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Abstract 

We propose a data structure that stores, in a compressed way, object trajectories, which at the same 
time, allow to efficiently response queries without the need to decompress the data. We use a data 
structure, called K2-tree, to store the full position of all objects at regular time intervals. For storing the 
positions of objects between two time instants represented with K2-trees, we only encode the relative 
movements. In order to save space, those relative moments are encoded with only one integer, instead 
of two (x,y)-coordinates. Moreover, the resulting integers are further compressed with a technique that 
allows us to manipulate those movements directly in compressed form. In this paper, we show an 
experimental evaluation of this structure, which shows important savings in space and good response 
times.  

Keywords: Spatio-temporal structures, K2-tree, SC-Dense Codes, Displacement Logs, Object temporal-
position. 



 

 

1 INTRODUCTION 
Nowadays, mobile phone and GPS devices are becoming more and more popular. Moreover, planes, 
ships, and even some cars also have devices informing about their position. Hence, there is a large set 
of information about the positions of moving objects (or individuals). However, this vast amount 
information represents an enormous challenge, because we need efficient ways to store and query these 
data. 

For example, we can be interested in knowing "who was at the science museum at five o'clock?", or 
"who visited the cathedral between six o'clock and seven o'clock?". The spatio-temporal databases were 
developed to answer this type of queries. The two main types of queries issued in spatial databases are 
the time-slice queries, which return data at a specific time instant, and the time-interval (Pfoser, et al., 
2000) queries, which return data between two time instants. 

The spatio-temporal database field has been extensively studied (Šaltenis et al., 2000; Beckmann et al., 
1990; Tao and Papadias, 2001), and thus they have reached a mature state in both academic and 
industrial level. In this work, we provide a new point of view in the field of spatial database field. We 
present a new spatio-temporal index for moving objects, which is able to answer queries very efficiently, 
but uses compact data structures to save space. 

The classical setup of a classical database system is based on a set of data structures which uses the 
memory hierarchy starting at the disk. The key component to index, and thus efficiently query, is a tree-
based structure, like for example, the Spatio-Temporal R-tree and the Trajectory-Bundle tree (Pfoser, et 
al., 2000) or the Time-Parameterized R-tree (Šaltenis et al., 2000).  

Trees have several appealing characteristics. They provide logarithmic search times and a nice adaption 
to the memory hierarchy, since they are easy to split between main memory and disk. This last feature 
is a requirement in classical computing.  

A new family of data structures called compact data structures aim at joining in a unique structure the 
data and the access methods. This structure is compact in the sense that the space consumption is kept 
as low as possible in order to be able to fit the entire structure in main memory (Jacobson, 1989). By 
fitting data and access methods in main memory, we make a better use of the memory hierarchy, since 
the upper levels have higher bandwidth and lower latency. For this sake, these data structures have to 
use complex mechanisms in order to compress the data, but at the same time, the compressed data must 
be queriable without a previous decompression, otherwise the data could not be fitted in main memory. 

The main contribution of this work is the first (to the best of our knowledge) compact data structure to 
represent and query data storing moving objects. We will show that we can represent the data using only 
up to 25.59% of the space needed to represent them in plain form, at the same time that we can query 
them without decompressing the data with very good response times.  

By providing a compact data structure to represent and query spatio-temporal information, we open a 
new way to deal with this type of information, aligned with the new tendencies in computer science 
designed to face the problem of processing and/or analysing vast amounts of information. The term Big 
Data is often used to refer this new way of computation, and one of its strategies is to perform an “in-
memory” data processing, that is, to avoid costly disk transfers, by trying to fit all the information, or at 
least larger chunks of information, in main memory.  

2 RELATED WORK 

An object trajectory is often modelled as a sequence of locations of the object, each one represented as 
the (x,y) coordinates of the object in the space. Each of those locations corresponds to a time instant, 
and thus the trajectory is a vector of coordinate positions. 



 

 

There has been much research work related to object trajectories. Most investigations were oriented to 
efficient access and index the data. For example, the 3DR-Tree (Vazirgiannis et al., 1998) is a 
spatiotemporal method which considers access time as another axis within the spatial coordinates. In 
this structure, a line segment represents an object at a location in a time interval. The 3DR-Tree is 
efficient processing interval queries, but inefficient processing instant queries. 

The RT-Tree (Xu et al. 1990) is a structure where the temporal information is maintained at the nodes 
of a traditional R-tree. In this structure, the temporal information plays a secondary role because the 
query is directed by spatial information. Therefore, queries with temporary conditions are not efficiently 
processed (Nascimento et al., 1998). 

The HR-Tree (Nascimento et al., 1999) uses an R-tree for each time instant, but trees are stored keeping 
in mind the overlapping between them. The main idea is that, given two trees, the most recent 
corresponds to an evolution of the oldest one and then the sub-trees that compose them can be shared 
between both trees. The best advantage of HR-Tree is that it can run instant time queries with a good 
performance, whereas this structure requires too much space. 

The MV3R-Tree (Tao et al., 2001) is a structure based on the manipulation of multiple versions of R-
Tree. This is an extension of the MVB-Tree (Becker et al., 1996). 

The SEST-Index (Gutiérrez et al., 2005) is a structure that maintains snapshots of the state of objects 
for some instants of time along with event logs between these snapshots. The events provide more 
information than a simple change of position of the object. For example, it can indicate when an object 
enters or exits from a particular place or if an object crashes with another. 

From the previous structures, the only one that has a relationship with our work is the last one. In this 
work, we also use snapshots and logs to represent object trajectories. The difference is that SEST-Index 
is a classical approach, whereas our structure is a compact structure designed to be fit in main memory. 

3 COMPACT DATA STRUCTURES 

As usual, compact data structures can be built on top of other data structures. We devote this section to 
describe the compact data structures that are the basic components of our proposal. 

In order to understand the ideas explained in this paper, we need to know two essential operations over 
bit sequences (or bitmaps), which can be solved in constant time (Navarro and Mäkinen, 2007):  
• rankb(B, p) counts the number of occurrences of the bit b in the bitmap B until position p. For 

example, rank1(T, 2) returns the number of ones that appear in the bitmap T up to position 2.  
• selectb(B, n) returns the position in the bitmap B where is located the n-th occurrence of the bit b.  

The K2-tree (Brisaboa and Ladra, 2009) is a compact data structure to represent binary relations. In 
essence, it represents a binary matrix, as it can be in Figure 1. The K2-tree structure takes advantage of 
several properties of a matrix: sparseness, large areas of zeros, and clustering of ones. It achieves very 
low space and supports efficient navigation over the compressed data. 

The K2-tree is conceptually a tree. To form the root node, the binary matrix is subdivided into K2 
submatrices of equal size. Each one of the K2 submatrices is represented in the root node by one bit. The 
submatrices are ordered from left to right and from top to bottom. In Figure 1, we have four submatrices, 
for each submatrix, the root node has a bit. Each bit indicates if the submatrix has at least one 1 or not. 
Therefore, the root node of Figure 1 is 1011, since the first submatrix has 1s, the second one does not 
have 1s, and so on. The submatrices that have 1s are divided again, following the same method until the 
subdivision reaches the cell-level. 

Instead of using a pointer-based representation, the K2-tree is stored using two bit arrays: 
• T (tree): stores all the bits of the K2-tree except those in the last level. The bits are placed following 

a levelwise traversal: first the k2 binary values of the root node, then the values of the second level, 
and so on. 



 

 

• L (last level leaves): stores the last level of the tree. Thus, it represents the value of original cells of 
the binary matrix.  

Another important data structure is the permutation. It is designed to efficiently answer two main 
operations π and π-1 over a sequence of numbers, where each number only appears one time throughout 
the sequence. The first operation allows us to obtain the number of a specified position in the sequence, 
whereas the second operation identifies the position in the sequence of a given value.  
 

 
Figure 1  K2-tree example where the K value is 2.  

The permutation can be considered as an array of size n, where for each position or index we have a 
numeric value. This data structure allows us to return π in constant time because we only need to get the 
value in the queried position. In order to answer π-1, we do not need any additional structure. That is, the 
simple original sequence can answer π-1. The procedure is based on a simple observation: if we take the 
number of a position as the index of the next position in a sequence of positions, any sequence will end 
up forming a cycle. In fact, in a permutation, there are usually several cycles.  

For example, in Figure 2 we have the cycle (6, 9), since in position 6 it is stored a 9, and in position 9 
we found a 6, closing the cycle. In that permutation, there are two more cycles (11, 12) and (1, 4, 3, 7, 
8). The rest of elements are not in a cycle since they point to themselves.  

If we want to know in which position is located the element with value 3, π-1(3), we access position 3, 
and we follow the cycle including that position until we find a position pointing to 3. That is, from 
position 3, we follow the cycle through 7, 8, 1, and finally 4, which is the position where the value 3 is 
found. 

 
Figure 2  Permutation structure with links 

A permutation could have a single cycle of length n. This would result in long searches to solve π-1. In 
order to avoid this problem, the permutation is provided with two additional arrays (Munro, et. al., 2012). 
The first array is called sampled and it signals the starting positions of shortcuts that allow skipping 
some nodes of our cycle. The other array is called rev_links, it gives us the position where we jump 
when we find a shortcut in the cycle. If we use the above example, we do not need traverse the 7 and 8 



 

 

states, we skip from state 3 to state 1, and then we reach the fourth position. Observe that to obtain π-

1(3), we start the search at state 3, and we have to go through its cycle until it reaches 3 again, in fact, 
we are only interested in that last step, that is, when we close the cycle, so the shortcuts are designed in 
such a way that we are always sure that we cannot miss the last step of a cycle started in a given position. 
For example, if we want to obtain π-1(4), we start the search at 4, when we reach the state 3, we take the 
shortcut to state 1, just the state we are looking for, since it points to 4. 

Finally, we present a statistical compression method called (s,c)-Dense Code (Brisaboa, et al., 2003).  
Statistical compression uses a model that gives the frequency of appearance of each source symbol 
(words, integers, etc.). Then a compression scheme assigns longer codewords to the less frequent source 
symbols and shorter codewords to the most frequent. Each original symbol is substituted by its codeword 
in the compressed file, which should have a prelude informing the correspondence between original 
symbols and codewords. The main feature of the (s,c)-Dense Code is that we can start decompression 
at any point, without decompressing from the beginning, a key feature in our method. 

4 OUR PROPOSAL 

In this proposal, we assume that objects can move freely over all the space, that is, they do not need to 
follow roads or any sort of net, although we can use it in that scenario. Examples of this could be boats 
navigating in the sea or birds flying on springtime migration.  

We suppose that the time is discretized, in such a way that a time instant in our framework, would last 
a given period of real time. For example, for us, a time instant can last 5 seconds in terms of real time. 
The size of that period is a parameter. In a similar way, the two-dimensional space is divided into small 
cells (or tiles), where the size of each cell is another parameter.  

First, we describe the data structures that hold the information, and then we describe the query 
algorithms. 

4.1 Data structures 

Our proposal uses two data structures called snapshots and logs. Snapshots give the full position of all 
objects at given time instant. Our method stores the full position of the objects at regular time intervals, 
whereas logs inform about the movements of the objects between two snapshots, as relative movements 
with respect to the last known position. 

4.1.1 Representation of snapshots 

A snapshot can store and index m objects that are located in the two-dimensional space in a compact 
way. Given that space is divided into cells, then it can be seen as a grid where each cell can hold objects. 
Observe that, if the cell size is sufficiently large, one or more objects can be located in one cell.  

Each snapshot uses a K2-tree to represent the distinct positions of our space. As explained, the K2-tree 
is designed to represent a binary matrix. We map the binary matrix to the cells dividing the space, in 
such a way that each bit of the matrix corresponds to one of the cells of the space. If the bit is set to 1, 
this means that there is an object (or more) in the corresponding cell, whereas a 0, means that no object 
is present in the corresponding cell. 

To represent a binary matrix, the only alternative compact data structure is a wavelet-tree (Brisaboa, et 
al., 2009). However, this structure has a poor performance when the number of cells set to 1 in a given 
column or row is greater than 1. 

The basic K2-tree only serves to check the presence or absence of objects in a given cell. In order to 
know which objects are in the cell, we need to add another structure. This new structure is formed by an 
array storing the objects identifiers (perm) and a bitmap called quantity or Q.  



 

 

Observe that each 1 in the binary matrix corresponds, on the one side, to a bit set to 1 in the L bitmap of 
the K2-tree, and, on the other side, to one or more object identifiers. The list of object identifiers 
corresponding to each of those bits is stored in the perm array, where the objects identifiers are sorted 
following the order of appearance in L. That is, if L is 0101, and the first bit set to one represents a cell 
where there are two objects with identifiers 10 and 30, and the second bit set to one corresponds to a 
cell where we can find the objects 25, 28, and 29, then perm is 10, 30, 25, 28, 29. The quantity bitmap 
is aligned with perm, that is, for each element in perm we have a bit in quantity. This bit indicates with 
a 0 if the object in perm is the last object of a specific leaf, whereas a 1 signals that more objects exist. 
Therefore, quantity for our previous case is 10110. The first 0 corresponds to the object 30, which is the 
last object identifier corresponding to the first cell, whereas the second 0, corresponds to 29, the last 
object identifier of the objects present in the second cell. 

With this information we can answer two queries: 
• Search the objects of the n-th leaf: we count the number of 1s in the array of leaves L until the 

position n, this gives us the number of leaves with objects up to the n-th leaf, x = rank1(L, n). Then 
we calculate the position of the (x-1)-th 0 in Q, which indicates the last bit of the previous leaf, and 
we add 1 to get the first position of our leaf, p = select0(Q, x-1)+1. p is the position in perm of the 
first object identifier corresponding to the searched position. From p, we read all the object 
identifiers aligned with 1s in Q, until we reach a 0, which signals the last object identifier of that 
leaf. 

• Search the leaf in L corresponding to the k-th position in Q: First, we calculate the number of leaves 
before the object corresponding to k, that is, we need to count the number of 0s until the position 
before k, y = rank0(Q, k-1). Then we search in L the position of the y+1-th 1, that is, select1(L, y+1). 

The process to get the objects of a cell is very efficient; we only require to find the leaf in the K2-tree 
(O(h) where h is the height of the tree, that is, O(log n)) and search the objects of this leaf, using perm 
and Q. 

However, when we want to know the position of an object, with the structures shown so far, we need to 
search sequentially in perm the position of the searched object. To avoid this sequential search, we add 
a permutation over perm. The permutation allows us to find an object in the array (π-1), spending less 
time than a sequential search, while keeps the constant time required to retrieve the object associated 
with a cell (π).  

 
Figure 3.  Snapshot example with the K2-tree and the permutation. 

For example, assume that we have the binary matrix and the associated K2-tree of Figure 1. Figure 3 
shows an example of object identifiers matching that matrix. In addition to the arrays T and L, we add 
the array Q and the array of object identifiers perm. Finally, over perm, we construct our permutation 
with its cycles and over that cycles, we add three links, in order to improve the performance of the 
queries. In this example, we are using the permutation shown in Figure 2.   



 

 

If we want to find the objects that are in the cell corresponding to the third row and third column (3,3), 
we start the search at the root of the K2-tree, and we traverse it downwards until we reach the leaf 
representing that cell. First, we compute which child of the root node overlaps the cell (3,3), in this case, 
it is the first child, that is, position 0 of T. That position is set to 1, so we continue the search in the next 
level. In the second level, we check which submatrix overlaps the cell (3,3), and we obtain the fourth 
child[a1], which is represented by the bit at position 7 of T. Since that bit is set to 1, we continue, reaching 
the last level. Finally, the leaf corresponding to the cell (3,3) is the first child [a2]of the considered 
submatrix (position 4 in L) and its value is a 1, hence the cell holds objects.  

Next, we need to know which positions of Q are linked with that leaf. In order to search these positions 
we count the number of leaves with objects before our leaf, rank1(L,p-1) where p is the position of our 
leaf in L. In our case, p is 4 so we obtain rank1(L,3)=1, therefore, we know that there is one leaf with 
objects before our leaf. Then, we find in Q where the previous leaf ends, that is select0(Q, k), k  is the 
number of leaves before the leaf we are searching for. Thus, we calculate select0(Q, 1)=1. We know that 
next position is the start of our leaf, so we sum one and we obtain a 2. Finally, we access that position 
in the permutation, π(2) (the object with id 7) is the first object of the leaf and, therefore, the first object 
that is located in the cell. We continue obtaining the rest of objects sequentially until we obtain that the 
aligned value of the Q bitmap is a 0. In our example, the next bit is Q[3], and it already stores a 0 so 
π(3) will be the last element of the cell. π(3)  returns a 3, so the objects 7 and 3 are in the cell (3, 3). 

Although the K2-tree was designed to traverse the structure from top to bottom, with a small modification, 
we can go from bottom to top. In this way, we can obtain the position in the grid of a given object. 

For example, we can search for the cell where is placed the object 3. For this sake, we access to the 
permutation and execute the operation π-1(3). We start the search at position 3, and we follow the cycle. 
We observe that we have a link between 3 and 1 because in the sampled array we have a 1, and in 
rev_links the value is 1, which indicates that the link points to the state 1, so we skip the 7 and 8 and we 
go to the state 1. We need to continue because π(1)=4, hence we advance to next state. In π(4), we find 
the value 3, the value which we are searching for. Therefore, the position of object 3 is the fourth position 
in perm. 

Now, we search the corresponding leaf of the object. We calculate the number of leaves previous to the 
object, thus, we need to count the number of 0s until position 3 in Q, rank0(Q, 3)=2. Then we search in 
L the position where the leaf is, hence we calculate select1(L, 3)= 4, so L[4] is the leaf where is the 
object 3. Then, we traverse the tree from the bottom to the top and we obtain the path that indicates that 
it is in the cell (3,3). 

4.1.2 Representation of the log of relative positions 

Although the K2-tree allows to represent the position of all objects in a compact way, it would be 
prohibitive, in space terms, to use a snapshot (a K2-tree and the associated perm and Q data structures) 
for each time instant. Thus, in order to avoid this problem, we use a parameter to establish the number 
of time instants between two snapshots and, in order to keep the information about the movements of 
objects between two snapshots, we add a light structure called log. 

The log stores the relative movements of all objects for all time instants between two snapshots. The 
objects can change their positions in the two Cartesian axes, so we would reserve two integers for every 
movement in the log, one for x-axis and another for y-axis. However, in order to save space, we encode 
the two values with a unique positive integer.  

For this sake, we enumerate the cells around the actual position of an object, following a spiral where 
the origin is the initial object position, as it is shown in Figure 4. 



 

 

 
Figure 4  Spiral matrix to encode relative positions. 

For example, we have an object that moves between instant t0 and t4. The t0 corresponds with a snapshot 
so we store its absolute position in the snapshot, but the following instants should be stored in the log. 
Assuming that we have the following (x,y) coordinates: 

{ t0: (5,6) ; t1: (7,8) ; t2: (5,8) ; t3: (3,10)} 

we calculate the movements between the time instants: 

{t1-t0= (2,2); t2-t1=(-2,0); t3-t2=(-2,2)} 

Then, we encode these shifts with the spiral {t1-t0= 24; t2-t1=18; t3-t2=16}, which are the values stored 
in the log. 

Observe that the basic idea is that with the spiral, we save space by using only one integer, instead of 
the two integers needed when using pairs of coordinates of the Euclidean space. A problem would arise 
if the displacement of the object between two consecutive time instants is large. In that case, the value 
obtained using the spiral encoding will be a large number, which might require a considerable number 
of bits to represent it. However, it is likely that the displacement between two time instants will be small, 
and thus, in most cases, a short integer will be enough.  In addition, [a3]instead of using 32 bits (or 64 
bits) for each relative movement, we exploit the repetitiveness in the values of movements to obtain 
additional compression, since some movements are more frequent than others. For example, in the 
Chilean coast is more frequent that a boat navigates towards the North than towards the East. Thus, we 
do not store the relative movements using plain integers, instead that sequence of integers is compressed 
using the (s,c)-Dense Code technique. 

Recall that one of the main features of this compression technique is that we can start the decompression 
at any given point. This is needed to be able to decompress the log starting just after a snapshot, avoiding 
to start the decompression from the beginning.  

4.1.3 Disappearance and reappearance 

In the real world, sometimes objects stop emitting signals or send erroneous information about their 
location. The last problem is easy to avoid because we can process and clean the dataset removing these 
incorrect data. However the first problem forces us to add two new possible movements:  
• Relative reappearance: it occurs when a missing object sends a new position, but we can obtain its 

new position with a relative movement with respect to the last snapshot or with respect to another 
log position. We only use relative reappearance with objects that disappear and reappear between 
the same snapshots. For example, if we have snapshots every two hours and we have a snapshot at 
eight o'clock and another at ten o'clock, and an object disappears at eight o'clock and reappears at 
nine o'clock, we can add a relative reappearance. However, if it reappears at eleven o'clock, we 
cannot add a relative reappearance.  
It is important to notice that we can have more than one relative reappearance per object, so we need 
to add a new array to the snapshot structure. This array saves for each object the time elapsed and 
the relative position between the instant when the object disappears and the instant when the object 



 

 

reappears. Every relative reappearance in the log points to its related position in this array, allowing 
us to recover all the information about the reappearance. 

• Absolute reappearance: it occurs when a missing object sends a new position and it had disappeared 
before the last snapshot. In this case, we cannot know where the object is located because we have 
not any reference. We could find the last snapshot which contains the object, calculate the log 
movements until its disappearance and then calculate the new position decoding the spiral identifier, 
however it would be very expensive. Therefore, we store the absolute position of the object and the 
instant when the object reappears without any compression, it should be noted that an object can 
only have one absolute reappearance between snapshots, so we only have to store these three values, 
at most, once per object.  

4.2 Querying 

We can distinguish three types of queries: search where is an object in a given time instant, search the 
objects that are in a zone at a time instant (time slice), or in a time interval (time interval). 

4.2.1 Search an object in a given time instant 

First, we obtain the immediate previous snapshot to the query time instant. Then, we need to found in 
the array of leaves which leaf correspond to the object. We do that using the permutation, as explained 
before. Once we find the leaf linked to the object, we through bottom-up the K2-tree and, in this way, 
we retrieve the position of the object at the snapshot instant. Then we apply the movements of the log 
over this position up to the query time instant.  

It is important to notice that if the time instant to check belongs to a snapshot we do not need to access 
the log. In addition, our structure can answer efficiently queries about the trajectory of an object between 
two instants.  

4.2.2 Time slice query 

The aim of this query is to know which objects are at a time instant tq in a region of space. We can 
distinguish two cases. First, if the time instant belongs to a snapshot, we only need to traverse the K2-
tree until the leaves, visiting those nodes that intersect with the checked area. When we reach the leaves 
we can retrieve from the permutation the objects that are in this area.  

The second case occurs when tq is between two snapshots si and si+1. In this case, we check in si a region 
larger r' than the query region r. This region r' is built keeping in mind that all the objects cannot move 
faster than the fastest object of the dataset. Thus, we limit our region r' to the space where an object has 
chances to reach the region r at the time instant tq. Then we get the objects which belong to the region 
r' in the snapshot si, these are the candidates to be in the region r at tq. We follow the movements of the 
objects with the log and when we observe that an object cannot reach the final region, we discard it. 
Hence, we limit the number of objects to follow and we do not waste time with those objects that cannot 
be in the region r at instant tq.  

For example, we suppose that we want to find the objects that are located in a region r at time instant tq. 
Suppose that the closest previous snapshot to tq is at time instant t0. Assume that the fastest object can 
move only to one adjacent cell, in the period of time between t0 and tq. Therefore, we expand our query 
area in t0 to its adjacent cells, as we can see in Figure 5. In this region, we have three elements (1,2,3) 
which we call candidates, so we discard the rest of objects (4, 5), because they do not have any chance 
to be in the region r at time instant tq. Then, we control the candidates with the log until reach the time 
instant tq, where we observe that the object with id 3 is outside the region r and the rest of candidates 
are the result of the query.  



 

 

 
Figure 5  Example of expanded region r' and query region r in a time-slice query. 

4.2.3 Time interval query 

This query returns the objects in a region r, in a time interval [t0, tn]. To solve it, we divide the time 
interval into smaller intervals. With each subinterval, we run a subquery. The first subinterval will be 
the interval [t0, ts1-1] where ts1 is the first snapshot after t0, the second interval will be [ts1, ts2-1] where 
ts2 is the second snapshot after t0, and so on. When we run these subqueries, we obtain the objects which 
are in the region r during the subinterval, and then they are part of the final result, so we do not need to 
check their position in the next subqueries. Once we obtain all subquery results, we join the partial 
results to obtain the final result. It is important to notice that this query is very similar to time slice, its 
difference is that we need to consider the larger region r' for every snapshot of the subqueries except the 
last one. Although this query is more expensive than the time slice query, it has a good performance 
because we take advantage of rejected objects in each subquery, which are no longer considered.  

5 EXPERIMENTAL EVALUATION 

In this work, we pursue to develop a proof of concept of our structure. Observe that there is not a clear 
competitor since our approach aims at storing the complete collection in main memory and thus, the 
saving of space is one of our main targets. Classical approaches to the same problem are disk based, and 
hence, they are not worried about space consumption. Therefore, the goal of this experimental evaluation 
is to show the compression level and, at the same time, that we are capable of querying the compressed 
data.  

We used a real dataset, which we obtained from the site http://chorochronos.datastories.org/?q=node/81. 
This a real dataset that provides the location signals of 4,856 boats moving during one month in the 
region of the Greek coast. As any basic compression technique, our method requires the presence of 
repetitive patterns, which are the source of compression. In this dataset, ships follow many times the 
same course, and thus our compression method can take advantage of this fact. 

Observe that our structure deals with the positions of objects at regular intervals, however in the dataset, 
boat signals are emitted with distinct frequencies or, moreover, they can send erroneous information. 
Therefore, we need to clean the dataset and fill it with positions that we can interpolate from 
previous/posterior signals. For example, when a boat sends a position after a large period of time without 
sending its position, and the new position coincides with the last received position, we can assume that 
the boat stood in the same position all the time, hence, we fill the dataset with the position received after 
the period without signals. Another case happens when a boat sends an erroneous location. We can 
detect it, if the boat moves faster than 60 knots, which is the fastest speed of our dataset. Therefore, we 
can discard this location and interpolate the real position with previous and next positions. 



 

 

Every position emitted by a boat is discretized into a matrix where the cell size is 30x30 meters. This 
discretization is required, since the K2-trees that store the snapshots can represent binary rasters, and 
any raster model represents the space as a tessellation of squares, each representing a square of the real 
space with a given size, in our case 30x30 meters. 

In addition, we normalize the time of signals emitted using intervals of 1 minute. This another 
requirement of our method, since we represent the position of the objects at regular time instants. 
Therefore, we assign for each boat the nearest position every 1 minute with a margin before and after of 
30 seconds. For example, if a boat sends information between the second 30 and the second 90 we assign 
to the time instant 1 the nearest location to the second 60. Whereas if it does not emit between 30s and 
60s, we do not assign any position to this boat at time instant 1. With this data normalization, we obtain 
a matrix with 920,078,376 cells, 33,544 in the x-axis and 27,429 in the y-axis, and the data corresponds 
to 44,640 instants of time. 

With these data, which occupy 515.89MBytes, we run two kinds of experiments using a program in C++ 
in a 1.70GHzx4 Intel Core i5 computer with 8GBytes of RAM and an operating system Linux of 64bits. 
In the first experiment, we run a set of queries over a structure built with different snapshot frequencies. 
These queries are composed by 100 random searches of an object at a time instant and 50 random time 
slice queries. We calculate the size of the structure (MBytes), the compression ratio and the response 
times (milliseconds). The compression ratio value indicates the percentage of space occupied by the 
compressed version with respect to the original dataset. For example, with a snapshot period of 120, our 
structure occupies 25.59% of the spaced consumed by the original dataset, whereas when the period of 
snapshot is 15, our structure occupies a 143%, that is, it occupies even more than the original dataset, 
specifically 43% more.   

Snapshot period Structure 
size (MB) 

Compression ratio Average time of 
object search (ms) 

Average time of time 
slice query (ms) 

120 132.03 25.59% 0.01784 5.29740 
60 218.59 42.37% 0.01422 2.93332 
30 392.35 76.05% 0.01347 2.51360 
15 739.96 143.43% 0.01329 2.20784 

Table 1 Compression ratio and response time (ms). 

As it is shown in Table 1, in the first experiment we can observe as the compression ratio improves 
when we increment the snapshot period, however, we penalize the response time. 

 
 Average time of object search (ms) Average time of time slice query 

(ms) 
Result in the snapshot 0.01262 0.45002 
Result in the first quarter of log 0.01508 3.59028 
Result in the middle of log 0.01760 3.72642 
Result in the third quarter of log 0.02010 5.52748 

Table 2 Response time in different situations.  

In the second experiment, we want to show the behaviour of our structure when we solve queries using 
only the snapshot or when accessing the log as well. In this experiment, we used the setup of the best 
compression ratio of the first experiment, that is, the structure with a snapshot period of 120. Over this 
structure, we run queries which we can be solved directly in a snapshot and others that require traversing 
up to the first quarter, the middle, and the third quarter of the log. For each case, we run 50 random 
queries, where we obtain at least one result. Then, we measure the average time in milliseconds of 
searches for an object and time slice queries. Table 2 shows the results. 

As it is shown in Table 2 we can observe that the time of both kinds of queries is better when we are 
searching in a snapshot than when we need to access the log. In the case of time slice query, we can see 



 

 

that the response time grows faster than in object searches. It is due to the tracking of objects that can 
reach the queried region at the considered time slice, whereas in searches by object, we only must follow 
a given object. 

Finally, observe that all response times are very appealing as they are below 6 ms., less than just one 
disk access, which would require around 10-20 ms.  

6 IMPROVEMENTS 

In order to improve the performance of our structure, we designed two enhancements that will allow us 
to process the queries more efficiently.  

6.1 Bidirectional log 

Consider an inquiry that queries a time instant tk, which is between the snapshots si and si+1. Let us 
suppose that tk is closer to si+1 than to si, in that case, we must read a large portion of the log, since we 
have to start from si up to the time instant that we are checking. However, if would desirable to have the 
chance to start the search at si+1 and traverse backwards the log until we reach tk. In this way, we could 
reduce the searches over the log to, at most, half of the size of the log between two snapshots. 

In order to allow those backwards searches, we simply add, to each portion of the log between two 
snapshots si and si+1, the full position of all objects in the time instant immediately before the time instant 
corresponding to si+1.  With this, we can perform a backwards navigation, for example, if we have the 
snapshots s0 and s1 delimiting the time instants between t0 and t8, and the objects perform these 
movements: 

{t1-t0= (2,2); t2-t1=(-2,0); t3-t2=(-2,2); t4-t3=(-1,2); t5-t4=(-2,2); t6-t5=(-2,2); t7-t6=(-1,1); t8-t7=(0,2) } 

Assuming that the position previous to the time instant of s1 is (-8, 13), and we want to know where is 
the object at the time instant t6, since we know that the position in t8 is (-8, 13) and we have the shift 
between t8-t7, we can revert the changes from the last snapshot until the time instant t6. Hence, if we run: 
(-8,13)-(0,2)-(-1,1)= (-7, 10), the position of the object at the time instant t6. 

Now, we have to solve the problem of disappearances. If we find an identifier that indicates an object 
reappearance, we simply follow the pointer to the reappearance array. In this array, we retrieve the 
relative position and the time between the disappearance time instant and the reappearance. Thus, we 
never lost the synchronization with the time.  

In addition, this structure can help us when we run time-slice queries because we can use the closest 
snapshot which allows us to reduce the region area r' and the number of objects to follow during the 
query execution. 

6.2 Accumulators 

To reduce the running times of queries, we can add accumulators at regular time intervals in the logs. 
An accumulator sums all the logs values between a snapshot and the time instant where the new 
accumulator is added. Hence, now instead of iterating over the log from the snapshot in the left extreme 
of a log portion, and summing the object positions until a selected instant, we obtain the accumulator 
before the checked instant and we sum the relative positions from the accumulator to the considered 
time instant. In fact, if the right snapshot is closer, this process can be done in the same way from that 
snapshot, but subtracting. 

 



 

 

 
Figure 6. Example of accumulators Ax in the logs Lx between snapshots si and si+1  

For example, in Figure 6, assume that we want to know the position of a boat at time instant t13. First, 
we need to find the object position in the nearest snapshot s1. Next, we obtain the value in the 
accumulator A2. Finally, after adding the values obtained in that structure, we add the relative value 
obtained from the instant t13.  

7 CONCLUSIONS 

We have developed a new data structure to represent the object trajectories. This proposal is based on 
the compact data structures approach. That is, we aim at keeping in main memory the whole structure 
and the access methods in order to avoid the disk access. By fitting data and access methods in main 
memory, we make a better use of the memory hierarchy, since the upper levels have higher bandwidth 
and lower latency. If we decompress it completely, we will be forced save parts in disk, since it is likely 
that the uncompressed structure will not fit completely in main memory. However, with our approach, 
we can only decompress the structure parts that we need to answer the query which we are running.  

This structure obtains compression ratios up to 25.59%, hence we reduce substantially the space 
consumption, having more chances to fit the data structure in main memory. In addition, we obtain a 
good performance searching the object positions at a time instant and answering time slice queries. 
During the experimental evaluation, we can observe that if we reduce the snapshot period the structure 
size grows and the queries are faster. This is caused by the average distance of the log that we need to 
traverse in order to response the queries.  

As a future work, it would be very interesting the development of the bidirectional log and the 
accumulators structure. Thus, we would solve queries that access and traverse the log with a better 
performance.  
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