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sido un honor trabajar. Asimismo agradecer también a Ramón Doallo su valiosa

colaboración en el desarrollo de esta Tesis y a todos los compañeros del Grupo de
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Resumo

O emprego de dispositivos heteroxéneos coma co-procesadores en entornos de

computación de altas prestacións (HPC) medrou ininterrompidamente nos últimos

anos debido ás súas excelentes propiedades en termos de rendemento e consumo de

enerx́ıa. A maior dispoñibilidade de sistemas HPC h́ıbridos conlevou de forma na-

tural a necesidade de desenrolar ferramentas de programación adecuadas para eles,

sendo CUDA e OpenCL as máis amplamente empregadas na actualidade. Desafortu-

nadamente, estas ferramentas son relativamente de baixo nivel, o cal emparellado co

maior número de detalles que deben de ser controlados cando se programan acelera-

doras, fai da programación destes sistemas mediante elas, moito máis complexa que a

programación tradicional de CPUs. Isto levou á proposta de alternativas de máis alto

nivel para facilitar a programación de dispositivos heteroxéneos. Esta tesis contribúe

neste campo presentando dúas libreŕıas que melloran amplamente a programabilida-

de de sistemas heteroxéneos en C++, permitindo aos usuarios centrarse no que hai

que facer en vez de nas tarefas de baixo nivel. As nosas propostas, a libreŕıa Hetero-

geneous Programming Library (HPL) e a libreŕıa Heterogeneous Hierarchically Tiled

Arrays (H2TA), están deseñadas para nodos con unha ou máis aceleradoras, e para

clusters heteroxéneos, respectivamente. Ambas libreŕıas, demostraron ser capaces de

incrementar a productividade dos usuarios mellorando a programabilidade dos seus

códigos, e ó mesmo tempo, lograr un rendemento semellante ó de solucións de máis

baixo nivel.
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Abstract

The usage of heterogeneous devices as co-processors in high performance com-

puting (HPC) environments has steadily grown during the last years due to their

excellent properties in terms of performance and energy consumption. The larger

availability of hybrid HPC systems naturally led to the need to develop suitable

programming tools for them, being the most widely used nowadays CUDA and

OpenCL. Unfortunately, these tools are relatively low level, which coupled with the

large number of details that must be managed when programming accelerators, ma-

kes the programming of these systems using them much more complex than that

of traditional CPUs. This has led to the proposal of higher level alternatives that

facilitate the programming of heterogeneous devices. This thesis contributes to this

field presenting two libraries that largely improve the programmability of heteroge-

neous systems in C++, helping users to focus on what to do rather than on low level

tasks. These two libraries, the Heterogeneous Programming Library (HPL) and the

Heterogeneous Hierarchically Tiled Arrays (H2TA), are well suited to nodes with

one or more accelerators, and to heterogeneous clusters, respectively. Both libraries

have proven to be able to increase the productivity of the users improving the pro-

grammability of their codes, and at the same time, achieving performance similar

to that of lower level solutions.
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Resumen

El empleo de dispositivos heterogéneos como co-procesadores en entornos de

computación de altas prestaciones (HPC) ha crecido ininterrumpidamente durante

los últimos años debido a sus excelentes propiedades en términos de rendimiento y

consumo de enerǵıa. La mayor disponibilidad de sistemas HPC h́ıbridos conllevó de

forma natural la necesidad de desarrollar herramientas de programación adecuadas

para ellos, siendo CUDA y OpenCL las más ampliamente utilizadas en la actuali-

dad. Desafortunadamente, estas herramientas son relativamente de bajo nivel, lo cual

emparejado con el mayor número de detalles que han de ser controlados cuando se

programan aceleradoras, hacen de la programación de estos sistemas mediante ellas

mucho más compleja que la programación tradicional de CPUs. Esto ha llevado a la

propuesta de alternativas de más alto nivel para facilitar la programación de disposi-

tivos heterogéneos. Esta tesis contribuye a este campo presentando dos libreŕıas que

mejoran ampliamente la programabilidad de sistemas heterogéneos en C++, permi-

tiendo a los usuarios centrarse en lo que hay que hacer en vez de en las tareas de bajo

nivel. Nuestras propuestas, la libreŕıa Heterogeneous Programming Library (HPL) y

la libreŕıa Heterogeneous Hierarchically Tiled Arrays (H2TA), están diseñadas para

nodos con una o más aceleradoras, y para clusters heterogéneos, respectivamente.

Ambas libreŕıas, han demostrado ser capaces de incrementar la productividad de los

usuarios mejorando la programabilidad de sus códigos, y al mismo tiempo, lograr

un rendimiento similar al de soluciones de más bajo nivel.
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Prólogo

La programación de dispositivos heterogéneos supone un desaf́ıo para los usua-

rios por la necesidad de enfrentarse a nuevas plataformas con nuevas herramientas

y lenguajes de programación, además de exigirles especificar y gestionar muchos

más aspectos. Aśı, entre los inconvenientes más notorios con los que ha de lidiar el

programador a la hora de manejar un co-procesador, se encuentra el tedioso mane-

jo de dos espacios de memoria separados, el del procesador y el del co-procesador.

Este manejo engloba la creación de buffers en ambos espacios y el mantenimien-

to de la coherencia de memoria de las estructuras de datos mantenidas en ellos,

lo cual implica a su vez la disposición razonada de puntos de sincronización en el

programa principal para garantizar un correcto resultado. Todo este control se lle-

va a cabo con nuevos lenguajes de programación que exponen APIs más o menos

complejas que dificultan, en algunos casos sobremanera, el desarrollo de aplicaciones

con dispositivos heterogéneos. Estas APIs incluyen una cantidad notable de nuevos

conceptos muchos de los cuales serán introducidos en esta tesis. Otro punto débil de

la computación heterogénea es la gestión de errores pues la inmensa mayoŕıa de los

elementos de las APIs producen códigos de error destinados a facilitar la depuración

de las aplicaciones heterogéneas. La gestión de estos códigos ha de ser cuidadosa

pues una implementación poco rigurosa en cuanto a gestión de errores se refiere,

puede suponer horas de trabajo de depuración para los programadores inexpertos.

CUDA de NVIDIA, la cual aúna plataforma y lenguaje de programación, es una

de estas soluciones. Está diseñada para trabajar exclusivamente con GPUs de NVI-

DIA con lo que consigue resultados de rendimiento muy buenos en dicha plataforma.

Sin embargo, su dependencia del fabricante imposibilita su uso en dispositivos de

otros fabricantes con lo que limita su portabilidad 1. La comunidad de usuarios y fa-

1Esto ha sido aśı históricamente, si bien recientemente ha trascendido la posibilidad de que
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bricantes, se ha implicado en la eliminación de estas barreras de portabilidad dando

lugar al estándar OpenCL. Debido a su carácter independiente tanto del dispositi-

vo como del fabricante, OpenCL se ve obligado a tratar con un mayor número de

conceptos y procedimientos para mantenerse genérico. Aśı, por ejemplo, las aplica-

ciones basadas en OpenCL tienen que cargar y compilar las partes de la aplicación

que van a ejecutarse en los aceleradores en tiempo de ejecución, añadiendo aśı más

complejidad al proceso.

Mención aparte requieren dispositivos heterogéneos tan populares como los de

la familia Intel Xeon Phi. La programación de estos dispositivos no es patrimonio

exclusivo de herramientas propias de entornos heterogéneos como el ya mencionado

OpenCL, sino que puede relizarse mediante los lenguajes tradicionales de programa-

ción de CPUs. Su arquitectura many-core con procesadores x86 permite la ejecución

de aplicaciones secuenciales C/C++ aśı como aplicaciones multiproceso con tecno-

loǵıas consolidadas y propias de sistemas con memoria compartida como OpenMP o

memoria distribuida como MPI. Este hecho diferenciador permite evitar el engorro

de introducir al usuario en un nuevo lenguaje de programación con los inconvenien-

tes antes citados. Sin embargo, lo que a priori puede parecer una ventaja se torna

en limitación hasta cierto punto, habida cuenta de que el código desarrollado deja

de ser portable a otros sistemas heterogéneos.

En los últimos años, una buena parte de la investigación en computación hete-

rogénea se ha centrado en mejorar las interfaces disponibles para su uso de tal forma

que se oculte al usuario la mayor parte de los conceptos y tareas propios de este

tipo de sistemas, enmarcándose esta tesis en esta área de trabajo. En concreto, nos

propusimos facilitar la programación portable de todo tipo de sistemas heterogéneos

mediante sucesivas mejoras de la libreŕıa de alto nivel Heterogeneous Programming

Library (HPL). Esta libreŕıa, basada en OpenCL, permit́ıa al inicio de nuestro tra-

bajo programar sistemas basados en un único dispositivo heterogéneo expresando

los códigos a ejecutar en el acelerador mediante un lenguaje embebido en C++. El

uso del lenguaje embebido permit́ıa desarrollar los programas utilizando un único

fichero fuente e integrar mejor el código principal del programa con el del acelerador.

No obstante, HPL presentaba muchas limitaciones que no permit́ıan el desarrollo de

otros fabricantes implementen su propio compilador de CUDA en sus arquitecturas. Tal es el caso
de AMD quien ha admitido esta posibilidad abiertamente.
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aplicaciones genéricas heterogéneas y que fuimos resolviendo a lo largo de esta tesis.

Aśı, a partir de la primera versión de HPL, y siguiendo un desarrollo iterativo, se

fueron incorporando nuevas funcionalidades que resumimos a continuación:

Kernel nativos : La primera versión de HPL sólo permit́ıa la escritura de kernels

usando el lenguaje embebido de HPL. Esto imped́ıa aprovechar los kernels ya

escritos usando OpenCL, a los que denominamos en esta tesis kernels nativos.

En esta primera iteración, se añadió la posibilidad de usar kernels que ya

estuvieran escritos en OpenCL dentro de aplicaciones HPL. Con una interfaz

muy simple, HPL permite ahora el empleo de kernels nativos.

Ejecución multi-dispositivo en sistemas de memoria compartida : Tras la

realización de esta Tesis, HPL facilita el uso eficiente de todos los dispositi-

vos OpenCL conectados a un sistema. Para ello permite por un lado realizar

ejecuciones paralelas no sólo en dichos dispositivos sino también en la CPU

principal del sistema, y por otro tener múltiples copias de un mismo array

soportado por el tipo de datos Array en HPL, en varios dispositivos incor-

porando un sistema de gestión de memoria que mantiene automáticamente

la coherencia de dichas copias. Este mecanismo, además de proporcionar al

usuario una visión secuencialmente consistente de cada Array que oculta las

distintas copias que debe crear el runtime, se adapta a las propiedades de los

dispositivos para reducir el tiempo de intercambio de memoria entre ellos. Por

otra parte, para facilitar la división de trabajo y datos entre los dispositivos

involucrados en una ejecución, HPL define el concepto de Subarray como par-

te constituyente de un Array. Un Subarray tiene la entidad de un Array pero

mantiene la coherencia de memoria con el Array del que forma parte. A partir

de esta idea se diseñaron varios sistemas de distribución de trabajo en los en-

tornos multi-dispositivo de HPL alcanzando buenas cotas de programabilidad

en estos sistemas cada vez más comunes. Una de estas propuestas incluye mo-

delos anaĺıticos que reparten automáticamente el trabajo entre los dispositivos

de forma que se maximice el rendimiento, obteniendo resultados excelentes en

nuestros experimentos.

Mantenimiento automatizado de regiones solapadas : Las computaciones en

plantilla (stencil) son operaciones que suelen basarse en los elementos vecinos
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de un dato dado para calcular el elemento correspondiente del array de salida.

Este tipo de cálculos están muy presentes en una gran cantidad de ámbitos

como resolutores de ecuaciones diferenciales, simuladores o procesadores de

imágenes. Su implementación en entornos multi-dispositivo supone la existen-

cia de regiones replicadas de los arrays utilizados en los dispositivos, para que

cada uno disponga de la información necesaria para poder hacer las compu-

taciones asociadas a los elementos ubicados en los bordes de la región que les

ha sido asignada. HPL incorpora una nueva funcionalidad para el manteni-

miento automático de la coherencia de estas regiones replicadas, facilitando

aśı la implementación de este tipo de problemas.

Ejecución multi-dispositivo en sistemas de memoria distribuida : El siguien-

te paso lógico era facilitar la programación de clústers heterogéneos. Aśı, HPL

ha sido integrada en una libreŕıa que mejora la programabilidad de aplicaciones

en sistemas de memoria distribuida, Hierarchically Tiled Arrays (HTA), dando

como resultado la libreŕıa Heterogeneous Hierarchically Tiled Arrays (H2TA).

La posibilidad de explotar la localidad aśı como de expresar paralelismo con

mucho menos esfuerzo que soluciones de más bajo nivel, hacen de HTA una

base adecuada sobre la que desarrollar una solución propia para este tipo de

sistemas. Aśı, H2TA permite la ejecución de aplicaciones HPL en un clúster

con uno o varios dispositivos OpenCL por nodo. Manteniendo una API muy

similar a HPL, H2TA produce aplicaciones multiproceso con un esfuerzo muy

inferior y rendimiento similar al de soluciones de más bajo nivel.

De esta forma, las libreŕıas que proponemos permiten desarrollar aplicaciones que

utilizan desde un único acelerador hasta todo un cluster heterogéneo ofreciendo la

máxima programabilidad para ello, y teniendo una sobrecarga mı́nima con respecto

a implementaciones realizadas a bajo nivel. Por otra parte, están desarrolladas en

C++, un lenguaje muy eficiente y ampliamente utilizado, siendo de hecho uno de los

lenguajes más extendidos en entornos de computación de altas prestaciones. Además

las soluciones aqúı propuestas proporcionan la máxima portabilidad respecto a los

dispositivos computacionales a utilizar gracias a que están basadas en OpenCL, el

entorno estándar para la computación heterogénea, el cual está soportado por todos

los grandes fabricantes. Ello ha permitido que en esta tesis se incluyan resultados

de pruebas realizadas sobre varios tipos de dispositivos de distintos fabricantes.
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A su vez, para probar las capacidades multi-dispositivo, nuestras libreŕıas fueron

evaluadas sobre varios dispositivos trabajando conjuntamente, tanto a nivel de nodo

como de clúster.

Metodoloǵıa de trabajo

La metodoloǵıa empleada es la conocida como Desarrollo Iterativo e Incremental,

donde el trabajo de divide en diferentes fases o iteraciones y cada una de ellas finaliza

con un producto perfectamente funcional con la funcionalidad de la iteración anterior

y la incorporada en la iteración actual.

Esta tesis cuenta con 5 iteraciones:

B1.- Iteración 0 (Iteración inicial):

11. Análisis: Libreŕıa inicial que permita lanzar un kernel usando un lenguaje

embebido.

12. Diseño/Codificación:

Tipo de datos Array.

Creación automática del código OpenCL.

Gestión transparente de elementos de OpenCL.

Coherencia automática de memoria.

13. Pruebas: Tests y “benchmarks” exhaustivos con comprobación de resul-

tados usando kernels escritos con el lenguaje embebido.

B2.- Iteración 1

21. Análisis: Incorporación de kernels nativos.

22. Diseño/Codificación:

Establecer v́ınculo entre HPL y OpenCL: Cabecera de kernel y méto-

do de v́ınculo.

Plantillas para indicar la dirección de los argumentos del kernel nati-

vo.
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23. Pruebas: Tests y “benchmarks” con kernels nativos.

B3.- Iteración 2

31. Análisis: Extensión de la interfaz de HPL para facilitar el desarrollo de

aplicaciones multi-dispositivo.

32. Diseño/Codificación:

Distintos métodos de reparto de trabajo: Arrays separados, basado en

Subarrays; esto es, subregiones de Arrays, y basado en anotaciones.

Nuevo objeto de selección de regiones en arrays para su distribución

posterior.

Selección de conjuntos de trabajo y dispositivos.

Autobalanceador de carga de trabajo entre un conjunto de dispositi-

vos.

33. Pruebas: Tests y “benchmarks” para la ejecución multi-dispositivo y com-

paración con versiones implementadas con OpenCL nativo.

B4.- Iteración 3

41. Análisis: Extensión de la interfaz de HPL para el tratamiento de aplica-

ciones multi-dispositivo con regiones solapadas debido a computaciones

en plantilla (stencils).

42. Diseño/Codificación:

Modificación interfaz multi-dispositivo basado en anotaciones.

Incorporación de método de sincronización automática de regiones

fantasma, esto es, fragmentos de arrays replicados en varios dispositi-

vos pero donde sólo uno tiene la responsabilidad de su actualización

43. Pruebas: Tests y “benchmarks” con computaciones con plantillas.

B5.- Iteración 4

51. Análisis: Uso de HPL en sistemas de memoria distribuida tales como

clusters (H2TA).

52. Diseño/Codificación:
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Estudio de la libreŕıa HTA (Hierarchically Tiled Arrays library) para

la mejora del desarrollo de aplicaciones multi-proceso.

Integración de HPL en HTA:

• Nueva interfaz de usuario: Semejante a la de HPL para reducir la

curva de aprendizaje.

• Mecanismo de sincronización de memoria entre las estructuras de

datos de HTA y HPL.

53. Pruebas: “Benchmarks” en H2TA para probar su funcionamiento y en

MPI+OpenCL para las comparaciones pertinentes.

Medios

Para la elaboración de la tesis se emplearon los medios detallados a continuación:

Soporte económico proporcionados por el Grupo de Arquitectura de Compu-

tadores de la Universidade da Coruña y la propia Universidade da Coruña

(bolsa predoutoral UDC Conv. 2013)

Redes de investigación bajo las que se llevó a cabo esta tesis:

• Red Gallega de Computación de Altas Prestaciones II.

• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC2 NoE (ref. ICT-217068).

• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC3 NoE (ref. ICT-287759).

• Network for Sustainable Ultrascale Computing (NESUS). ICT COST Ac-

tion IC1305.

• Open European Network for High Performance Computing on Complex

Environments (ComplexHPC). ICT COST Action IC0805

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H2) (ref. TIN 2009-08058-E).

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H3) (ref. TIN 2010-12011-E).
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• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H4) (ref. TIN 2011-15734-E).

• Red de Computación de Altas Prestaciones sobre Arquitecturas Paralelas

Heterogéneas (CAPAP-H5) (ref. TIN 2014-53522-REDT).

• Red de Tecnoloǵıas Cloud y Big Data para HPC (Xunta de Galicia, ref.

2014/041)

• Consolidación y Estructuración de Unidades de Investigación Competiti-

vas: Centro de Investigación en Tecnolox́ıas da Información e as Comu-

nicacións (CITIC) (ref. CN 2010/211))

Proyectos de investigación que financiaron esta tesis:

• Architectures, Systems and Tools for High Performance Computing (Mi-

nisterio de Economı́a y Competitividad, TIN2010-16735).

• Consolidación y Estructuración de Unidades de Investigación Competi-

tivas: Grupo de Arquitectura de Computadores de la Universidad de A

Coruña (Xunta de Galicia, ref. 2010/6)

• Consolidación y Estructuración de Unidades de Investigación Competi-

tivas: Grupo de Arquitectura de Computadores de la Universidad de A

Coruña (Xunta de Galicia, GRC2013-055).

• Nuevos desaf́ıos en la computación de altas prestaciones: Desde arqui-

tecturas hasta aplicaciones. (Ministerio de Economı́a y Competitividad,

TIN2013-42148-P).

Clúster pluton del Grupo de Arquitectura de Computadores de la Universidade

da Coruña.

• 8 Nodos con CPU 2xIntel Xeon E5-2660 de 8 cores y 64 GB de RAM.

Cada nodo cuenta con una GPU NVIDIA K20m con 5 GB de RAM. La

red de interconexión es Infiniband FDR.

• 4 Nodos con CPU Intel Xeon X5650 de 6 cores y 12 GB de RAM. Cada

nodo cuenta con dos GPUs NVIDIA M2050 con 3 GB de RAM cada una.

La red de interconexión es Infiniband QDR.
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• 1 Nodo con CPU 2xIntel Xeon E5-2660 de 8 cores y 64 GB de RAM.

Cuenta con un accelerador Intel Xeon Phi 5110 de 60 cores y 8 GB de

RAM.

Máquina Mercurio del Grupo de Arquitectura de Computadores de la Univer-

sidade da Coruña. 1 Nodo con CPU Intel Core 2 con 2 GB de RAM. Cuenta

con una GPU AMD HD6970 con 2GB de RAM.

Máquina Fermi del Departamento de Computación da Kadir Has Üniversitesi.

1 Nodo con CPU 4xIntel Xeon E5506 de 2 cores y 24 GB de RAM. Cuenta

con una GPU NVIDIA C2050 con 3GB de RAM.

Estancia de 3 meses en el grupo PDS del Prof. Henk Sips en la Delft University

of Technology.

Conclusiones

Durante años, la computación de altas prestaciones, HPC por sus siglas en inglés,

ha estado en manos de las CPUs tradicionales. Los clústers, entendidos histórica-

mente como agregaciones de computadores con una o varias CPUs, han permitido la

ejecución de aplicaciones paralelas por medio de entornos tan maduros actualmente

como OpenMP o MPI, orientados a sistemas de memoria compartida y distribuida,

respectivamente. La introducción de dispositivos heterogéneos como FPGAs, GPUs

o procesadores many-core en HPC, ha despertado el interés en crear herramientas de

programación para estas plataformas. La mayoŕıa de las alternativas para programar

estos dispositivos son fuertemente dependientes del tipo de dispositivo o fabricante

en cuestión. OpenCL es el primer estándar que intenta desacoplar el código desa-

rrollado del hardware utilizado, proporcionando una portabilidad real del código

entre las plataformas. Un gran número de fabricantes ha desarrollado sus propias

implementaciones del estándar OpenCL para sus dispositivos. Como consecuencia

los códigos OpenCL pueden ser ejecutados en un amplio rango de dispositivos he-

terogéneos sin necesidad de alterar el código fuente. Las principales limitaciones

de OpenCL son: (1) el esfuerzo de programación necesario para desarrollar apli-

caciones OpenCL es alto, sobre todo para programadores no familiarizados con la
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programación paralela, (2) OpenCL no propociona portabilidad automática de ren-

dimiento, esto es, para maximizar el rendimiento hemos de optimizar manualmente

un código para cada plataforma en la que es ejecutado, y (3) OpenCL no soporta la

programación de sistemas distribuidos, en cuyo caso éste ha de ser combinado con

soluciones para entornos distribuidos como MPI. Muchos trabajos han abordado

estas limitaciones de muchas formas. Entre otros, hemos de mencionar la libreŕıa

Heterogeneous Programming Library (HPL) [22], la cual está basada en OpenCL y

facilita notablemente el desarrollo de aplicaciones mono-dispositivo, abordando por

tanto la primera de las limitaciones mencionadas. Esta Tesis profundiza en el uso

de HPL como herramienta para superar las limitaciones mencionadas de OpenCL:

mejorando en lo posible la programabilidad de los kernels HPL, proporcionando una

portabilidad efectiva de rendimiento y un soporte para la programación de siste-

mas distribuidos compuestos por nodos heterogéneos. Además, inicialmente HPL

no proporcionaba mecanismos para la programación de sistemas multi-dispositivo,

donde varios dispositivos en el mismo nodo puedan ser usados al mismo tiempo.

Esta limitación ha sido superada en esta Tesis.

Uno de los principales inconvenientes de HPL era que los kernels hab́ıan de ser

escritos en un lenguaje embebido similar a C++. El uso de kernels OpenCL nativos

no estaba soportado, lo cual limitaba el uso de código legacy y el empleo de opti-

mizaciones de OpenCL de bajo nivel o propias del fabricante. Esta limitación ha

sido superada en el Caṕıtulo 2 con la extensión de HPL para dar soporte a kernels

OpenCL nativos, además de los kernels escritos con el lenguage embebido original.

Este caṕıtulo también introduce otras nuevas funcionalidades para facilitar la escri-

tura de kernels usando el lenguaje embebido. La evaluación de estas extensiones de

HPL ha arrojado datos muy satisfactorios. Durante toda la Tesis, esta evaluación

ha tenido dos vertientes, la programabilidad y el rendimiento. La programabilidad

se basa en las métricas: ĺıneas de código fuente (SLOCs), esfuerzo de programación

(PE) [55] y número ciclomático (CN) [77]. El rendimiento siempre se ha obtenido

comparando la ejecución de la libreŕıa con nueva funcionalidad con una ejecución de

referencia. Cuando los kernels se escriben usando el lenguage embebido, la reducción

de SLOCs, PE y CN de todo el programa es un 34 %, 44 % y un 30 %, respectivamen-

te con respecto a versiones de referencia escritas usando OpenCL C++. Mientras

tanto, el sobrecoste medio en términos de rendimiento de HPL se sitúa por debajo

del 5 %. Conviene mencionar aqúı que estas pruebas de rendimiento se llevaron a
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cabo sobre dispositivos de varios fabricantes. Siguiendo esta misma ĺınea, el soporte

de kernels OpenCL nativos ha cosechado también buenos resultados de rendimiento

y programabilidad. De esta forma, HPL redujo las SLOCs y el PE del programa de

host en un 23 % y un 42 % respectivamente, manteniendo las diferencias de rendi-

miento cercanas a cero. Esta mejora generalizada en las métricas también se pudo

observar tras la extensa comparación realizada entre HPL y una de las aproximacio-

nes análogas más maduras, ViennaCL [86]. Conviene recordar que todas las mejoras

realizadas sobre HPL se han evaluado con benchmarks verificables incluyendo una

aplicación real de simulación de flúıdos [102].

La falta de soporte para sistemas con varios dispositivos era otra importante

limitación de la versión inicial de HPL. Esta limitación ha ido creciendo en im-

portancia recientemente dado lo comunes que son nodos u ordenadores compuestos

de uno o más dispositivos, y mientras que OpenCL puede ser usado para progra-

mar aplicaciones que usen varios dispositivos al mismo tiempo, esto requiere de un

importante esfuerzo de programación. Con vistas a tratar esta realidad, HPL fue

extendida para dar soporte a sistemas heterogéneos con varios dispositivos. Dicha

extensión supuso cambios tanto a nivel interno, definiendo un nuevo mecanismo de

coherencia de memoria que diese soporte a las diferentes copias de un array alojadas

en los distintos dispositivos implicados, como en la API, que fue también extendida

para soportar el uso de varios dispositivos al mismo tiempo en una aplicación. El

nuevo mecanismo de coherencia de memoria, probado con una sencilla implementa-

ción multi-dispositivo consiguió una rebaja de SLOCs de un 27 % y de un 43 % del

PE, tomando como referencia implementaciones realizadas usando OpenCL C++.

El rendimiento también se vio beneficiado gracias a la naturaleza adaptativa de

HPL, la cual es aportada por la selección automática del método más eficiente para

el volcado de datos entre los espacios de memoria de los dispositivos. Éste es un

ejemplo de mecanismo de portabilidad de rendimento introducido en HPL en esta

Tesis. Este hecho se hace patente principalmente en aquellas aplicaciones con un ma-

yor intercambio de datos entre dispositivos, alcanzando speedups medios del 28 %

y máximos del 106 % para este tipo de aplicaciones y con respecto a ejecuciones de

referencia escritas en OpenCL C++.

Los cambios en la interfaz son debidos principalmente a los tres mecanismos

propuestos para distribuir una carga de trabajo entre varios dispositivos, desde el
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más manual basado en subarrays, donde el usuario ha de seleccionar expĺıcitamente

la porción de Array que ha de procesar en cada momento, hasta el más automático

basado en anotaciones, donde el usuario sólo indica la dimensión por la que han

de trocearse los Arrays, pasando por la versión intermedia basada en los planes

de ejecución que otorga más libertad al usuario pero evitando la definición de los

subarrays. Este último mecanismo incluye la posibilidad de permitir balancear au-

tomáticamente la carga de trabajo entre los dispositivos disponibles en el sistema

de una forma muy sencilla. Particularmente, el usuario sólo ha de indicar los dis-

positivos que quiere utilizar y HPL calculará el reparto de trabajo más apropiado

para ellos. Con estos tres esquemas se alcanzan reducciones máximas del PE del

76.7 % con respecto a códigos de referencia escritos en OpenCL C++. Por su parte

y gracias al carácter adaptativo de HPL, la mejora de rendimiento llega a alcanzar

el máximo de 146 % en comparación con los mismos códigos de referencia. Asimis-

mo, el reparto automático de trabajo, soportado en el mecanismo basado en planes

de ejecución, arroja también resultados óptimos en la mayoŕıa de los experimentos,

quedando, en el peor de los casos, un 6.3 % por debajo del rendimiento de la mejor

distribución de trabajo lograda mediante una búsqueda exhaustiva. La última me-

jora del soporte de aplicaciones multi-dispositivo en HPL propuesta en esta Tesis

consistió en un mecanismo para la actualización automática de filas fantasma que

aparecen habitualmente en aplicaciones con computaciones en plantilla. Esta mejo-

ra, denominada syncGhosts, fue evaluada mediante varios experimentos incluyendo

aplicaciones reales. Los resultados de éstos mejoran los buenos datos obtenidos tras

la aplicación de los tres mecanismos de distribución propuestos. Aśı, mientras que

con un enfoque basado en anotaciones HPL reduce la media del PE en un 20.5 %

respecto a usar el enfoque basado en subarrays, esta reducción alcanza el 79.5 %

al usar la técnica de syncGhosts conjuntamente con el esquema multi-dispositivo

basado en anotaciones. En particular, para la aplicación de procesado de imágenes,

CANNY, la reducción alcanza el 96.7 %. Para medir con más precisión el impacto

que este mecanismo pudiera tener en el tiempo de ejecución total de la aplicación,

se midió su rendimiento en sistemas con dos y tres dispositivos y en ninguno de

ellos las diferencias de rendimiento superan el 1 %, asegurando la robustez de la

implementación con esquemas de repartos de datos más complejos.

La última cuestión abordada en esta Tesis es la programación de sistemas dis-

tribuidos compuestos de nodos con dispositivos heterogéneos. Ésto se logró a través



xxv

de la integración de la libreŕıa Hierarchically Tiled Array (HTA) [6] y HPL dando

lugar a la libreŕıa Heterogeneous Hierarchically Tiled Arrays (H2TA). Esta libreŕıa

está basada en el tipo de datos abstracto HTA, que representa a un array dividido

jerárquicamente en bloques o submatrices. Estos bloques pueden estar distribuidos

en un clúster y ser procesados en paralelo, proporcionando al usuario una visión

global de los datos distribuidos. La libreŕıa H2TA propuesta permite el uso por par-

te de los programadores de los dispositivos con soporte OpenCL disponibles en un

cluster, aprovechándose de las propiedades combinadas de las HTAs y de la sencillas

semántica y API de HPL. Los resultados obtenidos son muy positivos. Por ejemplo,

si comparamos la programabilidad de las H2TAs con la de una aproximación forma-

da por la combinación de HPL y la libreŕıa MPI para las comunicaciones, la cual

ya disfruta de una mejora significativa de programabilidad respecto a soluciones de

más bajo nivel, H2TAs reducen las SLOCs, el PE y en CN en un 20.5 %, 31.8 % y

un 26.9 %, respectivamente. Estos resultados también son mejores que los obtenidos

usando ambas libreŕıas de forma separada, tal y como se demuestra en el Caṕıtulo 4

comparando aplicaciones basadas en H2TA con versiones escritas combinando HTAs

y HPL. En cuanto al rendimiento, H2TA mantiene una pérdida de rendimiento me-

dia con respecto a soluciones basadas en MPI por debajo del 1 %, lo cual, y teniendo

en cuenta los resultados de programabilidad, no hace sino justificar este desarrollo.

Principales contribuciones

Estudio y análisis de múltiples soluciones para computación heterogénea.

Estudio y prueba de diferentes arquitecturas y entornos.

Implementación de soluciones h́ıbridas resultantes de la fusión de varios para-

digmas.

Diseño, implementación y prueba de una solución para el problema de compu-

tación heterogénea:

• un proceso con uno o varios dispositivos en un nodo,

• varios procesos con uno o varios dispositivos por nodo en un clúster he-

terogéneo.
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Estudio exhaustivo de programabilidad y rendimiento de esta solución com-

parándolos con los de otras alternativas notorias existentes.
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Chapter 1

Introduction

Heterogeneous: composed of diverse elements or constituents; consisting of parts

of different kinds; not homogeneous. (Oxford dict.)

The relevance of the usage of computing devices with very different character-

istics that cooperate in a computation has increased exponentially in the past few

years. The reason for this has been the appearance of accelerators that can be

programmed to perform general-purpose computations achieving larger speedups

and/or power savings than traditional single-core and even multi-core CPUs.

Unfortunately this hardware heterogeneity is also reflected in the software re-

quired to program these systems since, unlike with regular CPUs, with these types

of accelerators programmers are typically exposed to a number of characteristics and

limitations that must be handled. This way, heterogeneous systems require much

more effort to be programmed than the traditional computers because of the ap-

pearance of new concepts and tools with different restrictions. Additionally, many

of the approaches to exploit heterogeneous systems are specific to one vendor or

device, resulting in little portability or rapid obsolescence for the applications built

on them. Open standards for programming heterogeneous systems such as OpenCL

contribute to improve this situation, but the requirement of portability has led to a

programming interface more complex than that of other approaches.

The purpose of this PhD Thesis is to propose tools that facilitate the program-

ming of heterogeneous computing systems while providing the maximum portability

1
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and performance. This first chapter introduces the reader to heterogeneous com-

puting by means of a short description of its history and current state of the subject

matter. This is followed by an introduction to the only portable alternative nowa-

days, the OpenCL standard, which is the backend used by the tools developed in this

Thesis. Next, the family of solutions for the improvement of the programmability

of heterogeneous systems considering a single device, multiple devices in the same

node, and heterogeneous clusters is briefly reviewed in Sections 1.3, 1.4, and 1.5,

respectively. The chapter finishes with the motivation and the scope of this PhD

Thesis and its contributions.

1.1. Heterogeneous Computing

Heterogeneous computing arises when different types of devices with compute

capability are used by an application. These devices usually include one or more

general purpose CPUs that collaborate with a number of so-called accelerators,

which are computing systems that cannot operate on their own and to which the

CPUs can offload computations. These devices, characterized by their high perfor-

mance, first appeared in the market as specialized hardware that sought to satisfy

the strong demand for high resolution 3D graphics in real-time. In those days,

the users were able to implement their own applications for graphics visualization.

At the beginning these rendering processes had to be done on the CPU using the

graphics hardware only in order to display the pixels in the screen. Unfortunately,

the CPU was too slow to produce attractive 3D effects. To solve this problem, the

graphics hardware evolved, gradually gaining computing power, and as a result the

CPU was increasingly freed from the graphics tasks. Therefore, at some point 3D

applications no longer implemented their own 3D rendering algorithms on the CPU;

but rather they began to rely on either OpenGL [105] or Direct3D [21], the two

new standard 3D programming interfaces to communicate rendering commands the

new generation of devices, called GPUs (Graphics Processing Units). GPUs are very

well suited for these tasks because they offer several pipelines to execute different

“shaders” or programs to compute operations on the visualization matrix. Lan-

guages, like OpenGL Shading Language [85] or High Level Shader Language [91]

were the most widely used for OpenGL and Direct3D environments respectively.
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Cg [76] is a proprietary language of Nvidia that allows the creation of shaders for

both OpenGL and Direct3D.

The GPU tasks are executed on many data elements in parallel. Many algo-

rithms outside the field of image rendering and processing can be accelerated apply-

ing data-parallel processing, also known as “stream processing”. The first attempts

at exploiting GPUs for general purpose computations, also called GPGPU, relied

on the existing languages oriented to graphic tasks. However, the approach was

cumbersome and there were many limitations. This, together with the large advan-

tages observed when exploiting GPGPU, lead to the development of new program-

ming languages as well as improved hardware for the GPUs that made them more

amenable for GPGPU. This way, version 11.0 of Direct3D was equipped with a new

graphic pipeline to perform tasks not related with graphics, such as stream process-

ing, giving birth to the compute shaders, also called kernels. These are computing

unities not linked to a graphical task, having on the contrary hardware suitable for

general purpose computations. As a result, they demand the management of new

concepts and procedures not related with graphics. Programming frameworks such

as CUDA [80], Close To Metal [10], BrookGPU [25] or Brook+ [8] are the answer

of manufacturers and organizations to this demand. The current situation is that,

despite being supported by a single vendor, the NVIDIA CUDA platform accounts

nowadays for most of the GPGPU market.

There are also accelerators that played a very important role in the raise of

heterogeneous computing but have now disappeared. This is the case of the Cell

processor [60] developed in the early 2000’s. The Cell processor was jointly developed

by Sony, Toshiba and IBM and while its main commercial application was the Sony’s

PlayStation 3 game console, it was also used in a number of computers as accelerator.

It consisted in nine processors: one acting as a controller and the rest acting as mere

processing units, all of them interconnected with a bus. Its programming relied on

C/C++ with language extensions [59] to support vector types and functions to

operate with those vectors that are executed in parallel distributing the work on the

processing units. Despite its good performance for scientific computing, the large

number of details that needed to be managed coupled with the low level of the tools

available for the development of Cell applications strongly hampered the adoption

of this platform beyond very specific niches, leading to its cancellation in 2009.
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In contrast, there are other co-processors with a longer history that enjoy nowa-

days the support of an important community of developers and users. This is the case

of the Field-Programmable Gate Arrays (FPGAs), a co-processor family with a long

and successful history . The main difference between these devices and the GPUs is

related with their hardware arquitecture. FPGAs are arrays of programmable logic

blocks, memory cells and physical connections, which the programmer is in charge of

programming at hardware level, instead of software level which is the case of GPUs.

The compilers reconfigure the FPGA so that it becomes a custom processor designed

for computing a specific kernel. Programming FPGAs has traditionally been diffi-

cult and requires expertise in specialized languages like VHDL [12] or Verilog [97].

Another successful case is the Intel Xeon Phi, which has became pretty popular as

a co-processor, an important reason being its very good programmability. In fact,

it can be programmed using the same tools as standard multicore systems, such as

OpenMP, MPI, or pthreads because it is made up of a collection of x86 processors.

This accelerator is based on a previously cancelled project of Intel called Larrabee

that seeked to create a new family of GPUs based on x86 cores.

As we have seen, there are several families of accelerators, and worse, a large

number of incompatible alternatives to program them, which makes applications

based on them inherently non-portable. As a result of this situation, several or-

ganisms and manufacturers grouped under the Khronos Group brand, focused their

efforts on developing a standard for heterogeneous computing, the Open Computing

Language (OpenCL) [62]. Nowadays, OpenCL is supported by the large majority

of the vendors of heterogeneous systems (IBM, AMD, Intel, NVIDIA, . . . ) and it

already replaced several APIs now deprecated such as Close To Metal, BrookGPU

or Brook+. Because of this portability we chose OpenCL as the backend for our

efforts to improve the programmability of heterogeneous systems.

1.2. OpenCL

The Open Computing Language (OpenCL [62]) is an open API designed to allow

the use of GPUs and other co-processors to work jointly with the CPU, in order to

take advantage of the additional computing power. As a standard, OpenCL 1.0

was released in December 2008, by an independent standards consortium called The
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Khronos Group. The standard has evolved from that initial version to the most

recent one, the OpenCL 2.1 released in November 2015. This introduction only

includes basic concepts of OpenCL and therefore, they have endured through the

successive versions of the standard.

The two main features of OpenCL are the exploitation of all the OpenCL com-

puting resources available in the system, such as multi-core CPUs and GPUs among

others, and the total portability of the OpenCL codes among different manufactur-

ers, unless vendor-specific extensions are used. The standard separates the software

layer, which is a responsibility of the programmers, from the hardware layer, which

is a responsibility of the manufacturers. All the hardware implementation details,

such as drivers and runtime are transparent from the point of view of the software

programmers.

1.2.1. The Platform Model

The platform model of OpenCL, illustrated in Figure 1.1, is defined as a host

connected to one or more OpenCL devices. A host is any computer with a CPU. The

OpenCL devices can be GPUs, FPGAs, many-core processors, . . . A device consists

OpenCL device OpenCL device OpenCL device

Host

Compute Unit

Processing
Element

Figure 1.1: Platform Model
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of a collection of one or more compute units. A compute unit is at the same time

composed by one or several processing elements. The processing elements execute

SIMD (Single Instruction, Multiple Data) instructions so that only one instruction

is executed simultaneously in several processing elements.

1.2.2. The Execution Model

The OpenCL execution model mainly consists of two different elements: the

kernels and the host program. A kernel is the basic unit of executable code that

runs on an OpenCL device. Kernels are basically C-like functions that are executed

in parallel by the processing elements of a device. The host program is the main

program, which is executed in the CPU and defines a context for the OpenCL devices

and enqueues the kernel executions using command queues. The queuing is in-order

but the execution of the command can be out-of-order.

Kernels

OpenCL defines for each kernel a N-dimensional index space of work. This

workspace can have up to three dimensions. The kernel will be enqueued to be exe-

cuted in the device. The OpenCL runtime creates one instance of this kernel, called

work-item, per point of the defined index space. While each work-item executes the

same kernel function, it does it using different data that can be identified using the

global position of the work-item in the index space, which is known as global ID.

In OpenCL the work-items can be grouped in teams called work-groups. The

size of each work-group is defined by its own local index space. As in the global

index space, work-items can also know their position into the local index space (local

ID). All the work-items that belong to a work-group share several properties. First,

their execution takes place in the same compute unit because the execution of a

work-group can not be split in more than one compute unit. Second, the work-

items belonging to the same group share a local on-chip memory. As a result, the

communication of data into a work-group can be done in a very fast way using this

memory. Finally, work-items can be synchronized at a work-group level, this is,

the work-group execution can be stopped at a synchronization point, concretely a
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barrier, set by the programmer.

Figure 1.2 illustrates the example of a two-dimensional global index space of

16× 16 work-items. This index space is divided in 16 work-groups. The work-group

containing the highlighted work-item has a global ID (2,3) and a local size 4 × 4.

The local ID of the highlighted work-item (in green) is (2,1), although it can be also

identified globally with the global ID (10,13).

Host Program

The host program is in charge of setting up and managing the execution of the

kernels on the chosen OpenCL devices of the OpenCL platforms installed in the

system. By means of the OpenCL API, the host can create and manipulate the

following elements belonging to an OpenCL context:

Devices: Set of OpenCL devices used by the host for kernel execution.

Program objects, that implements a kernel or a collection of them.

Kernels: OpenCL functions that will be executed on the device.

Memory objects: Memory buffers used in both the host program and the

OpenCL devices.

16 

(0, 1)

4

4

16

(0, 0) (0, 2) (0, 3)

(1, 0)

(2, 0)

(3, 0)

Figure 1.2: Global local index spaces
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Command queues: Objects in charge of submitting commands on the device.

When the context is created, the command queues are created and managed by

the user to perform the execution of the kernels in the OpenCL devices associated

to that context. Overall, the command queues accept three kind of commands:

Kernel execution command, which runs the kernel in the device.

Memory commands, which transfer data between the host program memory

and the device memory.

Synchronization commands, which allow the user to manipulate the order of

the command execution with respect to other commands or the host program.

The user can specify two types of execution for the commands enqueued: block-

ing or non-blocking. If a command is blocking, the command blocks the execution

of the host program until its completion. Otherwise, the host program continues its

execution without waiting for the result of the command.

1.2.3. Memory Model

Figure 1.3 shows the scheme of the OpenCL memory model, which reflects four

kinds of memory that a work-item can access during the execution of a kernel:

Global, Local, Private and Constant memory. We describe them now in turn.

Global Memory

The global memory is the main and largest memory space of the device and it can

span several GB. Work-items can read and write random memory positions in this

memory, which is also used to communicate the host with the devices. If the kernel

needs to send or receive data to/from the host application, they have to be stored in

global memory. Nowadays, accelerators have several levels of cache for this memory,

which help to mitigate the time penalty suffered in the global memory accesses

because of the lack of locality and/or coalescence. Coalescence here refers to the

ability of the hardware to combine several memory accesses into a reduced number
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Private
Memory

Private
Memory

Work-
item

Work-
item

Local Memory

Global/Constant Memory

Host Memory

Workgroup
Private

Memory
Private

Memory

Work-
item

Work-
item

Local Memory

Workgroup

OpenCL Device

Host Program

Figure 1.3: OpenCL Memory Model

of memory transactions. Briefly, a global memory access is coalesced (combined) if

and only if consecutive work-items access consecutive global memory positions and

this memory is aligned (i.e. its address is a multiple of the data type size). Before

the introduction of global memory caches, uncoalesced accesses played a much larger

role in the performance of a kernel.

Local Memory

The local memory only serves to the work-items of the same work-group, who

have the same view of this memory space. It is a very fast on-chip memory so it

can be seen as a scratchpad that can be managed by the user.

Private Memory

By default, all the variables defined inside a kernel are stored in this memory.

Private memory has two natures. On the one hand, if a scalar variable is defined

and there are registers available, that variable will be stored in a register. If an array

is defined, or there are no free registers for store a scalar variable, that variable will
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be stored in global memory. Register spilling is the problem that appears when the

registers are overused, causing the copy of data from global memory to registers

and vice-versa in order to keep in the registers the working set of the kernel. This

problem can cause important performance penalties.

Constant Memory

The constant memory is a memory space that can be defined statically inside

the kernel code, or dynamically before the kernel execution. As its name implies,

it is constant for the kernels, all the changes on it being performed by the host

application.

1.2.4. Example: vectorAddition

This section shows an example (Figure 1.4) of a host program and its correspond-

ing kernel. It serves as an example of the typical steps of an OpenCL application.

The kernel of the example chosen uses two buffers, src and dst, and computes

dst = dst + src. This code is somewhat simplified with respect to a realistic one

because it does not include error checks and it assumes the existence of only one

GPU. In addition, the buffers used are not initialized in order to center only on the

requirements of an OpenCL application.

Firstly, Lines 6-9 define the string that contains the kernel code that will be

executed on the selected device. It is a vector addition that uses two vectors src and

dst defined in global memory. The memory spaces in OpenCL can be distinguished

through the keywords global, local and constant. Note that it is not needed

to specify a private memory space because it is the default choice inside the kernel

when none is specified. The code of this kernel specifies that each work-item adds

an element of the src array with an element of the same position of dst array

and stores the result in the latter one. The functions get global id(int d) and

get local id(int d) provide the positions in the d dimension of the calling thread

in the global and local index spaces respectively.

The first step in the application is to obtain the platform found in the system

(Line 14). The most relevant functions of the OpenCL API are detailed in Appendix
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A. In Line 17, we obtain the identifier of the first GPU device of the chosen platform.

If the system has more than one platform or device, these same calls will return

pointers to the platforms and devices found.

In Line 19, a context is created for the platform and device chosen. Taking into

account the context created and the device associated to it, the commandQueue object

is created in Line 21.

In Line 23, the program object is created using the kernel code and it is compiled

in Line 24 for the chosen device. In Line 26, the kernel object, which will be used

for passing arguments and its later execution, is obtained from the program.

Lines 29-30 define the buffers that contain the data of the vectors in the device

memory. Their creation includes the context they belong to and, among other pa-

rameters, the access type in the kernel. The most important types are read-only

(CL MEM READ ONLY), write-only (CL MEM WRITE ONLY) and read-write (CL MEM READ WRITE).

In Lines 35-36 the content of the buffers is copied from the host to the device by

means of the clEnqueueWriteBuffer function. In Line 35, this command is enqueued

in the commandQueue passed as argument. This command performs the copy of the

data pointed by src host in the device buffer src buffer. In Line 36, the same task

is done for the target buffer.

Lines 38-41 specify the execution parameters of the kernel. In the first place,

Line 38 defines the size of the global index space of the problem. In this case it

is one-dimensional with NWORKITEMS work-items. Lines 39 and 40 specify the

arguments of the kernel, in this case only the buffers src buffer and dst buffer.

Finally, in Line 41, the execution of the kernel kernel is launched by means of the

call clEnqueueNDRangeKernel specifying among others, the commandQueue that will

perform the execution and the global space. It deserves to be mentioned, that in

this case there is no local domain size specified (6th argument). Instead of a local

domain, there is a NULL pointer so that the system is in charge of choosing the

most suitable local domain for the hardware of the selected device.

Kernel invocations are not blocking. For this reason, after this point the kernel

is executed in the GPU in parallel with the rest of the host code. Since the result of

dst buffer is used in the host application after Line 43, it has to be downloaded from

the GPU to the host. The transfer of the data of dst buffer to the host memory
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pointed by dst host is achieved by means of the call clEnqueueReadBuffer of Line

43. Some commands like clEnqueueReadBuffer and clEnqueueWriteBuffer allow to

specify their behavior in terms of synchronization by means of the BLOCKING flag

(3rd argument). This is, if the BLOCKING flag is TRUE, the host application

will stop until the command specified as BLOCKING has finished. Otherwise, the

control will return to the host immediately after enqueueing the command. In this

example, the host will be waiting for the finish of the enqueueReadBuffer command.

Finally, the elements of the resulting vector, recently copied from the device to

the host, are printed on the standard output.
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1 #include <CL/cl.h>

2 #include <stdio.h>

3

4 #define NWORKITEMS 1024

5

6 const char ∗kernel code =

7 ‘‘ kernel void vectorAddition( global int ∗src, global int ∗dst) { \n \
8 dst[get global id(0)] += src[get global id(0)]; \n \
9 }’’;

10

11 int main(int argc, char∗∗ argv)

12 {
13 cl platform id platform;

14 clGetPlatformIDs(1, &platform, NULL);

15

16 cl device id device;

17 clGetDeviceIDs(platform, CL DEVICE TYPE GPU, 1, &device, NULL);

18

19 cl context context = clCreateContext(NULL, 1, &device, 0, NULL);

20

21 cl command queue queue = clCreateCommandQueue(context, device, 0, NULL);

22

23 cl program program = clCreateProgramWithSource(context, 1, &kernel code, NULL, NULL);

24 clBuildProgram(program, 1, &device, NULL, NULL, NULL);

25

26 cl kernel kernel = clCreateKernel(program, ”vectorAddition”, NULL);

27

28 int size = NWORKITEMS ∗ sizeof(int);

29 cl mem src buffer = clCreateBuffer(context, CL MEM READ ONLY, size, NULL, NULL);

30 cl mem dst buffer = clCreateBuffer(context, CL MEM READ WRITE, size, NULL, NULL);

31

32 int ∗src host = (int∗)malloc(size);

33 int ∗dst host = (int∗)malloc(size);

34

35 clEnqueueWriteBuffer(queue, src buffer, CL TRUE, 0, size, src host, 0, NULL, NULL);

36 clEnqueueWriteBuffer(queue, dst buffer, CL TRUE, 0, size, dst host, 0, NULL, NULL);

37

38 size t global work size = NWORKITEMS;

39 clSetKernelArg(kernel, 0, sizeof(buffer), (∗void)&src buffer);

40 clSetKernelArg(kernel, 1, sizeof(buffer), (∗void)&dst buffer);

41 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global work size, NULL, 0, NULL, NULL);

42

43 clEnqueueReadBuffer(queue, dst buffer, CL TRUE, size, dst host, 0, NULL, NULL);

44

45 for(int i = 0; i < NWORKITEMS; i++)

46 printf(‘‘%d %d\n’’, i, dst host[i]);

47

48 return 0;

49 }

Figure 1.4: Example of an 1-D problem in OpenCL C
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1.2.5. OpenCL C++ bindings

The Khronos Group has also provided a host API for C++ that is called the

OpenCL C++ bindings or wrapper API. This version works as a wrapper of OpenCL

C, so that it provides exactly the same performance, but better programmability.

These bindings, which are often called for short OpenCL C++ in the rest of this

document, are one of the first attempts in order to reduce the development costs of

the heterogeneous computing using OpenCL. Figure 1.5 illustrates the same code of

Figure 1.4 using the object-oriented approach of OpenCL C++.

The code that relies on this C++ wrapper is more concise and intuitive than the

one based on the C bindings. As we will see in the following chapters, since OpenCL

is the standard of the heterogeneous computing, each new feature added to HPL has

been compared with OpenCL both in terms of performance and programmability

to make strong enough each iteration of the development. This OpenCL C++

wrapper has been used in all the comparisons because it has proven to improve the

programmability of OpenCL C codes with no performance penalties. Additionally,

HPL has been developed following the object-oriented paradigm in the same way as

OpenCL C++, both of them thus enjoying the programmability advantages of that

paradigm.
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1 #include <CL/cl.hpp>

2 #include <iostream>

3

4 #define NWORKITEMS 1024

5

6 const char ∗kernel code =

7 ‘‘ kernel void vectorAddition( global int ∗src, global int ∗dst) { \n \
8 dst[get global id(0)] += src[get global id(0)]; \n \
9 }’’;

10

11 int main(int argc, char∗∗ argv)

12 {
13 std::vector<Platform> platforms;

14 cl::Platform::get(&platforms);

15

16 std::vector<Device> devices;

17 platform[0].getDevices(CL DEVICE TYPE GPU, &devices);

18

19 Context ∗context = new Context(devices[0]);

20

21 CommandQueue ∗queue = new CommandQueue(∗context, devices[0]);

22

23 Program ∗program = new Program(∗context, &kernel code);

24 program−>build(devices);

25

26 Kernel ∗kernel = new Kernel(∗program, ”vectorAddition”);

27

28 int size = NWORKITEMS ∗ sizeof(int);

29 Buffer ∗src buffer = new Buffer(∗context, CL MEM READ ONLY, size);

30 Buffer ∗dst buffer = new Buffer(∗context, CL MEM READ WRITE, size);

31

32 int ∗src host = new int[size];

33 int ∗dst host = new int[size];

34

35 queue−>enqueueWriteBuffer(∗src buffer, CL TRUE, 0, size, src host);

36 queue−>enqueueWriteBuffer(∗dst buffer, CL TRUE, 0, size, dst host);

37

38 size t global work size = NWORKITEMS;

39 kernel−>setArg(0, sizeof(Buffer), src buffer));

40 kernel−>setArg(1, sizeof(buffer), dst buffer));

41 queue−>enqueueNDRangeKernel(∗kernel, cl::NullRange, global work size, cl::NullRange);

42

43 queue−>enqueueReadBuffer(∗dst buffer, CL TRUE, 0, size, dst host, 0);

44

45 for(int i = 0; i < NWORKITEMS; i++)

46 std::cout << i << ‘‘ ’’ << dst host[i] << std::endl;

47

48 return 0;

49 }

Figure 1.5: Example of an 1-D problem in OpenCL C++
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1.3. High Level Proposals in Single Device Envi-

ronments

The previous section showed that OpenCL applications require programmers to

manage a vast amount of new concepts and procedures, even to perform simple

computations. For the past few years, the research community has come up with

several proposals to improve the programmability of the codes developed for het-

erogeneous systems. This research can be classified in three large groups: proposals

that support common and skeletal operations, compiler directives and libraries that

improve the usability of the most common APIs.

1.3.1. Support for common and skeletal operations

Some proposals [86][9] identify important functions algorithms and operations,

such as the Fourier transform or the common linear algebra operations [34], which

appear in a large number of applications, and provide solutions restricted to them.

Other researchers have focused on facilitating the expression of typical patterns of

computation in heterogeneous systems, sometimes focusing more strongly on data-

parallelism [28] and in other cases [38][93] on skeletons [30][50]. These solutions

both avoid the boilerplate code associated to the lower level solutions and automat-

ically implement the synchronization and communication tasks associated to these

common patterns. Some approaches combine several of these features. For example,

[19, 64] provide both predefined functions and tools for the easy execution of custom

kernels under strong restrictions, as they only support one-to-one computations and

reductions. The problem with these proposals is that, while they are very conve-

nient, they are only suitable for the computations that adjust to the functionality

they provide.

1.3.2. Compiler directives

Other works provide a more widely applicable solution by means of compiler

directives [47][20][69][56][81][84]. Given its large popularity in shared memory sys-

tems, a particularly important member of this group is OpenMP [82]. The version 4
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or OpenMP allows the development of heterogeneous applications. Therefore, it de-

serves to be compared with the other main standard of this group, OpenACC [81]. In

many ways both have a similar structure, but while OpenMP is more prescriptive,

setting explicitly the moment to do an operation, OpenACC is more descriptive.

This way, using OpenACC programmers only specify the operation to do, leav-

ing more freedom to the compiler to perform the considered optimizations. While,

OpenACC is currently more mature for accelerators, OpenMP continues gradually

increasing its support for the heterogeneous devices. This way, version 4.5 of the

OpenMP standard was approved in 2015, bringing new mechanisms for data map-

ping and asynchronous execution as well as routines for allocating, copying and

freeing device memory.

Compiler directives require specific compilers and usually provides users little or

no control on the result, which strongly depends on the capabilities of the compiler.

Relatedly, these tools usually lack a clear performance model [79]. These problems

are even more important when we consider accelerators. The reasons are the large

number of characteristics that can be managed, which leads to a much wider variety

of potential implementations for a given algorithm than regular CPUs, and the high

sensitivity of the performance of these devices with respect to the implementation

decisions taken.

1.3.3. Libraries that improve the usability of low level APIs

The other family of proposals that enjoy the widest scope of applications are

libraries that improve the usability of the most common APIs, OpenCL in par-

ticular. These libraries, among others, [68][104] require the kernels to be written

using the native API, focusing on the automation of the tasks performed in the

host code. In this category we can find also [86][64][19], which were already seen in

Section 1.3.1, since they also allows the users to write their own kernels. While these

tools largely facilitate the programming of heterogeneous systems with respect to

OpenCL, they have strong limitations. For example, none of them provides arrays

that can be seen as a single coherent object across the system because they rely on

a host-side representation of each array together with per-device buffers. However,

in some approaches such as [86][68] this single object could be not strictly necessary
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because buffers have defined convenient element-wise access operators. Now, each

access involves a memory transfer from the device to the host, incurring in a rele-

vant overhead. In addition, the user has to maintain the coherency of memory of

the buffers used among devices and host image. Moreover, these solutions do not

expose a suitable labelling mechanism to specify the directions of the arguments of

each kernel, being impossible their automatic transfer. This also implies that the

data dependencies both between kernels run in different devices or between kernel

executions and host accesses cannot be respected without explicit synchronizations.

Some of the studied proposals have additional minor limitations. For example, [68]

does not support device side functions, while [86] and [104] only support scalars and

arrays in global memory in their arguments.

1.4. High level proposals that target multi-device

systems

Nowadays, almost every computer with an accelerator is a multi-device system

from the point of view of OpenCL because regular CPUs can also be exploited

using this standard. In addition, in HPC environments many systems have more

than one accelerator. As a result, there have been several high-level proposals to

improve the simultaneous use of several devices in heterogeneous applications. Some

of them have already been covered in the previous section, as many of the proposals

discussed there either already covered the use of multiple devices or naturally evolved

to manage multi-device systems, suffering the limitations discussed in Section 1.3.

This is for example the case of SkelCL [93], extended to these environments in [92]

and in [24]. Another solution based on skeletons that is suitable for multi-device

environments is [38], which supports several backends including CUDA and OpenCL.

There are also skeletons that have been specifically designed for environments with

several accelerators such as [2]. Other frameworks offer a support for multiple devices

that has some restrictions or is simply not as convenient as it should ideally be. For

example, [86] and [104] are based on the idea of selecting a device, and then operating

on it, including the explicit addition of each program to use to each device.

In this category we can also classify PARTANS [73], which is specifically ori-
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ented to support stencil computations in heterogeneous environments with several

accelerators, as stencils in distributed memory environments require ghost regions

that must be kept coherent, which considerably complicates their implementation.

This tool automatically optimizes the distribution of data taking into account both

the problem and the device characteristics. It presents an interface consisting of

two main classes, Volume and Stencil, which define the elements of a grid and the

operation to do with each one of them, respectively.

1.5. Heterogeneous Clusters

The development of applications for distributed memory systems continues to be

dominated by MPI, the standard message passing library. Although it is massively

used by the scientific community due to its good performance, its programming

model is not specially user-friendly, the most important reasons being the local view

of the distributed data in its applications and the SPMD style it leads to. There

has been much research aimed to hide the cost of this communications layer in or-

der to enjoy the benefits of the heterogeneous computing in clusters enhanced with

accelerators. Many proposals [94][35][63][7][61] expand the CUDA and OpenCL

paradigms, which are well suited for the management of multiple accelerators in a

node, enabling the access to accelerators located in other nodes. As a result, the

level of abstraction of these tools is analogous to that of CUDA or OpenCL, which

force programmers to manage numerous low level details. Some approaches like [52]

avoid some of these tasks with their related boilerplate code, but they still keep

many others such as the explicit kernel creation, allocation of buffers associated to

devices, event-based synchronizations, etc. A common problem of these approaches

is that since they are based on the extension of the CUDA/OpenCL model to ac-

cess heterogeneous resources across a cluster, they do not provide a solution to

the efficient exploitation of the CPUs in the cluster and the communication of the

data to be used only in the CPUs. In the OpenCL-based approaches, this could

be addressed by writing the CPU codes as OpenCL kernels that are run in those

CPUs considering them as OpenCL devices. This clearly requires much more effort

than directly using those resources using more abstract solutions instead of mere

extensions of the CUDA/OpenCL model.
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OmpSs deserves a separate mention, as it targeted traditional clusters [26] before

being extended to support heterogeneous ones [27], which enables it to exploit all

the parallelism across these systems. However, OmpSs requires users to indicate

which are the input and the output parameters of each parallel task. It also lacks

distributed structures, which forces programmers to manually partition in chunks

the program arrays and to individually specify the computation to perform with

each chunk.

1.6. Thesis approach and contributions

As discussed above, the most widely utilized approach to take advantage of het-

erogeneous systems is the usage of extended versions of well-known languages [80, 62]

that reflect and allow for the management of the particular semantics, character-

istics and limitations that these accelerators pose for programmers. It deserves to

be mentioned, the existence of other approaches such as [12], which are specifically

designed for a subset of heterogeneous systems. Portability problems arise from

the fact that the vast majority of these programming environments, in fact all of

them with the exception of OpenCL [62], are vendor-specific, and sometimes even

accelerator-specific. This situation has led to extensive research on ways to improve

the programmability of heterogeneous systems. In light of this, as we have seen in

the preceding sections, summarized in Table 1.1, researchers have proposed a rich set

of libraries, each with different strengths and weaknesses, and compiler directives,

whose performance strongly depends on compiler technology.

This Thesis contribute to this research effort. Namely, we focused on facilitating

the portable programming of all kinds of heterogeneous systems by means of suc-

cessive improvements applied on the high level library Heterogeneous Programming

Library (HPL). At the beginning, this library based on OpenCL, allowed the pro-

gramming of heterogeneous systems enhanced with only one device by expressing

the codes to be accelerated through an embedded C++ language. Using that lan-

guage, programming only could be single-source, this is, only one source file which

integrates the main program code and the one of the accelerator. However, HPL

had more limiting factors that hampered the development of generic heterogeneous

applications, such as the lack of support for device functions and vector types. Thus,
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Proposal Type Main drawbacks

ViennaCL [86] Common Operations /
Low level

Maintenance of several coherent views of ar-
rays

Lack of labelling

Overhead of memory accesses

clMath [9] Common Operations Only fixed functions and operations allowed

Copperhead [28] Common Operations
Only fixed functions and complex synchroniza-
tion

SkePU[38], SkelCL [93] Skeleton
Computations that only adjust to fixed func-
tionality

PyCUDA/PyOpenCL[64],
Thrust [19]

Common Operations Only one-to-one computations and reductions

OpenACC [81],
OpenMP [82]

Compiler Directives

Compiler dependent

Lack of clear performance model

O. Lawlor [68], clUtil [104] Low level

Maintenance of several coherent views of ar-
rays

Lack of labelling

Table 1.1: Summary of the high level proposals.

starting with that version of the library, we have been solving its limitations along

this Thesis following an iterative development by providing new functionalities as

the ones listed below:

Native kernels : The initial version of HPL only supported kernels written using

its embedded language. That prevented the use of kernels already written

using OpenCL, which we call native kernels. In a first iteration, HPL was

extended to support them with a very simple and intuitive interface while

maximizing the automation of their management [99][101].

Multi-device execution on a single host : HPL allows the efficient use of all
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the OpenCL devices connected to a host. This way, it allows having multiple

copies of the same array, which is represented by the HPL data type Array,

on several devices by means of a memory management system that maintains

automatically the coherency of the copies that can be distributed in several de-

vices simultaneously [100]. This mechanism adapts the data transfers required

to maintain this coherency to the device properties in order to reduce the time

required to exchange data among devices. In addition, in order to facilitate

the work and data division among the devices involved in an execution, HPL

defines the subarray concept as a constituent part of an Array. A subarray

has the entity of an HPL Array that is always kept coherent with the image

of the Array it belongs to. Taking advantage of this kind of objects, several

work distribution systems were designed in HPL for multi-device environments

achieving high levels of programmability in those systems. One of these pro-

posals includes analytical models that automatically divide the work among

the devices maximizing the performance and obtaining excellent results in our

experiments.

Automatic management of overlapped regions : Stencil computations are op-

erations in which each element of the result is computed based on some of its

neighbors in the input array(s). This type of computation is very common

in PDE solvers, scientific simulations and image processing applications. The

efficient implementation of stencils in multi-device environments requires the

existence of replicated regions of the arrays used in the devices, in order to sup-

port the computations related with the frontier elements of the region assigned

to each device. HPL incorporates a new feature to automatically maintain the

coherency of these replicated regions, thus facilitating the implementation of

this kind of problems.

Multi-device execution in distributed-memory systems : The next step con-

sisted in facilitating the programming of heterogeneous clusters. This way,

HPL has been integrated in a library that improves the programmability of

applications on distributed memory systems, namely the Hierarchically Tiled

Arrays (HTA), resulting in the second main contribution of this Thesis, the

Heterogeneous Hierarchically Tiled Arrays (H2TA) library. HTAs allow to ex-

ploit the locality as well as to express parallelism with much less effort than
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lower level solutions, which makes them a suitable base that can serve as a

starting point to the development of a solution for heterogeneous clusters.

This way, H2TA allows the execution of HPL applications in a cluster with

one or more OpenCL devices per node. With a similar API to HPL, H2TA

simplifies the development of distributed-memory applications with a similar

performance and much lower effort than lower level solutions.

This way, the libraries proposed, HPL and H2TA , allow the development of ap-

plications using from a single accelerator to several accelerators in a heterogeneous

cluster. In all the cases the resulting programs offer both a noticeable increase of pro-

grammability and a negligible overhead with respect to versions based on low level

solutions. Moreover, they have been developed in C++, which is a very efficient and

widely used language, being in fact one of the most spread languages in high per-

formance computing environments. In addition, the solutions proposed provide the

maximum level of portability with respect to the computing devices because of the

use of OpenCL, the standard environment for heterogeneous computing supported

by most of well-known vendors. In fact, in this Thesis we have included results of

tests performed on several types of devices of different vendors. Finally, it deserves

to be mentioned that other researchers have also reported positive conclusions of

the programmability and performance provided by HPL [45].





Chapter 2

The Heterogeneous Programming

Library

In this chapter we present the Heterogeneous Programming Library (HPL), a

novel library-based approach to programming heterogeneous systems that couples

portability with ease of usage. Our library, which is publicly available under GPL

license at http://hpl.des.udc.es, allows to express the kernels that exploit het-

erogeneous parallelism in two different ways: a language embedded in C++, which

provides single-source heterogeneous programming, and native OpenCL C kernels.

The kernels written using the C++ embedded language allow the library to cap-

ture at run-time the computations and variables required for the execution of those

kernels. With this information HPL performs run-time code generation (RTCG)

in order to run those kernels on the requested device. This feature has important

advantages, as it allows to express kernels that adapt to the underlying architecture

and problem at hand at runtime, a possibility that has been successfully tested in

[43] and [42]. Nevertheless, users may prefer or even require to write their kernels in

native OpenCL C for many reasons. For example, they may want to develop or pro-

totype their kernels in OpenCL C so they can later integrate them in another project

without adding HPL as another requirement for the project. Programmers may also

want to take advantage of OpenCL C kernels provided by several projects [9][86].

Also, users may need to use native OpenCL C kernels because they want to use

some of the automatic tuning tools available for them [41][44]. For these reasons,

25
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HPL also includes a very convenient mechanism that allows it to use native OpenCL

C kernels.

This chapter is organized as follows: we begin with an overview of the hardware

and programming model supported by HPL. Then, the chapter continues with a

description of the interface and implementation of our library in Section 2.2. An

evaluation in terms of programmability and performance for applications using the

mechanisms provided by HPL to support kernels is shown in Section 2.3. After

this, Section 2.4 discusses on related work and the last section is devoted to our

conclusions.

2.1. Programming model

The Heterogeneous Programming Library (HPL) hardware and programming

models are similar to those provided by CUDA [80] and OpenCL [62] and they are

so general that they can be applied to any computing system and application.

The HPL hardware model, depicted in Fig. 2.1, is comprised of a host with a

standard CPU and memory, to which is attached a number of computing devices.

The sequential portions of the application run in this host and can only access its

memory. The parallel parts, run in the attached devices at the request of the host

program. Each device has one or more processors, which can only operate on data

found within the memory of the associated device, and which must all execute the

same code in SPMD. Processors in different devices, however, can execute different

pieces of code. Also, in some devices the processors are organized in groups with

Device 0
Host

CPU

Memory

ProcessorsMemory

Device N-1
ProcessorsMemory

Figure 2.1: Heterogeneous Programming Library hardware model
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two properties. First, the processors in a group can synchronize using barriers,

while processors in different groups cannot be synchronized. Second, each group of

processors may share a small and fast scratchpad memory.

As regards the memory model of the HPL, while no special distinction is made

in the host, four kinds of memory can be identified in the devices. First, we have

the global memory of the device, which is the largest one, and which can be both

read and written by any processor in the device. Second, the scratchpad memory

which is local and restricted to a single group of processors is called local memory.

Third, a device may have a constant memory, which is read-only memory for its

processors, but which can be set up by the host. Finally, each processor can access

to a private memory that is exclusive of each one.

As this description of the hardware indicates, HPL applications run their serial

portions in the host while their parallel regions run in SPMD mode in the attached

devices. While the processors in the same device must all run the same code at

a given time, different devices can run different codes. Thus, both data and task

parallelism are supported. The parallel tasks are called kernels and they are ex-

pressed as functions written in the HPL embedded language. Since the device and

host memories are separate, the inputs of a kernel are transferred to its device by

the host, and they are provided to the kernel by means of some of its arguments.

Similarly, kernels output their results through some of their arguments, which will

be transferred to the host when required.

Since multiple threads in a device run the same kernel in SPMD style, an identi-

fier is needed to univocally distinguish each thread. For this purpose, when a kernel

is launched to execution in a device, it is associated to a domain of non-negative

integers with between one and three dimensions called global domain. An instance

of the kernel is run for each point in this domain. In this way, this point is the

unique identifier (global id) of the thread, and the domain size gives the number of

threads used.

Kernel executions can also be optionally associated to another domain, called

local domain, whose purpose is to define groups of threads that run together in a

group of device processors able to synchronize and share local memory. The local

domain must have the same dimensionality as the global domain, and its size in every
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dimension must be a divisor of the size of that dimension in the global domain. The

global domain can thus be evenly divided in regions of the size of the local domain, so

that each region corresponds to a separate thread group whose threads can cooperate

thanks to the barriers and the exploitation of the local memory. Each group has a

unique identifier based on its position in the global domain (group id). Each thread

also has a local id that corresponds to the relative position of its global id within

the group’s local domain.

As we will see as we develop the description of HPL, in comparison with OpenCL,

its backend, HPL avoids the concepts of the context, command queues and com-

mands submitted to the devices. There is no correspondence either for the OpenCL

program and memory objects and thus for their management (explicit load and com-

pilation, data transfers, buffer allocation, etc.). Kernel objects are not needed to

refer to kernels, just their function name, as in C or C++. There are also issues that

OpenCL forces to manage, while HPL can either totally hide or let the user just

provide hints for optimization purposes, such as the synchronization between the

devices and the host. HPL also brings generic programming capabilities to portable

heterogeneous programming, as its kernels and data types support templates. An-

other interesting feature is that HPL supports multidimensional arrays in the kernel

arguments even if their sizes are determined at runtime, giving place to a much more

natural notation than the array linearization forced by the usage of raw pointers in

OpenCL. Finally, HPL provides run-time code generation (RTCG) that can simplify

the generation and selection of code versions at runtime.

2.2. Library frontend

Our library supports the model described in the preceding section, providing

three main components to users. First, it provides a template class Array that allows

for the definition of both the variables that need to be communicated between the

host and the devices, and the variables that are local to the kernels. Second, these

kernels, as mentioned in the previous section, are functions that can be written using

one of the two different approaches accepted in HPL: kernels written using the HPL

embedded language (HPL kernels) or kernels can also be written using OpenCL C

(native kernels). Finally HPL provides an API for the host code in order to inspect
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1

2 #include ”HPL.h”

3 using namespace HPL;

4

5 void mxProduct(Array<float,2> c, Array<float,2> a, Array<float,2> b, Int P)

6 {
7 Size t k;

8 c[idy][idx] = 0.f;

9 for (k =0, k < P, k++)

10 c[idy][idx] += a[idy][k] ∗ b[k][idx];

11 }
12

13 int main()

14 {
15 Array<float,2> c(M,N),a(M,P),b(P,N);

16 ...

17 eval(mxProduct)(c, a, b, P);

18 }

Figure 2.2: HPL running example

the available devices, request the execution of kernels and define the properties of

native OpenCL kernels. The entire HPL interface is made available by the inclusion

of the single header file HPL.h and it is encapsulated inside the HPL namespace in

order to avoid collisions with other program objects. The different components of

an HPL application can be seen in the running example shown in Figure 2.2. This

example, which is a matrix product, will be used along the HPL introduction. At

this point, we will turn to a discussion of the library components.

2.2.1. The Array data type

Like any function, kernels in HPL have parameters and private variables (see

Line 5 in Figure 2.2). Both kinds of variables must have type Array<type, ndim [,

memoryFlag]>, which represents an ndim-dimensional array of elements of the C++

type type, or a scalar for ndim=0. The optional memoryFlag either specifies one of

the kinds of memory supported (Global, Local and Constant, in the order used in

Section 2.1) or is Private to a HPL kernel, which specifies that the variable is private
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to the kernel and which is the default for variables defined inside kernels. The type

of the elements can be any of the usual C++ arithmetic types or a struct. In this

latter case, the struct definition must be made known to HPL using the syntax

shown in Fig. 2.3, where mystruct t is the name we want to give to the struct.

When the host code invokes a kernel, it provides the arguments for its execution,

which must also be Arrays. In this way Arrays must be declared in the host space as

global variables or inside functions that run in the host, in order to specify the inputs

and outputs of the kernels. These variables, which we call host Arrays, are initially

stored only in the host memory. When they are used as kernel arguments, our library

transparently builds a buffer for each one of them in the required device if no such

buffer exists yet. The library also automatically performs the appropriate transfers

between host and device memory, again only if needed. When a host array or

kernel argument declaration specifies no memoryFlag, Global is assumed. Variables

defined inside HPL kernels do not allow the Global and Constant flags. By default

they follow the standard behavior of data items defined inside functions, being thus

private to each thread in its kernel instantiation. The exceptions are Arrays with the

Local flag, which are shared by all the threads in a group even if they are defined

inside a kernel. In Line 15 of Figure 2.2 there are three two-dimensional Arrays.

While scalars can be defined using the Array template class with ndim=0, there

are convenience types (Int, Uint, Float, Size t . . . ) that simplify the definition of

scalars of the obvious corresponding C++ type (see Line 7 of Figure 2.2). As in

native kernels, vector types are also supported both in the HPL kernels (e.g. Int2,

Float4, . . . ) and the host code (correspondingly int2, float4, . . . ). These vectors

can be indexed to access their components and manipulated with several functions,

including the standard operators. Computations can be performed between vectors

as well as between vectors and scalars.

1 HPL DEFINE STRUCT( mystruct t,

2 { int i;

3 float f;

4 } );

5

6 Array<mystruct t, 2> matrix(100, 100);

Figure 2.3: Declaring a struct type to HPL in order to use it in Arrays
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An important characteristic both of Arrays and HPL vector types is that while

they are indexed with the usual square brackets in HPL kernels, their indexing in

host code is made with parenthesis. This difference visually emphasizes the fact

that while Array accesses in the host code experience the usual overheads found

in the indexing of user-defined data types [46], this is not the case in the kernels.

The reason is that HPL kernels are dynamically captured and compiled into native

binary code by our library, so that the array accesses have no added overheads.

One reason for the extra cost of the Array accesses in the host code is that

they track the status of the array in order to maintain a consistent state for the

computations. In this way, an array that has been modified by a kernel in a device

is refreshed in the host when an access detects the host copy is non-consistent. If the

array is written, it is marked as obsolete in the devices. The other crucial point for

the maintenance of the consistency is at kernel launch. Input arrays are updated in

the device only if there have been most recent writes to them in the host or another

device. Also, output arrays are marked as modified by the device, but they are not

actively refreshed in the host after the execution. Rather, as explained above, an

access in the host will trigger this process. Overall this leads to a lazy copying policy

that minimizes the number of transfers.

While this automated management is the default, it can be avoided in order to

improve performance. For example, the user may get the raw pointer to the array

data in the host through the Array method data and perform the accesses through

the pointer. This method has as an optional argument a flag to indicate whether

the array will be read, written or both through the pointer; if not provided, both

kinds of accesses are assumed. With this information the host data is updated if

1 Array<float, 1> a(N), b(N);

2 ...

3 for(int i = 0; i < N; i++)

4 a(i) = b(i);

(a) automated management

1 Array<float, 1> a(N), b(N);

2 ...

3 float ∗pa = a.data(HPL WRITE);

4 float ∗pb = b.data(HPL READ);

5

6 for(int i = 0; i < N; i++)

7 pa[i] = pb[i];

(b) manual management

Figure 2.4: Usage of Arrays in host code
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necessary, and the status of the array is correctly tracked. Figure 2.4 illustrates both

possibilities. In the case of Fig. 2.4(a) HPL automatically tracks the state of the

arrays and makes the required updates, but the check is performed in every access.

In Fig. 2.4(b), however, the user explicitly indicates in lines 3 and 4 that Array a

will be overwritten in the host, while b should be brought from the device with the

newest version, unless such version is of course the one in the host. Data are then

accessed through pointers in line 7, incurring no overhead.

2.2.2. HPL embedded language

The second requirement for writing kernels using its embedded language, after

the usage of the HPL datatypes, is to express control flow structures using HPL

keywords. The constructs are the same as in C++, but the difference is that an

underscore finishes their name (if , for , . . . ) and that the arguments to for are

separated by commas instead of semicolons (see Line 9 in Figure 2.2).

Given the SPMD nature of the execution of kernels, an API to obtain the global,

local and group ids as well as the sizes of the domains and numbers of groups

described in Section 2.1 is critical. This is achieved by means of the predefined

variables displayed in Table 2.1.

The HPL kernels are written as regular C++ functions that use these elements

Meaning First dimension Second dimension Third dimension
Global id idx idy idz
Local id lidx lidy lidz
Group id gidx gidy gidz
Global domain size szx szy szz
Local domain size lszx lszy lszz
Number of groups ngroupsx ngroupsy ngroupsz

Table 2.1: Predefined HPL variables.

1 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
2 y[idx] = a ∗ x[idx] + y[idx];

3 }

Figure 2.5: SAXPY kernel in HPL
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and whose parameters are passed by value if they are scalars, and by reference

otherwise. For example, the SAXPY (Single-precision real Alpha X Plus Y) vector

BLAS routine, which computes Y = aX + Y , can be parallelized with a kernel in

which each thread idx computes y[idx]. This results in the code in Fig. 2.5.

The kernel functions can be instantiations of function templates, i.e., C++ func-

tions that depend on template parameters. This is a very useful feature, as it

facilitates generic programming and code reuse with the corresponding boost in

productivity. In fact, templates are one of the most missed features by OpenCL

developers, who can finally exploit them on top of OpenCL, the current backend

for our library, thanks to HPL. A small kernel to add two 2-D arrays a and b into

a destination array c, all of them with elements of a generic type T, is shown in

Fig. 2.6. The kernel will be executed with a global domain of the size of the arrays,

and the thread with the global id given by the combination of idx and idy takes

care of the addition of the corresponding elements of the arrays.

HPL functions: HPL provides several functions very useful for the development

of kernels. For example, barrier performs a barrier synchronization among all the

threads in a group. It accepts an argument to specify whether the local memory

(argument LOCAL), the global memory (argument GLOBAL) or both (LOCAL|GLOBAL)

must provide a coherent view for all those threads after the barrier. Fig. 2.7(a)

illustrates its usage in a kernel used in the computation of the dot product between

two vectors v1 and v2. An instance of the kernel, which is run using groups (local

domain size) of M threads, is executed for each one of the elements of the vectors

so that thread idx multiplies v1[idx] by v2[idx]. The reduction of these values

is achieved in two stages. First, a shared vector vec of M elements located in the

local memory stores the partial result computed by each thread in the group. Once

the barrier ensures all the values have been stored, the thread with the local id 0

1 template<typename T>

2 void addmatrices(Array<T,2> c, Array<T,2> a, Array<T,2> b) {
3 c[idx][idy] = a[idx][idy] + b[idx][idy];

4 }

Figure 2.6: Generic HPL kernel to add bidimensional arrays of any type
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1 #define M 64

2

3 void dotp(Array<float,1> v1,

4 Array<float,1> v2,

5 Array<float, 1> pSum) {
6 Int i;

7 Array<float, 1, Local> vec(M);

8

9 vec[lidx] = v1[idx] ∗ v2[idx];

10

11 barrier(LOCAL);

12

13 if ( lidx == 0 ) {
14 for ( i = 0, i < M, i++ ) {
15 pSum[gidx] += vec[i];

16 }
17 }
18 }

(a) basic manual reduction

1 #define M 64

2

3 void dotp(Array<float,1> v1,

4 Array<float,1> v2,

5 Array<float, 1> pSum) {
6

7 reduce(pSum[gidx],

8 v1[idx] ∗ v2[idx],

9 ”+”).groupSize(M).inTree();

10 }

(b) using reduce and binary tree reduction

Figure 2.7: Dot product kernels in HPL

reduces them. There are more efficient algorithms to perform this reduction, but

our priority here is clarity. The result is stored in the element of the output vector

pSum associated to this group, which is selected with the group id gidx. In a second

stage, when the kernel finishes, the host reduces the contents of pSum into a single

value.

Another example of useful HPL function is call, used for invoking functions

within kernels. For example, call(f)(a,b) calls function f with the arguments a

and b. Of course the routine must also be written using the HPL data types and

syntax. HPL will internally generate code for a routine and compile it only the first

time it is used; subsequent calls will simply invoke it. It should be mentioned that

routines that do not include a return statement can also be called with the usual

f(a,b) syntax. The difference is that they will be completely inlined inside the code

of the calling function.

This behavior of call raises the issue of how HPL kernels are transformed into

a binary suitable to run on a given device. This is a two-step process that is hidden

from the user. In the first stage, called instantiation, the kernel is run as a regular
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C++ code compiled in the host application. The fact that this code is written using

the embedded language provided by HPL allows the library to capture all the data

definitions, computations, control flow structures, etc. involved in the code, and

build a suitable internal representation (IR) that can be compiled, as a second step,

into a binary for the desired device. Our current implementation relies on OpenCL

C [62] as IR because, as the open standard for the programming of heterogeneous

systems, it provides the HPL programs with portability across the wide range of

platforms that already support it. There are not, however, any restrictions that

preclude the usage of other IRs and platforms as backend. In fact efforts were made

in the development of the library to facilitate this possibility, for example by placing

most OpenCL-dependent code in a separate module. The aim is for heterogeneous

applications written in HPL to have the potential both to preserve the effort spent

in their development even in environments where OpenCL is not available and to

exploit more efficient backends where possible.

C++ code in HPL kernels: Since the kernel is run as a regular C++ routine

during the instantiation, variables of standard C++ types can appear in the kernel.

These variables will not appear in the kernel IR; rather, they will be replaced by

a constant with their value at the points of the kernel in which they interact with

the HPL embedded language elements. By taking advantage of this property, the

macro M used in lines 7 and 14 of Fig. 2.7(a) and defined as a constant in line 1,

could have been instead defined as an external integer variable. The best value for

the group size could have been chosen at runtime and stored in this variable before

the kernel was instantiated, which happens when it is invoked for the first time. At

that point, any reference to M in the kernel would be replaced by its actual value in

the IR.

For the reasons explained above, standard C++ code, such as computations and

control flow keywords, can also appear in kernels. Just as the variables of a type

other than Array, they will not appear in the IR. In their case, they will simply

be executed during the instantiation. In this way, they can be used to compute at

runtime values that can become constants in the kernel, to choose among different

HPL code versions to include in the kernel or to simplify the generation of repetitive

codes. This is illustrated in Fig. 2.8, where r, a and b are 2-D Arrays of m×n, m×m
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and m×n elements, respectively, and in which m and n are C++ integers chose value

is only known at runtime, but remains fixed once computed, and the matrix a is

known to be upper triangular. The code computes r=a×b avoiding computations

on the zeros of the lower triangle of a. HPL first helps by allowing the direct usage

of m and n in the kernel without having to pass them as arguments. If the number

of iterations of the innermost loop is above some threshold C, the matrix product

is computed using HPL loops whose optimization is left to the backend compiler.

Otherwise the code runs the loops in C++ so that they get completely unrolled

during the instantiation, which should enhance the performance in GPUs given the

properties of these devices. This gives place to (m × (m + 1) × n)/2 lines of code

with the shape of line 11 in the figure, each one with a combination of the values

of i, j and k. In CUDA or OpenCL the compiler may have trouble applying this

optimization due to the triangular loop, the variable nature of m and n or both,

so the programmer would have to perform this tedious and error-prone process by

hand. Nevertheless, the HPL user can write the code in Fig. 2.8, knowing that

the loops will only run during the instantiation, generating the required versions of

line 11 with the appropriate frozen values of i, j and k. These lines will be part of

the kernel IR due to the use of the variables of type Array.

As can be seen, regular C++ embedded inside HPL kernels acts as a metapro-

gramming language that controls the code generated for the kernels. This provides

HPL with advanced run-time code generation (RTCG) abilities that simplify the

creation of versions of a kernel optimized for different situations as well as the ap-

1 if( ( (m ∗ (m + 1) ) / 2 ) ∗ n > C ) {
2 Int i, j, k;

3 for ( i = 0, i < m, i++ )

4 for ( j = 0, j < n, j++ )

5 for ( k = i, k < m, k++ )

6 r[i][j] += a[i][k] ∗ b[k][j];

7 } else {
8 for( int i = 0; i < m; i++ )

9 for( int j = 0; j < n; j++ )

10 for( int k = i; k < m; k++ )

11 r[i][j] += a[i][k] ∗ b[k][j];

12 }

Figure 2.8: Using regular C++ in a kernel to generate an unrolled matrix product
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plication of several optimizations. This property is particularly valuable for HPL

given the diversity of heterogeneous devices on which the kernels could be run and

the high dependence of their performance on the exact codification chosen. In fact,

optimized codes for different platforms using the adaptive properties of the HPL

kernels were tested and measured in [43] and [42], obtaining very good results.

The metaprogramming approach provided by HPL, also called generative metapro-

gramming [31, 57], is much more powerful than other well-known metaprogramming

techniques such as those based on C++ templates [98, 1]. For example, templates

are very restricted by the requirement to perform their transformations only with

the information available at compile-time. Another problem is their somewhat cum-

bersome notation (specializations of functions or classes are used to choose between

different versions of code, recursion rather than iteration are used for repetitive

structures, etc.), which complicates their application. This contrasts with our ap-

proach, which takes place at run-time and uses the familiar control structs of C++.

Template metaprogramming has been widely used though in the internal implemen-

tation of HPL in order to optimize the HPL code capture and the backend code

generation, moving computations to compile time whenever possible. Still, most of

the process is performed at runtime, although its cost is negligible, as we will see in

Section 2.3.

The advantages of RTCG are not only provided by HPL as a feature to be

manually exploited by the programmer. Rather, the interface includes facilities to

express common patterns of computation whose codification can be built at runtime

in order to tailor it to the specific requirements needed. An example is reduce, which

accepts as inputs a destination, an input value and a string representing an operator

and which performs the reduction of the input value provided by each thread in a

group using the specified operator into the destination. This routine actually builds

an object that generates at run-time the code for the reduction. This object accepts,

by means of methods, a number of optional hints to control or optimize the code

generated. As an example, the dot product kernel in Fig. 2.7(a) is simplified using

this feature in Fig. 2.7(b). In this case, we provide the optional hint that the kernel

will be run using groups of M threads to help generate a more optimized code. We

also request the reduction to be performed using a binary tree algorithm, which

often yields better performance than the alternative used in Fig. 2.7(a), at the cost

of a more complex codification. As of now reduce supports nine code generation
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modifiers. Other examples of modifiers are requesting a maximum amount of local

memory to be used in the reduction process, indicating a minimum group size rather

than the exact group size, or specifying whether only one thread needs to write the

result in the destination, which is the default, or whether all of them must do it. The

object builds an optimized code that tries to fulfill all the requests performed while

using the minimum number of resources, computations and thread synchronizations,

and inserts it in the kernel. This mechanism is thus equivalent to having a library

of an infinite number of functions to perform reductions in a thread group, each one

optimized for a specific situation.

HPL kernel analysis: Finally, it should be pointed out that our library does not

merely translate the HPL embedded language into an IR in a passive way. On the

contrary, during this process the code can be analyzed by the library, which enables

it to act as a compiler, gathering information and performing optimizations in the

generation of the IR. As of now, HPL does not yet automatically optimize the IR.

Nevertheless, kernels are analyzed during the instantiation in order to learn which

arrays are only read, only written or both, and in this case, in what order. This

information is used by the runtime to minimize the number of transfers required for

the kernel and host accesses between the host and the device memories in use without

any user intervention, as discussed in the previous section. It also allows to learn

the dependences of each kernel submitted to execution, so that HPL automatically

ensures they are satisfied before it runs, which results in an automatic and effortless

synchronization system. Table 2.2 summarizes the generating process of OpenCL

codes.

2.2.3. Host Interface

The most important part of the host interface is function eval, which requests

the execution of a kernel with the syntax eval(f)(arg1, arg2, . . . ) where f is the

routine that implements the kernel. As mentioned before, scalars are passed by

value and arrays are passed by reference, and thus allow the returning of results.

Specifications in the form of methods to parameterize the execution of the ker-

nel can be inserted between eval and the argument list. Two key properties are
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Sentence in HPL
kernel

OpenCL code generated Observations

idx,idy,. . . , re-
duce

get global id([0|1]),. . . ,
parameterized reductions

call(g) Function g in OpenCL Takes into account the Array accesses
happened in g to modify the direction
of those of the caller function f passed
as arguments to g

HPL control flow OpenCL control flow
C++ variables Scalar value is captured in

OpenCL code
C++ control flow
sentences

Change the execution flow of the gen-
erating process

HPL Array assign-
ments

Assignments in OpenCL
buffers

Store/Change the directions of the HPL
Arrays used as arguments

Table 2.2: OpenCL generating process.

the global and local domains associated with the kernel run explained in Sec-

tion 2.1, which can be specified using methods global and local, respectively. For

example, if kernel f is to be run on arguments a and b on a global domain of

100 × 200 threads with a local domain of size 5 × 2, the programmer should write

eval(f).global(100, 200).local(5, 2)(a, b).

By default the size of each dimension of the global domain corresponds to the

size of each dimension of the first argument of the kernel, while the local domain is

1 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
2 y[idx] = a ∗ x[idx] + y[idx];

3 }
4

5 int main(int argc, char ∗∗argv) {
6 float myvector[1000];

7 Float a;

8 Array<float, 1> x(1000), y(1000, myvector);

9

10 //the vectors and a are filled in with data (not shown)

11

12 eval(saxpy)(y, x, a);

13 }

Figure 2.9: Array creation and SAXPY kernel usage
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chosen by the library. Fig. 2.9 illustrates a simple invocation of the SAXPY kernel

of Fig. 2.5, also included in this figure for completeness, by means of its pointer in

line 12. The global domain requires one point per element of y, which is the first

argument, while the local domain needs no specification. The example also shows

that host arrays can be created from scratch (x), making the library responsible for

the allocation and deallocation of its storage in the host, or they can use already

allocated host memory by providing the pointer to this memory as last argument to

the constructor (y). In this latter case the user is responsible for the deallocation

too.

Also, our library provides a simple interface to identify and inspect the devices in

the system and their attributes (number of threads supported, amount of memory

of each kind, etc.) and to obtain a handle of type Device to make reference to each

one of them. A final method to control the execution of a kernel is device, which

takes as argument one of these handles in order to choose the associated device for

the execution. If none is specified, the kernel is run in the first device found in the

system that is not a standard CPU. If no such device is found, the kernel is run in

the CPU. The management of the device interface is explained in detail in Chapter

3 as a natural way to introduce the multi-device support in HPL.

The sequence of steps performed by HPL when a kernel is invoked is described

in Fig. 2.10. In the first place, an IR of the kernel suitable for the chosen device

is sought in an internal cache. If such IR is not found, the kernel is instantiated

following the process described in the previous section. Once the required IR is

available, it could have been already compiled to generate a binary for the chosen

device or not. This is checked in a second cache, which is updated with that binary

after the corresponding compilation if it is not found. At this point, HPL transfers

to the device those and only those data needed for the execution. This is possible

thanks to the information that is automatically tracked on the status of the HPL

arrays, and the knowledge of which of the kernel arguments are inputs, which is

obtained during the kernel instantiation. As a final step, the kernel is launched for

execution.

As we can see in Fig. 2.10, the kernel evaluation request finishes in the host

side when the device is asked to run the kernel, without further synchronizations

with the device. In this way, HPL kernel runs are asynchronous, i.e., the host
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eval(f) is there an
IR for f?

take it
from cache

generate it and
store it in cache

is there a 
binary for this IR 

and device

take it
from cache

generate it and
store it in cache

transfer 
inputs run kernel

NO NO

YES YES

Figure 2.10: Kernel invocation algorithm.

does not wait for their completion before proceeding to the next statement. This

enables overlapping computations among the host and the device, as well as among

several devices in a straightforward way. There are several ways to synchronize

with the kernel evaluations. As discussed in Section 2.2.1, whenever the host code

accesses an array or submits for execution a kernel that uses it, our runtime analyzes

the dependences with preceding uses of the array, enforces them and performs the

required transfers. There are also explicit synchronization mechanisms such as the

data method of Arrays or the sync method of Devices, which waits for the completion

of all the kernels sent to the associated device and then updates those that have been

modified in the host memory.

Another conclusion from our description of Fig. 2.10 is that kernel instantiations

and compilations are minimized, because each kernel is only instantiated the first

time it is used, and an IR is only compiled when an associated binary does not exist

yet for the chosen device. However, a user might want to reinstantiate a kernel in

some situations. For example, as we mentioned in Section 2.2.2, the instantiation

could depend on the values of external C++ variables, and the user could be inter-

ested in generating several possible instantiations and comparing their performance

in order to choose the best one. For this reason, there is a function reeval with the

same syntax as eval, but which forces the instantiation of a kernel even if there were

already a version in the HPL caches. Also, our library allows the user to retrieve

the string with the IR generated for any kernel, so that it can be inspected and/or

directly used on top of the corresponding backend.
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Support for native OpenCL C kernels

While the semantics of the HPL embedded language are identical to those of C

and its syntax is analogous, users may prefer or need to use native kernels written

in OpenCL C for several reasons, the most important one being that this favors

code reuse. For this reason HPL provides a convenient interface that requires mini-

mum effort while providing much flexibility. Our proposal requires defining a kernel

handle that takes the form of a regular C++ function, and associating it to the

native kernel code. After that point, the native kernel can be invoked using regu-

lar eval invocations on the kernel handle function. These invocations have exactly

the same structure and arguments as those of the kernels written in the HPL em-

bedded language, and they also fully automate the buffer creation, data transfer,

kernel compilation, etc. that largely complicate OpenCL host codes. The possibility

of using the native OpenCL C kernels is the most important contribution to HPL

performed in this chapter.

A kernel handle is a regular C++ function with return type void (just as all

kernels must be), and only its list of arguments matters. In fact its body will never

be executed, so it is sensible to leave it empty. The arguments of the handle are

associated one by one to the arguments of the kernel that will be associated to it.

Namely, each kernel handle function argument must have the HPL type associated

to the corresponding OpenCL C native type. This way, OpenCL C pointers of type T

* will be associated to an Array<T, n> where n should be the number of dimensions

of the underlying array for documentation purposes, although for correct execution

it suffices that its value is 1 or greater. By default HPL arrays are allocated in

the global memory of the device, so this suffices for OpenCL C pointers with the

modifier global. If an input is expected from local or constant memory, then

Array<T, n, Local> or Array<T, n, Constant> must be used, respectively. As for

scalars of type T, we can use an Array<T, 0> or the corresponding convenience type

provided by HPL (Int, Double, . . . ).

While following these rules suffices for a correct execution, a kernel function

handle defined with these arguments may incur in large overheads. The reason is

that by default HPL assumes that the non-scalar arguments are both inputs and

outputs of the associated kernel. This guarantees a correct execution, but it results
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in transfers between the host and the device that are unnecessary if some of those

arguments are only inputs or only outputs. Our extension allows to label whether

an array is an input, an output or both, so that HPL can minimize the number of

transfers and follow exactly the same policies as with the kernels defined with its

embedded language. The labeling consists in using the data types In<Array<...>>,

Out<Array<...>> and InOut<Array<...>> in the list of arguments of the kernel handle

function, respectively.

Once the kernel handle function has been defined, it must be associated to the

native OpenCL C kernel code. This is achieved by means of a single invocation

to the function nativeHandle(handle, kernelName, kernelCode), whose arguments

are the handle, a string with the name of the kernel it is associated to, and finally a

string with the kernel OpenCL C code. The string may also contain other code such

as helper functions, macros, etc. It helps programmability that HPL stores these

strings in a common container, so that if subsequent kernels need to reuse previously

defined items, they need not, and in fact should not, be repeated in the string of

these new kernels. Also, it is very common that OpenCL kernels are stored in

separate files, as it is easier to work on them there than in strings inserted in the host

application and it allows to use them in different programs. The price to pay for this

is that the application must include code to open these files and load the kernels from

them, thus increasing the programmer effort. Our nativeHandle function further

improves the programmability of OpenCL by allowing its third argument to be a

file name. This situation is automatically detected by nativeHandle, which then

reads the code from the given file. All the information related to the function

is stored in a HPL internal structure that is indexed by the handle. The code

is only compiled on demand, the first time the user requests its execution. The

generated binary is stored in an internal cache from which it can be reused, so

that compilation only takes place once. Altogether, nativeHandle replaces the IR

generation stage explained above, being the compilation stage identical to that of

the HPL language kernels. Finally, HPL also offers a helper macro called TOSTRING

that turns its argument into a C-style string, avoiding both the quotes and per-line

string continuation characters otherwise required.

The same saxpy benchmark developed using the HPL embedded language shown

in Fig. 2.9 has been transformed to use a native OpenCL C kernel in Fig. 2.11.
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The OpenCL kernel, called saxpy simple is stored in a regular C-style string called

kernel code, and it is associated to the handle function saxpy native. Notice that

since eval requires its arguments to be Arrays, the kernel arguments are defined

with this type in the host. Let us remember that it is possible to define them so

that they use the data of a preexisting data structure, which facilitates the interface

with external code. This strategy has been followed in this example with the Array

y, which uses in the host the storage of the regular C-style matrix myvector.

2.3. Evaluation

This section evaluates separately the programmability benefits and the perfor-

mance achieved by HPL using the C++ embedded language and native OpenCL

C kernels. In both cases, the baseline of our studies is OpenCL, since this is the

only tool that provides the same degree of portability. Also, as it is the current

backend for HPL, the comparison allows for the measurement of the overhead that

HPL incurs.

1 const char ∗ const kernel code = TOSTRING(

2 kernel void saxpy simple( global float ∗y, const global float ∗x, const float a)

3 {
4 y[get global id(0)] = a ∗ x[get global id(0)] + y[get global id(0)];

5 } );

6

7 void saxpy native(Array<float, 1> y, In<Array<float, 1>> x, Float a) { }
8 ...

9 float myvector[1000];

10 Float a;

11 Array<float,1> x(1000), y(1000,myvector);

12 ...

13 nativeHandle(saxpy native, ”saxpy simple”, kernel code);

14 eval(saxpy native)(y, x, a);

Figure 2.11: Saxpy using native OpenCL C kernel with HPL
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2.3.1. Embedded language kernels

This evaluation is based on six codes, namely the sparse matrix vector mul-

tiplication (spmv) and reduction benchmarks of the SHOC Benchmark suite [32],

the matrix transpose and Floyd-Warshall codes from the AMD APP SDK, the EP

benchmark of the NPB suite [5], and the shallow water simulator with pollutant

transport (ShWa) first presented in [102], whose OpenCL version is thoroughly de-

scribed and evaluated in [71]. The first five codes were already used in a preliminary

evaluation in [22]. This study relied on the original OpenCL implementations from

the corresponding suites, which include several non-basic routines and use the C

interface of the OpenCL framework. Although EP had not been taken from any

distribution, the baseline code suffered similar problems. The HPL versions of spmv

and reduction also had some unneeded routines inherited from the original OpenCL

implementation.

All the codes have been streamlined and cleared for the evaluation performed

in this Thesis. The OpenCL baselines have also been translated to C++ in order

to use the much more succinct OpenCL C++ interface, so that by avoiding the

C++ versus C expressivity difference in the host interface, the programmability

comparison is much fairer. The same policies were followed in the translation of

the shallow water code from the original CUDA implementation [102]. The result

is that now the number of source lines of code excluding comments (SLOC) of our

OpenCL baselines is up to 3.3 times smaller than in [22], as Table 2.3 indicates.

The HPL codes were also improved with features implemented after the publication

of [22], such as the customized reduce mechanism described in Section 2.2.2.

Table 2.3 further characterizes the benchmarks indicating whether their kernels

Benchmark SLOCs Routines Repetitive Cooperation Arithmetic
OpenCL invocation intensity

Spmv 500 medium low
Reduction 399 1 kernel high low
Matrix transpose 373 low low
Floyd-Warshall 407 1 kernel no low
EP 605 X low high
Shallow water 965 X 3 kernels low high

Table 2.3: Benchmarks characteristics.



46 Chapter 2. The Heterogeneous Programming Library

use subroutines, whether there is a single kernel invocation or repetitive invoca-

tions (and in this case of how many kernels), the degree of cooperation between

the threads in the kernels and the arithmetic intensity. The repetitive invocation of

kernels is interesting for the analysis of the cost of the kernel executions and syn-

chronizations with the host, including the effectiveness of the mechanisms to avoid

unneeded transfers between host and device memory. Reduction and Floyd-Warshall

repetitively invoke in a loop a single kernel, while the shallow water simulator per-

forms a simulation through time in a sequential loop in which in each iteration three

different kernels are run one after another, there being also computations in the host

in each time iteration.

The cooperation column qualitatively represents the weight of synchronizations

and data exchanges between threads in the kernels. For example, in spmv each

thread first performs part of the product of the compressed row of a matrix by a

vector, and then performs a binary tree reduction with other threads in its group to

compute the final value for the row. The reduction benchmark focuses intensively in

reductions that imply continuous data sharing and synchronization among threads.

In matrix transpose, each thread group loads the local memory with a sub-block of

the matrix to transpose, then synchronizes once with a barrier, and finally copies

the data from the local memory to the transposed matrix. In Floyd-Warshall, each

thread performs its own computations without the use of local memory or barriers.

In EP, each thread runs the vast majority of the time working on its own data, there

being a final reduction of the results of each thread. The situation is similar in the

shallow water simulator, in which threads only need to cooperate in a reduction in

the most lightweight kernel.

Finally, the arithmetic intensity, which measures the ratio of computations per

memory word transferred, is a usual indicator for characterizing applications run in

GPUs. We consider low arithmetic intensity if the number of computing instructions

is similar to the number of memory instructions. On the contrary, the arithmetic

intensity is high if the ratio of computing instructions per each memory instructions

is high. Due to the much higher cost of memory accesses compared to computations

in these devices, high arithmetic intensity is a very desirable property for GPGPU

computing. As can be seen in Table 2.3, our evaluation relies on codes with a wide

range of different characteristics.
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Programmability analysis

Productivity is difficult to measure, thus most studies try to approximate it from

metrics obtained from the source code such as the SLOCs. Lines of code, however,

can vary to a large extent in terms of complexity. Therefore, other objective metrics

have been proposed to more accurately characterize productivity. For example, the

programming effort [55] tries to estimate in a reasoned way the cost of developing a

code by means of a formula that takes into account the number of unique operands,

unique operators, total operands and total operators found in the code. For this,

it regards as operands the constants and identifiers, while symbols or combinations

of symbols that affect the value or ordering of operands constitute the operators.

Another indicator of the complexity of a program is the number of conditions and

branches it contains. Based on this idea, [77] proposed as a measure of complexity

the cyclomatic number V = P + 1, where P is the number of decision points or

predicates.

Figure 2.12 shows the reduction of SLOCs, programming effort [55] and the cy-

clomatic number [77] of HPL with respect to an OpenCL implementation of the

considered benchmarks. Figure 2.12(a) takes as the baseline an OpenCL program

including the initialization code to choose a suitable platform and device, build the

context and command queue used by this framework, and load and compile the ker-

nels. The initialization code is written in a very generic way, so that it maximizes

portability by supporting environments with multiple OpenCL platforms installed

and/or several devices, and it controls all the errors that can appear during the pro-

cess. The code is in fact taken with minor adaptations from the internals of HPL in

order to provide exactly the same high degree of portability and error control. This

is the OpenCL version whose SLOCs appear in Table 2.3. Nevertheless, the initial-

ization of the OpenCL environment as well as the loading and compilation of the

kernels can be easily placed in routines that can be reused across most applications,

thus avoiding much programming cost. For this reason Fig. 2.12(b) takes as the

baseline for the improvement in productivity metrics provided by HPL a factorized

OpenCL code that replaces with a few generic routine calls this heavy initialization

of ∼270 SLOCs. The two baselines considered thus represent a reasonable maximal

and minimal programming cost of the OpenCL version of each application, even if

the minimal one is somewhat unfair to HPL, as the removed code has still to be
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written at some point.

Even compared to the more efficiently programmed OpenCL version, HPL re-

duces the SLOCs between 21% and 48%, the programming effort between 15% and

63% and the cyclomatic number between 18% and 44%. While these numbers are

very positive, complexity measurements on the code do not tell the whole story. Our

experience when programming with the HPL embedded language is that it speeds

up the development process in two additional ways not reflected in the code. The

first way is by moving the detection of errors to an earlier point. Concretely, since

OpenCL kernels are compiled at runtime, the application needs to be recompiled (if

there are changes in the host code), sent to execution, and reach the point where

the kernel is compiled to find the usual lexical and syntactical errors, fix them and

repeat the process. With HPL the detection of the most common problems of this

kind (missing semicolons, unbalanced parenthesis, mistyped variables, . . . ) happens

right at the compilation stage, as in any C++ program. Besides in many integrated

development environments (IDEs) the integration of the compiler with the editor

allows quickly going through all the errors found by the compiler and fix them. We

have seen a productivity improvement thanks to the faster response time enabled

by HPL.

The second way how the HPL embedded language further improves productiv-

ity is by providing better error messages. This way, sometimes the error messages
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Figure 2.12: Productivity metrics reduction in HPL with respect to two OpenCL
baseline implementations
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obtained from some OpenCL compilers were not helpful. For example, some de-

tectable at compile or link time errors, such as invoking a nonexistent function due

to a typo, were reported using a line of a PTX assembly file, without any mention

of the identifier or line of OpenCL where the error had been made. Obviously, this

is an obstacle to the productivity of the average user who has to track the source

of this problem and fix it. With HPL, the C++ compiler always clearly complains

about the unknown identifier in the point of the source code where it is referenced or,

in the worst case, when the error is detected during linking, at least it indicates the

object file and name of the missing function, largely simplifying the programmer’s

work.

Performance analysis

This section compares the performance of the baseline OpenCL applications with

those developed in HPL in two systems. The first is a host with 4xDual-Core Intel

2.13 GHz Xeon processors that are connected to a Tesla C2050/C2070 GPU, a device

with 448 thread processors operating at 1.15 GHz and 3GB of DRAM. This GPU

operates under CUDA 4.2.1 with an OpenCL 1.1 driver. In order to evaluate the

very different environments and test the portability of the applications, the second

machine selected was an Intel Core 2 at 2.4GHz with an AMD HD6970 GPU with 2

GB of DRAM and 1536 processing elements at 880 MHz operating under OpenCL

1.2 AMD-APP. The applications were compiled with g++ 4.7.1 using optimization

level O3 on both platforms.

The performance of OpenCL and HPL applications is compared for the NVIDIA

and AMD GPU based systems in Fig. 2.13(a) and Fig. 2.13(b), respectively. The

runtime of both versions was normalized to that which was achieved by the OpenCL

version and it was decomposed in six components: kernel creation, kernel compila-

tion, time spent in CPU to GPU transfers, time required by GPU to CPU transfers,

kernel execution time, and finally host CPU runtime. The kernel creation time ac-

counts in the OpenCL version for the loading of the kernel source code from a file, as

this is the most usual approach followed, particularly for medium and large kernels.

In the HPL columns, it corresponds to the time our library required to build the

kernel IR from the C++ embedded language representation. The other portions of

the runtime correspond to the same basic steps in both versions. The measurements
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Figure 2.13: Performance of the OpenCL and the HPL versions of the codes, nor-
malized to the runtime of the OpenCL version

were made using synchronous executions, as most profilers do for accuracy reasons,

thus there was no overlapping between host computations and GPU computations

or transfers. It should be pointed out that it is particularly easy to obtain this de-

tailed profiling for the HPL codes because when our library and the application are

compiled with the flag HPL PROFILE, HPL automatically gathers these statistics for

each individual kernel invocation as well as for the global execution of the program.

The user can retrieve these measurements by means of a convenient API.

The experiments consisted of multiplying a 16K×16K sparse matrix with a 1%

of nonzeros by a vector in spmv, adding 16M values in reduction, transposing a

8K×8K matrix, applying the Floyd-Warshall algorithm on 1024 nodes, running EP

with class C, and finally simulating the evolution of a contaminant during one week

in a mesh of 400 × 400 cells that represents an actual estuary (Rı́a de Arousa, in

Galicia, Spain) using real terrain and bathymetry data. The input and the vi-

sual representation of the results of this real-world application are illustrated in

Fig. 2.14(a), with the Google Maps satellite image of the region where the simu-

lation takes place, the illustration of the initial setup in Fig. 2.14(b), in which the

contaminant is concentrated in a small circle with a radius of 400m., and Fig. 2.14(c)

where we see how it evolved after eight days via a color scale which indicates the

normalized concentration of the pollutant. All the benchmarks operate on single-

precision values, the exceptions being Floyd-Warshall, which works with integers,

and EP, which is based on double-precision floating point computations. It should
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also be mentioned that the shallow water simulation kernels largely rely on vector

types both in the OpenCL and HPL versions.

The most relevant conclusion that can be drawn from Fig. 2.13 is that the per-

formance of HPL applications is very similar to that of the corresponding native

OpenCL code. The average slowdown of HPL with respect to OpenCL across these

tests was just 1.5% and 1.3% in the NVIDIA and AMD GPU based systems, respec-

tively. The maximum overhead measured has been 6.4% for Floyd-Warshall in the

NVIDIA system, followed by a 4.4% for this same algorithm in the AMD system,

and it is mostly concentrated in the CPU runtime in both cases. The reason is that

this application launches 1024 consecutive kernel executions of very short length (0.1

ms) to the GPU, without any array transfer (only a scalar is sent), and unsurpris-

ingly the HPL runtime incurs in additional costs in the kernel launches with respect

to the OpenCL implementation. This was also the main overhead found in the HPL

versions of the shallow water simulator, as it is the other application that launches

many kernel executions. At this point it is relevant to remember that the mea-

surements were taken using synchronous executions for the benefit of the detailed

analysis of all the execution stages. However, HPL runs by default in asynchronous

mode, which enables partially overlapping this overhead with GPU computations

and transfers. This way, the overhead, in a non-profiled run of HPL with respect

to an OpenCL implementation of Floyd-Warshall that also exploits asynchronous

execution, is 5% and just 0.44% in the NVIDIA and AMD systems, respectively.

It is interesting to note in Fig. 2.13 that the same code spends its runtime in quite

different activities in the two platforms tested. For example, compilation consumes

much more resources in the AMD than in the NVIDIA system. Also, the kernel

creation time is always negligible.

(a) satellite image (b) pollutant drop (c) situation after 8 days

Figure 2.14: Simulation of evolution of a pollutant in Ŕıa de Arousa
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While our sparse matrix vector product, reduction, matrix transpose and Floyd-

Warshall algorithm baseline OpenCL codes are existing works taken from well-known

external sources, this is not the case for NAS Parallel Benchmark EP and the shal-

low water simulator, which we have developed ourselves. Thus it can be interesting

to compare these baselines with other works in order to evaluate their quality. Al-

though it is not feasible to find another shallow water simulator with exactly the

same characteristics, the quality of our OpenCL implementation can be assessed

in our recent publication [71]. As for EP, Table 2.4 shows the total runtime for

problem size C of the SNU NPB suite [89] EP and the EP we developed in the two

platforms tested, both when written in OpenCL and in HPL. We can see that HPL

has a minimal overhead of around 0.85-1% for both EP versions in the NVIDIA

system, which drops to 0.5% in the AMD GPU. Regarding the performance of our

implementation, it is competitive with respect to the SNU NPB implementation,

and in fact it outperforms it by a small margin of 5.7% and 2.4% in the NVIDIA

and AMD systems, respectively. As a result, our HPL version slightly outperforms

the SNU OpenCL native implementation in both platforms.

The runtime of the OpenCL and HPL versions of the shallow water simulator is

shown for varying problem sizes in the two platforms considered in Fig. 2.15. This

code was chosen because it is the largest and unlike the others has several kernels,

which are invoked repetitively during the simulation, and also because it is an actual

complete application. The figure shows the runtimes for mesh sizes from 100× 100

to 800 × 800 in steps of 100 cells. The runtimes of the OpenCL version went from

103.5 and 90 seconds for the smallest mesh, to 4794 and 2548 seconds for the largest

in the NVIDIA and AMD systems, respectively. In all of the cases the runtime was

mostly dominated by the execution times of the kernels, followed by the operations

in the host CPU. The periodic transfers of data from the GPU to CPU are only

noticeable in the AMD system. The runtimes were very similar for both versions

Tesla C2050/C2070 HD6970
Benchmark OpenCL HPL OpenCL HPL

SNU NPB EP 2.905 2.930 4.513 4.536
locally developed EP 2.745 2.772 4.408 4.428

Table 2.4: NAS Parallel Benchmark EP runtimes for class C (in seconds)
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Figure 2.15: Runtime of the OpenCL and the HPL versions of the shallow water
simulator for different problem sizes

for all the problem sizes, the average slowdown of HPL with respect to OpenCL

being 3.4% and 4.6% in the NVIDIA an AMD GPU based systems, respectively.

The HPL overhead is concentrated in the host CPU usage implied by its runtime.

As we previously explained, this is a maximal bound of the actual overhead found

in a non-profiled run, in which the asynchronous execution between host and device

hides part of it.

2.3.2. Native OpenCL C kernels

The evaluation of the native OpenCL feature of HPL is based on three codes of

the SNU NPB suite [89] (FT, IS and EP) and the same shallow simulator used in

Section 2.3.1, which was developed in [102]. In these tests, we also ported the codes

from C to C++, so that our baselines use the more succinct C++ OpenCL host API,

which exploits all the advantages of this language such as its object orientation. This

way the language characteristics play a neutral role in the comparison. As in the

evaluation of the embedded language kernels illustrated in Figure 2.12(b), for this

evaluation we have also encapsulated the initialization of OpenCL (platform and

device selection, creation of context and command queue, loading and compilation

of kernels) in routines that can be used across most applications and replaced these

tasks with invocations to these common routines, so that they are not part of the

evaluation. As a result our baseline corresponds to the bare minimum amount of
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code that a user has to write for these applications when using the OpenCL host

C++ API.

Table 2.5 summarizes the most relevant characteristics of the baseline bench-

marks with respect to the productivity evaluation. For each benchmark the number

of source lines of code (SLOCs) excluding comments and empty lines for the host

side code, the programming effort [55] of the host side code, the SLOCs of its ker-

nels, the number of kernels and the number of arrays found in the arguments of the

invocations of those kernels are listed. The SLOCs of the kernels are only given for

informative purposes, as the changes only affect the host side of the applications. Fi-

nally, the number of kernels and related host-side arrays are relevant to interpret the

productivity results, since once the usual initialization tasks required by OpenCL

have been reduced to the minimum expression in the host code, the OpenCL re-

lated activities left basically focus on the creation of buffers, parameterization and

execution of kernels, and the transfers between the device and the host.

In order to better gauge the advantages of HPL our evaluation includes Vien-

naCL [86] because it is one of the best alternatives for improving the usability of

OpenCL in C++ and it is a live and well supported project. We had to make

some adjustments in applications with kernels that required local memory arrays

and OpenCL vector types in their arguments to adapt them to ViennaCL because

it does not support these possibilities.

Figure 2.16 shows the reduction of the SLOCs and the programming effort of

the host side of our baseline applications when they are written with ViennaCL and

HPL. The last group of columns represents the average reduction. Even when our

baseline enjoys the C++ OpenCL API and the common boilerplate code required by

OpenCL has been factored out, ViennaCL and HPL still provide average noticeable

Table 2.5: Benchmarks characteristics.
Benchmark SLOCs Effort SLOCs Number Number

host host kernels of kernels of arrays
FT 641 6118988 567 8 8
IS 394 2705245 571 11 12
EP 163 469038 238 1 2
ShWa 186 893085 343 3 6
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reductions of the programming cost metrics between 20% and 42%. Interestingly,

the effort, which is more proportional to the actual programming cost than SLOCs,

is the metric that obtains the largest reductions in all the benchmarks. Finally,

HPL reduces SLOCs and particularly effort stronger than ViennaCL. It must be

mentioned that the kernels were included in the host as a string. If they had been

loaded from files, the automatic file loading feature of HPL would have allowed it

to further improve programmability with respect to the other alternatives.

We also measured the overhead of ViennaCL and HPL with respect to the

OpenCL C++ API in an NVIDIA Tesla Fermi 2050 with 3GB whose host has

a Intel Xeon X5650 (6 cores) at 2,67GHz and 12GB RAM, and an Intel Xeon Phi

with 60 cores at 1.056 GHz and 8GB with a host with 2 Intel Xeon CPU E5-2660

(8 cores per CPU) at 2.20GHz with 64GB RAM. The compiler was g++ 4.7.2 with

optimization level -O3. The ViennaCL and HPL runtimes use the same strategies

and functions as our optimized OpenCL baselines for data and kernel management,

thus any time difference is related to the overheads of these libraries. We run very

small tests, with class S for FT, IS and EP, and a 100 × 100 mesh for ShWa to

measure the overhead in the worst conditions, i.e., when the portion of the runtime

associated to the OpenCL management (not the kernel runs or host computations)

is maximal. We also run more representative tests using FT class B, IS class C, EP

class C and ShWa on a mesh of 500 × 500 cells. The three versions achieved the

    FT         IS         EP        ShWa      average  
0

10

20

30

40

50

60

70

%
 r

e
d
u
c
ti
o
n
 w

.r
.t
 O

p
e
n
C

L
 C

+
+

 

 

SLOCs VCL
SLOCs HPL
effort VCL
effort HPL

Figure 2.16: Productivity improvement in
ViennaCL and HPL with respect to the
baseline

Fermi 2050  Xeon Phi 
0

0.5

1

1.5

2

2.5

%
 o

v
e
rh

e
a
d
 w

.r
.t
 O

p
e
n
C

L
 C

+
+

 

 

100x100 VCL
100x100 HPL
500x500 VCL
500x500 HPL

Figure 2.17: Overhead of ViennaCL
and HPL in ShWa with respect to the
baseline



56 Chapter 2. The Heterogeneous Programming Library

same performance in both platforms for every benchmark except ShWa. The reason

is the very large number of kernel runs of this code, 492729 for the small test and

2517711 for the medium one, which allows to accumulate some overhead, shown in

Fig. 2.17. As expected the larger automation of HPL generates more overhead than

ViennaCL. However this is still very small, and it only reaches 2.5% on a baseline

execution of just 17.86 s. in the GPU. For the more representative 500 × 500 runs

this overhead falls to a negligible 0.16% and 0.61% in the GPU and the Xeon Phi,

respectively.

2.4. Related work

Much research has been devoted to improve the programmability of heteroge-

neous systems, particularly since the rise of modern hardware accelerators. This way,

CuPP [23] and EPGPU [68] facilitate the usage in C++ programs of CUDA [80]

and OpenCL [62], respectively, by providing a better interface and a runtime that

takes care of low level tasks such as memory management and kernel invocation. A

higher degree of abstraction is provided by CUDPP [88], a library of data-parallel

algorithm primitives that can only run a predefined set of operations and only in

CUDA-supported devices. ViennaCL [86] mainly focuses on a convenient C++ API

for running linear algebra operations on top of OpenCL, although it also simplifies

the execution of custom kernels provided as strings in OpenCL C.

Thrust [19] provides an interface inspired in STL to perform operations on 1D

vectors in either CPUs of CUDA-supported GPUs. Its user-defined operations are

restricted to being one-to-one, that is, each element of the output vector is com-

puted using a single value from each input vector and the user cannot control basic

execution parameters such as numbers of threads or kinds of memory to use.

SkePU [38] and SkelCL [93] further explore the idea of using skeletons to express

computations in heterogeneous systems. They can run on top of OpenCL (SkePU

also supports CUDA and OpenMP) and they support up to 1D (OpenCL) or 2D

(SkePU) arrays. Their skeletons accept user functions in the form of strings for

OpenCL, or class member functions for the CUDA and OpenMP backends. However,

since these latter functions must be representable as strings, they have in practice the
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same restrictions as strings. In this way, contrary to HPL kernels, which can capture

external variables and perform RTCG even under the control of the programmer,

their code must be constant at compile time and include all the definitions of the

values they use. An additional restriction in the case of SkePU is that since all its

backends use the same user function code, only the common denominator of the

language supported by all the backends can appear in the user code, which can

preclude many important optimizations. These libraries, which also support the

usage of multiple GPUs in a straightforward way, are excellent option to run in

heterogeneous devices for those computations whose structure naturally conforms

to one of their skeletons.

The PyCUDA and PyOpenCL [64] toolkits simplify the usage of hardware ac-

celerators in the high-level scripting language Python to perform many predefined

computations. Custom user functions in the form of strings are also supported,

although they are restricted to element-to-element computations and reductions.

These projects also emphasize RTCG, although in their case it is based on string

processing in the form of keyword replacement, textual templating and syntax tree

building. These approaches require learning a new, and sometimes quite complex,

interface to perform the corresponding transformations. This contrasts with the

natural integration of HPL kernels in C++ and the direct and simple use of this

language to control RTCG.

The kind of RTCG provided by HPL is supported by TaskGraph [18] and Intel

Array Building Blocks (ArBB) [78] because they also build at runtime their kernels

from a representation using a language embedded in C++. TaskGraph combines

code specialization with runtime dependence analysis and restructuring optimiza-

tions. It has been used to build active libraries that can compose and optimize

sequences of kernels [87], and while it exposes no parallel programming model, its

authors have explored parallel schemes using it. Regarding ArrBB, it only targets

multicore CPUs, however, and it has a very different programming model, with

special instructions to copy data in and out of the space where the kernels are run

and does not offer the possibility of controlling the task granularity, optimizing the

memory hierarchy usage or cooperating between parallel threads.

Copperhead [28] is an embedded language that allows the exploitation of het-

erogeneous devices, although only NVIDIA GPUs, in order to run computations
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expressed with data-parallel primitives and a restricted subset of Python, which is

its host language. It is a powerful tool for expressing computations that adjust to the

usual data-parallel abstractions and in which all the code generation and execution

parameters are transparently controlled by the Copperhead runtime. This results in

a high level of abstraction that benefits programmability, but which provides little

or no programmer control on the result, which largely depends on the ability of

the compiler. These characteristics are typical of compiler directives, which have

been also explored in the area of heterogeneous programming [20, 69, 56, 81]. The

number of directives and clauses that some of these approaches require to gener-

ate competitive code is sometimes on par with or even exceeds the programming

costs of library-based approaches. More importantly, the lack of a clear performance

model [79] and the suboptimal code generated by compilers in many situations have

already led to the demise of promising approaches of this kind such as HPF [58].

The state of affairs is even worse in the case of heterogeneous systems because they

allow for more possible implementations for the same algorithm, they have a large

number of parameters that can be chosen, and their performance is very sensitive

to small changes in these parameters.

The native OpenCL C kernels support in HPL proposed in this section has several

advantages and provides a higher-level view with respect to the related proposals

we know of. This way, it is the only one that provides arrays that are seen as a

single coherent object across the system, as the other solutions rely on a host-side

representation of the array together with per-device buffers. While it is possible to

avoid the host side representation for the buffers in [86][68] because they provide

random element-wise accesses, each one of such accesses involves a transfer between

the host and the device, and due to the enormous overhead, this is only very seldom

a reasonable solution. In addition, these buffers are not kept automatically coherent

with their host image or with the buffers that represent the same data structure in

other devices. Rather, they must be explicitly read or written. This makes sense

because these proposals do not provide a mechanism to label which are the inputs

and the outputs of each kernel, so their runtime cannot automate the transfers. For

similar reasons, it is impossible for them to automatically enforce data dependences

between kernels run in different devices, or between kernel executions and arrays

accesses in the host, unless by considering the most conservative, and therefore

suboptimal, assumptions. Regarding devices, [68] only supports a single device,
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while [86][104] are based on the idea of selecting a current device, and then operating

on it, including the explicit addition of each program to use to each device. Also,

[68] does not allow to define auxiliary functions, but only kernels, while [86][104] do

not support local or constant memory arrays in the arguments.

2.5. Conclusions

Heterogeneous systems are becoming increasingly important in the computing

landscape as a result of the absolute performance and performance per watt advan-

tage that devices such as GPUs achieve with respect to the standard general-purpose

CPUs for many problems. Nevertheless, an improvable aspect of these systems is

their programmability and the portability of the codes that exploit them. This

chapter addresses these issues proposing the Heterogeneous Programming Library

(HPL), which provides large portability thanks to being based on the OpenCL stan-

dard and whose most characteristic component is a language embedded inside C++

to express the computations (kernels) to run in heterogeneous environments. This

language allows our library to capture the kernels so that it can translate them into

a suitable IR that is then compiled for the device where they will be run. The host

C++ language can be naturally interleaved with our embedded language in the ker-

nels, acting as a metaprogramming language that controls the code generated using

a syntax that is much more convenient and intuitive than other metaprogramming

approaches such as C++ templates. This results in a very powerful run-time code

generation (RTCG) environment that is particularly useful for heterogeneous sys-

tems, in which users often need to tune the kernels to the specific characteristics

of each device to achieve good performance. HPL also provides very convenient

interfaces to exploit RTCG to generate highly specialized code for common patterns

of computation such as reductions.

During the generation of the IR for a kernel, our library has the opportunity of

analyzing and potentially optimizing it, as a compiler would do. While our current

implementation performs no code transformations, it does analyze the kernels in

order to determine their inputs and outputs. This information allows HPL to track

the data dependences between the tasks that the user requests to run in the devices

exploiting the asynchronous execution model of the library, as well as between these



60 Chapter 2. The Heterogeneous Programming Library

tasks and the host. This way HPL provides automatic task synchronization while

minimizing the number of data transfers. In a related manner, HPL provides rather

handy classes to represent data for use in the heterogeneous kernels whose manage-

ment (creation and deallocation of buffers, tracking of the state and synchronization

as required among physical buffers associated with the same logical array in differ-

ent memories, etc.) is completely automated by our library. All these advantages

of high automation of the management and ease of use are also enjoyed by HPL

for kernels written in OpenCL C, which our library supports by means of a simple

notation.

The HPL embedded language has however a number of programmability advan-

tages that are not available using native OpenCL kernels. The ability to exploit

C++ templates in kernels, the detection of errors at compile time, at times with

clearer messages, the natural embedding in the kernels of runtime constants, and the

transparent indexing of multidimensional arrays when using this language further

boost HPL programmer productivity.

An evaluation using codes with quite different natures and taken from differ-

ent sources indicates that the HPL embedded language provides significant pro-

grammability improvements with respect to OpenCL while achieving nearly the

same performance in different platforms. In fact, even if we take as the baseline a

streamlined version of OpenCL codes in which the initialization and program com-

pilation stages typical of this platform have been removed, the average reduction in

terms of SLOCs, programming effort and cyclomatic number achieved by the HPL

embedded language are 34%, 44% and 30%, respectively. Nevertheless, the typical

performance overhead is below 5%.

The usage of HPL to execute standard OpenCL C kernels has also important

programmability benefits. This way, even when in our tests the baseline used the

minimum amount of code and the OpenCL C++ bindings, our proposal reduced

the number of lines and the programmer effort of the host code by a notable 23%

and 42%, respectively, while imposing a totally negligible overhead on performance.

Also, its productivity metrics, and particularly the programming effort, were consis-

tently better than those of a comparable powerful approach such as ViennaCL [86].
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Multi-device computing

In the previous chapter, HPL was presented as a way to simplify the program-

ming of heterogeneous systems in single-device environments. In this chapter we

extend this tool to exploit multiple devices while keeping its characteristics of min-

imum user effort and maximum performance. In a first step we extend HPL with a

totally general data coherency scheme for the data structures it manages as well as a

mechanism to make assignments between these structures so that they can be easily

copied. The implementation is efficient, as it not only requires the minimum num-

ber of transfers, but it also applies the most efficient mechanisms to perform these

transfers. This latter characteristic implies a dynamic adaption capability of our

library, as different transfer mechanisms suit better different systems. In a second

stage the host API is improved with three mechanisms to reduce the programming

effort of applications that exploit several heterogeneous devices. A first idea is the

ability to use subarrays, that is, regions of arrays, that can be used in one or several

devices without becoming separate data structures, so that it is always possible to

keep a view of the underlying full array, while automatically keeping the consistency

of the data. The second idea are mechanisms to split kernels for their execution in

several devices, giving place to what we call subkernels. Our experiments show that

these mechanisms can largely improve programmability, their overhead being min-

imal. The last idea is an alternative to our initial subkernel proposal that is more

flexible and allows to easily explore and choose the best workload distribution when

a computation is accelerated using devices with different capabilities. This proposal,
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which includes analytical models capable of choosing optimal or near-optimal work

distributions, not only helps programmability but also performance. Finally, we

propose a mechanism to address stencil computations in multi-device environments

in a very convenient way in HPL that is focused on the management of the required

ghost regions. Thanks to it, HPL can automatically detect and update ghost re-

gions, thus freeing the user from the tedious and error-prone tasks involved by the

manual update so that she only needs to specify when to perform the update. The

addition of this automatic system noticeably improves the programmability without

involving any penalty with respect to the HPL implementations based on manual

updates.

The rest of this chapter is organized as follows. Section 3.1 presents the novel

data coherency scheme and a näıve host API to support multi-device computing.

Section 3.2 explains the improvements done in both the host API and the runtime to

increase the programmability and performance, respectively. The mechanism to au-

tomatically detect and update the ghost regions is explained in depth in Section 3.3.

This is followed by the evaluation in Section 3.4 and the conclusions are closing the

chapter.

3.1. Multi-device support in HPL

The exploitation of multiple devices requires several features of the HPL library:

support in its API for multiple devices, the improvement of its coherency and syn-

chronization scheme, and an easy syntax to copy data between Arrays. These fea-

tures are first presented in turn, while implementation details are discussed in Sec-

tion 3.1.1.

Multi-device support in the HPL API: The HPL API allows to identify the

devices that can be used and their characteristics. This characteristic is necessary

to enable multi-device support. HPL currently classifies the devices as either CPUs,

GPUs or generic accelerators (this is for example the case of the Xeon Phi). The

user can obtain the number of devices of each kind (e.g. getDeviceNumber(GPU)

provides the number of GPUs) and refer to a specific device using an object of
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type Device that can be built providing a device type and a number of device. For

example, Device(ACCELERATOR, 2) would be the third accelerator in the system, as

the numbering is zero-based. An object d of this type can be used to specify where

to run a kernel using the syntax eval(f).device(d), that is followed optionally by

other optional execution modifiers, and finally, the kernel arguments. The method

getProperties of this class fills a structure of type DeviceProperties that has a

field for each property of the associated device, thus allowing their inspection.

Advanced coherency and synchronization scheme: When an HPL kernel

execution is requested, the host copies to the memory of the selected device the

kernel inputs that were not available in it, then launches the kernel, and it continues

executing the main program without waiting for the kernel to finish. This allows

parallelizing computations in the host and the devices as well as requesting parallel

executions of kernels in different devices.

The synchronization mechanism that allowed to wait for a kernel execution to

finish and retrieve its results in Chapter 2 was only based on the host accesses to

the Arrays used as arguments to the kernel executions. This way, when the host

code tried to read an array that was written by a previously launched kernel, the

HPL runtime waited for the kernel to finish and copied the resulting array to the

host memory, after which the execution of the main thread in the host would be

allowed to continue. Subsequent host accesses to the array would be immediately

satisfied from the host-side copy until new kernel executions that wrote to the array

were requested. Similarly, an array used as input in a kernel execution would be

copied to the device only in the first usage of the array in the device or if the host

had written to the array in its memory after the most recent usage of the array in

the device. These mechanisms sufficed for efficient single-device executions as the

evaluation in the previous chapter shows.

However, in order to successfully exploit with a reasonable performance and

consistent semantics several accelerators, HPL had to be extended in several ways.

First, since the user can request to use the same array in multiple devices, and

they do not share memory, the HPL runtime was improved to support multiple

simultaneous copies of the same array, one per device where it is used, in addition

to the host-side copy. The copies of each Array are hidden from the user, who
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only sees its current logical value. The underlying copies are managed following

a multiple-readers/single-writer policy (MRSW) policy [95] with an invalidation

protocol on writes [70] in order to keep a single coherent image. Let us notice that

a general implementation of the data replications implied by the MRSW strategy

requires the copy of data between devices, which are automatically performed by

our runtime. Finally, since the host code considers in its turn each one of the kernel

execution requests as well as the host accesses to the arrays, the main thread of the

application provides sequential consistency [66] to all these accesses to the Arrays,

which is the simplest and most convenient model to reason about parallel programs.

Since the Array is the unit of consistency, the usage of the same Array in several

kernel executions serializes them, even if each kernel operates on disjoint parts of its

data, unless of course if the Array is only a read-only input to all these kernels. This

way, in order to successfully parallelize executions of kernels that update different

portions of the same array in several devices, a different HPL Array, associated to the

specific portion updated in the device, must be defined for each device. This policy

also makes sense for read-only arrays when each device only needs to read a portion

of the array. The reason in this case is not to avoid the serialization of the tasks,

but to minimize the data transferred, as the Array is also the unit of allocation

and transfer. The construction of HPL Arrays associated to different portions of

the same host array is facilitated by the fact that their constructor supports an

optional argument to specify the location in host memory of the data managed by

the Array, as commented in Section 2.2. This way, different Arrays can start in

different positions within the same C array.

Example 3.1.1. Figure 3.1 illustrates the implementation of a matrix product in

HPL and Figure 3.2 shows a multi-device implementation of this same matrix prod-

uct where the work is splitted among the available GPUs by rows. This example

uses the features that provide basic multi-device support in the HPL API and takes

advantage of the extended coherency and synchronization algorithm by working with

Arrays associated to different parts of the original underlying matrices. For simplic-

ity the code assumes that the number of rows M is a multiple of the number ndevices

of GPUs, obtained in line 4. The underlying matrices are declared in line 1 as reg-

ular arrays. Since the whole matrix bx is used in each one of the parallel kernel

executions, a single HPL Array b is declared in line 2 that contains it.



3.1 Multi-device support in HPL 65

1 void mxProduct(Array<float,2> c, Array<float,2> a, Array<float,2> b, Int P)

2 {
3 Size t k;

4 c[idy][idx] = 0.f;

5 for (k =0, k < P, k++)

6 c[idy][idx] += a[idy][k] ∗ b[k][idx];

7 }
8

9 ...

10 Array<float,2> c(M,N),a(M,P),b(P,N);

11 ...

12 eval(mxProduct)(c, a, b, P);

Figure 3.1: Matrix product on a single device using HPL

1 float cx[M][N], ax[M][P], bx[P][N];

2 Array<float,2> ∗∗c, ∗∗a, b(P, N, bx);

3

4 const int ndevices = getDeviceNumber(GPU);

5 c = new Array<float, 2> ∗ [ndevices];

6 a = new Array<float, 2> ∗ [ndevices];

7

8 for(i = 0; i < ndevices; i++) {
9 c[i] = new Array<float, 2>(M/ndevices, N, cx+i∗(M/ndevices∗N));

10 a[i] = new Array<float, 2>(M/ndevices, P, cx+i∗(M/ndevices∗P));

11 }
12 ...

13 for(i=0; i< ndevices; i++)

14 eval(mxProduct).device(Device(GPU,i))(∗c[i], ∗a[i], b, P);

Figure 3.2: Matrix product on multiple GPUs using HPL

As explained before, the kernel executions in different devices will only take place

in parallel if separate Arrays for cx are used in each one of them, thus an array of

ndevices pointers to Arrays is built in line 5. Then each Array of the appropriate

size is created, associating its storage to the corresponding portion of matrix cx in

line 9. The same approach is followed with respect to matrix ax, as this minimizes

the amount of data transferred to each device. Finally, the kernel executions in

lines 13-14 use the i-th Arrays of c and a for the run in the i-th GPU. After the



66 Chapter 3. Multi-device computing

kernels are launched, the host continues executing the code after line 14. It will only

stop and wait for a kernel execution to finish when either the host code tries to read

the associated output Array c[i] or a kernel execution in a different device requires

c[i] as input. In the latter case, the host will wait for c[i] to be computed, and

then it will transfer it to the other device �

The totally general coherency support implemented in HPL together with its

automated movement of data enables to program algorithms that require transfers

between devices in a very natural way. For example, stencil codes are usually par-

allelized by means of ghost regions [54] that replicate a portion of an array that is

updated by another processor or accelerator. These structures need to be refreshed

with the most recent version of the data they replicate after each update and before

the next round of computations begins. When accelerators are used, this gives place

to a data exchange between them [103]. Another example are pipelines, in which

data proceed through a series of tasks that transform them and handle the results

to the next task in the sequence. The parallelism comes from the fact that different

tasks work in parallel in different processors or devices on different sets of data.

Example 3.1.2. Figure 3.3 shows a multi-device pipeline implemented with HPL.

In this code we assume that the first argument of each task is only read, and the

second one is only written. The pipeline iterates while there are new inputs to read

in the initial Array input0 (line 2). Device d0 runs task f0 on this input to generate

the intermediate result output0. If this is not the first iteration of the pipeline, the

boolean f1 was run is true, so in line 4 we write to a file the final result of the

pipeline, contained in Array output1. When the host accesses output1 in function

write through its API, HPL checks this Array status, so that if there are pending

writes to it (from the execution of f1 in line 5 in the previous iteration), HPL waits

for them, updates the host copy with the current value, and finally provides the

data to the user code. When line 5 requests to run f1 on device d1 taking as input

output0, HPL coherency system waits for the most recent execution of f0 to finish

in order to generate the most up-to-date value, which is then transferred to d1. Both

operations are blocking for the host, so lines 5 and 6 are only executed once output0

has been safely copied to a buffer in d1. Line 9 ensures that the last result generated

is written. Notice that since f1 only reads the copy of output0 in the device d1, its

execution does not delay the next execution of f0, which just writes to its local copy
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1 bool f1 was run = false;

2 while(read(input0)) {
3 eval(f0).device(d0)(input0, output0);

4 if(f1 was run) write(output1);

5 eval(f1).device(d1)(output0, output1);

6 f1 was run = true;

7 }
8

9 if(f1 was run) write(output1);

Figure 3.3: Data exchange to implement a pipeline between devices

of output0 in device d0, located thus in a separate buffer, as HPL knows there is no

dependency between both tasks �

Copy data between arrays: Another programmability improvement has been

the implementation of an intelligent assignment operator (see Section 3.1.1) that

allows to easily copy data between Arrays using the natural notation a=b in the host

code.

3.1.1. Implementation details

HPL Arrays were extended to support multiple simultaneous copies of the same

Array, one per device where it is used, each copy being supported by an underlying

OpenCL buffer, in addition to the host-side copy, which is located in plain host

memory. HPL builds the buffer images of Arrays on demand, so that an Array

is only allocated in a device if it is used in a kernel execution in the device. The

potential existence of copies in several devices implied the need for a coherency

strategy, which is the multiple-readers/single-writer policy (MRSW) policy [95] with

copy invalidations on writes [70]. Our implementation takes into account the new

situation that an array in a device could become outdated not only by host-side

modifications as in Chapter 2, but also by executions of kernels in other devices

that wrote to the array. This required in turn a new update mechanism that implied

device-to-device transfers of Arrays, in addition to the transfers between host and
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device considered in the previous chapter.

A very important issue that we have not seen discussed in the bibliography, is

how to transfer data between OpenCL buffers in different devices, which corresponds

to the copies of Arrays between devices. There are two possibilities to perform this

transfer in OpenCL, which is our backend. One is to use the OpenCL function

clEnqueueCopyBuffer, which performs a copy between two buffers. The other possi-

bility is to first transfer the data from the source device to a host location, and once

it has finished, transfer the data from the host to the destination buffer. Common

sense suggests that the first option should be the best one, since it uses a specific

runtime function defined for this purpose, which enables it to exploit better possi-

bilities when they are available, and fall back on the second option when that is not

possible. In fact, the families of OpenCL benchmarks that support multiple devices

that we know of, such as the SNU NPB suite [89], use this approach to exchange

data between devices. Also, the benchmarks to characterize OpenCL [96] have never

compared these two possibilities as far as we know. We have found however that

clEnqueueCopyBuffer can be in fact much slower than the two sequenced transfers

possibility in some systems. Figure 3.4 shows the bandwidth observed in transfers

between two devices of the same type in the S2050, K20 and Xeon Phi systems

that will be described in Section 3.4 using the two copy mechanisms described, two

transfers (T) and clEnqueueCopyBuffer (C). We can see that there is a substantial

difference between both approaches, and while the Xeon Phi systematically favors

clEnqueueCopyBuffer, the situation is the opposite in the Nvidia GPUs.

In order to cope with this variability, HPL follows an adaptive approach. The

library runs tests making a few transfers using both copy mechanisms to choose the

best one for each kind of device when it is installed in a system. The chosen copy

strategy is stored in a configuration file that is read whenever a HPL application

begins its execution. The HPL runtime then uses the best copy mechanism as a

function of the device involved in the communication.

The implementation of the assignment operator a=b to copy data between arrays

has many optimizations. Its data transfer is performed in a smart way, so that the

data from b is copied to the image of a that holds its most recent version (no matter

it is in a device or in the host), as it is expected that subsequent uses of a will take

place in the same place. If there are multiple updated copies of a, the host copy is
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Figure 3.4: Bandwidth of copies between devices. T stands for two transfers in
sequence and C for clEnqueueCopyBuffer usage

updated, and it is later transferred to the devices under demand when needed. Also,

the copy is automatically performed by means of a kernel when the source and the

destination are in the same device.

The synchronization mechanism was also updated, as if a kernel execution B in

a device requires an array written by another kernel execution A in another device,

B must be delayed until A finishes to gather the correct results. This is in contrast

with Chapter 2, which never had to delay a kernel execution, as they were all run

sequentially in the only device available.

Finally, we must stress that the complexity of the extended environment is totally

hidden by our runtime, so that users are not concerned by the existence of the

multiple copies and they do not even need to specify when to perform any transfers

or updates, all the analysis of dependencies and other details being automatically

managed by HPL. This way programmers are just given the simple and intuitive

semantics that an Array data are (sequentially) consistent across all their usages in

the host and the multiple devices available.
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3.2. Improving multi-device support

While the programming style explained in the previous section is much better

than that of alternatives such as OpenCL, it had some limitations. This section

explains how these limitations were removed. In addition to the limitation related

with the larger programmability cost, another important one is that since the Array

is the unit of coherency, using the same Array in several kernel executions serializes

them, even if each kernel operates on disjoint parts of its data, unless it is a read-only

input to all these kernels. This way, the parallel execution of kernels that update

different portions of an array in several devices requires defining a different Array

per device, associated to the specific portion updated in that device. This policy

also makes sense for read-only arrays when each device only needs to read a portion

of them. The objective in this case is to minimize the data transferred, as the Array

is also the unit of allocation and transfer.

In this section we propose three features to remove the aforementioned limita-

tions of multi-device support, which are the usage of subarrays and two approaches

to easily split kernels on multiple devices. The last one of these mechanisms also

incorporates facilities to optimally use resources with different computing properties

that participate in the computation of a kernel. The three proposals are now de-

scribed in turn, followed by the description of unified memory exploitation, a general

optimization that has been recently incorporated in HPL whose usage requires no

effort from the user. This incorporation is an example of the steadily evolution of

HPL in order to provide high programmability without sacrificing the performance.

3.2.1. Subarrays

Making the Array the unit of allocation, transfer and consistency forces to build

separate Arrays to enable parallel executions and to reduce the amount of data

allocated and copied. Allowing the independent use of regions of an Array, while

providing a coherent view of it, is much more convenient. We thus enabled the

selection of regions of Arrays using Ranges, Range(a, b) corresponding to the inclusive

range of integers [a, b]. HPL subarrays are not copies by value, but references to

the data of the underlying Array, so that updating them changes the corresponding
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1 float cm[M][N], am[M][P], bm[P][N];

2 Array<float,2> c(M, N, cm), a(M, P, am), b(P, N, bm);

3

4 const int ndevices = getDeviceNumber(GPU);

5

6 for(i=0; i< ndevices; i++) {
7 Range rows(i ∗ (M/ndevices), (i+1) ∗ (M/ndevices) − 1);

8 eval(mxProduct).device(GPU, i)(c(rows, Range(0, N−1)), a(rows, Range(0, P−1)), b, P);

9 }

Figure 3.5: Matrix product on multiple GPUs using subarrays

portion of their parent Array. Using this feature, the matrix product example using

multiple GPUs shown in Figure 3.2 can be written as Figure 3.5 shows. The main

Arrays are defined using as storage the original C-style arrays defined in line 1,

following an approach similar to that of Figure 3.2, but they could have been defined

on their own, as in Figure 3.1. Ranges are objects of their own, so for example line 7

builds the Range rows that identifies the range of M/ndevices consecutive rows of the

matrices c and a that are used in the i-th device. Line 8 uses this range together

with appropriate ranges that span the N columns of c and the P columns of a to

select the subarrays used in the execution in the i-th GPU.

Supporting subarrays, with the need to keep them consistent with their parent

arrays, required deeply redesigning the HPL internal coherency mechanisms. The

runtime keeps track of the relations between the different Arrays that need to be kept

consistent, enforcing waits for pending writes and performing the required transfers

as necessary in a process that is totally transparent to the user. The management

is highly optimized in several ways, as HPL caches the subarrays structures in order

to avoid costly creation processes in each reuse, performs the minimum possible

number of transfers, and whenever a subarray is used in a memory that already

holds an Array that contains the new subarray, this new subarray does not allocate

new memory, but just maps in the memory of the existing Array.

It is important to mention that subarrays can be also used to copy portions of an

Array using the assignment operator. Assignments are allowed between Arrays of the

same size and from scalars to arbitrary Arrays, which replicates the scalar in all the



72 Chapter 3. Multi-device computing

elements of the destination. Finally, subarrays also facilitate the implementation

of algorithms in single device environments when they need to work on different

portions of arrays in different kernel invocations (e.g. matrix factorizations).

3.2.2. Subkernels based on annotations

Launching kernels in multiple devices can be simplified in several ways. For ex-

ample, the selection of device and the portion of each array to process in each kernel

can be hidden to the user by means of the mechanism explained below. We propose

here a simple mechanism to split a kernel in multiple executions, called subkernels,

ensuring that each subkernel uses the appropriate arguments. Our approach con-

sists in annotating the arguments to specify how they must be partitioned among

the devices. For example the notation PART1(a) indicates that Array a must be

evenly distributed among the devices involved in the kernel execution by its first

(most significant) dimension, so that each chunk is a consecutive region of data.

Non annotated arrays are not partitioned, but replicated in each device.

The annotations support the syntax ANNOTATION(a,n) where a is the Array to

split and n is the number of elements of overlapping in each direction in the selected

dimension. If the user needs to specify a different number of overlapped elements per

dimension, she can specify them separately with ANNOTATION(a,x,y). Namely, x

is the number of elements of the current chunk of data overlapped with the previous

chunk (lower memory positions) and y defines the overlapped region with the fol-

lowing chunk (upper memory positions). This extended syntax of the annotations

interface allows the user to define stencil applications concisely and reducing the

possibility of incurring in common errors in this kind of codes.

When the global domain is not specified in an eval of this kind, the consistent

behavior of adopting as global domain of each subkernel the one associated to its

first argument is followed. Similarly, unspecified local domains are chosen by HPL.

The modifiers that specify these domains have been extended allowing that any or

all their arguments are vectors of integers, so that the i-th component indicates the

domain for the i-th subkernel. Regarding the devices to use, when no device is spec-

ified in an eval of this kind, HPL distributes the subkernels among the accelerators

in the system. Also, the device modifier supports as argument a vector of HPL
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device handles whose length indicates the number of devices to use, and the i-th

subkernel runs in the i-th device.

This approach allows to write eval(mxProduct)(PART1(c), PART1(a), b, P), which

partitions c and a by rows and replicates b in each device, as the most compact rep-

resentation of our matrix product parallelized on the available accelerators described

in Figure 3.1. That is, this proposal allows to distribute the computation expressed

in Figure 3.1 among several devices just by simply applying the notation PART1 to

the arguments c and a in line 12.

3.2.3. Subkernels based on execution plans

While the proposal in Section 3.2.2 is very convenient, it has some restrictions.

The most important one is that when several argument arrays are partitioned, it

necessarily uses the n-th subarray generated of each one of them in the n-th subker-

nel. Although this perfectly fits most kernels, some require more flexible patterns.

Also, some kernels may require a more ad-hoc partitioning. This led us to design a

more complex subkernel generation strategy. This proposal is based on an object,

which we call execution plan (ExecutionPlan class), that encapsulates the informa-

tion needed to partition the work expressed by the global domain of a kernel. This

information is the list of devices to use, the percentage of the work that each device

will perform, and how to partition the arguments for each subkernel responsible

for a portion of the computation. This last item is expressed by means of a user-

provided function, which we call partitioner, that given a range of work and the

kernel arguments, performs the subkernel invocation partitioning accordingly the

arguments.

When an eval is provided with an execution plan, it uses this object to partition

the global domain provided for the kernel in chunks that are proportional to the

amount of work to be performed in each device. Our current implementation par-

titions the most significant dimension of the global domain of the kernel in chunks

that are proportional to the ratios requested for the user. The reason for focusing

the partitioning on this dimension is that the less significant dimensions are usually

the ones with more locality and where coalesced accesses (in devices such as GPUs)

are exploited. The resulting global domain partitions are also automatically rounded
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to ensure that they are multiples of the local domain if the user has specified one.

Then, it invokes the partitioner with a functor object called FRunner that encap-

sulates the information needed to run a subkernel, an array of ranges that provide

the portion of the global domain assigned to that subkernel in each dimension, and

the kernel arguments. The partitioner must invoke the FRunner as a function whose

arguments are the subarrays of the global argument arrays that are associated to

the range(s) of the global domain computed by the execution plan.

Figure 3.6 implements our matrix product example using this approach. The

ExecutionPlan is built in line 7 providing the partitioner defined in lines 1-5. A

partitioner always has as first argument the FRunner that runs the kernel.The second

argument is always an array of up to three ranges that describes the portion of

the global domain associated to a subkernel, each Range being associated to one

dimension of the problem. These two arguments are followed by the actual list of

arguments of the kernel. While its body can contain more things, a partitioner only

needs to invoke the FRunner with the arguments associated to the portion of the

global domain associated to the input ranges. Lines 8 and 9 add GPUs 0 and 1

to the ExecutionPlan ep, respectively, each one being assigned 50% of the work.

Finally, the parallel multi-device kernel execution using ep is requested in line 10.

As we can see, this strategy allows to easily and flexibly split the work between

devices assigning arbitrary portions of work to each one of them while supporting

any custom required subarrays.

Automatic load balancing

Execution plans can be either completely specified by the user, as seen above,

or programmed to search for a distribution of work that balances the load among

the devices that participate in the kernel execution. This second possibility is very

appealing when heterogeneous devices with different communication latencies and

bandwidths and/or computational capabilities can be used to execute a portion of

the considered kernel. In order to use an execution plan in this second way the user

has to specify in its constructor the search algorithm to use and whether only the

computation or also the transfer times of the kernel must be taken into account in

the balancing. Also, there is no need to provide the ratios of work for each device

that is added to the plan, as they will be automatically derived by our library.
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1 void partitioner(FRunner& fr, Range rg[2],

2 Array<float,2>& c, Array<float,2>& a,

3 Array<float,2>& b, int P) {
4 fr( c(rg[0], rg[1]), a(rg[0], Range(0, P−1)), b(Range(0, P−1), rg[1]), P );

5 }
6

7 ExecutionPlan ep(partitioner);

8 ep.add(GPU, 0, 50);

9 ep.add(GPU, 1, 50);

10 eval(mxProduct).executionPlan(ep)(c, a, b, P);

Figure 3.6: Matrix product on multiple GPUs using an execution plan

The search will be performed the first time that the execution plan is used in the

execution of the kernel. Subsequent usages of the object will reuse the distribution

found unless the user resets it.

Currently HPL execution plans provide three algorithms to search for the best

work distribution. The simplest and most expensive one is the EXHAUSTIVE search,

which tries all the legal combinations of distributions that differ in a given minimum

step and chooses the best one. The default step variation is 5% of the global domain,

but users can choose a different one. Just as in the other search algorithms, the

library will only time the kernel execution or it will also perform and time the

transfers for the inputs and the outputs to choose the best option depending on

what the user specified in the construction of the execution plan. Notice that the

two possibilities make sense in different scenarios, as sometimes the user may know

that the data will have to be transferred for each execution of the kernel, while

in other situations, such as iterative algorithms, the vast majority of the kernel

executions do not require transfers. It also deserves to be mentioned that in order

to avoid noise measurement problems, each distribution considered both in this

scheme and in the ones described below is timed a number of times that the user

can configure, the default being twice.

The other two possibilities are based on profiling and a simple model that relates

the portion of the global domain assigned to a device with its runtime. Both models

start with an execution in which each one of the NDevices devices involved is

assigned (100/NDevices)% of the global domain, and the times gathered are stored



76 Chapter 3. Multi-device computing

1 Algorithm balance(
−→
t )

input : Vector of times measured in each device
−→
t = ti, 0 ≤ i < NDevices

output: Vector of percentage of work to be performed in each device
−→w = wi, 0 ≤ i < NDevices

2 MaxTime = max{ti, 0 ≤ i < NDevices}
3 ui = MaxTime/ti, 0 ≤ i < NDevices

4 U =
∑Ndevices−1

i=0 ui

5 wi = ui × 100/U, 0 ≤ i < NDevices

6 Adjust = 0

7 for i = 0 to NDevices− 1 do

8 if
ti × wi

100/Ndevices
< Threshold then

9 Adjust = Adjust + wi

10 wi = 0

11 end

12 end

13 wi = wi × 100/(100−Adjust), 0 ≤ i < NDevices

14 return −→w

Figure 3.7: SINGLE STEP MODEL load balancing algorithm

in a vector of times
−→
t . Figure 3.7 shows the load balancing algorithm of the

first model, called SINGLE STEP MODEL because it is not iterative. Starting from the

measured times
−→
t , this algorithm assigns to each device a ratio of work that is

proportional to the speedup it achieved with respect to the slowest device in the set in

this initial execution (line 3). The rationale is that this speedup is proportional to the

amount of work that the corresponding device can receive in a balanced distribution

of work, as this number should be proportional to its computing (and transfer, if

included) performance. Lines 4 and 5 scale this initial ratio to a percentage making

sure the addition for all the devices covers the whole global domain. Lines 6-12

compute whether with this distribution the estimated runtime for some device falls

below a measured threshold. If this is the case, the device receives no work (line 10),

and its portion of the problem is added to Adjust (line 9), so that it is redistributed

among the remaining devices in line 13. This last stage of the algorithm avoids

sending very small amounts of work to devices that do not compensate the reduced

fixed overhead associated to this process. Notice that since this model requires a

single execution, and it is made at runtime on correct inputs, thus generating correct
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outputs, this model can make just as many kernels executions as an untuned code.

The second model is iterative, so it can adjust its distribution with more precision

in situations where the workload is not necessarily directly proportional to the ratio

of the global domain assigned to each device. This model, called ITERATIVE MODEL,

starts applying the SINGLE STEP MODEL and measures the runtimes of the distribution

it chooses. Then, as long as the longest runtime for a device is δ% or more longer

than the shortest time, it recomputes the percentage of the global domain assigned

to each device using the algorithm in Figure 3.8 and makes a new execution to

measure the new times. The value of δ defaults to 5, but it can be chosen by the

user. The algorithm estimates which would have been the runtime for each device

in an execution in which all of them received the same amount of work based on

the actual distribution of work made and the time measured, and then applies the

SINGLE STEP MODEL to these times.

A problem that appears when users let the library choose the work distribution

is that they lose the information on which portion of each array has been loaded

and updated in each device. This never endangers the correctness of the HPL

applications because whenever the host code or a kernel invocation tries to use an

Array or a portion of it, our library knows where is the most up-to-date version of this

data. Nevertheless performance will suffer if these automatic mechanisms introduce

unnecessary transfers. HPL provides two mechanisms to avoid these problems. First,

an ExecutionPlan can be built as a copy of an existing one so that it retains the

same devices and work distribution, only changing the partitioner. Second, these

objects provide methods to retrieve the distribution performed so that the user can

know which portion of each array was used in each device and act accordingly.

3.2.4. Unified memory exploitation

Some devices have a memory that is separated from that of the host, while others

work on the same physical memory. This is the case of the CPU when it is used

under OpenCL, or the integrated GPUs that ship with many current CPU models.

When the memory of a device is unified with that of the host transfers between

both memories can be avoided or optimized. The exploitation of this property in

OpenCL requires programmers to follow a series of steps that are different from
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1 Algorithm adaptiveBalance(−→v ,
−→
t )

input : Vector of times measured in each device
−→
t = ti, 0 ≤ i < NDevices

input : Vector of percentage of work that was performed in each device
−→v = vi, 0 ≤ i < NDevices

output: Adapted vector of percentage of work to be performed in each device
−→w = wi, 0 ≤ i < NDevices

2 nti =
ti
vi
× 100

NDevices
, 0 ≤ i < NDevices

3
−→w = balance(

−→
nt)

4 return −→w

Figure 3.8: ITERATIVE MODEL adaptive load balancing algorithm

the usual ones, an example being working based on mapping and unmapping of

OpenCL buffers instead of usual read and write operations. This way, performing

this optimization further adds to the complexity of OpenCL programs.

HPL automatically detects when the device used for a kernel execution has its

memory unified with that of the host, and internally applies the suitable OpenCL

protocol to minimize the communication cost between this device and the host,

making the optimization totally transparent and effortless to users.

3.3. Improving stencil applications

Stencil computations can be commonly found in many scientific applications with

computations that follow a fixed pattern. In this pattern, the value of an element of

the output array depends on the values of elements of the input array that belong to a

given neighborhood. In single-device environments this property does not cause any

trouble because all the threads can access the whole device memory. Nevertheless,

in multi-device systems, where both data and the computations are divided among

several devices, stencil computations require that each device also accesses regions of

data that are updated by other device. Thus, these replicated regions of data, which

have to be coherent with the original data located in other device, are called ghost

regions. The management of these ghost regions is the main challenge of stencil

computations in multi-device systems. Because of their importance, HPL has been
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extended to tackle them in a convenient way.

Figure 3.9 illustrates a minimal HPL code using stencil computations. In each it-

eration, this code computes input[idx] = input[idx]+input[idx-1]+input[idx+1]

by means of two kernels: simpleKernel, which computes the accumulation in the

temporary array accum and update, which accumulates it into input. This code veri-

fies the condition of stencil because it is a 1-D problem where the value of input[idx]

for the next iteration depends on the value of input[idx] and its neighborhood at

the beginning of the iteration. This is a single-device version, where only one device

does all the work and therefore there are no ghost regions. Multi-device executions

of stencil applications require a non trivial mechanism of memory management. To

understand the details of this mechanism, a multi-device version of the example of

Figure 3.9 is presented in Figure 3.10. The goal of this example is to divide the

workload of each kernel among several devices, so that in each iteration, each device

performs its corresponding part of the work.

HPL allows the definition of overlapped subarrays, that is, subarrays with shared

parts of their memory spaces. When the subarrays are updated in different devices,

their shared parts are called ghost regions and they must be synchronized to guar-

antee that the most up-to-date values are available in each device when they are

needed. In our example, this involves manually updating the ghost regions of input

in each iteration as in Figure 3.10. Function obtain subarrays size() (Lines [3-23])

illustrates the work required to compute the limits of the subarrays needed in any

multi-device problem of one dimension. The bounds of each subarray are repre-

sented by the variables r begin and r end in the code. These bounds are computed

taking into account the size of the problem and the number of devices involved.

Two data structures, s s and s e, are filled with starting and ending points for each

subarray. In case of having two devices in the system, lines 33 and 34 launch half of

the work load on two GPUs in parallel. Lines 36 and 37 launch the kernel that up-

dates the input array with the data of the array accum. After this, the ghost regions

of input array are still outdated. The update of these ghost regions is performed

in lines [39-49]. To cope with this update, HPL supports subarray assignments and

nested subarrays, this is, subarrays defined inside another subarray. For example, in

line 40 the 2nd element of subarray input(Range(N/2-1, N-1)) is copied in the last

element of subarray input(Range(0,N/2)). This is the update of the ghost region of
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1 void simpleKernel(Array<float,1> input, Array<float,1> accum)

2 {
3 accum[idx] = input[idx]+input[idx−1]+input[idx+1];

4 }
5 void update(Array<float,1> accum, Array<float,1> array)

6 {
7 array[idx] += accum[idx];

8 }
9 ...

10 Array<float,1> input(N), accum(N);

11

12

13 for(i = 0; i < 10; i++)

14 {
15 eval(simpleKernel)(input, accum);

16 eval(update)(accum, input);

17 }

Figure 3.9: HPL stencil example in single-device

the GPU 0. In following line, the update of the ghost region of GPU 1 takes place.

Once the ghost regions have been updated, a new iteration can start. Notice that

this update process becomes even more complex and error-prone as the number of

dimensions of the problem involved increases.
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1
2 int obtain subarrays sizes(std::vector<int>& s s, std::vector<int>& s e, const int ndevices)

3 {
4 float work;

5 int accum work, last, r begin, r end, current work;

6 accum work = 0;

7 last = ndevices−1;

8 for(int j = 0; j < ndevices; j++)

9 {
10 work = 1.0f / ndevices;

11 if(j == last)

12 current work = N − accum work;

13 else

14 current work = N ∗ work;

15
16 r begin = (accum work−(j!=0));

17 r end = (accum work + (current work+(j!=(last)))) −1;

18 s s.push back(r begin);

19 s e.push back(r end);

20 accum work += current work;

21 }
22 }
23 ...

24 Array<float,1> input(N), accum(N);

25 vector<int> s s; // Subarray start points

26 vector<int> s e; // Subarray end points

27 const int ndevices = getDeviceNumber(GPU);

28 obtain subarrays sizes(s s, s e, ndevices);

29 ...

30 for(i = 0; i < 10; i++)

31 {
32 for(int j = 0; j < ndevices; j++)

33 eval(simpleKernel).device(GPU, j)(input(Range(s s[j],s e[j])), accum(Range(s s[j],s e[j])));

34
35 for(int j = 0; j < ndevices; j++)

36 eval(update).device(GPU, j)(accum(Range(s s[j],s e[j])), input(Range(s s[j],s e[j])));

37
38 if(ndevices > 1)

39 {
40 input(Range(s s[0],s e[0]))(Range(s e[0],s e[0])) = input(Range(s s[1],s e[1]))(Range(1,1));

41 input(Range(s s[1],s e[1]))(Range(0,0)) = input(Range(s s[0],s e[0]))(Range(s e[0]−1,s e[0]−1));

42
43 for(int j = 2; j < ndevices; j++)

44 {
45 input(Range(s s[j],s e[j]))(Range(0,0)) = input(Range(s s[j−1],s e[j−1]))(Range(s e[j−1]−s s[j−1]−1,s e

[j−1]−s s[j−1]−1));

46 input(Range(s s[j−1],s e[j−1]))(Range(s e[j−1]−s s[j−1],s e[j−1]−s s[j−1])) = input(Range(s s[j],s e[j])

)(Range(1,1));

47 }
48 }
49 }

Figure 3.10: HPL stencil example in multi-device using subarrays
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3.3.1. Automatic update of the shadow regions: syncGhosts

Ghost regions always appear in the frontiers of the subarrays. Figure 3.11 illus-

trates the most meaningful examples of ghost regions, which are the shadowed cells,

for three spaces (1-D, 2-D and 3-D). For example, in the case 3.11(a), where the

vector A of eight elements is distributed, the device in charge of processing the ele-

ments [0-3] has one extra element that replicates A(4), which is updated in parallel

by the other device. The same happens in the second device with A(3). When the

parallel executions of both devices have finished, these ghost regions must be up-

dated because they are outdated. We now explain the details of the novel automatic

mechanism to update ghost regions in HPL.

A first thing to take into account is that ghost regions are naturally generated

in HPL by selecting subarrays that overlap in their borders and which are used

in computations in different devices. No matter the subarrays are generated by

means of explicit indexing, as in the example in Figure 3.10 or by means of an

automatic distribution of an Array using annotations, the HPL runtime keeps track

of their size and relative position within the global Array where they are defined.

In addition, as explained in Section 3.2 the HPL coherency system knows where the

current and the outdated versions of every Array are, no matter it is a subarray

of another Array or not. With this information it is possible to infer which are

the ghost regions and which device owns each portion on them. For example, in

Figure 3.11(a) since one device would work on A(Range(0,4)) and the other one

on A(Range(3,7)), HPL would realize that A(Range(3,4)) is shared between both

devices, A(3) being actually owned by the first device and A(4) by the second one.

In this case the overlapped area has just two cells, but it could be more complex

containing multiple elements for 2-D or 3-D problems. In addition, the ghost regions

can have a width of more than one element, which is achieved simply by making

bigger the region shared between the subarrays or by using a larger value for the

overlapping extent when using annotations. The HPL runtime has been enhanced

to correctly identify all these situations and determine which part of each shared

region is owned by each device based on its relative position within the region. With

this information, HPL can apply its automatic update algorithm, called syncGhosts,

whose pseudo-code for the one-dimensional version is shown in Figure 3.12.



3.3 Improving stencil applications 83

0 1 2 3 4 3 4 5 6 7

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 33

2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 55

2

(a)

(b)
(c)

A(8)

Figure 3.11: Examples of ghost regions for (a) 1-D, (b) 2-D and (c) 3-D problems
in a problem divided by two devices

1 Algorithm syncGhosts(A)
input: Array with overlapped subarrays

2 foreach ghost region in A do

3 N = size(ghost region)

4 SL = ghost region.getLowerSubarray()

5 LU = ghost region.getUpperSubarray()

6 SL(Range(size(SL)−N)) = SU(Range(N/2, N)))

7 SU(Range(0, N/2)) = SL(Range(size(SL)−N/2))

8 end

Figure 3.12: 1-D syncGhosts algorithm

For each ghost region of the Array several steps are done. First, its size is

computed in line 3. It deserves to be mentioned that regions always have an even size,

because the number of ghost elements that each subarray has, matches with those of

the neighbor in charge of their update and vice versa. Then, the overlapped arrays

are selected: SL or lower positions subarray and SU or upper positions subarray

(lines 4 and 5). After this, two memory copies are done. In line 6, the data of SU

needed to update the ghost region in SL are transferred. In line 7, the appropriate

data of SL are copied in the ghost region of SU. HPL takes into account the location

of the most up-to-date copy of these subarrays so that only the minimum number

of memory copies will be done to keep updated the ghost regions. The algorithm

shown in the figure does not express all the details for the different shapes of the

ghost regions. The algorithm in 2-D and 3-D problems is much more complex due
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to the introduction of one or two additional dimensions respectively. The process is

also optimized so that these memory copies do not necessarily imply a true exchange

of data between two devices. They will be done only if they are strictly necessary,

i.e., only ghost regions that are not up-to-date will be updated.

The syncGhosts algorithm is run on an Array when the user invokes the new

method syncGhosts() on it. Figure 3.13 shows the code of Figure 3.10 after replacing

the manual updates with a syncGhosts call. The obtain subarray sizes() method

has the same body as in the example of Figure 3.10. It deserves to be mentioned that

the benefit of the syncGhosts() call is not exclusively related to the lower number

of lines of code, but also with the complexity of the computations of the regions of

data to exchange. Using the array distributing annotations, the same example of

Figure 3.13 could be rewritten as in Figure 3.14.

Note that using the coupled solution of annotations with syncGhosts(), the code

related with the definition of subarrays, such as function obtain subarrays sizes(),

is no longer needed. As we can see, the complexity related to the creation of subar-

rays and their exchange is highly reduced using this new approach.

3.4. Evaluation

This section evaluates the programmability and performance of the improve-

ments to the HPL library introduced in this chapter. Since the HPL backend is

OpenCL, this is the standard tool with which it is fairer to compare our library. As

in the previous chapter, the C++ OpenCL API has been chosen for the baseline, as

this is the language in which HPL, and thus its benchmarks, have been developed, so

that both approaches enjoy the same language. The codes used as baselines in this

chapter do not contain the cumbersome initialization of OpenCL (device selection,

creation of context and command queue, loading and compilation of kernels, etc.),

which we have encapsulated in routines that are invoked from the baselines. This

way these baselines contain the minimum amount of code that users need to write

using the OpenCL host C++ API.

The evaluation has been performed in three stages. First, we assess the new

coherency scheme presented in Section 3.1 following a näıve multi-device implemen-
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1

2 int obtain subarrays sizes(std::vector<int>& s s, std::vector<int>& s e, const int ndevices

)

3 {...}
4 ...

5 Array<float,1> input(N), accum(N);

6 vector<int> s s; // Subarray start points

7 vector<int> s e; // Subarray end points

8 const int ndevices = getDeviceNumber(GPU);

9 obtain subarrays sizes(s s, s e, ndevices);

10 ...

11 for(i = 0; i < 10; i++)

12 {
13 for(int j = 0; j < ndevices; j++)

14 eval(simpleKernel).device(GPU, j)(input(Range(s s[j],s e[j])), accum(Range(s s[j],s e[j])));

15

16 for(int j = 0; j < ndevices; j++)

17 eval(update).device(GPU, j)(accum(Range(s s[j],s e[j])), input(Range(s s[j],s e[j])));

18

19 input.syncGhosts();

20 }

Figure 3.13: Example on multiple GPUs using subarrays with syncGhosts

1

2 Array<float,1> input(N), accum(N);

3

4 for(i = 0; i < 10; i++)

5 {
6 eval(PART1(input,1), PART1(accum,1));

7 eval(PART1(accum,1), PART1(input,1));

8 input.syncGhosts();

9 }

Figure 3.14: Example on multiple GPUs using annotations with syncGhosts

tation that uses independently and manually defined Arrays for each array to be used

in a device. Then, the benefits of the three mechanisms presented in Section 3.2

aimed to improve the basic implementation are measured and commented. The

section finishes with the evaluation of our last proposal to enhance the programma-
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bility of applications that use several heterogeneous devices, namely the syncGhosts

mechanism.

3.4.1. Näıve multi-device support

This evaluation is based on six benchmarks described in Table 3.1 in terms of

the number of source lines of code, excluding comments and empty lines (SLOCs) of

their OpenCL C++ implementation, the number of kernels involved in unique (u)

invocations and in repetitive (r) invocations (i.e. inside a loop, so that each kernel

is invoked several times), the most common pattern of communication between

subtasks when they are split among several devices and the source lines of code

(SLOCs) and Halstead’s programming effort [55] (PE, expressed in thousands) of

the host-side implementation of the baseline.

The EP and FT benchmarks, already used in Chapter 2, come from the SNU

NPB suite [89], an optimized implementation of the NAS Parallel Benchmarks in

OpenCL. EP is an embarrassingly parallel application that is easy to distribute

among several devices. FT is a more complex benchmark that uses three kernels for

its initialization before entering an iterative process that invokes 7 kernels in each

iteration, all of them parallelizable among all the devices available. This benchmark

computes the Fourier Transform of a 3-D array along its three dimensions. Since the

array is partitioned along one of its dimensions in order to split the work among the

devices, when the Fourier Transform is to be computed along that dimension, the

array has to be permuted or rotated so that the array becomes partitioned by other

of its dimensions, and the originally distributed dimension fits locally in each device,

enabling the local computation. This leads to an all-to-all pattern of communication

between the devices.

MMRow is the matrix multiplication distributed by rows used as example in

Figure 3.2. Summa implements the Summa algorithm for matrix multiplication [48],

which divides the three matrices in tiles and interleaves stages of local multiplication

in each device with stages of communications consisting of broadcasts across columns

and across rows of tiles of the two input arrays. The efficient implementation of

these broadcasts in our case does not involve copies between devices, but transfers

of different portions of the input arrays from the host to each device in each step.
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Benchmark Kernels Data Baseline
exchanges SLOCS PE (Ks)

EP 1 u - 325 1612
FT 3 u + 7 r all to all 1656 35219
MMRow 1 u - 220 1082
Summa 1 r broadcast 298 1867
ShWa 3 r stencil 572 3430
N-body 1 r all to all 160 1027

Table 3.1: Benchmarks characteristics.

This way this benchmark stresses the communications between the host and each

device.

Benchmark ShWa, also used in Chapter 2, is a shallow water simulator with

transport of contaminants developed in [71]. This application divides a surface into

square volumes that interact with their neighbor volumes through their four edges,

having a pattern of computation in stencil. This way, its kernels are parallelized us-

ing the well-known approach of ghost or shadow regions [54] that replicate a portion

of the data in another processor. These regions need to be refreshed in each new

time step as the original data is modified. Our baseline exchanges the data between

devices by means of device to host, and then host to device, transfers, as they were

the best method for our GPUs in Section 3.1.1. Finally, N-body is a simulation of

a dynamical system of particles that presents an all-to-all communication pattern

because in each time step of the algorithm each particle influences the behavior of all

the other particles. Its data exchanges are implemented using clEnqueueCopyBuffer,

as it is the natural way to make data copies in OpenCL programs.

Figure 3.15 measures the programmability improvement provided by HPL with

respect to the OpenCL C++ baseline in terms of the reduction of programming

effort metrics measured in the code of the host side of the application. The kernels

have not been included in the measurement because their code is very similar both

between OpenCL and HPL and between single-device and multi-device versions of

the applications, thus the extensions described in this chapter play a small role in

them. The metrics used are the same ones used in previous chapter, and along the

whole Thesis: SLOCs and programming effort (PE). We can see that the effort is

consistently much smaller in HPL, particularly if we take into account the relative

complexity of each line of code. On average, HPL reduces the SLOCs and the
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Figure 3.15: Reduction in the number of SLOCs and programming effort of the host
side of the application when using HPL with respect to the OpenCL C++ baseline.

programming effort of the baseline by 27.1% and 43.1%, respectively, even when the

baseline is a streamlined version with minimal code for the initialization, as we have

explained.

The performance evaluation relies on three systems that are described in Ta-

ble 3.2: a system with a NVIDIA Tesla Fermi S2050, another one with 3 Nvidia

Tesla Kepler K20m, and one with two Intel Xeon Phi 5110P. The compiler was g++

4.7.2 with optimization level -O3.

Figures 3.16 to 3.18 show the speedup of our baseline and HPL versions when

using all the devices with respect to an OpenCL single-device implementation using

a single device in each one of the systems just described. It deserves to be mentioned

that the baselines are the same for all devices. This implies using 2 GPUs and 2

Xeon Phis in Figures 3.16 and 3.18, respectively. The SNU NPB, just as the original

NPB, requires a number of devices that is a power of two, thus EP and FT only use

two K20 in Figure 3.17, while the other benchmarks use three. EP and FT were run

for classes D and B, respectively. The matrix products used matrices of 6000×6000

double-precision floating point elements. Finally, ShWa was run with a 1000× 1000

mesh representing an actual stuary and N-body worked on 192K particles.

As we can see, HPL matches or outperforms OpenCL in most applications, some-

times experiencing some degradation introduced by its runtime. In ShWa there is

an additional overhead derived from the unavailability of mechanisms in this näıve
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System S2050 System K20 System Xeon Phi

Processor Intel Xeon X5650 2x Intel E5-2660 2 x Intel E5-2660
Frequency(GHz) 2.67 2.20 2.20

CPU #cores 6 (12 HT) 8 (16 HT) 8 (16 HT)
Memory Capacity (GB) 12 64 64

Peak Memory Bandwidth(GB/s) 32 51.2 51.2

Processor Nvidia S2050 Nvidia Intel Xeon
(2x Nvidia M2050) K20m Phi 5110P

Frequency(GHz) 1.55 0.705 1.053
GPU #cores 448 2496 60 (240 HT)

Memory Capacity (GB) 3 5 8
Peak Memory Bandwidth(GB/s) 148 208 320

Table 3.2: The Hardware Platform Details

implementation to select a portion of an array for a copy or kernel execution. For

this reason, HPL ShWa must make more work to copy the rows that must be ex-

changed between the devices to and from separate buffers that are used for the

exchanges and it is the benchmark with the largest overhead, reaching a maximum

of 9% in the Xeon Phi. This overhead is removed when using portions of Arrays

as it is explained in Section 3.4.2. In FT, however, HPL is noticeably faster than

OpenCL in all the systems (up to 59% in the K20 system) for two reasons. One is

that in the transfers between GPUs the HPL runtime uses the two-transfer mech-

anism described in Section 3.1.1, instead of the slower clEnqueueCopyBuffer found

in the SNU NPB. The second reason is that some of the FT array copies take place

between arrays that are actually located in the same device. While the SNU NPB

implementation always uses the same clEnqueueCopyBuffer mechanism, the HPL

runtime detects this situation and avoids any transfer, just making a copy inside the

device by means of a kernel. The impact of these optimizations is large because FT

requires many array transfers, making HPL the winner in terms of average speedup

in every device for this benchmark. Something similar happens with N-body, whose

data exchanges are an important part of its runtime, and are much faster under the

policy applied by the adaptive HPL in the GPUs. As a result, HPL is on average

21.4%, 25.7% and 2.1% faster than the OpenCL baseline across the applications

tested in the S2050, K20 and Xeon Phi systems, respectively.

Figures 3.19 to 3.21 show the speedup of HPL with respect to OpenCL for

different problem sizes of FT, ShWa and N-Body, respectively, as they are the three

algorithms that exchange data between devices. Since FT and N-body are based

on clEnqueueCopyBuffer, which offers bad performance in GPUs but is the best

option in the Phi, HPL clearly outperforms OpenCL in the GPUs for all the sizes.
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Figure 3.16: Speedups with S2050
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Figure 3.17: Speedups with K20
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Figure 3.18: Speedups with Xeon Phi

It also outperforms OpenCL FT in the Xeon Phi because of the second advantage

mentioned in the previous paragraph: HPL detects that some copies that the SNU

NPB FT code always blindly performs by means of clEnqueueCopyBuffer have their

source and destination in the same device, so HPL performs them by a faster copy

inside a kernel. The N-body baseline only copies between devices the data that is

strictly needed, so HPL and OpenCL get exactly the same performance on the Xeon

Phi. Finally, the baseline OpenCL ShWa is optimal in the GPUs because it uses the

two transfers mechanism, so HPL performs worse due to the library overheads and

the additional copies that its restriction to operate on whole arrays imply in this

algorithm that only exchanges one row between neighboring devices. In fact, since

the amount of data exchanged is small, the adaptive nature of HPL, which allows it
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Figure 3.19: Speedup of HPL over
OpenCL for different problem sizes of FT
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Figure 3.21: Speedup of HPL over OpenCL for different problem sizes of N-Body

to use in the Xeon Phi the faster clEnqueueCopyBuffer alternative (see Section 3.1.1),

does not help it to reach the baseline performance in this accelerator. We see however

that as the problem size grows, these overheads become an increasingly smaller

portion of the runtime, thus reducing the overhead of HPL. In FT and N-body,

however, HPL advantage remains basically constant across problem sizes because

the whole arrays used in the problem are exchanged. The only exception is FT in

the K20, where when the problem size grows from W to A we get a HPL relative

speed bump, probably because W is a small problem size with many kernels and the

K20 is a powerful accelerator, so the overheads of HPL do not allow it to reach its
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maximum advantage for a small size. Overall, HPL was 28% faster than OpenCL

across this set of experiments, clearly showing its advantage in applications that

exchange data between devices.

3.4.2. Improved multi-device support

In this second part of the evaluation, we assess the improvements exposed in

Section 3.1.1. This way, we have replaced the N-body benchmark with the MG

benchmark, which has a more complex structure with a programming effort orders

of magnitude higher. Its main information is illustrated in Table 3.3. This bench-

mark, like FT and EP, comes from the SNU NPB suite [89], an optimized OpenCL

implementation of the NAS Parallel Benchmarks.

Programmability

Table 3.4 shows the percentual reduction in SLOCs and programming effort with

respect to the baseline when the applications are developed with basic multi-device

HPL (md) in the same way as in Section 3.1, subarrays (sub), subkernels based

on annotating the distribution of the arguments (ann) and subkernels based on

execution plans (exp). These three last techniques were explained in Sections 3.2.1,

3.2.2 and 3.2.3 respectively. Notice that a higher reduction in any of the metric

indicates a better programmability. Annotations can only be used when the i-th

regions obtained in the partitioning of the arrays are always used together, that is,

the first subkernel uses the first subarray of all the inputs, the second subkernel the

second subarray, etc., which is not the case in Summa.

Programming effort reductions are always stronger than SLOC reductions be-

cause this indicator takes into account the complexity of each line, OpenCL API

often having many parameters. Since we argue that this more complex metric is

fairer than SLOCs, this is good news.

The techniques introduced in Section 3.2 provide better programmability than

HPL-md in all the tests except the HPL-sub and HPL-exp implementations of the

NPB applications. In the case of HPL-sub the reason is that the arguments of

the kernels of these applications have different sizes, which does not allow to reuse
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Benchmark Kernels Data Baseline
exchanges SLOCS PE (Ks)

MG 6 u + 37 r stencil 3076 106666

Table 3.3: MG benchmark characteristics.

Benchmark HPL-md HPL-sub HPL-ann HPL-exp
∆SLOC ∆PE ∆SLOC ∆PE ∆SLOC ∆PE ∆SLOC ∆PE

EP 16.9 36.7 15.1 32.6 17.5 39.0 16.0 33.1
FT 18.8 37.4 15.7 31.3 25.9 42.1 16.7 25.9
MG 24.3 30.7 23.4 26.1 25.7 31.8 21.1 24.4
MMRow 18.2 29.0 18.6 32.3 29.1 51.9 20.5 40.2
Summa 25.2 37.7 39.9 61.8 - - 37.3 56.4
ShWa 31.0 43.3 40.2 52.2 56.3 76.7 50.0 58.8

Table 3.4: Programmability improvement for several strategies.

Ranges in their indexing. Nevertheless subarrays positively impact MMRow, and

largely improve upon HPL-md in Summa and ShWa. Their programmability metrics

improvements over the baseline are in fact between 21% and 64% larger in relative

terms that those of HPL-md for these benchmarks.

HPL-exp is the next technique in terms of easiness for the programmer, as it

achieves an average 26.9% SLOCs reduction with respect to the baseline, compared

to the 22.4% of HPL-md and the 25.5% of HPL-sub. Similarly, it reduces the

programming effort by a noticeable 39.8%, above the 35.8% of HPL-md and the

39.4% of HPL-sub. HPL-exp main programmability advantages are that execution

plans avoid loops and the computations of most of the ranges required to split the

work. On the other hand, this strategy requires defining the execution plan and

the related partitioner. Also, the kernels with arguments of different sizes make

sometimes insufficient the predefined Ranges provided by the execution plans. So in

these cases the user must define new Ranges, as in the HPL-sub case; this being the

reason why HPL-exp does not offer better programmability than HPL-md in the

NPB. The biggest asset of HPL-exp with respect to the other options is that it is

the only one that allows to exploit the automatic load balancing features described

in Section 3.2.3, which are evaluated in Section 3.4.2.

Finally, HPL-ann systematically improves upon HPL-md and the other alter-

natives presented in this work. This happens even in the simplest benchmarks,
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where it is more complicated, as the baseline is all the host code, including host

computations and data initialization. This way, for example annotations remark-

ably achieve up to 60% larger SLOCs reduction over the baseline than HPL-md

in MMRow. The largest improvement takes place in this application and ShWa,

where HPL-ann almost doubles the programming effort reduction of HPL-md over

OpenCL. On average, in the five benchmarks where it can be used, HPL-ann re-

duces the SLOCS and the programming effort by 30.9% and 48.3% with respect to

the baseline, respectively, making it the default option when it is applicable and no

automatic load balancing is needed. Overall these results largely justify the interest

of our proposals.

Performance

The performance evaluation uses two of the platforms described in Table 3.2:

S2050 and K20 equipped with two Nvidia Fermi GPUs and three Nvidia K20, re-

spectively. In this evaluation we only use two GPUs of the K20 system. In future

evaluations in this chapter the three GPUs will be considered to measure the im-

pact of having more than two devices when there is communication among them.

The problem sizes used in the experiments are C, B and B for EP, FT and MG,

respectively. MMRow and Summa multiply double precision matrices of 8000×8000

elements, while ShWa processes a 2000× 2000 mesh.

Figures 3.22 and 3.23 show the speedup of the HPL versions with respect to the

OpenCL baseline in executions using 2 GPUs in each one of the systems. Notice

that there is no data for Summa using annotations because this benchmark cannot

be written using this strategy. The adaptive runtime, described in Section 3.1.1,

allows HPL to noticeably outperform the manually optimized FT and MG multi-

device implementation from [89] because HPL chooses a better strategy to exchange

data between the devices. In the other benchmarks, HPL and OpenCL perform

similarly. ShWa HPL-md is slightly slower than the baseline (1% in Fermi and

1.7% in K20) because the lack of subarrays complicates the refresh of the shadow

region of one row in each GPU, requiring additional buffers and copies (overhead

already commented in Section 3.4.1). The slowdown is reduced to 0.5% and 0.6%

when HPL incorporates the novelties described in Section 3.2, allowing to use a

simple assignment to a subarray for these updates. The complex shadow region
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Figure 3.22: Performance in the S2050
system using both GPUs
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Figure 3.23: Performance in the K20 sys-
tem using two GPUs

updates is also why MG md is much slower than the HPL versions enabled by the

proposals evaluated in this section, which reach speedups of 98% and 146% in Fermi

and K20, respectively. The reason is that the MG md does not have subarrays to

efficiently perform those updates. Nevertheless, even without such feature, MG md

is noticeably faster than the OpenCL baseline (51% in Fermi and 70% in K20).

All in all, the programmability improvements proposed have from a neutral to

a very positive impact on performance while allowing a much more natural way of

expressing the algorithms at hand.

Automatic load balancing

The main interest of the execution plan approach lies in its ability to automati-

cally optimize the distribution of work among different devices. We have measured

the performance of the automatic load balancing provided by execution plans in the

most time consuming kernel of each one of our benchmarks. Summa was excluded

of the experiment because it is based on the assumption that each parallel task

operates on a sub-matrix of the same size. While the kernels of EP, MMRow and

ShWa have a high arithmetic intensity, those of FT and MG have a high ratio of

memory accesses per computation. They also have different patterns, as ShWa and

MG follow a stencil pattern, MMRow operates on a tiled way on its matrices, FT

computes a complex FFT (Fast Fourier Transform) using a scratch array and EP



96 Chapter 3. Multi-device computing

makes most of its computation in private and local memory. This way, our tests

rely on kernels with very different nature.

We performed the experiments using two configurations. In the first one, HPL

was asked to automatically distribute the work among the CPU and one GPU in the

K20 system. In the second configuration HPL had to split the work among the CPU

and two K20 GPUs. The OpenCL driver used for the CPU was the version 1.2.0.8

from Intel. Also, in both cases the two algorithms proposed in Section 3.2.3 were

tried. We also sought for the optimal distribution using its exhaustive search feature

using steps of 1% of the workload. Finally, in all the experiments the CPU benefited

from the automatic unified memory support provided by HPL (see Section 3.2.4).

In the five benchmarks the two automatic distribution algorithms based on ana-

lytical models provided the optimum distribution identified by the exhaustive search

in the CPU+single GPU scenario. Figure 3.24 shows the relative performance of

the distributions found by the analytical models with respect to the best one found

by exhaustive search when using the CPU in conjunction with two K20 GPUs.

Both models found again the best point for the FT and MG kernels, and they were

just 0.4% slower than the optimal distribution in MMRow. In ShWa they chose

a distribution that is only 2% different from the optimal one (namely, it assigned

to the CPU 8% of the total work, while the optimum portion was 6%), but since

this is a problem extraordinarily well suited for GPUs [103], this distribution was

6.3% slower than the optimum one, which is still a very good value. Finally, in EP

the ITERATIVE MODEL showed that it can better pinpoint the best distribution than

the SINGLE STEP MODEL, as it found the optimum distribution, while the simpler

model found a distribution just 1.4% slower. Table 3.5, which shows how many

times slower is the worst distribution with respect to the best one for each kernel

and configuration considered, further helps to assess the quality of our balancing

algorithms. We can see that the algorithms achieve optimal or near-optimal distri-

butions in environments in which the worst distribution is between 2.76 and 51.61

times, or in percentages, between 176% and 5061%, slower than the best one.

Regarding the search cost, we used the default HPL configuration that runs each

test twice to reduce the measurement noise. This way, since the SINGLE STEP MODEL

requires evaluating a single distribution, while the ITERATIVE MODEL always con-

verged in two, or very seldomly, three iterations, the optimization processes based
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Figure 3.24: Relative performance of the distributions found by the analytical mod-
els with respect to the best one found when using one CPU and two K20 GPUs.

on analytical models only required between 2 and 6 executions. It also deserves to

be mentioned that the non-first one executions of the ITERATIVE MODEL start from

a point near the optimal one, making them often much faster than the initial ex-

ecution. This way, in practice the ITERATIVE MODEL only required 48% more time

than the SINGLE STEP MODEL.

Overall, we find these results to be very satisfactory, not only because of the

quality of the distributions found and the very reasonable cost of our models, but

also because of the simplicity of the API involved.

3.4.3. Improved stencil applications

The automatic mechanism for updating ghost regions aims to improve the pro-

grammability of the stencil computations in multi-device environments. This im-

provement has also the virtue of reducing the errors typically related with the mem-

ory management essentially linked to this kind of problems. It is also important

to ensure that these improvements do not hurt the performance of applications.

Therefore in this section both the performance and the programmability impact of

our extension are evaluated.

HPL has proven to be a good alternative to low level approaches like OpenCL

or CUDA in terms of programmability and performance as we can see in Chapter 2.
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Environment EP FT MG MMRow ShWa

CPU + GPU 2.76 17.73 51.61 3.98 6.68
CPU + 2 GPU 4.22 17.73 51.61 7.75 10.80

Table 3.5: Slowdown of the worst distribution with respect to the best one in the
two configurations tested.

Also, its evaluation in Section 3.4.2 showed that the usage of subarrays largely

improved the programmability while having a negligible impact on performance

when compared to native OpenCL. Thus, the baseline for our evaluation is an HPL

implementation using subarrays written following the strategy explained in Section

3.2.1. We measured only the host code because the feature presented does not affect

the kernels.

For these studies, we have selected five well-known benchmarks that use stencil

computations causing the occurrence of ghost regions in multi-device implementa-

tions. The main characteristics of each benchmark are shown in Table 3.6 as follows.

After the name, the number of dimensions of each problem appears in the second

column and the third one defines the size of the problem. The last three are the

shape of the stencil used in each benchmark, the number of iterations needed in each

execution and finally, the number of kernels launched in each iteration/execution.

Briefly, CANNY and GAUSS are two image processing benchmarks. CANNY is

an algorithm used for detecting edges in images. A simple solution consists in four

steps, one kernel per step. First, a Gaussian filter is applied to smooth the image.

Then, an edge detection operator is applied (e.g. Sobel). Third, a non-maximum

suppression is performed as an edge thinning technique. Finally, a double threshold

is applied to reduce the variety of output values. GAUSS is an image processing al-

gorithm aimed at reducing the noise in images. Regarding their structure, the main

difference between GAUSS and CANNY, is that the former one is usually performed

inside a loop instead of a fixed number of steps. JACOBI3D is an algorithm that is

very used in scientific computations, as it is the simplest approach to a numerical

solution of the 3-D Laplace Equation via relaxation. LIFE is the Conway’s Game

of Life, a game that simulates the evolution of a 2-D environment. Each cell can be

dead or alive and following several behavior rules each cell changes its state during

the game. Finally ShWa is the shallow water simulator with pollutant transport
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Benchmark Dimensions Problem size Stencil shape Iterations Kernels

CANNY 2-D 4096×4096 5×5 1 4
GAUSS 2-D 4096×4096 11×11 1000 1
JACOBI3D 3-D 512×512×512 3×3×3 1 1
LIFE 2-D 2048×2048 3×3 5000 1
SHWA 2-D 2000×2000 3×3 100000 3

Table 3.6: Benchmark details

used in Chapter 2 and Sections 3.4.1 and 3.4.2. This iterative benchmark needs

three stages/kernels to compute the evolution of a mesh of finite volumes: in the

first one, the flux variation among the elements of the mesh is computed. Then,

the global time step is computed for each iteration. Finally, the new flux value is

computed taking into account the variations computed at the first stage.

Programmability

Table 3.7 shows the percentual reduction of SLOCs and programming effort of

two HPL versions based on annotations (Section 3.2.2) with respect to versions

written using subarrays (Section 3.2.1). One of the versions based on annotations

performs manually the update of the ghost regions (no-syncGhosts), while the other

one uses syncGhosts. Both versions reduce significantly the programming effort

(PE) for all the benchmarks. The largest programmability improvement achieved

by annotations without syncGhosts takes place in ShWa, where the SLOCS and

PE are reduced by 21.92% and 34.06%, respectively. The improvements are much

bigger in all the benchmarks when syncGhosts is used, reaching its maximum values

in CANNY, which requires 69.77% and 96.67% fewer SLOCS and PE than the

subarray-based HPL version, respectively. In fact, while the average PE reduction

when using annotations instead of subarrays is 20.48%, this reduction grows to 79.5%

(3.9 times larger) when syncGhosts is also used. In terms of SLOCS, the average

reduction achieved is 16.96% for the first case, and 46.98% for the second one.

Performance

The performance evaluation took place in two systems described in Table 3.2:

S2050 and K20. The compiler used to obtain our measurements is g++-4.7.2 with

optimization level -O3. The size of the input problem chosen for each benchmark is
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Benchmark no-syncGhosts syncGhosts
∆SLOC ∆PE ∆SLOC ∆PE

CANNY 17.05 18.08 69.77 96.67
GAUSS 15.15 17.04 49.24 85.90
JACOBI3D 11.86 18.04 39.83 83.38
LIFE 18.80 15.18 51.13 79.51
SHWA 21.92 34.06 24.92 52.05

Table 3.7: Programmability improvement without and with the syncGhosts mech-
anism of HPL programs based on annotations with respect to versions based on
explicit subarrays.

reflected in the third column of Table 3.6. Regarding performance, another relevant

parameter to take into account in this kind of applications is the shape of the stencil

used in each case (fourth column). Finally, the fifth column includes the number of

iterations of each benchmark. In summary, CANNY and GAUSS need 4096× 4096

pixels image as input. CANNY uses a stencil shape’s extent of 2 in each direction

and GAUSS a stencil with 5 elements in each direction and 1024 iterations. A 3-D

matrix of 512 elements per dimension was used in JACOBI3D. A 2048× 2048 mesh

and 5000 iterations is the configuration of LIFE, while SHWA performed simulations

of a mesh of 2000 × 2000 cells. In these three last benchmarks the extent of the

stencil shape was of one element in each direction.

Figures 3.25 and 3.26 show the speedup of the HPL versions based on annotations

with respect to the subarray versions when two devices are used in our Fermi and

K20 platforms, respectively. As we expected, the syncGhosts mechanism does not

add any overhead to the manual mechanism. In fact, the performance differences

among the three versions do not reach 1% for any benchmark in both systems.

In order to demonstrate that the good performance obtained is independent of

the number of devices, the same benchmarks were reimplemented using the three

devices available in our K20 system. It is remarkable that in this configuration,

there is a device that exchanges ghost regions with the other two. Figure 3.27

shows the speedup of the two versions based on annotations that update the ghost

regions manually (no-syncGhosts) and automatically (syncGhosts) with respect to

our baseline HPL version based on subarrays in this environment. The differences

of the three versions are again minimal. The maximum performance difference

observed between any two versions of the same benchmark is below 2%. These

results indicate that our syncGhosts mechanism is optimal independently of the
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Figure 3.25: Performance in the S2050
system using both GPUs
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Figure 3.26: Performance in the K20 sys-
tem using two GPUs
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Figure 3.27: Performance improvement using 3 devices

number of devices and that it does not cause any meaningful performance penalty

in comparison with manual versions.

Ghost Cell Expansion

One of the most common optimization techniques applied to applications with

stencil computations in distributed memory systems is known as Ghost Cell Expan-

sion [33]. In those systems, ghost region updates are done at the process level and

they involve message passing among processes. These messages typically reduce the

performance of the application. The ghost cell expansion (GCE) technique reduces
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their impact by decreasing their frequency. This is achieved using larger ghost re-

gions so that more iterations can be performed without requiring an update, as the

size of the updated region shrinks in each iteration. The price to pay is that each

update is more expensive, as it involves a wider ghost region. For this reason the

best performance is typically found with an intermediate ghost region width that

balances the number of updates and their weight.

The GCE technique can be also used in multi-device systems since they are a

kind of distributed memory systems. Using this technique in multi-device systems,

the user performs less but heavier memory copies between devices. For example,

in a 2-D problem with a ghost region of one row, each device needs to update its

ghost region every iteration. With two rows per region, in the first iteration, one

of the ghost rows can be updated avoiding its update in that iteration. In general,

with N rows per ghost region, the ghost rows that will be read in the next iteration

can be updated N-1 times without perform any memory copy between devices. The

implementation of this technique in HPL using annotations is straightforward thanks

to the freedom that the user has to locate the syncGhosts calls where it is necessary,

either once per iteration or each N iterations.

The syncGhosts algorithm and the notation introduced in Section 3.2.2 largely

simplify the application of GCE in heterogeneous applications involving several de-

vices. For this reason, we tested its application to our set of benchmarks using our

notation, the results for two GPUs in the K20 system being shown in Figure 3.28.

Notice that CANNY is not included because it does not have an iterative nature,

and thus GCE is not appropriate for it. The y axis indicates the percentage of

reduction of the execution time of the syncGhosts version using ghost regions of

different sizes with respect to the syncGhosts version with a ghost region of only one

row. The x axis specifies the extra width of each ghost region. With ghost regions

of width 2, the syncGhosts call is located every 2 iterations; with width 4, every 4

iterations, and so on.

GCE is beneficial for all the benchmarks but JACOBI3D. The reason is that

this is a 3-D problem, and thus the increase of the width of the ghost region in one

unit involves adding a whole slice (in this case of 512× 512 elements) to the region.

In this situation the exchange of regions becomes too expensive to compensate for

the reduced update frequency. All the other benchmarks show some degree of im-
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Figure 3.28: Performance of syncGhosts versions varying the ghost region sizes and
using two GPUs in K20 system

provement for moderate amounts of GCE, ranking from a small 1% improvement of

SHWA for 8 elements to a worthy 13% for LIFE with 16 elements, in both cases each

element implying a row of the underlying array. The effect of GCE on the different

benchmarks is quite different because it depends on many parameters such as the

increase of the ghost region size in bytes it implies (not only because of the number

of elements, but also because of the number of bytes required to represent each ele-

ment), the computational cost associated to the larger ghost regions, whether there

is a need to synchronize the devices because of other kernels used in the application,

etc.

As we can see, this technique can often improve the performance of stencil multi-

device codes, and our notation makes it very easy to implement it and experiment

with its width. For example, using annotations it is just enough to increase the

extent of the overlapped region, by changing a single number, and to reduce the

frequency of invocations to the syncGhosts method just by adding an appropriate

conditional.

Overall, the good results achieved by our solution both in terms of performance,

this is, the absence of overhead, and programmability turn HPL into an excellent

tool for the development of stencil codes.
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3.5. Related work

Most efforts to facilitate the use of multiple heterogeneous devices mainly try

to avoid communication APIs in clusters. These proposals provide a programming

model in which a sequential program can allocate buffers and submit tasks to the

devices that exist in a cluster. While some of these works [35, 67, 94] are based

on CUDA, which restricts their portability, many [16, 40, 51, 61] rely on OpenCL.

Most of these latter proposals closely follow the OpenCL API and concepts with

some extensions, and thus require a much lower level management than HPL. Ex-

ceptions that abstract some details are [16, 51]. Nevertheless, the Many GPUs

Package [16] involves compiler directives that must indicate the inputs and outputs

of each task and specify synchronization points, or a library that in addition to these

specifications explicitly uses contexts and buffers. It also includes a gather-scatter

API which, unlike HPL, requires to scatter and gather the data in a single task

which is the only one that can work with the chunks. Similarly, libWater [51] relies

on explicit kernel creation processes, buffers associated to devices that are explicitly

read and written, and synchronizations based on OpenCL-like events, supporting

neither subbuffers nor automated kernel partitioning. HPL is currently restricted to

the exploitation of the devices in a single node, but it offers a much higher level view.

This way n-dimensional arrays rather than buffers in a given memory or device are

the objects that users manipulate, being able to work even on subregions of these

arrays, and leaving all the synchronizations, buffer allocations, data transfers and

consistency management to the HPL runtime.

Our work is also related to the task superscalar paradigm, because HPL synchro-

nizations and scheduling are automatically defined by the task data dependencies.

Nevertheless, the existing proposals to apply this paradigm to heterogeneous com-

puting [36, 15] require users to explicitly annotate the tasks inputs and outputs,

contrary to the fully automated extraction of the dependencies of HPL. They also

suffer from long boilerplate codes to use OpenCL and lack mechanisms to split a

kernel in parallel subtasks with a single command. In addition [36] requires a spe-

cial compiler and does not provide convenient array classes with mechanisms to

define and operate on subarrays. Partitioning arrays using predefined distributions

is allowed by [15], although unlike HPL, it does not allow selecting arbitrary sub-

arrays. A task superscalar project that, like ours, automatically extracts the data
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dependencies of the parallel tasks is [49], but it only supports regular CPUs.

Multiple devices can also be exploited using compiler directives like OpenMP [82]

and OpenACC [81]. This strategy suffers from lack of clear performance model,

reduced user capability to control the result, and strong dependence on the compiler

quality. These problems are even more important in accelerators, whose performance

is very sensitive to implementation decisions.

Skeleton libraries [39, 75, 2, 92] are another approach to exploit multiple hetero-

geneous devices with reduced programming effort. HPL has a much wider scope of

application than these tools, as they can only express computations whose structure

conforms to one of their skeletons.

The fact that our proposal can automatically find a suitable distribution of

work among multiple heterogeneous devices is another difference with the preceding

works, and it relates it to the works on automatic work distribution. For example,

[72] is restricted to CPUs and Nvidia GPUs, only considers a CPU and a GPU,

and is based on an offline training, being thus less adaptive and general than our

dynamic system, which relies on runtime information and supports any arbitrary

combination of devices. A work that shares the first two limitations but uses dy-

namic measurements is [74]. OpenCL is the base for [53][65], but they rely on offline

static models whose construction requires extensive training runs that need to be

repeated when there changes in the platform. Another problem of these approaches

is that their decisions are based on static code features and straightforward runtime

features, thus kernels whose behavior can strongly vary depending on the contents

of the input data, either as a whole or in different work-items, are not well suited

for them.

More recently, [90] defines an algorithm to compute the distribution of work

according to the profiling information measured through two different strategies:

offline and online profiling. Following an offline profiling, all the profiling information

is obtained before the execution of the algorithm. This way, the application is

executed several times with different input sizes and the profiling results are stored.

Taking into account these values, the predicted work distribution is computed during

the execution of the application by means of a linear regression according to the

current input size. An important drawback of this approach, as in the case of other
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offline static models, is that it does not take into account the parameters that can

change for each execution, such as the nature of the data or the size of the local work

space. In addition, the proposed algorithm requires knowing platform-dependent

parameters such as several CPU and device caches sizes or the number of processing

elements in the devices. These values can widely vary, and worse, cannot be obtained

using a portable approach such as OpenCL, which makes impossible to apply this

strategy in a portable and automated way. The online profiling strategy is more

suitable for applications with few problem sizes, but its cost in terms of execution

time is larger. An important reason is that it requires executing the whole workload

to distribute in each device that can participate in the work distribution. With

the profiling results from these executions, the algorithm obtains the percentages

of work for each device following a process that has similar requirements, and thus

portability and automation restrictions, as the offline strategy. On the contrary,

HPL follows a totally portable and automatic approach and it obtains its profiling

information by evenly dividing the work among all the devices involved instead of

making a whole execution in each device involved, which is noticeably faster.

Interestingly, the strategies presented in [90] were also extended to tackle irreg-

ular problems in multi-device environments by sorting the input workload into a

more regular shape attending to the similarity of the behavior of the data points

and then distributing this more regular workload using the mechanisms described

above. Other works that have improved the automatic distribution of work in ir-

regular problems are [4, 3] which explore static load balancing strategies among

the threads and blocks/work-groups when a single GPU is considered, and dynamic

strategies when using multi-GPU systems.

Regarding stencil computations, some of proposals aimed to improve the multi-

device support of the heterogeneous systems, like ours, are specifically targeted to

stencil codes, given the difficulties for their development, particularly when multiple

heterogeneous devices are used. In particular, HLSF [37] provides a high-level inter-

face for describing stencils hiding the low level details on single-device systems. It

is built on top of CUDA so that only CUDA-capable devices are supported. PAR-

TANS [73] is focused on autotuning stencil applications than on improving their

programmability, which is the main goal of HPL. PATUS [29] is an autotuner of

stencil applications in the same fashion as PARTANS but while it allows the user
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to define stencils and strategies to parallelize and optimize them, it only supports

single-device environment based on either CPUs by means of OpenMP, or CUDA-

capable devices. Also SkelCL has been extended in [24] with two approaches to

address stencil computations. An important limitation of SkelCL is that since all its

interaction with heterogeneous devices is based on skeletons, it can only be applied

to applications in which all the kernels have computational patterns that can be

accommodated to one of these skeletons. In contrast, HPL is a completely general

solution.

Another limitation of multi-device solutions like [24, 73] is that they do not

allow separate the kernel launch from the synchronization of the ghost regions. This

prevents us from delaying the synchronization and thus to take advantage of the

gap between the kernel execution and the synchronization in order to let the host

to do useful work in the meantime. With HPL users can freely locate useful work

between the kernel execution and the swapping of the ghost regions. This is a very

interesting option when GCE is applied because the kernels are even heavier because

of the recomputed cells.

Finally, HPL has the unique feature with respect to all the preceding works that

its kernels are written in a language embedded in C++. This allows to exploit run-

time code generation under the control of the programmer and thus to dynamically

adapt and optimize the kernel codes for different platforms and inputs, which can

enable large performance improvements [43][42].

3.6. Conclusions

One of the biggest problems for the exploitation of heterogeneity is the associated

programming complexity, which grows when several devices are in use. In this

chapter we first extended HPL with an automated and optimized coherency system

for arrays than can be used across multiple accelerators as well as the host of a

computing node. This system is also adaptive, as it chooses the most efficient

mechanism to perform the copies and it avoids transfers when it detects the source

and the destination in the same device. Using a näıve multi-device implementation,

the new coherency system allows HPL to reduce on average the programming cost
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metrics of SLOCs and programming effort of multi-device OpenCL C++ baselines

by 27% and 43%, respectively. Regarding performance, its adaptive nature allows

to obtain noticeable speedups with respect to hand-coded OpenCL in applications

that exchange data between devices, achieving an average and a maximum speedup

on a series of tests for this kind of applications using different problem sizes of 28%

and 106%, respectively.

In a second step, this chapter described and evaluated several mechanisms to

facilitate the exploitation of multiple devices in a node on top of HPL. The first

alternative consists in allowing the use of subarrays as kernel arguments as well as

source and destination of array assignments, which is required even for the imple-

mentation of some algorithms in single-device environments, although this is not

explored in this chapter. The second one consists in defining portions of a kernel to

run in parallel in different devices, which can be achieved using a high-level notation

that automatically partitions or replicates the kernel arguments in the devices. A

third contribution is an execution plan in which the user provides a partitioning

function that based on regions precomputed by our library selects the appropriate

subarray of each argument to be used in the kernel execution performed in each

device. A very relevant part of this last approach are analytical models that auto-

matically determine the best partitioning based on run-time profiling.

The resulting schemes are highly flexible, enjoy task superscalar execution with

automatic synchronization and can reduce up to 76.7% the programming effort with

respect to streamlined OpenCL baselines. The overheads of our implementation are

negligible, while the absolute performance can be in fact much larger than that of

OpenCL thanks to the HPL adaptive runtime, which achieves in our tests up to a

146% speedup with respect to manually developed OpenCL codes. The quality of

the work distributions chosen by our execution plans is also outstanding, as they

were optimal in most of the experiments, experiencing a maximum slowdown of 6.3%

with respect to the best distribution found using an exhaustive search. This way we

think that HPL is a very promising approach for the exploitation of heterogeneous

systems and it largely benefits from the contributions described in this chapter.

The last contribution presented in this chapter is an extension of HPL aimed at

improving the programmability of stencil applications in multi-device environments.

The complexity of these codes increases when several devices are used because of
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the tasks associated to the data distribution and the synchronization of the ghost

regions. Thus, the simplification and automation of these tasks becomes a very

attractive option.

The new mechanism, called syncGhosts has been evaluated with five very dif-

ferent applications, showing that it largely reduces the programming effort without

increasing the execution time. For example, while the use of HPL annotations to

express stencil multi-device applications reduces on average the programming effort

on 20.5% with respect to the usage of HPL subarrays, this average reduction grows

up to 79.5% when the syncGhosts mechanism described in this chapter is also used.

The peak reduction, which is 96.7%, is achieved in CANNY, an application with

four stencil kernels. Something similar can be said about the lines of code.

The experiments also show that the performance overhead introduced by syncGhosts

is negligible. Concretely using two devices, the performance differences are always

below 1%. In experiments using three devices, in which more memory transfers are

needed to maintain the coherence of the arrays, the results were analogous thanks

to the underlying careful implementation.

In addition, we applied the ghost cell expansion (GCE) technique in HPL obtain-

ing interesting results. Namely, with almost no programmability costs we improved

the performance of a multi-device execution using ghost regions of different sizes.

In particular, we achieved a 13% of reduction of the execution time in one bench-

mark, using ghost regions of 16 rows in comparison to the same benchmark with

ghost regions of one row. In other words, we obtain a noticeable improvement only

changing the frequency of the syncGhosts call in a loop.





Chapter 4

Heterogeneous clusters support

This chapter presents a framework for facilitating the programming of hetero-

geneous clusters. This framework has been designed based on the premises that

simple semantics and high levels of abstraction must be provided to the user, the

API must be concise and powerful, and its performance must be similar to low level

approaches. The framework proposed relies on a data type that represents a dis-

tributed array on which data-parallel operations can be applied. These operations

can be run either on the regular CPUs or in the heterogeneous devices of a cluster

depending on the specification of the user and they are encapsulated in the data type

methods, which make the associated underlying management as transparent to the

user as possible. Our proposal has been developed as an extension of the existing

Hierarchically Tiled Array (HTA) project [6] (http://polaris.cs.uiuc.edu/hta).

This project provides a data type with all the required properties except the sup-

port for heterogeneous computing. We have provided the accelerator support for

the HTA class by reusing the runtime and integrating the API of the Heterogeneous

Programming Library (HPL) project given its portability, good performance and

intuitive notation. An initial experience on heterogeneous clusters, also described

in this chapter, showed that the use of both libraries in the same application sepa-

rately provided good results in terms of programmability and performance, although

it required some manual management operations and a duplication of handles for

arrays, which complicated the programming. This led us to focus our efforts on the

development of an integrated solution. The result, which we call the Heterogeneous
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Hierarchically Tiled Array (H2TA), is a high level proposal for the programming

of heterogeneous clusters that presents important advantages with respect to the

strategies that are currently used while presenting negligible overheads with respect

to them.

The rest of this chapter is organized as follows. First, the HTA data type is

introduced in Section 4.1. Then, our extension to support heterogeneous clusters

is described in Section 4.2, followed by an experimental evaluation in Section 4.3

and a discussion on related work in Section 4.4. Finally, Section 4.5 presents our

conclusions.

4.1. Hierarchically Tiled Arrays

The Hierarchically Tiled Arrays (HTAs) project is built around the HTA data

type [6]. This data type represents an array that can be optionally partitioned into

tiles. These tiles can be either conventional arrays or lower level HTAs. HTAs

allow to use tiling both to exploit locality and parallelism, as different tiles can

be processed in parallel following data parallel semantics that are embedded in the

methods of the class. Also, the tiles of an HTA can be stored in a single node or

they can be distributed across the nodes of a cluster. In this latter case the top level

tiles are the ones that are distributed. For example, Figure 4.1 shows how to create

in C++ an HTA that is divided into 2×2 tiles of 7×7 single-precision floating point

elements each. The HTA is built in a distributed fashion using a cyclic distribution

of its tiles on a grid of 2× 2 processors that is specified by the object dist built in

the first line. As a result each tile is placed in a different processor Pi, resulting in

the mapping illustrated in the figure. The distribution object is an optional input,

the cyclic distribution being the default one.

HTAs allow complexing indexings thanks to the support of two indexing opera-

tors, the parenthesis, which operate at tile level, and the brackets, that operate at

element level. This way, given a bidimensional HTA h, h({i,j}) selects the tile in

the row i and column j, while h[{i,j}] refers to the element (i, j) of the underlying

matrix, that is, disregarding its tiled structure. Because HTAs are a hierarchical

data type, their indexing can also be applied recursively. As a result, as Figure 4.2
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CyclicDistribution dist({2, 2});
auto h = HTA<float, 2>::alloc({ {7, 7}, {2, 2} }, dist);

P0

P2

P1

P3

Figure 4.1: HTA creation

h({1, 1})

h[{3, 13}] or
h({0,1})[{3,6}]

h(Triplet(0,1), Triplet(0,0))[Triplet(0,6), Triplet(4,6)]

Figure 4.2: HTA indexing

shows, the element (3, 13) of the HTA built in Figure 4.1 can be selected using

its absolute position in the HTA using bracket-based indexing at the top level, or

choosing the associated tile, and then applying the relative indexing within it. It is

also possible to choose ranges of elements by using the type Triplet. Figure 4.2 also

exemplifies the selection of the three last columns of elements of the first column of

tiles in a single expression.

A final component of the HTA data type are its methods for point-wise, collective

and higher-order operations among others [46], which express parallelism as different

tiles can be processed in parallel. Point-wise methods are the usual array operations,

including assignments, that affect individually each scalar of the structure and they

use a natural notation thanks to the support of operator overloading by C++. For

example, given HTAs a, b and c, a=b+c will add b and c into a on the condition that

they are conformable [6], i.e., they have the same topology and the corresponding

tiles in the topology have sizes that allow to operate them. Notice that in the case of

distributed HTAs assignments imply communications if the tiles involved are located

in different nodes. Also, it is interesting to notice that thanks to the flexible indexing

supported by HTAs, their assignments allow elaborated movements of data such as

the one illustrated in Figure 4.3 where the 2nd and 3rd elements of the tiles 1-4 of

HTA b are replaced with the 1st and 2nd elements of tiles 0-3 of HTA a. Finally,

HTAs can be also operated with scalars. In this case the scalar is operated with, or

assigned to, each element of the HTA involved.

Collective operations are those that change the distribution of an HTA as a

whole, giving place to a new HTA. For example, this is the case of permutations
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auto a = HTA<double, 1>::alloc({{3}, {5}});
auto b = HTA<double, 1>::alloc({{3}, {5}});
b(Triplet(1,4))[Triplet(1,2)] =a(Triplet(0,3))[Triplet(0,1)];  

HTA a

HTA b

Figure 4.3: HTA complex assignment example

of dimensions either at scalar or at tile level. Higher-order operations are those

that take as input a function and they apply it in parallel to the HTA tiles. These

operations allow to perform reductions or simply apply user-defined functions in

parallel to the tiles of the HTA. For example, the function hmap allows to apply in

parallel a user function to the tiles of an HTA. When several HTAs are provided

to hmap, each parallel invocation operates on the corresponding tiles of the input

HTAs. In this situation, if the HTAs are distributed the associated tiles should

be located in the same node. Figure 4.4 shows an example of one of these hmap

operations. This example assumes that x, y and alpha are distributed in the same

way, function saxpy is applied in parallel to their tiles 0 in one node, their tiles 1

in another one, and so on. The example also illustrates that hmap requires that the

input HTAs have the same top level structure so that their tiles can be matched,

but the internal structure and size of those tiles can be different.

As we can see, in the context of a cluster HTA programmers manipulate a data

type that represents a whole data structure distributed on the cluster under a given

specification. All the parallelism is encapsulated in the tile-level parallel operations

supported by the data type, which can apply both standard and arbitrary user-

defined functions. This way, users have a single-threaded view of the execution

coupled with a global view of the data. As for communications, they are conveniently

expressed by means of either assignments between tiles located in different nodes

or the collective operations provided by the data type. This gives place to a high

level programming style that offers great programmability advantages with respect

to the traditional MPI-based programming of clusters. Unfortunately, HTAs lacked

until now of an integrated mechanism to exploit heterogeneity in their applications,

which is the subject of this work.
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1 void saxpy(HTA<float,1> y, HTA<float,1> x, HTA<float,1> alpha)

2 {
3 int size = x.shape().size()[0];

4 for(int i = 0; i < size; i++)

5 y[i] = alpha[0] ∗ x[i] + y[i];

6 }
7 ...

8 auto x = HTA<float, 1>::alloc({ {N}, {M} });
9 auto y = HTA<float, 1>::alloc({ {N}, {M} });

10 auto alpha = HTA<float, 1>::alloc({ {1}, {M} });
11 ...

12 hmap(saxpy, x, y, alpha);

Figure 4.4: Parallel application of a user-defined function to the tiles of HTAs

4.2. Heterogeneous Hierarchically Tiled Arrays

Motivated by the growing usage of specialized coprocessors in HPC clusters, we

seek to provide users with high level approaches to program heterogeneous clusters.

We propose to explore answering this problem using HTAs because of their excellent

properties for parallel distributed computing.

This section presents our extension of the HTA data type to support hetero-

geneity, giving place to the Heterogeneous Hierarchically Tiled Arrays (H2TAs).

This improvement allows this data type to exploit all the of parallelism available

in heterogeneous clusters. In order to tackle this extension, we took as basis the

Heterogeneous Programming Library (HPL), which has proven to be a interesting

alternative to low level solutions. In addition, we reused its runtime and some ideas

of HPL for the notation of the H2TAs. For this reason, we will first describe the

use of HTAs and HPL separately in the same application for programming het-

erogeneous clusters. Lastly, we discuss the H2TA proposal taking into account the

advantages and limitations of our initial approach that will be presented in the next

Section.
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4.2.1. Separate use of HTA and HPL

As we can see, HTA and HPL serve very different purposes. While HTAs are

well suited to express the top-level data distribution, communication and parallelism

across cluster nodes, HPL largely simplifies the use of the heterogeneous computing

resources available in a node. Their joint usage in one application requires solving

two problems that we discuss in turn in this section.

Type integration

These frameworks require different data types to store the data they manipulate,

the HTAs and the HPL Arrays respectively. Once we are forced to handle these two

types, and since the top-level distribution of data of the HTAs is made at tile level,

the best approach would be to build an HPL Array associated to each (local) tile

that will be used in heterogeneous computations. The ideal situation is to be able to

use the same host memory region for the storage of the local HTA tile data and the

host-side version of its associated HPL Array, as this would avoid the need for copies

between both storages. Fortunately, the API of these datatypes is very rich, which

enables programmers to achieve this ideal scenario using a relatively simple strategy

illustrated in Figure 4.5. First, HTAs provide several methods to identify the tiles

that are local to each process. In most situations, however, the identification is

extremely simple, as the most widely pattern for the usage of HTAs is to make the

distribution of the HTA along a single dimension, defining one tile per process. This

is the case in our example, where line 1 gets the number of processes in variable

N using the API of the HTA framework and line 2 builds a distributed HTA that

places a 100 × 100 tile in each process, so that all the tiles together conform a

(100×N) × 100 HTA that is distributed by chunks of rows. Line 4 obtains the id

MYID of the current process, so that choosing h(MYID, 1) will return the tile that is

local to this process. Once this tile is identified, obtaining its storage is trivial, as

HTAs provide a method raw() that returns a pointer to it. The final step involves

making sure that the associated HPL Array uses the memory region that begins

at that memory position for storing its host-side version of the array it handles.

This is very easy to achieve in HPL, as the Array constructors admit a last optional

argument to provide a pointer to this storage. This way, the Array can be built using
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1 const int N = Traits::Default::nPlaces();

2 auto h = HTA<float, 2>({100, 100}, {N, 1});
3

4 const int MYID = Traits::Default::myPlace();

5 Array<float, 2> local array(100, 100, h({MYID, 1}).raw());

Figure 4.5: Joint usage of HTAs and HPL

the syntax shown in line 5. From this point, any change on the local tile of HTA h

will be automatically reflected in the host-side copy of the Array local array and

vice versa.

Coherency management

While HPL can automatically manage the coherency of its Arrays across all

their usages in HPL, the changes that are due to HTA activities must be explicitly

communicated to HPL. Again, this did not require any extension to the existing

HPL API, as HPL Arrays, called Arrays for short, have a method data that allows

to do this. The original purpose of this method is to obtain a pointer to the host-side

copy of an Array so that programmers can access its data at high speed through this

pointer, rather than by the usual indexing operators of the Array. The reason is that

these operators check and maintain the coherency of the Array in every single access,

thus having a considerable overhead with respect to the usage of a native pointer.

The data method supports an optional argument that informs HPL of whether the

pointer will be used for reading, writing or both, which is the default assumption

when to specification is made. This is all the information HPL needs to ensure

that the users will get coherent data from the pointer, and the devices will access

a coherent view of the Array when it is used in the subsequent kernel invocations.

Thus this simple mechanism also suffices to make sure that HTAs have a coherent

view of the Arrays that have been modified by heterogeneous computations as well

as to guarantee that HPL pushes to the heterogeneous devices fresh copies of those

Arrays whose host-side copy has just been modified by an HTA operation.

Figure 4.6 shows an example of the memory management mechanism used in

this initial approach. This example is based in the saxpy code of Figure 4.4. The
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auto x = /*HTA defined in Figure 4.4*/
auto y = /*HTA defined in Figure 4.4*/

Array<float,1> x_hpl(N,x({MYID}).raw());
Array<float,1> y_hpl(N,y({MYID}).raw());

eval(saxpy)(x_hpl, y_hpl, 1.0f);

y_hpl.data(HPL_RD);

Host Memory Device Memory
x
y

Host Memory Device Memory
x
y

x_hpl
y_hpl

Host Memory Device Memory
x
y

x_hpl
y_hpl

Host Memory Device Memory
x
y

x_hpl
y_hpl

1

2

3

4

Figure 4.6: Example of the memory coherency mechanism implemented when HTA
and HPL are separately used.

left part of the Figure contains the adapted HPL host code to work jointly with the

HTAs. The code is divided into 4 sections. For each section, the right side of the

Figure shows the evolution of the HTAs or Arrays stored both in the host and in the

device memories. A green color means that the copy of an Array in that memory

is valid, while the red color means that it is invalid. Section 1 of the code shows

the declaration of the two HTAs involved in the code, x and y. The right side of

the Figure shows that at this point, the HTAs are stored in host memory and their

status is valid. Section 2 of the code shows the declaration of the associated HPL

Arrays, x hpl and y hpl. The right side of the Figure shows that these HPL Arrays

point to the same valid copy stored in host memory. Section 3 executes the kernel

through an eval operation. The right side shows that after the kernel execution, the

device memory has two valid copies of each array, while the copy of array y in the

host memory is now invalid. The reason is that the saxpy kernel modifies this array

in the devices. Finally, Section 4 updates this copy, which becomes valid, as the

right side of the figure shows. Now, both memory spaces have valid copies.
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The two problems commented in this Section are responsible for the main lim-

itations of this separate approach, whose impact in the programmability and per-

formance will be measured in Section 4.3. The most relevant limitations are related

to the management of the two kinds of array containers used by both libraries inde-

pendently. This lack of integration forces users to maintain manually two memory

spaces for each kind of array and to use ad-hoc arrays as a workaround in order

to perform efficient copies of regions of arrays. Namely, these applications require

global HTAs to partition the data and enhance the communication among processes.

Also, locally at each process, the kernels are executed in the accelerators by means of

HPL, which requires the user to convert the local data of HTAs into local per-process

HPL Arrays. Similarly, if the results of kernel executions have to be communicated

through the mechanisms provided by HTAs, the HTA arrays have to be manually

updated with the data of the associated HPL Arrays. In addition, the update of

subregions of HTAs with the data of the HPL Arrays also suffers the lack of inte-

gration of the involved libraries. A possibility would be to update the whole host

side of the HPL Arrays, which could have an unacceptable overhead, as it involves

copying all the data when only a subset is needed. HPL also provides mechanisms to

copy portions of arrays between the devices and the host, but while they avoid this

performance overhead, they involve additional coding and thus higher cost in terms

of programmability. The proposal presented in the next Section avoids these per-

formance and programmability shortcomings thanks to a total integration of HTA

and HPL.

4.2.2. Heterogeneous cluster programming with H2TAs

The resulting library after the integration of HTA and HPL, H2TA , can exploit

both the general CPUs and the heterogeneous devices of a cluster using the same

mechanisms as HTAs. Heterogeneous devices are exploited by means of kernels

defined using any of the two strategies explained in Chapter 2: native kernels and

HPL kernels. In both situations the H2TAs are the only data structure required in

the host side, while the heterogeneous kernels are written using the HPL Array data

type (or OpenCL C strings) because no hierarchical sub-partitioning or tile-level

manipulation is supported inside them. This representation allows to seamlessly

mix in the same application parallel computations that are run in the CPUs (by
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means of HTA mechanisms) and operations that are performed in the accelerators

(by means of kernels). The set of eligible accelerators has the same members as in

any other HPL program. In addition, following the spirit of both the HTA and the

HPL projects, the integration automatically keeps a coherent view of the H2TAs

across the CPUs and the devices of the system, avoiding explicit copies. The API

for the heterogeneous executions is based on that of HPL because it facilitates the

specification of details such as the kernel global and local spaces when the default

values are not suitable or the best ones. This way, the most important component

of the new API is the function evalHTA(f), where f is the C++ function associated

to an heterogeneous kernel, which plays a role analogous to that of eval(f) in HPL,

but accepting as inputs H2TAs or scalars. Just as in hmap, the H2TAs should have

the same top-level structure, that is, number of dimensions and top level tiles per

dimension, so that the associated tiles of each one of the H2TAs would be processed

together in the same kernel execution.

Figure 4.7 exemplifies the high level programming style enabled by our exten-

sion. H2TAs keep the same name and creation process as the original HTAs. Also,

their usages in CPU as well as communications by means of assignments follow ex-

actly the same notation as in the original HTA. When heterogeneous computing

is required, an evalHTA rather than an hmap invocation is used (lines 6 and 8), all

the complexity (buffer creations, transfers, kernel compilations, etc.) being hidden

from the user. The heterogeneous kernels in H2TA can be implemented using any

of the two mechanisms exemplified in Figure 4.8 using exactly the same notation

than that of HPL. For example the saxpy kernel used in line 6 of Figure 4.7 can

be the one from Figure 4.8. Also, in between evalHTA and the kernel arguments

1 auto h1 = HTA<float, 1>::alloc({ {1000}, {NNodes} });
2 auto h2 = HTA<float, 1>::alloc({ {1000}, {NNodes} });
3 float alpha;

4 ...

5 h1(Tuple(1,Nodes−1)) = h2(Tuple(0,NNodes−2)) + 4;

6 evalHTA(saxpy)(h1, h2, alpha);

7 hmap(user CPU function, h2, h1);

8 evalHTA(user GPU kernel)(h2(Tuple(1, NNodes−1))[Tuple(0, 499)]), h1);

Figure 4.7: H2TA example code
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1 void saxpy(Array<float,1> y, Array<float,1> x, Float alpha)

2 {
3 y[idx] = alpha ∗ x[idx] + y[idx]; // idx is an HPL variable that contains the

global thread ID

4 }
5 ...

6 const char ∗string = ‘‘ kernel void saxpy( global float ∗y, global float ∗x,

float alpha) { ... }’’;
7

8 void saxpy handle(InOut< Array<float,1> > y, In< Array<float,1> > x,

Float alpha) {}
9 ...

10 Array<float, 1> x(1000), y(1000);

11 float alpha;

12

13 eval(saxpy)(y, x, alpha);

14

15 nativeHandle(saxpy handle, ”saxpy”, string);

16 eval(saxpy handle)(y, x, alpha);

Figure 4.8: HPL example code

it is possible to insert the same global, local and device modifiers as in the case

of eval. The specifiers have been extended to support H2TAs as their arguments.

These H2TAs should have the same top-level structure as the evalHTA arguments so

that the value of each given tile would be used to parameterize the kernel execution

on the corresponding argument tiles. Also, in the case of the device modifier, it

is possible to provide a kind of device (GPU, CPU or accelerator) rather than a

specific device. In this case the tiles are processed in their home node using devices

of that kind. If there are several tiles and more than one device, the tiles in the

same node are evenly distributed on the existing devices to maximize the parallelism

of the runtime. Line 8 exemplifies how the H2TAs used in the heterogeneous exe-

cutions do not need to be the whole data structures defined by the user. Rather,

one can choose to operate on a subset of their tiles, and thus only in some nodes

of the cluster, assuming we are executing on an heterogeneous cluster, which is our

target. In addition, in each tile we can choose to operate on the whole tile or only

in a portion using the high level indexing notation of H2TAs.

As we can see the result is very powerful and easy to use thanks to its intuitive and
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simple semantics. Users manipulate the abstract arrays required by their application

rather than the underlying different copies of them that are required because of

the disjunct memories of each host and its devices. The data objects seen by the

programmer enjoy a simple sequential consistency model [66] that is automatically

provided by their data type. This feature coupled with the single threaded view of

the programming model and the global view of the distributed data structures that

H2TAs inherit from HTAs, largely simplify the programming of parallel applications.

Regarding the implementation details, the copies of the same tile that are used

in different memories are managed by the runtime under a multiple-readers/single-

writer (MRSW) policy [95] with an invalidation protocol on writes [70], which to-

gether with a lazy copy policy that only updates a copy when it is actually required,

minimizes the transfers between the host and the devices. The cost of data copies was

also reduced to the minimum possible one by ensuring that whenever only a portion

of a tile is required in a memory where it is outdated or inexistent, only that region

is copied, rather than the whole tile. Relatedly, the H2TA runtime remembers which

portions of each tile are updated or outdated in each memory, so that the coherency

mechanism granularity dynamically adjusts to the size of the tile regions manipu-

lated by the user, which is needed to ensure a minimum number of transfers with

the smallest possible cost. The HPL runtime provides other critical performance

optimizations such as the caching of buffers and kernels to avoid repetitive creation

processes, while the HTA implementation provides other performance enhancement

techniques such as the caching of HTAs or asynchronous communications between

nodes [46]. Finally, just as the libraries it integrates, H2TAs also heavily rely on

the compile-time polymorphism and optimizations enabled by C++ templates [17]

rather than in the more expensive dynamic polymorphism also supported by this

language.

4.3. Evaluation

A high level approach to program a system must show programmability im-

provements with respect to existing alternatives to motivate its interest. Also, its

abstractions must incur in reasonable performance costs. Thus, both sides of the

problem are tackled in section, which evaluates separately the independent usage



4.3 Evaluation 123

of HTA and HPL (HTA+HPL) and the integrated H2TA library. In order to bet-

ter assess the advantages of the integrated H2TA with respect to HTA+HPL, our

evaluation takes as baseline MPI+HPL versions, so that the improvement that HPL

means with respect to the usage of standard OpenCL bindings is already present

in the baseline. This comparison is fairer because it removes the improvement that

HPL provides with respect to OpenCL.

The main characteristics of the benchmarks used in the evaluation are shown

in Table 4.1, where the first column represents the number of source lines of code

excluding comments and empty lines (SLOCs) of the host side of their baseline

HPL+MPI version. The size of the kernels has been here dismissed because the

H2TA versions use exactly the same OpenCL kernels, so they play no role in the

comparison. The remaining columns contain the number of kernels that are invoked

just once during their execution, the number of kernels that are invoked inside loops

and the nature of the data exchanges between processes they have. As we can see,

these programs present very different patterns, going from codes with no exchange

of information among processes to iterative applications with several data exchanges

in each iteration. We describe now in turn the basics of these benchmarks, which

have already used in previous chapters.

The first two benchmarks are two of the OpenCL codes developed in [89], namely

EP and FT. The first one gets its name from being embarrassingly parallel, although

it requires inter-node communications for reductions that happen at the end of the

main computation. The second one repetitively performs Fourier Transforms on

each one of the dimensions of a 3D array. This requires fully rotating the array

in each main iteration of the algorithm, which implies an all-to-all communication

between the cluster nodes. The third problem, MMRow, is a distributed single

precision dense matrix product in which each node computes a block of rows of

the result matrix. The fourth benchmark is a simulation on time of the evolution

of a pollutant on the surface of the sea depending on the tides, oceanic currents,

etc. called ShWa and parallelized for a cluster with distributed GPUs in [103].

The simulation partitions the sea surface in a matrix of cells that interact through

their borders. Thus in every time step each cell needs to communicate its state

to its neighbors, which implies communications when they are assigned to different

nodes. The distributed arrays are extended with additional rows of cells to keep
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Benchmark SLOCs Unique Repetitive Data
host invocation invocation exchanges

EP 248 1 kernel final reduction
FT 1263 3 kernels 7 kernels all to all
MMRow 184 1 kernel none
ShWa 386 3 kernels stencil and reduction
Canny 209 4 kernels stencil

Table 4.1: Benchmarks characteristics.

this information from the neighbor cells in other nodes, following the well known

ghost or shadow region technique. The fifth application is Canny, an algorithm that

finds edges in images by following a series of four steps, each one implemented in a

different kernel. The parallelization comes from the processing or different regions

of the kernel in parallel. Communications between neighboring regions of arrays

used in the computations are required for some of the kernels. This gives place to

the application of the already mentioned shadow region technique, which replicates

portions of the borders of the distributed arrays which need to be updated when the

actual owner of the replicated portion (rows, in the case of this algorithm) modifies

it.

4.3.1. Programmability

Our programmability comparison will be based on three metrics of this kind,

profusely used along the Thesis: SLOCs, the cyclomatic number [77] and the pro-

gramming effort [55].

Figure 4.9 shows the reduction of the three metrics used in applications writ-

ten using separately HTA and HPL (HTA+HPL) and the proposed H2TA library,

compared to the baseline counterparts written using MPI and HPL (MPI+HPL).

The measurements are based on the host side of the applications, since kernels are

identical in the three versions. There are two kinds of benchmarks attending to

the strength of the reduction. In the programs that have none or very little com-

munication, which are EP and MMRow, the programmability of the three versions

are very similar because the sources have few differences and HPL already provides

very good programmability metrics to the baseline for the exploitation of hetero-
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Figure 4.9: Reduction of programming complexity metrics of HTA+HPL and H2TA
programs with respect to versions based on MPI+HPL.

geneity. However, while H2TA always obtains a positive result, the HTA + HPL

version requires more programming effort than the baseline because of the duality

of the arrays used. This bad behavior is mitigated in the rest of the benchmarks

because of their larger complexity. The other group consists of the benchmarks with

more complex communication patterns, which make the applications benefit more

from the high level semantics of the HTAs. In the case of ShWa and Canny this

complexity is related with the management of the ghost regions needed in these

benchmarks with stencil computations. Finally, the rotation of the 3D array that

requires FT, which implies an all-to-all communication coupled with transpositions,

is well covered by the HTA interface, as it includes a rich set of global collective

operations. In this second group, although HTA+HPL usually obtains good results,

H2TA always improves them, except in the cyclomatic number of FT, where they

achieve the same value. The large improvement that H2TA obtains with respect

to HTA+HPL for all the metrics in ShWa and Canny is particularly outstanding.

The reason is related with the synchronization of the ghost regions of these two

applications based on stencil computations. While HTA+HPL and MPI+HPL need

a more manual process to keep the memory coherence of the ghost regions, H2TA

allows a more convenient and concise process thanks to its better integration.

4.3.2. Performance

Two different heterogeneous clusters were used to assess the performance of our

proposal. The first one, called Fermi, has 4 nodes with an Intel Xeon X5650 CPU
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with 6 cores and 12 GB of memory each. Additionally, each node is connected to

2 Nvidia M2050 GPUs with 3GB per GPU. The interconnection network is a QDR

InfiniBand. The second system, called K20, has 8 nodes. Each one has a 2xIntel

Xeon E5-2660 8-core CPUs and 64 GB of RAM. In this case, the accelerator present

in each node is a K20m GPU with 5 GB. The interconnection network for this system

is a FDR InfiniBand. The compiler used in both cases is g++ 4.7.2 with optimization

level O3 and the MPI implementation is the OpenMPI 1.6.4. The problem sizes

used for the NPB tests were classes D and B for EP and FT, respectively. MMRow

multiplies two matrices of 8192 × 8192 elements, ShWa computes the evolution of

a mesh of 1000 × 1000 volumes and Canny filters an image of 9600 × 9600 pixels.

Figures 4.10 and 4.11 show the speedups of the H2TA, the HTA+HPL and the

MPI+HPL versions of the benchmarks when using a varying number of accelerators

in the Fermi and K20 clusters, respectively. The baseline for the speedup in each

figure is an HPL version, without MPI or HTAs, that uses a single accelerator of

the corresponding cluster.

The HTA-based versions have negligible performance differences. The exception

is ShWa where the average overhead of HTA+HPL with respect to H2TA rises up to

1%, reaching a maximum of 4.5% for 8 devices in K20. Here, the lack of integration of

both libraries increases the need of additional code to maintain manually the ghost

regions in stencil computations (see Section 4.2.1), which increases the overhead.

Additionally, the behavior of the MPI-based applications is similar to that of the

H2TA applications for most cases, which, taking into account the successful history

of MPI in HPC, further confirms the robustness of our proposal. In fact, only for

FT the differences are slightly different, around 2% and 5% of average overhead in

Fermi and K20 respectively. Not surprisingly, the overhead is more apparent for FT,

where the HTA takes care of a very complex all-to-all communication pattern, which

is also the reason behind the very strong reductions of the measured programmability

metrics. All the other overheads are below 1%. This way, wen we look at the big

picture, the peformance overhead of H2TA with respect to MPI+HPL is minimal,

with an average of just 0.6% and 1.3% in the Fermi and K20 clusters, respectively.

Clearly, the large programmability improvements measured in Sect. 4.3.1 totally

justify this reduced overhead.
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Figure 4.10: Speedup of the executions in Fermi using multiple devices with respect
to an execution using a single device

4.4. Related work

While there has been a considerable amount of work on the enhancement of

the programming of heterogeneous clusters in the past few years, as we will see
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Figure 4.11: Speedup of the executions in K20 using multiple devices with respect
to an execution using a single device

now, the alternatives proposed operate at a lower level than H2TAs. Like ours,

most of these proposals take the form of libraries, as this facilitates code reuse

and requires less development effort than approaches that require developing or

modifying a compiler. Some projects are based on vendor-specific tools, thus severely
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limiting their portability. This is the case of [94], which extends CUDA to support

its programming model in clusters of GPUs and multi-GPU systems. Similarly,

[67] extends the MPI API to support message-passing point-to-point and collective

communications of data stored on the GPU using the CUDA interface, thus keeping

the semantic level of MPI+CUDA applications. As a final example, enabling the use

of shared remote GPUs in clusters is the aim of the distributed CUDA API called

rCUDA [35].

As for the OpenCL-based approaches [7, 11, 16, 40, 52, 61, 63, 83, 106] to facili-

tate the programming of clusters, most of them expose abstractions, and thus APIs,

that are at the low level of OpenCL, being sometimes in fact nearly identical. The

most outstanding efforts of abstraction have been performed by the Many GPUs

Package (MGP) [16] and libWater [52]. MGP allows to run unmodified OpenCL

applications in clusters on top of MOSIX VCL. It also supports a C++ object-

oriented API that, while simplifying the process, is still based on low-level concepts

such as buffers, contexts or tasks with explicit enqueuings and synchronizations. In

addition it presents important restrictions to the processing of distributed data; for

example only a scatter and a gather communication patterns are supported and only

one task can be associated to the data they distribute. MGP also has task-based

OpenMP-like directives that are restricted to the execution of individual kernels in

each node. Regarding [52], it relies on explicit kernel creation processes, buffers

that must be manually associated to specific devices and that require the user to

specify the read and write transfers on them, as well as synchronizations based on

events. Therefore it is at a considerably lower level than H2TAs with their globally

distributed data structures that abstract away any idea of buffer and make totally

transparent all the management related to heterogeneous devices.

A proposal to program heterogeneous clusters based on compiler directives is the

task-based programming model of OmpSs [27], which lacks the H2TA fine-grained

control over device selection, globally distributed data structures and implicit data-

parallelism across cluster nodes. Finally, StarPU is a large project with APIs based

on libraries, directives and language extensions that supports two programming

models for clusters. While [14] operates at a lower level exposing MPI-like messages

to the programmer, [13] task-based approach is quite similar to that of OmpSs. As

a result it shares similar limitations, the most important difference being that it
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allows to define distributed arrays as a collection of tiles located in different nodes,

but lacking all the tile-level semantics, advanced syntax, collective manipulation

capabilities and data-parallel operations of H2TAs.

4.5. Conclusions

Developing parallel applications for heterogeneous clusters requires simultane-

ously facing the complexity inherent to distributed memory environments and het-

erogeneous systems, which leads to increased development times, debugging diffi-

culty, maintenance costs, etc. While there have been many proposals to improve

the programmability of these systems, the ones we are aware of, either require pro-

grammers to manage low level details such as explicit buffers or communications, or

support very restricted computation and communication patterns. In this chapter

we propose a high level approach to program these systems that is based on an

abstract data type that represents an array partitioned into tiles. Such tiles can be

distributed on a cluster and processed in parallel following data-parallel semantics,

giving a global view of the distributed data structure and exposing a single high-level

thread of execution to the user. The data type, called Heterogeneous Hierarchically

Tiled Array (H2TA), extends the existing Hierarchically Tiled Array (HTA), which

was oriented to traditional distributed memory clusters, adding support for arbi-

trary computing devices that support OpenCL, thus maximizing the portability of

our solution. Rather than exposing the user to the raw OpenCL API, H2TA re-

lies on the Heterogeneous Programming Library (HPL), which substantially reduces

the development complexity of OpenCL-based applications. H2TAs inherit the high

level notation of HTAs for communications between cluster nodes and add total

transparency and automated management of the kernels, buffers, transfers between

host and devices memory, etc. required by heterogeneous computing.

H2TAs vastly improves the programmability of heterogeneous clusters with re-

spect to existing approaches. Even if we consider baselines that exploit the advan-

tages of HPL but resort to the traditional MPI library for communications, H2TAs

reduce their programming complexity metrics by an average of 20.5%, 31.8% and

26.9% in terms of SLOCs, Halstead’s programming effort and cyclomatic number,

respectively. These improvements are twice larger than those achieved by separately
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using the HTA and HPL libraries, which further justifies the interest of this pro-

posal. Also, the H2TA runtime is very light, with average slowdowns around 1%

that peak at 6% with respect to a MPI-based solution, thus making our proposal

a very appealing approach for the programming of current complex heterogeneous

clusters.





Chapter 5

Conclusions

Over the years, High Performance Computing (HPC) has been driven by general-

purpose traditional CPUs. Clusters, historically seen as aggregations of computers

with one or more CPUs, have permitted the execution of parallel applications until

now by means of frameworks such as OpenMP or MPI. These frameworks are very

mature today and are profusely used in shared and distributed memory systems,

respectively. The introduction of heterogeneous devices, such as FPGAs, GPUs or

many-core coprocessors in HPC, has awaken the interest in creating programming

tools for these platforms. Most alternatives to program these devices have a strong

dependence on a specific device or vendor. OpenCL is the first standard that in-

tends to decouple the developed code from a specific vendor or device family, by

providing effective portability of the code among platforms. A big number of man-

ufacturers have provided their own implementations of the OpenCL standard for

their devices. As a consequence, OpenCL codes can be executed in a wide range of

heterogeneous devices without changing the source code. The main limitations of

OpenCL are: (1) the programming effort required to program OpenCL applications

is high for programmers not familiarized with parallel programming, (2) OpenCL

does not provide automatic performance portability, thus, in order to maximize the

performance, we have to hand-tune a code for each platform where it is executed,

and (3) OpenCL does not support the programming of distributed systems, it has

to be combined with MPI for this purpose. A number of works have addressed these

limitations in many ways. One of them is the Heterogeneous Programming Library

133
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(HPL) [22], which is based on OpenCL and noticeably facilitates the development

of single-device applications, addressing the first one of the mentioned OpenCL

limitations. This Thesis deepens in the usage of HPL as tool to overcome the afore-

mentioned OpenCL limitations by: improving even further the programmability of

HPL kernels, improving performance portability and providing support for the pro-

gramming of distributed systems composed of heterogeneous nodes. In addition,

originally HPL did not provide mechanism to program multi-device applications,

where several devices of the same node are used at the same time. This limitation

has been also overcome in this Thesis.

One of the main limitations of HPL was that the HPL kernels had to be written in

an embedded language similar to C++. The usage of native OpenCL kernels was not

supported, which limited the usage of legacy OpenCL code and low-level or vendor-

specific OpenCL optimizations. This limitation has been overcome in Chapter 2

with the extension of HPL to support native OpenCL kernels, in addition to those

written in the original embedded language. This chapter also introduces other new

features to facilitate the writing of HPL kernels using the embedded language. The

evaluation of these HPL extensions provided very satisfactory results. Along the

whole Thesis, the evaluation of each new HPL feature has been done both in terms

of programmability and performance. The programmability evaluation relies on

three metrics: the source lines of code, programming effort [55] and cyclomatic

number [77] (SLOCs, PE and CN from now on, respectively). The performance is

always evaluated by comparing the execution of the library with one new feature

to a baseline. When HPL kernels are written using the embedded language, the

reduction of the SLOCs, PE and CN of the whole program is 34%, 44% and 30%,

respectively with respect to baselines written using OpenCL C++. Meanwhile, the

average overhead of HPL in terms of performance is below 5%. It deserves to be

mentioned that this performance evaluation was performed using devices of different

vendors. Following this trend, the support of native kernels has also obtained good

performance and programmability results. This way, HPL reduces the SLOCs and

PE of the host program in 23% and 42%, respectively, keeping the performance

overhead close to zero. This overall improvement of the metrics can be also seen

after the comparison done between HPL and one of the most mature and analogous

approaches, ViennaCL [86]. As in Chapter 2, all the improvements done on HPL

along the Thesis were evaluated by means of verifiable benchmarks including a real
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application of shallow water simulation presented in [102].

The lack of multi-device support was an important limitation of the initial version

of HPL. This limitation has become increasingly more important, as it is usual

that one node or computer is composed of several OpenCL capable devices, and

while OpenCL can be used to program applications that use several devices at

the same time, this requires an important programming effort. In order to tackle

with this reality, HPL has been extended to support the programming of multi-

device applications. This extension implied changes both in the internals of HPL

and in its programming API. Regarding the internals, this extension required the

definition of a new memory coherency mechanism allowing HPL to support the

different copies of an HPL Array located in the chosen devices. The HPL API was

also extended to support the usage of several devices at the same time. The new

memory coherency mechanism, tested with a simple multi-device implementation,

achieved a reduction of SLOCs and the PE of 27% and 43% respectively, with respect

to OpenCL C++ baseline implementations. The performance was also improved

thanks to the adaptive nature of HPL given by the automatic selection of the more

efficient method to perform the exchange of data between the memory spaces of

the devices. This is an example of performance portability mechanism introduced

by HPL in this Thesis. This fact is clearly visible in the applications with a larger

amount of data exchanges among devices, achieving an average speedup of 28%

and a maximun of 106% with respect to OpenCL C++ baselines for this kind of

applications.

The changes in the HPL API are mainly due to the mechanisms proposed to

distribute a given workload among different devices. The proposals tested go from

the most manual mechanism based on subarrays, where the user has to select the

portion of the Array (subarray) to be processed in each moment, to the most auto-

matic one based on annotations, where the user only specifies the dimension of the

Arrays to be divided among the devices. There is an intermediate mechanism based

on execution plans, which provides more freedom to the user but avoiding the defi-

nition of subarrays. This last mechanism optionally allows the automatic balancing

of the total workload among the devices available in the system in a very easy way.

In particular, the user only has to specify the devices and HPL will compute the

most suitable workload distribution for them. These three mechanisms reach a max-
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imum PE reduction of 76.7% with respect to OpenCL C++ baselines. Additionally,

thanks to the adaptive runtime of HPL, the improvement of the performance reaches

a peak at 146% in comparison with the same baselines. Moreover, the automatic

workload distribution supported by the mechanism based on execution plans also

obtains optimal results in the majority of the experiments. Actually, in the worst

case our automatic workload distribution is only 6.3% slower than the best workload

distribution obtained by means of an exhaustive search. The last improvement for

the support of multi-device applications in HPL proposed in this Thesis consists in

a new mechanism for the automatic update of the ghost regions that usually ap-

pear in applications with stencil computations parallelized using several nodes or

devices. This proposal, called syncGhosts, was evaluated through several experi-

ments including real applications. The results obtained are even better than those

measured after the application of the other distribution mechanisms proposed. This

way, while following a mechanism based on annotations the PE average reduction

reached 20.5% in comparison to use the subarrays mechanism, this same reduc-

tion rises to 79.5% when the scheme based on annotations is used coupled with the

synchGhosts technique. Particularly, for the image processing application, CANNY,

the reduction reaches a maximum at 96.7%. In order to measure more accurately

the impact of this mechanism on the total execution time, we measured its perfor-

mance in systems with two and three devices and in none of them the performance

differences were larger than 1%, ensuring the robustness of the implementation with

more complex data distribution schemes.

The last issue tackled in this Thesis is the programming of distributed systems

composed of nodes with heterogeneous devices. This is achieved through the integra-

tion of the Hierarchically Tiled Arrays (HTAs) framework [6] and the HPL library,

giving place to the Heterogeneous Hierarchically Tiled Arrays (H2TA) framework.

This library is based on the HTA abstract data type, which represents an array

hierarchically divided in tiles. These tiles can be distributed on a cluster and can

be also processed in parallel providing a global view of the distributed data. The

H2TA proposed library allows programmers to use the OpenCL devices available in

a cluster taking advantage of the combined properties of the HTAs and the simple

API and semantics of HPL. The results obtained are very positive. For example,

comparing the programmability of H2TA with that of an approach consisting in

combining HPL with the MPI library for the communications, which already enjoys
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a programmability improvement with respect to low level solutions, H2TA reduces

the SLOCs, PE and CN by 20.5%, 31.8% and a 26.9%, respectively. These results

are also better than those obtained using both libraries separately as it was demon-

strated in Chapter 4 by comparing applications based on H2TA with versions written

combining HTAs and HPL. Regarding performance, the average overhead of H2TA

with respect to solutions based on MPI is below 1%, which taking into account the

programmability results, further justifies the interest of the library.

5.1. Future Work

In the future, the programmability of HPL can be improved by integrating more

object-oriented features in its kernels. Another important aspect of HPL that can

be improved is performance portability. This feature can be extended in HPL by

adding optimization annotations in the kernels and by adding tuning capabilities to

its runtime.

Other line of future work can be to improve HPL including convenient features

for the development of imbalanced applications, which are applications where each

executing thread performs a different amount of work. The fact that some threads

can perform much more work than others can result in a performance bottleneck.

In these cases, the redistribution of the original workload into a more balanced

one could be very beneficial, particularly if this can be done with as little user

intervention and complexity as possible. This improvement could be also ported to

multi-device systems in order to balance the workload of these applications in such

environments.

Regarding H2TA , a possible ambitious line of future work for this project would

be to implement an HTA-aware compiler that improves the programmability of

these systems and applies optimizations that are more difficult to identify using a

library-based implementation.
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[49] C. H. González and B. B. Fraguela. A framework for argument-based task syn-

chronization with automatic detection of dependencies. Parallel Computing,

39(9):475–489, Sept. 2013.

[50] S. Gorlatch and M. Cole. Parallel skeletons. In Encyclopedia of Parallel Com-

puting, pages 1417–1422. 2011.

[51] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. LibWater: heteroge-

neous distributed computing made easy. In Intl. Conf. on Supercomputing

(ICS’13), pages 161–172, 2013.

[52] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. A uniform approach

for programming distributed heterogeneous computing systems. Journal of

parallel and distributed computing, 74(12):3228–3239, 2014.

[53] D. Grewe and M. F. P. O’Boyle. A static task partitioning approach for het-

erogeneous systems using OpenCL. In Compiler Construction, volume 6601

of Lecture Notes in Computer Science, pages 286–305. Springer Berlin Heidel-

berg, 2011.

[54] J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua. Writing productive

stencil codes with overlapped tiling. Concurrency and Computation: Practice

and Experience, 21(1):25–39, 2009.



BIBLIOGRAPHY 145

[55] M. H. Halstead. Elements of Software Science. Elsevier, 1977.

[56] T. Han and T. Abdelrahman. hiCUDA: High-level GPGPU programming.

IEEE Trans. on Parallel and Distributed Systems, 22:78–90, 2011.

[57] J. Herrington. Code Generation in Action. Manning Publications, 2003.

[58] High Performance Fortran Forum. High Performance Fortran Specification

Version 2.0, January 1997.

[59] IBM, Sony, and Toshiba. C/C++ Language Extensions for Cell Broadband

Engine Architecture. IBM, 2006.

[60] IBM, Sony, and Toshiba. Cell Broadband Engine Architecture. IBM, 2006.

[61] P. Kegel, M. Steuwer, and S. Gorlatch. dOpenCL: Towards uniform pro-

gramming of distributed heterogeneous multi-/many-core systems. J. Parallel

Distrib. Comput., 73(12):1639–1648, 2013.

[62] Khronos OpenCL Working Group. The OpenCL Specification. Version 2.0,

Nov 2013.

[63] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: an OpenCL frame-

work for heterogeneous CPU/GPU clusters. In Proc. 26th ACM Intl. Conf.

on Supercomputing (ICS’12), pages 341–352, 2012.
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A. OpenCL Programming

The vast majority of the OpenCL applications follow the same steps to prepare

the environment and to execute commands in the OpenCL devices. These steps as

well as the OpenCL API functions in charge of them are briefly described in this

appendix in order to illustrate the common OpenCL vocabulary and procedures. It

deserves to be mentioned that most functions return an integer value that indicates

whether the function finished correctly (CL SUCCESS) or not. OpenCL provides a

wide variety of error codes to allow the user to determine the reason of the failure.

The most relevant error codes of each OpenCL API function are explained along

this appendix.

1. Platform discovery.

The first step in every OpenCL program consists in requesting information

about the platforms installed in the system:

cl platform id platforms;

cl uint num platforms;

//query for 1 available platform

cl int err = clGetPlatformIDs(

2, //number of platforms wanted

&platforms, //platform identifiers obtained

&num platforms); //total number of platforms found

The values returned in err can be:

CL SUCCESS, which means that the call was completed successfully.
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CL INVALID VALUE if number of platforms wanted is 0 and platforms

not NULL, or num platforms and platforms are NULL.

Then, the device identifiers of the platforms chosen can be obtained using

the function clGetDeviceIDs. Following with our example, we can obtain the

identifier of a GPU of the platform selected previously with:

cl device id device id;

cl uint num devices;

//query for 1 GPU

cl int err = clGetDeviceIDs(

platform id, //platform identifier previously selected

CL DEVICE TYPE GPU, //device type wanted

1, //number of devices wanted

&device id, //device identifiers obtained

&num devices); //total number of devices found

The values returned in err can be:

CL SUCCESS, which means that the call was completed successfully.

CL INVALID PLATFORM if platform id is not a valid platform.

CL INVALID DEVICE TYPE if the device type wanted is not a

valid one (see Table 1).

CL INVALID VALUE if the number of devices wanted is 0 and the

device type is not NULL or if both variables are NULL.

CL DEVICE NOT FOUND if there are no matches for the device

type wanted.

cl device type Description
CL DEVICE TYPE CPU OpenCL capable CPUs
CL DEVICE TYPE GPU OpenCL capable GPUs
CL DEVICE TYPE ACCELERATOR Rest of capable devices such FPGAs, Xeon PHI, . . .
CL DEVICE TYPE DEFAULT The default OpenCL device in the system
CL DEVICE TYPE ALL All OpenCL devices available in the system

Table 1: OpenCL device types.
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2. Creating contexts for the OpenCL devices.

Contexts are used by the OpenCL runtime to manage command queues, pro-

grams, kernels and to facilitate the sharing of buffers among the buffers associ-

ated with the same context. They are built using the function clCreateContext

as follows:

cl context context;

cl context properties cps[3] = {
CL CONTEXT PLATFORM, // name of the property

(cl context properties)(platform id),// value of the property

0 }; // must be terminated with 0

//query for 1 GPU

context = clCreateContext(

cps, // list with context properties

1, // num of devices that will be associated to this

// context

&device id) // list with the devices

NULL, // Optional error callback function

NULL, // Argument of the callback function (if required)

&err); // return code

The values returned in err can be:

CL SUCCESS, which means that the context was created successfully.

CL INVALID PLATFORM if cps is NULL or the platform value is

not a valid platform.

CL INVALID VALUE if context property name is not a supported

one; if the list of devices is NULL; if the number of devices is 0 or callback

function is NULL but its argument it is not.

CL DEVICE NOT AVAILABLE if a device in the list is currently

not available.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the context.



156 Chapter . A. OpenCL Programming

Once the context is created, command queues can be created to send com-

mands to execute in the associated device:

cl command queue command queue;

command queue = clCreateCommandQueue(

context, // a valid context

device id, // device that will be associated to

// this command queue

0 // command queue properties

&err); // return code

The command queue properties is a bit-field that can accept:

CL QUEUE OUT OF ORDER EXEC MODE ENABLE: if set, the commands are exe-

cuted in an out-or-order fashion.

CL QUEUE PROFILING ENABLE: if set, the user can know profiling informa-

tion of the commands.

The values returned in err can be:

CL SUCCESS, which means that the command queue was created suc-

cessfully.

CL INVALID CONTEXT if context is not a valid context.

CL INVALID DEVICE if device id is not a valid device or is not

associated to context.

CL INVALID VALUE if values of command queue properties are not

valid.

CL INVALID QUEUE PROPERTIES if values of command queue

properties are not supported.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the command queue.

3. Creating programs that will be executed in one or more devices.
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An OpenCL program is a collection of kernels written using OpenCL C. This

program must be compiled by the OpenCL runtime compiler for its execution

on a particular device. A kernel is a C-like function, C with little differences,

which will be executed in parallel by each work-item of the global work index.

To compile the program containing the kernels, it is necessary to create a pro-

gram object. This object encapsulates the sources of the program (online com-

piling) or a binary file (offline compiling), the executable after its compilation,

the set of devices for which the program was compiled and the compilation

options. If the source code of the program is available, which will be the most

common case, its creation is done by means of the clCreateProgramWithSource

function:

const char *kernel code =

‘‘ kernel void vectorAddition( global int src, global int dst) {
dst[get global id(0)] + = src[get global id(0)];

}’’;

cl program program;

program = clCreateProgramWithSource(

context, // a valid context

1, // Number of strings of the next

// parameter

(const char**) &kernel code, // Array of strings with the source

// code

NULL // length of each string or NULL

// if they are null-terminated

&err // return code

);

The values returned in err can be:

CL SUCCESS, which means that the program object was successfully

created.

CL INVALID CONTEXT if context is not a valid context.

CL INVALID VALUE if device id if the number of strings is zero or

any string is NULL.
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CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the program object.

Once the program object is created, the building of its executable is the next

step:

err = clBuildProgram(

program, // a valid program object

1, // number of devices in the device list

NULL, // list with the devices associated to the program

// object or NULL to select all of them.

NULL, // compiler options and preprocessor options

NULL, // callback function to notify the end of the routine,

// successfully or not.

NULL // argument for the callback function

);

This call modifies the program object to include the executable. There is a

complete set of compiler options that can be specified and which can be clas-

sified as: math intrinsics, optimization and request/suppress warnings. This

example defines the variable NUM GPUs with value 2 and disables all the com-

piler optimizations: char buildoptions = ‘‘-D NUM GPUs=2 -cl-opt-disable’’.

This function can return a wide variety of values. The most common ones are:

CL SUCCESS, which means that the program object was successfully

created.

CL INVALID PROGRAM if context is not a valid program object.

CL INVALID VALUE if the list of devices is NULL and number of

devices is not zero; the list is not NULL and the number of devices is 0;

callback function is NULL but its argument not.

CL INVALID DEVICE if the devices of the list are not associated to

the program.

CL INVALID BUILD OPTIONS if the build options are invalid.

CL BUILD PROGRAM FAILURE if there is a failure to build the

program executable.
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In order to see the log of the compilation of a program object, users can use:

char buffer[4096];

size t length;

err = clGetProgramBuildInfo(

program, // valid program object

device id, // device whose executable was built

CL PROGRAM BUILD LOG, // information required.

4096, // maximum size of the buffer

buffer // buffer that will be filled with the

// output information.

&length // actual size in bytes copied to buffer.

);

4. Choosing the kernels from the program object.

Kernel objects are a representation of each kernel function in the host program

memory. They will be used to launch their execution through a command

queue.

cl kernel kernel;

kernel = clCreateKernel(

program, // a valid program already compiled

‘‘vectorAddition’’, // Name of the kernel

&err // return code

);

The values returned in err can be:

CL SUCCESS, which means that the kernel object was successfully

created.

CL INVALID PROGRAM EXECUTABLE if program was not suc-

cessfully compiled.

CL INVALID KERNEL NAME if the name of the kernel was not

found in the program.
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CL INVALID KERNEL DEFINITION if the signature of the ker-

nel is not the same for all the devices.

CL INVALID VALUE if the kernel name is NULL.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the kernel object.

5. Creating memory objects in the device.

Memory objects are used to transfer data from the host and the device. They

can be classified in two kinds: buffer objects and image objects. Buffer objects

are more generic and used in heterogeneous computing. The image objects are

designed for 2D and 3D images. Because of their larger independence of the

domain, this brief introduction only includes the methods to manage buffer

objects. OpenCL offers analogous methods to deal with image objects.

cl mem input;

input = clCreateBuffer(

context, // a valid context

CL MEM READ ONLY, // usage information (see Table 2)

sizeof(float) * 1024, // size in bytes of the buffer (1024 floats)

h input, // pointer to the data allocated in the host

&err // return code );

The values returned in err can be:

CL SUCCESS, which means that the buffer object was successfully

created.

CL INVALID VALUE if the flags of the bit-field are not valid.

CL INVALID BUFFER SIZE if size is 0 or greater than the maxi-

mum allowed for the device.

CL INVALID HOST PTR if the host pointer is NULL but

CL MEM USE HOST PTR or CL MEM COPY HOST PTR are set and

vice versa.

CL MEM OBJECT ALLOCATION FAILURE if there is another

failure to allocate memory.
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cl mem flags Description
CL MEM READ WRITE Buffer can be read or written in the device.
CL MEM WRITE ONLY Buffer can be only written in the device. Reads have

an undefined behavior.
CL MEM READ ONLY Buffer can be only read in the device. Writes have

an undefined behavior.
CL MEM USE HOST PTR The host application wants the OpenCL implemen-

tation to use memory referenced by 4th argument.
CL MEM COPY HOST PTR The host application wants the OpenCL implemen-

tation to use and copy memory referenced by 4th
argument.

CL MEM ALLOC HOST PTR The host application wants the OpenCL implemen-
tation to allocate memory from host accessible mem-
ory.

Table 2: OpenCL device types.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the buffer object.

6. Uploading data from the host to the device.

After the buffer creation and before its use in a kernel execution, it is necessary

to copy the data of the host program to the device memory in order to launch

the kernel with the correct values of the data.

err = clEnqueueWriteBuffer(

command queue, // a valid command queue

d buffer, // memory buffer to write to

CL TRUE, // indicate blocking write

0, // offset in the buffer object (in bytes)

sizeof(float) * 1024, // size in bytes to be write

h buffer, // pointer to buffer in host memory to

// copy data to

0, // number of events in the event list

NULL, // list of events to finish before this

// starts

NULL // return code

);

The most common values returned in err can be:
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CL SUCCESS, which means that command was successfully executed.

CL INVALID COMMAND QUEUE if command queue is not valid.

CL INVALID CONTEXT if the context associated to command queue

and the buffer object is not the same.

CL INVALID MEM OBJECT if d buffer is not a valid buffer object.

CL INVALID VALUE if the region being read is out of bound or host

pointer is NULL.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the OpenCL implementation on the host.

7. Setting up arguments to the kernel.

The arguments that will be used on a kernel execution have to be indicated

before the kernel execution starts.

err = clSetKernelArg(

kernel, // a valid kernel object

0, // index of the corresponding index

sizeof(cl mem), // the size of the argument data

&input data, // pointer to the data used as argument

);

The index of the argument is the ordinal of its position in the kernel argument

list, starting at zero. If the argument is a local memory variable, the pointer

to the data is NULL.

The most common values returned in err can be:

CL SUCCESS, which means that the kernel object was successfully set.

CL INVALID KERNEL if kernel is not a valid object.

CL INVALID ARG INDEX if index is not a valid one.

CL INVALID ARG VALUE if the pointer is NULL and and the ar-

gument does not belong to the local memory space.

CL INVALID MEM OBJECT if the argument is not a valid memory

object.
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CL INVALID ARG SIZE if the size of the argument does not match

with the actual argument.

8. Executing the kernel by means of the appropriate command queue.

After the global index space and the local index space are specified, the kernel

execution can start after enqueueing the request to execute it in its corre-

sponding queue:

err = clEnqueueNDRangeKernel(

command queue, // a valid kernel object

kernel, // index of the corresponding index

1, // the work problem dimensions

NULL, // offset in the global index

&global, // global index work

NULL, // local index work or NULL for let the decision

// to the OpenCL implementation

0, // number of events in the event list

NULL, // list of events to finish before this starts

NULL, // event returned by this call

);

The most common values returned in err can be:

CL SUCCESS, which means that the kernel was executed successfully.

CL INVALID PROGRAM EXECUTABLE if there is no success-

fully built program available for the device associated to command queue.

CL INVALID COMMAND QUEUE if command queue is not a valid

command queue.

CL INVALID KERNEL if kernel is not a valid kernel object.

CL INVALID CONTEXT if the context associated with kernel and

command queue is not the same.

CL INVALID KERNEL ARGS if kernel arguments have not been

specified.

CL INVALID WORK DIMENSION if the dimension is not between

1 and 3.
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CL INVALID WORK GROUP SIZE if global work size is not evenly

divisible by local work size of the value specified is not valid for the se-

lected device.

9. Offloading data from the device to the host.

In order to allow the host program to access the results computed in the device,

these data must be copied from the device to the host using the command:

err = clEnqueueReadBuffer(

command queue, // a valid command queue

d buffer, // memory buffer to read from

CL TRUE, // indicate blocking write

0, // offset in the buffer object (in bytes)

sizeof(float) * 1024, // size in bytes to be write

h buffer, // pointer to buffer in host memory to

// copy data to

0, // number of events in the event list

NULL, // list of events to finish before this

//starts

NULL // return code

);

The most common values returned in err can be:

CL SUCCESS, which means that command was successfully executed.

CL INVALID COMMAND QUEUE if command queue is not valid.

CL INVALID CONTEXT if the context associated to command queue

and the buffer object is not the same.

CL INVALID MEM OBJECT if d buffer is not a valid buffer object.

CL INVALID VALUE if the region being read is out of bound or host

pointer is NULL.

CL OUT OF HOST MEMORY if host program cannot allocate the

memory space required by the OpenCL implementation on the host.
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The OpenCL API contains many more procedures not covered in this brief man-

ual. Among others, it includes: those in charge of the release of memory, kernel and

program objects, the mechanisms to request information of the platforms, devices,

etc. or the different ways to synchronize the commands launched. In the OpenCL

Programming Guide, which is available in the Khronos Group website, the API is

explained in detail.




	Introduction
	Heterogeneous Computing
	OpenCL
	The Platform Model
	The Execution Model
	Memory Model
	Example: vectorAddition
	OpenCL C++ bindings

	High Level Proposals in Single Device Environments
	Support for common and skeletal operations
	Compiler directives
	Libraries that improve the usability of low level APIs

	High level proposals that target multi-device systems
	Heterogeneous Clusters
	Thesis approach and contributions

	The Heterogeneous Programming Library
	Programming model
	Library frontend
	The Array data type
	HPL embedded language
	Host Interface

	Evaluation
	Embedded language kernels
	Native OpenCL C kernels

	Related work
	Conclusions

	Multi-device computing
	Multi-device support in HPL
	Implementation details

	Improving multi-device support
	Subarrays
	 Subkernels based on annotations
	 Subkernels based on execution plans
	Unified memory exploitation

	Improving stencil applications
	Automatic update of the shadow regions: syncGhosts

	Evaluation
	Naïve multi-device support
	Improved multi-device support
	Improved stencil applications

	Related work
	Conclusions

	Heterogeneous clusters support
	Hierarchically Tiled Arrays
	Heterogeneous Hierarchically Tiled Arrays
	Separate use of HTA and HPL
	Heterogeneous cluster programming with H2TAs

	Evaluation
	Programmability
	Performance

	Related work
	Conclusions

	Conclusions
	Future Work

	References
	Appendices
	A. OpenCL Programming

