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Abstract 

The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic 

information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an 

important research topic. The current study proposes a mixed methodology to obtain the first classification model that 

is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a 

Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. 

The best model represents a Random Forest classifier based on two features of the embedded and non-embedded 

graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the 

Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). 

The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug 

development. 
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1. Introduction 

Nucleotides participate in different cellular processes, such as transmission of genetic information or 

energy transfer and storage. Therefore, they are in interaction with proteins in key cell processes
1
. The 

nucleotide binding proteins became important possible drug targets because they are part of signalling 

systems in mammalian cells, regulating systems in sensory perception, cell growth and hormonal 

regulation
2
. The nucleotide binding molecular function is defined by the gene ontology GO:0000166 as a 

selective and non-covalently interaction with a nucleotide, an (ortho) phosphate esterified nucleoside or 

an oligophosphate at any hydroxyl group on the ribose/deoxyribose. The child ontology terms are purine 

nucleotide binding, cyclic nucleotide binding, methyl-CpG binding, pyrimidine nucleotide binding, 

NADP binding, NAD binding, methyl-CpNpG binding, methyl-CpNpN binding, deoxyribonucleotide 

binding, ribonucleotide binding, flavin adenine dinucleotide binding, and ADP-D-ribose binding 

(http://www.ebi.ac.uk/QuickGO/). 

The most known examples are the guanine nucleotide binding proteins (G proteins), the subject of a 

Nobel Prize. G proteins act as molecular switches inside cells and their malfunction leads to several 

diseases such as cancer, depression, diabetes, allergies, cardiovascular defects
3
. Due to the importance of 

G proteins, approximatively 30 % of the current drug targets are G Protein-coupled Receptors (GPCRs)
4
. 

New peptides with nucleotide binding function could be very useful as new treatment solutions. For 

this reason, the current paper is aimed at developing a new theoretical model that can predict new 
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peptides as nucleotide binders, in order to be used as in silico screening to reduce the number of 

molecules to be tested in pre-clinical experiments. This model uses the molecular information of proteins 

and represents Quantitative Structure Activity Relationships (QSARs)
5
. QSAR models presented in this 

study are based on topological indices (TIs) or molecular descriptors obtained by encoding the amino acid 

sequence information into Star-like graph descriptors
6
. The basic search for the best classification model 

that can predict a function for peptides uses the Linear Discriminant Analysis (LDA)
7
 and the non-linear 

Artificial Neural Networks (ANNs)
8
. Several prediction models for protein biological properties based on 

graph/complex network molecular descriptors have been published by our group regarding transport 

proteins
9
, lipid-binding proteins

10
, cancer-related proteins

11
, lectin proteins

12
, cell-death proteins

13
, 

enzyme regulatory protein
14

, antioxidant proteins
15

 or ATCUN DNA-cleavage proteins
16

. 

In this work, the authors propose the first classification QSAR model based on embedded/non-

embedded Start-like graph descriptors to predict nucleotide binding proteins. This methodology, 

consisting of mixing the molecular information and Machine Learning techniques to obtain QSAR 

classifiers, has been proved successful within the above protein function models. 

A series of recent publications
17

 are based on Chou’s 5-step rule
18

, by establishing a very useful 

sequence-based statistical predictor for a biological system: 

Construct or select a valid benchmark dataset to train and test the predictor; 

Formulate the biological sequence samples with an effective mathematical expression that can truly 

reflect their intrinsic correlation with the target to be predicted; 

Introduce or develop a powerful algorithm (or engine) to operate the prediction; 

Properly perform cross-validation tests to objectively evaluate the anticipated accuracy of the 

predictor; 

Establish a user-friendly web-server for the predictor that is accessible to the public. 

It is described below how to deal with these steps one-by-one. 

2. Materials and Methods 

The workflow of the methodology used in the current work is presented in Figure 1. The input data 

source is composed of amino acid sequences (primary structure) from proteins with nucleotide (NB) and 

non-nucleotide binding (non-NB) properties in FASTA format. All sequences of amino acids are 

transformed into Star Graphs and the corresponding topological indices using S2SNet application
19

. 

These TIs are the input for data mining techniques from Weka software
20

. The dataset was standardized 

and resampled in order to balance the number of NB and non-NB cases. Eight Machine Learning 

techniques from Weka have been used to find the best QSAR classification model. 

 
 

 
Figure 1. Flow chart of the study methodology: Machine 

Learning classifiers based on Star Graph descriptors of peptide 
amino acid sequences. 
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2.1. Protein Set 

The datasets of this work are extracted from two protein databases. These sets of protein primary 

sequences are made up of 1911 proteins with nucleotide binding activity (NB) and 2333 proteins with no 

binding activity (non-NB). The protein FASTA sequences (positive group, NB) have been downloaded 

from the Protein Databank
21

, the “nucleotide binding” list being obtained from the drop-down list of 

“carbohydrate derivative binding” from the “Molecular Function Browser” in the “Advanced Search 

Interface”. The negative group (non-NB) was constructed from some protein sequences without 

nucleotide binding activity, using the PISCES CulledPDB
22

 list of proteins with less than 20 % identity, 

resolution of 1.6 Å and R-factor of 0.25 (non-nucleotide binding proteins included, but any other possible 

biological function; http://dunbrack.fccc.edu/PISCES.php). Identity is the degree of correspondence 

between two sequences, and a value of 25 % or higher implies a similar function activity. Both sets have 

not been post-filtered for any source organism. The NB and non-NB lists of sequences have been 

transformed into S2SNet format and filtered for common sequences using pyS2SNet GitHub repository 

(https://github.com/muntisa/pyS2SNet). The full dataset has been resampled using Weka in order to 

equalize the number of positive and negative cases. The normalized dataset was the input for the Weka’s 

Machine Learning methods. 

2.2. Star Graph Topological Indices (TIs) 

Each protein sequence was transformed into a Star Graph, where the vertices (nodes) are presented by 

each amino acid, connected in a specific sequence by peptide bonds. The Star Graph (SG) is a special 

type of tree with N vertices, where one has had N-1 degrees of freedom and the remaining N-1 vertices 

have had one single degree of freedom
23

. 

The current SGs have been constructed using 26 branches (“rays”) of the star. Each branch contains 

the same amino acid type and the star centre is a non-amino acid vertex. The amino acid list (SG groups) 

was composed of the 20 standard amino acids (A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, 

V), two amino acids that in some species are interpreted as stop codons (U, O) and four amino acid codes 

that are used when the determination of a residue is not clear (B, Z, J, X). Thus, the non-embedded SG 

connectivity encodes the following information on the protein primary structure: amino acid type, 

sequence and frequency. The embedded SGs have extra information, such as protein chain connectivity, 

due to the chemical peptide bonds. 

The use of the graphical approaches to study biological problems can provide an intuitive picture or 

useful insights for contributing to the analysis of complicated relations in these systems
24

, as 

demonstrated by many previous studies on a series of important biological topics: enzyme-catalyzed 

reactions
25

, inhibition of HIV-1 reverse transcriptase
26

, inhibition kinetics of processive nucleic acid 

polymerases and nucleases
27

, protein folding kinetics
28

, drug metabolism systems
29

, and using wenxiang 

diagrams or graphs to study protein-protein interactions
30

. 

The encoding of this information of amino acid sequences into Star Graph TIs was possible using the 

Sequence to Star Networks (S2SNet) application
17

. For the current study, the embedded and non-

embedded TIs have been calculated, without weights, with Markov normalization and power (n) of 

matrices/indices from 0 to 5. This power is used to simulate the interaction of the amino acids in the 

molecular graph at a distance of n (similar to Markov chains). The following TI types have been 

calculated: Shannon entropies (Shn), trace of the n connectivity matrices (Trn), Harary number (H), 

Wiener index (W), Gutman topological index (S6), Schultz topological index (non-trivial part) (S), 

Balaban distance connectivity index (J), Kier-Hall connectivity indices (
n
X, n=0,2–5), and Randic 

connectivity index (
1
X). All the formulas for these TIs are presented in Refs. 

19
. The embedded TIs have 

an “e” prefix. A total of 42 TIs have been calculated. All TIs have been used to find the best classification 

model which predicts the nucleotide binding peptides, using Weka techniques. 

2.3. Classification Methods 

The following eight Weka classifiers have been used with the NB/non-NB dataset: LIBLINEAR – 

linear method
31

, LibSVM - Support Vector Machines (SVM)
32

, Multilayer Perceptrons (MLP) - a neural 

network technique
33

, KStar
34

, JRip
35

, NaiveBayes – a Bayesian technique (Naïve Bayes)
36

, RandomTree
37

 

and RandomF – Random Forest
38

. The parameters for each of the models were initialised with the default 

setting of Weka. 
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SVM introduces the key-concept of kernel, a function that provides data a higher dimensionality, 

which allows converting the original data from non-linearly separable to linearly separable. SVM yields 

very good results with high-dimensional data
39

. MLP is a non-linear Machine Learning technique and is 

represented by a feedforward artificial neural network model that maps a set of input onto a set of 

corresponding outputs. An MLP can contain multiple layers of nodes as a directed graph (each layer fully 

connected to the next one). Each node represents a neuron as a processing element (except for the inputs), 

with a non-linear activation function. The training of an MLP consists of a supervised learning technique 

such as backpropagation
40

. 

KStar algorithm differs from instance-based algorithms because it does not use a Euclidean measure 

approach, but it is based on an entropy distance function, extracted from the information theory
41

. JRip 

represents a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER). Random Tree constructs a tree that considers K randomly chosen attributes at each node. 

Random Forest combines many decision trees to make a prediction, giving as output the class that is the 

mode of the classes output by individual trees (“ensemble learning” technique by using multiple models). 

The main advantage of Random Forest over other techniques such as MLP or SVM is its robustness 

regarding solution overfitting, tending to converge always when the number of trees is too large. For all 

Machine Learning techniques, 10-fold cross-validation method has been used
42

. 

In order to choose the best two-class classifier, several well-known accuracy measures have been 

used: True Positive Rate (TPR), False Positive Rate (FPR), F-measure and Area Under the Receiver 

Operating Characteristic Curve (AUROC). The comparison of these performance measures could be 

found in Ref.
43

. F-measure, which considers both precision and recall equally important, is a trade-off 

between them
44

. The higher the precision, the less effort wasted in testing and inspection; and the higher 

the recall, the fewer defective modules go undetected. ROC curve is a graphical plot that illustrates the 

performance of a binary classifier system as its discrimination threshold is varied. It is created by plotting 

the fraction of TPR (also known as sensitivity) vs. FPR at various threshold settings. FPR is one minus 

the specificity or true negative rate. AUROC is considered by Jin et al.
45

 to be a better measure for 

lassifier comparison. 

3. Results and Discussion 

The NB/non-NB dataset was composed of 4244 protein sequences, out of which 1911 have proved to 

have nucleotide binding activity (NB or positive group). The remaining 2333 proteins (non-NB or 

negative group) are sequences from the CulledPDB server with less than 20 % identity, without 

nucleotide binding activity. All protein sequences have been processed with S2SNet application
46

 in order 

to calculate the corresponding Star Graph topological indexes. Thus, for each sequence, 42 attributes are 

calculated. These TIs correspond to the embedded/non-embedded protein Star Graph. The series of 

topological indices for each protein chain have been used to find the best nucleotide binding classification 

model with eight Weka linear and non-linear classifiers (10-fold cross validation). 

The objective of this work is to select the technique with the highest classification score, providing a 

good precision and AUROC values, with the minimum number of features and using the simplest 

classification method. The aim of the results is to find accurate classification models for the prediction of 

nucleotide binding/non-nucleotide binding peptides based on Star Graph topological indexes. 

In the first step, the dataset with all features has been tested with eight Weka classifiers: LIBLINEAR, 

LibSVM, MLP, KStar, JRip, NaiveBayes, RandomTree and RandomF (see Table 1). It can be observed 

that with all 42 features it is possible to obtain an NB/non-NB classification model characterized by TPR 

and AUROC values higher than 0.85, and FPR value lower than 0.14 (RandomTree, KStar and 

RandomF). KStar and RandomF have an even better AUROC value, higher than 0.94. Thus, the best 

model is a RandomF classifier with an AUROC value of 0.954, a TPR value of 0.896 and a FPR value of 

0.104. 
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Table 1. NB/non-NB classification results using all 42 features. 

Weka classifier TPR FPR F-Measure AUROC 

     

LibLINEAR 0.753 0.247 0.753 0.753 

LibSVM 0.752 0.248 0.752 0.752 

MLP 0.753 0.247 0.753 0.821 

KStar 0.868 0.132 0.868 0.946 

JRip 0.759 0.241 0.759 0.793 

NaiveBayes 0.687 0.313 0.667 0.799 

RandomTree 0.871 0.129 0.871 0.871 

RandomF 0.896 0.104 0.896 0.954 

     

 

Due to the large number of features (42), in the next step a Weka feature selection technique was 

applied (Evaluator: weka.attributeSelection.CfsSubsetEval -P 1 -E 1; Search: 

weka.attributeSelection.BestFirst -D 1 -N 5) in order to obtain a reduced number of features. Therefore, 

only six features have been selected: H, 
5
X, eTr3, eTr4, eTr5 and e

4
X. The same eight Weka classifiers 

have been tested with only these six features and the results are shown in Table 2. RandomTree and 

RandomF classifiers maintained the results, but the KStar presents lower values for TPR (0.794) and 

AUROC (0.876). The best classifier with only six selected features is again RandomF with a TPR value 

of 0.896, a FPR value of 0.104 and an AUROC value of 0.952. Therefore, it was demonstrated that with 

less features (6 out of 42) RandomF classifier is able to obtain almost the same performance. 

Table 2. NB/non-NB classification results using six selected features. 

Weka classifier TPR FPR F-Measure AUROC 

     

LibLINEAR 0.745 0.255 0.744 0.745 

LibSVM 0.731 0.269 0.729 0.731 

MLP 0.743 0.257 0.743 0.811 

KStar 0.794 0.206 0.794 0.876 

JRip 0.759 0.241 0.759 0.781 

NaiveBayes 0.684 0.316 0.663 0.777 

RandomTree 0.874 0.126 0.874 0.874 

RandomF 0.896 0.104 0.896 0.952 

     

 

In the last step, the correlation between the selected features has been tested with a Python script from 

pyS2SNet collection. A cutoff of 0.80 correlation has been used and only two features have passed this 

test: 
5
X and eTr5 (0.836). This new dataset with only two features have been tested with the six Weka 

classifiers and the results are presented in Table  3. It can be pointed out that with only two features 

RandomF classifier has a performance similar to the one based on six classifiers, even if the AUROC 

(0.938) and TPR (0.886) values are lower. 
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Table 3. NB/non-NB classification results using two features after the correlated, selected features were removed. 

Weka classifier TPR FPR F-Measure AUROC 

     

LibLINEAR 0.744 0.256 0.743 0.744 

LibSVM 0.732 0.268 0.729 0.732 

MLP 0.744 0.256 0.744 0.813 

KStar 0.754 0.246 0.754 0.83 

JRip 0.750 0.250 0.750 0.779 

NaiveBayes 0.678 0.322 0.654 0.771 

RandomTree 0.868 0.132 0.868 0.868 

RandomF 0.886 0.114 0.886 0.938 

     

 

Using these three datasets with all the features, with only selected features and removing the 

correlated selected features it was demonstrated the power of Random Forest technique for the NB/non-

NB classification and the codification of the essential peptide sequence information into only two features 

such as X5 (non-embedded Kier-Hall descriptor, power 5) and eTr5 (embedded Trace of the connectivity 

matrix, power 5). The power 5 may indicate the importance of the interaction of the amino acids at a 

distance of five nodes in the molecular star graph for this type of classification. 

As demonstrated in a series of recent publications (see, e.g., 
2a,c,e,47

) on developing new prediction 

methods, user-friendly and publicly accessible web-servers will significantly enhance their impact
48

, 

further work will provide tools for designing a web-server for the prediction method presented in this 

paper. 

4. Conclusions 

This study proposes the first model designed to identify proteins that have nucleotide binding activity, 

using Star Graph TIs obtained from protein amino acid sequences. The proposed model, based on only 

two attributes extracted from the embedded and non-embedded graph, shows good predictive capacity 

with the Random Forest technique, obtaining an AUROC value of 0.938 and a TPR value of 0.886. This 

study confirms the classification power of the mixture of Machine Learning classifiers with molecular 

Star graph descriptors. The current results may be used to predict new nucleotide binding peptides for 

future drug development. 
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