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ABSTRACT 

Symmetric shaped patterns generated by real continuous linear apertures derived from Taylor 

distributions resemble Taylor sum patterns as regards the distance-dependence of their side lobe 

heights, and their ripple shows negligible near-field degradation. If the aperture distribution is 

complex, however, ripple and sidelobe level show previously unreported degradation behaviour, 

including a lowering of first side lobe level. 

1. INTRODUCTION 

It is well known that at finite distances from a line source generating a sum or difference pattern the 

first one or two side lobes of the pattern are higher than at infinity, the first side lobe eventually 

merging with the main beam. R. C. Hansen showed that for Taylor [1] and Bayliss [2] patterns 

log(SLL) depends linearly on the logarithm of the distance, where SLL is the increase in side 

lobe height in dB. In this paper we extend his analysis to symmetric shaped patterns generated by 

continuous linear apertures synthesized by substituting complex roots for the first few roots of 

Taylor distributions [3,4]. 
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2. METHOD 

The Taylor line source symmetric near field space factor is given by the equation [1]: 
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where u = (D/)sin (D being the aperture length,  the wavelength and  the angle from 

broadside), p = 2x/D (x being algebraic distance along the aperture from its centre),  

(where  = R / R0, R being distance from the antenna and R0 the traditional far-field measurement 

distance, 2D2 / ), n -1 is the number of pattern roots that are controlled to depress side lobes on 

each side of the Taylor pattern, and 
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where zm is the m-th root of the Taylor pattern [1]. Shaped beams can be generated by 

replacing the real zm of the Taylor pattern by appropriate complex roots um + vm [3-5]. If the set of 

complex roots consists entirely of conjugate pairs, then the aperture distribution is real [4]. In this 

work we used our previously published methods to optimise real and complex apertures affording 

shaped beams with controlled far-field ripple and side lobe levels [3,4], and then investigated the 

dependence of the ripple and side lobe levels of the patterns generated by these apertures on 

distance from the aperture in the near field. 

3. RESULTS 

3.1. COMPLEX EXCITATIONS 

Starting from Taylor patterns with n = 6 and side lobe levels of -15, -20, -30 and -40 dB, 

and considering an aperture length of 12, we proceeded as in Ref. 3 to fill the first two nulls so as 

to synthesize apertures generating shaped far-field patterns with ± 0.25 or ± 0.5 dB of ripple. 

Since changing the sign of the imaginary part of a complex pattern root does not alter the far-field 
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power pattern, this afforded four aperture distributions for each combination of side lobe level and 

ripple. The four corresponding near-field power patterns do not differ significantly as regards the 

amplitude of the ripple, but do differ as regards morphological details of the ripple and side lobe 

level; Fig.1 illustrates this for patterns at  = 0.5 corresponding to a far-field pattern with ± 0.5 dB 

of ripple and -20 dB side lobes. 

Plots of log(ripple, in dB) and log(SLL) against log() do not exhibit the linear behaviour 

shown by the first side lobe levels of Taylor and Bayliss patterns [1,2]. Fig.2 shows this for ripple 

in the case in which the imaginary part of both complex pattern roots is positive. Log(SLL) can 

only be plotted for a limited  interval, because although the first side lobe level is higher in the 

very near field than in the far field, for sidelobe levels under –30 dB, there is in all cases a 

distance c beyond which it is lower than in the far field, approaching the far field value from 

below as distance increases (Fig. 3). Similar ripple and SLL behaviour obtains for the other three 

combinations of complex pattern root imaginary part sign, and for  0.25 dB ripple. 

3.2. REAL EXCITATIONS 

Starting from Taylor patterns with n = 8, and considering the same aperture length and far-

field side lobe levels and ripple as above, we proceeded as in Ref. 4 to fill the first four nulls so as 

to synthesize real apertures generating shaped patterns. In this case, the ripple of the near-field 

pattern is almost the same as that of the far-field pattern for all distances , and the first side lobe 

level behaves in the same way as that of Taylor and Bayliss patterns [1,2]. 
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4. CONCLUSIONS 

The ripple and first side lobe level of shaped symmetric power patterns generated by 

complex line sources exhibit marked distance dependence. Pattern measurements should either be 

corrected on the basis of studies analogous to those described here, or should be made far enough 

away (at least 10R0) to ensure relatively small deviation from the far-field pattern. By contrast, the 

ripple of shaped symmetric power patterns generated by real line sources hardly changes with 

distance. In this real aperture case, the first side lobe level exhibits the same kind of distance 

dependence as that of Taylor and Bayliss patterns, log(side lobe level in dB) depending linearly on 

log(distance). 
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LEGENDS FOR THE FIGURES  

Figure 1. Power patterns afforded at a distance of  = 0.5 by complex line sources 

synthesized to generate the indicated shaped symmetric far-field pattern. Patterns A, B, C and D 

correspond to different combinations of the signs of the imaginary parts of the two complex roots of 

the pattern (A, ++; B, --; C, +-; D, -+).  

Figure 2. Distance-dependence of the ripple of shaped symmetric patterns generated by 

complex line sources synthesized to afford far-field patterns with ± 0.5 or ± 0.25 dB of ripple and -

15, -20, -30 or -40 dB first side lobes. Patterns shown are for case A of Fig.1. 

Figure 3. Distance-dependence of the first side lobe level (relative to the far-field first side 

lobe level) of shaped symmetric patterns generated by complex line sources synthesized to afford 

far-field patterns with ± 0.5 of ripple and -15, -20, -30 or -40 dB first side lobes. Patterns shown are 

for case A of Fig.1. The arrows indicate shoulders. 
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Figure 2 
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