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ABSTRACT 

Sidelobe level and ripple behaviors of -symmetric shaped patterns -generated by circular, real 

and complex, Taylor continuous distributions- against measurement distances are analyzed. This 

paper reveals that real distributions suffer less significant power pattern degradation than complex 

at near-field distances.   

1. INTRODUCTION 

From a previous paper [1] it can be seen that circular continuous distributions generating Taylor 

sum patterns behave analogously to line sources [2]: the first sidelobe level change is represented 

as a straight line in a log10(SLL) versus log10(measurement-distance) representation (being 

sidelobe level in dBs). This work shows, as in [3] (an analogous paper in which line sources are 

studied), that first sidelobe level in real circular distributions generating -symmetric shaped beams 

behaves like sum Taylor’s, while ripple in the coverage zone almost maintains its far-field value. In 

contrast, in complex-valued continuous apertures the ripple zone is deeply degraded, and first 

sidelobe level change loses that linear behavior.    

2. METHOD 

The general continuous circular -symmetric expression in the Fresnel region is given by 

[1]: 
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 where u = (2a/sin (a being the radius of the circular aperture placed on x-y plane,  the 

wavelength and   the angle from the zenith),   [0,] is the normalized radius variable,  = R/R0, 

(R being distance from the antenna and R0 the traditional far-field measurement distance, 8a2/. 

We set the aperture distribution g() as:  
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 In this last expression, n -1 is the number of pattern roots that are controlled on the far 

field pattern (since, with (2) and for large values of , eq. (1) approaches to the well known Taylor’s 

far field expression F(u) [1]) , un the n-th root of such pattern, and 1m (with m=0,1,2....), the first 

order first kind Bessel zeros divided by , so as J1(1m)=0.  

 In this work we used previously published methods to optimise real and complex 

apertures (by generalizing, for complex apertures, un to complex valued un+jvn roots, and for real 

apertures, to complex roots consisting entirely on conjugated pairs) affording shaped beams with 

controlled far-field ripple and sidelobe levels [4,5], and investigated the dependence of the ripple 

and first sidelobe level change of these patterns against measurement distance (from near to far 

field values). 

3. RESULTS 

3.1. COMPLEX EXCITATIONS 

To analyze shaped patterns provided by complex excitation distributions, we generated, 

setting n = 6, far-field rotationally symmetric shaped (flat topped) beam patterns with their three 

first ring sidelobes at -15, -20, -30 and -40 dB, filling two nulls so as to obtain 0.50 dB of ripple in 

the coverage zone [4]. We achieved four aperture distributions (with radius a equal to 5) for 

each pattern, by changing the signs of the imaginary parts of the complex roots, since these 
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changes do not modify the far-field power diagrams, while introduce significant degradations in 

near field ones, as it will be seen. Depending on the selected signs, the ripple zone suffers 

different morphological changes, and the deepness of the degradation is determined by the far 

field ripple value. To exemplify this behavior, similar in all the generated cases, Fig.1 shows 

power patterns at  = 0.5 corresponding all of them to a far-field power diagram with ± 0.5 dB of 

ripple and -20 dB of sidelobe levels.  

Plots of SLL changes versus   were obtained to compare them with earlier results [1] 

obtained for rotationally symmetric sum patterns. In this sense, the most important conclusion is 

that the log10[SLL]-log10[ representation is not a line for each given case. Figure 2 exemplifies 

these changes (SLL-log10[] representation) for cases with far-field sidelobe levels of -15, -20, -30 

and -40 dB (represented all in cases with a ++ imaginary signs combination). Plots of ripple value 

versus  remark the deep degradation of this parameter in near zone. Figure 3 illustrates the ripple 

with all possible combination of complex roots, and for a specific case of sidelobe level at -20 dB. 

All remaining patterns behave similarly, with a slight dependence of far field SLL value.  

3.2. REAL EXCITATIONS 

To obtain similar symmetric flat topped beams with real valued excitation distributions, we 

proceeded as in [5] filling the first four nulls (pairing two conjugated complex roots) in the 

coverage zone (setting n =8). All generated cases demonstrated that ripple value is maintained 

almost undegraded in all  range, while sidelobe level change has similar behavior as that of 

Taylor circular sum patterns [1]. 

4. CONCLUSIONS 

Designers are allowed to select real-valued continuous circular distributions when flat 

topped beams with the lowest degradation at near field are needed, because they maintain ripple 

close to far field value, and first sidelobe level rises as in Taylor sum pattern. For complex-valued 

apertures, a minimum 10 R0 distance is needed to guarantee that these parameters are close 

enough to far-field values, since they suffer deep degradations at distances closer to the aperture.  
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LEGENDS FOR THE FIGURES  

Figure 1. Power patterns at a distance of  = 0.5 generated by complex circular apertures 

synthesized to generate the indicated shaped -symmetric far-field pattern. Patterns A, B, C and D 

correspond to the combinations of the signs of the imaginary parts of the two complex roots of the 

pattern (A, ++; B, --; C, +-; D, -+).  

Figure 2. First sidelobe level change (relative to the far-field first sidelobe level) against 

measurement distance of shaped -symmetric patterns generated by complex circular apertures 

synthesized to get far-field patterns with ± 0.5 dB of ripple and -15, -20, -30 or -40 dB first sidelobe 

levels (all for case A of Fig.1). The arrows indicate shoulders. 

Figure 3. Ripple of shaped symmetric patterns generated by complex line sources 

synthesized to afford far-field patterns with ± 0.5 dB of ripple and -20 dB first sidelobe levels. 

Patterns shown are for the same cases of Fig.1. 
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Figure 3 

 


