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ABSTRACT 

 Antenna design specifications do not usually restrict the phase of the radiated field. 

Antenna synthesis techniques generally exploit this freedom only indirectly, but direct phase 

perturbation can be fruitful.  

1. INTRODUCTION 

 Antennas are required to radiate power patterns with given characteristics, but in most 

cases no restrictions are placed upon the phase of the radiated field. This freedom can be ex-

ploited in antenna synthesis either directly, by varying field phases at sample points and calcu-

lating the aperture distribution from these perturbed field samples [1,2], or indirectly by simply 

allowing the field phase to vary as the result of direct variation of other control parameters. Pre-

vious direct methods have varied Woodward-Lawson patterns [1,2], but they are limited to pla-

nar arrays with  rectangular lattices. Here we describe methods that combine the direct and indi-

rect approaches in varying continuous Taylor distributions that are sampled onto linear arrays or 

circular arrays consisting of concentric rings of elements. These methods are illustrated by ap-

plication to the synthesis of arrays of elements that, to reduce mutual coupling, are separated by 

at least 0.7.   
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2. THEORY 

2.1. LINEAR ARRAYS 

Linear array antennas with relatively smooth excitation distributions generating patterns with 

desired characteristics can be synthesized by a method based on perturbation of the zeros un of a 

Taylor pattern F(u), where u = (2a/) cos (2a being the length of the corresponding Taylor line 

source and   the angle from endfire) [3]. In the present approach we also, simultaneously, vary 

the phases of the field samples that are used to reconstruct the aperture distribution, i.e. the 

phase shifts m in 
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where  is distance to the right of the centre of the aperture and n -1 is the number of controlled 

side lobes. In each iteration of the search process (performed, as in [3], using simulated anneal-

ing to minimize a cost function reflecting the relevant characteristics of the pattern and of the 

array distribution), the continuous distribution g() is sampled onto a linear array of N eq-

uispaced radiating elements located between  = -a and  = a, the corresponding radiated power 

pattern is calculated, and the cost function is computed.   

2.2. CONCENTRIC RINGS OF ELEMENTS 

 In this case we perturb the zeros un of a continuous circular Taylor pattern F(u) [3] 

and, in addition,  the phase shifts m in the corresponding expression for the aperture distribu-

tion, 
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where J0 is the zeroth-order Bessel function of the first kind, 1m is the m-th root of the first-

order Bessel function of the first kind, and p = /a,  being distance from the centre of the ap-
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erture of radius a. In each iteration of the optimization process, the distribution constructed us-

ing eq.(2) is sampled onto an array consisting of concentric rings of equispaced elements lying 

in the xy plane, the excitation of the elements of the innermost ring taking the value g(0) and 

those of the outermost ring g(). 

3. EXAMPLES 

3.1. A LINEAR ARRAY 

 We considered the synthesis of a linear array with 19 elements a distance 0.7 apart 

that is required to generate a  20 dB Chebyshev-like pattern and to have an aperture distribution 

that lacks marked edge-brightening and is generally as smooth as possible in both amplitude and 

phase. These requirements were imposed by using the cost function 
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where SLLmin and SLLmax are the levels of the lowest and highest side lobes (in dB relative to the 

main beam), SLLmin,d = SLLmax,d = -20, In is the excitation of the n-th radiating element, and the 

ci are control weights. Proceeding as described in Section 2.1 above with  n  = 15 led to the pat-

tern and aperture distribution that are compared with those of the conventional Chebyshev dis-

tribution in Fig.1 and Table 1. Varying only the zeros un of F(u), i.e. fixing m = 0 in eq.(1), led 

to significantly poorer results, especially as regards the smoothness of the aperture distribution 

(see Table 1). 

3.2. CONCENTRIC RINGS OF ELEMENTS 

We considered an array consisting of ten concentric rings numbered k = 1 to 10 from innermost 

to outermost, each comprising 4k equispaced radiating elements with an element factor of 

cos0.753 giving an element directivity of 7 dB. The distance between neighbouring rings (i.e. 

between the circles on which the centres of their elements lay) was 0.7. In this case we aimed 
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to achieve a smooth distribution generating a 25 dB pencil beam by using the cost function 

 2

1 2 1( ) /    SLL SLL n n max
C c H c I I  (4) 

where SLL = (SLLmax + 25) and H is the Heaviside step function. Fig.2 compares the  = 0 

planes of the most efficient discretized -25 dB Taylor pattern ( n = 5; dotted curve) and the re-

sult of proceeding as described in Section 2.2 above, likewise with n = 5 (dashed curve); fixing 

m = 0 gave results very similar to the Taylor solution (Table 2). All these patterns display large 

grating lobes due to the large distances between radiating elements. To palliate this, we adapted 

a symmetry-destroying procedure due to Agrawal [4], rotating the rings of the antenna individu-

ally by angles k that were optimized simultaneously with the un and m. This led to the pattern 

plotted in Fig.2 as a continuous curve; the corresponding excitation amplitudes and phases are 

compared in Fig.3 with those of the 25 dB Taylor distribution for  n  = 5; the optimized ring 

rotation angles k were 5.09º,  -1.36º, 0.19º,  -1.60º, 18.74º, 6.88º, 8.04º, 3.65º, 9.97º and  -3.79º 

for k = 1 to 10, respectively (minus indicates clockwise angle). The initial excitation configura-

tion of this particular example was selected taking into account that  n  = 5 and SLL = -25 dB 

corresponds to the circular Taylor distribution with optimum efficiency [5]. Nevertheless, if any 

other configuration that provides initial severe edge-brightening is considered, a marked im-

provement of the amplitude distribution is perceived after the proposed method is applied. 

 

4. CONCLUSION 

Direct perturbation of field sample phases in addition to other control parameters can signifi-

cantly improve the results achieved by optimization methods in the synthesis of array antennas. 

As can be seen, edge-brightening is significantly less severe with the new method than in the 

Chebyshev distribution for linear arrays. This gain has a price: a slight loss of directivity and the 

need for the element excitations to have different phases (though only within quite a narrow 

range). With regard to planar arrays, the new method reduces edge-brightening, lowers grating 

lobes to below the admissible side lobe level, and marginally increases directivity, all at the ex-
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pense of having to use element excitations with phases that differ from each other (in the con-

sidered example  only within a range of about 1 degree).  
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LEGENDS FOR FIGURES AND TABLES 

LEGENDS FOR THE TABLES 

Table 1. Performance of the linear arrays (*: % with respect to the Chebyshev solution). 

Table 2.  Performance of the circular arrays, with % improvement relative to the Taylor so-

lution in parentheses. 

LEGENDS FOR THE FIGURES 

Figure 1. Excitation distributions of linear arrays of nineteen 0.7-spaced elements generat-

ing Chebyshev or Chebyshev-like patterns. Circles indicate amplitudes, triangles phases; 

hollow symbols indicate the Chebyshev solution, solid symbols the solution optimized as in 

Section 2.1 with  n  = 15. 

Figure 2. Sections in the  = 0º plane of the power patterns of arrays of 220 elements ar-

ranged in 10 concentric rings 0.7 apart. …… 25 dB Taylor,  n  = 5; ---- optimized varying 

un, as described in Section 2.2, with n  = 5; as for ----, but optimizing ring rotation angles 

k, as well as m.   

Figure 3. The excitation distributions generating the Taylor and fully optimized patterns of 

Fig.2. Circles indicate amplitudes, triangles phases; hollow symbols indicate the 25 dB Tay-

lor solution with n  = 5, solid symbols the fully optimized solution. 
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TABLES 

Table 1 

 Chebyshev 
Varying un and n 

(Improvement)* 

Varying un only 

(Improvement)* 

Directivity 24.53 23.41 (-4.6) 23.89 (-2.6) 

|Imax|/|Imin| 2.08 1.77 (14.9) 2.39 (-14.9) 

(|In|/|In±1|)max 2.05 1.22 (40.5) 2.00 (2.4) 

Half Power Beamwidth (º) 3.98 3.98 (0.0) 3.98 (0.0) 

Beamwidth at 1st null (º) 9.70 10.00 (-3.1) 10.2 (-5.2) 

SLLmax-SLLmin (dB) 0.00 0.70 (3.09) 1.5 (5.15) 

 

 

 

 

Table 2 

 Taylor -25 

dB, n = 5 

Parameters Varied 

 un, m and k un and m un 

Directivity 1276 1282 (0.5) 1263 (-1.0) 1263 (-1.0) 

|Imax|/|Imin| 2.24 2.12 (5.35) 2.32 (-3.57) 2.33 (-4 %) 

(|In|/|In±1|)max 1.30 1.14 (12.3) 1.14 (12.3) 1.14 (12.3) 

Half Power Beamwidth (º) 4.30 4.36 4.36 4.40 

Beamwidth at 1st null (º) 10.80 10.80 11.16 11.22 

Grating lobe level (dB) -14.74 -24.20 -14.64 -14.80 
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Fig. 1 
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Fig. 2 
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Fig. 3 


