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Abstract 

The molecular information encoding into molecular descriptors is the first step into in silico 

Chemoinformatics methods in Drug Design. The Machine Leaning methods are a complex solution to find 

prediction models for specific biological properties of molecules. These models connect the molecular 

structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an 

atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to 

the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of 

the models is more difficult. The current review presents a series of 11 prediction models for proteins, 

implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS 

(http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein 

target interactions and the other three calculate protein - protein interactions. The input information is based 

on the protein 3D structure for nine models, ID peptide amino acid sequence for three tools and drug SMILES 

formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful 

tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.  
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1. INTRODUCTION  

The in silico screening methods are the first step in Drug Development or protein function 

analysis. The advantages of this theoretical screening are the low cost, fast prediction, flexibility of 

the models for specific tasks, and high precision of predictive models. Therefore, 

Chemoinformatic methods are used by any pharma study in order to propose a small number of 

possible active drugs or optimal protein targets [1- 3].  

 

The models are based on mathematical relationships between the structure and the properties of 

the molecules and their biological activity such as Qualitative Structure- Activity/Property 

Relationships (QSAR/QPDR). These models have been intensively used in Medical Chemistry and 

other Bio Sciences. In the past, the application of the QSAR was limited to small molecules or 

systems. Currently, these methods have been extended to larger systems. Thus, it is possible to 

predict the function of a protein based on its three-dimensional (3D) structure, the function of a 

DNA secondary structure, the interaction of drugs with multiple molecular targets [4, 5]. Several 

applications have been published in Medicinal Chemistry [6-12], Proteomics [13- 18], Drug 

Metabolism [19-23], Pharmaceutical Design [24- 28], Bioinfonnatics [29-34], Nanotoxity [35,36].  

 

These results show that the graph/network theory can be extended to different systems such as 

genome networks, interaction networks of proteins, host-parasite networks, linguistics networks, 

social networks [37-42] and Internet [43]. Thus, a network/graph is an interconnected system 

which shares information and it is made up of nodes (elements of the systems) linked by 

relationships, The nodes can be atoms, molecules, organisms or other systems.  

2. IN SILICO PROTEIN ACTIVITY PREDICTION  

There are an important number of publications with prediction models for specific drug 

biological activity, drug toxicity, protein target interaction with drugs or protein - protein 

interactions, but the majority of these models are not free online tools. This makes difficult the 

prediction of new drugs or protein targets by all scientists.  

 

Several programming tools give the possibility to calculate molecular descriptors and to find 

QSAR models: Chemical Development Kit (CDK) [44], Bioclipse [45], R packages such as 

QSARdata (Quantitative Structure Activity Relationship (QSAR) Data Sets, http://cran.r-

project.org/web/packages/QSARdata/index.html), rcdk (http://cran.r-project.org/web/packages 

/rcdk/index.html), ChemmineR [46], RRegrs (Regressions in R, https://github.com/muntisa/ 

RRegrs) or Python tools such as pyWeka (Python Script for Weka Classifications, 

https://github.com/muntisa/pyWeka) and MathChem [47].  

 

A reduced number of drug QSAR models are presented on online servers: Toxtree [48], 

OpenTox [49], OCHEM tools [50]. The following sections will describe some of the online 

protein QSAR tools and the collection of QSAR protein prediction servers from the Artificial 

Intelligence Model Server in Biosciences, Bio-AlMS.  

2.1. Proteln Activity Web Tools  

Different types of molecular information have been used to implement protein QSAR-like 

models as online tools. One of them is Cell-PLoc for the localization of proteins [51] in different 

organisms such as eukaryotes (Euk-mPLoc), plants (Plant-PLoc), Gram-negative bacteria (Gneg-

PLoc), Gram-positive bacteria (Gpos-PLoc), viruses (Virus-PLoc), humans (Hum-mPLoc). The 

subcellular localization of proteins is an important issue in molecular cell biology, proteomics, 

system biology and drug discovery. Cell-PLoc is a package of Web servers obtained by 

hybridizing the 'higher level' approach with the ab initio approach. Using these Web servers, the 

scientists are able to predict the protein localization with a high expected accuracy, as 

demonstrated by a series of cross-validation tests on the benchmark data sets that covered up to 22 



subcellular location sites. The maximum protein sequence identity is 25% for the protein in the 

same subcellular-location subset. The servers could also work with proteins that have different 

subcellular locations. These proteins with multiple locations are very interesting both in basic 

research and drug discovery, because they may play important biological functions. The 

computational time for each prediction is generally less than 5 seconds. The package is freely 

accessible at: http://www.csbio.sjtu.edu.cnl/bioinf/Cell-PLoc/. 

 

Another Web tool for the prediction of the protein subnuclear localization is Nuc-PLoc. This 

predictor is based on pseudo amino acid composition (PseAA) descriptors [52] and pseudo 

position-specific scoring matrix (PsePSSM). This model can identify nuclear proteins among the 

following nine subnuclear locations: chromatin, heterochromatin, nuclear envelope, nuclear 

matrix, nuclear pore complex, nuclear speckle, nucleolus, nucleoplasm and nuclear promyelocytic 

leukaemia (PML) body. Nuc-PLoc is based on an ensemble classifier formed by fusing the 

evolution information of a protein and its pseudo amino acid composition. The user-friendly web-

server is publicly available at: http://www.csbio.sjtu.edu.cnlbioinflNuc-PLoc/.  

 

Other Web server for proteins is Signal-3L, Signal proteins with a 3-layer approach [53]. 

Signal peptides have a crucial role in the cells for directing the nascent proteins to their cellular 

and extracellular locations; thus, they are used to find new drugs or to reprogram the cells for gene 

therapy. The avalanche of the new protein sequences generated in the post-genomic era creates a 

critical need for fast, simple and cheap screening methods for protein property evaluation. This 

tool implements a new predictor based on a novel method for predicting signal peptide sequences 

and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative 

protein sequences, respectively. The predictor works in three steps: (1) identification of a query 

protein as secretory or non-secretory by an ensemble classifier formed by fusing OET-KNN 

(optimized evidence- theoretic K-nearest neighbor) classifiers based on pseudo amino acid 

composition indices; (2) selection of a candidate set for the possible signal peptide cleavage sites 

of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determination of 

the final cleavage site by fusing the global sequence alignment outcome for each of the 

aforementioned candidates through a voting system. Being a very fast tool, Signal-3L could be 

useful for the analysis of large-scale datasets. The free tool is available at: 

http://www.csbio.sjtu.edu.cnlbioinf/Signal-3U.  

 

A similar Web tool is Signal-CF, which deals with the prediction of signal peptide sequences 

and their cleavage sites in eukaryotic and bacterial protein sequences using an automatic 2-layer 

predictor [54]: the 1st layer can identify a query protein as secretory or non-secretory; if it is 

secretory, the 2nd layer will identify the cleavage site of its signal peptide. The name of the server 

contains C for "coupling" and F for "fusion": the tool is created by incorporating the subsite 

coupling effects along a protein sequence and by fusing the results derived from many width-

different scaled windows through a voting system. Signal-CF is available as a free web-server at: 

http://www.csbio.sjtu.edu.cnlbioinf/Signal-CF/.  

 

Other servers are linked to proteases such as HJVcleave [55], which predicts HIV protease 

cleavage sites in proteins or Protldent, which can identify the proteases and their types by fusing 

functional domain and sequential evolution information [56]. In addition, the enzyme functional 

classes and sub-classes can be predicted with EzyPred [57]. The last tool is a 3-layer predictor 

with the overall success rates higher than 90%: the 1st layer identifies a query protein as enzyme 

or non-enzyme, the 2nd layer predicts the main functional enzyme class, and the 3rd layer 

describes the sub- functional class. The maximum protein identity is 40% in the same class or 

subclass. EzyPred is freely accessible at: http://www.csbio.sjtu.edu.cnlbioinf/EzyPred/.  

 

The following Cheminformatics Web tools predict protein properties using Markov molecular 

graph descriptors.  

  



2.2. Bio-AIMS Server Collection  

The main purpose of Bio-AIMS (http://bio-aims.udc.es) is to extend the prediction power of 

the Complex Networks/Graphs, molecular information encoding and Artificial Intelligence 

techniques for macromolecules such as proteins/peptides. The second aim is to make available 

these prediction models as free online tools that could be used by scientists with little knowledge 

of Chemoinformatics or Machine Learning.  

 

Bio-AIMS offers theoretical models based on Artificial Intelligence, Computational Biology 

and ChemIBio- informatics for the prediction of protein biological activity, drug-protein / protein-

protein interactions, hotspots for protein-protein / DNA-protein interactions and personalized 

diagnostics. The models are constructed using different inputs such as drug / protein descriptors, 

molecular interaction networks, genetic mutations, brain activity records, and statistical / Machine 

Learning methods.  

Bio-AlMS is divided in three parts (Fig. 1):  

 

 TargetPred - Target Prediction presents 12 models for predicting the function of proteins, 

interaction of proteins in parasites or humans and drug-protein interactions by using data 

such as protein sequences or 3D structures and drug chemical structures  

 

 (SMILES). The current review IS focused on II models from this section (Fig. 2).  

 

 DiseasePred - Disease Prediction contains 2 online personalized diagnostic tools: 

SNPSchizo for schizophrenia based on patient Single Nucleotide Polyrnorphism (SNP) [58] 

and AlzPred = SVV for Alzheimer using Spectroscopy Voxel Volum.  

 

MolStructPred - Molecular Structural Prediction of protein and nucleic acid structures and 

macromolecular interactions; it contains 2 servers: SASA-HS-PNA = SASA-based hotspot 

prediction for protein - nucleic acid interactions, and SASA-HS-PP = SASA-basd hotspot 

prediction for protein – protein intercations.  

 

The server represents a free online solution to evaluate biological properties, drug interactions 

and diseases based on bio-chemical information. The user can send through a simple Web 

interface the information (chemical structure formula, protein sequences, genetic mutations, etc.) 

and the server evaluates a property or disease with its own resources. From February 2010 to 

February 2015 there have been over 6400 visitors of Bio-AIMS, from 112 countries.  

  



 
 

 
Fig. (1). Bio-AIMS server.  

  



 
 

 
Fig. (2). Target Prediction servers frOID Bio-AIMS.  

Target Prediction section contains 12 models obtained with the methodology presented in Fig. 

(3):  

 

 Inputs: The inputs for the models can be protein POB name, SMILE chemical formulas for 

drugs or peptide sequences. These inputs are transformed into molecular indices using two 

in-house applications.  

 

 Descriptor calculation tools: MARCH-INSIOE (Python version) [59] and S2SNet - 

Sequence to Star Network [60, 61]. Both software were programmed in Python [62] and 

BioPython [63]. The proteins to be evaluated are automatically downloaded from the POB 

databank [64, 65]. These descriptors are used to find linear and non-linear models using 

statistical and Machine Learning methods [66] from dedicated software.  

 



 Model software: STA TlST1CA [67], Weka [68-70] and R [71]. The models establish 

quantitative relations between the structure of a system (protein molecule, protein-

proteinlprotein-drug interaction networks) and an activity / property of the system (ex: 

biological activity of a protein). These models have been implemented into online Web 

servers.  

 

 Web servers were created with XHTML [72], PHP [73], Python [62], and R [71].  

 
 

 
Fig. (3). General metbodology flow for Bio-AIMS Targel Prediction servers.  

All models from Target Prediction section predict protein properties (biological activity, 

molecular interaction, drug target) and 11 models are presented in the following sections. Bio-

AlMS generates a unique folder with a random name for each calculation. AII the input and output 

files could be found in this folder and all files are kept on the server for future access, using a 

unique URL for each calculation.  

  



2.2.1. EnzClassPred - Enzyme Class Prediction  

 

One of the protein biological activities is the enzymatic role. Different publications proposed 

methods to predict enzyme proteins and the enzyme family c1ass [74-78]. In the previous sections, 

the EzyPred server has been presented. The new Bio-AIMS Web tool, EnzClassPred represents a 

different molecular information codification using a Markov chain model (MCM) and protein 

molecular graphs for the enzyme c1assification (EC) number predictor. Thus, the protein 3D 

structures are turned into specific molecular descriptors: 3D entropy and moments of the 

molecular alpha-carbon contact network. These indices are the input for Statistics / Machine 

Learning techniques such as Linear Discriminant Analysis (LDA) and/or artificial neural networks 

(ANN) from STAT1STICA The best QSAR c1assifier to predict the first EC number has been 

implemented into EnzClassPred and is represented by a non- linear ANN, a Multi-Layer 

Perceptron (MLP) 4:4-9-8-1: 1 (4 input descriptors, two hidden layers of 9 and 8 neurons), with an 

overall accuracy of 98.85% [79]. The database for the model contained 4755 proteins (859 

enzymes and 3896 non-enzymes) divided into both training and external validation series. The tool 

could be used to identify and predict peptides of prokaryote and eukaryote parasites and their 

hosts, as well as other superior organisms, which may be of interest in drug development or target 

identification. EnzClassPred uses PHP/HTMLlPython and MARCH- JNSIDE routines and is 

available for free at: http://bio-aims.udc.eslEnzClassPred.php.  

 

EnzClassPred Web interface is a mini mal one, where the user should input only the standard 

PDB name (Fig. 4). An example of output result for three proteins is presented below:  

 
Process ID = 742854ff1f20a0ccd  

PDB List = 1XS0 1A0M 1EP9  

... please wait ....  

PDB Update/Verification … 

1XS0 1A0M 1EP9 Done!  

Processing PDBs ...  

1XS0 1A0M 1EP9  

Result file = Results/742854ff1f20a0ccd/ECP.calc.txt  

EnzClassPred @ Bio-AIMS  

Enzyme Class Prediction  

by using MARCH-INSIDE and MLP 4:4-9-8-1:1 (98.57% accuracy)  

Results = http://bio-aims.udc.es/Results/742854ff1f20a0ccd/ECP.calc.txt 

2015-03-10 17:43:13  

 

 
Enzyme classes (EC)  

...................... 

1 - OXIDOREDUCTASE 2 - TRANSFERASE  

3 - HVDROLASE  

4 - LVASE  

5 - ISOMERASE 6 - LIGASE  

Eval = evaluated  

(YES = if we are using our model)  

(NO = if the function can be found inside the PDB)  

PDB EvalEC.1 EC.2 EC.3 EC.4 EC.5 EC.6  

===================================== 

1XS0 ND NO ND VES NO NO NO  

1A0M VES NO VES VES VES NO VES  

1EP9 NO NO VES NO NO NO NO  

  



 
 

 
Fig. (4). EnzClassPred Web grapbical interface.  

2.2.2. ATCUNpred - ATCUN DNA-Cleavage Protein Activity Prediction  

 

The amino terminal Cu(II)- and Ni(Il)-binding (A TCUN) motif is a small metal-binding site. 

Discovered in serum albumin, it was demonstrated that it participated to the DNA cleavage with 

the NH2-aal-aa2-His3 [80] sequence, to the central nervous system function, cancer growth [81], 

Alzheimer's disease [82], and to several other biochemical reactions. These motifs become 

therapeutic agents for the chemical nuclease design [83, 84].  

 

ATCUNpred was developed to predict the metal- mediated biological activity based only on 

the 3D structure of metal-unbound proteins and it is focused on the amino terminal Cu(II)- and 

Ni(II)-binding (ATCUN) motifs that participate in the DNA cleavage and have antitumor activity 

[85]. It is the first A TCUN classification model based on the 3D electrostatic spectral moments 

for 415 different proteins, including 133 potential ATCUN antitumor proteins. ATCUNpred is a 

linear model obtained with the Linear Discriminant Analysis and it discriminates between 

ATCUN-DNA cleavage proteins and non-active proteins with 91.32% accuracy (379 out of 415 of 

proteins including both training and external validation series). For the first time, the model 

predicted the DNA cleavage function of proteins from the pathogen parasites. Possible ATCUN-

like proteins have been predicted with a probability over 99% in nine parasite families such as 

Trypanosoma, Plasmodium, Leishmania, or Toxoplasma. The results showed possible A TCUN 

proteins such as oxidoreductases, signaling proteins, lyases, membrane proteins, ligases, 

hydrolases, transferases, cell adhesion proteins, metal binders, translation proteins, transporters, 

structural proteins, and isomerases.  

 

ATCUNpred Web interface is similar to the EnzClassPred with only a list of standard PDB 

name inputs and it is freely available at: http://bio-aims.udc.es/ATCUNPred.php.  

  



An example of output is presented below:  

 
ATCUNpred @ Bio-AIMS  

ATCUN ONA-cleavage protein activity Prediction  

by using MARCH- INSIDE and LOA based on electrostatic spectral moments 

(Accuracy of 91.32%)  

Results = http://bio-aims.udc.es/Results/1768754ff1e51100cd/ATCUNpred. 

calc2. txt  

2015-03-10 17:39:46  

PDB  ATCUN Prediction  

==================== 

1AZP  0.28 %  

1I4M  66.01 %  

1B0U  80.97 %  

2.2.3. Trypano-PPI - Trypanosome Protein-Protein Interactions (TPPI) 

 

Trypanosoma brucei has an important role in the African diseases, for causing the African 

trypanosomiasis in humans. Therefore, over 60 million people from the countries of sub- Saharan 

Africa are threatened, with consequences for the human health and the economy. Trypanosoma 

cruzi is another pathogen responsible for Chagas disease in South America. This disease causes 

acute illness and death, especially in young children. Thus, the discovery of novel drug targets in 

Trypanosome proteome represents an urgent task for the scientists.  

 

Trypano-PPI implements for the first time a model that can predict unique protein-protein 

interactions (PPIs) in Trypanosome (TPPIs) [86]. The model classifier had the inputs as new 

protein-protein complex invariants based on the Markov average electrostatic potential for amino 

acids located in different regions of i-th protein and placed at a distance k one from each other. 

More than 30 different types of parameters for 7866 pairs of proteins (l023 TPPIs and 6823 non-

TPPIs) from more than 20 organisms have been calculated, including parasites and human or cattle 

hosts. The model implemented into Trypano-PPI is represented by a simple linear model with only 

two parameters that predict over 90% of TPPIs and non-TPPIs (training and test sets). Trypano-

PPI is able to predict how unique a protein-protein complex in Trypanosome proteome is with 

respect to other parasites and hosts. Thus, this tool could be important for the antitrypanosome 

drug target discovery.  

 

Trypano-PPI interface contains two lists of inputs as protein chains (with standard PDB names) 

which will be tested for interaction (Fig. 5) and it is freely available at: http://bio-aims.udc 

.es/TrypanoPPI. php.  

  



 
 

 
Fig. (5). Trypano-PPI Web grapbical interface 

The output for four protein chains is presented below:  

 
Process ID = 307254ff21a03dge4 

PDB List 1= 1HOZA 1K3TB  

POB List 2 = 1HOZB 1F2CA  

… please wait ....  

PDB Update/verification [List 1] … 

1HOZA 1K3TB  

PDB Update/Verification [List 2] … 

1HOZB 1F2CA  

Processing POB-chain List 1 … 

1HOZA 1K3TB  

Processing POB-chain List 2 … 

1HOZB 1F2CA  

Result file =  

Results/307254ff21a03dge4/TrypanoPPI.calc.txt  

TrypanoPPI @ Bio-AIMS  

Biopython server to predict if a pair of proteins form a physically 

stable complex unique of Trypanosoma (not present in human or other 

parasites) based on electrostatic potential indices of Protein-Protein 

Interactions (PPIs) by using MARCH-INSIDE (Python version) and LNN 2:2-

1:1 (90.9% accuracy).  

These complexes may be interesting candidates for specific anti-

Trypanosoma drug targets.  



Results = http://bio-aims.udc.es/Results/307254ff21a03dge4/TrypanoPPI. 

calc.txt  

Calculated at 2015-03-10 17:53:52  

Chain1 Chain2 Complex  

======================================= 

1HOZA 1HOZB YES 

1HOZA 1F2CA NO 

1K3TB 1HOZB NO 

1K3TB 1F2CA NO 

2.2.4. Plasmod-PPI- Plasmodium Protein-Protein Integrations (PPPI)  

 

Plasmodium falciparum causes the most severe form of malaria. It kills up to 2.7 million 

people annually. In addition, Plasmodium vivax is geographically the most widely distributed and 

it produced over 80 million clinical cases. The drug resistance and toxicity are two major problems 

for these diseases. Therefore, there is a real need for new drug target methods. One possibility 

involves the Protein-Protein Complexes, unique in this pathogen and not present in human hosts 

(PPPCs). In addition, some PPCs expressed both in parasites and humans, such as DHFR synthase, 

play a significant role in drug resistance in both malaria and human cancer.  

 

Considering there is no general model to predict pPPCs using indices of PPC biopolymer 

structure, Plasmod-PPI Web server implemented a unique classifier to predict these interactions 

[87]. The inputs for the model are the Markov Chain numerical descriptors of protein-protein 

interactions (PPIs) based on electrostatic entropy measures. These parameters have been calculated 

for 5257 pairs of proteins (774 pPPCs and 4483 non-pPPCs), from more than 20 organisms 

(including parasite and human hosts). The implemented prediction model is a simple Classification 

Tree with accuracy, sensitivity, and specificity between 90.2 and 98.5% (training and test sets).  

 

Plasmod-PPI interface contains two lists of inputs as protein chains (with standard PDB names) 

that will be tested (in a similar way as Trypano-PPl). It is available for free at: http://bio-aims. 

udc.eslPlasmodPPI .php.  

 

The output for six protein chains is presented below:  

 
Process ID = 10 10S6654ff227d22ea5  

PDB List 1 = 3C5IA 2F6IE 15YRC  

PDB List 2 = 3C5IE 2GHUA 15YRF  

… please wait … 

PDB Update/Verification [List 1] … 

3C5IA 2F6IE 1SYRC  

PDB Update/Verification [List 2] … 

3C5IE 2GHUA lSYRF  

Processing PDB-chain List 1 … 

3C5IA 2F6IE 1SYRC  

Processing PDB-chain List 2 … 

3C5IE 2GHUA 1SYRF  

Result file =  

Results/1086654ff227d22ea5/PlasmodPPI.calc.txt  

Plasmod-PPI @ Bio-AIMS  

Biopython server to predict if a pair of proteins form a physically 

stable complex unique of Plasmodium (not present in human or other 



parasites) based on electrostatic entropy indices of Protein-Protein 

Interactions (PPIs)  

by using MARCH-INSIDE (Python version) and CT (96.8% accuracy) .  

These complexes may be interesting candidates for specific anti-

Plasmodium / anti-cancer drug targets.  

Results = http://bio-aims.udc.es/Results/1086654ff227d22ea5/PlasmodPPI. 

calc.txt  

Calculated at 2015-03-10 17:57:33  

Chain1 Chain2 Complex  

======================================== 

3C5IA 3C5IE YES 

2F6IE 2GHUA NO 

15YRC 1SYRF YES 

2.2.5. NL-MIND-BEST - Non-Linear MARCH-INSIDE Nested Drug-Bank Exploration & 

Screening Tool  

 

The increased importance of the drug-protein interactions in the drug design for specific targets 

in diseases led to the need for this tool. Ligands or Drug-target pairs (DTPs/nDTPs) of drugs with 

high affinity/non-affinity for different targets have been selected and QSAR models have been 

constructed. Genera11y, most QSAR models predict activity against one protein target only and/or 

they have not been implemented in the form of public web server. To solve this problem, NL-

MIND-BEST server implemented a multi- target QSAR (mt-QSAR) classifier using MARCH-

INSIDE for the calculation of the structural parameters for drugs and target proteins (approved by 

the U.S. Food and Drug Administration, FDA). The best model has been obtained with the 

Artificial Neuronal Network (ANN) technique and it is represented by a Multi-Layer Perceptron 

(MLP) such as MLP 20:20-15-1:1 with a sensitivity of90.12%, a specificity of 90.46%) and an 

accuracy of 90.41% for the training dataset [88]. The test results are characterized by a sensitivity 

of 91.72%, a specificity of 91.22% and a total accuracy of 91.30%.  

 

The Web application is based on PHP/HTML/Python and MARCH-INSIDE routines. NL-

MIND-BEST Web interface contains two types of ca1culations for drug - protein interaction 

prediction:  

 

 Mode 1: drugs as SMILES and proteins as standard PDBs (from PDB Databank);  

 

 Mode 2: drugs as SMILES and proteins as uploaded ENT files created with HyperChem 

MMlMD algorithm; thus, theoretical PDBs could be tested as possible targets for a list 

oftargets.  

 

This server is free on demand in order to be used only by academic institutes and it is available 

at: http://bio-aims.udc.esINL-MIND-BEST.php.  

 

The following rows present the predictions for two drugs against two proteins (all possible 

combinations drug - protein):  

 
Process ID = 1713354ff3620322cc  

… please wait …  

PDB Update/Verification … 

1A36 1A8M Done!  

Calculating …  

Result file = .. /Results/1713354ff3620322cc/NL-MIND-BEST.Modelo txt  

  



Class PDB Similar PDB Drug Name  

 Similar Drug Drug-PDB Similarity  

========================================================== 

YES 1A36 1A36: 100.0% Irinotecan 

 Irinotecan: 100.0% 100.0% 

No 1A36 1A36: 100.0% Simvastatin 

 Simvastatin : 100.0% 100.0% 

No 1A8M 1A8M: 100.0% Irinotecan 

 Irinotecan: 100.0% 100.0% 

YES 1A8M 1A8M: 100.0% Simvastatin 

 Simvastatin: 100.0% 100.0% 

 
 

 
Fig. (6). NL-MIND-BEST Web graphical interface.  

  



2.2.6. MIND-BEST - Linear MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool  

 

This tool is the linear solution similar to the NL-MIND- BEST tool. The accuracy of the best 

LDA model was 94.4% (3859/4086 cases) for training and 94.9% (190912012 cases) for the 

external validation series [89]. It is available at: http://bio-aims.udc.esIMIND-BEST.php.  

2.2.7. MISSProt-HP - MARCH-INSIDE Spectral moment prediction of Self Proteins in Human 

Parasites (Other than the Original Source Organism)  

 

500 million people worldwide are affected by infections caused by human parasites (HPs). On 

the other hand, the chemotherapy is expensive, toxic, and sometimes less effective because of the 

drug resistance. Thus, there is a need for methods to predict biologically relevant Parasite Self 

Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins 

expressed in other parasites. These peptide unique sequences have a high probability to become 

new vaccines or unique 3D structure drug targets.  

 

MISSProt-HP implements a classification model for PSPs in eight different HPs such as 

Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma 

[90]. The accuracy of the model is 90% in the case of 15,341 training and validation cases. This 

model combines several methods: protein residue networks, Markov Chains and ANN. The input 

parameters are calculated with MARCH-INSIDE as the spectral moments of the Markov transition 

matrix for electrostatic interactions associated with the protein residue complex network.  

 

MISS-Prot-HP was implemented into PHP/HTML/Python and it is easy to use by non-experts 

in Bioinformatics. It is freely available at: http://bio-aims.udc.esIMISSProt-HP.php.  

 

MISSProt-HP Web interface is the most complex from Bio-AJMS and is divided into four 

types of calculations:  

 

 Mode 1: prediction of Self Proteins in Human Parasites for Ascaris spp., Entamoeba spp., 

Fasciola spp., Giardia spp., Leishmania spp., Tolypocladium spp., Toxoplasma spp., 

Trypanosoma spp., Plasmodium spp.;  

 

 Mode 1U: the same prediction, but in user-defined organism, such as Homo sapiens, Bos 

taurus, Sus scrofa, G. gallus, M. musculus, R. norvegicus, B. stearothermophilus, B. 

subtilis, E. coli, Pseudomonas spp., S. typhimurium, Staphylococcus spp., Streptococcus 

 spp., Streptomyces spp. and Saccharomyces spp.;  

 

 Mode 2: evaluation against 9 parasites of the uploaded PDB files obtained with LOMETS 

or ENT files from HyperChem;  

 

 Mode 2U: evaluation of the uploaded files as Mode 3, but using a user-defined organism.  

 

The output for Mode 1U for 3 protein chains using Homo sapiens as organism is presented 

below:  

 

The probability for each organism (p_org), other than the original source organism, is 

calculated as follows: 

 
Process ID = 2456154ff3960Sdba3  

PDB List = 13PKA 1JLRA 1DQPB  

... please wait ... 

PDB Update/Verification ... 

13PKA 1JLRA 1DQPB Done!  

Processing PDBs ... 

13PKA 1JLRA 1DQPB  



Result file = Results/2456154ff3960Sdba3/MISSProt-HP.Mode1U.txt  

MISSProt-HP @ Bio-AIMS  

MARCH-INSIDE Spectral moment prediction of Self Proteins in Human 

Parasites  

by using LNN 90:90-1:1 (91.0% accuracy)  

Results = http://bio-aims.udc.es/Results/2456154ff3960Sdba3/MI5SProt-

HP.Mode1U.txt  

2015-03-10 19:35:13  

Parasite type (P)  

……………………………………………………………………………………………….. 

P1-Ascaris  P2-Entamoeba  P3-Fasciola 

P4-Giardia  P5-Leishmania  P6-Tolypocladium 

P7-Toxoplasma P8-Trypanosoma  P9-Plasmodium  

UO-Homo sapiens  

 

PDB  P1 P2 P3 P4 P5 P6 

  P7 P8 P9 UO Source 

Organism (SO) 

================================================== 

13PKA 0.0% 12.9% 4.2% 0.7% 7.8% 13.9% 

  34.0% SO 10.7% 15.8% Trypanosoma 

1JLRA 0.0% 17.4% 5.7% 1.0% 10.4% 18.7% 

  SO 11.3% 14.4% 21.2% Toxoplasma 

1DQPB 0.0% 12.0% 3.9% SO 7.2% 12.9% 

  31.6% 7.8% 10.0% 14.7% Giarda 

2.2.8. LIBPpred - Llpid-Binding Proteins Prediction 

 

Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (F ABPs) play an important 

role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, 

intestinal ischemia and parasitic infections. This tool proposed for the first time a model to predict 

new LIBPs based on protein 3D structures. The QSAR model was built on 3D electrostatic 

parameters of 1801 different proteins, including 801 LIBPs, calculated with the MARCH-INSIDE 

software [91]. The model is a linear classifier that can predict with an accuracy of 89.11% if a new 

protein can bind to lipids. The tool is available at: http://bio-aims.udc.esILIBPpred.php.  

 

LIBPpred Web interface is divided into two modes:  

 

 Mode 1: prediction of protein chains as lipid-binding peptides using as input the standard 

PDB names;  

 

 Mode 2: the same prediction, but using as input an uploaded LOMET PDB file.  

 

The output for the Mode 1 is described below:  

 
Process ID = 1578754ff3c0eda057 

... please wait ...  

PDB Update/Verification ... 

1QGHK 114M 2QZTB 1B0U Done!  

Calculating ...  

Result file = Results/1578754ff3c0eda057/LIBPpred.Mode1.txt  

LIBPpred @ Bio-AIMS  



Mode 1: Standard PDB input  

Lipid-Binding Proteins Prediction  

by using MARCH- INSIDE and LDA based on electrostatic spectral moments 

(Accuracy of 89.11%)  

Results = http://bio-aims/Results/1578754ff3c0eda057/ 2015-03-10 19:46:40  

PDBChain LIBP Prediction  

============================= 

1QGHK  0.00% 

114M*  29.66% 

2QZTB  100.00% 

1B0U*  45.34%  

============================= 

* the input contains no chain => UBPpred used the entire protein (all the 

chains)  

 
 

 
Fig. (7). MISSProt-HP Web graphical interface.  

  



2.2.9. LectinPred - Lectin Prediction  

 

Lectins are sugar-binding proteins that are highly specific for their sugar moieties and they 

play a significant role in biological recognition phenomena involving cells and proteins, such as 

different types of cancer, parasitic infections and other diseases. For example, some viruses use 

lectins to attach themselves to the cells of the host organism during infection. This tool presents a 

linear classifier based on Markov Shannon entropies of proteins and it can evaluate if a new 

protein can bind to sugars (this protein could be a lectin) with an accuracy over 90.00% [92]. 

Because there are +2000 proteins with 3D structure, but without a known function, LectinPred has 

been used to predict possible lectin proteins. The descriptors of the model have been calculated 

with MARCH-INSIDE (Python version) and they encode 3D electrostatic entropy of the protein 

molecule complex networks. A series of 2200 PDBs have been used, including 1200 lectins. The 

QSAR model has been obtained with the Linear Discriminant Analysis (LDA) and it is able to 

discriminate between lectin and non-lectin protein 3D structures.  

 

The implemented model as a free online server could be accessed at http://bio-

aims.udc.es/LECTINPred.php. The model is characterized by sensitivity of 96.7% (for lectins), 

specificity of 87.6% (non-lectins), and accuracy of 92.5% (for all proteins), considering altogether 

both the training and external prediction series.  

 

Both the interface of LectinPred and the results are similar to LIBPpred. This server has two 

modes:  

 

 Mode 1 - the input is the name of the PDB or the PDB+chain letter. All the PDBs will be 

automatically retrieved from the PDB databank.  

 

 Mode 2 - In case there is no standard PDB, the user could upload PDBs generated with 

LOMETS or PHYRE2.  

 

Because there is no direct relation between the lectin property of proteins and any molecular 

property, this model represents a unique tool that established a complex relationship between the 

3D protein structure and the electronegativity of the amino acids and the lectin property.  

2.2.10. HCC-Pred - Human Colorectal Cancer  

 

Cancer is a complex disease and, therefore, it is difficult to identify specific biomarkers or the 

false positives and false negative predictions. Consequently, a good option is the use of the 

complex networks / graphs theory. This method allows describing any real system, from the small 

molecules to the complex genetic, neural or social networks by turning real properties into 

topological indices.  

 

This tool is based on a QSAR-like model that is able to predict peptides related to colorectal 

cancer [93]. In the first step, the protein primary structure data (F ASTA peptide amino acid 

sequences) have been converted into specific Randic's star networks topological indices using 

S2SNet software for a set of 1054 proteins related or not to two types of cancer: human breast 

cancer (HBC) and human colon cancer (HCC). These descriptors were the inputs for the general 

discriminant analysis method from ST ATISTICA, in order to find a unique input-coded multi-

target classification model with accuracies of the training/predicting set of90.0% for the forward 

stepwise model type.  

 

From this model, the equation which corresponds to the HCC has been extracted and 

implemented as a free online Web tool. The simple inputs are peptide amino acid sequences with 

two labels. This tool could be useful in Clinical Proteomics, where a large volume of peptide 

sequences are obtained without any known biological activity.  

 

The Web interface of HCCPred contains only one input list as peptide amino acid sequences 

(one letter codification). The format of each line input is [PeptideNamel] [PeptideName2] 



[Sequence). The output predicting if one peptide sequence is related to HCC: http://bio-

aims.udc.esIHCCPred.php.  

2.2.11. Transp-Pred - Transport Protein Prediction  

 

Another important topic in Drug Metabolism is the transport of molecules within cells. 

Because of the high costs of the experimental testing for these types of molecules, theoretical 

models are considered for this screening task, as a cheap and fast solution.  

 

Thus, Transp-Pred was implemented using a QSAR mode1 that is able to predict whether a 

new peptide amino acid sequence (FASTA format) could be a transporter [94]. In the first step, the 

primary structure of a protein was represented as a molecular Star graph and the corresponding 

topological indices have been calculated. The dataset consisted of 2503 protein chains, out of 

which 413 are transporters, according to the PDB database c1assification, and 2090 are non-

transporters. These indices were used as input in Weka to find the best QSAR Machine Learning 

c1assification mode1 that can evaluate the transporter function of a new protein chain. The best 

method found is the Support Vector Machine Recursive Feature Elimination, which produced a 

c1assification model based on only 20 attributes with a true positive rate of 83% and a false 

positive rate of 16.7%.  

 

The interface of Transp-Pred is similar to the HCCPred: there is only an input list with peptide 

sequences that will be tested for the transport biological activity. The tool is free1y available at: 

http://bio-aims.udc.eslTranspPred.php.  

CONCLUSION  

This review describes a collection of free online protein QSAR tools known as Bio-AIMS. 

These unique servers allow the researchers to evaluate the biological activity of proteins, as well as 

their interaction with drugs or other proteins. These QSAR models are extended from the classic 

drug QSAR c1assification models to complex molecules such as proteins. All the tools are based 

on topological indices of molecular protein graphs and protein-protein/protein-drug interaction 

networks. The Machine Learning methods employed to find the models are different, producing 

linear or non-linear models, from the simple Linear Discriminant Analysis method to the very 

abstract Support Vector Machine Recursive Feature Elimination.  

 

Bio-AIMS contributes to the open science concept with free user-friendly tools for scientists 

from different fields of science. The future models will be based on 100% open software such as 

Weka, R and Python.  
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