervals, to alert with up to 5 days of forecasting interval, whether a flock will experience a 

problem in production curve. Performance metrics such as accuracy, specificity, sensitivity, and positive 

predictive value were evaluated, reaching 0-day values of 0.9874, 0.9876, 0.9783 and 0.6518 respectively on 

unseen data (test-set). 

The optimal forecasting interval was from zero to three days, performance metrics decreases as the 

forecasting interval is increased. It should be emphasized that this technique was able to issue an alert a day 

in advance, achieving an accuracy of 0.9854, a specificity of 0.9865, a sensitivity of 0.9333 and a positive 

predictive value of 0.6135. This novel application embedded in a computer system of poultry management is 

able to provide significant improvements in early detection and warning of problems related to the production 

curve. 
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Graphical abstract 

1. Introduction 

Poultry farmers have used data to monitor health and production of their flocks for over 

40 years. Data such as consumption of food, water, growth and mortality have been collected in 

order to monitor and improve yields, and these data and statistics are plotted on a graph and used 

as early indicators of the health and welfare of poultry (Hepworth et al., 2012). 

 

Egg producers usually know and record the number of eggs produced, frequently a production 

curve is plotted and monitored in order to detect problems in the production curve indicating a 

possible disease, or any other issues (Long and Wilcox, 2011). 

 

The curve of egg production can be affected by various factors such as food intake (quality and 

quantity), water consumption, intensity and duration of the light received, vermin infestation, 

diseases and other handling or environmental causes (Jacob et al., 2014). 

 

When it comes to a disease, having early detection tools is of vital importance. That is, before 

it is spreading to other animals and/or becoming entrenched in the environment. The early 

detection of a problem means acting in a timely manner; reducing the cost and increasing the 

effectiveness of the treatment or control of a disease are directly related to the time it takes to 

detect it (Schaefer et al., 2004 ;  Cameron, 2012). 

 

The machine learning algorithms are present in various activities of our daily life, and they 

allow discovering rules and patterns in data sets. For example, in epidemiology, the supervised 

machine learning has the potential to classify, diagnose and identify risks. Support vector 

machines, are one of this algorithms, the main feature is that they can learn how to classify data 

from examples (McQueen et al., 1995 ;  Hepworth et al., 2012). 

 

References to studies that used machine learning techniques in livestock have been found, for 

example, various algorithms were employed to predict the rate of pregnancy, or weight in cattle, 

from routine production data (Hempstalk et al., 2015 ;  Alonso et al., 2015). 
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Support vector regression and neural networks to predict the body and carcass characteristics 

of broilers (Faridi et al., 2012). Support vector machines to predict hock burn in chickens 

(Hepworth et al., 2012). Artificial intelligence and images to detect the avian smallpox (Hemalatha 

et al., 2014). 

 

Lokhorst and Lamaker (1996) reported an expert system for monitoring the daily production 

process in aviary systems for laying hens, however, no information has been found regarding the 

early detection of problems using farm’s data which are normally recorded in poultry production. 

 

To the best of the authors’ knowledge, there are no prior studies on using machine learning 

algorithms for early detection of problems in the egg production curve from commercial hens. 

Although, since the early 1980s there are similar works in the mathematical study of the 

production curve of laying hens. Nonlinear models have been widely used to adjust the curves of 

egg production in laying hens (Adams and Bell, 1980; Grossman and Koops, 2001 ;  Savegnago et 

al., 2012). 

 

Moreover, a vast amount of literature has been compiled, for over 30 years, on the use of 

control charts to monitor animal farming, but its practical use does not seem to be widespread (De 

Vries and Reneau, 2010). 

 

Studies such as those carried out by Grossman et al. (2000) and Narinc et al. (2014) have been 

found, who developed mathematical models to describe the production curve and the persistence 

of the curve in laying hens. Other works, such as those published by Long and Wilcox (2011), 

studied the production curve of laying hens to determine whether the economic use of flocks of 

laying hens was optimal. 

 

Some learning techniques have been used to model the production curve, especially artificial 

neural networks, showing that they are able to successfully replace traditional mathematical and 

statistical models when predicting egg production in laying hens. These models, which are easier 

to use, require fewer variables and can be more efficiently compared with their mathematical 

counterparts (Ahmadi and Golian, 2008; Ahmad, 2011 ;  Felipe et al., 2015). 

 

There is general agreement on the need to monitor the production yield of farm animals, that is 

why mathematical methods (Dohoo, 1993), recursive algorithms (Roush et al., 1992), data display 

systems and statistical techniques (Woodall and Tech, 2006) have been used. Significant 

differences indicating an alteration in the productive indicators of farm animals are sought (De 

Vries and Reneau, 2010). 

 

The real-time monitoring is a major challenge because data collection includes natural 

variability; Woudenberg et al. (2014) developed a method for early detection of problems based on 

the calculation of waste, which allows identifying potential problems in egg production from 10 

production flocks. 

 

The concept of control charts as part of the statistical process control is commonly used to 

monitor industrial processes; several authors demonstrated their use in the context of animal 

husbandry, although the statistical properties of data regarding animals often do not meet the basic 

principles of these control charts (Mertens et al., 2011). 

 

In the above-mentioned cases, computer-aided detection methods were presented, but no 

publications were found on the use of machine learning algorithms aimed at developing models 

that allow partial automation of this task. 

 

This study is aimed at developing and testing an early warning model based on support vector 

machines algorithms, in order to detect problems in egg production curve from commercial hens. 
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2. Materials and methods 

2.1. Data description 

A farm database of egg production of laying hens of the ISA Brown, Lohmann Brown and 

H&N layer lines were used, collected over a period of seven years (January 2008 to December 

2014) from a poultry company. Data correspond to 24 flocks, of approximately 20,000 birds at the 

beginning of the production cycle, using the “all-in all-out” replacement system, i.e. each flock 

contains only birds of the same age at the beginning, during the entire production period and when 

the production cycle is completed. 

 

Data are recorded once a day, at the end of the day, but not always at same time, it is done 

when counting and sorting of eggs and dead birds have been carried out, and it also depends on the 

weekday. The production period used for the experiments encompassed 60 weeks (from age 19 to 

79 weeks), for each day in which there was a production problem was labeled as positive by an 

experts’ panel formed by the farm’s production manager (veterinarian), the owner who has been 

poultry farmer for 30 years, and a local poultry veterinarian. 

 

The average number of days labeled as positive for each flock is 8 days, however, it is 

observed that there are flocks, which present no problem, and there are others, which present up to 

33 days labeled as positive. In total, the 24 flocks, throughout the 7 years of study, presented 188 

positive labels, representing only 1.85% of the 10,142 records. That is, the classifier has a lot of 

negative patterns (days when there are no problems) and few positive patterns, this fact unbalances 

the expected outputs and adds difficulty to the task of classification and forecasting. 

 

Table 1 describes each flock with its corresponding general indicators: production time; birds 

housed at the beginning of the production cycle; dead birds during the production time; total eggs 

produced by the flock during the production time; average number of eggs produced per day; daily 

eggs per hen housed; production maximum% (peak) reached and the number of positive labels of 

each flock. 
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Table 1. Main production indicators of the flocks under study. 

Flock 
Production 

time (d) 
Housed 

birds 
Dead 
birds 

Total amount 
of eggs 

Average 
eggs per day 

Eggs/housed 
bird/day 

Peak of the 

production% per 

bird/day 

Positive 
labels 

         

1 473 20,300 2929 7,211,252 15,246 0.7510 98.14% 30 

2 429 20,361 3022 6,951,132 16,203 0.7958 97.04% 0 

3 516 20,137 3630 8,160,013 15,814 0.7853 96.87% 1 

4 148 18,874 1430 1,767,577 11,943 0.6328 N/A 0 

5 480 19,770 2421 7,185,831 14,970 0.7572 97.25% 0 

6 461 20,408 1573 7,145,492 15,500 0.7595 97.11% 33 

7 518 20,187 2718 7,974,633 15,395 0.7626 95.97% 14 

8 501 20,130 1984 8,093,083 16,154 0.8025 97.03% 0 

9 104 19,740 436 1,594,527 15,332 0.7767 97.03% 0 

10 389 19,668 2153 6,078,320 15,626 0.7945 95.86% 0 

11 543 19,920 2409 7,900,793 14,550 0.7304 97.32% 0 

12 491 19,934 1969 7,230,558 14,726 0.7387 98.70% 17 

13 431 19,492 1382 6,787,937 15,749 0.8080 96.30% 13 

14 419 19,920 1600 7,147,832 17,059 0.8564 97.17% 0 

15 468 20,120 1549 7,172,119 15,325 0.7617 98.91% 0 

16 517 20,234 2865 7,692,698 14,879 0.7354 97.42% 12 

17 498 19,971 2051 7,744,766 15,552 0.7787 96.83% 24 

18 391 20,104 1238 6,463,994 16,532 0.8223 97.72% 13 

19 307 20,094 693 5,301,566 17,269 0.8594 98.52% 0 

20 450 19,895 1984 6,905,452 15,345 0.7713 98.16% 13 

21 480 19,910 2702 7,590,784 15,814 0.7943 96.94% 0 

22 529 19,950 2973 8,429,271 15,934 0.7987 98.20% 10 

23 374 19,907 2050 6,023,519 16,106 0.8090 98.30% 8 

24 202 19,893 814 3,407,626 16,869 0.8480 97.63% 0 

         

 

Fig. 1 shows three flocks which are representative for the database: the solid line represents 

flock 11, which has a characteristic curve, without any problems throughout the production time; 

the dotted line represents flock 21, which has small drops and delays in the production curve, but 

they are not significant; the dashed line represents flock 1, which has two significant production 

drops, the first one begins near 31 weeks and the second at 72 weeks old. 
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Fig. 1. Weekly average production per bird in three representative flocks. 

From the numerous meetings with the poultry farmers, it is found that on farms where the 

collection of eggs is done at a specific time, there is greater data consistency than on those where it 

is carried out at different times each day; on the farm where no standard time routine was 

established for the collection of eggs, in either house, the number of eggs produced per day varies. 

This variability can be observed in Fig. 2, representing the daily egg production per bird. This fact 

represents an additional challenge for the early warning model, because it should be able to 

distinguish between a real problem and these drops due to weekly cyclical variations related to 

routine and time of collection. 

 
 

 
Fig. 2. Daily records of egg production per bird in flock 11. 
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Fig. 3 shows an example of problem zone tagged using poultry experts’ judgment, each 

production day of each flock was labeled with values of 0 in the absence of a problem and 1 

otherwise. 

 
 

 
Fig. 3. Labeling example of problems in flock 1. 

2.2. Support vector machines algorithms 

Basically there are two types of machine learning algorithms: supervised and unsupervised; the 

former is used when there is knowledge about the desired outputs, and it is trained to obtain them, 

whereas the latter generates a grouping (clusters) without information on the expected outputs 

(Mucherino et al., 2009). 

 

Once an algorithm has been trained, it is able to transfer the learned dependence between the 

input patterns (features) and expected outputs (targets) into new data. The quality of a classifier 

can be measured by the proportion of correctly classified patterns in the test set, i.e. in new data 

that were not used during training, this set allows for assessing the error in the generalization of 

the final model chosen (Hastie et al., 2009). 

 

Among the most commonly used techniques for data mining, are the support vector machines 

(SVM), which are supervised machine learning algorithms used to classify data sets into two 

different classes, separated by a hyperplane defined in an appropriate space (Mucherino et al., 

2009). 

 

They can be used in classification and regression problems, as their functioning starts from a 

set of training samples whose classes are labeled, and they also train an SVM to build a model that 

predicts the class of a new sample, different from the original one (Palma and Marín, 

2013 ;  Benítez et al., 2013). 

 

The basics of SVM were developed by Vapnik and Chervonenkins in 1963, in a study on the 

theories of statistical learning that was aimed at narrowing down the generalization error according 

to the complexity of the search space. In 1992 Vapnik, Boser and Guyon proposed a method to 

create non-linear classifiers (Boser et al., 1992), and the current standard of SVM was proposed by 

Cortes and Vapnik (1995). The purpose of SVM is for obtaining models which structurally have 

little risk of error regarding future data. Although originally they were designed to solve binary 
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(two classes) classification problems, their application has been extended to regression, 

multiclassification, clustering and other tasks (Palma and Marín, 2013). 

 

This technique is intended to find an optimal hyperplane able to distribute data into the classes 

to which they belong. Intuitively, it seems obvious to conclude that when facing a problem of 

linear classification there is a high probability of obtaining several solutions which successfully 

classify data (Fernandez-Lozano et al., 2013). 

 

The optimal hyperplane used to separate the two classes can be defined from a small amount of 

data from the training set called support vectors, which determine the margin (Cortes and Vapnik, 

1995 ;  Mucherino et al., 2009). Fig. 4 shows the above-mentioned concepts. 

 
 

 
Fig. 4. A problem separable in a two-dimensional space. Support vectors define the 
margin of greatest separation between classes. 

The choice of the best hyperplane was solved in 1965 (Vapnik and Kotz, 1982) with the 

approach that the optimal hyperplane is defined as the linear decision function with the maximum 

margin between the vectors of the two classes. 

 

However, in most problems, the data are not linearly separable and it is required to use 

strategies such as the identification of other separation dimensions. The kernel functions are used 

to transform the original multidimensional space into another, where classes are linearly separable. 

In practice, support vector machines are trained using different kernels to select the one with the 

best performance for the problem raised (Mucherino et al., 2009). 

 

Some preliminary tests were performed by trial and error on the test set (Mollazade et al., 

2012), using most common available kernels, however only four had an acceptable accuracy to the 

opinion of the authors. The research focused on these kernels: polynomial, radial basis function – 

RBF (Gaussian), quadratic and linear, in order to perform an exhaustive evaluation. 
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The polynomial and RBF kernels are among the most commonly used ones; the latter has a 

sigma (σ) parameter which can be tuned to adjusts the size of the kernel ( Bennett and Campbell, 

2000). Preliminary tests were performed to select the sigma tuning best range, which was between 

one and six; this range was used for exhaustive evaluation. 

 

SVM has a compensation parameter C, which can be modified and affects the classification 

quality, since it determines how severely any misclassification should be penalized; generally, 

very high C values may lead to overfitting problems, reducing the SVM ability to generalize ( 

Mucherino et al., 2009). In order to evaluate this parameter without overfitting the classifier, 

values below 0.25 were selected. 

2.3. Data processing 

Starting from the production data, two sets of patterns were created: the inputs, which had 

SVM and the desired outputs for them. The input patterns are made up by taking data from a 

sliding window (Lindsay and Cox, 2005), with a sample of current day and some previous and 

consecutive samples, according to the windows size. 

 

During the preliminary determination of optimum window size, several trials were performed, 

finding out that numbers which are multiples of seven, had better performance than other values, it 

could be due to the weekly cyclical variations related to routine and time of collection, referred 

previously on Fig. 2. 

 

From a collection of more than 30 initial features, preliminary testing was conducted, in which 

six relevant features were selected. It was determined that features like the genetic line of birds, 

stochastic variations in egg production, daily and cumulative mortality, weekly slope of the curve, 

and many others, don’t provide a significant improvement to the model, and were discarded 

(Mollazade et al., 2012). 

 

The feature selection for the input patterns of the SVM was defined as follows: 

 

A. The production percentage over a day (number of eggs produced over a day/number of existing 

birds) minus the percentage of historical production for a similar day. 

B. The production percentage over the day at the end of the sliding window, minus the production 

percentage over the day at the beginning of the sliding window. 

C. The production over the day minus the production from seven days earlier. 

D. The coefficient of variation (standard deviation/mean ∗ 100) of the second half of the sliding 

window. 

E. The standard deviation of the first half of the sliding window minus the standard deviation of 

the second half of the sliding window. 

F. Age of birds in weeks. 

 

Relevant features, as determined by the authors, were selected from the sliding window, each 

input pattern is having a corresponding pattern in the output set, which were zero or one, 

depending on whether the label of the day at the end of the forecasting interval was positive or 

negative regarding the presence of a problem in the curve. This procedure is performed for each 

day during the study period, always extracting the same fixed features. 

 

To assess the forecasting interval, expected outputs for each sliding window has been taken 

from corresponding pattern in output set (zero-day forecasting interval), and a time shift (Lindsay 

and Cox, 2005) of one to five days later, that way SVM leaning is based next days expected 

outputs, and thus SVM trained could be able to detect problems prior to experts’ criteria. 
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A k-fold cross-validation technique was used in order to ensure that the results were 

independent of the partition between the training and test data, also cross-validation prevents an 

overfitting problem (Hsu et al., 2003), thereby the subsets of each fold were a representative 

sample containing flocks which presented problems and flocks which did not, in a random and 

stratified manner. 

 

During the k-fold cross-validation process, the data are divided into k subsets; one is used as a 

test subset and the others (k−1) as training subsets ( Mucherino et al., 2009). The cross-validation 

process is repeated for k folds, with each of the possible subsets, and finally an arithmetic mean of 

the results for each fold is performed to obtain a single result, which is passed on to the SVM. 

 

Thus, 100 repetitions of k-fold 5 cross-validation were performed. For this study, 12,500 

support vector machines were evaluated, 500 for each factor of variation. 

2.4. Performance analysis 

The first performance requirement for a classification model is that the model generalizes well, 

in the sense that it provides the correct predictions for new, unseen data instances (generalization). 

This behavior is typically measured by percentage correctly classified test instances (accuracy), 

other measures include sensitivity and specificity, which are generated from a confusion matrix 

(Martens and Baesens, 2010). 

 

The accuracy value is usually the only performance requirement used for evaluating the 

performance of machine learning techniques; this accuracy value is a statistical measure used to 

determine whether a binary (true or false) classification test is able to correctly identify or exclude 

a condition (Martens and Baesens, 2010 ;  Venkatesan et al., 2013). 

 

Considering that there are only 188 positive labels and 9954 negative labels in the database, 

samples Tang et al. (2009) states it is required to evaluate other metrics such as specificity and 

sensitivity, to avoid misinterpretations when having rare positive labels. A common used example 

to support this statement is that a classifier, which predicts all samples as negative, has high 

accuracy, but it is useless to detect rare positive. 

 

The aim of this study is related to detection of problems in egg production. Therefore it is very 

important to achieve a highly effective detection ability for positive labels, for this, Tang et al. 

(2009) suggests another metric, called precision or positive predictive value. 

 

Specificity is the ability to detect the absence of problems as false; sensitivity is the ability to 

detect the presence of problems as true; and positive predictive value is the probability that a 

problem actually occurs when the test is positive (Altman and Bland, 1994; Tang et al., 2009; 

Hastie et al., 2009 ;  Venkatesan et al., 2013). 

 

Analysis of Variance (ANOVA) and Multiple Range Tests (MRT) with Tukey’s Honest 

Significant Difference (HSD) method for a value of p < 0.01, were performed to select the optimal 

model configuration; a positive selection of those parameter that provided the best performance 

metrics was carried out. Metrics were calculated from the confusion matrix of the test subset, that 

is, data different from those used for training, reducing the possibility of overtraining and 

improving its ability to generalize. 
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3. Results 

3.1. Kernel selection 

With fixed values of parameter C to 0.1, windows size to seven and forecasting interval, to 

one, until they are assessed respectively, four kernels were exhaustively evaluated: (1) polynomial, 

(2) radial basis function (RBF), (3) quadratic and (4) linear. The results of the kernel evaluation is 

shown in a diagram of boxes on Fig. 5. 

 
 

 
Fig. 5. Diagrams of boxes: performance metrics of the kernels evaluated. 

As shown, kernel 4 (linear) produces the worst results, whereas kernels 1, 2 and 3 (polynomial, 

RBF and quadratic) obtain similar results between them. An ANOVA statistical test was 

performed using the multiple comparison procedure, Tukey HSD, which is shown in Table 2. 
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Table 2. Multiple comparison (MC) of kernels for each performance metric. 

 

Kernel 

1 polynomial 2 radial basis function 3 quadratic 4 linear 

     

Accuracy 0.9654a 0.9687a 0.9654a 0.9475b 

Specificity 0.9661a 0.9696a 0.9661a 0.9492b 

Sensitivity 0.9289a 0.9203a 0.9289a 0.8546b 

Positive Predictive Value 0.3932b 0.4445a 0.3932b 0.3045c 

     

 
Rows with different letters differ significantly according to Tukey’s Honest Significant Difference method for a value of 
p < 0.01. 

From the above-mentioned analysis, it is selected radial basis function kernel, as it is 

statistically better in all four parameters evaluated, polynomial and quadratic kernels have similar 

performance, but have a statistically significant lower positive predictive value. 

 

From preliminary tests performed, the sigma tuning best range was between one and six; 

exhaustive test through this range was performed in a gradient ascent optimization, seeking 

optimal performance of the model. Fig. 6 shows the results of performance metrics according to 

values of tuned sigma. 

 
 

 
Fig. 6. Diagrams of boxes: performance metrics according to the value of sigma. 
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As noted, in terms of accuracy, specificity and positive predictive value, the values tend to 

improve as sigma is higher (up to five), however, the sensitivity values tend to worsen as sigma is 

higher. In order to produce the best decision-making tool, an ANOVA statistical test was 

performed using the multiple comparison procedure, Tukey HSD, which is shown in Table 3. 

Table 3. MC of different sigma (σ) values for each performance metric. 

 
σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 

       

Accuracy 0.9833b 0.9833b 0.9842ab 0.9853a 0.9856a 0.9833b 

Specificity 0.9843b 0.9840b 0.9851b 0.9864ab 0.9869a 0.9847b 

Sensitivity 0.9406b 0.9520a 0.9419b 0.9365b 0.9259c 0.9199c 

Positive predictive value 0.5657b 0.5647b 0.5836b 0.6100ab 0.6223a 0.5858b 

       

 
Rows with different letters differ significantly according to Tukey’s Honest Significant Difference method for a value of 
p < 0.01. 

A value of sigma equal to two performed the best sensitivity; however, the accuracy, 

specificity and positive predictive value metrics, are on group b according to Tukey’s test. On the 

other hand, a value of sigma equal to five performed the best accuracy, specificity and positive 

predictive value, with the lowest sensitivity among those evaluated. A sigma value equal to five is 

set since it improves most of the performance metrics. 

3.2. Parameter C 

Once it was decided to set the RBF kernel, with a sigma value equal to five, an evaluation was 

conducted by varying the parameter C; the initial values of the window size and the forecasting 

interval remained constant, and only values of C below 0.25 were tested. Fig. 7 shows the results 

from the evaluation of different values of the parameter C. 
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Fig. 7. Diagrams of boxes: performance metrics according to the value of the parameter C. 

As noted, for accuracy, specificity and positive predictive value, minor modifications of the 

parameter C do not generate significant differences, whereas, for sensitivity, the modification of 

this parameter does generate slight increases. In order to make the best decision, an ANOVA 

statistical test was performed using the multiple comparison procedure, Tukey HSD, which is 

shown in Table 4. 

Table 4. MC of different values of the parameter C for each performance metric 

 
C = 0.01 C = 0.1 C = 0.15 C = 0.2 C = 0.25 

      

Accuracy 0.9845a 0.9856a 0.9852a 0.9849a 0.9847a 

Specificity 0.9859a 0.9869a 0.9864a 0.9860a 0.9858a 

Sensitivity 0.9185b 0.9256b 0.9328a 0.9343a 0.9358a 

Positive Predictive Value 0.6063a 0.6222a 0.6131a 0.6057a 0.6025a 

      

 
Rows with different letters differ significantly according to Tukey’s Honest Significant Difference method for a value of 

p < 0.01. 
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Based on the results, any value of the parameter C could be set to 0.15 or higher. Recognizing 

that by setting a lower value there was less possibility of overfitting, it was decided to select the 

parameter C value at 0.15. 

3.3. Window size 

The window size expresses the amount of data in the days before the event, which are supplied 

to the model in order to configure the input patterns, multiples of 7 values from 7 to 28 days were 

evaluated, and the results are shown below in Fig. 8. 

 
 

 
Fig. 8. Diagrams of boxes: performance metrics according to the window size. 

It is clearly noted that a window size equal to 7 generates the worst results in all the 

performance metrics, whereas the values among those for 14, 21 and 28 produce similar results. 

Therefore, an ANOVA statistical test was performed using the multiple comparison procedure, 

Tukey HSD, which is shown in Table 5. 
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Table 5. MC of different values of window size for each performance metric. 

 
WS = 7 WS = 14 WS = 21 WS = 28 

     

Accuracy 0.9659c 0.9852a 0.9838ab 0.9821b 

Specificity 0.9670c 0.9864a 0.9850ab 0.9836b 

Sensitivity 0.9020c 0.9318a 0.9320a 0.9168b 

Positive Predictive Value 0.4300c 0.6122a 0.5972ab 0.5808b 

     

 
Rows with different letters differ significantly according to Tukey’s Honest Significant Difference method for a value of 

p < 0.01. 

The Tukey’s test results unequivocally indicate that the optimal window size for this type of 

problem is 14 days. 

3.4. Forecasting interval 

The forecasting interval can be adjusted to suit the specific demands, a value equal to zero 

implies that the model works as an early warning; values higher or equal to one imply that it works 

as a forecasting model. Forecasting interval values were evaluated between zero and five, the 

results of experiments performed are shown in Fig. 9. 

 
 

 
Fig. 9. Diagrams of boxes: performance metrics according to the forecasting interval. 
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As expected, the shorter the forecasting interval, better performance is obtained for all 

performance metrics. Table 6 shows performance metrics of the assessed forecasting intervals, an 

ANOVA statistical test using the multiple comparison procedure, Tukey HSD was performed. 

Table 6. MC of different values of forecasting interval for each performance metrics. 

 
FI = 0 FI = 1 FI = 2 FI = 3 FI = 4 FI = 5 

       

Accuracy 0.9874a 0.9854b 0.9811c 0.9776d 0.9735e 0.9713f 

Specificity 0.9876a 0.9865b 0.9835b 0.9814c 0.9789d 0.9783d 

Sensitivity 0.9783a 0.9333b 0.8738c 0.8030d 0.7229e 0.6483f 

Positive Predictive Value 0.6518a 0.6135b 0.5480c 0.4940d 0.4419e 0.4090f 

       

 
Rows with different letters differ significantly according to Tukey’s Honest Significant Difference method for a value of 

p < 0.01. 

4. Discussion 

For an early warning of problems in egg production curve, SVM classifier is proposed by 

authors not to classify but to detect abnormal instances, as stated by Bennett and Campbell (2000) 

about novelty or abnormality detection potential applications in many problem domains. Lindsay 

and Cox (2005) state that traditional machine learning techniques, like SVM, can be a viable 

alternative to the classical time-series analysis technique. In this study, different settings of SVM 

parameters were assessed using ANOVA statistical tests and Tukey Multiple Comparison tests for 

a value of p < 0.01. 

 

Since kernel is arguably the most important component of SVM algorithm (Suttorp and Igel, 

2007; Zhao et al., 2010 ;  Mollazade et al., 2012), exhaustive tests with four kernels were assessed 

in order to select the one with the best performance as proposed by Mucherino et al. (2009). 

 

RBF, polynomial and quadratic kernels had similar performance on accuracy, specificity and 

sensitivity, the positive predictive value achieved by RBF kernel was better than the other kernels 

evaluated. The authors selected RBF kernel, which has been proved to be an excellent kernel 

function for several applications, agreeing with Fernández Pierna et al., 2006; Han et al., 

2007 ;  Zhao et al., 2010 and Zhiliang et al. (2015). 

 

According to Bennett and Campbell (2000) and Zhao et al. (2010) when RBF kernel is used, 

sigma parameter must be optimized, in order to obtain better performance. A common technique 

for this is stepping through a range of values for sigma, in a gradient ascent optimization (Suttorp 

and Igel, 2007). The selected range to evaluate the model was one to six. 

 

A value of sigma equal to five performed the best accuracy, specificity and positive predictive 

value, 0.9856, 0.9869, 0.6223 respectively, nevertheless, performed a sensitivity value of 0.9259, 

the worst among those evaluated; the best sensitivity value was reached when sigma is equal to 

two, but in this case, the specificity value was of 0.9840. 
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Since the database of production of eggs, has much more negative labels than positive ones, the 

specificity metric has more impact on misclassifications; from this approach, a value of sigma 

equal to five is better. Another approach to support this decision is stated by Fernández Pierna et 

al. (2006) who argue that the generalization ability increases while sigma gets higher values. 

 

Modification of the parameter C generates slight increases for sensitivity, and minor changes 

for the rest of metrics. Given that high values of parameter C, can cause overfitting problems ( 

Mucherino et al., 2009), a value of 0.15 was selected since it is the lowest value with higher 

sensitivity performance, among the evaluated. 

 

Window size refers to the amount of data needed by the model to perform the classification 

task. Besides relevant features B, D and E, depends on the amount of data provided in order to 

calculate a single value for each feature, which constitutes a part of a pattern. 

 

Our results showed that a window size equal to 14 generates the best results in all the 

performance metrics. A windows size of 7 days, did not provide enough data, consequently 

patterns differ among same labels. A windows size of over 28 days, grouped excessive data, thus 

patterns become similar between positive and negative labels. 

 

Forecasting interval was assessed, in a value range from zero to five, the model performed an 

accuracy of 0.9874, specificity of 0.9876, sensitivity of 0.9783 and a positive predictive value of 

0.6518, at a forecasting interval of zero, in this case, the model works as an early warning. 

 

As the forecasting interval increases, the performance metrics decreases, in the case of the 

sensitivity, the forecasting interval affects it more intensely than to other metrics. In the authors’ 

opinion, sensitivity values above 0.8 are acceptable. Therefore, the optimal forecasting interval is 

considered to be from zero to three days. 

 

At optimal forecasting interval values, the model is able to identify the problem before it 

became apparent to the experts’ judgement. The selection of either value will depend on how 

accurate, sensitive and specific the model is expected to perform. 

 

In some instances, it was found that the model was able to detect as false positives, some days 

prior to an event occurring. Yet those days remained overlooked by the experts as no significant 

reduction had been observed. 

5. Conclusions 

In this work, optimal parameter configuration of an SVM classifier model is assessed by 

performance metrics, results clearly indicate that it is achievable to early warn problems in the 

curve of commercial laying hens. 

 

Radial basis function kernel with a sigma value equal to 5, and a parameter C value of 0.15 is 

the one which achieved the best performance, that is 0.9874 for accuracy, 0.9876 for specificity, 

0.9783 for sensitivity and 0.6518 for positive predictive value, as early warning at 0-day 

forecasting interval. 

 

For this application, a window size equal to 14 generates the best results in all the performance 

metrics, by the modification of computed values of relevant features B, D and E, been part of input 

patterns. 

 

It should be pointed out that the model has the ability to issue an alert with a sensitivity of 

0.9333, 0.8738, and 0.8030, for one, two and three days respectively, before experts realized the 

drop of the production, the sensitivity decreases below 0.8 for greater forecasting intervals.  
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At farm level, an alert a day in advance, could be very helpful to decide performing a 

preventive diagnosis looking for clinical symptoms, or any other related issue in order to take 

actions for solving immediately. 

6. Future developments 

Future work is focusing on the use of these techniques to identify features that allow for early 

warning of specific poultry diseases, for which a new field with confirmed diagnosis can be 

included in the database. Time of egg collection, daily water and food consumption, sound 

patterns and thermal infrared images of the birds, could be added as fields to the database in order 

to improve the accuracy over longer intervals of time. 

 

The early warning model, could be embedded in hardware or production management 

information software, and may have a major positive impact on the poultry industry, as it allows 

detecting and acting in time, and could reduce economic losses related to delayed treatments. 

Acknowledgements 

We gratefully acknowledge to DINTA-UTMACH, RNASA-UDC and Agrolomas CL, for 

providing all the resources for this research; our special thanks to the two anonymous reviewers 

whose suggestions helped to improve and clarify this manuscript. 

References 

Adams and Bell, 1980. C.J. Adams, D.D. Bell. Predicting poultry egg production. Poult. Sci., 59 (1980), pp. 

937–938 http://dx.doi.org/10.3382/ps.0590937. 

Ahmad, 2011. H.A. Ahmad. Egg production forecasting: determining efficient modeling approaches. J. Appl. 

Poult. Res., 20 (2011), pp. 463–473 http://dx.doi.org/10.3382/japr.2010-00266. 

Ahmadi and Golian, 2008. H. Ahmadi, A. Golian. Neural network model for egg production curve. J. Anim. 

Vet. Adv. (2008) doi: javaa.2008.1168.1170. 

Alonso et al., 2015. J. Alonso, A. Villa, A. Bahamonde. Improved estimation of bovine weight trajectories 

using support vector machine classification. Comput. Electron. Agric., 110 (2015), pp. 36–41 

http://dx.doi.org/10.1016/j.compag.2014.10.001. 

Altman and Bland, 1994. D.G. Altman, J.M. Bland. Statistics notes: diagnostic tests 2: predictive values. 

BMJ, 309 (1994) http://dx.doi.org/10.1136/bmj.309.6947.102  

Benítez et al., 2013. R. Benítez, G. Escudero, S. Kanaan. Inteligencia artificial avanzada. Editorial UOC, 

España (2013). 

Bennett and Campbell, 2000. K.P. Bennett, C. Campbell. Support vector machines. ACM SIGKDD Explor. 

Newsl., 2 (2000), pp. 1–13 http://dx.doi.org/10.1145/380995.380999.  

Boser et al., 1992. Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A Training Algorithm for Optimal Margin 

Classifiers. In: Proc. 5th Annu. ACM Work. Comput. Learn. Theory, pp. 144–152. 

http://dx.doi.org/10.1.1.21.3818. 

Cameron, 2012. A. Cameron. Manual of basic animal disease surveillance. Interafrican Bureau Anim. 

Resour. (2012). 

Cortes and Vapnik, 1995. C. Cortes, V. Vapnik. Support-vector networks. Mach. Learn., 20 (1995), pp. 273–

297 http://dx.doi.org/10.1007/BF00994018.  

De Vries and Reneau, 2010. A. De Vries, J.K. Reneau. Application of statistical process control charts to 

monitor changes in animal production systems. J. Anim. Sci., 88 (2010), pp. E11–E24 

http://dx.doi.org/10.2527/jas.2009-2622. 

Dohoo, 1993. I.R. Dohoo. Monitoring livestock health and production: service—epidemiology’s last 

frontier?. Prev. Vet. Med., 18 (1993), pp. 43–52 http://dx.doi.org/10.1016/0167-5877(93)90092-8. 

Faridi et al., 2012. a. Faridi, N.K. Sakomura, A. Golian, S.M. Marcato. Predicting body and carcass 

characteristics of 2 broiler chicken strains using support vector regression and neural network models. 

Poult. Sci., 91 (2012), pp. 3286–3294 http://dx.doi.org/10.3382/ps.2012-02491. 

Felipe et al., 2015. V.P.S. Felipe, M.A. Silva, B.D. Valente, G.J.M. Rosa. Using multiple regression, 

Bayesian networks and artificial neural networks for prediction of total egg production in European quails 

http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0005
http://dx.doi.org/10.3382/ps.0590937
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0010
http://dx.doi.org/10.3382/japr.2010-00266
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0015
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0020
http://dx.doi.org/10.1016/j.compag.2014.10.001
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0025
http://dx.doi.org/10.1136/bmj.309.6947.102
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0030
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0035
http://dx.doi.org/10.1145/380995.380999
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0040
http://dx.doi.org/10.1.1.21.3818
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0045
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0050
http://dx.doi.org/10.1007/BF00994018
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0055
http://dx.doi.org/10.2527/jas.2009-2622
http://dx.doi.org/10.1016/0167-5877%2893%2990092-8
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0065
http://dx.doi.org/10.3382/ps.2012-02491
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0070


based on earlier expressed phenotypes. Poult. Sci., 94 (2015), pp. 772–780 

http://dx.doi.org/10.3382/ps/pev031.  

Fernández Pierna et al., 2006. J.A. Fernández Pierna, V. Baeten, P. Dardenne. Screening of compound feeds 

using NIR hyperspectral data. Chemom. Intell. Lab. Syst., 84 (2006), pp. 114–118 

http://dx.doi.org/10.1016/j.chemolab.2006.03.012. 

Fernandez-Lozano et al., 2013. C. Fernandez-Lozano, C. Canto, M. Gestal, J.M. Andrade-Garda, J.R. 

Rabuñal, J. Dorado, A. Pazos. Hybrid model based on genetic algorithms and SVM applied to variable 

selection within fruit juice classification. Sci. World J., 2013 (2013), pp. 1–13 

http://dx.doi.org/10.1155/2013/982438. 

Grossman et al., 2000. M. Grossman, T.N. Gossman, W.J. Koops. A model for persistency of egg production. 

Poult. Sci., 79 (2000), pp. 1715–1724 http://dx.doi.org/10.1093/ps/79.12.1715. 

Grossman and Koops, 2001. M. Grossman, W.J. Koops. A model for individual egg production in chickens. 

Poult. Sci., 80 (2001), pp. 859–867 http://dx.doi.org/10.1093/ps/80.7.859.  

Han et al., 2007. D. Han, L. Chan, N. Zhu. Flood forecasting using support vector machines. J. 

Hydroinformatics, 9 (2007), p. 267 http://dx.doi.org/10.2166/hydro.2007.027.  

Hastie et al., 2009. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, Springer 2001. 

Springer Series in Statistics. Springer New York, New York, NY (2009) 

http://dx.doi.org/10.1007/b94608. 

Hemalatha et al., 2014. Hemalatha, Muruganand, S., Maheswaran, R., 2014. Recognition of Poultry Disease 

in Real Time. In: Proceedings Int. Conf. Inter-Disciplinary Res. Eng. Technol. 2014. 

Hempstalk et al., 2015. K. Hempstalk, S. McParland, D.P. Berry. Machine learning algorithms for the 

prediction of conception success to a given insemination in lactating dairy cows. J. Dairy Sci., 98 (2015), 

pp. 5262–5273 http://dx.doi.org/10.3168/jds.2014-8984.  

Hepworth et al., 2012. P.J. Hepworth, a.V. Nefedov, I.B. Muchnik, K.L. Morgan. Broiler chickens can 

benefit from machine learning: support vector machine analysis of observational epidemiological data. J. 

R. Soc. Interf., 9 (2012), pp. 1934–1942 http://dx.doi.org/10.1098/rsif.2011.0852. 

Hsu et al., 2003. Hsu, C.-W., Chang, C.-C., Chih-Jen, L., 2003. A practical guide to support vector 

classification, pp. 1–16. http://dx.doi.org/10.1177/02632760022050997. 

Jacob et al., 2014. J.P. Jacob, H.R. Wilson, R.D. Miles, G.D. Butcher, F.B. Mather. Factors affecting egg 

production in backyard chicken. Univ. Florida (2014), pp. 1–8. 

Lindsay and Cox, 2005. D. Lindsay, S. Cox. Effective probability forecasting for time series data using 

standard machine learning techniques (2005), pp. 35–44 http://dx.doi.org/10.1007/11551188_4. 

Lokhorst and Lamaker, 1996. C. Lokhorst, E.J.J. Lamaker. An expert system for monitoring the daily 

production process in aviary systems for laying hens. Comput. Electron. Agric., 15 (1996), pp. 215–231 

http://dx.doi.org/10.1016/0168-1699(96)00017-8.  

Long and Wilcox, 2011. A. Long, S. Wilcox. Optimizing Egg Revenue for Poultry Farmers (2011), pp. 1–10. 

Martens and Baesens, 2010. D. Martens, B. Baesens. Building Acceptable Classification Models (2010), pp. 

53–74 http://dx.doi.org/10.1007/978-1-4419-1280-0_3.  

McQueen et al., 1995. R.J. McQueen, S.R. Garner, C.G. Nevill-Manning, I.H. Witten. Applying machine 

learning to agricultural data. Comput. Electron. Agric., 12 (1995), pp. 275–293 

http://dx.doi.org/10.1016/0168-1699(95)98601-9.  

Mertens et al., 2011. K. Mertens, E. Decuypere, J. De Baerdemaeker, B. De Ketelaere. Statistical control 

charts as a support tool for the management of livestock production. J. Agric. Sci., 149 (2011), pp. 369–

384 http://dx.doi.org/10.1017/S0021859610001164. 

Mollazade et al., 2012. K. Mollazade, M. Omid, A. Arefi. Comparing data mining classifiers for grading 

raisins based on visual features. Comput. Electron. Agric., 84 (2012), pp. 124–131 

http://dx.doi.org/10.1016/j.compag.2012.03.004. 

Mucherino et al., 2009. A. Mucherino, P.J. Papajorgji, P.M. Pardalos. Data Mining in Agriculture, Media, 

Springer Optimization and Its Applications.. Springer New York, New York, NY (2009) 

http://dx.doi.org/10.1007/978-0-387-88615-2. 

Narinc et al., 2014. D. Narinc, F. Uckardes, E. Aslan. Egg production curve analyses in poultry science. 

Worlds. Poult. Sci. J., 70 (2014), pp. 817–828 http://dx.doi.org/10.1017/S0043933914000877.  

Palma and Marín, 2013. J. Palma, R. Marín. Inteligencia artificial, Técnicas, métodos y aplicaciones, 

McGraw Hill, Murcia (2013). 

Roush et al., 1992. W.B. Roush, K. Tomiyama, K.H. Garnaoui, T.H. D’Alfonso, T.L. Cravener. Kalman filter 

and an example of its use to detect changes in poultry production responses. Comput. Electron. Agric., 6 

(1992), pp. 347–356 http://dx.doi.org/10.1016/0168-1699(92)90005-8. 

Savegnago et al., 2012. R.P. Savegnago, V.a.R. Cruz, S.B. Ramos, S.L. Caetano, G.S. Schmidt, M.C. Ledur, 

L. El Faro, D.P. Munari. Egg production curve fitting using nonlinear models for selected and 

nonselected lines of White Leghorn hens. Poult. Sci., 91 (2012), pp. 2977–2987 

http://dx.doi.org/10.3382/ps.2012-02277. 

http://dx.doi.org/10.3382/ps/pev031
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0075
http://dx.doi.org/10.1016/j.chemolab.2006.03.012
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0080
http://dx.doi.org/10.1155/2013/982438
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0085
http://dx.doi.org/10.1093/ps/79.12.1715
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0090
http://dx.doi.org/10.1093/ps/80.7.859
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0095
http://dx.doi.org/10.2166/hydro.2007.027
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0100
http://dx.doi.org/10.1007/b94608
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0105
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0110
http://dx.doi.org/10.3168/jds.2014-8984
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0115
http://dx.doi.org/10.1098/rsif.2011.0852
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0120
https://doi.org/10.1177/02632760022050997
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0125
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0130
http://dx.doi.org/10.1007/11551188_4
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0135
http://dx.doi.org/10.1016/0168-1699%2896%2900017-8
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0140
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0145
http://dx.doi.org/10.1007/978-1-4419-1280-0_3
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0150
http://dx.doi.org/10.1016/0168-1699%2895%2998601-9
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0155
http://dx.doi.org/10.1017/S0021859610001164
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0160
http://dx.doi.org/10.1016/j.compag.2012.03.004
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0165
http://dx.doi.org/10.1007/978-0-387-88615-2
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0175
http://dx.doi.org/10.1017/S0043933914000877
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0180
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0185
http://dx.doi.org/10.1016/0168-1699%2892%2990005-8
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0190
http://dx.doi.org/10.3382/ps.2012-02277


Schaefer et al., 2004. A.L. Schaefer, N. Cook, S.V. Tessaro, D. Deregt, G. Desroches, P.L. Dubeski, a.K.W. 

Tong, D.L. Godson. Early detection and prediction of infection using infrared thermography. Can. J. 

Anim. Sci., 84 (2004), pp. 73–80 http://dx.doi.org/10.4141/A02-104. 

Suttorp and Igel, 2007. T. Suttorp, C. Igel. Artificial Neural Networks – ICANN 2007, Artificial Neural 

Networks – ICANN 2007, Lecture Notes in Computer Science.. Springer, Berlin Heidelberg, Berlin, 

Heidelberg (2007) http://dx.doi.org/10.1007/978-3-540-74690-4.  

Tang et al., 2009. Y. Tang, Y.Q. Zhang, N.V. Chawla. SVMs modeling for highly imbalanced classification. 

IEEE Trans. Syst. Man, Cybern. Part B Cybern., 1 (2009), pp. 1–9 

http://dx.doi.org/10.1109/TSMCB.2008.2002909.  

Vapnik and Kotz, 1982. V.N. Vapnik, S. Kotz. Estimation of Dependences Based on Empirical Data. 

Springer-Verlag, New York (1982).  

Venkatesan et al., 2013. M. Venkatesan, A. Thangavelu, P. Prabhavathy. Proceedings of Seventh 

International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), 

Advances in Intelligent Systems and Computing, Advances in Intelligent Systems and Computing. 

Springer India, India (2013) http://dx.doi.org/10.1007/978-81-322-1041-2. 

Woodall and Tech, 2006. W.H. Woodall, V. Tech. The Use of Control Charts in Surveillance. J. Qual. 

Technol., 38 (2006), pp. 89–104. 

Woudenberg et al., 2014. Woudenberg, S.P.D., Gaag, L.C., Van Der, Feelders, A., Elbers, A.R.W., 2014. 

Real-time Adaptive Problem Detection in Poultry. In: Press, I. (Ed.), ECAI 2014, pp. 1217–1218. 

http://dx.doi.org/10.3233/978-1-61499-419-0-1217. 

Zhao et al., 2010. J. Zhao, H. Lin, Q. Chen, X. Huang, Z. Sun, F. Zhou. Identification of egg’s freshness 

using NIR and support vector data description. J. Food Eng., 98 (2010), pp. 408–414 

http://dx.doi.org/10.1016/j.jfoodeng.2010.01.018. 

Zhiliang et al., 2015. L. Zhiliang, M. Zuo, X. Zhao, H. Xu. An analytical approach to fast parameter selection 

of Gaussian RBF Kernel for support vector machine ∗. J. Inf. Sci. Eng., 710 (2015), pp. 691–710.  

 

http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0195
http://dx.doi.org/10.4141/A02-104
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0200
http://dx.doi.org/10.1007/978-3-540-74690-4
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0205
http://dx.doi.org/10.1109/TSMCB.2008.2002909
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0210
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0215
http://dx.doi.org/10.1007/978-81-322-1041-2
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0220
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0225
https://doi.org/10.3233/978-1-61499-419-0-1217
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0230
http://dx.doi.org/10.1016/j.jfoodeng.2010.01.018
http://www.sciencedirect.com/science/article/pii/S0168169915003919#b0235

