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ABSTRACT 

In this paper we show that by means of an appropriate optimization technique the zeros 

of Rhodes radiation patterns can be perturbed so as to improve or modify pattern and/or 

the aperture distribution characteristics without altering the behaviour of the excitation 

amplitude distribution at the ends of the aperture. The examples presented include 

symmetric and asymmetric shaped beams, sum patterns with individually controlled 

side lobe heights, shaped beams generated by real excitations, and sum pattern aperture 

distributions that are smoother than the original Rhodes distribution. 
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1. INTRODUCTION 

The standard distribution solutions to the problem of minimizing the beam width of a 

line source sum pattern given a specified maximum side lobe level SLL are the Taylor 

family [1 
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where 2a is the length of the aperture,  is the distance from its centre, n  is an integer 

parameter ( n -1 is the number of controlled side lobes on each side of the main beam, 

the heights of which are close to SLL), and FT is the radiation pattern. FT is given by 
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where u = (2a/)cos   (  being the angle from broadside) and  
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the parameter A being related to SLL by A = (1/)cosh-1(10SLL/20).  

Rhodes [2 pointed out that Taylor was wrong in assuming it to be physically 

possible for the line source amplitude to behave as a non-zero constant at the edges of 

the aperture. Rhodes showed that the amplitude of the tangential electric field 

component perpendicular to the aperture edge must in fact be proportional to distance 

from the edge, and that the parallel component must go to zero quadratically as it 

approaches the edge. The upshot of this correction for low-sidelobe sum patterns is the 

Rhodes family of distributions: 
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Compared with the Taylor distribution for the same values of A and n , the Rhodes sum 

pattern has a slightly broader main beam; allows the use of larger values of n  without 

incurring in superdirectivity; and, for u > n , has a slightly steeper side lobe taper. The 

amplitude of the Rhodes aperture distribution goes to zero linearly at the ends of the 

antenna, but the slope is steep and preceded by a sharp rise, so that the edge-brightening 

problem of Taylor distributions is not significantly ameliorated.  

In previous papers, Elliott [3 and ourselves [4-7 have shown that patterns other 

than conventional symmetric sum patterns can be achieved by using Taylor sum 

patterns as the starting points of appropriate optimization procedures. Specifically, the 

papers cited perturbed the zeros of FT to achieve sum patterns with side lobes of 

individually arbitrary heights [3; symmetric [4 and asymmetric [5 shaped beams; real 

aperture distributions affording shaped beams [5,6; and aperture distributions with no 

edge-brightening affording sum patterns, difference patterns or shaped beams [7. Here 

we report that application of the same approach to Rhodes distributions can achieve 

similar results without significantly altering the behaviour of the Rhodes distribution at 

the edges of the aperture. 
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2. METHOD 

To achieve a) shaped beams (which requires the radiation pattern to have complex 

zeros) and b) control over different numbers of side lobes on either side of the main 

beam, it is necessary to generalize eq. (5): numbering the zeros of (cos u)/(1-4u2) 

consecutively from 1 up on each side of the main beam, 
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where l  N and r  N contain the indices of filled nulls on respectively the left and 

right of the main beam, and l  N and r  N the indices of unfilled but shifted nulls 

on respectively the left and right of the main beam. The aperture distribution h() is 

given by eq. (4) with h() instead of hR() and F(m+½) instead of FR(m+½). In each 

specific application, the optimal values of the shifted zeros ul,n+jvl,n and ur,n+jvr,n (where 

vl,n = 0 and vr,n = 0 for unfilled nulls) are found by successive perturbations using an 

appropriate optimization technique to minimize a cost function C that penalizes the 

deviation of pattern and/or aperture distribution parameters from desired values.  

3. EXAMPLES 

In this section we exemplify the potential of the above approach by synthesizing 

excitation distributions complying with a variety of pattern or aperture distribution 

requirements. All these examples concern a line source of length 2a = 10, and in all 

cases the optimization technique employed was simulated annealing [8]. 

3.1. Symmetric sum patterns with unequal controlled side lobes.  

If we seek a symmetric sum pattern in which the heights of the first seven side 

lobes on each side of the main beam are to be given by 

 SLL1,d = SLL2,d = SLL3,d = -40 dB 
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 SLL4,d = SLL5,d = SLL6,d = SLL7,d = -20 dB 

where SLLi,d is the desired height of the i-th side lobe, then in eq. (7) we make 

l = r = , l = r = {1,2,3,4,5,6,7} and ul,n = -ur,n, and we optimize a cost function 
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The pattern so obtained is shown in Fig.1, and its nulls ur,n are listed in Table 1; its peak 

directivity is 15.23. The excitation amplitude distribution is shown in Fig. 2 (the phase 

is of course zero for this symmetric pattern). Note that, as expected, the amplitude 

approaches the end of the aperture linearly, but that the edge-brightening peak at the 

end of the distribution makes the distribution very irregular. The amelioration of this 

undesirable behaviour is discussed in Section 3.6 below.   

3.2. Symmetric flat-topped beams with controlled side lobes.  

If we wish to obtain a symmetric flat-topped beam by filling the first two nulls on 

either side of the main beam, and at the same time ensure that the first three side lobes 

have desired levels SLLi,d, then in eq. (7) we make l = r = {1,2}, l = r = {3,4,5}, 

ul,n = -ur,n and vl,n = -vr,n, and we optimize the cost function 
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where SLL1,d = SLL2,d = 0, Zi is the power level at filled null i (i.e. at u = ur,i or u = ul,i 

(i = 1,2)), and Zi,d is the desired deviation from the beam peak level at this point. For 

Z1,d = Z2,d = -1 dB and SLL3,d = SLL4,d = SLL5,d = -20 dB, the pattern and distribution 

results are shown in Figs.3-5 and the values of the ur,n and vr,n are listed in Table 2.  

3.3. Symmetric flat-topped beams with controlled side lobes generated by real 

excitations.   

To achieve null filling with a real excitation distribution it is necessary for each 

of the complex zeros of F(u) to be accompanied by its complex conjugate. We therefore 



- 6 - 

set l = r = {1,2,3,4}, l = r = {5,6,7}, ul,n = -ur,n, vl,n = -vr,n, ur,2 = ur,1, ur,4 = ur,3, 

vr,2 = -vr,1 and vr,4 = -vr,3. For the same desired side lobe and ripple levels as in 

Section 3.2, the results obtained with an appropriately modified version of eq. (9) as 

cost function are shown in Figs.6 and 7 and the ur,n and vr,n are listed in Table 3. The 

price paid for ensuring that excitation distribution is real by making consecutive filled 

zeros mutual conjugates is a significant broadening of the main beam.  

3.4. Asymmetric sum patterns. 

To obtain a sum pattern with desired inner side lobe levels SLLr,i,d = -25 dB on 

the right of the main beam and SLLl,i,d = -15 dB on the left, we set l = r =  and 

l = r = {1,2,3,4,5,6,7} without symmetry constrains relating the ul,n and ur,n. For the 

cost function, instead of eq.8, we use 
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The results are shown in Figs.8-10 and the ul,n and ur,n are listed in Table 4. Note that, as 

for all asymmetric radiation patterns without any filled nulls, the amplitude of the 

excitation distribution is symmetric and its phase antisymmetric. The amplitude and 

phase distributions are in fact both quite similar to those obtained by Elliott [3 starting 

from a Taylor distribution, particularly as regards the edge-brightening peaks being the 

global amplitude maxima for the whole aperture; apart from the behaviour of the 

amplitude at the ends of the aperture, the main difference between Elliott's amplitude 

distribution and that of Fig.9 is that the latter has greater amplitudes than the former at 

the centre of the aperture. 

3.5. A cosec-squared pattern with asymmetric controlled side lobes. 

We wish to obtain a cosec-squared pattern with at most  1 dB of ripple by filling 

the first two nulls on the right of the main beam, and at the same time to limit the first 

three side lobes on the right of the shaped beam to -25 dB and the first three on the left 

to -20 dB. We therefore set l = , r = {1,2}, l = {1,2,3} and r = {3,4,5}, and we 
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use the cost function 
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with 

SLLr,1,d = -5 dB, SLLr,2,d = -10 dB; Z1,d = -6 dB, Z2,d = -11 dB;   

SLLr,3,d = SLLr,4,d = SLLr,5,d = -25 dB; and 

SLLl,1,d = SLLl,2,d = SLLl,3,d = -20 dB 

The results are presented in Figs.11-13 and Table 5. 

3.6. Symmetric sum patterns generated by smooth aperture distributions. 

A pattern that satisfies the same specifications as for the pattern of Section 3.1 

can be achieved using a smoother aperture distribution than in Section 3.1 if null-filling 

is allowed (l = r = {1,2,3,4,5,6,7}, l = r = , ul,n = -ur,n, vl,n = -vr,n) and the cost 

function of eq. (8) is supplemented with a) a term Z preventing the levels of the filled 

nulls from rising above the adjacent side lobe levels, b) a term V limiting the local 

variation of the excitation amplitude distribution: 
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where for desired maximum null filling levels Zi,d, 
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with q = 4 if Zi < Zi,d for 4 < i < 7 and q = 7 otherwise; V = max{Rj}, where Rj is the 

difference between the j-th peak of the excitation amplitude distribution and the lower 

of its flanking minima; Vd is the desired value of V; and the ci are adjustable constants 

controlling the relative importance of fixing side lobe levels, null-filling levels, and the 

local and global variation of the excitation amplitude distribution. Note that the null-

filling term always restrains the first three null-filling levels but allows the outer four 

nulls to be filled to levels below the specified level.  
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The radiation pattern and aperture distribution obtained for the same SLLi,d as in 

Section 3.1, Z1,d = Z2,d = Z3,d = Z4,d = -41 dB, Z5,d = Z6,d = Z7,d = -25 dB, and Vd = 0.1 are 

shown as continuous curves in Figs. 14-16 (with the corresponding functions of 

Section 3.1 shown as dashed curves for comparison), and the ur,n and vr,n are listed in 

Table 6. The operational price paid for this improvement is just a 3.48% reduction in 

directivity.  

3.7. Rhodes patterns without edge-brightening. 

Finally, we apply our methodology to making the aperture distributions for 

Rhodes patterns smoother without raising the side lobe levels of the patterns themselves 

or significantly reducing their peak directivities. For a Rhodes pattern with n = 9 and a 

side lobe level of -20 dB (l = r = , l = r = {1,2,3,4,5,6,7,8}, ul,n = -ur,n, 

vl,n = vr,n = 0, SLLi,d = -20 dB), we use the cost function 
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where D is the peak directivity of the pattern, Dd its desired value (that of the original 

Rhodes pattern, in this case 18.92), i = (SLLi -  SLLi,d) and H is the Heaviside step 

function. The continuous curves in Figs.17 and 18 show the results obtained for 

Vd = 0.1, and the dashed curves those of the original Rhodes distribution. Note that 

edge-brightening has been totally eliminated, the price paid being a slight (1.3%) 

reduction in peak directivity (now 18.67). The values of the ur,n are listed for both 

patterns in Table 7.  

4. FINAL REMARKS 

The above examples show that by means of an appropriate optimization technique the 

zeros of Rhodes radiation patterns can be perturbed so as to improve or modify pattern 

and/or the aperture distribution characteristics without altering the linear behaviour of 

the excitation amplitude distribution at the ends of the aperture. In this way it is possible 

to achieve symmetric and asymmetric shaped beams, sum patterns with individually 
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controlled side lobe heights, and sum pattern aperture distributions that are smoother 

than the original Rhodes distribution. The syntheses presented here, in which 

optimization was performed by simulated annealing, took between 10 seconds and 

3 minutes on a PC with an AMD-K6-2 processor running at 500 MHz. For the examples 

of Sections 3.1-3.5 Orchard's deterministic optimization method [9] is even faster, 

converging in just two or three iterations, but Orchard's method cannot deal with the 

problems of Sections 3.6 and 3.7. Finally, it may be pointed out that sampling of the 

aperture distribution allows the present results to be applied to linear array antennas; 

and that if this is done then, the resulting linear array can be further optimized by using 

optimization techniques appropriate to discrete arrays. 
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LEGENDS FOR FIGURES AND TABLES 

Fig.1.  Symmetric sum pattern obtained in Section 3.1. 

Fig.2.  Amplitude of the aperture distribution affording the radiation pattern of Fig.1. 

Fig.3.  Flat-topped beam obtained in Section 3.2. Ripple,   0.5 dB; side lobe level, 

-20 dB.  

Fig.4.  Amplitude of the aperture distribution affording the radiation pattern of Fig.3. 

Fig.5.  Phase of the aperture distribution affording the radiation pattern of Fig.3. 

Fig.6.  Flat-topped beam obtained in Section 3.3 using a real aperture distribution. 

Ripple,  0.5 dB; side lobe level, -20 dB.  

Fig.7.  Amplitude of the aperture distribution affording the radiation pattern of Fig.6. 

Fig.8.  Asymmetric sum pattern obtained in Section 3.4. Side lobe levels, -15 and 

-25 dB. 

Fig.9.  Amplitude of the aperture distribution affording the radiation pattern of Fig.8. 

Fig.10.  Phase of the aperture distribution affording the radiation pattern of Fig.8. 

Fig.11.  Cosec-squared pattern obtained in Section 3.5. Ripple,  1 dB; side lobe levels, 

-20 and -25 dB.  

Fig.12.  Amplitude of the aperture distribution affording the radiation pattern of Fig.11. 

Fig.13.  Phase of the aperture distribution affording the radiation pattern of Fig.11. 

Fig.14.  Symmetric sum pattern obtained in Section 3.6 while minimizing the variation 

(), and the pattern obtained in Section 3.1 without aperture optimization (-

-------).  

Fig.15.  Amplitudes of the aperture distributions affording the radiation patterns of 

Fig.14. Note the reduction in edge-brightening.  

Fig.16.  Phase of the aperture distribution affording the radiation pattern of Fig.14. 

Fig.17.  Symmetric sum pattern similar to a Rhodes pattern obtained with a smooth 

aperture distribution in Section 3.7 (), and the original -20 dB n = 9 

Rhodes pattern used as starting point. 

Fig.18.  Amplitudes of the aperture distributions affording the radiation patterns of 

Fig.17. Note the reduction in edge-brightening.  

Table 1. Zeros of the radiation pattern of Fig.1 (Section 3.1).  
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Table 2. Zeros of the radiation pattern of Fig.3 (Section 3.2). 

Table 3. Zeros of the radiation pattern of Fig.6 (Section 3.3). 

Table 4. Zeros of the radiation pattern of Fig.8 (Section 3.4). 

Table 5. Zeros of the radiation pattern of Fig.11 (Section 3.5). 

Table 6. Zeros of the radiation pattern of Fig.14 (Section 3.6). 

Table 7. Zeros of the radiation patterns of Fig.17 (Section 3.7). 
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n ur,n 

1 1.653 

2 2.106 

3 2.749 

4 3.308 

5 4.791 

6 5.964 

7 7.142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

n ur,n vr,n 

1 1.025 1.148 

2 3.053 1.080 

3 5.312 0.000 

4 7.223 0.000 

5 6.156 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n ur,n vr,n 

1 0.591 -0.537 

2 1.776 0.532 

3 3.532 0.000 

4 4.297 0.000 

5 5.305 0.000 

Table 3 

n ur,n ul,n 

1 1.560 -0.755 

2 2.223 -1.626 

3 3.131 -2.668 

4 4.115 -3.754 

5 5.143 -4.857 

6 6.198 -5.980 

7 7.286 -7.144 

Table 4 

Table 1 

 

Table 2 
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n ur,n vr,n ul,n vl,n 

1 0.721 -0.378 -1.346 0.000 

2 2.019 -0.345 -2.147 0.000 

3 3.433 0.000 -3.203 0.000 

4 4.248 0.000 -- -- 

5 5.279 0.000 -- -- 

Table 5 

n ur,n vr,n 

1 1.754 0.101 

2 2.155 0.233 

3 2.724 0.259 

4 3.224 0.139 

5 4.777 0.215 

6 5.930 0.219 

7 7.109 0.059 

 ur,n 

 Rodhes Optimised 

n un un 

1 1.195 1.226 

2 1.974 2.040 

3 2.972 3.148 

4 4.029 4.218 

5 5.109 5.244 

6 6.200 6.370 

7 7.297 7.365 

8 8.397 8.267 

Table 7 

Table 6 

 

 


