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ABSTRACT

Purely functional programming languages offer many benefits to par-
allel programming. The absence of side effects and the provision for
higher-level abstractions eases the programming effort. In particular, non-
strict functional languages allow further separation of concerns and pro-
vide more parallel facilities in the form of semi-implicit parallelism. On
the other hand, because the low-level details of the execution are hidden,
usually in a runtime system, the process of debugging the performance
of parallel applications becomes harder. Currently available parallel pro-
filing tools allow programmers to obtain some information about the
execution; however, this information is usually not detailed enough to
precisely pinpoint the cause of some performance problems. Often, this
is because the cost of obtaining that information would be prohibitive for
a complete program execution. In this thesis, we design and implement
a parallel profiling framework based on execution replay. This debugging
technique makes it possible to simulate recorded executions of a pro-
gram, ensuring that their behaviour remains unchanged. The novelty of
our approach is to adapt this technique to the context of parallel pro-
filing and to take advantage of the characteristics of non-strict purely
functional semantics to guarantee minimal overhead in the recording
process. Our work allows to build more powerful profiling tools that do
not affect the parallel behaviour of the program in a meaningful way. We
demonstrate our claims through a series of benchmarks and the study
of two use cases.

RESUMO

As linguaxes de programacién funcional puras ofrecen moitos benefi-
cios para a programacion paralela. A ausencia de efectos secundarios e
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as abstracciéns de alto nivel proporcionadas facilitan o esforzo de pro-
gramacion. En particular, as linguaxes de programacién non estritas per-
miten unha maior separacién de conceptos e proporcionan mdis capaci-
dades de paralelismo na forma de paralelismo semi-implicito. Por outra
parte, debido a que os detalles de baixo nivel da execucién estan ocul-
tos, xeralmente nun sistema de execucién, o proceso de depuraciéon do
rendemento de aplicacions paralelas é madis dificil. As ferramentas de
profiling dispofiibles hoxe en dia permiten aos programadores obter cer-
ta informacion acerca da execucion; non obstante, esta informacién non
acostuma a ser o suficientemente detallada para determinar de maneira
precisa a causa dalgtns problemas de rendemento. A mitdo, isto débe-
se a que o custe de obter esa informacién seria prohibitivo para unha
execucion completa do programa. Nesta tese, desefiamos e implemen-
tamos unha plataforma de profiling paralelo baseada en execution replay.
Esta técnica de depuracion fai que sexa posible simular execuciéns pre-
viamente rexistradas, asegurando que o seu comportamento se mantefia
sen cambios. A novidade do noso enfoque é adaptar esta técnica para o
contexto do profiling paralelo e aproveitar as caracteristicas da semantica
das linguaxes de programacién funcional non estritas e puras para ga-
rantizar unha sobrecarga minima na recolecciéon das trazas de execucion.
O noso traballo permite construir ferramentas de profiling mais potentes
que non afectan ao comportamento paralelo do programa de maneira
significativa. Demostramos as nosas afirmaciéns nunha serie de bench-
marks e no estudo de dous casos de uso.

RESUMEN

Los lenguajes de programacién funcional puros ofrecen muchos benefi-
cios para la programacion paralela. La ausencia de efectos secundarios
y las abstracciones de alto nivel proporcionadas facilitan el esfuerzo de
programacion. En particular, los lenguajes de programacién no estric-
tos permiten una mayor separaciéon de conceptos y proporcionan mads
capacidades de paralelismo en la forma de paralelismo semi-implicito.
Por otra parte, debido a que los detalles de bajo nivel de la ejecuciéon
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estdn ocultos, generalmente en un sistema de ejecucién, el proceso de
depuracion del rendimiento de aplicaciones paralelas es més dificil. Las
herramientas de profiling disponibles hoy en dia permiten a los progra-
madores obtener cierta informacion acerca de la ejecucién; sin embargo,
esta informacién no suele ser lo suficientemente detallada para determi-
nar de manera precisa la causa de algunos problemas de rendimiento.
A menudo, esto se debe a que el costo de obtener esa informacién seria
prohibitivo para una ejecucién completa del programa. En esta tesis, di-
seflamos e implementamos una plataforma de profiling paralelo baseada
en execution replay. Esta técnica de depuracion hace que sea posible si-
mular ejecuciones previamente registradas, asegurando que su compor-
tamiento se mantiene sin cambios. La novedad de nuestro enfoque es
adaptar esta técnica para el contexto del profiling paralelo y aprovechar
las caracteristicas de la semantica de los lenguajes de programacién fun-
cional no estrictos y puros para garantizar una sobrecarga minima en la
recoleccion de las trazas de ejecucion. Nuestro trabajo permite construir
herramientas de profiling méas potentes que no afectan el comportamien-
to paralelo del programa de manera significativa. Demostramos nuestras
afirmaciones en una serie de benchmarks y en el estudio de dos casos de
uso.
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INTRODUCTION

This chapter presents the topic of parallel programming and profiling in
the context of a functional language. We give a definition of parallel pro-
gramming and give a brief overview of parallel programming models,
and profiling and debugging tools in section 1.1. We also show the be-
nefits of functional programming to the parallel paradigm and some of
the shortcomings of currently available tools for profiling. Then, in sec-
tion 1.2, we outline the solution we have developed to overcome some
of the aforementioned problems. In section 1.3, we list the contributions
made by this thesis.

1.1 THE CHALLENGES OF PARALLELISM

Since the beginning of computing history, huge amounts of research
have been spent in the development of technology that enables com-
putations to be calculated in parallel as a way of improving execution
runtime. The limits on single-core processor scalability have recently put
pressure on the ability to take advantage of parallel hardware. The du-
plication of computing power every two years derived from the increase
in transistors per chip, known as Moore’s law, stalled several years ago
when miniaturisation started to find physical limits such as heat dis-
sipation, increasing power consumption and current leakage [1]. Even
though Moore’s law still holds, the increase in transistors per chip is
accomplished using multicore architectures. What was once a matter of
waiting some time to acquire a faster processor, now requires a funda-
mental change in the way programmers write computer programs to
take advantage of concurrent execution.

Today’s desktops and laptops are usually provided with single-chip
multicores, but current research is already bringing manycore hardware
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and heterogeneous platforms where the CPU is accompanied by a highly-
parallel GPU [2]. Improved parallelism in hardware challenges current
programming models to keep up with the increase in concurrency. Even
though parallel programming has been possible since long ago, making
it easy to use and, at the same time, provide the mechanisms and tools to
understand and improve its performance and scalability is still an open
research problem.

What makes parallel programming hard is that, in order to obtain
speedups against a sequential implementation, a parallel program needs
to decompose its computations into independent tasks (units of work)
that perform their work in parallel with each other. It follows then that
the programmer needs the tools and ability to identify these independ-
ent tasks in a way that the total work share of the program is as evenly
distributed as possible. There is complexity involved in doing this, such
as figuring out ordering dependencies or finding independent work. Ad-
ditionally, it is quite possible that there needs to be some form of coordin-
ation between the multiple tasks being run because they usually need to
join their results, or their inputs come from a shared data source. In
these cases, undesirable situations like deadlocks or starvation need to
be avoided. This complexity is the reason code parallelisation has not
been completely automated yet, and the motivator behind the multiple
libraries and tools that are created to try to ease the programming and
to profile the performance of parallel programs.

As a summary, in order to increase performance, programming lan-
guages and runtimes need to expose parallel primitives and/or libraries
to programmers, so that computer programs can make the most of cur-
rent highly-parallel hardware. This style of programming involves more
challenges than sequential programming and the tasks of both debug-
ging and profiling this programs is a big part of those.

1.1.1  Parallel programming models

As with other programming paradigms, parallel programming has evolved
from an unstructured approach to the development of multiple parallel
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programming models, intended to solve the challenges described above.
A parallel programming model can be defined as a set abstractions and
tools that allows to write parallel programs and provide an implement-
ation so that the resulting program can be executed in a variety of par-
allel hardware. They usually consist in parallelising compilers, parallel
languages or libraries.

Parallel programming models can be generally classified using two
orthogonal properties: process interaction and problem decomposition.
The first property establishes how independent tasks interact with each
other and is closely related to the hardware categories. We can find here
shared memory, message passing and implicit parallelism models. As
for problem decomposition, it is related to the parallel structure of the
program and divides parallel problems in task-parallel and data-parallel
problems.

We provide a brief description of some of these models:

SHARED MEMORY: in this model, tasks share a common address space
in which to write and read data. To solve the problem of concurrent
access to shared resources, synchronisation mechanisms are avail-
able such as locks, semaphores or monitors. Independent tasks can
be created by using processes or spawning threads. In general, this
approach is very low-level and requires a lot of skill to avoid data
races and deadlocks. There are some approaches that make it easier
by relying on the compiler to generate the parallel code. For ex-
ample, OpenMP [3] is an industry standard which provides com-
piler directives for a number of programming languages allowing
the programmer to parallelise loops and protect global data.

MESSAGE PASSING: this model is based around explicit communica-
tion, where data that is needed by different tasks is sent and re-
ceived by passing messages. It avoids the need to synchronise
access by forcing the programmer to explicitly design a commu-
nication protocol between tasks and sharing nothing. As a draw-
back, it may incur in additional memory usage because of data
being copied when sent. Popular implementations of this model
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are the MPI [4] and PVM [5] libraries and the Actor model [6] or
mt-calculus [7], mathematical formulations of the model.

DATA PARALLELISM: this model is an instance of a single-instruction
multiple-data architecture where tasks execute the same code in
independent chunks of some data. This model can work in a dis-
tributed memory architecture by sending the chunks to their cor-
responding nodes and then joining the results back. It is the mod-
els used to program GPUs. Unified Parallel C [8] or CUDA [9] are
some implementations of this model.

TASK PARALLELISM: this model easily defined in comparison to data
parallelism. Instead of splitting the data to perform parallel com-
putations in each piece, independent tasks are identified to execute
in parallel using the same or different data. It is a very broad paral-
lel programming model and most of the libraries referenced earlier
can be used for task parallelism.

The taxonomy presented here can serve to classify the particular way
in which a parallel problem is solved but, in general, parallel implement-
ations fall under more than one category, providing libraries and/or
tools to combine multiple models.

1.1.2  Parallel functional programming

While some parallel programming models can help to structure a par-
allel program, most of the work comes from the understanding of the
program and the ability to reorganise and decompose it (or the data it
needs to manipulate) into smaller tasks with little dependencies between
each other. Many of the difficulties in doing this are related to the under-
lying language technology. For the most popular paradigms, imperative
and object-oriented programming, side effects are an integral part of their
programming model. Specifically, data mutability is a pervasive feature
that makes it very hard to reason about data dependencies and ordering,
fundamental to achieve an effective parallel structure. This is especially
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important in the immediate future, where the need to scale to thousands
of nodes will only make the problem more prominent.

Even though the functional programming (FP) paradigm has existed
for as long as imperative programming, it has only been in recent times
that it has started to become mainstream. Modern programming lan-
guages usually employ a number of features from different program-
ming paradigms, making it hard to delimit what makes a language func-
tional or imperative. Nevertheless, a functional language can be defined
as a programming language in which the main building-block is the
function definition, and complex programs are built by composing smal-
ler functions together [10]. However, when one thinks of a FP language,
there are a whole range of high-level abstractions that are commonly
associated with it:

HIGHER-ORDER FUNCTIONS: these are functions that allow passing other
functions as arguments and/or return functions as their results.
This feature is also described as “functions as first-class values”.
Higher-order functions serve as glue to compose functions gener-
ically and can be emulated in imperative languages by function
pointers or classes.

RECURSION: this feature allows a function to call itself as part of its own
execution, possibly with different parameters. This serves as the
alternative to loops in imperative languages. Using higher-order
functions, many recursive patterns can be abstracted away result-
ing in more code reuse.

PURITY: a pure function is a function that has no side effects when it
is evaluated. As a consequence, what are usually called variables
in imperative languages are just names used to identify constant
values and, given the same inputs, the result of a pure function is
always the same. The absence of side effects enables many program
optimisations (e.g. memoisation, discard unused expressions, etc.)
and prevents many bugs that arise from state mutation.

REFERENTIAL TRANSPARENCY: this feature is closely related to pur-
ity. Referential transparency means that any expression can be in-
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terchanged with its definition without changing the meaning of
the program. This property requires that evaluating an expression
always result in the same output, but it is not as strong as pur-
ity. Referential transparency enables equational reasoning, making it
easier to prove some properties about the code, or to apply pro-
gram transformations.

EXPRESSIVE TYPE SYSTEM: many functional languages are equipped
with type systems more expressive than those of mainstream pro-
gramming languages that can provide many correctness guaran-
tees without the inconvenience of writing cumbersome type sig-
natures by using type inference. The use of algebraic data types
and pattern matching makes FP suitable to express and manipu-
late complex data structures.

Laziness and Haskell

There is one characteristic of functional languages we have omitted up
to this point: strictness. Strictness defines how a program is evaluated:
either a function evaluates its arguments before evaluating its body (eager
or strict evaluation) or it does so the other way around (non-strict evalu-
ation), so that arguments are only evaluated on demand, when they are
needed.

In this thesis we use a particular functional language with non-strict
semantics called Haskell [11]. The initial Haskell 98 language standard,
edited by Peyton Jones and Hughes [12], was published in 1999. Even
though the report defines Haskell as a non-strict functional language, it
is common to use the term lazy because most of its implementations use
a call-by-need evaluation strategy, implemented using graph reduction.
That means that, not only the evaluation of expressions is postponed,
but their results are shared. Because laziness is an implementation detail
of non-strict semantics, and this convention is widespread, we use the
terms interchangeably even if it is not entirely accurate.

There are many benefits associated with laziness, but some of the most
useful are the following [13]:
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¢ The ability to define new control structures. While other languages
need to provide them built-in, a lazy language allows the user to
define control structures as normal functions. For example, Haskell
provides the following function:

|when :: (Monad m) => Bool ->m () ->m ()

equivalent to the then branch of a conditional statement. Using
strict semantics, a language would need either a macro system that
did textual substitution or built-in support, as usually happens.

* The improvement of program modularity through separation of con-
cerns. Laziness allows to define data producers independently of
its consumers without having to worry about performance or cor-
rectness. Again, we provide the code for a common Haskell func-
tion to verify if a property holds in any element of a list:

any :: (a -> Bool) -> [a] -> Bool
any p = or . map p

This kind of function reuse is impossible in a strict language, which
should resort to use built-in operators with short-circuit evaluation
such as || in C or orelse in Erlang to avoid computing the whole
list after finding an element which fulfils the property p.

From now on, even while trying to remain general, we refer to a lazy
purely functional language when talking about functional programming.
In particular, we use Haskell in all code snippets. Additionally, Glasgow
parallel Haskell (GpH) [14] is used as the chosen Parallel Haskell lan-
guage extension.

Parallel Haskell

GpH introduces two language primitives to program parallel applica-
tions:

par :: a ->b ->b

pseq :: a ->b ->b
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These are the basic primitives on top of which many parallel program-
ming models can be implemented [15]. par, as defined by its type, eval-
uates to its second parameter. It introduces parallelism by denoting that
it would be useful to evaluate its first parameter in parallel. The exact
details of how this is done are defined by the underlying Haskell im-
plementation. This mechanism is very flexible because the expression
which is possibly being parallelised is treated as any other Haskell ex-
pression and, as such, its result is shared by any thread needing it, and
also garbage collected. This allows to parallelise expressions with dif-
ferent degrees of granularity and use speculative parallelism, relying in
the runtime system for both ensuring non-duplicate evaluation and dis-
carding unused values. It is important to realise that lazy evaluation is
needed so that the evaluation of par a b returns b without forcing the
evaluation of a. pseq complements par by enforcing the evaluation order-
ing of two expressions. It is mainly used to make sure that the thread
that evaluates an expression using par does not immediately evaluate
the parallelised subexpression.

To illustrate how to introduce parallelism in an existing program us-
ing these two primitives, we provide the code for a parallel Fibonacci
implementation in listing 1:

Listing 1: Parallel Fibonacci function

nl = pfib (n-1)
n2 = pfib (n-2)

1 |pfib :: Int -> Int

2 |pfib 0 =1

3 |pfib 1 =1

4 |pfib n = nl ‘par’ n2 ‘pseq‘’ nl + n2
5 where

6

7

This common parallelisation of the Fibonacci function consists in eval-
uating the first call to calculate the previous Fibonacci number, n1, in
parallel with the second one, n2. In this case, pseq forces the thread eval-
uating pfib to evaluate n2 before n1 + n2. This allows n1, which has been
“marked” for parallel evaluation, to be evaluated by a different thread.
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Lazy evaluation and other functional programming abstractions bring
many benefits to parallel programming and, in particular, to the semi-
implicit model provided by GpH. We follow Hammond and Michelson
[10, pp. 1-7] to name a few examples:

EASE OF PARTITIONING. Because of the lack of side-effects, given
any two expressions with no data dependencies, their order can be re-
versed or they may be evaluated in parallel. Purity makes it easier to
reorganise the program and evaluate independent tasks in parallel. Seri-
alisation is only forced by data dependencies and explicit control de-
pendencies (if and case expressions), so that many dependencies are
avoided by removing assignment.

SIMPLE COMMUNICATION MODEL. Evaluation of parallel shared ex-
pressions works as an implicit communication channel. A thread de-
manding a result being evaluated by another thread is queued until the
result is available and woken up when ready.

ABSENCE OF DEADLOCK. Compared to the imperative paradigm, dead-
locks cannot happen in a purely functional program. Implicit control
dependencies as the ones introduced by assignment in an imperative
setting must be protected by using some form of locking mechanism.
Parallel functional programs, on the other hand, can rely on graph re-
duction to block on the evaluation of an expression and share its result
or duplicate the work if a call-by-name strategy is used.

STRAIGHTFORWARD SEMANTIC DEBUGGING. Purely functional pro-
grams give the same results when executed in parallel as when executed
sequentially. The lack of side effects means that the evaluation strategy
is going to be independent of the result. Because the result is determin-
istic, depending on the parallel programming model, it may be possible
to program and debug a sequential version, and later add parallel con-
structs without affecting the correctness of the result.
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EASY EXPLOITATION OF PIPELINING AND OTHER PARALLEL CON-
TROL CONSTRUCTS. The style of programming that functional pro-
gramming imposes leads to a program structure with a lot of similarities
to algorithmic skeletons [16]. The use of function composition is analog-
ous to pipelining and many recursive algorithms use lists in a way similar
to a task farm.

For many of these cases, lazy evaluation can help to introduce more
parallelism because data dependencies introduce a sequential depend-
ency only when a value is required, and not just as a function parameter.

Given these properties, writing parallel programs in a purely func-
tional language such as GpH, is misleadingly simple. In many cases,
it consists in identifying key places in the source code where coarse-
grained computations are evaluated, and instructing its runtime system
to evaluate them in parallel.

The scenario depicted above seems ideal, especially when it is com-
pared to many imperative parallel models where race conditions and
deadlocks are real concerns one has to be aware of. On the other hand,
these very same properties that make it easy to do parallel programming
can be a challenge when one wants to improve an already parallel pro-
gram, or debug the performance problems of an underperforming one.
Specifically, the lack of explicit program flow makes it harder to enforce
the best evaluation ordering when it is already known. Also, implicit
parallelism may get in the way of implementing problems with a well-
defined parallel structure. The implementation of pfib shown earlier is
a good example of this limitations. A relatively inexperienced program-
mer can realise that a threshold is needed to obtain good performance in
divide and conquer algorithms, but, even then, we do not obtain a linear
speedup as one would hope in such a simple example. An explanation
of this fact is shown in section 5.2.1.
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1.1.3 Profiling parallel functional programs

Usually, in an imperative setting, after getting an initial version for a
parallel program, the next step consists in using profiling tools to obtain
runtime information that helps in understanding its parallel behaviour.
This information may include function execution time, thread schedul-
ing, lock contention, etc. The use of this kind of tools can be very helpful
in that the programmer can identify and focus on the bigger cause of
slowness and also understand the problems underlying its performance.

The problem with a lazy functional language in relation to parallel
programming is the lack of tools supporting useful profiling. This is true
even for sequential programs. The reason behind this circumstance is the
fact that interleaving the evaluation of functions as they are demanded
prevents from accurately measuring their running times, and makes it
very difficult to map an expression being evaluated to specific points in
time. For example, in a common producer/consumer expression such
as take 5 primes, instead of calculating a list of prime numbers and then
returning the first 5 values, lazy evaluation means that each one of the
first 5 prime numbers is going to be computed as they are consumed.
So, if those numbers are printed separately, primes would suspend its
evaluation in between each print action.

Additionally, in a parallel setting, any technique that tries to solve
this problem becomes more difficult to apply because the increase in the
amount of information per unit of time makes the overhead of collecting
it larger. Also, the nondeterminism inherent to parallelism means that
the runtime behaviour of the program run under a profiler in consecut-
ive executions may differ substantially to that of the original execution
of the program (without any profiling).

Some of these shortcomings cannot be directly fixed and are instead
resolved by approximating its result. For example, to calculate function
execution times, a statistical approximation can be obtained by using
cost centres [17]. Even if they do not give an exact measure of the pro-
gram execution times, cost centres partition a program execution using
the percentual usage of each expression and allow to prioritise which
parts of the program to focus on.

11
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Mapping source expressions to points in time and, more importantly,
ordering thread interactions and progress, though harder to obtain, is
more useful when trying to optimise a program for parallel execution.
Gathering this information is vital to decide whether some tasks should
be parallelised or not and its granularity. We can classify this problem as
an instance of the more general technique of software tracing. Software
tracing is a popular technique that consists in low overhead event log-
ging to acquire valuable runtime information at the time those relevant
events occur. Again, in this case, the execution model of a lazy functional
language makes it very hard to make sense of a raw log of the execution
call graph, where functions evaluation would appear intermixed with
the evaluation of their arguments. Additionally, providing useful data
may require costly inspection of the running program and a huge in-
crease in the amount of runtime events, making its effect on the parallel
execution unaffordable.

Up until now, work in this area has been scarce. An extension to the
previous work on cost centres [18] was used to apply the same tech-
nique in a parallel setting, although, as in the sequential case, it requires
some runtime system changes that have a serious impact on program
performance. Other techniques worked by doing a program simulation
single-threadedly and using specialised code to extract additional exe-
cution data so that the program could be optimised iteratively before
deploying it to actual parallel machines [19].

One of the latest efforts involves a design around the usage of the Glas-
gow Haskell Compiler’s tracing subsystem to provide a general view of
runtime events over time [20]. Even if some of its information is useful,
in our view, it is still insufficient to be considered a mature and complete
parallel profiling tool.

1.2 TOWARDS A NEW PROFILING TECHNIQUE

We have identified software tracing as a technique to acquire profiling
information which allows to debug parallel performance problems, al-
though it has already been pointed out how the amount and kind of in-
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formation that needs to be extracted together with the nondeterministic
nature of the execution becomes an obstacle in a parallel environment.

We have identified an amount of runtime information that could pro-
vide valuable data in order to understand the behaviour of parallel pro-
grams: thread interactions in relation to source expressions (which ex-
pression has the most contention), wasted work (what parallel expres-
sions were discarded), etc. All of this information is directly related to
the execution model of the language and, because of that, costly to ob-
tain. We think that this information would be useful to profile a parallel
lazy program but it requires saving a very detailed profile of the exe-
cution of the program. Current tools cannot do this without affecting
the program execution in a way that renders the results meaningless
to its original purpose; that is, the information obtained is valid, but
it would only apply to a program which behaviour has significantly
changed from the one we were trying to debug.

Our solution to this problem is to apply the well-known technique
of execution replay for designing a profiling framework with minimal
interference on top of which to build improved tools for understanding
parallel performance.

Execution replay (ER) [21, 22] is a debugging technique designed to use
with concurrent programs. Because of its nondeterministic nature, each
time a concurrent program is run would result in a different interleaving
of runtime events, and possibly different code paths being executed. ER
allows the programmer to record the execution trace of a program and
then use that trace to replay it step by step. The trace of the program
encapsulates part of the state of the system as it changes throughout the
execution, so that the replay of the program can simulate the original
execution as thoroughly as possible. When replaying, the programmer
is able to inspect the state of the program (e.g. variables, registers, stack)
as it was at each step of the original execution.

The novelty of our approach relies on using the basic design of ER,
but changing some of its requirements to make it suitable for perform-
ance profiling. In our design, the repeated execution of a program is
simulated in a way that allows us to i) reproduce the conditions that
led to the original poor parallel performance and ii) make changes to

13
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the program execution in order to collect additional information about
its runtime behaviour. In this way, we can dynamically tune the amount
and type of profiling that we do during replay in order to obtain the
needed profiling information without changing the runtime behaviour
of the program.

Having a mechanism to obtain this information, we enable the de-
velopment of more complex profiling tools than the ones available up
to now. In particular, it should be possible to extend costly sequential
tracing debuggers, provide heap profiles assigning costs per-thread or
per-core, or create a library of new language primitives that allow to
track the lifecycle of source expressions as they are evaluated.

1.3 CONTRIBUTIONS

In the development of this thesis, we have made a number of contribu-
tions:

1. We have analysed the runtime execution of a parallel purely func-
tional language and identified the source of the nondeterminism
responsible for different behaviour in different executions in the
form of runtime events (listed in section 4.2.2 and table 2).

2. We have provided an implementation of ER tailored to the needs of
a profiling framework, instead of as a debugging facility (described
in section 4.2), that allows to overcome some limitations present in
other profiling tools.

3. We have made the first implementation of ER in a purely functional
language, taking advantage of the language properties, and analys-
ing its pros and cons (presented in section 4.2).

4. We have successfully used this new profiling mechanism to pro-
file the performance of some Parallel Haskell programs, obtaining
better data about its runtime behaviour and improving its parallel
performance with this knowledge (presented in chapter 5).
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In this chapter we analyse the challenges that parallel programming in-
troduces when profiling. We start by motivating the need for special-
ised profiling tools that target parallel execution in section 2.1 and then,
in section 2.2, introduce the topic of profiling with a few definitions.
Later, we review some of the more popular profiling tools developed for
mainstream imperative programming languages in section 2.3. Lastly,
we present an overview of a debugging technique called execution re-
play in section 2.4.

2.1 PARALLEL PROGRAMMING

We have already introduced the topic of parallel programming in the
first chapter. We want now to make the distinction between concurrency
and parallelism clear. The purpose of parallelism is to make a program
run faster by using more than one processing unit. This means that a
parallel program would be designed to use multiple tasks to do its work
either implicitly or with more explicit approaches as was mentioned in
section 1.1.1. Concurrency, on the other hand, is an abstraction mech-
anism to design programs that need independent threads of control
(e.g. GUIs, agent systems) [10, pp. 7-8]. Concurrent programs can bene-
fit from running on multiprocessors, but running in a single processing
unit would be fine. In contrast, it would not make sense to run a parallel
program in a single CPU.

Although the analysis and debugging of concurrent applications is a
related subject, our thesis is focused on parallelism. In particular, semi-
implicit parallelism on non-strict functional languages.

The challenges that parallel programming presents are quite different
from those of sequential execution. While profiling a sequential program
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is usually related to finding hot spots in the code and optimising the al-
gorithms used or adapting them to take into account memory caches and
the like, parallel programming introduces many more problems: identi-
fication of parallel tasks, lock contention, communication delays, etc. We
will come back to this topic in chapter 4.

2.2 PROFILING PARALLEL PROGRAMS

Profiling is a kind of dynamic program analysis used to obtain a number
of metrics about the execution of a program, for example memory usage
or function execution times, with the intention of improving its perform-
ance. Based on how data is collected, we can classify profiling techniques
as event-based, sampling-based, instrumentation or simulation.

Event-based profilers gather runtime metrics when certain events in the
execution occur. For example, function calls can trigger the execution of
the profiler to build a call graph of the program execution. This type
of profilers can have a high overhead because they track every event re-
lated to the data that is being collected. Sampling-based profiling reduces
the performance impact by inspecting the program at regular intervals
using operating system interrupts. The final results are extrapolated us-
ing a statistical approximation. While this technique may seem inferior
because it lacks accuracy, its results may be closer to the actual perform-
ance of the program because of its lower impact. Instrumentation is a
technique that adds the profiler code to the program itself, either in
source or binary form. Besides possible performance changes produced
by modifying the program being measured, the new instructions may in-
troduce bugs in the program. Lastly, a simulator is usually a hypervisor
used to run the program unmodified, where the usage of a virtualised
environment makes it easier to inspect the runtime behaviour of the pro-
gram.

The word profiling is generically used to describe any technique or
tool that aids in the purpose of program optimisation, but it is helpful
to make the distinction between a profiler and a tracer, that is usually
applied in practice. The output of a profiler, a profile, usually shows a
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summary of the performance characteristics of the execution. Examples
of those can be function execution times or number of cache misses. Pro-
filers usually present those performance metrics together with semantic
entities of the program.

Tracing, on the other hand, records chronological information about
the execution of the program, triggered when a particular event or action
occurs. It can be seen as a form of instrumentation-based profiling. A
trace or event log usually consists of a list of records, each having its own
timestamp, an identifier that specifies the type of event and additional
event-specific information [23]. Event logging is specially used in the
context of parallel programming because parallel performance problems
are usually related to the interactions between the different tasks. At the
same time, it is the most invasive form of instrumentation because of
the need for saving all of the gathered information to disk and the large
volume of data being collected.

The problems faced by imperative programming languages regarding
software tracing are very different from the ones that affect functional
programming languages, the major challenge being scalability limita-
tions to collect and store performance data. In any case, in the rest of
the chapter, we will present some examples of imperative profilers to
serve as examples to give an insight of some of its capabilities. Func-
tional profilers will be explored in detail in chapter 3.

2.3 PROFILING TOOLS

There are multiple profiling tools available for imperative programming
languages. We will limit our review to a few of them used in two popular
parallel programming models: MPI [4] as a representative of a message-
passing distributed memory model and OpenMP [3], used in shared-
memory architectures.

17
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2.3.1 mpiP

mpiP [24] is a statistical profiler for MPI applications. It has considerably
less overhead than other profiling tools because of it generates statistical
data rather than tracking all MPI calls. Given its focus on distributed
applications, the output report only summarizes information related to
MPI calls and messages (e.g. execution time, message sizes, etc.).

2.3.2  Vampir / Score-P

Vampir [25] is a visualisation tools designed to work with different trace
formats. In particular, it was originally developed to consume traces
of MPI messages [26], but nowadays supports both OpenMP and MPI
applications. Besides offering a general timeline view that shows pro-
cesses over time, the functions they were running, and the communica-
tion between them; it also provides a set of predefined statistical charts
that show accumulated measurements, such as accumulated time across
functions and processes, or the communication matrix, that is, statistics
on the messages sent between processes [27].

Score-P [28, 29] is the recommended tool to collect traces consum-
able by Vampir. It consists of a code instrumentation framework, sev-
eral runtime measurement libraries and some helper tools. Its multiple
storage formats allow integration with other visualisation tools such as
TAU [30] or Scalasca [31, 32].

2.3.3 ompP

ompP [33] is a instrumentation-based profiling tool for OpenMP. It works
using a source-to-source transformation that inserts calls to a monitor-
ing library around each OpenMP construct. It work similarly to mpiP,
reporting information related to OpenMP constructs, although the user
can also mark arbitrary source code regions to add them to the resulting
profile. Besides, general performance execution information, it can also
perform overhead analysis on different areas (synchronisation, load im-
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balance, thread management and limited parallelism) and detect other
common problems such as contention for locks or critical sections [34].

2.3.4 TAU

TAU (Tuning and Analysis Utilities) [30] is designed as a framework
that integrates profiling components through well-defined interfaces and
data formats. Among others, it integrates with OpenMP using a pre-
processor. It provides different profile variants ranging from aggregated
statistics flat profiles to more complex callpath and calldepth profiles
and phase profiles, that allow user-defined program state definition to
classify profiling information [35]. Besides aggregation of performance
metrics, it supports event tracing and includes its own visualisation tool,
ParaProf [36].

Although there are many more profiling tools and libraries available
in the domain of imperative programming languages, we have presen-
ted a few representative cases for two specific programming models. In
comparison with functional programming profilers, the ones analysed
here are mature tools that focus on pragmatic issues such as runtime
overhead and providing multiple visualisation capabilities. As will be
seen in the next chapter, profiling purely functional languages is an on-
going research topic that focus on the more fundamental issue of how
to obtain information that is useful for profiling.

2.4 OVERVIEW OF EXECUTION REPLAY

In the same way that concurrent execution makes the process of pro-
filing a program harder, chasing bugs in multithreaded applications is
considerable more difficult than doing it in sequential applications. The
main problem with concurrency bugs is that they are very difficult to
reproduce. Given the nondeterministic nature of concurrency, different
executions may exercise different code paths of the program each time it
is run, making the classic edit-compile-test cycle not very useful. Incor-
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porating additional logging statements or running the program through
a step-by-step debugger to help identify the source of the problem has
additional impact in how the program is executed, that is, decreases the
chances of reproducing the same conditions that led to the bug under
inspection. One of the techniques developed to help in that task is exe-
cution replay.

Execution replay (ER) [21, 22] is a technique designed to record the ex-
ecution of concurrent applications and to allow deterministic replay of
those executions as many times as desirable. Its main use case is that of
debugging and it can be used in many ways [37]:

REPRODUCE NONDETERMINISTIC BUGS: Bugs that occur seldom can
be reproduced if they were previously logged by the replay system.

REPRODUCE REMOTE SITE FAILURES: Given an efficient recorder, pro-
duction software can be run in record mode so that users can re-
port bugs together with the trace needed to reproduce them re-
motely.

TIME TRAVEL DEBUGGING: Used in conjunction with standard debug-
gers, execution replay can offer additional capabilities such as step
backward, reverse breakpoints and reverse watchpoints. This new
functionality allow to use an step-by-step debugger backwards [38].

OFFLINE DYNAMIC ANALYSIS: Many dynamic analysis techniques re-
quire costly simulations to obtain its results [39]. Performing these
offline analysis in a replayed execution allow to obtain reliable data
about the program execution.

As said earlier, ER systems have two phases: record and replay. The
recorder is in charge of logging two types of events: nondeterministic in-
put from system calls, interrupts, instructions that read the processor
state, I/O, etc. and nondeterministic memory access in multithreaded ap-
plications in the form of shared-memory data reads and writes [40].

The recording phase is a key part for a ER system to be effective. It
needs to be lightweight so that the program is affected minimally and,
at the same time, complete in that all the information needed for a suc-
cessful replay needs to be recorded.
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The different ER systems can be classified according to their recording
technique [40]:

1. Synchronisation race approaches, where the recording overhead is
limited by only recoding scheduling decisions and synchronisa-
tion operations. These techniques provide very low overhead at
the cost of not being able to correctly replay data races. Provided
that the program is data race-free, replay would proceed normally,
in other cases, the replay is only guaranteed to be correct until the
tirst data race occurs. Multithreaded programs executed in unipro-
cessors would also work.

2. Data race approaches, which log all shared data accesses. Doing so
has a very high overhead so most approaches use hardware sup-
port. In this description we will focus on software-only tools.

2.4.1  Synchronisation race approaches

liblog

liblog [41] is a library-based approach that implements execution replay
for usage in distributed environments. It works by intercepting calls to
the standard C library and logging their results, and also logging the con-
tents of all messages interchanged between processes. Thread interleav-
ing is logged by imposing a user-level cooperative scheduler on top of
the OS scheduler, and only allowing context switches at libc call points.
liblog’s major limitation is that its implementation does not allow for
applications with nondeterministic sources outside of libc API calls to
be replayed.

Instant Replay

In Instant Replay [42], all interactions between processes are modelled
as operations on shared objects. Modifications to those objects are rep-
resented as a totally ordered sequence of versions. To record process
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interactions, a partial order of the accesses to each object is logged. Sem-
aphores, message passing or event shared memory can be used as the
objects for process interaction. The only limitation Instant Replay im-
poses is that the set of operations on each shared object must have a
valid serialisation, requiring the use of concurrency protocols. Because
only these operations are reproduced, it does not support data races.
Performance overhead varies greatly depending on the granularity of
the synchronisation operations.

2.4.2  Data race approaches

SMP-ReVirt

SMP-ReVirt [43] is a virtual-machine based replayer. It tries to minimise
logging overhead by using hardware page protection to detect shared-
memory accesses. The drawback of setting the granularity to the page
level is that fine-grained concurrency can have a very high overhead. The
authors report a runtime overhead of up to 10x on just two cores.

ODR and PRES

ODR [44] and PRES [45] are probabilistic execution replayers. Both sys-
tems record partial traces of the execution. In particular, they omit any
logging of shared-memory accesses. ODR is based on output determin-
ism: it considers a replay successful if the output of the replayed execu-
tion matches the one of the original execution. To replay the full trace, it
uses a depth-first search on the space of possible outputs until a match
is found. PRES works in a similar fashion, and, additionally, it has differ-
ent recording modes that allow less overhead to use in scenarios where
data races are not present or on single-threaded applications.

In summary, available ER implementations offer a way of fixing bugs in
multithreaded applications by reliably reproducing the code paths that
led to those bugs. Different work report around 10-100x overhead for
state-of-the-art software-only recording of multithreaded applications [45,
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46]. The main drawback of those solutions is that, while they may pro-
vide lightweight trace recording, this is done at the cost of either impos-
ing task granularity limitations and/or failing to replay data races. In
some of those cases, the replay of the program can take and indeterm-
inate amount of time while exploring the space of possible replays. A
consequence of this drawback is that applying this technique to execu-
tions with fine-grained parallelism is not supported.
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In this chapter we give a thorough description of the GHC compiler (sec-
tion 3.1), giving enough details to serve as a reference for the description
of our profiling system in chapter 4. Additionally, we review previous
approaches to both sequential and parallel debugging and profiling tools
developed for Haskell in section 3.2.

3.1 THE GLASGOW HASKELL COMPILER

The Glasgow Haskell Compiler (GHC) [47] is the most popular compiler
and runtime system implementation of Haskell. It is a free software
project available at http://haskell.org/ghc. After its initial develop-
ment by Kevin Hammond in 1989 in another lazy functional language
(LML [48], its first stable release was in 1992 as a completely rebuilt stand-
ard Haskell implementation written in Haskell (except a few parts) [49].
From a plain Haskell implementation with a few extensions, GHC has
incorporated in its more than 20 years of existence an interactive envir-
onment (GHCi), concurrency [50, 51], transactional memory [52], Tem-
plate Haskell [53], plenty of type system extensions [54-59] and even a
package management system [60].

For the purpose of understanding this thesis, in this section we pro-
vide and overview of GHC’s compiler and a more in-depth look at its
runtime system, where most of the implementation of our work is found,
as discussed in detail in chapter 4.

3.1.1  The GHC Compiler

The GHC compiler has a long pipeline in which the input Haskell source
code is subsequently transformed into three different intermediate lan-
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Figure 1: The GHC compiler pipeline
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guages before generating the final machine code (see figure 1"). Before
any transformation is applied, the type checker works directly on the
Haskell code before the desugarer intervenes. This allows for quite de-
tailed and informative type error messages to be presented. After type
checking, the language is translated to Core [62], an explicitly typed in-
termediate language based on an extension of System F [63]. This is a
much simplified language that, at the same time, allows to represent
all the type-level features available in Haskell. After this point, most of
the optimisations happen in a series of analyses, rewrite rules [64], in-
linings [65], etc. The Core language is then translated to the Spineless
Tagless G-machine (STG) language [66]. The STG language is a special
form of Core more appropriate for direct translation to a low-level lan-
guage. Then, the last language before machine code generation is Cmm.
Cmm? is an implementation of the C-- language [67] embedded in GHC.
It is a low-level imperative language inspired by C but meant to be used
for compilation of high-level languages: it provides the ability to return
multiple values in registers, it implements tail calls and it has an expli-
cit stack, among other things. A different optimisation process is then
applied to Cmm, mainly related to control flow [68]. Finally, Cmm is
translated directly to machine code. There are other backends available
that use LLVM’s bytecode and compiler [69, 70] or simply use a C com-
piler after pretty-printing Cmm as C.

In relation to the compiler, our work involved a number of changes to
code generation which will be described in chapter 4.

3.1.2  Runtime system

The runtime system (RTS) is the part of the compiler that implements
language facilities not related to the programming language semantics,
and used to interact with the operating system: the garbage collector,
concurrency, exceptions, the interface with foreign code, etc. The GHC

1 Image taken from Marlow and Peyton Jones [61].
2 https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CmmType.
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runtime system is a huge code base that amounts to more than a third
of the size of the compiler.

Following Marlow and Peyton Jones [61], the RTS main components
are 1) memory management, 2) thread management and scheduling, 3)
primitive operations and 4) a bytecode interpreter. In this thesis, we fo-
cus our attention on 1 and 2. In addition, a specific section is devoted
to the description of the event logging mechanism, which implements
software tracing at the RTS level.

Because of the diverse functionality provided on the compiler and the
RTS, much of it is compiled under what is called ways3. For example,
threading support is only enabled when using the -threaded compiler
flag, that links the program with a version of the RTS library that sup-
ports concurrency. This allows to impose no performance penalties to
programs that are meant to be run single-threadedly. As well be de-
scribed, the implementation of our work is also implemented using a
new way in the RTS and compiler.

Memory management

GHC has a block-based parallel generational-copying garbage collector [71].
The implementation details of the garbage collector are not relevant for
understanding this dissertation so we will only give a short description
and concentrate on the runtime objects layout used in the execution of a
program.

The garbage collector implements a generational scheme [72] with
two generations. The young generation has a per-thread private nurs-
ery where new objects are allocated. To support growing and shrinking
of memory areas, the garbage collector uses a block-structured heap or-
ganising memory as a linked list of memory blocks.

Any pointer living in the heap must belong to one block and a simple
O(1) operation is used to calculate the beginning of the block where the

3 https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/CompilerWays.
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block descriptor is stored. The block descriptor is a structure with all the
information needed to operate with the block#:

[

typedef struct bdescr_ {
StgPtr start; // [READ ONLY] start addr of memory
StgPtr free; // first free byte of memory.
;é;uct bdescr_ xlink; // used for chaining blocks together

} bdescr;

O N O U A~ W N

Each block has a pointer to the starting address of its memory (start)
and another pointer to the first free byte (free). Because all blocks have

a fixed size, there is no need to save the a pointer to the end of the block.

Additionally, blocks are linked together (link).

Before running any Haskell code, a thread will load its heap pointer
(Hp) from the free pointer from the current nursery block and the heap
pointer limit (HpLim) from a pointer to the end of that same block. To
allocate objects, the thread only has to bump the Hp with the object size
after doing the heap check (checking if there is enough space). In the
compiled code, every function starts with a stack (line 4) and heap check
(lines 6—7) as shown in the following code listing 2 taken from the Cmm
output of the parallel Fibonacci implementation from listing 1:

Listing 2: Function prelude of a parfib expression

nl_s15A_entry() {

[

2 clér:

3 P

4 if ((Sp + 8) - 24 < SpLim) goto cl6s; else goto cl6t;
5 clot:

6 Hp = Hp + 24;

7 if (Hp > HpLim) goto cl6v; else goto cl6u;

8 clév:

9 HpAlloc = 24;

4 https://ghc.haskell.org/trac/ghc/browser/ghc/includes/rts/storage/Block.h?
rev=ghc-7.8.4-release#L88.
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10 goto cl6s;
11 cl6s:

12 -
13 call (stg_gc_enter_1)(R1)
14 clou:

15 s
16 call parfib_info(R2)
17 |}

The stg_gc_. . family of functions end up calling stg_gc_noregs>, shown
in listing 3 which is the function performs the real stack and heap check.
This function is defined in the RTS and needs to discern whether the
thread yielded (line 8 and 17) or whether a stack (line 28) or heap over-
flow (lines 21 and 26) happened:

Listing 3: Heap/stack check after the current nursery block is full

1 | stg_gc_noregs

2| {

3 W_ ret;

4

5 if (Hp > HpLim) {

6 Hp = Hp - HpAlloc/*in bytesx/;

7 if (HpLim == 0) {

8 ret = ThreadYielding;

9 goto sched;

10 }

11 if (HpAlloc <= BLOCK_SIZE

12 && bdescr_link(CurrentNursery) !'= NULL) {
13 HpAlloc = 0;

14 CLOSE_NURSERY () ;

15 CurrentNursery = bdescr_link(CurrentNursery);
16 OPEN_NURSERY () ;

17 e

18 jump %ENTRY_CODE(Sp(0)) [1;

19 e

20 } else {

5 https://ghc.haskell.org/trac/ghc/browser/ghc/rts/HeapStackCheck.cmm?rev=
ghc-7.8.4-release#L85.
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21 ret = HeapOverflow;
22 goto sched;

23 }

24 } else {

25 if (CHECK_GC()) {

26 ret = HeapOverflow;
27 } else {

28 ret = StackOverflow;
29 }

30 }

31 sched:

32 PRE_RETURN(ret, ThreadRunGHC) ;
33 jump stg_returnToSched [R1];
34 |}

Additionally, it can also be the case that the current nursery block is
full but there are still blocks to be used. In that case, after checking the
size of the allocation and the block availability (lines 11-12), the current
free pointer is stored in the block using the Hp value (line 14), a new
block is set as the current nursery block (line 15) and the new values
for Hp and HpLim are loaded from that block (line 16). Then, the thread
continues running (line 18).

The memory layout of objects in the heap is shown in figure 2°.

Although the word closure should only be used to refer to an object
representing a function and its free variables, it is used in the GHC code-
base to represent the common structure of any heap object’® and we use
it here in the same manner:

typedef struct StgClosure_ {
StgHeader header;
struct StgClosure_ xpayload[];
} *xStgClosurePtr; // StgClosure defined in rts/Types.h

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects?
version=33/#Heap0Objects
https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/Closures.h?
rev=ghc-7.8.4-release#L80
https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/Closures.h?
rev=ghc-7.8.4-release#L53
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Header Payload

Info Table

i Entry Code !
Figure 2: Layout of objects in the heap

typedef struct {
const StgInfoTablex info;

} StgHeader;

Every closure has a header and a payload. The header is used to
identify the object’s type and entry code. The object’s type is defined
in its info table and, together with the entry code, resides in static mem-
ory and is generated at compilation time. The info tables are usually
compiled next to the entry code to save one indirection when entering
(evaluating) a closure. This works by saving in info the info pointer, that
actually points to the closure entry code. To get access to the info table,
the function get_itbl(StgClosure *)? is used. As examples, the code for
a data constructor returns immediately to the topmost stack frame be-
cause it is already in weak head normal form (WHNF) and its payload
contains the fields of the data value. In the case of a function closure, its

9 https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/ClosureMacros.
h?rev=ghc-7.8.4-release#L85.
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entry code would be the compiled function code and its payload would
store the funtion’s free variables. The function arguments would either
be passed in registers or in the stack.

The size and layout (which fields are pointers and which are values)
of the payload depends on the closure type, but using an unsized array
in its definition allows to cast any other object to a StgClosure and use
the same structure fields for indexing.

We are especially interested in one kind of closure: thunks. Thunks
are used to implement lazy evaluation by being allocated to store the
result of an expression before actually evaluating it. They work in the
same way as a function closure with two differences: thunks have no
arguments and they can be updated. When the result of the expression
is needed, the thunk is entered and the resulting value (in WHNF) will
be eventually written to the thunk header. Entering an evaluated thunk
will just return the result. To avoid locking when entering and updating
thunks in a parallel program, they have an additional word reserved in
its header to store the result'**:

Listing 4: Thunk layout

[

typedef struct {

2 StgThunkHeader header;
3 struct StgClosure_ xpayload[];
4 |} StgThunk;

typedef struct {
const StgInfoTablex info;

StgSMPThunkHeader smp;
} StgThunkHeader;

By using a common closure representation and the carefully selected
thunk encoding, indirections and blackholes [73] (which share the same

https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/Closures.h?
rev=ghc-7.8.4-release#L85
https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/Closures.h?
rev=ghc-7.8.4-release#L60
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structure) can be directly written over a thunk to mark them as updated
or under evaluation. The indirection structure’? is shown here:

typedef struct {
StgHeader header;
StgClosure xindirectee;
} StglInd;

When a thread finishes the evaluation of a thunk, the result is writ-
ten next to the thunk header. Then, the thunk info pointer is overwrit-
ten with a blackhole. Later, when another thread enters the blackhole,
its entry code will inspect the result. Because a blackhole looks exactly
as an indirection (StgInd) and the indirection points to the first word
after the header, evaluating it would return the thunk’s result. GHC im-
plements an optimisation called dynamic pointer tagging [74] that uses
the last bits from closure pointers (that are always zero because they
are word-aligned) to encode the value of data constructors and avoid
branch mispredictions in case expressions. The pointer tag is also used
to decide if a blackhole has been updated (points to a value in WHNF) or
is still being evaluated.

Understanding how memory layout and management is implemented
in the RTS is relevant as to how and why of some design decisions in our
profiling system were taken in chapter 4.

Thread management and scheduling

The GHC RTS has very flexible concurrency support that is the result
of many years of incremental development [50, 75, 76]. Briefly, the RTS
provides a lightweight thread model where multiple user-space Haskell
threads are mapped into one single OS thread which runs concurrently
with others. Haskell threads can migrate between different OS threads,
and tasks (understood as parallelisable units of work) are pushed to idle
0S threads to increase parallelism. The concurrency subsystem is built
over three different abstractions: capabilities, tasks and threads. Parallel-

https://ghc.haskell.org/trac/ghc/browser/includes/rts/storage/Closures.h?
rev=ghc-7.8.4-release#L118
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ism, on the other hand, is handled with the use of sparks. The organisa-
tion of these concepts and their relations is represented in figure 3.

/7 Task1 O\ /7 Task2 O\

Capability Capability
1 2

Threads Threads

\ I+ Sparks / \ Sparks /
I

| Steal operation

/7 Task3 O\ / Task4 T\

Sparks Sparks
Threads Threads
Capability Capability
3 4

o AN /

Figure 3: Overview of the GHC runtime System

A capability is a virtual core in which Haskell code is run. Each capab-
ility has all the state that an OS thread needs to run a Haskell thread: its
private allocation area, the underlying virtual machine register table, the
thread run queue, etc. Each time a new thread is created at the Haskell
level, it will be appended to the run queue of its capability. To run the
code of these threads, real OS threads are needed. Those are represented
by tasks: each task corresponds to an OS thread and will try to become
the owner of a capability. Once a capability has been acquired, the task
will run a scheduler cycling through the capability’s run queue and as-
signing a time slice to each Haskell thread. Foreign calls (calls to C func-
tions, for example) that can potentially block a task (and, because of that,
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prevent a capability from being available to other threads) will make the
task relinquish its capability and wait in the capability’s returning_tasks
queue when finished.

There are two type of threads: bound and unbound threads. A thread
becomes bound to a task when that Os thread makes an in-call from C
to Haskell (for example, the first thread which runs the function main
, called from the RTS). From there on, that thread will only be run by
the same task. Unbound threads (created with forkI0 :: I0 ()) have
no such restriction and can be run by any task. The idea behind this
concept is to support the usage of C libraries that use thread-local data
and therefore require calls involving that data to be executed by the
same OS thread (e.g. OpenGL).

Similarly, tasks can be either bound or worker tasks. A bound task is
the task that a bound thread got attached to, and will only be able to
run that Haskell thread. Worker tasks are automatically created by the
RTS for idle capabilities and can run any unbound thread.

In a typical concurrent Haskell program, threads created with forkIo
would be migrated to an idle capability and be run by the worker task
owning the capability. Parallelism, on the other hand, is introduced with
sparks [76]. A spark is an abstraction used to introduce speculative paral-
lelism by marking thunks as possible future work that can be evaluated
in parallel with the main computation. Worker tasks with no thread to
run will create a spark thread. This is a Haskell thread that looks for
available sparks to run at its own capability or steals them from other
capabilities. When it cannot find any spark, or there are other threads to
run, the thread finishes. This mechanism is more efficient than creating
a new thread for every spark that is executed [77].

A task currently running in a capability releases it under one of the
following circumstances [51]:

¢ A foreign call is made.

* Another task is waiting in the capability after returning from a
foreign call or waiting to do an in-call.
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¢ The next thread to run is not compatible with the current task:
bound thread and worker task or unbound thread and bound task.
In the first case, the capability is directly passed to the correspond-
ing task.

e The Haskell thread bound to the current task terminates. In this
case, the thread would return from the scheduler to the foreign
call that called it.

In any of these cases, the task releasing its capability will be enqueued
in that capability and blocked until another task hands it over to it.

THREAD SCHEDULING We mention that each capability has a run
queue and it is the task owning the capability the one in charge of
scheduling available threads. This is performed by the scheduler loop, or
just scheduler, the function that any new task runs just after being created.
A very simplified version is presented here':

Listing 5: Pseudocode for the thread scheduler

1 | schedule(cap)

2 |{

31 for (5;) {

4 scheduleFindWork(cap);

5 schedulePushWork(cap);

6 yieldCapability(cap);

7 tso = popRunQueue(cap);

8 result = StgRun(tso);

9 case result of

10 out of heap -> re-enqueue tso; call GC;
11 out of stack -> enlarge tso; re-enqueue tso;
12 time expired -> put tso on end of queue;
13 finished ->

14 if (tso is a bound thread)

15 return;

16 else

13 Based on the pseudocode from https://ghc.haskell.org/trac/ghc/wiki/Commentary/
Rts/Scheduler.
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17 continue;
18 }
19 | }

The scheduler uses a simple round robin algorithm to context-switch
between threads. First, it checks for new work by creating a spark thread
if there are no threads to run but at least a spark available in any capabil-
ity (line 4). Then it will migrate threads to other idle capabilities if it has
more than one thread to run (line 5). If there is a condition to release the
capability, as listed earlier, it will do so (line 6). This would give control
of the capability to another task that would continue running its sched-
uler from the same point. Then, the first thread in the queue is taken
and run (lines 7-8). When the thread gives control back to the scheduler,
it is enqueued again in the run queue. Depending on why the thread
stopped, it can be put on top of the queue so that it will run again (heap
and stack overflow, lines 10-11) or on the back so that it will have to wait
for all of the other threads in the run queue to run (time slice ended, line
12).

A Haskell thread cannot be preempted at an arbitrary moment, it
needs to be so at specific points where it is safe for the thread to halt
its execution. Fortunately, such safe points already exist: heap checks,
where the thread is ready to stop running and start a garbage collection.
The context-switching procedure takes advantage of the fact that func-
tional programs have a big rate of allocation, so that heap checks occur
frequently enough. To force a thread to yield, the RTS sets up a timer that
triggers every 4ms by default and resets the HpLim register. This would
make the heap check fail and, as seen earlier, the code for stg_gc_noregs
will check HpLim and yield the thread (lines 7—10 from listing 3).

PARALLELISM As described in section 1.1.2, Parallel Haskell [14] pro-
vides two basic primitives for parallel programming: par and pseq. When
a thread evaluates the expression p ‘par‘ g, a spark for the thunk cre-
ated for p is saved in the spark pool of the capability on which the thread
is running, and execution will continue with the evaluation of q. In other
words, a spark is just a pointer to the thunk. Eventually, given enough
processing power and an idle capability available, the spark will be
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picked up by that capability’s spark thread. In other cases, the spark may
be garbage collected if the thunk it points to is not needed, or discarded
if it points to an already updated thunk (fizzled, in GHC terminology).
This last process of cleaning the spark pool is done as the latest phase of
GC, so that they are updated before threads resume their execution.

Spark pools are implemented as work-stealing dequeues [78] to pro-
vide efficient concurrent access by threads running in different capab-
ilities. They have a size limit so that additional sparks will simply be
ignored.

The sparking mechanism is based on lazy evaluation and purity. A
thunk can be eagerly evaluated in parallel because it represents a pure
expression with no side effects. This makes sparks cheap to implement
and therefore to provide a deterministic parallel programming model,
in opposition to threads. The results from evaluating a thunk in parallel
are naturally “communicated” back to other threads with the thunk up-
date procedure. When a thunk has been evaluated, its result is written
to the thunk header and, after that, the thunk is overwritten with an in-
direction. This step consists in updating the closure info pointer, so that
the closure type is changed, and now it will be interpreted as a pointer
to the result, as already mentioned in section 3.1.2. Because thunks are
updated only after its evaluation is finished, it would be easy for two
threads to enter the same shared thunk and duplicate its evaluation. Be-
ing the case that thunks represent pure expressions, evaluating the same
expression many times would not affect the program result, but it would
result in a loss of sharing and waste of resources. Blackholing is used to
help mitigate this problem.

Blackholing was originally introduced as a mechanism to prevent a
space leak while updating a thunk [73]. A sequential implementation
of lazy evaluation would overwrite the thunk header with a blackhole
closure when the thunk was under evaluation. This would allow for
any object originally pointed by the thunk to be garbage collected. A
nice side effect is that infinite loops would be detected by entering an
already blackholed thunk. In GHC’s parallel RTS, blackholes are reused
as a synchronisation mechanism [75]. A thread that enters a blackhole
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does not produce an infinite loop failure, it is instead put in a queue
attached to the blackhole until the thunk is updated.

The problem in a parallel implementation, is that ensuring thread-safe
overwriting of a closure header requires the use of expensive compare-
and-swap atomic instructions. The GHC implementation uses a technique
called lazy blackholing that delays the use of these primitives to the point
where threads are paused (threadPaused()'#), just before returning con-
trol to the scheduler as described in section 3.1.2. By doing this, small
thunks that are updated before pausing the thread do not pay the syn-
chronisation penalty. Long running thunks will be blackholed only after
the thread has finished its time slice or has met another interruption
condition.

The blackholing procedure consists in overwriting the thunk being
evaluated with a blackhole closure, and in writing, as indirectee, a pointer
to the thread doing the evaluation. These operations are done in reverse
order and using a write barrier to ensure that a thread finds a valid
pointer when reading a blackhole. When the evaluation of the thunk is
tinished, the thread updates the blackhole to point to the thunk’s result.
In both cases the blackhole works as an indirection: a second thread en-
tering the blackhole uses pointer tagging to decide if the closure pointed
by the blackhole is evaluated. In that case, it directly returns the indir-
ectee as its result. Otherwise, there is the possibility of the blackhole
pointing to another thunk, which the current thread will enter, or still
pointing to the thread evaluating it. In this last case, the current thread
will be enqueued in a blocking queue structure that will replace the
thread pointer from the blackhole. Additional threads will be enqueued
in the same structure, and later woken up when the thunk is updated.

It can be the case that multiple threads started evaluating the same
thunk. Then, at threadPaused(), only one thread gains access to over-
write the closure, while the other threads suspend their computation by
discarding any stack frames beyond the one corresponding to the thunk
update. Later, those threads would resume their execution by entering

https://ghc.haskell.org/trac/ghc/browser/ghc/rts/ThreadPaused.c?rev=ghc-7.8.
4-release#L190.
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the thunk again and probably being blocked (unless the thunk was pre-
viously updated). Besides saving useless work, this also have the benefit
of recovering the sharing of the expressions being duplicated. Something
similar happens when the threads update the thunk being evaluated. If
at that time a result is found already stored in the thunk, the thread
discards its result and simply return the saved value. Alternatively, the
thread may find that the thunk being evaluated was blackholed by an-
other thread too. In this collision case, the result is overwritten and the
thread also checks its list of blocking queues to wake up any waiting
threads, in case one was attached to that thunk, and therefore overwrit-
ten.

Using lazy blackholing, the window of opportunity where different
threads start evaluating the same thunk at the same time extends from
the first time the thunk is entered until the threads is paused. GHC pro-
vides a compilation option -feager-blackholing, recommending its us-
age in parallel programs, that reduces this window to just one instruc-
tion [75]. This is done by making the code to evaluate a thunk write a
greyhole before entering the thunk. A greyhole blocks other threads in
the same way a blackhole does and the only chance for another thread
to duplicate the evaluation of the thunk is if it reads the thunk header
before it has been greyholed. The greyhole is upgraded to a blackhole
just as before, at threadPaused(), resolving any duplicate computation.

MESSAGE PASSING Some of the mechanisms explained in the previ-
ous section require some kind of synchronisation between capabilities.
For example, enqueuing different threads in a blackhole blocking queue
requires only one of them being in charge. The same happens for wak-
ing up threads: they need to be enqueued in the run queue from its
capability in a thread-safe way. To reduce the usage of more expens-
ive synchronisation primitives as mutexes, GHC makes use of message
passing between capabilities [76]. This procedure consists in the alloca-
tion of a message object that is enqueued in the target capability inbox
using a lock. Then, the scheduler of each capability will check its inbox
as part of the schedule() loop (listing 5).
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Using this mechanism, the scenarios above are solved by sending mes-
sages to the proper capability to proceed with the corresponding task.
In the case of multiple threads blocking on a thunk, they would mes-
sage the capability owning the thread that is currently evaluating the
thunk and then interrupt that thread. Later, after the thread is paused, it
will check its inbox and create a blocking queue for the first block mes-
sage pointing to the sending thread, and also enqueue there the second
thread when processing the second message.

The implementation of concurrency and parallelism in the RTS is very
complex and it constitutes the main source of nondeterminism in the
execution of pure Haskell programs. As such, it will be very important
to determine what behaviour needs to be tracked and, in doing so, chap-
ter 4 will reference back to this section.

Event logging

The implementation of our profiling technique requires the use of soft-
ware tracing at the RTS level. Fortunately, an event logging subsystem
already exists in GHC. It was introduced by Jones Jr., Marlow and Singh
[20] to be used with parallel profiling tools and consists of two parts:

® Support in GHC’s RTS to emit events in a well-defined trace file
format. This must be done in a lightweight manner so that there is
minimum overhead associated with emitting an event.

* The ghc-events library that is able to parse the trace file and uses a
Haskell algebraic type to make it easy to manipulate.

The objective of event logging is to provide runtime information for
external tools to display, and to help in debugging parallel performance
problems. The idea is that the events represent useful execution related
behaviour such as a thread starting its execution or garbage collection be-
ing triggered. The events provided by event logging are classified in four
categories: scheduler related, garbage collection related, sparks related
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and user-defined events. By default, events from the first three categor-
ies are enabled. As an example in the first category, events are emitted
just after a new task is created, after a task is deleted and after a task
is migrated to another capability. Each event has a timestamp of when
it was emitted, an event type identifier and a number of parameters de-
pending on the event. For a new task, the EVENT_TASK_CREATE constant is
used’>. Additionally, this event contains the task id, the Os thread id and
the capability number in which it is created™.

In order to reduce the overhead that implies having to write this in-
formation to a file, events are also classified using another property:
capability-local events and global events. Because events can be gener-
ated from independent OS threads at the same time, they are synchron-
ised using costly mutex primitives so that they are appended to the event
log atomically. Then, in order to improve on this scheme, the tracing in-
frastructure uses a number of event buffers: one for each capability and
a global one.

We know that only one task can run concurrently with others if it owns
a capability. In that case, no other task can access private data structures
from the capability. Then, events stored in a capability’s event buffer can
be written without any lock and global events are the only ones that need
to use locking primitives. Because the event subsystem was designed to
report information about parallel behaviour, most emitted events belong
to the first category, capability-local events.

3.2 PROFILING TOOLS FOR HASKELL

Because of the relations between each other with respect to the tech-
niques developed for each purpose, in this section we take a look to
several of the tools targeted at debugging and profiling lazy functional
programs. Even though they all were built to work with the Haskell pro-
gramming language, their approaches do not have anything specific to

https://ghc.haskell.org/trac/ghc/browser/ghc/includes/rts/EventLogFormat.h?
rev=ghc-7.8.4-release#L161.
https://ghc.haskell.org/trac/ghc/browser/ghc/rts/Trace.c?rev=ghc-7.8.
4-release#L578.
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it, so they are of general interest for any non-strict language and even to
strict languages in some cases.

3.2.1  Sequential debugging/profiling

Imperative languages have long supported multiple debugging and pro-
filing tools for sequential execution. In their execution model, every func-
tion call pushes a new frame to the call stack allowing external tools to
inspect this stack and construct a stack trace which faithfully represents
the actual lexical call context. The problem with non-strict functional
languages such as Haskell is that their execution model behaves very
differently in three aspects: the use of lazy evaluation, tail call optimisa-
tion and extensive use of optimisations [79].

® Lazy evaluation makes it very hard to get information about the
execution order out of an execution stack. Because the order of
evaluation is driven by demand, essential information may be lost
because it comes from expressions already evaluated or skipped.
We can use a simple example to illustrate this [79]:
main = do

[x] <- fmap (fmap read) getArgs

print (head (f x))

fx=mapg [ x .. x+10 ]

g :: Int -> Int
g x = 100 ‘div‘ x

When the program breaks because of a division by zero, the exe-
cution stack looks like this: main > print > g. f is not there because
it has been evaluated as needed, so it just calculated the first cons
cell.

e Tail call optimisation (TCO) [80] is a technique that, instead of adding
a new stack frame on top of the old one when calling a function, it
replaces the current frame with that of the calling function if it is
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a tail call. Tail calls are function calls executed as the last thing in
a function body. In a functional language, this would correspond
with the function call being the topmost expression of the function
body. In those cases, the result of the caller function is going to
be the result of the callee. This means that, after the callee returns
its result, the caller will just return that value as its own. Because
of this, the caller stack frame is of no use when doing the tail call
and it can be discarded. This optimisation is essential for func-
tional languages so that tail recursion (recursive functions where
the recursive call is a tail call) can be implemented efficiently by
translating it to loops. The problem with this optimisation is that
the call stack is incomplete, missing many function calls. It is relev-
ant to note that besides tail recursion, in a functional programming
style it is very common to use many small functions and function
composition repeatedly, leading to expression like the following;:

main = print (f 1)

f x
g X

g (x - 1)
id (x * x)

In this example, inspecting the stack in the middle of the evalu-
ation of id would result in the following call stack: main > print >
id, where f and g would be missing because of TCO.

* Aggressive optimisations can change the executed code in a way
that it is very difficult to relate back to the source code. This is
particularly true for inlining [65], an optimisation which selects
specific functions (usually small ones to avoid code bloat) and in-
lines (copies) the function body into its call sites in order to allow
further optimisations to take place.

Given these three features that, each in its own way, prevent functional
programs from being analysed and profiled using general tools, we pro-
ceed to classify previous tools according to its approach to profiling. We
arbitrarily decided to group them in three categories: profiling tools, tra-
cing tools and other tools. We assigned each category depending on the
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dominating technique. That is, even if almost all of them can be classified
as profiling tools, on one hand, the tools that are based around creating
a log file with relevant information to postprocess afterwards, or maybe
use it to drive a later debugging step were classified as tracing tools. On
the other hand, all of the profiling tools use some kind of tracing to save
the gathered data, but if the novelty of the approach relies in the pro-
filing mechanism itself, they were classified as profiling tools. Other tools
is used for ad hoc techniques or others that fall outside of the previous
two categories.

Profiling tools

In this section we do a chronological review of the main different tech-
niques and tools that were developed to do both space and time profiling
for Haskell.

YORK HEAP PROFILER  This profiler [81] was originally developed for
LML [48] and later made available for the Chalmers Haskell Compiler
(also known as HBC) [82]. It provided two features:

* It generated a heap profile that summarised the amount and type
of allocated heap cells at regular intervals in the execution. It worked
by modifying the compiler to attach tags to every cell in the heap.
These tags were used to identify the producer of the cell (a func-
tion) and the construction that it represented (data type or specific
constructor for algebraic types).

¢ Using the heap profile, it generated a graph of producers or con-
structions. This graph represented the amount of heap space taken
by heap cells over time, grouped by its producer or construction.

At runtime, a clock was used to signal the time to do profiling. At that
point, a flag was set so that, at the beginning of each function, a special
code could identify the request and start analysing the heap (called heap
census). This allowed to do the profiling at specific points were the heap
was in a known state (no partially updated nodes).
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This tool provided the programmer with information about how mem-
ory was being used by assigning real used memory values to functions
in the program’s source code. Additionally, command line parameters
allowed to restrict the scope of the profiling to specific producers or con-
structions, so that one was used as a selector for the results showed in
the other profile (e.g. restrict the producer profile to the most memory
consuming construction). This was useful to focus on particular points
of the execution.

Besides being able to optimise parts of the code responsible for most
of the allocation, the plotting of memory usage over time was very use-
ful to find space leaks —which are especially common when using lazy
evaluation.

This tool is one of the first implementations of a heap profiling mech-
anism for lazy languages. It provided an integrated application -both
the compiler and the post-processor— that allowed to fix many common
programming errors but, at the same time, it presented some limitations:

* It did not consider time profiling at all.

¢ There was no mechanism to aggregate information. That means
that producers had no relations with each other so that the caller
of a function would not subsume the costs assigned to it. Also, that
there was no way to differentiate different applications of the same
function (it had to be renamed to mimic that result).

* The information attached to each cell was static. This prevented
additional profiling in the form of dynamic attributes such as cre-
ation time that would give information that could explain whether
a high demand for heap space happened due to a constant rate
of cell replacement or due to dragging (cells surviving beyond the
point they were last needed).

¢ It did not provide information about the access relations of the
cells. It showed the distribution of the heap by its producer but not
the reason why the memory was not being released: the part of the
program that retained all that memory.
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NHC HEAP PROFILER The nhc heap profiler [83] extended the York
heap profiler functionality by measuring the lifetime and the closure
retainers of heap objects in the nhc compiler [84, 85]. Instead of trying
to find the presence of space leaks, it tried to find the causes of such
programming errors.

Lifetime profiling allows the programmer to identify long-lived or short-
lived cells. As an example, long-lived cells might represent large une-
valuated closures for which eagerly forcing its evaluation might reduce
space usage. The profiler allows to use lifetime data as a selector in the
producer and construction profiles. Lifetime information is obtained by
storing the creation time of each heap cell at the time of allocation and
recording population counts at each heap census. A post-processor is
then used to derive lifetime data from the log file.

Retainer profiling gathers informations about retainers. A retainer is a
consumer. The name makes reference to the fact that, before a particular
node has consumed some piece of data it depends on, it is retaining it
from being garbage collected. This mode of profiling allows to generate
graphs where the amount of data retained is labelled with its retainer,
so that it answers the question “who is responsible for these cells being
alive?”, a piece of information much more interesting that just knowing
which cells are kept alive. Similarly to lifetime profiling, retainer profil-
ing requires and additional word in each heap cell to store its retainer set
(sharing implies that there may be more than one retainer per cell). On
the speed side, it requires many passes over the heap to find the exact
retainer sets of each cell.

Experiments run in the original implementation [83] found execution
overheads of several times the non-profiled execution.

As a conclusion, both lifetime and retainer profiling added very use-
ful information to the original heap profiling method developed for LML.
Retainer profiling can help in finding out which functions are respons-
ible for dragging or closure accumulation. Lifetime profiling, while more
limited, can reveal possible dragging or be used to narrow the kind of
cells to investigate in other profiles. On the downside, these profiling
methods impose significant overheads that make the approach limited
to specific environments.
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COST-CENTRE PROFILING Sansom and Peyton Jones [17] developed
cost-centre profiling at the same time that the heap profiling technique
used by the nhc profiler [81, 83]. Its main difference is two-fold:

1. Instead of using functions or other cell types as the basic unit to
which assign costs, they introduce the notion of cost centre, a label
which can be attached to any expression and captures the costs
associated with it.

2. It covers both time and space profiling, providing the same heap
profile graphs and a summary of cost centres timing costs.

A cost centre is assigned to any expression by using the following
syntax: scc cc e, where scc is a new construct called set cost centre that
assigns the string cc to the expression e. Newer versions of the com-
piler deprecated this ad hoc syntax introducing it with the more general
mechanism of program annotations written in comments: {-# SCC "cc"

#-} e. Using an informal description of its cost semantics, “the costs
attributed to cc are the entire costs of evaluating the expression e as far
as the enclosing context demands it, excluding free variables and inner
scc expressions” [17, pp. 2].

Cost centres have a few benefits over restricting the programming lan-
guage construct to which costs are attributed:

¢ Sansom [86] provides a formal cost semantics so that cost attribu-
tion is well defined, even in the presence of optimisations which
involve code motion.

* In opposition to the York heap profiler, costs are aggregated so that
the costs of callees are subsumed into the costs of the caller.

¢ Selective usage of cost centres allows to avoid assigning cost to
many small functions or library functions that are heavily used
but do not provide much information (e.g. map).

The implementation of this technique consists in calculating a statist-
ical approximation of the usage share of each cost centre and the alloc-
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ation they were responsible for. Cost centres are represented by a struc-
ture which keeps counters for each of the costs calculated. Whenever an
expression with an attached cost centre is evaluated, a special register
“current cost centre” is set to point to that cost centre’s structure. After
evaluation, the previous cost centre is restored. Then, a timer instructs
the runtime system to periodically stop evaluation and increment the
usage counter of the current cost centre. Additionally, every heap alloc-
ation is also assigned to its corresponding cost centre. At the end of the
program, a summary of the execution is saved in a log file by checking
the counters of all cost centres and calculating its share of the total as a
percentage to represent time, and its real heap allocation.

Cost-centre profiling also produces heap profiles in a similar fashion
to the York heap profiler. The implementation is very similar: an extra
heap word is added to each cell to store the current cost centre at the
point of heap allocation.

Comparing it with the York profiler, the main benefit of this approach
is the aggregation of information around cost centres and its precise se-
mantics. Later implementations of cost-centre profiling subsumed the
previous heap profiling techniques by adding lifetime and retainer pro-
filing.

The disadvantage of this method is that it can have overheads of
around twice the original execution time. Besides introducing the over-
head related to the profiling bookkeeping, some optimisations that move
expressions across cost centre boundaries have to be disabled.

COST-CENTRE-STACK PROFILING Morgan and Jarvis [87] identified
some problems with the previous two profiling mechanisms:

¢ Profiling takes a long time: limitations in the existing profiling im-
plementations forced the programmer to repeat profiling using dif-
ferent options to focus on distinct sets of functions or cost centres.
This was due to the static nature of profiling that, once costs are
assigned to their producers there is no way of aggregate them in
parent/child relations.
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¢ Profiling results can be misleading: at the time of interpreting the
results obtained, it is often useful to proceed in one of two ways,
this is, either display the high level results and then decompose
them into smaller pieces, or display a low-level view of the results
and reconstruct the functional dependency chain of the program
from them. In order to do this, there needs to be a inheritance
mechanism in place to aggregate costs in a parent/child relation.
The York heap profiler lacked any such mechanism and the cost-
centre profiler had a limited implementation that subsumed costs
from functions with no cost centre to its first enclosing cost centre.

Cost-centre stacks generalise the above aggregation mechanism by ex-
tending it to every cost-centre. By building lexical stacks of cost centres,
the view of the profile can be repurposed by removing some uninterest-
ing functions and inheriting their costs upwards without repeating the
profiling.

This mechanism can be used to produce the exact same profiles as the
previous ones, just by manipulating the way in which its data is presen-
ted. Additionally, it provides full inheritance profiles which associate
cost centres with the entire costs of evaluating the attached expression,
including any possible inner cost centre.

When cost centres are associated to every function, a cost-centre stack
can be thought of as the stack that would result of the strict evaluation
of the program.

This technique can be considered as a refinement of cost-centre pro-
filing and, besides providing more information, presents the same per-
formance characteristics.

Tracing techniques

In this section, we limit our discussion to two tools that developed their
own abstractions to represent and trace lazy computations: Evaluation
dependence trees in the first case, and redex trails in the second one.

FREJA Freja is a compiler for a subset of Haskell 98 [88] developed
to showcase novel declarative debugging techniques for lazy functional
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languages [89]. In his PhD thesis, Nilsson [90] gives a comprehensive
description of declarative debugging and an efficient implementation of
Evaluation dependence trees (EDTs) [89].

Freja’s approach is based on the construction of a trace of the lazy eval-
uation which abstracts over the details of its evaluation strategy. This is
done using EDTs. They consist of a tree of nodes that represent each re-
duction of the program execution, storing the function name, arguments
and its result. This tree structure is constructed at runtime, and is used
when debugging by navigating the evaluation nodes upward. It is built
in a way that keeps the syntactic structure of the source code, so that it
resembles a strict call tree, even though it is independent of the evalu-
ation strategy.

Because an EDT stores every reduction that happened in the program’s
execution, some techniques to reduce the space footprint were developed.
In particular, Nilsson and Sparud [91] use piecemeal tracing, a scheme
where parts of the EDT are constructed on demand by re-executing the
program being debugged.

EDTs are used in Freja in a question/answer interface which presents
the user with a reduction step and its result to decide on its correctness.
A negative answer would identify the error and its place in the source
code, and a positive answer, would be followed by navigating to the
parent redex and repeating the process.

As we described earlier, this debugger is implemented as part of a
compiler of a subset of the Haskell programming language. The imple-
mentation is done by modifying the abstract machine underlying the
compiler implementation so that the overheads can be kept to a min-
imum. Even so, the evaluation presented by the author shows that the
re-execution with debugging turned on can take up to several times the
original execution time [92].

HAT Hat [93] takes a very similar approach to Freja: a program trans-
formation is done so that, besides computing the result of the program,
a trace of the execution is constructed at runtime. The authors call it a
redex trail and it is a directed graph of value and redex nodes. Before
the program finishes, a browser is used to navigate the trail interactively.
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The main difference with the previous debugger is the usage of a pro-
gram transformation instead of an implementation inside the compiler.
This has the benefit of a portability but it incurs in a much greater over-
head: it takes an order of magnitude of execution time and its space
usage can be of several orders of magnitude.

Techniques to lower the space usage were analysed by Sparud and
Runciman [94]. They describe the construction of partial trails by ignor-
ing the redex trails of trusted functions (library functions known to be
correct) and trail pruning. The latter consists in limiting the length of
the redex trails to a given number and prune larger trails at garbage
collection time.

A comparison of Hat, Freja and HOOD, described in section 3.2.1, is
available in Chitil, Runciman and Wallace [95]. In their analysis, similar-
ities between EDTs and redex trails are remarked. This work led to the
development of augmented redex trail structures [96], an extension of
redex trails that added support to Hat for algorithmic debugging and
observations, besides its original redex browser.

Other tools

For the sake of completion, we offer a description of other tools that do
not belong in any of the previous categories, but contribute to give a
complete overview of the functional debugging landscape available for
Haskell.

HOOD The Haskell Object Observation Debugger (HOOD) [97] is based
on the observation of intermediate data structures. Gill [97] identifies
some problems with the usage of debugging functions like trace:

¢ The interleaving of the debugging output due to lazy evaluation
and the strictness properties of the very same debugging function
which can trigger other traces to run.

* The need to modify the code to debug in meaningful ways.

¢ The change in the strictness properties introduced because these
functions usually print their results immediately.
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As a solution to this, Gill [97] proposes to observe intermediate data
structures. The implementation of this technique comes in the form of a
portable library of combinators where its most useful one is observe ::

(Observable a)=> String -> a -> a. This function can be used to mark
any data to be observed. A typical use with very small footprint would
be placing it in a pipeline: consumer . observe "intermediate" . producer
. observe preserves the strictness of its inputs and saves them so that they
can be rendered at the end of the program, solving all of the aforemen-
tioned problems.

Additional benefits of this library are the possibility of observing func-
tions at their application sites, considering them as mappings from in-
puts to an output, including higher-order functions. The results of func-
tions living in the IO monad can be normally observed, and other com-
binators allow to take snapshots of the state monad.

Although the evaluation strategy is not modified by using this de-
bugging technique, the space behaviour of the program can change as
the result of replicating observations, because the implementation of the
combinator is done in a way that would lose sharing in this case.

Reinke [98] implemented a graphical tool on top of HOOD that pro-
vides a dynamic graphical visualisation, based on a simple tree layout
algorithm.

HSDEBUG HsDebug [99] tries to implement a conventional imperative
debugger that follows a stop, examine and continue model: that is, a
debugger with the ability to stop the execution, examine the state of the
program, usually including the ability to run functions that manipulate
that state, and continue the execution.

As we described at the beginning of section 3.2.1, there are some prop-
erties of lazy languages that prevent a direct implementation of that
model. HsDebug uses different techniques to deal with tail call elimina-
tion, lazy evaluation and optimisations that heavily alter code:

* Transient tail frames are implemented by doing tail call elimination
when there is no stack space left and at garbage collection time
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(the latter needed to prevent holding onto evaluated data longer
than needed).

* Optimistic evaluation [100] is used to obtain lexical stacks from the
execution. This evaluation strategy is a variation of non-strict eval-
uation where the program is run strictly but uses abortion to stop
non-terminating computations. Those expressions, which can be
long-running or failed computations, are then normally evaluated
as needed, so that the call-by-need properties are maintained.

¢ Transformations that modify the program in ways that make it
very difficult to map it back to the source code are disabled.

We can point, as a drawback applicable to many of the other ap-
proaches, to the reliance in modifying the program behaviour, both by
disabling some optimisations and by completely changing its evaluation
strategy. Unfortunately, the implementation of this tool has not been
made available by its authors yet, making it difficult to evaluate its ef-
fectiveness.

3.2.2  Parallel profiling

By parallel profiling we refer to the fact of doing profiling of parallel pro-
grams, independently of whether the profiling process itself has a se-
quential nature or a parallel one.

In the same way as it happened for sequential programs, there is an
overlap of the features and techniques that can be classified as profiling
and/or tracing. Additionally, many of the systems analysed use simula-
tion of the target program combined with the former. Because of this, we
decided in this case to avoid any classification and give a chronological
description of the relevant tools in this space.

One of the first techniques to analyse the performance of parallel
Haskell programs was presented in Roe [101]. In that work, the author
develops a simulation technique which is based on program transform-
ation. A source-to-source transformation is used to gather metrics of
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an idealised parallel execution. The transformed program, besides com-
puting its result, performs an abstract simulation directly tuned by the
programmer. To illustrate the approach, Quicksort is used with both syn-
chronous and asynchronous parallelism. In the first case, the parallel ex-
ecution is supposed to start after splitting the input list in two, and two
parallel tasks would sort each sublist, ending with a sequential append.
To calculate the average parallelism, the program is altered to count the
maximum number of sequential comparisons in each parallel path. In
the asynchronous case, pipelined parallel evaluation is used to split the
input list and start the sorting process once the first element of each
sublist has been calculated. Step counts are not enough to take into ac-
count asynchronous task creation, so the program is further transformed
adding timestamps to each list element once they are evaluated. This
marks the time a task can start its parallel evaluation of that value. With
the information of tasks execution, parallelism profiles and task activity
charts are available. A formal description of this technique is available
in the author’s thesis [102]. Because it is based on program transforma-
tion, there are many measurements that cannot be performed and, as in
the case of expensive profiling techniques, the metrics gathered will be
unreliable.

In 1993, Runciman and Wakeling [103] introduced one of the first ap-
proaches to profiling parallel functional programs by using tracing. They
designed a tracing machinery to profile Parallel Haskell programs. Tasks
were classified as being in one of three states: running, runnable, or blocked.
Sparks were tagged with the function spawning the task and a global
task counter to differentiate sparks from the same function. This inform-
ation was then saved in a log file when the program was run, together
with a reduction number of each event as a substitute for time. With this
information, the programmer was able to generate graphical profiles of
task transitions.

The implementation of this technique was done in the Chalmers HBC
compiler, modified to be quasi-parallel, where the underlying G-machine
was extended with multiple threads of control but the parallelism was
limited to the abstract machine, and the program had no real concur-
rency.
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Besides the downside of using a simulator instead of real parallelism,
the usage of reduction numbers meant that the overhead of synchronisa-
tion (and/or communication) and task creation was completely omitted.
Additionally, the graphics generated provided very limited information,
forcing manual inspection of the trace.

A few years later, Hammond, Loidl and Partridge [19] developed a
similar system with several enhancements called GranSim [104]. This
simulator was based on the threaded runtime system of GHC. In this case,
the simulation was not based on an idealised parallel machine, nor a
particular one. The system was designed so that many hardware choices
were parameters to be defined at the time of running the simulation (for
example, packet latency and construction times). Sequential simulation
was done by analysing the generated code and providing weights to
each instruction type (arithmetic, loads, stores, etc.) depending on the
simulated architecture.

In comparison with the previous approach, GranSim was able to gather
much more data from the simulation. When run, each thread stores task
state information, spark information, amount of allocation, amount of
evaluated code, etc. Besides providing the same graphics with activity
profiles, GranSim gives a great importance to information about thread
granularity. For this, it produces profiles of the number of threads by
execution time, amount of heap allocation, number of sparks and time
spent in communication.

On the downside, a simulation can take a few orders of magnitude
longer to run in comparison to the compiled sequential version. Addi-
tionally, even if it seems very useful for obtaining general information, it
cannot be related back to the source code running in each thread, so that
the previous graphs need to be interpreted to explain performance bugs
and be able to fix them. The major drawback of this approach is that
relying in a simulation makes the information based on the particular
assumptions about the simulated cache and instruction costs.

The work on the GranSim simulator was followed by a lot of addi-
tional work expanding its features:
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¢ Similarly to how cost-centre profiling was developed for Haskell,

and GHC in particular, parallel cost-centre profiling [18] was in-
troduced for parallel non-strict functional languages. In this work,
Hammond, Loidl and Trinder [18] develop a profiling technique
that combines both the GranSim simulator and cost-centre profil-
ing, called GranSim-CC. The runtime system enables cost-centre
profiling of each simulated processor by saving and restoring the
current cost centre in the running thread, instead of globally. Then,
whenever the current cost centre was changed, a new entry was
added to the tracing log. The same visualisation tools of GranSim
were used, with the addition of profiles broken down by cost centre.

King, Hall and Trinder [105] describes the development of GranSim-
SP. The idea behind this project is to assign the costs of evaluating
parallel threads to the GpH evaluation strategies [14] used to cre-
ate them. The implementation is an extension of the GranSim simu-
lator and adds a new combinator markStrat :: String -> Strategy

a -> Strategy a that assigns a label to a strategy. Then, the visual-
isation tools can select the thread’s colour based on the label used
by the strategy that created it. Child-to-parent relations are also
tracked to increase the granularity of the labels shown in the pro-
files, i.e. two different strategies may use the same nested strategy
but will create threads with a different label for each one.

To overcome the downsides associated with the static nature of
graphical profiles and the either excessive or insufficient amount
of detail, Charles and Runciman [106] develop an interactive ap-
proach to application profiling where they design a query lan-
guage that can be used to inspect GranSim logs and tune its graph-
ical tools.

Unfortunately, the GranSim simulator was a profiling tool limited to
the GUM compiler and runtime system implementation of Haskell [107].
That implementation was never merged to the upstream GHC sources
and had limited use beyond research purposes.
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More recently, there has been some work in making up-to-date tools
that provide some of the functionality offered by GranSim but usable by
the generally-available GHC compiler. Jones Jr., Marlow and Singh [20]
developed a visualisation tool called ThreadScope that allows the pro-
grammer to interact with a graphical profile showing the main activity
of the parallel execution in a timeline. This view is very similar to the
activity profiles provided by previous tools and makes use of the event
logging subsystem described in section 3.1.2.

3.3 SUMMARY

Many of the sequential profiling tools and techniques described in this
chapter give enough detail of the program execution to obtain a com-
plete understanding of its behaviour. The problem with these tools is
that the amount of detail given is generally in direct proportion to the
amount of overhead to run the modified program. The more informat-
ive tools, based on software tracing at the program level, need to record
a trace of the whole execution and this incurs in very high overheads.
Besides, they require non-trivial transformations of the source code or a
completely different implementation of the compiler, which makes them
suitable for finding logical bugs in the program, but not to search for per-
formance problems when using the real compiler and RTS implementa-
tion. The same reasoning can be applied to HOOD or similar techniques
that modify the execution of the profiled program in a substantial way.

The other sequential tools suffer from similar problems. In the case of
the heap profilers, all of them present high overheads due to closure size
increases done to store source code labels. Also, requiring to stop execu-
tion to perform a heap census from time to time makes this technique
unusable in a parallel context. The techniques based on cost-centre pro-
filing require modifications in code generation as well, and disable some
of the performance optimisations that would prevent correctly tracking
cost centres. These changes add to the overhead already paid by set-
ting the current cost centre every time a differently-tagged expression is
entered.
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Parallel profilers tried to overcome the limitations described here in
two ways: either by performing a simulation so that any overheads
would not be paid by the execution being monitored, or by doing very
lightweight tracing; so that only the basic information was extracted. In
particular, GranSim is able to provide some of the information given by
sequential heap profilers and cost-centre profilers in combination with
a simulated environment. The problem with relying in simulations is
that the parallel overhead usually attributed to cache and memory con-
figurations and other limitations related to the specific environment in
which program is executed will be calculated depending on the particu-
lar hardware configurations implemented in the simulator. When mov-
ing the program to a hardware platform, the parallel behaviour may
change significantly. Event logging provides a very promising alternat-
ive in that the measured overheads are small enough to consider running
the modified version of the program in production. Its downside is that
the obtained data generates very general graphs that only show under-
performing cores, but the lack of detail available in the other tools does
not allow to identify the cause of performance problems beyond global
thread granularity.

The creation of a real alternative for profiling parallel program should
try to reconcile the amount of detail available in the sequential profilers
with the limited overhead that parallel profilers present.
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In this chapter we describe our implementation of execution replay in
the GHC runtime system as the foundation of a novel parallel profiling
technique. We divide the chapter in two sections: we first describe the
features of an ideal profiling tool for a parallel lazy functional program-
ming language and the challenges that its design and implementation
involve. Finally, we describe the implementation of our profiling frame-
work detailing what design decisions have been made to accommodate
it to a particular RTS of a lazy functional language in section 4.2.

4.1 DESIGNING A NEW TECHNIQUE FOR PARALLEL PROFILING

We described in chapter 3 the currently available profiling tools and their
shortcomings. When surveying the tools designed for profiling parallel
execution, we saw that all of them involve some form of tracing, either
as additional instrumentation in the program or invoked in a simulated
environment. One of the trade-offs usually made in their design is that
the profiling code should be as lightweight as possible. This implies
exposing a limited amount of events in their tracing system that does
not perform any computation beyond gathering available data from the
RTS and doing small calculations so that some statistics can be stored
and reported when needed.

The information provided by these tools is valuable to have a broad
understanding of the overall performance of the program:

¢ It makes it possible to know how much of the computing power
is being used. For instance, the general view provided by Thread-
Scope shows how much time capabilities are being used by the
available threads and how much time they are idle.
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¢ It makes it possible to detect granularity problems. For instance,
the thread profile of GranSim shows a lifetime view of each thread
so that its number and computing load can be considered in com-
parison to other threads.

¢ It makes it possible to detect some data-dependency problems.
For instance, the same thread profile discussed above can show
if threads are blocked shortly after being created.

However, a property of all the questions we are able to answer with the
data from these tools is that they are inquiries about generic details of
the execution. We may know that threads are too fine-grained or coarse-
grained but no tool points to the cause for that behaviour. We may get
reports with all threads that block in the program, but we just know their
thread ids and the ids of the threads they block on and not the source
expressions in which they are blocked. This information is useful as we
recognise, but it just reveals the effect of a performance bug, not the
cause. All we can do is to use the insights given by these tools to try to
guess how the program is actually behaving and applying some changes
with the hope that they solve the problem and obtain better speedups.

We believe that, in order to solve the common performance problems
of the parallel execution of a lazy functional programming language, a
profiling tool needs to provide more detailed data of the runtime beha-
viour of the application that is not limited to observable effects. Such tool
needs to be tightly integrated with the evaluation model of the language and/or
its internal object model so that it can answer questions that involve under-
standing the semantics of the language. The following is a list of addi-
tional information that we believe would be very valuable in helping to
debug parallel performance problems and is not provided by currently
available profiling tools because of their design:

* Source code correspondence for significant events. We discussed in chap-
ter 2 why pointing to source code from an arbitrary point in the
execution is a very hard problem in a lazy setting. However, provid-
ing this ability in a limited number of cases can greatly increase the
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understanding of a parallel profile by enhancing a thread lifetime
view with the expressions being evaluated.

¢ Introduce new events for language-related phenomena. New language
primitives could instruct the profiling system to track the lifetime
of specific thunks and emit the complete enter/update cycle as
events. Later, from a thread profile with this information, one would
be able to deduce if a particular thunk is responsible for a sequen-
tial part of the execution or how its lifetime relates to the lifetime
of other thunks.

* Memory usage profiles need to be available for parallel executions.
The information provided by sequential memory profilers such
as cost-centre-stack profiling analysed in section 3.2.1 should be
available in a parallel setting, with additional information relating
memory usage to each thread and capability.

* Additional information about task granularity. To improve the under-
standing of tasks granularity and help with their definition it would
be valuable to provide information about the amount of sparks cre-
ated and promoted to threads, spark sites producing the most valu-
able threads, amount of wasted work by duplicated evaluation or
unused speculative parallelism (i.e. garbage collected sparks due
to their results being unused).

Some of the items listed before are already present in a few of the
sequential profiling tools analysed in chapter 2. One could argue that
designing the profiling tool we desire for parallel programs is just a
matter of translating the available sequential designs to a parallel setting.
In the next section we will argue that this is not possible because of some
characteristics of parallel execution that make it qualitatively different
from sequential execution.

63



64

EXECUTION REPLAY-BASED PARALLEL PROFILING

4.1.1  The observer effect and profiling parallel programs

In physics, the observer effect states that the act of observation will neces-
sarily produce an effect on the phenomenon being observed. Translating
this principle to the context of profiling parallel programs, one could
state that:

Any instrumentation applied to a parallel program in order
to obtain some information about its execution will necessar-
ily produce a change in that very same execution.

Being this the case, the results obtained by the instrumentation will
only apply to the modified execution, and not to the one we were inter-
ested in to start with.

Obviously, this fact applies to sequential programs as well, but there
are some particular properties about parallel execution that make the
interference of the profiling process especially relevant. Except for some
pathological programs, different executions of the same sequential pro-
gram should have similar performance characteristics. This happens be-
cause the amount of nondeterminism found in a sequential program
execution is generally low, restricted to operating system calls or usages
of random data generators, and only programs with a very particular
purpose exhibit some nondeterminism, which is usually needed for the
problem being solved. On the contrary, the execution of parallel pro-
grams is inherently nondeterministic in a fundamental way. The nature
of parallel execution implies that there must be multiple threads of con-
trol (though not necessarily explicit), with independent executions that
will interact in some particular cases: access to shared data or message
passing. Because of its independent execution, the interactions between
threads will occur at different times each time the program is run. A
result of this is that different executions of the program will result in
different runtime behaviour and, following this, different performance
results.

Given this property, it follows that observing the performance proper-
ties of sequential programs should give reasonable results by adjusting
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the results for the overhead introduced by the observation process itself.
In the case of imperative programs, timing individual functions is relat-
ively easy by just comparing the time when the function is called with
the time when the function ends. Doing that in a lazy functional lan-
guage is quite harder, but it is a problem that has been solved by the use
of cost-centre profiling (see section 3.2.1). As described in chapter 2, this
kind of profiling uses statistical sampling to obtain function execution
times, and relies in the instrumentation having an equally distributed
overhead over the program. Other information could be obtained by in-
voking the needed routines either from the program (e.g. printf-like
functions), or by enabling a debugging version of the runtime system
linked to the program. In both cases, the profiling version of the program
will have some amount of interference in the execution, but, because of
its deterministic nature, it will be mostly equivalent to interleaving the
execution of the profiling routines into the execution of the pristine ver-
sion of the program'. As a result of this, the gross effects of the profiler
can be calculated and subtracted when reporting its results.

Now, if we consider programs written in a parallel language, there is
an immediate problem that results from this fact: the overhead applied
to any part of the program is no longer isolated from the rest of the
program. Because there are other threads running at the same time, those
threads may change its behaviour in many ways. For example, if we
produce a slowdown in a thread evaluating a shared thunk, we will
unequally affect other threads that may be waiting for the thunk’s result.

As a summary, the nondeterminism naturally present in parallel pro-
grams makes independent executions of the same program behave dif-
ferently. Therefore, any mechanism that interferes with the runtime be-
haviour of the application will only make this effect worse by increasing
the chances that different threads of control progress at different speeds.
The consequence of this property is that the results obtained by a profiling
tool on a parallel execution cannot be generally used to deduce the performance
characteristics of the program. These results are applicable to the profiled

This reasoning would not apply if some optimisations were omitted when compiling
the profiled version of the program, as explained in chapter 2.
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version of the program, but this version may have very different runtime
behaviour than the original one.

The core of our work consists in the design and implementation of a
mechanism by which invasive profiling tools can be developed (or exist-
ing tools extended) to provide the previously itemised runtime-related
information not currently accessible; while, at the same time, the parallel
behaviour of the program is not compromised in a fundamental way by
the interference of said profiling.

4.1.2  Defeating nondeterminism: an event-based proposal

From the previous discussion, we identified two problems when profil-
ing a parallel execution. On the one hand, the requirement of minimal
profiling overhead that leads to the lack of important information for an
effective understanding of the performance problem. On the other hand,
how the effect of nondeterminism plays a similar role than the profil-
ing overhead, making the gathered information not truly represent the
behaviour of the program being analysed.

The main techniques developed to solve this problem are two: profil-
ing the program in a simulated runtime environment and reproducing
nondeterministic executions by using execution recording techniques.

We analysed drawbacks of both approaches in previous chapters. In
this section we analyse how the usage of a purely functional program-
ming language can be used as an advantage in the implementation of
the second technique.

Most of the overhead of ER comes from implementations that record
all data races. In the case of a purely functional programming language,
the mutability of data is restricted to thunk updates. Additionally, the
absence of side effects means that the execution can be thought of as
combination of both deterministic code, that performs in the same way
every time, and nondeterministic events, that change from execution to
execution. As an example, in our parallel Fibonacci implementation (list-
ing 1), most of the code is deterministic (the evaluation of a simple math-
ematical function), and nondeterminism comes from some sparks being
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garbage collected because the main thread has already updated them,
and some of them being promoted to threads that can produce a res-
ult that is shared with other threads. Different executions will produce
different combinations of sparks being evaluated and discarded, and
threads being blocked on other threads, but the Fibonacci sequence will
be computed in the same way:.

Based on this fact, we propose a new profiling method that, by tightly in-
tegrating with the execution environment of the parallel language (its runtime
system), traces any nondeterministic event into a log that is later used to repro-
duce the same execution. In this later replay, we will enable the profiling
mechanism that collects the information needed to understand the beha-
viour of the program. Because the replayed execution is a reproduction
of the original one, the information obtained by profiling it can be used
to faithfully understand the original execution. A side effect of using this
technique is that the profiling overhead problem is resolved because of
the small amount of events that need to be traced.

4.1.3  Execution Replay as a profiling tool

As the main contribution of this thesis we design and implement an ER
system that allows to overcome the limitations of current parallel func-
tional profiling tools with respect to its effects on the running program
and the amount of detail of the information reported. The basic mode of
operation would work as follows:

1. Use the ER tool to record an execution of the program we want to
analyse without any profiling.

2. Use the ER tool to replay the previous execution of the program
with profiling code enabled.

3. Analyse results.

As reviewed in chapter 2, there already exist tools that allow to use
ER on any program without modification, but most of them cannot be
used with the described workflow. Most of them only allow to replay
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the exact same binary that has been recorded. The replayed execution has
to run in the same way as the original so that the replay log of both
executions match. This means that the profiling code cannot be enabled
in the replayed execution.

The record phase of an ER system needs to have very low overhead in
order to use it in production systems. This is also a reasonable require-
ment for a profiling tool as discussed previously. Even though most of
the reviewed ER tools comply with this, it comes at a cost: either they
require hardware support, or the amount of memory-access interleaving
needs to be limited. In contrast to concurrent imperative applications,
parallel functional programs can work with fine-grained tasks and usu-
ally use a parallel garbage collector, which makes them the worst-case
scenario for those tools.

Part of the reason that these tools have low overhead is because they
do not maintain any coordination between threads except when the non-
deterministic execution requires it (inter-thread communication). That
is, the recording log that is saved in the first execution can be viewed as
a collection of independent logs, one for each thread ever created by the
program, that are only related to each other though some nondetermin-
istic events. This seems to be a good trade-off that should not harm the
ability to fix a bug: the replayed execution may show an unsynchron-
ised state between threads at a particular point in time, but each thread
will have the same view of the environment it originally had so that the
debugger can trust any value affecting the thread’s behaviour. On the
contrary, if we are to use an ER system to debug a performance problem
related to parallelism, it is extremely important that, when inspecting the
state of the program, all threads reflect the original evaluation progress
as precisely as possible.

Our goal is to design an ER tool that is able to comply with the require-
ments stated in section 4.1, while, at the same time, avoids the problems
listed above. These requirements can be summarised in the need for very
tight integration between the profiler and the runtime environment. For
this reason, we plan to implement it as a runtime system extension that
communicates its results via a tracing mechanism. At the same time, we
take advantage of two facts made available for our use case (perform-
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ance profiling of a lazy purely functional language). First, because the
type system guarantees the absence of side-effects, the amount of non-
deterministic events is greatly reduced. Second, we are debugging the
performance of the program, so our replay only needs to reproduce the
same interactions between threads, but can omit other details of the ex-
ecution such as requiring the same code to be run. Therefore, as long as the
program’s code remains the same, the implementation of the profiler, that
is contained in the runtime system, can inspect the program’s runtime
representation and gather and trace any information about it.

The replay of an execution would interleave nondeterministic and
deterministic events maintaining the ordering of the nondeterministic
events. While the exact state of the system would not be preserved
between nondeterministic events, the information related to the paral-
lel behaviour of the application would be relevant as long as those non-
deterministic events were interleaved in the same way.

Additional use cases are enabled by our approach:

* In large parallel programs, we might be interested in different pro-
filing data during different stages of the execution. In some stages,
we might be only interested in the granularity of the threads cre-
ated from sparks, in others, we might be interested in discovering
what data is being garbage collected. With our ER design, there ex-
ists the possibility of dynamically adjusting the type and level of
profiling detail during replay.

¢ For some parallel programs, there may be very subtle bugs which
produce one bad execution out of many. It is not very useful to
have to rerun your program many times until you reproduce a
pathological behaviour. By using ER, the only requirement is to
have a trace of the target execution. Then, it can be replayed as
many times as needed with the confidence that the same wrong
behaviour is being analysed as in the original run.
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4.2 EXECUTION REPLAY IN GHC

We have chosen as implementation target GHC. Our work was imple-
mented by defining a new replay way (see section 3.1.2) that enables
the logging of all nondeterminism to an event log file and the reading
of a file built like that to replay a previous execution. We first give an
overview of how the implementation of our new profiling mechanism
into this platform was tackled and then proceed to expand on the de-
tails about the recording phase (section 4.2.2) and on the sequential and
parallel replay (section 4.2.3).

4.2.1  Implementation overview

We discussed in section 4.1.1 that any program usually involves both de-
terministic and nondeterministic behaviour. Because we are restricting
our tool to a purely functional programming language, there is a guar-
antee that the program’s behaviour is going to be deterministic. Then,
any nondeterministic behaviour is going to be hidden in the runtime
system to deal with functionality external to the program semantics,
mainly, to deal with parallelism and garbage collection. Our strategy
is to expose any such nondeterministic behaviour as events emitted by
the event logging mechanism available in GHC’s RTS (see section 3.1.2).
When the program is launched in replay mode, all it has to do is read
the previously generated event log and run the program making sure
that those events happen in the same way, that is, ensuring the same
ordering and providing the same information.

Capabilities are the abstraction that allows a Haskell thread to execute
in the way we described in section 3.1.2. So, from all tasks available in
the RTS, only the ones currently owning a capability will be running
and emitting events. A few events will be global, not specific to any
capability, while most of them will be capability events, emitted within
a single capability and concurrently with other events. When replaying,
the program will spawn a replay thread whose task is to run a loop which
reads the next event to be emitted, discovers which task was responsible
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for the event, and instructs the task to run just until that event is emitted,
as shown in pseudocode (listing 6). Obviously, while some events will
not require any extra actions in order to be reproduced, most of them
require some setup either before or after the task is run. This will be
discussed later in sections 4.2.2 and 4.2.3.

Listing 6: Pseudocode for the replay thread

1 |void replayLoop (void) {

2 while (1) {

3 ev = nextEvent();

4 setupNextEvent (ev->cap);
5

6 task = eventTask(ev->cap->no, ev);
7 signal(task);

8 wait(replay_thread);

9

10 if (ev == finished)

11 break;

12 }

13 |}

Each task, when emitting their corresponding event, will call a func-
tion replayEvent(ev) which checks that the event emitted matches the
one read from the event log:

Listing 7: Pseudocode to replay an event

void replayEvent (ev) {
read = readEvent();

[

if (ev '= read)
exit(error);

switch (ev->type) {

O 0N ol A~ W N

case ‘event n’:
setupEvent(ev);

=
o

=
[

-
N
—
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13

14 signal(replay_thread);
15 wait(task);

16 | }

After checking that the events are equal (line 4), modulo its timestamp,
depending on the event type there may be some bookkeeping to do (lines
7—12): setting the environment so that the program arguments match the
original ones, storing a new task id for a new task, etc. Those cases will
be analysed in depth in section 4.2.3.

An excerpt from the textual representation of the trace of a pfib exe-
cution described in section 1.1.2 is shown below:

Listing 8: Excerpt from pfib’s event log

2 (4177926000: cap 1l: stopping thread 4 (stack overflow) (96 words

allocated)

3 | 4177940000: cap 1l: running thread 4

4180949000: cap 1: stopping thread 4 (heap overflow) (65024
words allocated)

5 | 4180979000: cap 0: stopping thread 3 (blocked on blackhole owned

by thread 4) (25253 words allocated)

6 [4181027000: cap 0: task 1 releasing

7 |4181146000: cap 1: running thread 4

8

In this example, the first three events would not require any prepara-
tion. thread 4 would stop after finishing its stack (line 2), then the replay
thread would find out that the next event happens in the same capability,
so it chooses the same task to run. thread 4 would start running again
(line 3) and stop with a heap overflow (line 4), which, again, needs no
setup because the nursery size should match the original one as con-
tigured at startup. The next event, stop thread corresponds to a different
capability (line 5). The function eventTask() will return the task own-
ing cap 0 at that point. Additionally, some preparation needs to be per-
formed: the thunk on which it will block must already be a blackhole,
otherwise thread 3 will enter it and start running the thunk’s code. As
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will be shown later, this is done by checking in the entry code whether
the thunk should have been evaluated or not. In the first case, control
would be given to the thread that evaluates it until it updates the thunk.
In the second case, the thread would just evaluate the thunk.

4.2.2  Recording phase

In section 3 we described how event logging works in GHC [20] and
some of the events that are typically logged. For our purposes, we had
to identify already available nondeterministic events to preserve in the
event log and add new ones that were not present. We have classified the
events depending on the purpose of the information they carry. Some of
the events are not explicitly needed to replay but are important because
of the information they represent and they are kept in the description.
Required events are marked with an asterisk to differentiate them from
the rest and, from those, newly-added or modified events are marked
with a dagger.

GENERAL EVENTS From the start of the program there are some basic
events already present in GHC that help setting things up. When starting
up, there is a startup event that indicates the amount of capabilities con-
figured to be run. We reuse this event to emit it at the end of the program,
with zero capabilities to indicate the last received event. After this one,
the RTS emits a few events related to system configuration: rts identifier*
that encodes the ways (see section 3.1.2) built into the RTS, program args*
and program env* that contain strings with the arguments and all en-
vironment variables used when running the program. These events are
used to check that the replayed program was built with the correct RTS
configuration for replay (the replay RTS way) and to recreate the same
environment and options passed originally. This allows us to replay a
program using a simplified command line:

‘$ ./program +RTS --replay
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CONCURRENCY EVENTS  As described earlier, capabilities are the main
concurrency unit of the runtime system as they limit the amount of op-
erating system threads running at the same time. Tasks, the runtime
system representation of the real Os threads, need to acquire a capability
in order to run Haskell code.

The task lifecycle is managed by the existing events task create®, task
delete* and task migrate*. These events record the ids of the tasks involved
and the destination capability number in the last case.

Capabilities are handed over from running tasks when they yield its
control to other tasks that were previously waiting. This behaviour is
recorded by using three new events: task acquires capability', task releases
capability’ and task returns to capability’. The last one is emitted when
a task is ready to run Haskell code, so it is enqueued in that capability
until it is available. It is used, for example, when returning from a foreign
call or to start an in-call (e.g. the Haskell thread running main that is
called from the RTS). These events store the task ids and the number of
the capability they act on.

Capabilities change its owner task when a task sets the capability vari-
able running_task to either NULL or to a Task pointer, freeing it or acquir-
ing it, respectively. Because the amount of capabilities is restricted and
tasks run concurrently, to exchange control of a capability between two
tasks, a lock is used to avoid a race condition. In order to ensure the
proper ordering of the corresponding events, we make sure that the lock
is not released until the events are emitted.

Lastly, message communication between capabilities is handled with
the new events send message' and process inbox'. Capabilities send mes-
sages to each other concurrently, and each of them checks their message
inbox at any time. In this case, we do not need to assign ids to every
message and log each message being processed. This is because when
a capability sends a message, it first needs to acquire exclusive access
to the destination capability so the order of sent messages is preserved.
At the same time, a capability checking its inbox is also going to do it
atomically. Those two facts together ensure that the timestamps of every
message being sent are going to be smaller that the timestamp of the
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event for the inbox processing of those events, and any message not
checked will have a bigger timestamp.

THREAD SCHEDULING EVENTS A description of the threading sys-
tem in GHC was already presented in section 3.1.2. As described there,
logical Haskell threads executed on the same capability are scheduled in
a round-robin fashion. There are three main causes for a thread to stop
running and return control to the scheduler:

¢ the thread runs out of heap or stack space (in the first case garbage
collection needs to be performed before any thread can continue
running);

¢ the thread blocks on a blackhole; or

* its time slice expires.

In all of the above cases, the thread is preempted and the next thread
in the queue is selected for execution. The thread lifecycle is tracked by
using the following events: create thread*, run thread*, stop thread*, migrate
thread* and thread wakeup*. All of these events contain the thread id and,
in the case of migrate thread, the destination capability. While the rest are
self-descriptive, we should clarify the usage of thread wakeup* and stop
thread*. The former, is the event issued whenever a blocked thread is re-
leased and enqueued in a scheduler run queue. It happens, for example,
right after a blackhole is updated or a thread is migrated. This event is
also needed to ensure proper ordering in the scheduler run queue. stop
thread* contains an additional parameter: thread status, that can be one
of HeapOverflow, StackOverflow, ThreadYielding, ThreadFinished, Foreign-
Call and a number of BlockedOn.. statuses (BlockedOnMVar, BlockedOn-
BlackHole, etc.).

Of special interest is the stop event whose status is blocked, in the case
of blocking on a blackhole, because then it also stores the thread id of
the owner of the blackhole. Similarly, ThreadYielding, that indicates that
the thread did not forcefully stopped. In these two cases, the thread
is stopped nondeterministically, either by blocking on a thunk being

75



76

EXECUTION REPLAY-BASED PARALLEL PROFILING

evaluated by a thread running on another capability, or by an external
clock expiring the thread’s time slice. Additionally, we have added a
new capability allocation! event that is emitted when the thread yields,
and stores the amount of memory allocated by the thread up to that
point. As the name implies, that allocation is accounted per capability.
In section 4.2.3, we will see how this information is obtained and used
to force the thread to stop at the same point in the replayed execution.

When a thread stops and returns control to the scheduler, there is the
option of appending it to the end of the run queue or enqueuing it at
the beginning. This action depends on the event that led to the thread
stopping. The first case happens when the thread finishes its time slice
or when forking new threads (this is done to improve responsiveness).
In any case, there is the need to identify this event happening and act
upon it. For that, instead of creating new events for each case, we emit
just a new one every time a stopped thread is added to the run queue
indicating whether the thread switched context; that is, whether it was
replaced by a different thread. This context switch} event allows us to
insert the thread in the right position of the run queue at replay time.

Another related event is create spark thread*. This event is emitted when
the scheduler has no more threads to run but there are sparks avail-
able in some capabilities and a spark thread is created. This thread is in
charge of finding runnable sparks and evaluate them. The nondetermin-
ism of this event origins in the fact that the check to activate the spark
thread has to look for sparks in all capabilities.

Besides events related to a thread lifecycle, we had to add some events
that were used to track the scheduler state and allowed to identify when
a scheduler is finished. sched_state is a global variable that is used to
shut down the system and also to run the last compulsory garbage col-
lection before shutting down. This is handled with its three possible
values: SCHED_RUNNING, SCHED_INTERRUPTING and SCHED_SHUTTING_DOWN. Be-
cause the behaviour of a the scheduler is going to be dependent on this
value, we emit a scheduler statet event each time it is read. Additionally,
another new event scheduler finishedf is emitted to track when to exit the
scheduler.
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PARALLELISM EVENTS Some of the more important events are the
ones related to parallelism. In the parallel model of GpH, these are the
events related to thunk updates, in particular to shared thunks. A re-
quirement for being able to replay a program correctly is that we are
able to identify shared expressions and which threads evaluated them.
We will need to log when threads are blocked on blackholes, and when
they obtain the thunk’s result, computed by a different thread. Because
of this, thunks need a way to be identified from when they are first
entered until they are updated with the WHNF result. Then, after the
next GC, the blackhole will be removed and we are no longer interested
in tracking it.

To trace the information related to thunk updates we need a way to
generate and assign identifiers to shared thunks. There are two dimen-
sions to consider:

1. The process must be reproducible so that the same ids are used for
the same expressions in both the original and replayed execution.

2. There is an indeterminate amount of expressions that can be even-
tually shared. The cost of both identifying and tracing the inform-
ation must be minimised.

First, a place to store ids is needed. We discarded adding an additional
field to StgThunk (listing 4) which would increase binary sizes and reduce
performance for every thunk, even if not shared. Fortunately, thunks
already have a word-sized free space available for storing its result. The
scheme we used combines the usage of an integer id that is saved in the
thunk itself, and the thunk pointer once it is updated.

Using the thunk pointer requires to trace pointer changes at each GC.
On the contrary, while the thunk has not yet been updated, its id is kept
unmodified and no action is needed. To extend the lifetime of the id, we
changed the way in which blackholing is performed. Instead of overwrit-
ing the thunk’s result with the thread pointer, we keep the thunk id but
reserve part of the word space to store the thread id. Then, in situations
where the thread pointer is needed (when blocking on the thread or
copying the closure in GC) we recover the thread from an array mapping
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thread ids to the thread itself. This encoding allows to reduce the usage
of pointers as identifiers as much as possible at the cost of limiting the
amount of threads and thunks available in a program execution. Then,
only after a thread is blocked on the thunk (and a blocking queue must
be saved in the thunk’s result) or the thunk is updated, the id will be
overwritten.

Once we start mixing pointers and ids in the same space (the thunk’s
result space), we need a way to tell one from the other. In order to do
that we decided to add another limitation by imposing the usage of 64-
bit platforms. All currently available 64-bit architectures use 48 bits for
virtual addresses. This allows the use of the 16 more significant bits to
mark pointers as either ids or real pointers.

Identifier creation is handled when allocating thunks. At that point,
a new natural number is created by increasing the last id used in the
capability (this new id is stored there). In the case of CAFs® [108], their
id is built from the static code address they point to, a value that is
guaranteed to be constant and to fit the available space. For dynamic
thunks, the id of the capability in which they are allocated is encoded in
the thunk id by using the following function:

Listing 9: Function to generate a new thunk id in a given capability

1 |nat newThunkId (Capability x*cap) {
2 nat capno = cap->no;

3 cap->thunk_id++;

4 return cap->thunk_id + (capno+l) << THUNK_ID_BITS;
50}

where THUNK_ID_BITS further splits the id space between capability num-
ber and thunk id. This encoding allows to use newThunkId() from differ-
ent capabilities without using locks and, at the same time, it can be used
during replay to obtain the capability in which a thunk was allocated.
The capability number can later be retrieved by shifting the id:

Listing 10: Function to obtain the capability a thunk was allocated on

Constant applicative forms (CAFs) are top-level thunks, defined as part of the static data
of the program executable.
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1 |nat capThunkId (nat id) {
2 return (id >> THUNK_ID_BITS)-1;
30}

Capability numbers are shifted by one unit so that ids from CAFs do
not clash with the ones from dynamically-allocated thunks.

As mentioned earlier, the 16 most significant bits are used to distin-
guish ids from pointers. We distinguish the different kind of ids with
the usage of the corresponding atoms listed in table 1.

Table 1: List of atoms used in addresses to identify thunks

Atom Meaning

REPLAY_ID Initial value used for thunk ids
REPLAY_TSO Thunk has been blackholed
REPLAY_SHARED_TSO Shared thunk has been blackholed
REPLAY_PTR Shared thunk points to result
REPLAY_SPARK Sparked thunk

REPLAY_ID is used initially to assign an id to a thunk. The rest of
the address contains the thunk id. REPLAY_TS0 and REPLAY_SHARED_TSO are
used in place of blackholing. As said earlier, instead of overwriting the
thunk’s result with the thread pointer, we keep its initial value, add the
thread id and overwrite the marker indicating its new status. The cur-
rent implementation uses 16 bits for thread ids and 32 bits for thunk
ids. REPLAY_SHARED_TSO0 is used when a thunk is shared and a thread run-
ning in a different capability from the one allocating it blackholes the
thunk. REPLAY_TS0 is used in the general case that a thread blackholes a
thunk allocated in the capability in which the thread is running. When
a thunk is finally updated or needs to point to a blocking queue to hold
blocking threads, it will be updated with a pointer. In this case, if the
thunk was shared (REPLAY_SHARED_TS0), the pointer will be tagged with
REPLAY_PTR; otherwise, the thunk loses its tag. REPLAY_SPARK will be used
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for sparks, so that later, when a spark is fizzled or garbage collected, it
can be recognised from its pointer.

Even though sparks are the initial source of parallelism (given the GpH
parallel model), many more thunks will be shared during the execution
of a program. There are three situations in which a thunk is accessible
to more than one thread:

1. CAFs are available to any thread from the start of the execution.
They represent global expressions not allocated at runtime but
defined in the program binary and they are already referenced
from anywhere in the program.

2. The spark payload. Any free variables that appear in an expression
which is sparked become accessible to a thread stealing the spark
(besides the one that sparked the expression).

3. Thunks reachable when a shared thunk gets updated. Whenever a
previously shared thunk (stolen spark or CAF) is updated with an
expression not in normal form, all the new thunks that are part of
the updated value are then accessible to the thread that originally
allocated the initial thunk; or to every thread, in the case of CAFs.

Because of this (especially the third point), the amount of sharing
present in the most simple parallel program can be enormous. A naive
way of tracking nondeterministic events related to thunk updates would
be to emit an enter thunk event each time a shared thunk is entered, tying
together the thread and thunk ids. To identify shared thunks we would
assign new ids to each spark created and also in each of the three cases
presented above. That is, we would assign ids to all CAFs and we would
traverse the thunk’s payload recursively assigning new ids in the case
of a spark being created or an already shared thunk being updated. As
a matter of fact, we tried to do this initially, but found the overhead of
the traversal to be too large. The problem manifests when the sparked
expressions contain big data structures, as it happens with many paral-
lel algorithms (e.g. sorting). In those cases, a common parallel strategy
is to split the input data in pieces and work with them in parallel. Even
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if a thread fully evaluates its data, there is no way of knowing that, and
when a shared thunk is updated, we need to traverse the shared value
again, in case it finds an unevaluated thunk to assign an id to. Even if
we could find a way to assign the ids when shared thunks were created,
and therefore avoid the new traversal later, a worse problem would still
remain: the program would emit an event for each shared thunk, even
in the case of thunks that become visible to other threads but are never
actually used by them.

The more lightweight design that we used to track parallel updates
relies in the fact that most thunks in the program execution will be up-
dated by the thread that allocated them. When an expression is sparked
and evaluated by a parallel thread, the evaluation of the expression will
result in the creation of many intermediate thunks but, eventually, either
evaluated or discarded, and the expression reduced to a WHNF value and
stored as the thunk’s result. Most of those intermediate thunks allocated
by the parallel thread will not become visible to other threads. Given
this, our design involves the creation of ids at thunk allocation time for
every thunk in the program, as described earlier. Then, when the thunk
is evaluated, a new enter thunk! event is only emitted if the thread en-
tering the thunk is running in a different capability than the one of the
thread that allocated it or if the thunk is tagged with REPLAY_SPARK. By
doing it in this way, we fix the two problems described earlier: no addi-
tional traversal is needed because thunk ids are pre-assigned at alloca-
tion time, and the amount of events is greatly reduced by emitting them
only for thunks evaluated by a parallel thread. Checking for a different
capability instead of a different thread works in a similar way but may
afford to trace some events where the thread entering the thunk may
have migrated from another capability to the one in which the thunk
was allocated.

While the described design allows to track which shared thunks were
entered in a lightweight way;, it suffers from one drawback. If two threads
enter the same thunk before it is blackholed, it can occur that also both
of them update it without detecting a collision or suspending the com-
putation. Being a purely functional runtime, we can replay the program
and choose any of the results as the last to be written, and the program’s
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result would remain unchanged. But it can happen that between those
two writes another thread reads the thunk’s result and further evaluates
it. In this case, during replay, we would fail if we do not reproduce the
exact updates and reads in the same order. While many programs may
work, in particular numerical algorithms where sparks are evaluated to
normal form such as integer results, this scenario may not be uncom-
mon for fine-grained parallelism. To solve this, we recommend the us-
age of eager blackholing, that immediately blackholes a thunk when it
is entered and, even in the case that two threads happen to enter at the
exact same time, also resolves duplicated computations at the time of
update. Doing this, the only chance for this data race to happen would
be a thread getting descheduled just after reading the thunk’s header
and scheduled back after the other thread already updated the thunk,
so that the thunk is blackholed again by the returning thread. We be-
lieve the chances for this to happen are extremely low and, in any case,
we discuss some possible solutions in chapter 6. In the rest of the section,
the description will assume that eager blackholing is enabled.

The enter thunk' event carries the thunk id and pointer as parameters,
allowing at replay time to relate both of them. At the time of entering
a blackhole, we discussed in section 3.1.2 three possibilities, and each
of which has a matching event: blackhole WHNET, in which the blackhole
is evaluated to a WHNF value; blackhole messagef, in which the blackhole
still points to the thread that is performing its evaluation and the current
thread will block on it by sending a message to the owner capability; and
blackhole thunk’, when the blackhole points to another thunk. Of those,
only blackhole message is always emitted and because it may still have
the thunk id available and it will log, in the same way as enter thunk,
both the thunk id and pointer. If the blocking thread is not the first,
the blackhole will be pointing to a blocking queue, and it will only log
the thunk pointer. In the first case, the id is needed for when an event
was not emitted when entering the thunk. The other two events are only
emitted for blackholes tagged with REPLAY_PTR and, because they only
have access to the pointer, that is the information that is recorded.

We described in section 3.1.2 that some threads may not finish the
evaluation of a thunk and instead suspend it if they find other threads
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doing the same thing when they are paused. The new event suspend
computation’ uses the thunk pointer to identify the thread that will cancel
the evaluation of the thunk. Similarly, collisions when finally updating
the thunk are logged with collision WHNF' and collision other' that are
used to distinguish both collision cases previously described. These two
events also use the thunk pointer. In the second case, when the collision
happens with a blackholed thunk, the thread also discards its result in
the recording phase, so that we do not introduce a nondeterministic
update if the other thread happens to update it at the same time.

Finally, a new pointer move' event is added to keep track of thunk
pointers between each GC until they are updated. Only blackholes point-
ing to blocking queues need to be logged, because, when there are no
threads blocked, the blackhole still has the thunk id and, when the black-
hole is updated with the final result, we can discard the tag at the next
GC. The garbage collector is in charge of resetting any updated thunk (ac-
tually removing the tag from the indirectee pointer) when the blackhole
is discarded.

Besides thunks, the spark lifecycle also needs to be logged in order
to coordinate between sparks being created and stolen from different
threads. Spark events are related to what happens when they are cre-
ated. An spark created' is initially emitted. Then, the spark is inspected
to check if it is already evaluated, emitting an spark dud' event in that
case. When adding the spark to the spark queue, it can either overflow,
recorded with a spark overflowed! event, or be correctly saved, emitting
a spark converted'. Then, when sparks queues are inspected looking for
work, evaluated sparks will result in a spark fizzled! event, and a spark
garbage collected’ event will be emitted if the thunk did not survive a GC.
If successful, a spark run from the same capability in which the thread is
running results in a run spark’ event and, if it is instead stolen from other
capability, a steal spark event is used. All of these events were modified
from existing events to carry thunk ids except for a stolen spark that also
has the id of the capability it is stolen from and a spark being fizzled or
garbage collected. In these two last cases, the thunk has already been up-
dated so that the id is not available, and they use the thunk pointer. The
usage of the REPLAY_SPARK atom forces the enter thunk event to happen so
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that, at replay time, the thunk pointer used by these two events will be
recognised.

GARBAGE COLLECTION EVENTS There are many events related to GC.
GC start, GC end, request sequential GC*, request parallel GC*, GC idle, GC work-
ing, GC done are emitted all through the GC process and they are mainly
used to represent it in capability profiles.

Additionally, there exist some events used for statistics reporting. Those
are heap allocated, heap size, heap live and GC stats to report runtime alloc-
ation data, and heap info to report the collector configuration.

As we will see later, at replay time, GC is performed sequentially so
that it does not need to be traced in detail. We only need enough inform-
ation to coordinate the different phases of GC: the collection itself, and
cleaning the spark queue as described in section 3.1.2. request sequential/-
parallel GC identifies the capability in which the collection is requested
(and therefore, the task in charge of coordinating it), end GCT marks the
point from which all alive data has been identified and is emitted by the
main GC task and prune spark queue’ is emitted by all GC threads after
finishing cleaning the spark queue.

The following table compiles the events that are required for ER and
the information they carry:

Table 2: List of required events and the information they provide

Event Information

RTS identifier Encodes the runtime system configuration
program args Program arguments

program env Environment variables

create thread Id of the new thread

run thread Id the thread about to run

stop thread Id of the stopped thread
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Event

Information

migrate thread

thread wakeup
create spark thread
capability allocation

context switch
scheduler state

scheduler finished
spark created
spark dud

spark overflowed
spark converted
spark fizzled

spark garbage collected

run spark

steal spark

enter thunk
blackhole WHNFE

blackhole message

blackhole thunk
collision WHNF

collision other

Id of the thread being migrated and the
destination capability

Id of the thread being woken up
Id of the new spark thread
Allocation at which a thread yielded

Whether the thread context switched with
the next one in the run queue

Global scheduler state that tracks the
shutting down sequence

Emitted when the scheduler is finished

Id of the new spark

Id of a new spark already evaluated

Id of a spark that overflows the spark queue
Id of a spark added to the spark queue

Id of a spark already evaluated

Id of a spark garbage collected

Id a spark taken from the thread’s capability

Id of a spark being stolen and the capability
id

Id and pointer of the thunk being evaluated
Id of the blackhole whose result is returned

Id and pointer of the blackhole where a
thread gets blocked

Id of the blackhole whose result is entered

Pointer of the blackhole whose result is
reused

Pointer of the blackhole which is not yet
updated
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Event

Information

suspend computation

pointer move
task create
task delete

task migrate

task acquires capability
task releases capability
task returns to
capability

send message

process inbox

request sequential GC
request parallel GC

end GC

prune spark queue

Pointer of the thunk whose evaluation is
cancelled

Old and new thunk pointer after GC

Id of the new task

Id of the deleted task

Ids of the task migrating and the destination
capability

Id of the task that acquired the capability

Id of the task that released the capability

Ids of the task and capability in which it
waits

Id of the destination capability
The message inbox was checked
A sequential GC was requested
A parallel GC was requested
The GC traversal is finished

The spark queue was cleaned

4.2.3 Replay phase

The overview from section 4.2.1 explained how the main task of the
replay thread is to act as a scheduler that interleaves the execution of
the different tasks to reproduce the events read from the event log that
was saved in a previous execution. The replayed event log is read into
per-capability buffers (and an additional buffer for global events) and
nextEvent(), shown in listing 6, compares the timestamps of the first
event in each buffer to return the one that happened earlier. Using sep-
arate buffers for each capability allow to inspect what happens next in
each capability independently.
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An important part of the scheduler consists on modifying the environ-
ment in which those tasks are run so that they behave in a way that the
same nondeterministic events emitted in the original run are emitted
again in the same way. We will now classify the events into those re-
quired for sequential replay and those required for parallel replay, and
describe what actions are needed for every event described in table 2.

Sequential replay

By sequential replay, we refer to the replay of programs where the Haskell
code runs on a single processing unit. That does not mean that there will

be just one thread running in the system, but that the execution will be

limited to one thread at a time, interleaved with others in one run queue

from just one capability. Additionally, there can be more than one task

(real OS threads) running, although only one will be the owner of the

capability and thus responsible for scheduling threads.

INITIAL SETUP  The program args and program env events are the first
events emitted at the beginning of the program. They are emitted after
the RTS does the argument parsing to configure itself. When replaying,
the parsing happens in the same way and, just after that, the replay
system is initialised and those events are read from the event log so that
we can call the RTS setup again (setupRtsFlags()), now with the saved
arguments and environment variables from the first execution, and also
copy the original environment.

The event RTS identifier is just used to check that the RTS was built with
the same subsystems enabled in both executions, and that the replay RTS
way was enabled so that the events needed for replay are available.

CONCURRENCY The replay scheduler sets a semaphore for each task
in task_replay[] that is created in order to coordinate them, and a single
no_task semaphore is used for code run before the first task is available.
The replay loop decides which task is the next to run depending on the
event just read. Because there is only one task running at a time per
capability, we keep a running_tasks[] array indexed by capability num-
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ber that tracks the active task. Given a per-capability event, finding out
which task needs to run next is just a matter of checking running_tasks[],
as long as we keep it updated when tasks yield control from its capab-
ility and other tasks take over. There are a few exceptions to this: when
a task acquires capability event is read, we have not yet assigned the task
to the capability; when a task is deleted and hence it relinquished its
capability first; and for global events that have no capability associated.
We can check the code for eventTask() in listing 11:

Listing 11: Pseudocode to select the next task to run.

1 |int eventTask(nat capno, Event xev) {

2 int taskid = -1;

3 switch (ev) {

4 case EVENT_TASK_DELETE:

5 case EVENT_TASK_ACQUIRE_CAP:

6 case EVENT_TASK_RETURN_CAP:

7 taskid = ev->task;

8 break

9 default:

10 if (capno !'= -1) {

11 taskid = running_tasks[capno];
12 }

13 }

14

15 if (taskid == -1 && replay_main_task != -1) {
16 if (hs_init_count == 0) {

17 taskid = replay_main_task;

18 } else {

19 taskid = replay_main_gc_task;
20 }

21 }

22 return taskid;

23|}

Fortunately, the cases involving tasks do not need special measures
because their events carry the task id we need. There are two cases that
need to be handled especially: initialisation and shutdown. When the
runtime system starts (hs_init_ghc()), there are a few global events that
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are not run by any task, because the task subsystem is not yet initial-
ised and we have not even run any Haskell code yet. To replay those
events (the ones described in section 4.2.3), instead of using the per-task
semaphore we use the no_task semaphore, that is signalled every time
eventTask() returns -1. When shutting down, the last events are also
global but the only task alive at the time is the one that also initialised
the system. At startup, we identify the initial OS thread storing its thread
id in replay_init_thread so that, later on, each time as task is created,
we check if its Os thread corresponds to that one and save the task as
replay_main_task. eventTask() knows that the RTS is starting up when the
main task has not been defined yet (line 15) or that it is shutting down
with hs_init_count (line 16), which is set to zero after the main thread
finished evaluating main.

There are two types of tasks: worker tasks and bound tasks (sec-
tion 3.1.2). When a worker task is created, the call chain works like this:

Listing 12: Call chain when starting a new worker task

1 | startWorkerTask() [parent]

2 newTask()

3 create0SThread()

4 workerStart() [child]
5 traceTaskCreate()

In the case of a bound task, newBoundTask() will not create a new OS
thread, it will make the current thread bound to the new task. Addition-
ally, it will only create a new Task structure and emit the task create event
if it is the first incall to Haskell, otherwise, it will reuse the current task.

In both cases, we modified the function newTask(), so that after the
Task structure is initialised we call replayNewTask() to add a new entry in
the task_replay[] array initialising a semaphore for the new task. The Os
thread associated with the new task is spawned with create0SThread()
to run the function workerStart (). This function will perform the needed
setup and eventually call scheduleWorker() where this task will start
running threads from its run queue. Before doing that, the task calls
replayWorkerStart() so that the newly created task is stopped, waiting
on the previously created semaphore. A new task is always associated
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with a free capability, so that it can immediately start running. That
means that the first event it emits is task acquires capability, allowing the
replayer to identify the task to run after the current event. Placing the
task initialisation (therefore the setup performed for replay too) and the
emission of the new task event in the parent task, makes it easier to
coordinate the replay. If the event was emitted by the new task, our re-
player would have to identify the task parent and instruct it to run in
order to create the new task and forcefully stop it. The current setup
only places an spurious wait just after a new OS thread has been created
as explained above.

Capability ownership is handled by the set of events task acquires cap-
ability and task releases capability. When they occur we save or reset the
owner task in running_tasks[]. Apart from a new task being created and
its capability being handed over directly, acquiring a capability happens
in a variety of contexts: when a thread returns from a foreign call to con-
tinue its execution, to initiate a garbage collection in a situation that does
not involve a heap overflow (where the task already owns a capability);
or when all capabilities need to be synchronised (in that case, one task
is in charge of acquiring all capabilities). In all those cases, the task wait-
ing for a capability will call waitForReturnCapability(), that will acquire
a free capability or enqueue the task in a returning tasks list belonging
to a non-free capability until the capability becomes available and the
task is signalled to acquire it. Another case is when a task explicitly
yields control of the capability with yieldCapability() and waits in a
way similar to that of a returning task for the capability to be free again.
Acquiring the capability occurs implicitly by storing the task as the cap-
ability’s running_task. We emit the task acquires capability event just after
the assignment. This action is protected by a lock and we explain later
how this fact is used to order the capability ownership events.

A task releases control of a capability by using the function release-
Capability_(). It works by resetting the capability’s running_task and
looking for a returning task to give the capability to, eventually leaving
it free if there are no returning tasks, nor a bound task on top of the run
queue, nor any spare workers. The other event related to tasks is task
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returns to capability. In the case of sequential replay, this events do not
require any further actions.

THREAD SCHEDULING We saw that thread execution is traced by us-
ing the following events: create thread, run thread, stop thread. Additionally,
capability allocation is always emitted before stop thread.

While the first events are mainly used for the information they con-
tain, they will happen deterministically: threads will be created and run
independently of any external event. In opposition to that, for stop thread
to happen, some conditions need to occur. There are two types of condi-
tions: threads are forcefully stopped when trying to evaluate a blackhole,
when they are finished, when making a foreign call, or when the heap
and/or the stack have been exhausted. By forcefully, we mean that the
thread is immediately stopped at that point. The other case, that cor-
responds with the status ThreadYielding, happens when the thread is
either asked to stop to give other threads the opportunity to run or the
RTS timer ticked and the thread’s time slice is finished. In the first case,
only the evaluation of a blackhole is a nondeterministic event that inter-
acts with other threads in the system, and will be explained later. In the
second case, we need a way to identify when the thread stopped.

We cannot rely on a time measure to act as a proxy for the number
of instructions executed because it would lack the needed accuracy and
latency (the overhead of calling an OS clock function through several
software layers and the overhead of the machinery to stop execution
at a very precise time) and the accuracy and hardware variations of
instruction counters make them not reliable either [109, 110]. Fortunately,
in GHC’s RTS, a thread can only stop at safe points and, when a thread
needs to yield, that safe point is always the stack and heap check: the
moment in which the nursery is inspected to check if there is enough
memory to perform the next allocation.

This mechanism gives us an easy way to record the point at which a
thread stopped. We just need to calculate how much memory has been
allocated by that thread until it stopped. Thus, an event capability alloca-
tion is always emitted before a stop thread event with the needed informa-
tion. For this purpose, we introduced a pair of functions replaySaveHp()
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and replaySaveAlloc() that are called just before a thread runs and when
a thread is paused, respectively. Their task is to save in the capability the
current value of Hp and the block pointer in the first case, and account
the amount of memory allocated since the last call in the second case.
The Hp pointer alone is not enough because it points to the last written
byte in the block so that it will have the same value for a full block and
an empty block that is contiguous in memory to that one. Because of
this, replaySaveAlloc() counts both the amount of allocated blocks (only
full blocks) and the amount of allocated bytes.

When replaying, the RTS timer is disabled and we need to calculate
the point in which a thread is going to stop before the stop thread event
happens. The replay loop in listing 6 contains a call to setupNextEvent()
that is in charge of doing preparation work for the next event. In this
case, it checks if the next event is a stop thread event and it reads the next
event in the same capability, that will be a capability allocation event, to
calculate the future heap and block pointers in which the thread has to
stop. The source code looks like this:

Listing 13: Pseudocode for settings the thread’s heap allocation limit

1 |void setupNextEvent(Capability x*cap) {

2 CapEvent *ce = readEvent();

3

4 if (ce == EVENT_STOP_THREAD &&

5 ce->status == ThreadYielding) {

6 ce = peekEventCap(1l, ce->capno);

7 ASSERT(ce == EVENT_CAP_ALLOC);

8 int alloc = ev->alloc;

9 int blocks = ev->blocks;

10 bdescr xbd = cap->replay.last_bd;

11 void xhp = cap->replay.last_hp;

12

13 // add the allocated memory from the first block, so
14 // the loop counts full blocks in every iteration
15 alloc += hp - (START(bd) - 1);

16 while (blocks > 0) {

17 alloc -= SIZE(bd);

18 blocks--;
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19 bd = bd->link;

20 }

21

22 cap->replay.bd = bd;

23 cap->replay.hp = (START(bd) - 1) + alloc;
24 }

25 | }

As one can see, we save the target Hp and block pointers in a replay
structure stored in the capability (lines 22—23). Then, during replay, when
a thread starts running and sets up its Hp and HpLim pointers, we load the
latter from cap->replay.hp. Later, the code that checks HpLim == NULL to
yield the thread will also check whether Hp is equal to cap->replay.hp,
and likewise for the block pointer.

After a thread is paused, the context switch event is used to decide
whether to put it at the front or back of the run queue.

Parallel replay

The implementation of replay for parallel programs, even if much more
complex, follows the same model described for sequential replay. Events
need to be replayed in chronological order, and to simplify its imple-
mentation, we replay the execution sequentially. This means that, even if
the program uses multiple threads concurrently, the replayed execution
will interleave them so that only one thread is running at a time.

CONCURRENCY Task-level concurrency is handled in the same way as
described in section 4.2.3. There is a difference, however: in the sequen-
tial case, the lack of concurrency meant that task releases capability events
always happen before task acquires capability events. This makes it easy
to replay both events: we track the first task yielding the capability and
the second one acquiring it by updating the corresponding value in the
running_tasks[] array. In the parallel case, concurrent execution means
that, if we are not careful, those events can be emitted in the wrong order.
Acquiring and releasing a capability is an operation protected by a lock.
Most of the times, the capability is released using one of the following
set of functions: releaseCapability(), releaseAndWakeupCapability() and
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releaseCapabilityAndQueueWorker() that lock the capability before releas-
ing it. Besides doing other work, all of them follow the same pattern
illustrated by the source code of releaseCapability():

void releaseCapability(Capability *cap) {
ACQUIRE_LOCK(&cap->lock);
releaseCapability_(cap, rtsFalse);
RELEASE_LOCK(&cap->lock);

}

In order to correctly replay the interleaving of these events, we make
use of the locking that is already in place to coordinate capability own-
ership and make sure that, when releasing a capability, a task does not
release its lock until after emitting the event and, in contrast, the event
emitted to acquire the capability happens after taking the lock to do so.

For the same reason depicted above, send message and process inbox
events need the same kind of coordination. Again, the existing locking
mechanism that protects inbox access is used for this purpose but in
a more restricted way. The difference here is that sending a message
does not impose any requirement on the inbox (like ensuring it is empty
or so) in the same way that a task needs the capability to be free in
order to acquire it. Then, to prevent the absence or addition of events for
messages that were or were not checked, respectively, in a capability’s
inbox, both events need to be emitted inside the locked area.

Other events, also related to a shared object, can appear unordered
in the event log. This happens because the access to that object is un-
synchronised, as when creating and stealing a spark or blackholing and
suspending a thunk. Even if this makes replaying the execution harder,
we have at least one guarantee: two events related to the same object can
appear unordered, but never by more that one event. That is, if an event
A in capability zero that occurs as a response to an event B in capability
1 has a smaller timestamp, it will be always larger than the previous
event C in capability 1. This proposition holds because A could only
have happened by interacting with the object either created or modified
by the event B and the events are always logged after they happen.
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PARALLELISM Dealing with parallelism is the most complex part of
the replay system because of the interactions that need to be taken into
account at replay time. In section 4.2.2, we saw that all possible combin-
ations of the execution interleaving of two or more threads have enough
events to distinguish them. The problem at replay time is that events
can occur unordered, so that the information may not be available at
the right time. To solve this, we check that, when a thread is about to
evaluate a thunk or a blackhole, it can decide which path it took in the
original execution.

During replay, when entering a thunk, a thread always calls the func-
tion replayEnter() to check if the thunk should have been previously
blackholed or else it can enter it normally.

Listing 14: Pseudocode for replaying a thread entering a thunk

[

void replayEnter(Capability =xcap, StgClosure x*p) {
int thread = thunkThread(p);
Event xev = readEvent();
// enter blackhole
if (// explicit event
(ev == BLACKHOLE_WHNF) ||

ev == MSG_BLACKHOLE ||

ev == BLACKHOLE_THUNK)) &&

eventId(ce) == id) ||
// no enter event when it should have been one
(capThunkId(id) != cap->no &&

(ev !'= ENTER_THUNK || ev->id != id))) {
Capability *owner = find owner capability;
replaySyncThunk(owner, p);

ENTER(p) ;

O N O U A~ W N
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// enter thunk
if (first thread entering p) {
saveSpark(p);
shared = thread != cap->thread->id;
if (shared) {
new = REPLAY_SHARED_TSO;

NN R
= O O

N
N

N
@
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24 } else {

25 new = REPLAY_TSO_ATOM;

26 }

27 ((StgInd *)p)->indirectee = REPLAY_SET_TSO(id, new, cap
->thread);

28 write_barrier();

29 SET_INFO(p, & _stg_EAGER_BLACKHOLE_info);

30 }

31

32 // explicit event

33 if (ev == EVENT_ENTER_THUNK && ev->id == id) {

34 traceEvent (ENTER_THUNK, id, p);

35 }

36 |}

This function (see listing 14) reenters the thunk (line 15) after syn-
chronising with the thread in charge of blackholing the thunk if neces-
sary, or continues execution. The first case can be detected with just two
checks: if the next event is related to blackholing and its id matches
the one of the current thunk (lines 5—9) or if another thread allocated the
thunk and there is no enter /blackhole event related to this thunk (10-12).
This last check is effective because, if the thunk was entered, the capab-
ility id encoded in the thunk id would not match the current capability
and an event would have been emitted. In both cases, the capability to
synchronise with can be obtained either from an enter thunk event emit-
ted in one of the other capabilities or using capThunkId() (see listing 10)
if it was entered in the same capability it was allocated (so that no event
was emitted in that case).

When none of the previous conditions are met, it means that the
thread entered the thunk. In this case, the first thread doing this will
make a copy of the thunk, blackhole it and trace the event if needed
(lines 19-35). If other threads enter the same thunk concurrently, they
will just proceed with the event emission (lines 32-35). Checking for an
explicit enter thunk event in the event log covers the case where we re-
verse the execution during replay, so that the second thread enters the
thunk first, and because it may have been allocated by that thread, it
does not emit an event.
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If, instead of a thunk, a thread tries to evaluate a blackhole, we need
to check whether a duplicated evaluation occurred (which cannot hap-
pen in replay because execution is serialised), or whether it was a real
blackhole in the original execution. replayBlackHole() in listing 15 works
similarly to replayEnter() in listing 14, forcing a synchronisation and ree-
valuation when needed or continuing the execution otherwise.

Listing 15: Pseudocode for replaying a thread entering a blackhole

1 |void replayBlackHole(Capability *cap, StgClosure *bh) {
2 ev = readEvent();

3 id = thunkId(bh);

4

5 // enter thunk

6 if (ev == EVENT_ENTER_THUNK && ev->id == id) {

7 p = restoreSpark(cap, bh);

8

9 // enter blackhole

10 } else if (// explicit event

11 (ev == BLACKHOLE_WHNF) |

12 ev == MSG_BLACKHOLE ||

13 ev == BLACKHOLE_THUNK) &&

14 eventId(ce) == id) ||

15 // untagged BH

16 thunkAtom(bh) == 0) {

17 if (((ev == BLACKHOLE_WHNF ||

18 ev == BLACKHOLE_THUNK) &&

19 thunkAtom(bh) != REPLAY_PTR_ATOM) ||

20 (thunkAtom(bh) == 0 &&

21 GET_CLOSURE_TAG(bh->indirectee) == 0)) {
22 Capability xowner = findBHOwner(cap, bh);
23 replaySyncThunk(owner, bh);

24 }

25 p = bh;

26

27 // no event

28 } else if (thunkAtom(bh) == REPLAY_SHARED_TSO | |
29 thunkAtom(bh) == REPLAY_PTR) {

30 // there would be an event otherwise
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31 p = restoreSpark(cap, bh);
32 }

33

34 ENTER(p) ;

35 |}

First, we check if the next event is related to the current thunk (lines
5-6 and lines 9-14). If it is a enter thunk event (line 6), we must restore
the blackhole to its original thunk (line 7) using the contents previ-
ously saved in replayEnter() (see listing 14). Alternatively, if we find
a blackhole-related event (lines 9—14), we need to check if the blackhole
is not yet pointing to the expected value: a WHNF result (lines 17 and 19)
or another thunk (lines 18-19). If we expect a thread or blocking queue,
no further checks are needed: the thunk was previously blackholed, and
it cannot be updated because the thunk’s owner is the one responsible
for enqueuing the threads blocking on the it, which we would be about
to do. When the corresponding result value is not available yet, we syn-
chronise with the blackhole owner (lines 24—25) similarly as we do when
entering a thunk. The call to findBHOwner() searches for the owner cap-
ability by inspecting the thread id if the thunk has not been updated at
all, or the thread or blocking queue if it has been blackholed.

If we do not find an event related to the blackhole there are two possib-
ilities. First, when the blackhole is not tagged with a replay atom (lines
15-16), the blackhole must correspond to an evaluated thunk, so that we
only synchronise if it has not been updated yet (line 21). Second, if the
tag would force the emission of an event (lines 28—29), it means that the
thunk was entered and it is also restored (line 31).

Replaying collision events is much easier because they occur uncon-
ditionally. When a thunk is going to be updated, if a collision event is
expected, the thunk’s result is checked in case we need to synchronise
with other thread, in a similar way as described earlier.

Apart from thunk-related events, we also need to be able to consist-
ently replay all spark-related events. Besides create spark which is emitted
at any point when par is used, the other events are occur either when
pruning the spark queue or when a spark thread searches for sparks
to run (section 3.1.2). We described how the spark pool is implemented
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using a dequeue with lock-free access to reduce the concurrency over-
head to the minimum in section 3.1.2. Because of this we cannot rely
on locking to ensure an ordered access when replaying, as we did with
messages and capability ownership. Instead, we make use of the thunk
identifiers to locate the needed sparks.

A spark thread looks for sparks using findSpark(). For our replayer,
we reimplemented the whole function as shown in listing 16:

Listing 16: Pseudocode for spark stealing

1 |StgClosure xreplayFindSpark(Capability x*cap) {
2 Capability xowner;

3 StgClosure xspark;

4 int id;

5 Event *ev = readEvent();

6

7 while (ce == SPARK_FIZZLE)) {

8 id = eventId(ev);

9 owner = capThunkId(id);

10 prepareSpark(owner, id);

11 spark = tryStealSpark(owner->sparks);
12 e

13 replayStealSpark(cap, spark);

14 traceEvent (SPARK_FIZZLE, spark);

15 ev = readEvent();

16 }

17

18 if (ce == SPARK_RUN) || ce == SPARK_STEAL) {
19 id = ev->id;

20 owner = capThunkId(id);

21 prepareSpark(owner, id);

22 spark = tryStealSpark(owner->sparks);
23 replayStealSpark(cap, spark);

24 traceEvent(ev->tag, id);

25 return spark;

26 }

27 return NULL;

28 |}

99



100

EXECUTION REPLAY-BASED PARALLEL PROFILING

As can be seen, we rely on knowing the thunk id to steal the correct
spark (line 8 and 19) and on the encoding of the source capability in the
thunk id (line 9 and 20). Because sparks may not be yet available, there
may be some synchronisation to be done between capabilities, which is
handled in prepareSpark():

Listing 17: Pseudocode for readying a spark in its spark pool

1 | prepareSpark(Capability xcap, int id) {
2 while (id not found in cap->sparks) {
3 replaySync(cap, myTask());

4 }

5 if (topSpark(cap->sparks) != id) {

6 find id and move to top;

7 }

81}

Because of the unsynchronised access to the spark pool described
above, the events that create a spark and steal that same spark from
another capability may be emitted unordered (stealing the spark before
being created). We need to check this case (line 2) and also the case
where different steal spark events are emitted in the wrong order so that,
when replaying them we would find that the spark to be stolen is not
at the top of the pool (line 5). The latter is solved just by moving the
right spark (we know its id) to the top. If the spark is not found in its
capability, we need to synchronise with the spark owner (line 3).

4.3 SUMMARY

In this chapter we described the implementation of an execution replay
system, integrated in the RTS of GHC. We analysed the events respons-
ible for nondeterministic behaviour, classified into initial setup, concur-
rency, thread scheduling, parallelism and GC events. For all of them, we
described what information they needed to provided and why it was
needed for replay. A summary table was presented in table 2.

The relatively low amount of events was due to the fact that our replay
mechanism is designed to serve as the foundation of new profiling tools,
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so that we are only interested in replaying the parallel behaviour of the
execution. While this meant that the amount of information collected

is small, it also implied a challenge to correctly replay the execution.

In particular, it meant that events from different capabilities can appear
unordered, or some information is not recorded at all, as in the case of
thunk updates. We solved this problem by adding the ability to pause
the replay of an event and advance the replay of another task to get
it in sync or, in a few cases, intelligently placing the emission of some
events so that their ordering follows the one used to coordinate access
to protected data structures in GHC.

We claimed that the use of a purely functional language, and having

profiling as our use case would allow a low overhead recording phase.

In the next chapter, we validate our design with a performance analysis
and also present two examples that showcase how the system can be
used to build profiling tools.
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In this chapter we proceed to evaluate our profiling technique in two
ways. First, we analyse the runtime overhead of the recording phase in
a number of benchmarks in section 5.1. Then, we analyse some Paral-
lel Haskell programs by building on our profiling infrastructure in sec-
tion 5.2, to showcase how more advanced and user friendly profiling
tools can be build on top of our work.

5.1 PERFORMANCE EVALUATION

In order to evaluate the performance impact of the replay phase of our
execution replay (ER) implementation, we have selected a number of pro-
grams frequently used for benchmarking in Parallel Haskell research [15,
76]. These are programs that belong to the parallel directory of the nofib
benchmark suite® [111]. We have made a few modifications to increase
the execution time of some of them over 3s. All of these changes are
available at https://github.com/hferreiro/nofib/tree/replay.

All tests were run in a desktop PC with an Intel Core 2 Quad CPU
clocked at 2.40GHz with 32KB and 4MB level 1 and 2 caches, respect-
ively, and 4GB of main memory. The benchmarks were run in Debian
GNU/Linux 8.0 (Jessie), compiled for x86-64 architecture. For each test,
the result is the mean elapsed time of 5 runs, as computed by the nofib-
analyse program found in the mentioned benchmark suite.

We have measured the performance impact of the recording phase of
ER and summarised the results in table 3. The baseline is the program
compiled using the 7.8.4 release of GHC with the same RTS configuration
(i.e. the threaded and event logging runtime enabled) and the GHC lib-
raries compiled for eager blackholing. In each column, A Time measures

1 http://git.haskell.org/nofib.git.
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the percentual difference in elapsed time of the benchmark compiled
with a ER-enabled GHC? in comparison with the baseline. The ER version
uses the RTS flags +1sf. Both versions use the appropriate -Nn RTS flags so
that each column compares the execution in a different number of cores.

Table 3: Performance impact of ER event logging

benchmark A Time -N1 (%) A Time -N2 (%) A Time -N4 (%)

blackscoles +08.6 +09.2 +09.1
coins +13.1 +12.3 +21.0
mandel +24.2 +23.4 +24.5
matmult -03.1 +02.9 -01.4
minimax +54.9 +39.9 +37.9
nbody +08.1 +08.8 +10.6
parfib +60.5 +119.1 +142.6
partree +47.7 +34.0 +29.5
prsa +03.2 -14.6 -00.3
queens +03.8 +03.8 +15.4
sumeuler +03.2 +03.2 +03.4

If we omit, the results from parfib, ER-enabled executions have an
overhead ranging from slightly faster than the baseline execution up to
around 40% for parallel executions and around 55% running in a single
core. This results are good if compared with other state-of-the-art execu-
tion replay systems. Also, despite of the individual results, the overhead
does not change a lot when increasing the number of cores.

The benchmark with the worse results if parfib. This program runs
the Fibonacci function using a threshold to limit its parallelism in a sim-
ilar way as listing 1. If we analyse its execution, we find that the size of
the generated event log is over 350MiB. This is mainly due to the large

2 https://github.com/hferreiro/replay.
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number of sparks created: over 5,000,000. If we reduce that number by
increasing the threshold value, the overhead of the ER version is negli-
gible (below 3%). The reason for having such a low threshold is that the
performance of the parallel execution gives better speedups when redu-
cing the threshold to such a low value. That amount parallelism is not
actually needed for such a simple program and the details of why this
happens are analysed in section 5.2.1.

Suspecting that much of the performance overhead of the ER recording
lies in the implementation of thunk updates, and not just the amount
of logging, we collected in table 4 a comparison of the execution of a
specially prepared ER-enabled GHC version where the only changes are
the ones introduced by thunk tagging. That is, thunks ids are created
and stored in the thunk’s result when allocating them and blackholing
a thunk overwrites the thunk’s result with the thread id performing the
update.

Table 4: Performance impact of thunk tagging

benchmark A Time -N1 (%) A Time -N2 (%) A Time -N4 (%)

blackscoles +05.5 +05.0 +04.9
coins +06.9 +09.0 +04.2
mandel +12.1 +11.9 +09.4
matmult +00.5 +01.5 -00.6
minimax +27.2 +26.1 +24.4
nbody +00.0 +00.2 +00.6
parfib -03.4 -03.6 -05.1
partree +29.6 +20.1 +15.4
prsa -00.4 -17.8 -04.7
queens +04.8 +04.7 +02.0

sumeuler +02.8 +02.7 +02.5
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As can be seen, in most cases, half of the performance overhead is due
to the code changes introduced to record thunk updates. Additionally,
when can see in table 4 that, in the case of parfib, all the overhead was
due to the recording of the events.

In conclusion, we compare favourably with current state of the art
execution replay systems that generally incur in 10x to 100x slowdowns
when recording multithreaded applications.

5.2 USE EVALUATION

In this section, we showcase ways in which some of runtime-related in-
formation that we identified as relevant for a profiling tool in chapter 4
can be gathered. In order to do that, we selected two simple problems
with some performance problems and whose behaviour is difficult to
explain. We focus on the analysis of execution time and its relation with
source code expressions. This information is used in section 5.2.1 to dis-
cover useless work in the form of duplicated thunk evaluation and in sec-
tion 5.2.2 to analyse the cause of its limited parallelism and to develop an
improved version.

5.2.1 Finding duplicate work

In chapter 3 we described how a lazy functional language can avoid du-
plicated evaluation of shared thunks by using the mechanism known as
blackholing. Two versions of this technique are available in GHC: lazy
and eager blackholing. When running parallel programs, the GHC de-
velopers recommend compiling with the - feager-blackholing command
line option to activate the second version. In this mode, almost all pos-
sible duplication is avoided, although there is still a small window of
opportunity for two threads entering the same thunk at the same time.
Lazy blackholing is used as a default to avoid any performance over-
head in sequential programs or concurrent programs not used for paral-
lel computation. In this section we will analyse the impact that duplicate
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evaluation can have in an otherwise simple parallel program by using

ER.

The following is the code listing for a parallel implementation of the
Fibonacci sequence found in the parfib nofib benchmark suite:
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Listing 18: Code for the parfib benchmark from nofib

import System.Environment (getArgs)
import Control.Parallel

main = do [argl,arg2] <- getArgs

let
n =read argl :: Int -- input for nfib
t = read arg2 :: Int -- threshold
res = parfib n t
putStrLn ("parfib " ++ show n ++ " =" ++ show res)

-- parallel version of the code with a threshold
parfib :: Int -> Int -> Int
parfib n t | n <= t = nfib n
| otherwise = nl ‘par’ (n2 ‘pseq’ nl + n2 + 1)
where nl = parfib (n-1) t
n2 = parfib (n-2) t

-- sequential version of the code
nfib :: Int -> Int

nfib 06 = 1
nfib 1 =1
nfib x = nfib (x-2) + nfib (x-1) + 1

This program contains two versions of the Fibonacci function. The
function nfib is a sequential recursive function that returns the nth num-
ber of the sequence. parfib consists in the same structure of nfib, but
creates a parallel task in each iteration of the algorithm up to the limit
t (line 14). Then, it calls the sequential version (line 13). The main func-
tion reads the requested Fibonacci number and the selected threshold as
command line inputs.

This program is a perfect example to illustrate parallel programming
in Haskell because of its simple divide and conquer structure. It would
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be reasonable to expect linear speedups with the number of cores, given
that the work is split almost perfectly in each iteration, and the parallel
threads can start stealing available work since the first iteration.

We run the benchmark using the nofib infrastructure. The options
used where EXTRA_HC_OPTS="-02 -threaded" to use the threaded runtime
and PROG_ARGS="43 25" as the program arguments. In table 5 we sum-
marise the results giving the obtained speedups when using a different
number of cores. To obtain results for different cores, we used the op-
tion EXTRA_RUNTEST_OPTS="+RTS -Nc -RTS" where c was substituted by the
number of cores to use.

Table 5: Parallel performance of parfib

No. cores Speedup

2 1.617
4 3-519

Even though the results are very good, they do not match our expecta-
tions. ThreadScope provides us with the following graph for the runtime
behaviour of the program:

The results of this tool indicate that all the computer cores are used
to its fullest, with no garbage collection happening at all. There are no
hints to what the cause for the underperformance. What is worse, the
output of ThreadScope would suggest that the speedup is linear.

To investigate the effect of duplicate computations on this program
we used our ER framework. As described in chapter 4, lazy blackholing
can only be replayed under certain conditions. The Fibonacci program is
one of those in which all shared expressions are only created by sparking
because their results are evaluated to WHNF values and there is no risk
of unsharing duplicated results.

Our goal is to generate an enhanced event log where all duplicate
computations are logged and also provide timestamps of the exact point
where thunks are entered and finally updated to a WHNF value. Then,
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Figure 4: ThreadScope graph of a Fibonacci execution

an ad-hoc program is used to calculate what thunks were needlessly
evaluated and the amount of time used on those evaluations.

The first part required the definition of several new events in our tool.
Part of the thunks that are evaluated repeatedly is covered with suspend
computation and the two collision events. As described in section 4.2.2,
the first event is emitted in the case that the duplicated evaluation is
detected at the time the thread is paused. In case the thread paused and
the thunk was updated later, it will emit a collision event when trying to
update it.

For short computations in which the thread did not stopped, the up-
date overwrites whatever is in the thunk’s result space. To record this
case, we emit a new duplicated thunk event during replay when the the
thunk is updated and after inspecting the thunk’s result for an already
stored result.

The lifetime of sparks is tracked with the existing event enter thunk
and a new thunk updated event emitted at the time a spark is updated to
WHNF. The logging of these new events was implemented under a new
flag to GHC’s RTS. Running a program with +RTS --dup will enable ER and
emit the new events.
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With this new events we have all the information needed to be able
to find out the amount of duplication in a particular execution. For this
purpose, we developed a tool that calculates the time wasted in duplic-
ated and cancelled thunks per capability. As an additional functionality,
we use the tool to generate an especially purposed event log that can be
fed to ghc-events-analyze3 to visualise duplicated computations on top
of a similar graph as that of ThreadScope.

The wasted time computation works in two phases. After reading the
replay log with the added duplicate events it calculates the extended
set of duplicated sparks. That is the set of the originally duplicated and
cancelled sparks and the sparks that were created while performing the
duplicated evaluation and can therefore be considered as wasted work
too. Then, it merges the original event log with the replayed log to assign
correct timestamps to the thunk updated events and calculates the time it
took to evaluate the previously calculated set of duplicate sparks.

For the first phase, the list of wasted computations consists of a dic-
tionary that maps the thunk id to the thread ids of the threads updating
duplicated thunks. We did not considered any specific algorithm look-
ing for performance and simply used a multiple-pass process. Initially,
we start with the list of thunks explicitly tracked as either duplicated,
suspended or discarded with a collision. This list is constructed by gath-
ering the information directly from those events. The suspended computa-
tion and collision events will only happen for the threads that cancel the
evaluation of the thunk and the information does not need to be refined
further. In the case of duplicated sparks, we have an event for each du-
plicate update but we need to identify which thunk was entered first to
keep as the real update. In order to do that, we traverse the sorted event
log and, after seeing each enter thunk event once, we save the rest of the
updates to the same spark as duplicates with the thread performing the
evaluation.

Tool similar to ThreadScope available at https://hackage.haskell.org/package/
ghc-events-analyze.
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Taking dups as the list constructed as described and used as the map-
ping from thunk id to threads entering it, we build the extended set of
duplicated sparks extended as follows:

new = dups
while new is not empty
extended += new
clear new
for each event in the event log
if event is run thread(t) and t is in new
thread = t and spark = sparks[t]
if event is enter thunk(id) and spark is not set and t in new[id]
spark = id and sparks[t] = id
if event is create spark(id) and spark is set
new(id] = used[id] - thread

In this way, extended saves every spark created by a duplicate spark
and the threads that update it other that the current thread. This list will
contain many superfluous sparks that, while created in this way, they
are also updated within the same thread that created them, so that their
evaluation will be part of the evaluation of an enclosing duplicate thunk.
We clean extended by performing a similar traversal as described before
where entering a spark while evaluating a duplicate spark will remove
the entered spark and its thread from extended.

Having built extended, calculating the amount of wasted time is quite
easy. Both event logs are merged so that the new thunk updated event is
assigned the timestamp of the event before and after it. A single traversal
over the event log will save, for every duplicated thunk, the timestamp of
enter thunk event and accumulate the spark lifetime when encountering
the corresponding thunk updated, suspend computation or collision events.

For a Fibonacci execution with the following stats:

$ ./fib 43 25 +RTS -s -N4

INIT time 0.001s ( 0.001s elapsed)
MUT time 8.714s ( 2.210s elapsed)
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GC time 0.000s ( 0.000s elapsed)
EXIT time 0.071s ( 0.024s elapsed)
Total time 8.788s ( 2.235s elapsed)

we obtain the following output:

cap 0: 1092-1092ms
cap 1: 332-335ms
cap 2: 381-381ms
cap 3: 11-11lms

Mean: 454-455ms

The mean time is the maximum amount of time that we could gain
if the duplicated computations could be removed evenly in all capabil-
ities. It can be observed that the accuracy of the result is high, with a
timestamp range of 1ms.

We mentioned that our tool is also capable of generating a new event
log that can be used with ghc-events-analyse to visualise the calculated
data. A graph built like that, showing the program execution and where
duplication happens is shown in figure 5.
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Figure 5: Visualisation of duplicated thunk in a Fibonacci execution

It shows very similar information to that of ThreadScope. On the ho-
rizontal axis indicates the timeline of the program execution while the
vertical axis classifies information per thread. Each thread timeline has
an opacity proportional to the thread runtime in a given timeslice. In this
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case, as also shown in ThreadScope, all colours are completely opaque
for most of their execution, showing no idle or GC time in between.

There are two areas in the vertical axis. First, under the label USER
EVENTS, the timeline of user-defined events created in the program ex-
ecution is shown. We used this functionality while generating the new
event log to mark what amount of time was spent evaluating duplicated
thunks. The main informations, under the label THREAD EVENTS, cor-
responds to the normal timeline of every thread in the program. We need
to remember that a single spark thread is used to run multiple sparks
and that is why there are so little threads in comparison with thousands
of sparks created. On the other hand, because the user events correspond
to the evaluation of single thunks, we know that their timeline maps to
thunks in a one-to-one fashion.

In a quick glance, we can observe that, even though there are always
four threads completely busy (blue colour); during half of the program,
much of the work done is useless (green, orange and light blue), as it
will be eventually discarded when each duplicated thunk evaluation is
discovered.

We now know that the reason for the slowdown in the Fibonacci code
is related to the way that lazy blackholing allows some duplicate eval-
uation to happen. It may result surprising that such a big amount of
wasted work is performed. It needs to be said that for this behaviour to
happen some conditions need to be met at the same time:

1. Many sparks have to be created in very little time so that, even
if the duplicated computations are detected and cancelled, many
sparks were created from those duplicates before suspension.

2. The program cannot allocate too fast, so that the created sparks are
not garbage collected too often.

This is exactly the case of Fibonacci. The sequential code is optim-
ised so that the function parameters are unboxed and no allocation is
performed. Only the parallel code performs some allocation by creating
a thunk to hold the result of a parallel spark evaluation. Even so, that
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amount is limited by the configured threshold. This fact results in exe-
cutions with no garbage collection at all, so that any spark created from
thunks that may be eventually suspended will survive until the end of
the program.

As said at the beginning of this section we can avoid most duplicate
evaluation by enabling eager blackholing when compiling our program.
table 6 summarises the parallel speedups of the program compiled with

-feager-blackholing:

Table 6: Parallel performance of parfib using eager blackholing

No. cores Speedup

2 1.998
4 3947

As originally expected, the speedups are linear with the number of
cores. Even though eager blackholing should be considered as the de-
fault for parallel programs, we believe that the ability to properly quantify
and verify the exact reasons for the loss of performance in the previous
version is an important contribution. In particular, it allows us to explain
why the parfib benchmark of nofib was configured to use a threshold
lower than what was actually needed, which was the reason of the ex-
cessive recording overhead.

At this point, one could wonder why is ER needed and whether the
newly added events could be incorporated to the normal events logged
as part of the default event logging implementation. There are several
reasons supporting the need for ER:

® Detecting duplicate evaluation is not always possible in the pres-
ence of concurrency. Event if a thread could check if a particu-
lar thunk is updated or not before performing its update, several
threads can do the check at the same time without realising that
all of them will finally perform the update. The only way to avoid
this situation is to either use locking or compare-and-swap prim-
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itives. The blackholing design of GHC was developed to avoid the
performance overhead of those two options.

Though it was not needed for this particular program, there needs
to be a mechanism to find out whether the extended set of du-
plicate sparks is valid. This situation would happen when the new
sparks created from a thunk that will eventually be cancelled or
detected as duplicate are used in the final result. It can happen
when the expression sparked is not related to the duplicated/can-
celled expression, such as a CAF or a binding defined in the same
or higher level. This is easily done with ER by checking whether
they are entered by non-duplicated thunks after being updated to
WHNF.

The cost to emit the new events and keep the needed information
around is high. A check would need to be placed in the thunk enter
code that would test every thunk for its shared and evaluation state.
Also, a mapping from thread pointer to id, as used in the replayer,
would need to be kept between each GC.

5.2.2  Quicksort

In order to show how ER can be used for performance debugging of
non-trivial parallel programs, we use the simple Quicksort implementa-
tion presented in listing 19. Quicksort is an example of a program which
“seems” rather trivial to parallelise, yet for which obtaining good spee-
dups (especially using lazy languages) is quite challenging.

N oUW R

Listing 19: Simple parallel Quicksort implementation

psort :: Int -> [Int] -> [Int]

psort _ [] =[]

psort n (x:xs)
| n>0 = hi’ ‘par’ 1o’ ‘pseq’ (lo’ ++ x : hi’)
| otherwise = seqSort (x:xs)

where
(lo, hi) = partition (<x) xs
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8 lo’ = psort (n-1) lo
9 hi’ = force (psort (n-1) hi)

The rationale behind this attempt at parallelising Quicksort is simple:
after dividing the initial list 1 into its lower and higher parts (lo and hi)
by using x as a pivot, we try to sort these two parts in parallel using
the par combinator. Because of how laziness works, we use the function
force to make sure that each parallel thread completely evaluates its
sublist. In addition, by using the n parameter, we control the amount
of parallelism generated, so that after a certain point is reached in the
recursion depth, the higher and lower parts of the list are sorted sequen-
tially. In this way, we can tune the parallelism to get a small number of
coarse-grained parallel threads.

Because we are analysing the parallel implementation we chose to use
an already balanced input list, and also force the evaluation of the list
before measuring the execution time of the sorting process. However, no
matter what value for n we choose, the speedups of psort that we obtain
are very poor, not even achieving a speedup of 2 in up to 8 cores.

55 10s 155 20s

Activity

T O OO O O A |
** CAND N O OO D DO O

Figure 6: ThreadScope profile of psort

In order to understand why this program gives a bad speedup, we can
try to use ThreadScope to visualise what happens during its execution.
tigure 6 shows an execution profile of the program. From this profile we
can observe that the program behaves reasonably well most of the execu-
tion. Then, towards the end, there is some serialisation where only one
thread at a time is doing evaluation. However, ThreadScope does not pro-
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vide us any hints about where do these problems come from, e.g. what
part of the program is responsible for the final sequential phase. Based
on the knowledge of the language, we can speculate that the serialisa-
tion comes from the linear behaviour of the ++ operator, which traverses
both lists sequentially. However, we cannot know for sure.

In order to come up with a better parallel program, we first made
some optimisations to the sequential version, show in listing 20. We im-
plemented our own strict version of the partition function so that we
could avoid the overhead of lazy evaluation caused by computing the
sublists on demand. Next, we got rid of the append operator ++, which
requires multiple traversals of the same lists when it is applied left-
recursively, as in our case. For this, we used an accumulator in which
the resulting list is being constructed. First, we start with the whole list
to be sorted and an empty accumulator. Then, at each recursive step, the
pivot is accumulated into the sorted higher sublist. When there are no
more elements to sort, the accumulator is returned as the fully sorted
list.

Listing 20: Optimised sequential Quicksort

1 |qsortl :: [Int] -> [Int]

2 |gsortl xs = seqSort xs []

3 where seqSort [] zs = zs

4 seqSort (x:xs) zs = seqSort lo (x : seqSort hi zs)
5 where (lo,hi) = partition x xs

6

7 |partition :: Int -> [Int] -> ([Int],[Int])

8 |partition x xs = go xs [] []

9 where go [] ts fs = (ts,fs)

10 go (y:ys) ts fs

11 | v < x =go ys (y:ts) fs

12 | otherwise = go ys ts (y:fs)

Similarly to the first time, we tried to naively parallelise this code
in the same way (listing 21). Given the changes mentioned above, we
expected to avoid at least the sequential phase that occurs at the end of
the execution.
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Listing 21: Parallel Quicksort using an accumulator

1 |psortl :: Int -> [Int] -> [Int]

2 |psortl n xs = go n xs []

3 where

4 go _ [] zs = zS

5 go n (x:xs) zs

6 | n>0 =r ‘par’ go (n-1) lo (x:r)
7 | otherwise = seqSort (x:xs) zs

8 where

9 r = force (go (n-1) hi zs)

(Lo, hi) = partition x xs

=
e}

We measured the speedups of this program on a machine with two
Intel Xeon 2.93GHz CPUs, each of them having four cores. Each CPU
had 8MB of L2 cache, that was shared between all of its cores. The total
amount of RAM was 64GB. In table 7, we show the speedups obtained
by taking the mean time over five runs of each program with the same
input, a list consisting of 10 million elements.

Table 7: Parallel performance of psortl

No. cores Speedup

2 1.49
4 0.78
8 0.60

In this case, we can observe that we are actually getting significant
slowdowns as we use more cores.

In order to debug the performance of this program, we used again
ThreadScope to get an overview of the thread activity. figure 7 shows the
profile from ThreadScope after running our program using two cores.

We can see that we still have the same serialisation problem that we
had in the initial parallel version in listing 19, and that getting rid of
the ++ operator did not help at all. Additionally, there is a pause in
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Figure 7: ThreadScope profile of psortl

the execution corresponding to a major garbage collection phase. The
big amount of input data, coupled with the fact that we set up a large
allocation area, is responsible for this behaviour. psort does not present
this gap because, due to its inefficient sequential implementation, we
had to provide a much smaller input list.

We now used ER to discover which part of the program is respons-
ible for the sequential phase at the end of the execution. We introduce
a language primitive that allows to tag expressions at the source code
level to be able to log timestamps when the evaluation of an annotated
expression is finished and to analyse the output produced. By using
ER, we were sure that the same execution was reproduced and so that
the output data matched the original ThreadScope profile. To focus on
the interesting parts of the program, we added two checkpoints: start,
which is the point after reading the input list, and end which marks the
end of the program (see figure 7}). We then replayed the program and
processed its output to obtain the following report:

Listing 22: Execution report from psort1

188.020 ( 93.914) cap 0: partition [10.837.539]
.240.278 (1.052.258) cap 0 seqSort [11.889.797]
.747.763 ( 507.485) cap 0: seqSort [12.397.282]
.747.766 ( 3) cap 0O force [12.397.285]
.828.627 ( 80.861) cap 0 force [12.478.146]

e

( 0) cap 1 start [10.649.519]
94.106 ( 94.106) cap 1: partition [10.743.625]
170.970 ( 76.864) cap 1l: partition [10.820.489]
732.638 ( 561.668) cap 1 seqSort [11.382.157]

O XN O Ul AW N R

=
o
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11 1.621.573 ( 888.935) cap 1: seqSort [12.271.092]
12 1.996.394 ( 374.821) cap 1: force [12.645.913]
13 2.225.849 ( 229.455) cap 1: force [12.875.368]
14 2.225.852 ( 3) cap 1: end [12.875.371]

Each line shows the timestamps for the completion of each annotated
function in the program. First, the relative time against start is presen-
ted. Next, the relative time against the previous function timestamp and
the absolute timestamp are shown in brackets. Each event is classified
according to its capability.

The relevant aspect of this data is that the sorting process has fin-
ished by the time the sequential phase begins. We can see this because
the timestamp of the finish time of the last call to the seqSort function
on capability zero is 12.397s (checkpoint s in figure 7) and, from the
ThreadScope profile, we can observe that the sequential phase starts at
a timestamp around 12.3s. After the checkpoint s, only the timestamps
of the force functions are left. So, the sequential phase at the end must
correspond to the execution of these functions.

The conclusion is that the program execution is almost perfectly bal-
anced between the two cores while the parallel threads are sorting their
parts of the list (the timestamps for the completions of the calls to segSort
are similar in each capability). But then, because of the force call, each
thread needs to traverse the sublist that is passed in the accumulator
zs. This sublist is sorted by another thread, so the thread evaluating the
force call becomes blocked immediately, waiting until zs has been eval-
uated. Only then can it finish traversing it. When finished, this thread
returns the sorted list and allows its parent thread to also finish evalu-
ating its force call. This linear process gets worse as more threads are
involved in it. This could be the reason why the speedups get worse as
we add more cores.

In the end, the same behaviour that we tried to prevent by avoiding the ++
operator, i.e. sequential traversal of the sorted list, is reproduced by evaluating
to normal form each of the sublists.

This analysis suggests that the way to fix this behaviour is to replace
the function force with a function that would immediately return when
the tail of the list being forced is already in normal form. To this end, we
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implemented a custom version of Quicksort which operates on a data
type List a (instead of a regular list) as its input. This new type has
the same Nil/[] and Cons/: constructors as regular lists, and also an
additional constructor Done. The Done constructor has a list of elements
as argument, and is used to mark the list as fully evaluated. Together
with this new type, we introduced a toList :: List a -> [a] function
which takes a List a as input and returns its corresponding regular list
in normal form. Its behaviour is similar to our usage of force, with the
exception that it terminates if a Done xs element is found:

Listing 23: toList function

1 [data List a = Nil | Cons a (List a) | Done [a]
2

3 |toList :: List a -> [a]

4 |toList Nil =[]

5 [toList (Cons x xs) = Tlet xs’ = tolList xs

6 in x ‘seq’ xs' ‘seq’ x:xs’
7 |toList (Done xs) = XS

Now, by making use of the former definitions, we can implement a
version of psortl in which the threads evaluating the higher half of the
list, hi, will mark it as already evaluated, so that the ones sorting the
other half will find a Done xs value and directly return xs instead of
traversing it again:

Listing 24: Improved parallel Quicksort implementation

[

psort2 :: Int -> [Int] -> [Int]

psort2 n xs = toList (go n xs Nil)
where go _ [] Zzs = 2S
go n (x:xs) zs
| n>0 =r ‘par’ go (n-1) lo (Cons x r)

| otherwise seqSort (x:xs) zs
where r = Done $! toList (go (n-1) hi zs)
(lo,hi) = partition x xs

X O Ul A~ W N

The speedups for psort2 are shown in table 8. We can observe much
better speedups than for psortl. For two cores, the speedup is almost
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linear. When we add more cores, speedup is further increased, but the
relative performance is decreased. This can be attributed to the fact that
each thread is created only after the list has been partitioned. The same
thing will happen to the next threads once the generated sublist are
partitioned again. So, if we need to use more threads, it will take longer
to create them, increasing the initial sequential phase.

Table 8: Speedups of the different parallel versions of Quicksort

No. cores  psort psortl psort2

2 1.69 1.49 1.90
4 1.71 0.78 2.35
8 1.51 0.60 2.75

This analysis is only a superficial one of some function execution times
and how they are related to each other. By using ER we would be able to
continue the analysis of the execution behaviour of this program with a
more in-depth study of the reasons of some of the behaviour present in
the application that we did not cover. ER would be a guarantee that any
further information obtained comes from executions that behave in the
same way as the one from which we obtained the report in listing 22.



CONCLUSIONS AND FUTURE WORK

The main objective of this thesis was to improve the state of the art in
profiling tools for parallel execution of non-strict purely functional pro-
grams. We identified a common characteristic of previously available
profiling tools: either they impose an overhead that makes them unus-
able on a parallel context, or they provide less useful about the runtime
execution than needed for an effective profiling. The thesis of this disser-
tation was that an implementation of execution replay, tightly integrated
in the runtime system of the compiler, could be used as the basis for the
development of less intrusive profilers that would allow to gather more
detailed data without the performance penalty of the more intrusive
tools.

We started by observing the limitations of currently available tools and
techniques with respect to the kind of information they provide and the
kind of tool they are (i.e. the approach to profiling/debugging they use).
By analysing the details of parallel profiling, we identified the execution
overhead and nondeterminism as two aspects that limited the usefulness
of said tools. We chose execution replay as the mechanism that would
overcome those limitations and analysed what runtime information was
needed for the correct replay of a non-strict purely functional execution
in the form of events. We implemented execution replay in the runtime
system of one of the most popular compilers for a functional language
(GHC and Haskell) . Our implementation outperformed the state of the
art in the aforementioned two aspects, and so paves the way for the
development of improved profilers.

We list the specific contributions of our work in section 6.1, analyse its
limitations in section 6.2 and discuss future work in section 6.3.
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6.1

CONTRIBUTIONS

The research contributions of this thesis are the following:

1. We have identified the source of nondeterminism available dur-

ing the execution of a parallel purely functional language in the
form of runtime events in section 4.2.2. For each event, we have
discussed how it contributes to a nondeterministic execution and
what information is relevant in the event. From all nondetermin-
ism, we have identified shared thunk evaluation as the greater
source of nondeterminism and proposed a scheme to reduce the
amount of information logged that nevertheless provides all in-
formation needed to know how those thunks were evaluated, de-
scribed in section 4.2.2.

. We have implemented an execution replay system tailored to the

needs of a profiling framework, described in section 4.2. We did
so by integrating the execution replay mechanism in the runtime
system of the language’s compiler, the source of nondeterministic
executions. Because the information required for profiling does not
require the level of detail required for debugging concurrent pro-
grams, our implementation significantly relaxed the assumptions
that we need to make about the replay with regard to those needed
when ER is used as a debugging facility. Specifically, we are not re-
stricted to having to reproduce the exact same execution as the
original one, but are only interested in the parallel behaviour. This
considerably reduces the amount of logging information that is re-
quired for replay, and it also enables the use of profiling RTS facil-
ities. For example, the program can be stopped during replay and
any runtime analysis or data gathering can be performed without
affecting the replay process. The information obtained in this way
can later be merged with the original event log to obtain improved
profiling data.

. We have made the first implementation of ER targeting a purely

functional language RTS, taking advantage of the language prop-
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erties, and analysing its pros and cons, presented in section 4.2.
In comparison with conventional ER systems, our implementation
does not need to log any memory access beyond shared thunk eval-
uation. This allows very low overhead in the recording phase, even
in the presence of fine-grained parallelism, as is the case of parallel
functional programs.

4. We have showcased the use of this new profiling framework to pro-
file the performance of some Parallel Haskell programs, obtaining
better data about its runtime behaviour and improving its parallel
performance with this knowledge (presented in chapter 5).

6.2 LIMITATIONS

In the description of the recording phase in section 4.2.2 we have dis-
cussed some design decisions that limited the applicability of our tech-
nique:

¢ Mixing thunk ids and thread ids in the same space imposes a limit
in the amount of both threads and thunks than can be created. This
would likely not allow for long-running executions to be replayed
in full. An idea to solve this problem would be to use a checkpoint-
ing facility. This technique saves the full state of the process in a
file and allows to restore the execution from that same point at a
later time. In the event of some of the id spaces being nearly full,
the replayed could checkpoint the program execution at the begin-
ning of the next GC, and use the GC process to compact the ids still
in use.

* Despite advising the usage of eager blackholing to avoid concur-
rent thunk updates to pass undetected, there is still a very small
chance for a thunk being updated by more than one thread without
reporting a collision. Because we are replaying purely functional
programs, both results should be equivalent (the same WHNF value
evaluated to the same depth), so that the result would be correct
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even if the update order was reversed. What can make the execu-
tion unreplayable is that applying the updates in a different order,
or at different times, may make other threads read an intermediate
state of the thunk. A technique called probabilistic replay is used
by other approaches to perform successful replays even in the pres-
ence of partial trace information [44, 45]. The idea is to explore the
space of possible executions that fit the recorded log until the pro-
gram is replayed in full. While this process may take time, it is only
a one-time execution. After the first complete replay, the event log
can be modified to include the missing information.

Execution replay allows to perform any kind of analysis or data
gathering at runtime but the information has restrictions on how
it can be used. In particular, if we are to report timelines with
new events emitted during replay, we have to be careful to only
trust the timestamps of the original event log and, for the new
events, use timestamp ranges as done in section 5.2.1. In relation to
this, there may be executions in which the granularity of events do
not allow to give very detailed information, e.g. if two consecutive
events happened too far apart from each other. This kind of prob-
lem could be solved by mapping the replayed execution between
those two events into the original event log and interpolating the
timestamp of the new events using its relative position.

Some parallel algorithms may present higher than normal over-
head in the logging phase if they use a very large amount of spark-
ing. This was the case of parfib in table 3. Even though in that case
it was due to choosing the wrong compiler options that forced the
programmer to lower the sparking threshold, we do not discard
the possibility of programs that require such an amount of paral-
lel tasks to obtain good speedups. For cases like that, we should
explore the possibility of removing some spark-related events as is
discussed in section 6.3.
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6.3 FUTURE WORK

The main line of research that remains open is that of formal models
that allow to verify the completeness of the event logging and replay
phase. Despite having build a working execution replay system, formal
verification of the design would increase confidence on its correctness.
The usage of model checking techniques on a formal specification of the
record and replay process could be used to verify the correctness of the
approach.

Additionally, a formal description of the system may help in defin-
ing causality relations between events and reduce the need for some of
them. As an example, when a spark is stolen, because we encoded the
capability where the spark resides in its id, the event to create the spark
may not be needed for replay. We have not explored these possibilities
to further reduce the overhead of the recording phase by emitting less
events.

Further validation of our approach to profiling would be the develop-
ment of profiling tools that take advantage of our framework. In particu-
lar, one of the claims of this work is that most of the sequential profiling
tools analysed in chapter 3 can be adapted to work in a parallel set-
ting by building on top of our work. For example, one commonly used
profiler still missing for Parallel Haskell is a memory profiler. The GHC
profiling subsystem makes use of cost-centre stacks (see section 3.2.1)
and can only work with one processor. Its overheads are over twice the
sequential performance which makes it unusable in a parallel program.
An implementation that used ER could completely isolate the profiler by
storing the extra label work that is attached to every thunk in a separate
area as to avoid interference in the profiled executions. Then, during re-
play, the normal memory profiling process would proceed with the new
label locations. The suggested implementation would have the benefit of
working with parallel programs and ensuring minimal impact in their
execution.

Improvements to our replayer implementation can be made in two
areas. First, to add support for concurrency. By adding specific support
to the most popular concurrency primitives and libraries, our system
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could be extended to support concurrent and distributed applications.
Second, to implement parallel replay. The current implementation re-
plays executions single threadedly by following the event log timestamp
ordering and coordinating threads through a single replay scheduler. The
replay performance could be improved by making each program thread
be its own scheduler so that they would read events by themselves and
only perform coordination tasks when events relate them with other
threads.

Last but not least, another research area would be to use ER in com-
bination with the GC research started in Ferreiro et al. [112]. That work
explores the online resizing of the GC’s nursery to adapt to the dynamic
behaviour of applications with respect to its memory requirements, and
improve the overall runtime performance. A limitation of that work is
that it focuses on sequential execution. Our execution replay technique
could be used to analyse the applicability of the techniques developed
in the referenced work to parallel applications and develop parallel ver-
sions of the nursery resizing algorithms.



RESUMO

A.1 OS DESAFIOS DO PARALELISMO

Desde o comezo da historia da informatica, foi investida unha enorme
cantidade de investigaciéon no desenvolvemento da tecnoloxia que per-
mite facer cdlculos en paralelo como unha forma de mellorar o tempo de
execucién dos programas. Os limites na escalabilidade dos procesadores
de un sé ntcleo aumentaron recentemente a necesidade de aproveitar
o hardware paralelo con mais eficiencia. A duplicacién da potencia de
cdlculo cada dous anos, derivada do aumento de transistores por chip,
conecido como lei de Moore, estancouse hai varios anos cando a miniatu-
rizacién comezou a encontrar limites fisicos como a disipacién de calor,
0 que aumenta o consumo de enerxia e a corrente de fuga [1]. A pesar
de que a lei de Moore contintia a ser vixente, o aumento de transistores
por chip conséguese agora utilizando arquitecturas multinticleo. O que
antes era cuestion de esperar algin tempo para adquirir un procesador
mais rapido, agora require un cambio fundamental na forma en que se
escriben os programas para aproveitar a execucién concorrente.

Os computadores de escritorio e portatiles de hoxe en dia tefien chips
con multiplos ntcleos, mais a investigacion actual xa estd traendo hardwa-
re manycore e plataformas heteroxéneas, onde a CPU se acompafia con
GPUs altamente paralelas [2]. A mellora do paralelismo no hardware
desaffa os modelos de programacion actuais para se manter ao dia co
aumento da concorrencia. A pesar de que a programacién paralela exis-
te desde hai moito tempo, facela facil de usar e, a0 mesmo tempo, pro-
porcionar os mecanismos e ferramentas para entender e mellorar o seu
rendemento e escalabilidade, segue a ser un problema de investigaciéon
aberto.

O que fai que a programacion paralela sexa dificil é que, co fin de ob-
ter melloras no tempo de execucion con respecto a unha implementaciéon
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secuencial, un programa paralelo necesita descompofier os seus calculos
en tarefas independentes que realicen o seu traballo de forma paralela
entre si. Dedticese entén que o programador necesita as ferramentas e a
capacidade para identificar estas tarefas independentes dunha maneira
en que a cota de traballo total do programa se distribtia do xeito maéis
uniformemente posible. Facer isto implica unha gran complexidade, co-
mo descubrir dependencias de orde ou localizar tarefas independentes.
Ademais, é moi posible que sexa necesario algiin tipo de coordinacién
entre as multiples tarefas que se executan, debido a que, en xeral, os
seus resultados tefien que ser combinados, ou as stias entradas provefien
dunha orixe de datos compartida. Nestes casos, situaciéns indesexables
como os bloqueos mutuos ou thread starvation deben ser evitados. Esta
complexidade é o motivo polo cal escribir cédigo paralelo non foi to-
talmente automatizado, ao tempo que explica a existencia de multiplas
bibliotecas e ferramentas creadas para tratar de facilitar a programacién
e o andlise do desempefio dos programas paralelos.

A modo de resumo, co fin de aumentar o rendemento, linguaxes de
programacion e sistemas de execucién deben proporcionar primitivas
e/ou bibliotecas paralelas aos programadores para que 0s programas in-
formaticos poidan aproveitar ao maximo o hardware altamente paralelo
dispofiible. Este estilo de programacién implica madis retos que a pro-
gramacion secuencial, de modo que as tarefas de depuracion e andlise
destes programas constitien unha gran parte dos antecitados retos.

A.1.1 A programacion funcional paralela

Ainda que os modelos de programacién paralela permiten estruturar un
programa paralelo, a maior parte do traballo é a comprensién do pro-
grama e a capacidade de reorganizar e descompofielo en tarefas mais
pequenas con poucas dependencias entre si. Moitas das dificultades pa-
ra realizar isto estdn relacionadas coa linguaxe de programaciéon utili-
zada. Nos paradigmas de programacién mdis populares, o imperativo
e o orientado a obxectos, os efectos laterais son unha parte integral do
seu modelo de programacién. En particular, a mutabilidade dos datos é



A.1 05 DESAFI0S DO PARALELISMO

unha caracteristica fundamental destes paradigmas que dificulta o razoa-
mento sobre as dependencias de datos e a sta orde, algo fundamental
para obter unha estrutura paralela efectiva. Isto é especialmente impor-
tante para o futuro inmediato, onde a necesidade de escalar a millares
de nodos fai que o problema sexa mdis relevante.

Ainda que o paradigma da programacién funcional existiu dende que
existe a programacion imperativa, foi s6 recentemente que comezou a
facerse popular. As linguaxes de programacién modernas empregan ha-
bitualmente unha serie de caracteristicas de distintos paradigmas, o que
fai dificil delimitar que é o que fai que unha linguaxe sexa considerada
funcional ou imperativa. Ainda asi, unha linguaxe funcional pédese defi-
nir como unha linguaxe de programacion en que a principal ferramenta
de construcién é a definicion de funciéns, e onde programas complexos
se constrien compofiendo funciéns mais simples entre si. A pesar desta
definicién minima, cando pensamos nunha linguaxe funcional, habitual-
mente élle asociada unha serie de abstracciéns de alto nivel: funciéns
de orde superior, recursividade, pureza, transparencia referencial e un
sistema de tipos expresivo.

Laziness e Haskell

Existe unha caracteristica das linguaxes funcionais que omitimos até ago-
ra: strictness. Strictness define como se avalfa un programa: se a funciéon
avalia os seus argumentos antes de avaliar o seu corpo (avaliacién eager
ou estrita) ou se se fai ao contrario (avaliacién non estrita), de maneira
que os argumentos se avalian baixo demanda, cando son requiridos.
Nesta tese usamos unha linguaxe de programacion funcional particu-
lar cunha seméntica non estrita chamada Haskell [11]. O estandar orixi-
nal de Haskell 98, editado por Peyton Jones and Hughes [12], foi publi-
cado en 1999. Ainda que o informe define Haskell como unha linguaxe
funcional non estrita, ¢ moi comun usar o termo lazy porque a maior
parte das stias implementaciéns usan unha estratexia de avaliacién call-
by-need, na cal se utiliza reducién de grafos. Isto significa que non s6 a
avaliacion de expresions é posposta, mais tamén que os seus resultados

2

son compartidos nos seus multiples usos. Debido a que laziness é un
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detalle de implementacién da semdntica non estrita e esta convencién
¢é xeneralizada, nesta tese usamos os termos de maneira intercambiable,
ainda que non sexa enteiramente preciso.

Hai moitos beneficios asociados coa propiedade de laziness, entre os
cales os mdis usuais son os seguintes [13]:

* A capacidade de definir novas estruturas de control. Mentres que
outras linguaxes tefien que proporcionalas como parte da defini-
cién da linguaxes, unha linguaxe lazy permite ao usuario definir as
stas estruturas de control como calquera outra funcién. Por exem-
plo, Haskell proporciona a seguinte funcién:

‘when :: (Monad m) => Bool ->m () ->m ()

equivalente 4 rama then dunha sentenza condicional. Unha lingua-
xe que usase unha semadntica estrita necesitaria un sistema de ma-
cros que fixese substitucion textual ou soporte nativo na propia
linguaxe, o cal é méis habitual.

* A mellora da modularidade a través da separacion de conceptos’
Laziness permite definir produtores de datos de maneira indepen-
dente dos seus consumidores sen que haxa que preocuparse sobre
a eficiencia ou a correcciéon. De novo, proporcionamos o cédigo
dunha funcién Haskell moi coman:
any :: (a -> Bool) -> [a] -> Bool
any p = or . map p

Este tipo de reutilizacion de funciéns é imposible nunha linguaxe
estrita, que utilizaria operadores da linguaxe con avaliacion en cur-
tocircuito como | | en C ou orelse en Erlang para evitar avaliar toda
a lista despois de encontrar o elemento que cumpre a propiedade
p.

De agora en diante, ainda intentando xeneralizar, referirémonos a
unha linguaxe de programacién pura e lazy cando falemos de progra-
macién funcional. En particular, usaremos Haskell e Glasgow parallel
Haskell (GpH) [14] como a implementacion concreta de Parallel Haskell.

1 Do inglés separation of concerns.
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Parallel Haskell

GpH introduce ddas primitivas da linguaxe para programar aplicacions
paralelas:

par :: a ->b ->b

pseq :: a ->b ->b

Estas son as primitivas bésicas sobre as cales moitos modelos de pro-
gramacion paralela se poden implementar [15]. par, tal como é definida
polo seu tipo, devolve o seu segundo pardmetro. Introduce paralelismo
denotando que seria ttil avaliar o seu primeiro parametro en paralelo. Os
pormenores exactos de como se fai isto son definidos na implementacién
de Haskell subxacente. Este mecanismo é moi flexible, porque a expre-
siéon que posiblemente sexa avaliada en paralelo é tratada como calquera
outra expresion en Haskell e, como tal, o seu resultado é compartido por
calquera thread que o necesite e tamén é reciclado polo colector de lixo.
Isto permite paralelizar expresiéons con diferentes graos de granularida-
de e usar paralelismo especulativo, confiando no sistema de execucién
para asegurar que non haxa avaliaciéns duplicadas e se descarten valo-
res que non sexan usados. E importante decatarse de que a avaliaciéon
lazy é necesaria para que a avaliacién de par a b devolva b sen forzar a
avaliacion de a. pseq complementa a par forzando a orde de avaliacién
de duas expresions. Utilizase principalmente para asegurarse de que o
thread que avalia unha expresiéon usando par non avalfa inmediatamente
a subexpresién que se marca para avaliacion paralela.

Para ilustrar como se introduce paralelismo nun programa existente
usando estas ddas primitivas, proporcionamos o cédigo dunha imple-
mentacién paralela de Fibonacci a continuacién:

Funcién de Fibonacci paralela

pfib :: Int -> Int

pfib 0 =1
pfib 1 =1
pfib n = nl ‘par’ n2 ‘pseq‘’ nl + n2

where
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nl
n2

pfib (n-1)
pfib (n-2)

Esta version da funciéon de Fibonacci en paralelo avalia a primeira
chamada para calcular o niimero de Fibonacci anterior, n1, en paralelo
co segundo, n2. Neste caso, pseq forza ao thread avaliando pfib a avaliar
n2 antes de n1 + n2. Isto permite que n1, que foi marcado para ser avaliado
en paralelo, sexa avaliado por un thread diferente.

A avaliacién lazy e outras abstracciéons da programacion funcional pro-
porcionan moitos beneficios & programacion paralela e, en particular, ao
modelo semiimplicito que proporciona GpH. Seguindo a Hammond and
Michelson [10, pp. 1-7], podemos mencionar os seguintes exemplos: fa-
cilidade de particionamento, modelo de comunicaciéns simple, ausencia
de bloqueos mutuos, depuracién seméntico directo, aproveitamento facil
de pipelining e outras estruturas de control paralelo.

Dadas estas propiedades, escribir programas paralelos nunha lingua-
xe funcional pura como GpH é enganosamente facil. En moitos casos con-
siste en identificar puntos concretos no cédigo fonte onde computaciéns
de gran groso son avaliadas e tamén indicar ao sistema de execucién que
as avalie en paralelo.

O escenario anteriormente descrito parece ideal, especialmente cando
se compara con moitos modelos de programacién paralelos onde as con-
diciéns de carreira® e os bloqueos mutuos son situaciéns habituais das
que hai que estar prevido. Por outra parte, as mesmas propiedades que
facilitan a programacién paralela poden ser un desafio cando se quere
mellorar un programa xa paralelo ou resolver problemas de eficiencia.
A falta de control de fluxo explicito fai que sexa moi dificil definir unha
orde de avaliaciéon cando esta é cofiecida. Asemade, o paralelismo im-
plicito pode ser un obstdculo cando se implementan problemas cunha
estrutura paralela ben definida. A implementacién de pfib mostrada an-
teriormente é un bo exemplo destas limitacions. Un programador relati-
vamente inexperto pode darse conta de que é necesario pofier un limite
as chamadas recursivas que introducen paralelismo en algoritmos de ti-

2 Do inglés race conditions.
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po dividir e conquistar, mais, ainda asi, as melloras obtidas na execucién
paralela non son as esperadas nun exemplo tan simple. Unha explicacién
deste feito ofrécese na seccion 5.2.1.

A.1.2  Facendo profiling de programas funcionais paralelos

Habitualmente, nun contexto imperativo, despois de obter unha versién
inicial dun programa paralelo, o seguinte paso consiste en usar ferra-
mentas de profiling para obter informacién de execucién que axude a
comprender o seu comportamento paralelo. Esta informacién pode in-
cluir tempos de execuciéon das funciéns, coordinacién de threads, conten-
cién de locks etc. O uso deste tipo de ferramentas pode ser moi ttil para
que o programador poida identificar e centrarse nas causas madis impor-
tantes que afectan ao posible baixo rendemento do programa e tamén
entender os problemas que o causan.

O problema cunha linguaxe funcional lazy en relacién coa programa-
cién paralela é a falta de ferramentas para facer profiling de maneira util.
Isto ocorre mesmo para programas secuenciais. A causa desta circuns-
tancia é o feito de que intercalar a avaliacion de funciéns segundo son
demandadas impide medir de maneira precisa os seus tempos de execu-
cién e fai moi dificil relacionar unha expresién que estd sendo avaliada a
un punto concreto no tempo. Por exemplo, nunha expresioén produtor/-
consumidor comtn como take 5 primes, en vez de calcular unha lista de
ntmeros primos e despois devolver os primeiros 5 valores, a avaliacion
lazy significa que cada un dos 5 primeiros ntiimeros primos vai ser cal-
culado segundo se consome. Entén, se eses niimeros son imprimidos de
maneira separada, primes suspenderia a stia avaliacion entre cada acciéon
de impresion.

Ademais, nun contexto paralelo, calquera técnica que intente resolver
este problema voélvese madis dificil de aplicar porque o incremento na
cantidade de informacién por unidade de tempo fai que o sobrecusto
de obtela sexa maior. Tamén, o indeterminismo inherente a unha execu-
cién paralela significa que o comportamento do programa en execuciéns
consecutivas onde se aplicaron distintos tipos de profilers pode variar
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substancialmente con respecto a da execucién orixinal do programa (sen
ningun profiling).

Alguns destes problemas non se poden resolver directamente e faise
intentando aproximar os seus resultados. Por exemplo, para calcular os
tempos de execucién de funcién, unha aproximacion estatistica podese
obter utilizando centros de custo [17]. Ainda que estes non dan unha
medida exacta dos tempos de execucién do programa, os centros de
custo particionan a execucién con porcentaxes de uso de cada expresion
e permiten priorizar en que partes do programa hai que centrarse.

Relacionar expresiéons do cédigo fonte con puntos no tempo e, so-
bre todo, ordenar as interacciéns e o progreso dos threads, ainda que
mais dificil de obter, resulta mdis ttil para optimizar un programa para
unha execucién paralela. Obter esta informacioén é vital para decidir se
algunhas tarefas deben ser paralelizadas ou non e definir a stia granulari-
dade. Podemos clasificar este problema como unha instancia da técnica
mais xeral de traceamento software. O traceamento software consiste en
rexistrar, cun sobrecusto baixo, a ocorrencia de eventos que proporcio-
nan informacion de execucién relevante. De novo, neste caso, o modelo
de execuciéon dunha linguaxe funcional lazy fai que sexa moi complica-
do comprender unha traza sen procesado do grafo de chamadas dunha
execucion, onde a avaliacion de funciéns apareceria mesturada coa ava-
liacién dos seus argumentos. Ademais, proporcionar datos ttiles pode
requirir inspeccién custosas do programa en execucion e un aumento im-
portante dos eventos traceados, facendo que o seu efecto na execucién
paralela do programa sexa inasumible.

Até agora, o traballo nesta drea foi escaso. Unha extensién do traballo
previo de centros de custo [18] foi usada para aplicar a mesma técnica
nun contexto paralelo, ainda que, igual que no caso secuencial, require
cambios no sistema de execucién que tefien un impacto importante sobre
o rendemento do programa. Outras técnicas funcionaban facendo unha
simulacion do programa con un s6 thread e usando cédigo especifico
para extraer datos de execucién de maneira que o programa se puide-
se optimizar iterativamente antes de despregalo en maquinas paralelas
reais [19].



A.2 UNHA NOVA TECNICA DE PROFILING

Un dos dltimos traballos neste campo involucra un desefio arredor
do uso do sistema de traceamento do Glasgow Haskell Compiler para
proporcionar unha vista dos eventos de execucién no tempo [20]. Ainda
que parte desta informacién é til, dende o noso punto de vista, é ainda
insuficiente para ser considerada unha ferramenta de profiling madura e
completa.

A.2 UNHA NOVA TECNICA DE PROFILING

Na anterior seccién identificamos software tracing como unha técnica que
permite adquirir informacién de profiling para resolver problemas de ren-
demento nunha execucién paralela. Tamén se indicou que a cantidade e
tipo de informacién que se necesita extraer e a natureza indeterminista
da execucién son un obstdculo nun contorno paralelo.

Tamén identificamos certa informacién de execucién que pode pro-
porcionar datos valiosos para comprender o comportamento de progra-
mas paralelos: as interacciéns entre threads en relacién con expresions
do cédigo fonte (que expresion é a mdis utilizada), traballo perdido (que
expresions paralelas foron descartadas) etc. Toda esta informacion esta
directamente relacionada co modelo de execucién da linguaxe e, debido
a iso, é custosa de obter. Cremos que esta informacién serfa ttil para
facer profiling de programas paralelos lazy, mais require almacenar unha
gran cantidade de datos sobre a execucién do programa. As ferramentas
actuais non poden facer isto sen afectar a execucién do programa dunha
maneira que produce que os resultados perdan a stia utilidade con res-
pecto ao seu obxectivo; isto é, a informacion obtida é valida, pero seria
de aplicacién a un programa en que o seu comportamento cambiou sig-
nificativamente en comparaciéon con aquel do que se intentaba mellorar
o seu rendemento.

A nosa solucién a este problema consiste en aplicar a cofiecida técnica
de execution replay para desefiar unha plataforma de profiling que tefia
unha interferencia minima na execucién e sobre a cal se poidan cons-
truir mellores ferramentas para comprender a execucién paralela dun
programa.
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Execution replay (ER) [21, 22] é unha técnica de depuracién desefiada
para ser usada con programas concorrentes. Debido 4 stia natureza in-
determinista, cada execucién dun programa concorrente resulta nunha
intercalacion diferente de eventos de execucion, e posiblemente na execu-
cién de distintos camifios do c6digo. ER permite ao programador almace-
nar unha traza da execucién do programa para logo poder reexecutar o
mesmo programa paso a paso, seguindo esa traza. A traza do programa
encapsula parte do estado do sistema segundo vai cambiando ao longo
da execucién. Desta maneira, a reexecucion do programa pode simular
a execucion orixinal o madis fielmente posible. Ao facer a reexecucion,
o programador pode inspeccionar o estado do programa (por exemplo,
variables, rexistros, a pila) cos seus valores orixinais en cada paso da
execucion.

A novidade da nosa aproximacién baséase no uso do desefio basico
de ER, pero cambia algtins dos seus requisitos para adaptalo ao profiling
de programas paralelos. No noso desefio, a reexecuciéon do programa é
simulada dunha maneira que permite i) reproducir as condiciéns que
deron lugar a un desempefio paralelo ineficiente, e ii) facer mudanzas
na execucién do programa para obter informacién adicional sobre o seu
comportamento en execucién. Desta maneira, podemos modificar dina-
micamente a cantidade e tipo de profiling que se fai na reexecucién do
programa para obter a informacién requirida sen cambiar o comporta-
mento do programa.

Tendo un mecanismo para obter esta informacién, permitimos o desen-
volvemento de ferramentas de profiling mdis complexas que as dispofii-
bles até agora. En particular, deberia ser posible estender os custosos
tracers secuenciais, proporcionar informacién do heap asignando custos
por thread ou por core, ou crear unha biblioteca de novas primitivas da
linguaxe de programacion que permitan monitorizar o ciclo de vida de
expresions do cédigo fonte segundo son avaliadas.

A.3 CONTRIBUCIONS

No desenvolvemento desta tese, fixéronse as seguintes contribuciéns:



A.3 CONTRIBUCIONS

. Analizouse o comportamento en execucién dunha linguaxe fun-
cional pura e identificouse a fonte de indeterminismo responsable
de comportamento diferente en distintas execuciéns baixo a forma
de eventos en tempo de execucién (listados na section 4.2.2 e na
table 2).

. Fixose unha implementacién de ER adaptada s necesidades dunha
plataforma de profiling, en vez de ser pensada para facer depura-
cioén (descrita na section 4.2).

. Fixose a primeira implementation de ER nunha linguaxe funcional
pura, aproveitando as propiedades deste tipo de linguaxes e anali-
zando as stas vantaxes e desvantaxes (presentada na section 4.2).

. Utilizouse con éxito este mecanismo de profiling para analizar as
caracteristicas de execuciéon dalgins programas feitos en Parallel
Haskell, obtendo mellor informacién sobre o seu comportamento
e mellorando a stia execucién paralela con este cofiecemento (pre-
sentado no capitulo 5).
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