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ABSTRACT 

In this paper we show, by means of numerical simulation, that the Moore-Penrose 

pseudoinverse of a matrix taken from an overdetermined system can be applied to retrieve the 

excitation distribution of a planar array of parallel dipoles with faulty elements, by measuring the 

complex radiated field in its near zone. Failures on voltage (considering mutual coupling) and 

currents of several elements, and systematic or random measurement errors are considered in 

the simulation. 

 

INTRODUCTION 

In previous papers, several techniques have been presented in order to determine the location 

of defective elements in antenna arrays. Some of them try to retrieve the excitation distribution 

through field measurements (see [1] or [2], for example). One of the most simple and efficient 

procedures is that one based on the direct solution to a system of equations specified by the 

measured fields and the geometrical and fed characteristics of the array. If the number of field 

measurements equals the number of elements of the array, a straight inversion of a transform 

matrix is required to know the precise excitation distribution that is generating those field values. 

But, sometimes, the system is overdetermined or ill-conditioned and then some alternatives 

there must be considered to determine its solution. One of these alternatives, for example, 

appears in a work due to Gattoufi et al. [3], in which the regularized matrix method is used to 
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retrieve the excitation distribution of a planar array of dipoles from a set of numerically-

simulated field values, through near-field measurements taken over a plane parallel to the array. 

As a complement of that work, in this paper it is shown that a technique –based on the singular 

matrix decomposition (SVD) procedure (a possibility commented in [3]) and using the Moore-

Penrose pseudoinverse (‘pinv’ function [4])– can be similarly applied to a planar array of parallel 

dipoles. It is pointed out that mutual coupling between elements is taken into account during the 

simulation, a behaviour that is mentioned, but not clearly specified in [3]. Another issue that is 

included in this work is the use of the most usual near-zone measurement surfaces [5]: a plane, 

a half-cylinder and a hemisphere (though the bi-polar measurement [6] is also available). As a 

test of the robustness of the technique, some specific simulation of failures and measurement 

errors are carried out, as described below. 

 

EXPLAINING THE METHOD 

We depart from a planar array (rectangular grid on the x-z plane) of N = NX  NZ parallel dipoles 

of length 2L, separated x and z apart, and whose axes are taken to be aligned with the z 

coordinate axis. In the simulation the near field expression of each dipole [7] is used, taking the 

total field as the superposition of the radiation of every one. The mutual coupling between them 

[8], if required, is also obtained. In that case, a constant–voltage feeding network is considered. 

So, if [Z]NN  Znm (n,m = 1...N, where, for simplicity, the elements of the array are numbered 

from 1 to N instead of having two indexes) represents the matrix of mutual impedances (the 

diagonal are the self-impedances), the voltage distribution [V]N1  Vn is obtained from: 

Nx1 NxN Nx1[V] = [Z] [I]  (1) 

where [I]N1  In is the one-column matrix of the excitations that give the desired 

pattern. In this work, a simple separable Chebyshev distribution [7] at two different sidelobe 

levels (measured in main planes perpendicular to the array) is selected during the simulation. 

As it is difficult to know, a priori, what kind of failure will be produced on a specific element (or 

several ones), as a first approach, we establish that some of the voltages (20% of N) applied to 

the elements modify randomly their initial values. With this change on the voltages, (1) is used 
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again to obtain, by direct inversion of [Z], the corresponding [I] of the failed case.  In a second 

approach, some of the [I] values are randomly changed. 

The scanning surfaces selected to obtain M uniformly distributed measurement 

points are: a plane (parallel to the array), a hemi-cylinder and a hemi-sphere, all of them within 

the near-zone of the antenna [6]. It is intended that the field measured is the tangential 

component to the surface at each point. Probe corrections [6] are stipulated as being made. 

Finally, and due to the difficulty of simulate all of the possible errors that can appear during the 

measurement [9], a systematic shifting in field amplitude is considered in some cases, and a 

certain “noise” of random errors in amplitude and phase (certain percentage of their maximum 

values) is established in other simulations. They are specified in next section.  

Being 
1
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   . So, if M measurement (field) points (rmm,m) are selected, 

a  matrix equation of the kind Mx1 MxN Nx1[F] = [e] [I]  can be performed. When M>N, the system to 

be solved is overdetermined, and there are several ways that could be taken to achieve a 

solution. One of them is the use of the Moore-Penrose pseudoinverse, which is the optimal 

solution in the minimum square error sense, and can be obtained by means of the SVD 

technique [4]. So, the retrieved excitation distribution can be found as ([e]’ is the pseudoinverse 

of [e]):  

R,nI  Ret Nx1 NxM Mx1[I ] = [e]' [F]  (2) 

 

EXAMPLES AND SOME FINAL COMMENTS 

Let us make NX = NY = 10, Ld = 0.5 , rd = 0.004763 (length and radius of every dipole, 

respectively, being  the wavelength), X = Z = 0.50 The maximum length (diagonal) of the 

antenna is found to be 6.727 . The excitation distribution In is selected so as to obtain two 

Chebyshev-like levels of –20 and –25 dB with the healthy array. As a general measurement 
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distance we establish a certain constant RK = 19.845 , that situates the points within the 

Fresnel zone: 23 2 ( 2) 6.04 2 91.49KD D R D            . To specify a number of 

measurements different from the number of elements of the array, a grid of 30x30 equispaced 

points are taken for measurement1, S.1) on a plane, making, ym = constant = RK, –RK  xm  RK, 

–RK  zm  RK, ( x = z = 1.37), S.2) on a cylinder, making m= RK, 5º  m 175º, –RK  zm 

 RK, ( = 5.86º, z=1.37) and S.3) on a sphere, with rm = RK, 5º  mm  175º ( =  

= 5.86º).  

Type and number of failures: F.1) Voltage failures: 20 elements randomly selected and with 

randomly generated values of failure, F.2) Current failures: 20 elements randomly selected and 

with randomly generated values of failure (ranged within normalized values). Type of 

measurement errors: E.1) Systematic error in amplitude: the amplitudes of the values of [F] are 

shifted a 10% on the maximum, previously calculated; E.2) Random error: the real and 

imaginary values of [F] are randomly changed at most 10% of their maximum values. 

Table 1 indicates the maximum percentage error (absolute value) between the “actual” values 

of the amplitude and phase of the In of each generated case and the corresponding IR,n. It shows 

that the errors are near the range of the measurement error of the field values. As an example, 

figure 1 shows a comparison of |In| and |IR,n| in which measurements were made on a sphere, 

considering F.1 and E.2.   

It can be seen here that the technique presented in this work can be used as a very reliable 

alternative for diagnostics of parallel dipoles planar (or linear) arrays. Several arrays 

configurations were further simulated by the authors, revealing very similar results. The 

technique can be straightforwardly extended to conformal arrays. 

                                                 

1 If the measurements are made to characterize the pattern (this is not, obviously, the case), the density 

of the grid must be increased, being the minimum density established by the sampling theorem [6]. 
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LEGENDS FOR FIGURES AND TABLES 

TABLE 1. Percentage errors of amplitude and phase (argument) for each simulated case. 

“Surface” column indicates the measurement surface. The “Type of error” column specifies the 

simulated errors in measurements (N=none, SA=Systematic amplitude, R=Random). “Failure” 

column specifies the type of failure (V=Voltage, C=Current).  

FIGURE 1. Excitation distributions obtained after measuring on a near-field sphere. Case E.1, F.2 

(see text). 20 (voltage) failed elements were considered. 
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Table 1 

Measurement 

Surface 

Type of 

Failure 

Type of 

Simulated 

Error 

{| |In|-|IR,n| |}max  

%   

{| arg(In)-arg(IR,n) |}max 

% 

Cylinder 

None 

N 0.007 0.002 

R 9.184 9.413 

SA 0.661 1.368 

Currents 

N 0.008 0.001 

R 8.300 9.671 

SA 1.688 2.873 

Voltages 

N 0.008 0.009 

R 8.919 9.043 

SA 0.259 1.677 

Plane 

None 

N 0.006 0.004 

R 9.722 7.667 

SA 1.361 3.002 

Currents 

N 0.007 0.026 

R 9.971 8.392 

SA 0.788 3.211 

Voltages 

N 0.008 0.009 

R 8.697 9.642 

SA 2.177 4.433 

Sphere 

None 

N 0.008 0.002 

R 6.965 6.664 

SA 0.552 4.826 

Currents 

N 0.008 0.015 

R 8.002 9.012 

SA 3.800 5.050 

Voltages 

N 0.009 0.013 

R 7.840 8.440 

SA 0.006 7.060 
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Figure 1. 
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