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Resumo

Esta tese trata o problema da estimación da función de densidade e de distribución cando

os datos se presentan agrupados. Para este propósito, considérase o estimador núcleo da

densidade e proponse unha modi�cación para usalo con datos agrupados. Sempre que se

cumpran os supostos axeitados, demóstrase que o coñecido selector plug-in AMISE óptimo

da ventá pode usarse satisfactoriamente con estes datos, o que na práctica leva a de�nir o

concepto de agrupación lixeira. Para escenarios de agrupación pesada, proponse un selector

bootstrap. Mediante estudos de simulación móstrase o bo desempeño do estimador cando

se usa axeitadamente o selector plug-in ou o selector bootstrap, dependendo do grao de

agrupación dos datos. Con base no estimador núcleo da densidade para datos agrupados,

derívase un estimador núcleo da distribución para este tipo de datos. Obtéñense formal-

mente as súas propiedades asintóticas e estúdase o seu desempeño en diferentes escenarios

de agrupación usando un selector plug-in adecuado. Finalmente, mediante aplicacións

a datos reais, móstrase a efectividade dos métodos non paramétricos propostos nesta dis-

ertación, os mesmos que nalgúns casos superan o desempeño dalgúns métodos paramétricos

habitualmente usados en malherboloxía para estimar a probabilidade de emerxencia das

malas herbas.
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Resumen

Esta tesis trata el problema de la estimación de la función de densidad y de distribución

cuando los datos se presentan agrupados. Para este propósito, se considera el estimador

núcleo de la densidad y se propone una modi�cación para usarlo con datos agrupados.

Siempre que se cumplan los supuestos adecuados, se demuestra que el conocido selector

plug-in AMISE óptimo de la ventana puede usarse satisfactoriamente con estos datos,

lo que en la práctica lleva a de�nir el concepto de agrupación ligera. Para escenarios de

agrupación pesada, se propone un selector bootstrap. Mediante estudios de simulación se

muestra el buen desempeño del estimador cuando se usa adecuadamente el selector plug-in

o el selector bootstrap, dependiendo del grado de agrupación de los datos. Con base en el

estimador núcleo de la densidad para datos agrupados, se deriva un estimador núcleo de la

distribución para este tipo de datos. Se obtienen formalmente sus propiedades asintóticas

y se estudia su desempeño en diferentes escenarios de agrupación usando un selector plug-

in adecuado. Finalmente, mediante aplicaciones a datos reales, se muestra la efectividad

de los métodos no paramétricos propuestos en esta disertación, mismos que en algunos

casos superan el desempeño de algunos métodos paramétricos habitualmente usados en

malherbología para estimar la probabilidad de emergencia de las malas hierbas.
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Abstract

This thesis deals with the problem of estimating the density and distribution functions

when the data at hand are grouped. For this, the classical kernel density estimator is

considered and a suitable modi�cation is proposed for using it with that type of data.

Likewise, whenever the appropriate assumptions are met, it is formally proved that the

well-known AMISE optimal plug-in bandwidth selector can be successfully used in the

presence of grouped data, which in practice leads to de�ne the concept of light grouping.

For scenarios of heavy grouping, an alternative bootstrap bandwidth selector is proposed.

By means of simulation studies, it is shown the good performance of the estimator when

adequately using either the plug-in or the bootstrap bandwidth selector, depending on

the degree of grouping. Based on the kernel density estimator for grouped data, a kernel

distribution estimator for grouped data is derived. Its asymptotic properties are formally

obtained, and its performance is studied in di�erent grouping scenarios using a suitable

plug-in selector. Finally, applications to real data coming from weed science show the

e�ectiveness of the nonparametric methods proposed in this dissertation, which in some

cases outperform the typical parametric methods used by weed scientists for estimating

seedling emergence probabilities.
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Preface

The subject of this thesis arises from a practical problem posed by people from the Institute

of Sustainable Agriculture (CSIC), in Córdoba, Spain, to the Modeling, Optimization and

Statistical Inference group (MODES) of the Universidade da Coruña. The problem was

on how to accurately predict weed seedling emergence when the data at hand is grouped.

Weeds are problematic both in agricultural and nonagricultural areas. Not only do they

interfere in crops, but also they may cause economic losses or negative social impacts. Thus,

to control weeds is of major importance, and accurate predictions of seedling emergence is

crucial for making right decisions on the use of weed management strategies.

Traditionally, weed scientists have tackled the problem of modeling weed seedling emer-

gence by �tting parametric nonlinear regression models to cumulative emergence patterns.

However, these models have been questioned due to several major limitations. For example,

sometimes parametric models are not �exible enough to capture complex features in the

observed cumulative emergence values. Also, when obtained from consecutive monitoring

times, the cumulative emergence values are not statistically independent, leading to posi-

tive autocorrelation of the residuals. This is an issue, since the construction of con�dence

intervals and hypothesis testing in standard nonlinear regression depend on uncorrelated

residuals. Moreover, although the choice of a parametric model is based on experience, if

the model is not appropriate, then there is a risk of getting wrong conclusions from the

analysis. Those problems have not been explicitly considered in the weed science litera-

ture, where �tting the model has been the main goal, regardless of whether the statistical

analysis is proper or not.

The objective of this monograph is to provide some other tools and approaches for

predicting weed seedling emergence. A straightforward alternative to parametric nonlinear

regression models is the nonparametric approach, which does not consider any speci�c

model on the random variables under consideration. The basic idea is to impose minimum

assumptions to get useful information from data, or as it is usally said, to let the data

�to speak for themselves�. This way, nonparametric techniques may provide more �exible

estimations and, in some cases, more reliable results than parametric nonlinear regression

methods.

From the statistical standpoint, the problem of seedling emergence can be viewed as

1



that of �nding structure in data. Hence, the problem can be addressed either by estimating

the density or the distribution function. For this, and from the nonparametric front, a

classic tool is kernel smoothing, whether for density or distribution estimation. However,

as it was mentioned earlier, available data on seedling emergence typically come grouped,

and the kernel density or distribution estimators cannot be used with such type of data.

This forces to somehow rede�ne these estimators in order to get density or distribution

estimations from grouped data. This is what this monograph is mainly about.

Besides starting with some basic weed science and kernel smoothing concepts, the

�rst approach to the problem is on how to estimate the density function from grouped

data. For this, a suitable modi�cation of the kernel density estimator is proposed and

its asymptotic properties are formally derived. A key element in kernel smoothing is the

right choice of the bandwidth. Thus, two bandwidth selectors are proposed. The �rst one

is a plug-in selector, directly obtained from the asymptotic properties. The second one

is a bootstrap based bandwidth selector. By simulation studies, the performance of the

modi�ed kernel density estimator is examined when using those bandwidth selectors under

di�erent grouping scenarios. Facing applications, this allows for practical guidelines on

when to conveniently use each of the bandwidth selectors.

Subsequently, a kernel distribution estimator for grouped data is derived from the

previous estimator. Then, the procedure is quite parallel: its asymptotic properties are

formally derived and a proper bandwidth selector is obtained. By means of simulation

studies, its performance is examined under di�erent grouping conditions, highlighting its

main di�erences with respect to the kernel density estimator for grouped data.

This monograph is completed with a chapter of applications to real data on weed

seedling emergence. The already obtained practical guidelines are tested, con�rming its

usefulness in practice. Moreover, the kernel distribution estimator is also tested versus

some typical nonlinear regression models used in weed science. The results show that the

nonparametric methods proposed are not only valid to describe weed seedling emergence,

but also its �exibility allows them to better describe complex distributions that, due to its

rigidity, parametric models tend to ovsersimplify.

Finally, given the general way in which kernel density and distribution estimators for

grouped data were de�ned and studied, it is important to stress that they can be poten-

tially applied to �nd structure in data not only in weed science, but in any grouped data

set, regardless of the discipline they come from. Hopefully, more research on this topic will

take place, trying to improve the results obtained by considering more elaborated modi-

�cations of the kernel density and distribution estimators to deal with grouped data, or

by considering approaches like the nonparametric isotonic regression or nonhomogeneous

Poisson processes.

2



Chapter 1

Introduction

The aim of this work is to study the nonparametric estimation of the density and dis-

tribution functions when the data at hand are grouped. Grouped data appear whether

continuous random variables are measured or used in binned or rounded form or in sys-

tems in which the observation time is periodic. These type of data are common in areas

like engineering, economics, health and life sciences, agriculture and many more.

The motivational problem of this work comes from a branch of agriculture called weed

science. In this area, random variables based on humidity or temperature (or both) are

very important for predicting weed emergence. In some weed science experiments the ob-

servation time is periodic, so researchers are unable to observe the exact values of those

variables; instead, they obtain a data set consisting in counts between variable consecu-

tive monitoring times. Moreover, indirect studies only allow access to data expressed as

proportions of emerged seedlings.

In the context of weed science, knowing statistical emergence patterns is essential for

an e�cient application of herbicides and techniques that help erradicate weeds. For that,

density estimation is of primary importance, and grouped data poses interesting challenges

in implementing existing density estimators that require an adequate modi�cation to be

used with this type of data.

This chapter gives a brief introduction about grouped data and some central concepts

on weed science and its environmental and public importance. Also, a short presentation of

classical nonparametric estimators of the density and distribution functions will be given,

showing its shortcomings. This motivates to propose the use of kernel density estimation

and a suitable modi�cation for dealing with the density and distribution estimation with

grouped data.

3



1.1 Grouped data

In the experimental sciences, data usually come from measurements of continuous vari-

ables such as temperature, mass, weight, time, length, etc. However, measurements are

observed and obtained in �nite precision due to multiple factors such as limitations of the

measurement instruments, imperfections in our senses and the almost incalculable vari-

ables of the physical world around us. Therefore, the true values of a continuous variable

are not achievable, since there is always an error or a degree of uncertainty attached in any

measurement. All continuous variables are at some point rounded or coarsened; in a very

basic sense, all measurements are grouped.

Nonetheless, it is fair to say that sometimes there are systems in which an unlimited

measurement accuracy is really not required. In those cases, either for any sort of conve-

nience or because of the nature of the system, the data are measured or used in binned or

rounded form. This type of data are usually known as grouped data, which also appear in

systems where the observation time is not continuous but periodical, as in a medical follow

up, in which the doctor checks a patient or a group of patients not continuosly, but from

time to time. In such cases, the experimental conditions limit the researcher to observe

time to event data distributed along a set of consecutive intervals, not knowing the exact

values of the random variable of interest but only knowing the number of observations

at each bin. Systems like this appear very frequently in a diversity of areas such as en-

gineering, economics, social sciences, epidemiology and many more (Coit and Dey, 1999;

Minoiu and Reddy, 2009; Guo, 2005; Pipper and Ritz, 2007). Especially in those kind of

situations, the uncertainty in the measurements is not negligible at all and it should be

taken into account to avoid serious mistakes when making inferences.

1.2 About Weed Science

The term weed is generally refered to undesirable invasive plants that may have a negative

impact on the economy, ecology, human health or urban areas, such as reduce crop yields,

activate allergies, sti�e waterways, disrupt the habitats of other plants or animals, create

safety risks or reduce aesthetic and property values1.

Weed science is, then, the study of vegetation not only in agriculture but in areas in

which plants need to be managed. Yet, it is not just about controlling plants, but the

study of these plants and its genetics, and this labour is complex enough to include several

other disciplines like statistics, ecology, physiology, biology and chemistry. The importance

of weed science research becomes evident as it in�uences the development and assessment

of weed control regulations, which brings together di�erent actors on the decision making,

such as academia itself, private industry and goverment and policy makers.

1More information can be found at the Weed Science Society of America, http://wssa.net/weed/
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1.2.1 Modeling seedling emergence

One of the central aims of weed science is to model seedling emergence, which is consid-

ered the most important phenological factor that in�uences the success of annual plants

(Fernández-Quintanilla et al., 1986; Forcella et al., 2000). Modeling seedling emergence

enables prediction of future weed appearance, leading to e�ciently implement strategies for

eradicating or controlling weeds, particularly in crop management (Leblanc et al., 2003).

Although prediction of weed emergence can be done by means of indexes (Naylor, 1981;

Hunter et al., 1984), most modern approaches consider modeling techniques (Colbach et al.,

2005). For modeling weed emergence, it is neccessary to take into account some of the main

factors that in�uence the phenomenon. In this sense, temperature and water potential

have been identi�ed as the most important ones (Izquierdo et al., 2009). Consequently,

emergence models typically use random variables based on temperature alone, or based

on temperature and humidity at the same time. The former random variable is called

thermal time (TT), and it is based on soil temperature above a reference temperature; the

latter is the so-called hydrothermal time (HTT), which uses a combination of thermal and

hydro-time over a water potential reference (Forcella et al., 2000; Bradford, 2002; Grundy,

2003). The evidence indicates that models based on HTT are more accurate in describing

weed emergence than those just based on TT (Leguizamón et al., 2005; McGi�en et al.,

2008), showing that water potential is an important factor that contributes to triggering

emergence.

In trying to assess the relationship between weed emergence and HTT, weed scientists

have tackled the problem from a regression point of view (Grundy, 2003). At a �rst glance,

it may seem natural to use parametric models like the Gompertz or Logistic (Haj Seyed

Hadi and Gonzalez-Andujar, 2009), where cumulative HTT (CHTT) is considered as the

explanatory variable and the cumulative emergence as the response variable. However,

this approach has some issues: �rst, parametric models are not always �exible enough to

capture complex details in the HTT distribution, like abrupt bumps, thin spikes or heavy

tails. Second, to be a reasonable model for �tting model emergence, care must be taken

for the regression function to be between 0 and 1. Last, CHTT data are not statistically

independent, which usually is a theoretical condition for classical regression models. But a

change of perspective can be helpful: since cumulative emergence is an increasing function

between 0 and 1, it makes sense to model it from a density or distribution estimation

point of view, using just one random variable (CHTT at emergence), instead of two, as in

parametric regression models.

1.2.2 Measuring HTT

To know the relationship between seedling emergence and environmental variables is useful

for predicting weed emergence. As stated before, among the several factors that in�uence
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weed emergence, temperature and humidity are perhaps the most important. Therefore,

another problem in weed science is determining the best way to measure both of them, as

they lead to the �nal synthesis variable HTT (Schutte et al., 2008).

By the best way to measure temperature and humidity we mean the best depth. Given a

sample of seedlings, each one is at its own depth, so a trivial answer would be to measure it

right at the position at which they are (Royo-Esnal et al., 2010). Nevertheless, estimations

of temperature and humidity at di�erent soil layers may lead to very di�erent values of

HTT; so, it is natural to ask which of those di�erent depths is the best one for improving

prediction of weed emergence.

The construction of indices for helping to decide which of the soil depths is the best

for improving prediction entails somehow measuring the spread of the underlying density

of HTT. The �atter the density, the more spread it is, which improves prediction tasks. In

other words, we are interested in knowing which of those di�erent depths gives the most

convenient distribution of HTT, so that prediction of weed emergence is more accurate.

The spread of a distribution can be measured by classical indices like the coe�cient of

variation or kurtosis. But also, it can be calculated by means of statistical functionals for

measuring the roughness of the density, whether in the slope, as in

σ3

ˆ
f ′2 (x) dx,

or in the curvature, as in

σ5

ˆ
f ′′2 (x) dx,

where σ stands for the population standard deviation and f stands for the unknown proba-

bility density function2. In any case, since in the weed science experiments the monitoring

time is discontinuous, HTT are obtained as grouped data; i.e., as counts bewteen monitor-

ing times. That incompleteness of data drives to propose adapted versions of the empirical

estimates, whether for the case of the coe�cient of variation or kurtosis, or for the case of

density functionals, for which it is necessary to somehow estimate the density function f

using grouped data.

In Section 1.3, some basic nonparametric estimators of the density and the distribution

are presented. It will be clear that they have some drawbacks that encourage to prefer

kernel density and distribution estimation.

1.3 Basics of density estimation

A very fundamental problem in statistics is the estimation of the probability density func-

tion, as it provides a description of the distribution of a continuous random variable, and

2For invariance convenience, both functionals appear multiplied by two suitable powers of σ.
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whose integral across an interval gives the probability that the value of the variable lies

within the same interval.

Basically, there are two approaches for density estimation. On the one hand, the

parametric approach consists in assuming that data come from a known parametric family

of distributions. Once a particular form for the underlying density has been speci�ed,

the problem of estimating the density is equivalent to estimating the parameters, which

are substituted into the parametric formula. The main problem with this approach is its

rigidity. Also, if the model is not correct, inferences may lead to erroneous interpretations

of the data.

On the other hand, the nonparametric approach consists in making no assumptions

about what the form of the density would be; if any, just the relatively weak assump-

tion that the density is a smooth curve. This approach is appropiate when there is no

information about the functional form of the density.

To nonparametrically estimate a curve f , data should be smoothed in some way and

to some extent. Smoothing a data set means to approximate a function that attempts to

capture important structure features, while leaving out other �ne-scale structures. Once f

is estimated, it is needed a criterion to determine how good the estimate f̂ is with respect

to f .

This section shows a brief revision of general concepts about smoothing as well as some

typical nonparametric density and distribution estimators and its properties, such as the

histogram and the empirical distribution function.

1.3.1 A discrepancy measure

To evaluate how good an estimate f̂ is with respect to an objective function f , a measure

of di�erence between them is needed. Let us consider �rst the estimation at a point x,

f̂n (x) 3. A very popular error measure is the squared error, SE (x) =
[
f̂n (x)− f (x)

]2

along with its expected value, the mean squared error, MSE (x) = E
[
f̂n (x)− f (x)

]2
.

These quantities let us locally evaluate the quality of the estimate f̂n (x).

Expanding the squared term, it is easy to prove that the MSE can be decomposed

into two parts,

MSE (x) = E
[
f̂n (x)− f (x)

]2
= B

[
f̂n(x)

]2
+ V

[
f̂n(x)

]
, (1.1)

where B
[
f̂n (x)

]
stands for the bias of the estimator and V

[
f̂n (x)

]
is its variance.

When smoothing, the main challenge is to decide how much to smooth. A �rst idea is

that the amount of smoothing should be such that the MSE is minimum, but minimizing

theMSE entails to somehow minimize the sum of the squared bias and the variance. If the

3Since the estimate depends on each sample, an n subscript has been added to f̂ .
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Figure 1.1: The bias-variance tradeo�. As the amount of smoothing increases, the bias (dashed

line) increases and the variance (dotted line) decreases. An equilibrated amount of smoothing is

indicated by the vertical line, where the MSE (solid line) is minimum.

data is oversmoothed, the variance term is small but the bias is large. When undersmooth-

ing, occurs the opposite. So, minimizing the MSE entails balancing bias and variance,

which is called the bias-variance tradeo�.

Usually, a global accuracy measure over the entire interval of de�nition of f is needed.

A global measure of accuracy can be obtained by integrating the SE , leading to the

integrated squared error,

ISE
[
f̂n

]
=

ˆ [
f̂n (u)− f (u)

]2
du, (1.2)

although this measure is a random quantity, since it depends on each sample. For over-

coming this situation, the mean of the ISE is also of interest as a global measure of

accuracy:

MISE
[
f̂n

]
= E

{ˆ [
f̂n (u)− f (u)

]2
du

}
. (1.3)

By considering (1.1), the MISE can be also expressed as

MISE
[
f̂n

]
=

ˆ
B
[
f̂n(x)

]2
dx+

ˆ
V
[
f̂n(x)

]
dx. (1.4)

The MISE is a widely used measure of overall discrepancy between f̂n and f . As

before, minimizing the MISE entails balancing integrated squared bias and integrated
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variance. Virtually, all nonparametric density estimators have associated a parameter, a

smoothing parameter, for controling the amount of smoothing on the data. Figure 1.1

shows the role of the smoothing parameter in balancing squared bias and variance for

minimizing the MSE.

It is important to stress that the popularity of the ISE and theMISE is just due to its

mathematical simplicity, but there are other error measures that may be more appropiate

in some contexts or may have some good interesting properties or interpretations. Let us

de�ne the Lp measure as

Lp =

{ˆ ∣∣∣f̂n(x)− f (x)
∣∣∣p dx}1/p

.

In general, results obtained when working with a generic Lp are not greatly di�erent

than those working with L2, although L1 has received some special focus as it has shown to

be outlier resistant, invariant under monotone transformations and having a nice interpre-

tation (Devroye and Györ�, 1985). Nonetheless, the analysis of this measure is quite more

complicated. Another interesting measure, especially in the machine learning context, is

that of the Kullback-Leibler loss:

LKL =

ˆ
f (x) ln

[
f(x)

f̂n(x)

]
dx.

However, it is generally not recomended to use it in nonparametric density estimation,

since it is extremely sensitive to the tails of the distribution (Kullback and Leibler, 1951;

Hall, 1987).

Another appealing perspective on how to measure the di�erence between f̂n and f is the

visual error criteria (Marron and Tsybakov, 1995). The main argument of these authors

is that the usual norms on function spaces measure something di�erent from what we

perceive in a plot. These norms basically measure vertical distances between the estimate

and the target function, while the eye uses both vertical and horizontal information.

Sometimes, the MSE and MISE may depend on the smoothing parameter in such a

complicated way that makes it di�cult to understand the in�uence of this parameter on

the performance of the estimator. For overcoming this situation, a very useful approach is

to consider a large sample approximation of the MSE and MISE considering asymptotic

expansions of the bias and variance, and ultimately analizing just the leading terms, which

are called asymptotic MSE and MISE (AMSE and AMISE, respectively) . For this,

the asymptotic notation and Taylor expansions are of great importance (see Appendix B).

1.3.2 Histograms

The histogram is perhaps the oldest and simplest to use nonparametric density estimator.

It is very popular for summarizing large data sets and for giving a general impression of
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the shape and spread of the distribution. The histogram is usually formed by dividing

the data range into equally sized bins, and then dividing the proportion of observations at

each bin by the binwidth.

Formally, and without loss of generality, let us suppose that f is de�ned on the interval

[0, 1]. Let k be an integer and de�ne bins B1 =
[
0, 1

k

)
, B2 =

[
1
k ,

2
k

)
, . . . , Bk =

[
k−1
k , 1

]
,

for which the bindwidth is de�ned as h = 1/k. Let ni be the number of observations in

the i-th bin, such that
∑n

i=1 ni = n. Let also p̂i = ni/n represent the observed proportion

of data in the i-th bin and pi =
´
Bi
f(u)du. Then, the histogram estimator is de�ned as

f̂H(x) =



p̂1

h x ∈ B1

p̂2

h x ∈ B2

...
...

p̂k
h x ∈ Bk

,

or, succintly,

f̂H(x) =
k∑
i=1

p̂i
h
IBi (x) ,

where IB (x) is the indicator function4.

To get an insight of the motivation of the histogram, note that following the de�nition

and considering x ∈ Bi, its expectation is

E
[
f̂H(x)

]
=

E [p̂i]

h
=
pi
h

=

´
Bi
f(u)du

h
.

Now, for a small binwidth,
´
Bi
f(u)du ≈ f(x)h, so that

E
[
f̂H(x)

]
≈ f(x)h

h
= f(x).

Changing the binwidth h (or alternatively, the number of bins k) will have an e�ect

on how smooth the histogram looks. Figure 1.2 shows this e�ect: a large binwidth (just

a few bins), as in (a), produce histograms not so variable that in general tend to be �at.

On the opposite side, a small binwidth (a large number of bins), as in (c), produce highly

variable histograms with a lot of bumps. That is to say, the binwidth is the histogram's

smoothing parameter, since it controls the amount of smoothing on the data. From Figure

1.2, it seems that (b) could be an equilibrated choice of binwidth.

Another important consideration when constructing a histogram is the location of the

interval limits (also called breaks), as it usually a�ects the shape of the estimation curve.

A comparison of Figure 1.2 and Figure 1.3 shows how variable the histogram can be just

4IB (x) = 1 if x ∈ B, and 0 otherwise.
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Figure 1.2: Histograms of a random sample of size 250 from a N (0, 1) (solid line), based on (a)

4 bins, (b) 12 bins, (c) 42 bins.

by changing the placement of the interval limits, suggesting di�erent shapes even when

using the same sample and the same binwidth.

The dependency of the histogram on the location of the breaks is one of its main

disadvantages. Another drawback is that it estimates all densities by a step function,

while most of them are smooth. A natural solution to the problem of the bin location is

to average shifted histograms (Scott, 1985), although eventually it aproximates the kernel

density estimator (Härdle, 1991; Härdle and Scott, 1992), which is smoother and uses the

data more e�ciently.

1.3.3 The empirical distribution function

The (cumulative) distribution function F is another point of view for describing structure

in a data set. Although they are strictly di�erent problems, density and distribution

estimation are closely related as both functions are linked by the relationship F ′ = f 5.

Let us consider a sample (X1, X2, ..., Xn). A natural estimator of F is the empirical

distribution function F̂n,

5A distribution function F is absolutely continuous if there is a function f such that F (x) =´ x
−∞ f (u) du. The function f (x) is called a probability density of the random variable X. Then, due

to the properties of the integral, F ′ (x) = f (x) at the points of continuity of f .
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Figure 1.3: Histograms of a random sample of size 250 from a N (0, 1) (solid line) based on (a) 4

bins, (b) 12 bins, (c) 42 bins. The breaks were shifted by 0.5 units with respect to those in Figure

1.2.

F̂n (x) =
1

n

n∑
i=1

I(−∞,x] (Xi) , (1.5)

which is the distribution that puts mass 1/n on each data point. Figure 1.4 shows F̂n (x)

based on a random sample from a N(0, 1).

The empirical distribution function has some good properties. For example, it can be

proved that at any �xed value x, the mean and variance of F̂n is

E
[
F̂n (x)

]
= F (x)

and

V
[
F̂n (x)

]
=

1

n
F (x) [1− F (x)] ,

respectively. Thus, theMSE goes to zero as n increases, and using Chebyshev's inequality,

it can also be proved that F̂n (x)
p→ F (x).

Although the last is an interesting and a desirable property, the Glivenko-Cantelli

theorem goes further and gives a much stronger result, stating that

sup
x

∣∣∣F̂n (x)− F (x)
∣∣∣ a.s.→ 0;
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Figure 1.4: Emprical distribution function of a random sample of size 250 from a N(0, 1).

i.e., the empirical distribution function converges almost surely in probability to the true

value everywhere, as the maximum gap between the two of them goes to zero as n increases.

Despite those nice properties of F̂n, one disadvantage is that sometimes it does not translate

well into a probability density f . Sorting the sample into increasing order, it assigns

probability zero for values between consecutive observations. That could be right, of

course, but we can always expect to have some new observations between the previous

ones. So, at the end, even though F̂n is already smooth to some extent, further degree

of smoothing can be an advantage, and kernel estimation applied to distribution function

gives that extra smoothing.

1.4 Summary

In this chapter, the problem that gave rise to this research was presented: to estimate

the probability density function of weed emergence, considering that, by the experimental

conditions and the very nature of the random variables used, the data collected are grouped.

For better understanding the context, it was also given a basic review of some of the most

important weed science concepts.

As it was referenced, this problem is not unique to weed science, but it is shared in

various areas of knowledge. Therefore, in trying to �nd a solution to this problem, the

statistical techniques that are proposed in this work will be quite general, so they will be

applicable to any set of grouped data, regardless of their origin.
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The available statistical tools for estimating the density and the distribution functions

implicitly consider that the data at hand is accurate, in the sense that when gathering the

data, the uncertainty attached to the measurement process was negligible. But, as it was

seen in this chapter, sometimes that is not the case, and those available tools cannot be

used with grouped data.

A quick review of some of the typical nonparametric density and distribution estimators,

such as the histogram and the empirical distribution function, was given. While, by its

simplicity, these estimators have certain implementation advantages, they also have special

disadvantages, like providing estimates that are not smooth enough, or their ine�ciency

when using the data. In this sense, kernel estimators are an improvement in estimating the

density and distribution functions, using data more e�ciently and providing some extra

smoothness, which is usually convenient. Moreover, kernel estimators are very intuitive

and its mathematical treatment is relatively easy.

The next chapter will give an overview of kernel density and distribution estimation

and its main features and advantages. This will lay the foundation for the main objective

of this thesis: a modi�cation of the kernel density estimator for grouped data, which will

subsequently allow to obtain a kernel estimator for the distribution with grouped data.
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Chapter 2

Kernel estimation of the density and

distribution functions

As was shown in Section 1.3, tools like the histogram and the empirical distribution function

are informative but have some limitations, like being not smooth or sensitive enough to

local properties of the density f or the distribution F . Kernel estimation is an easy and

attractive way to solve those problems, while its simplicity allows to mathematically study

its properties in detail. This chapter gives a quick review of kernel density and distribution

estimation. The important topic of bandwidth selection will also be discussed.

2.1 Kernel density estimation

Given a random sample (X1, X2, ..., Xn) coming from an unknown density f , the kernel

density estimator is de�ned as

f̂h(x) =
1

n

n∑
i=1

Kh (x−Xi) , (2.1)

where Kh (u) = 1
hK

(
u
h

)
, K is a function called kernel and h > 0 is the smoothing parame-

ter or bandwidth. The kernel K could be any smooth function, usually such that K(x) > 0

and

Condition 2.1.
´
K (x) dx = µ0 (K) = 1

Condition 2.2.
´
xK (x) dx = µ1 (K) = 0

Condition 2.3.
´
x2K (x) dx = µ2 (K) = ι2 <∞

Requiring Condition 2.1 (i.e., that K must be a density function) assures that the

resulting estimation is a density funtion as well, while requiring Condition 2.2 comes from

implicitly assuming that the kernel is symmetric, i.e., K (−x) = K (x). Condition 2.3 is

just a �nite second moment assumption.
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The basic principles of kernel estimation date back to the 1950s, to the seminal works of

Fix and Hodges (1951) and Akaike (1954). Nevertheless, Murray Rosenblatt and Emanuel

Parzen are credited for kernel smoothing as it is in its current form (Rosenblatt, 1956;

Parzen, 1962). Since then, there have been written several good books on the subject.

See, for instance, Silverman (1986); Scott (1992); Wand and Jones (1995). Most of the

mathematical derivation that is to come over the next pages can be veri�ed in any of those

references.

2.1.1 Exact MSE and MISE calculations

If one wants to evaluate the performance of an estimator, whether locally or globally, some

error measure between the estimation and the target function is necessary. According to

the arguments presented in Subsection 1.3.1, in this dissertation, expressions (1.1) and

(1.3) wil be considered for evaluating the performance of (2.1).

Let us �rst consider the local case. To compute theMSE of (2.1), its bias and variance

are needed. Applying the expectation operator to (2.1),

E
[
f̂h (x)

]
=

1

n

n∑
i=1

E [Kh (x−Xi)] = E [Kh (x−X)] . (2.2)

By de�nition of expectation and using the convolution notation, the rightmost expres-

sion can be written as

E
[
f̂h (x)

]
=

ˆ
Kh (x− u) f(u)du = (Kh ∗ f) (x) , (2.3)

so the bias of (2.1) is

B
[
f̂h (x)

]
= E

[
f̂h (x)

]
− f (x) = (Kh ∗ f) (x)− f (x) . (2.4)

Doing similar calculations, the variance of (2.1) is

V
[
f̂h (x)

]
=

1

n

[(
K2
h ∗ f

)
(x)− (Kh ∗ f)2 (x)

]
. (2.5)

Combining (2.4) and (2.5) it is obtained the MSE:

MSE
[
f̂h (x)

]
= [(Kh ∗ f) (x)− f (x)]2 +

1

n

[(
K2
h ∗ f

)
(x)− (Kh ∗ f)2 (x)

]
. (2.6)

Now, considering the global case, note that changing the order of integration in (1.3)

leads us to

MISE
[
f̂h

]
=

ˆ
E
[
f̂h(x)− f(x)

]2
dx =

ˆ
MSE

[
f̂h (x)

]
dx,
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and by (2.6), it follows that

MISE
[
f̂h

]
=

ˆ
[(Kh ∗ f) (x)− f (x)]2 dx+

1

n

ˆ [(
K2
h ∗ f

)
(x)− (Kh ∗ f)2 (x)

]
dx,

which can be modi�ed to a more tractable form,

MISE
[
f̂h

]
=

1

nh

ˆ
K2 (x) dx+

(
1− 1

n

)ˆ
(Kh ∗ f)2 (x) dx (2.7)

−2

ˆ
(Kh ∗ f) (x) f (x) dx+A (f) ,

where, for any square integrable function %, A (%) =
´
%2 (x) dx.

An optimal bandwith h can be obtained by minimizing Equation (2.7). Nevertheless,

although (2.7) is a nice and compact expression, it has the downside that it depends on

the bandwidth h in a complicated way. For this, the large sample approximation of the

MISE, the AMISE, commented in Subsection 1.3.1, is of great value, as it depends on

h in a very simple form.

2.1.2 Asymptotic approximations of the MSE and MISE

In this subsection, a large sample approximation of the MISE will be obtained. This

approximation enables to observe a direct dependency of the MISE on the bandwidth

h, which is very helpful for choosing this parameter for an optimal performance of (2.1).

Before starting, some assumptions are neccesary.

Assumption 2.1. The density f is such that its second derivative f ′′ is continuous, square

integrable and ultimately monotone.

Assumption 2.2. The bandwidth h = hn (in what follows just h) is a non-random se-

quence of positive numbers. Also, h approaches to zero slower than n goes to in�nity, that

is to say, limn→∞ h = 0 and limn→∞ nh =∞.

Assumption 2.3. The kernel K is a probability density function such that it has �nite

fourth moment and it is symmetric about the origin.

Using (2.3) and the change of variable z = x−u
h ,

E
[
f̂h (x)

]
=

ˆ
K(z)f (x− hz) dz.

By a Taylor series about x,

E
[
f̂h (x)

]
=

ˆ
K (z)

[
f (x)− hzf ′ (x) +

1

2
h2z2f ′′ (x) + o

(
h2
)]
dz.
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Using Assumptions 2.1 to 2.3,

E
[
f̂h (x)

]
= f (x) +

1

2
h2f ′′ (x)µ2 (K) + o

(
h2
)
,

so the bias is

B
[
f̂h (x)

]
=

1

2
h2f ′′ (x)µ2 (K) + o

(
h2
)
. (2.8)

Assumption 2.2 ensures that Eq. (2.8) goes to zero as n increases; i.e., the kernel

density estimator (2.1) is asymptotically unbiased.

Now, for obtaining an asymptotic expression for the variance, consider Eq. (2.5). Using

a Taylor series about x,

V
[
f̂h (x)

]
=

1

nh

ˆ
K2 (z) f (x− hz) dz − 1

n
E
[
f̂h (x)

]2

=
1

nh

ˆ
K2(z) [f(x) + o(1)] dz − 1

n
[f(x) + o(1)]2

=
1

nh
f(x)A (K) + o

(
1

nh

)
. (2.9)

As the variance is an O
(

1
nh

)
, Assumption 2.2 guarantees that it asymptotically con-

verges to zero.

Squaring (2.8) and adding (2.9),

MSE
[
f̂h (x)

]
= AMSE

[
f̂h (x)

]
+ o

(
h4 +

1

nh

)
, (2.10)

where

AMSE =
1

4
h4µ2(K)2f ′′ (x)2 +

1

nh
f(x)A(K)

is the so-called asymptotic MSE. Considering Assumption 2.1 and integrating (2.10),

MISE
[
f̂h

]
= AMISE

[
f̂h

]
+ o

(
h4 +

1

nh

)
,

where

AMISE
[
f̂h

]
=

1

4
h4µ2(K)2A

(
f ′′
)

+
1

nh
A (K) (2.11)

is the asymptotic MISE, a useful large sample approximation to the MISE since, unlike

expression (2.7), its dependency on the bandwidth h is pretty straightforward.

The bias-variance tradeo� is also clear from (2.11). On the one hand, the bandwidth h

must be small to reduce the bias term; however, if h is small, the variance term increases,
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since it depends on (nh)−1. Thus, to minimize the AMISE, h must be such that each of

AMISE's terms is smaller as n increases. This shows the important role of the bandwidth

on the performance of (2.1).

Another strong point of the AMISE is that it enables to easily �nd an asymptotically

optimal choice for h. Di�erentiating (2.11) with respect to h, equating to zero and solving

for h, it is obtained

hAMISE =

[
A (K)

µ2 (K)2A (f ′′)n

] 1
5

. (2.12)

Besides that hAMISE depends on the choice of the kernel K (which entirely depends

on the user), it also inversely depends on A(f ′′). This is a problem, since A (f ′′) depends

on f ′′, the second derivative of f , the unknown function to estimate. Despite that, A (f ′′)

allows to appreciate the e�ect of the curvature on the optimal bandwidth. The quantity

|f ′′ (x)| measures the curvature at a point x and A (f ′′) is a measure of the total curvature

of f . That means that if the function f has little curvature, A (f ′′) is small and large

values for hAMISE are required. If the function has too much curvature, then A (f ′′) is

large and small values for hAMISE are then required. Some rules for estimating A (f ′′) will

be given later on.

Substituting the expression for the optimal bandwith hAMISE , Eq. (2.12), in (2.11), it

is obtained

inf
h
AMISE

[
f̂h

]
=

5

4

[
µ2 (K)2A (K)4A

(
f ′′
)] 1

5
n−

4
5 , (2.13)

which is the smallest AMISE when using the kernel K for estimating f .

Summarizing and expressing the information from (2.12) and (2.13) in terms of the

MISE, it may be said that

hMISE ∼
[

A (K)

µ2 (K)2A (f ′′)n

] 1
5

(2.14)

and

inf
h
MISE

[
f̂h

]
∼ 5

4

[
µ2 (K)2A (K)4A

(
f ′′
)] 1

5
n−

4
5 , (2.15)

where hMISE is the bandwidth that minimizes the MISE.

Expressions (2.14) and (2.15) give, as n increases, the rate of convergence to zero for

the optimal bandwidth hMISE and the minimum MISE. So, according to the stated

assumptions, the best rate of convergence of the MISE of (2.1) is n−
4
5 .

It is in this sense that the kernel estimator is more e�cient than the histogram, as it

was already mentioned in Subsection 1.3.2 . If f ′ is absolutely continuous and A (f ′) <∞,

it can be shown that
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Kernel Form Ine�ciency
Epanechnikov K(x) = 3

4

(
1− x2

)
I[−1,1] (x) 1

Biweight K(x) = 15
16

(
1− x2

)2
I[−1,1](x) 1.0061

Triweight K(x) = 35
32

(
1− x2

)3
I[−1,1](x) 1.0135

Gaussian K (x) = 1√
2π

exp
[
− 1

2x
2
]

1.0513
Uniform K (x) = 1

2I[−1,1] (x) 1.0758

Table 2.1: Di�erent types of kernel functions and their ine�ciency.

AMISE
[
f̂H

]
=

1

12
h2
HA

(
f ′
)

+
1

nhH
, (2.16)

hHMISE
∼
[

6

A (f ′)

] 1
3

n−
1
3 (2.17)

and

inf
hH

MISE
[
f̂H

]
∼ 1

4

[
36A

(
f ′
)] 1

3 n−
2
3 , (2.18)

where AMISE
[
f̂H

]
is the AMISE for the histogram and hH represents the binwidth

(Scott, 1979).

Apart from the fact that the integrated squared bias term of the histogram is O
(
h2
H

)
,

which is larger than O
(
h4
)
for the kernel estimator (compare (2.11) and (2.16)), it follows

from (2.17) and (2.18) that choosing the binwidth optimally, the MISE for the histogram

decreases to zero at rate n−
2
3 , while for the kernel estimator is n−

4
5 . Thus, the kernel

estimator is superior to the histogram in terms of asymptotic e�ciency.

Compared with parametric estimates, in which we would expect for the MISE a rate

of convergence O
(
n−1

)
, the rate O

(
n−

4
5

)
is just a minor price to pay. Recall that the

kernel estimator works for each density f that is twice continuously di�erentiable, while

the parametric estimator fails if the true density simply does not belong to the assumed

model. Moreover, it can be proved that, under the stated assumptions, the rate O
(
n−

4
5

)
for the kernel estimator is the best possible (see, for instance, Chapter 24 of Van der Vaart

(1998)).

2.1.3 Choosing the kernel K

As mentioned at the begining of Section 2.1, the kernel K is tipically chosen such that it is

a probability density function and Conditions 2.2 and 2.3 hold. With these assumptions, it

was proved that the best rate of convergence for the kernel estimator is O
(
n−

4
5

)
, outper-

forming the histogram. When K is supposed to be a density function, it necessarily follows

Condition 2.3, that is, µ2(K) < ∞. However, it is possible to improve that convergence

rate by allowing the kernel K to be negative for some values, making possible to build a
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Figure 2.1: Plots for some commonly used kernels: (a) Epanechnikov, (b) Biweight, (c) Triweight,

(d) Gaussian. As a reference, all four kernels are imposed over the box-shape uniform kernel.

kernel such that µ2 (K) = 0, with the e�ect of reducing the bias.

The last idea can be generalized. K is said to be an r-th order kernel if

Condition 2.4. µ0 (K) = 1

Condition 2.5. µj (K) = 0 for j = 1, 2, ..., r − 1

Condition 2.6. µr (K) 6= 0

Note that considering that K be symmetric implies that r is even.

Although improving the rate of convergence seems as a good idea, it is not recom-

mended, since the density restriction for K ensures that the estimate will also be a density.

For more details on these higher order kernels, see, for instance, Wand and Schucany (1990)

and Wand and Jones (1995).

From Subsection 2.1.2, it is clear that the smallest AMISE for the kernel estimator

also depends on the choice of K (see Eq. (2.13)). As K is under control of the user, it is
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Figure 2.2: Kernel density estimation for a sample of size 250 from a N(0, 1) (solid line) using (a)

the gaussian kernel, (b) the uniform kernel.

reasonable to ask how to choose K in the best way, in the sense that K should minimize

κ(K) =
[
µ2 (K)2A (K)4

] 1
5
. It can be proved that the kernel that minimizes κ (K) is

K∗ι (x) =


3

4
√

5ι

[
1− x2

5ι2

]
x ∈

[
−
√

5ι,+
√

5ι
]

0 x /∈
[
−
√

5ι,+
√

5ι
] ,

where ι is an arbitrary scale parameter (Hodges and Lehman, 1956). The simplest version

is the so-called Epanechnikov kernel, KE , attained when ι2 = 1/5.

Since the Epanechnikov kernel is the most e�cient one, the ine�ciency of any other

generic kernel K can be evaluated by comparing κ (K) with κ (KE). This is typically done

by means of the ratio [κ (K) /κ (KE)]
5
4 .

Some frequently used kernels and its ine�ciency are shown in Table 2.1. Based on that

information, it can be concluded that the choice of the kernel is not of much importance

as they all perform about the same. That means that the choice of the kernel can be made

based on other criteria such as ease of implementation. Apparently, the uniform kernel

seems to be the simplest one; however, other kernels are prefered in practice. To see why,

let us take a look at Figure 2.2, which shows the density estimation of a random sample

from a N(0, 1). One of the estimations was made considering the uniform kernel and the

other one using the Gaussian kernel, shown on the bottom right in Figure 2.1.

When using the uniform kernel, the resulting estimate is somewhat irregular; it does

not look like the kind of function that intuitively it would be called smooth. On the other

hand, the estimate using the Gaussian kernel is noticeably smoother. This is because the

resulting estimate inherits the continuity and di�erentiability of the kernel used. Moreover,

22



0 1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

f̂(x
)

Figure 2.3: Kernel estimation showing the contributions of Gaussian kernels at each data
point of the data set (0.4, 1.4, 1.8, 2.0, 2.8, 3.6, 3.8, 4.8). The data set was arti�cially
created only to exemplify how the kernel estimator works. An arbitrary bandwidth h = 0.4
was also used.

although the Epanechnikov kernel has some good theoretical properties, it also has a

practical disadvantage: it is not everywhere di�erentiable. This would entail that the

estimation would not be everywhere di�erentiable as well. Thus, in practice, it is preferable

not to use the uniform nor the Epanechnikov kernel, but some other smoother kernel. In

that sense, the Gaussian kernel is typically the most used.

Figure 2.3 shows the way in which the kernel estimator operates. The estimator is a

sum of bumps located at each observation. The kernel used determines the speci�c form

of the bumps, while the bandwidth h determines its amplitude. Figure 2.3 also shows the

density estimation as a result of adding all individual Gaussian bumps.

2.1.4 On how di�cult a density is to estimate

For the kernel estimator, some densities are easier to estimate than others. This is mainly

because the kernel estimator uses just one global single smoothing parameter all over the

entire real line. Di�culties appear when there are some noticeably high density zones, for

which a relatively small bandwidth h may be adequate for having good estimates, but it

may give very wiggly estimates in zones where the data are more sparse. On the contrary,

a relatively large value of h could give good estimates in low density zones, but it will give

oversmoothed estimates in zones with high density data.
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Density Ine�ciency
Triweight 1
Normal 1.101

Bimodal 1 1.761
Gamma(3) 3.058

Kurtotic Unimodal 8.772

Table 2.2: Ine�ciency D (f) /D (fTRW ) for several densities. Bimodal 1 is the density
3
4N (0, 1) + 1

4N
(

3
2 ,
(

1
3

)2)
. Kurtotic unimodal is the density 2

3N (0, 1) + 1
3N (0, 100).

More formally, how well a particular density can be estimated is related with its cur-

vature. As stated in Subsection 2.1.2, the functional A (f ′′) is a measure of the total

curvature of f , so its magnitude tells how well a density f can be estimated. High cur-

vatures, i.e., large values of A (f ′′), are obtained when f has features like high skewness

or several modes. In this cases, kernel estimation becomes more di�cult than in cases in

which these features are not present.

It should be noted that A (f ′′) is not scale invariant, so any value of A (f ′′) can be

obtained just by changing the scale. It is easy to see that

D (f) =
[
σ (f)5A

(
f ′′
)] 1

4
, (2.19)

where σ (f) is the population standard deviation, is a scale invariant degree of di�culty

measure of kernel estimation of f . It can be shown that (2.19) is minimal for f being the

β(4, 4) function, fTRW , also known as the triweight density (see Table 2.1 and plot (c) in

Figure 2.1), and its minimum value is 35/243 (Terrel, 1990).

As it was done in Subsection 2.1.3 for comapring e�ciency among di�erent kernel

functions, the same can be done to compare the performance of f̂h when estimating a

generic density f , using D (fTRW ) as a reference by means of the ratio D (f) /D (fTRW ).

It is clear from Table 2.2 that densities close to normality are the easiest to estimate

for the kernel estimator, and features such as skewness, kurtosis or the existence of high

density zones make the estimation more di�cult. For example, the table shows that, in a

sense, the kurtotic unimodal density is almost nine times more di�cult to estimate than

the triweight density.

2.1.5 Some modi�cations of the kernel density estimator

As seen in Subsection 2.1.4, a disadvantage of the kernel density estimator is that it

should give an accurate density estimation by means of a single smoothing parameter.

This can be an important problem in cases where there are relatively high density zones,

such as in densities with high skewness or high kurtosis values. Thus, a natural idea for

overcomming this problem is to consider local bandwidths, giving the right or optimal
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amount of smoothing at each estimation point. As a result, the kernel density estimator

is expressed as

f̂L (x) =
1

n

n∑
i=1

1

h (x)
K

[
x−Xi

h (x)

]
, (2.20)

known as the local kernel density estimator. Note that h is expressed as a function of the

point of estimation x. This implies that at two di�erent points of estimation, x1, x2, the

corresponding estimations arise from using the same kernel K (for instance, a Gaussian

kernel) but di�erent scale parameters h (x1), h (x2), at each point. A consequence of the

dependency of h on x is that, in general, the whole estimation f̂L is not a density itself,

since it needs not to integrate out to one.

Nevertheless, and provided that f ′′ (x) 6= 0, the analogue of (2.12) at the point x is

hAMISE (x) =

[
A (K) f (x)

µ2 (K)2 f ′′ (x)2 n

] 1
5

. (2.21)

Choosing h optimally at each x according to (2.21), it can be shown that

AMISE
[
f̂L

]
=

5

4

[
µ2 (K)2A (K)4

] 1
5
A
[(
f2f ′′

) 1
5

]
n−

4
5 ,

so the rate of convergence of f̂L and f̂h coincides and there is no improvement in this sense.

Notwithstanding, it can also be shown that A
[(
f2f ′′

) 1
5

]
6 A (f ′′)

1
5 for all f , so, at the

end, there is always some improvement when choosing h(x) optimally.

Before smoothing, Eq. (2.20) needs h (x) to be selected. The preliminary estimation of

h (x) is known as the pilot estimation. Since we would like to smooth less in high density

regions (and more in low density ones), a logical assumption is to consider h (x) to vary

inversely with the density. The nearest neighbour density estimator takes distances from

x to the point of interest to be the k-th nearest to x (for some reasonable value of k) in

a pilot estimation, which is essentially h (x) ∝ 1/f (x) (Loftsgaarden and Quesenberry,

1965). However, there are some situations where this assumption is inadequate (Wand and

Jones, 1995).

A better idea is to consider the bandwidth h to depend on Xi, so that the single h is

replaced by n values h (Xi), i = 1, 2, ..., n,

f̂V (x) =
1

n

n∑
i=1

1

h (Xi)
K

[
x−Xi

h (Xi)

]
.

This is called the variable kernel density estimator. A good assumption is to consider

h (xi) = hϑf (xi)
− 1

2 , since under suitable assumptions, the bias results of order O
(
h4
)
,

instead of the typical O
(
h2
)
, leaving the variance O

(
n−1h−1

)
. Also, taking hϑ = O

(
n−

1
9

)
gives a better convergence rate of MSE = O

(
n−

8
9

)
(Abramson, 1982).
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Another situation in which a modi�cation of the kernel estimator is needed is when we

want to estimate particularly complex functions. A smart approach is to transform the

data to a more convenient scale, estimate the density with the transformed data and then

transform back to the original scale. This approach is particularly useful to avoid spurious

bumpiness in the tails and reduce boundary bias.

Let fX (x) be the density in the original scale and fY (y) is the transformed density

of the (transformed) random variable Y = g (X), with g being a monotonic increasing

function. Then, a change of variable gives

fX (x) = fY [g (x)] g′ (x) .

Estimating fY using the kernel density estimator, the transformation-based kernel den-

sity estimator is

f̂X (x) =
g′ (x)

nhY

n∑
i=1

K

[
g (x)− g (Xi)

hY

]
,

where hY is obtained based on the Y scale.

The proper choice of the function g depends largely on the data. One possibility is to

choose g as a parametric family. For example, the shifted power family

g (x) =

(x+ λ1)λ2 sign (λ2) λ2 6= 0

ln (x+ λ1) , λ2 = 0
,

where λ1 > −min (X) and min (X) represents the lower endpoint of the support of fX ,

can be useful for heavily skewed data (Wand et al., 1991). An alternative is to estimate g

nonparametrically. If FX and FY are the distribution functions of fX and fY , a well known

result is that F−1
Y (FX (X)) has density fY . Thus, FY can be chosen to correspond to a

relatively easy to estimate density and take g = F−1
Y ◦ F̂X , where F̂X is a kernel estimate

of FX (Ruppert and Cline, 1994).

Sometimes, the true density f may have substantial mass close to the boundary. As

mentioned before, the kernel estimator depends on just one somoothing parameter, so it

is expected to have a poor performance on the boundaries of this kind of densities. This

boundary bias can be corrected by means of the so-called boundary kernels, which, as the

name suggests, are kernels that are only used on the boundary region, using the common

kernel K in the interior. This bias correction comes with a cost: an increase in the inherent

variability in the process of estimating f on the boundaries. Also, occasionally, the density

estimate is not a good one since it does not integrate to one. A solution to this problem

is to normalize to force a unit integral. The interested reader should take a look at Jones

(1993), Jones and Foster (1996), Marron and Ruppert (1994). More complicated corrective

methods are also possible (Chen, 2000; Scaillet, 2004).
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2.1.6 Bandwidth selection

As seen in previous sections, the kernel estimator depends on two choices: the kernel

function K and the bandwidth h. In Subsection 2.1.3, it was shown that the choice of the

kernel is not of much importance, as in terms of e�ciency, all the kernels perform about

the same. However, the problem of bandwidth selection is crucial in obtaining a good

estimate of the density, since a too small bandwidth gives very wiggly estimates, and too

large selections tend to provide very �at estimates.

Ideas on how to select the bandwidth date back to the late 1970s. Since then, the liter-

ature on the topic has increased considerably and nowadays there are numerous proposals.

This subsection gives a brief overview of the most iconic methods that later gave rise to

new and more sophisticated bandwidth selectors.

Simple bandwidth selectors

Recall from Eq. (2.12) that the optimal AMISE bandwidth depends not only on the

kernel K, but on the unknown quantity A (f ′′). When f is thought to be very smooth,

hAMISE is computed as if f were normal with variance σ2, which yields

hAMISE =

[
8π

1
2A (K)

3µ2 (K)2 n

] 1
5

σ. (2.22)

The expression (2.22) still depends on the kernel K. Assuming that also K is the

Gaussian kernel and replacing σ by an estimation σ̂, it gives

hNR = 1.06n−
1
5 σ̂, (2.23)

which is called the normal reference rule. Commonly, the scale measure σ is estimated

by min {s,Q/1.34}, where s is the sample standard deviation and Q is the interquartile

range. This is done fundamentally for reducing the chances of oversmoothing, as Q/1.34

protects against outliers in case f has heavy tails. Some other scale estimates have also

been studied (Janssen et al., 1995). Of course, when the data is close to normal, it may

be expected (2.23) to be a good bandwidth selector, but as long as the data depart from

normality, this selector tend to oversmooth and to cover up some important details in the

data.

Another of the so-called simple bandwidth selectors is based on the maximal smoothing

principle. The idea is to consider the largest degree of smoothing according to the estimated

scale of the density, so that the value of the AMISE optimal bandwidth will always be

equal or less than some upper bound. It can be shown that

hAMISE 6

[
243A (K)

35µ2 (K)2 n

] 1
5

σ
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for all densities having standard deviation σ. This bound is reached by the β(4, 4) function

(the already mentioned triweight density, on the bottom left panel in Figure 2.1) (Terrel,

1990).

Taking an estimation of σ, the oversmoothed bandwidth selector is

ĥOS =

[
243A (K)

35µ2 (K)2 n

] 1
5

s, (2.24)

where, as before, s is the sample standard deviation.

Obviously, ĥOS is a larger bandwidth than the one needed for an optimal estimation.

However, ĥOS is a good starting point, since at least it is known that the optimal value

is somewhere below ĥOS . Thus, a common strategy to decide the optimal bandwidth is

to consider fractions of ĥOS and take a visual inspection on each estimation to see the

emerged features.

Both selectors, (2.23) and (2.24), are very similar when based on standard deviation,

since

ĥNR

ĥOS
≈ 0.93.

Cross-validation methods

The bandwidth selectors shown previously are just simple and quick rules for selecting the

bandwidth. In this part, some more elaborate, automatic and consistent selectors based

on the idea of cross-validation are shown.

The �rst selector of this class is the so-called least squares cross-validation (LSCV)

(Rudemo, 1982; Bowman, 1984). Expanding the MISE of f̂h,

MISE
[
f̂h

]
= E

[ˆ
f̂h (x)2 dx

]
− 2E

[ˆ
f̂h (x) f (x) dx

]
+

ˆ
f (x)2 dx. (2.25)

The last term on the right-hand side does not depend on h. So, the proposal is to choose

the bandwidth as the value of h that minimizes the estimate of the other two terms. For

this, it can be shown that an unbiased estimator is

LSCV (h) =

ˆ
f̂h (x)2 dx− 2

1

n

n∑
i=1

f̂h(−i) (Xi) , (2.26)

where f̂h(−i) (Xi) is the kernel estimation based on the data except the observation Xi.

The bandwidth h that minimizes (2.26) is denoted as ĥLSCV .

Sometimes (2.26) has more than one local minimum (Hall and Marron, 1991). The

recomendation is to use the largest local minimizer of LSCV (h), as it produces better
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results than the global minimizer (Marron, 1993). However, the main drawback is that

ĥLSCV lacks of stability even when the sample size increases. This gave rise to some more

stable modi�ed versions (Chiu, 1991a,b, 1992).

Another classic cross-validation approach is the biased cross-validation selector (BCV).

This method is based on choosing the bandwidth that minimizes the asymptotic MISE,

Eq.(2.11). Since A (f ′′) is unknown, replacing an estimation is necessary.

A natural estimator of A (f ′′) is A
(
f̂ ′′
)
. However, it can be proved that (Scott and

Terrell, 1987)

E
[
A
(
f̂ ′′
)]

= A
(
f ′′
)

+
1

nh5
A
(
K ′′
)

+O
(
h2
)
,

from which, an improved estimate of A (f ′′)is

Â
(
f ′′
)

= A
(
f̂ ′′h

)
− 1

nh5
A
(
K ′′
)
, (2.27)

where the subscript h in f̂ ′′h means that this bandwidth was used for estimating both the

density itself and its second derivative. Substituting (2.27) in (2.11) gives the following

objective function

BCV (h) =
1

nh
A (K) +

1

4
h4µ2 (K)2

[
A
(
f̂ ′′h

)
− 1

nh5
A
(
K ′′
)]
,

which minimizer is ĥBCV .

The advantage of ĥBCV over ĥLSCV is that the former's sampling distribution is less

variable; i.e., it is more stable. In this sense, it can be shown that

n
1
10

(
ĥBCV
hAMISE

− 1

)
(2.28)

asymptotically converges in distribution to a N
(
0, σ2

BCV

)
(Scott and Terrell, 1987). Also,

a similar result is valid for least squares cross-validation,

n
1
10

(
ĥLSCV
hAMISE

− 1

)
, (2.29)

which has a N
(
0, σ2

LSCV

)
asymptotic distribution (Hall and Marron, 1987b; Scott and

Terrell, 1987). As speci�ed by Wand and Jones (1995), the ratio of both asymptotic

variances is

σ2
LSCV

σ2
BCV

≈ 15.7,

which evidences that ĥLSCV selections are much more unstable than ĥBCV . However, this

stability comes with a charge attached, which is an increase in bias. This fact makes ĥBCV ,
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on average, somewhat larger than the MISE optimal bandwidth.

Just like LSCV (h), BCV (h) usually has more than one minimum. As before, it is

suggested to use the largest minimizer of BCV (h)(Jones et al., 1996a), although it is also

recommended to take ĥBCV as the largest local minimizer less than or equal to ĥOS (Scott,

1992).

Finally, a common drawback of both cross-validation methods is their slow n−
1
10 rate

of convergence, as it follows from (2.28) and (2.29).

Plug-in bandwidth selection

Plug-in bandwidth selection is a faster converging method than least squares and biased

cross-validation. The approach consists in substituting in (2.12) an estimate of the un-

known A (f ′′). This idea is thought to date back to the 1970s (Woodroofe, 1970). Before

continuing, it is important to have a look at how to estimate density functionals of the

general form A
[
f (m)

]
.

Let us consider a density functional of the form:

A
[
f (m)

]
=

ˆ
f (m) (x)2 dx.

Integrating by parts and under some smoothness assumptions,

A
[
f (m)

]
= (−1)m

ˆ
f (2m) (x) f (x) dx.

So, it is su�cient to study functionals of the form

ψu =

ˆ
f (u) (x) f (x) dx, (2.30)

for u even. Note that Eq. (2.30) is just

ψu = E
[
f (u) (X)

]
,

so a natural estimator of ψu is

ψ̂u =
1

n

n∑
i=1

f̂ (u) (Xi) =
1

n2

n∑
i=1

n∑
j=1

L(u)
η (Xi −Xj) , (2.31)

where η is a bandwidth and L is a kernel, both possibly di�erent from h and K (Hall and

Marron, 1987a; Jones and Sheather, 1991).

The following assumptions are needed to obtain the asymptotic properties of (2.31).

Assumption 2.4. L is a symmetric kernel of order s, s = 2, 4, ..., possesing u derivatives

such that
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(−1)
1
2

(u+s)+1 L(u) (0)µs (L) > 0

Assumption 2.5. The density f has p continuous derivatives, each ultimately monotone,

and p > s.

Assumption 2.6. η = ηn is a sequence of (positive) bandwidths such that limn→∞ η = 0

and limn→∞ nη
2u+1 =∞.

Under Assumptions 2.4 to 2.6, it can be shown that the asymptotic MSE of (2.31) is

AMSE
[
ψ̂u

]
=

[
1

nηu+1
L(u) (0) +

1

s!
ηsµs (L)ψu+s +O

(
ηs+2

)]2

+
2

n2η2u+1
A
[
L(u)

]
ψ0 +

4

n

[ˆ
f (u) (x)2 f (x) dx− ψ2

u

]
+o

(
1

n2η2u+1
+

1

n

)
where the �rst term on the right hand side corresponds to the asymptotic squared bias of

(2.31) and the second term is its asymptotic variance. More details can be found in Wand

and Jones (1995).

Due to Assumption 2.4, the main bias term can be made to vanish by choosing η as

ηAMSE =

[
s!L(u) (0)

−µs (L)ψs+un

] 1
u+s+1

. (2.32)

Eq. (2.32) is of major importance for the plug-in bandwidth selection. As stated before,

the basic idea is to plug in (2.12) an estimate of the unknown A (f ′′). Expressing (2.12) in

terms of ψu functionals,

hAMISE =

[
A (K)

µ2 (K)2 ψ4n

] 1
5

. (2.33)

Now, following the strategy of plugging an estimate of ψ4,

ĥDPI =

[
A (K)

µ2 (K)2 ψ̂4n

] 1
5

. (2.34)

The problem with (2.34) is that it is not totally automatic, since for obtaining ψ̂4, an

initial bandwidth η is needed. A possibility for choosing this initial bandwidth is by means

of equation (2.32). If the same kernel K is used, then, from (2.32) the optimal AMSE

bandwidth is
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ηAMSE =

[
2K(4) (0)

−µ2 (K)ψ6n

] 1
7

.

Clearly, the problem still remains, since estimating ψ6 will depend on an initial band-

width, which in turn will depend on ψ8, and so on. A common strategy is to estimate

ψu with some quick and simple rule, like the normal scale rule. Once ψ̂u is obtained, it

is possible to select a bandwidth for estimating ψu−2. Then, having estimated ψ̂u−2, a

bandwidth for estimating ψu−4 can be selected, and so forth. In general, this is refer to

as a υ stages rule, where estimating ψ̂u is neccessary for getting into the �rst step. This

procedure is called the υ-stage direct plug-in bandwidth selector, ĥDPI,υ.

The following result is a useful one for obtaining a prior estimation ψ̂u (see, e.g., Wand

and Jones (1995), Appendix C). If f is a normal density with variance σ2, then, for u even,

ψu =
(−1)

u
2 u!

(2σ)u+1 (u
2

)
!π

1
2

. (2.35)

Another problem to face is to decide the number of stages υ. Some studies suggest that

υ should be at least equal to 2, being υ = 2 the most common choice (Aldershof, 1991;

Park and Marron, 1992). Thus, for a version of a υ = 2 stage plug-in bandwidth selector

and using L = K, with K a second order kernel, the following steps are a possibility (Wand

and Jones, 1995; Sheather and Jones, 1991).

1. Estimate ψ8 using (2.35), substituting σ by σ̂, an estimate of scale. This gives

ψ̂8 =
105

32
π−

1
2 σ̂−9

2. Estimate ψ6 by means of the kernel estimator and using the bandwidth

η1 =

[
−2K(6) (0)

µ2 (K) ψ̂8n

] 1
9

3. Estimate ψ4 by means of the kernel estimator and using the bandwidth

η2 =

[
−2K(4) (0)

µ2 (K) ψ̂6n

] 1
7

4. The selected bandwidth is

ĥDPI,2 =

[
A (K)

µ2 (K)2 ψ̂4n

] 1
5

.

For a more comprehensive review on bandwidth selection methods in kernel density esti-
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mation, the reader is referred to (Jones et al., 1996a; Heidenreich et al., 2013).

Smoothed bootstrap

This approach consists in taking a bandwidth that minimizes a smoothed bootstrap ap-

proximation to the MISE. The �rst versions of this approach were those from Faraway

and Jhun (1990) and Taylor (1989). What makes this approach special is that, in the

�bootstrap world�, the MISE can be calculated exactly. So, computationally speaking, it

is quite competitive compared with other bandwidth selectors.

Consider a random sample (X1, X2, . . . , Xn) coming from an unknown density f . As

mentioned in Subsection 1.3.1, two popular discrepancy measures are the integrated squared

error and its average, which for the kernel density estimator are just

ISE
[
f̂h

]
=

ˆ [
f̂h (x)− f (x)

]2
dx (2.36)

and

MISE
[
f̂h

]
= E

{
ISE

[
f̂h

]}
. (2.37)

The bandwidths that are of interest to come close to are those minimizing Eqs. (2.36)

and (2.37), denoted by hISE and hMISE , respectively. What bootstrap does is to imitate

the random mechanism from which the original sample was obtained. This is done by

replacing the density f by an estimation.

A possible bootstrap procedure to approximate (2.36) is the following:

1. Choose a pilot bandwidth g and consider the kernel density estimator f̂g.

2. Obtain a bootstrap sample (X?
1 , X

?
2 , . . . , X

?
n) from f̂g.

3. For each h > 0, consider the bootstrap version of the kernel density estimator:

f̂?h (x) =
1

n

n∑
i=1

Kh (x−X?
i ) .

4. De�ne the bootstrap version of the integrated squared error,

ISE?
[
f̂?h

]
=

ˆ [
f̂?h (x)− f̂g (x)

]2
dx, (2.38)

which clearly depends on h.

5. The minimizer of (2.38), hISE? , is the analogous version of hISE .

If the target bandwidth were hMISE , then, the mean of the bootstrap process in (2.38)

should be considered; i.e.,
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MISE?
[
f̂?h

]
= E?

[ˆ [
f̂?h (x)− f̂g (x)

]2
dx

]
. (2.39)

Some direct calculations lead to (e.g., as in Marron (1992))

MISE?
[
f̂?h

]
=

1

n

[
1

h
A (K) +A

(
Kh ∗ f̂g

)]
+A

(
Kh ∗ f̂g − f̂g

)
, (2.40)

where, as before, * stands for convolution, and which minimizer is denoted by hMISE? , the

bootstrap version of hMISE .

Note in (2.40) that the pilot estimation f̂g, made with the pilot bandwidth g, plays

the role of the true density f , and also note that (2.40) depends on the original sample,

but not on resamples anymore. Compared with other approaches, this is the great valued

property of the bootstrap approach: instead of working via the AMISE, it targets the

MISE itself.

For choosing the pilot bandwith g, there are several proposals that involve stages of

pilot estimations or relying on using reference distributions (Jones et al., 1996b). Also, Cao

(1993) studied the pilot bandwidth selection problem in this context and proved asymptotic

properties for hMISE? , the minimizer of MISE?.

2.2 Kernel distribution estimation

As seen in Subsection 1.3.3, the empirical distribution function F̂n is already, in a sense, a

good estimator of F , although more smoothness is always appreciated. By its construction,

kernel estimation gives that additional smoothing when estimating F .

Using that F (y) =
´ y
−∞ f (z) dz, it is immediate to formulate a kernel estimator for

the distribution function as

F̂h (x) =

ˆ x

−∞
f̂h (z) dz.

Integrating (2.1) gives

F̂h (x) =
1

n

n∑
i=1

K
(
x−Xi

h

)
, (2.41)

whereK (x) =
´ x
−∞K (z) dz. The estimator (2.41) was introduced in the 1960s by Nadaraya

(1964).

2.2.1 Asymptotic approximations of the MSE, MISE and the weighted

MISE

The well known expression for the mean squared error of F̂h (x) is
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MSE
[
F̂h (x)

]
= E

[
F̂h (x)− F (x)

]2

= V
[
F̂h (x)

]
+ B2

[
F̂h (x)

]
. (2.42)

Let us consider the usual assumptions concerning the kernel K and K, and assume

that f is continuous, F ′ exists, limn→∞ h = 0 and limn→∞ nh = ∞. Then, applying the

expectation operator to (2.41),

E
[
F̂h (x)

]
= E

[
K
(
x−X1

h

)]
=

ˆ
K
(
x− y
h

)
f (y) dy

= F (x) +
1

2
h2f ′ (x)µ2 (K) +O

(
h4
)
. (2.43)

Considering that
´
K (z)K (z) dz = 1

2 ,

E

{[
K
(
x−X1

h

)]2
}

=

ˆ [
K
(
x− y
h

)]2

f (y) dy

= F (x)− hf (x)C0 +O
(
h2
)
, (2.44)

where C0 = 2
´
zK (z)K (z) dz. By (2.43) and (2.44), the asymptotic bias and variance

are

B
[
F̂h (x)

]
=

1

2
h2f ′ (x)µ2 (K) +O

(
h4
)

(2.45)

and

V
[
F̂h (x)

]
=

1

n
F (x) [1− F (x)]− h

n
f (x)C0 +O

(
h2

n

)
, (2.46)

respectively. Now, substituting (2.45) and (2.46) in (2.42),

AMSE
[
F̂h (x)

]
=

1

n
F (x) [1− F (x)]− h

n
f (x)C0 +

1

4
h4f ′ (x)2 µ2 (K)2 . (2.47)

As for de�ning a global measure of discrepancy between F̂h and F , by following similar

arguments as those presented for density estimation (Subsection 1.3.1), it is de�ned

MISE
[
F̂h

]
=

ˆ
E
[
F̂h (x)− F (x)

]2
dx. (2.48)

Provided that F has two bounded and continuous derivatives, each ultimate monotone
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at both tails, and assuming it has enough �nite moments, it follows from (2.47) and (2.48)

that

AMISE
[
F̂h

]
=

1

n

ˆ
F (x) [1− F (x)] dx− h

n
C0 +

1

4
h4µ2 (K)2A

(
f ′
)
. (2.49)

Di�erentiating with respect to h and equating to zero, the optimal AMISE bandwidth

is

hAMISEF =

(
C0

µ2 (K)2A (f ′)

) 1
3

n−
1
3 , (2.50)

where the subscript F is a reminder that this is the distribution case.

To evaluate the performance of the AMISE optimal bandwidth, let us substitute (2.50)

in (2.49), giving

inf
h
AMISE

[
F̂h

]
=

1

n

ˆ
F (x) [1− F (x)] dx−

 3C
4
3
0

4
[
µ2 (K)2A (f ′)

] 1
3

n−
4
3 . (2.51)

Although (2.48) can be thought of as a natural extension of (2.42), a more general

measure can be de�ned by introducing weights depending on each point of estimation,

giving rise to

WMISE
[
F̂h

]
=

ˆ
E
[
F̂h (x)− F (x)

]2
W (x) dF (x) , (2.52)

where W (x) > 0 is a bounded weight function. Considering that F is smooth enough,

then, from (2.47) and (2.52),

WAMISE
[
F̂h

]
=

1

n

ˆ
F (x) [1− F (x)]W (x) dF (x)− h

n
C0C1 +

1

4
h4µ2 (K)2C2, (2.53)

where C1 =
´
f2 (x)W (x) dx and C2 =

´
f ′ (x)2 f (x)W (x) dx.

As before, di�erentiating with respect to h and equating to zero, the optimalWAMISE

bandwidth is

hWAMISE =

[
C0C1

µ2 (K)2C2

] 1
3

n−
1
3 . (2.54)

Substituting (2.54) in (2.53), gives
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Kernel µ2 (K) C0/2 Ine�ciency
Uniform 1/3 1/6 1

Epanechnikov 1/5 9/70 1.0041
Biweight 1/7 25/231 1.0082
Triweight 1/9 245/2574 1.0109
Gaussian 1 1/2

√
π 1.0233

Table 2.3: Kernel functions and their ine�ciency.

inf
h
WAMISE

[
F̂h

]
=

1

n

ˆ
F (x) [1− F (x)]W (x) dF (x)−

 3 (C0C1)
4
3

4
[
µ2 (K)2C2

] 1
3

n−
4
3 .

(2.55)

In any case, whether from (2.51) or (2.55), it can be concluded that F̂h (x) is asymp-

totically more e�cient than F̂n (x), since the constant C0 is positive for any symmetric

kernel (Swanepoel, 1988).

2.2.2 Choosing the kernel K

As with the density estimator, it is also possible to determine the optimal kernel for the

distribution estimator. Based on (2.50) and (2.54), the resulting AMISE and WAMISE

(equations (2.51) and (2.55)) depend on the kernel function by means of

c (K) =

 C0

2µ
1
2
2

 4
3

.

The optimal kernel K∗ will be the one that maximizes c(K) and, as a consequence,

will minimize both (2.51) and (2.55). It can be proved that, when it comes to the kernel

distribution estimation, the optimal kernel is the uniform kernel function (Jones, 1990).

As before, to compare other kernel functions with the optimal uniform kernel, it can be

used the ine�ciency measure [c (K∗) /c (K)]
3
4 .

Like in the density estimation case, the message in Table 2.3 is that when estimating

the distribution by means of the kernel estimator, using a kernel di�erent from the optimal

one is not that serious, as they all perform very similar. Thus, the kernel can be chosen

considering other criteria, such as smoothness or ease of implementation. As before, a very

common choice is the Gaussian kernel.

2.2.3 Bandwidth selection

In the context of kernel distribution estimation, basically two types of bandwidth selectors

have been investigated: the plug-in and cross-validation. The former was studied both
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theoretically and practically by Altman and Léger (1995) and Polansky and Baker (2000).

The latter was analyzed by Sarda (1993), but as shown in Altman and Léger (1995), it

needs of very large sample sizes for giving good results. Thus, the modi�ed cross-validation

of Bowman et al. (1998) is of greater interest from an applied point of view.

Plug-in bandwidth selection

The approach of Polansky and Baker (2000) is based on taking Eq. (2.48) as a global

discrepancy measure. Having obtained an asymptotic approximation for (2.48), which

is Eq. (2.49), and an optimal AMISE bandwidth (Eq. (2.50)), Polansky and Baker's

bandwidth selector is

ĥPB =

(
C0

−µ2 (K)2 ψ̂2 (g2)

) 1
3

n−
1
3 , (2.56)

where ψ̂r is already given in Eq. (2.31) and

g2 =

(
2L(2) (0)

−µ2 (L)2 ψ4

) 1
5

n−
1
5 ,

where L and K are not necessarily the same kernel. The problem of estimating ψ2 in (2.56)

is the same as that of estimating ψ4 in Eq. (2.33). Polansky and Baker suggest to use the

same iterative method, emphasizing that ν = 2 is su�cient in most cases.

The plug-in bandwidth selection approach of Altman and Léger (1995) is based on

taking Eq. (2.52) as a global discrepancy measure. For the sake of simplicity, let us take

W (x) = 1, so that the discrepancy measure is the one of Cramér�von Mises. To be speci�c,

MISEC

(
F̂h

)
=

ˆ
E
{[
F̂h (x)− F (x)

]2
}
f (x) dx. (2.57)

The approach consists in selecting a bandwidth that minimizes the asymptotic ap-

proximation of (2.57). According to Altman and Léger (1995), and under some adequate

conditions, it can be proved that the asymptotic MISEC is

AMISEC

(
F̂h

)
= h4 1

4
µ2 (K)2

ˆ
f ′ (x)2 f (x) dx+

1

n

ˆ
F (x) [1− F (x)] f (x) dx

−h
n
C0A (f) ,

from which it follows that the AMISEC optimal bandwidth is

h∗C =

(
C0A (f)

µ2 (K)2 ´ f ′ (x)2 f (x) dx

) 1
3

n−
1
3 . (2.58)
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Altman and Léger propose to nonparametrically estimate the unknown terms in (2.58),

so their plug-in bandwidth is

ĥAL =

(
C0Â (f)

µ2 (K)2 D̂

) 1
3

n−
1
3 ,

where

Â (f) =
1

n (n− 1)

∑
i 6=j

1

ν
K

(
Xi −Xj

ν

)
and

D̂ =
1

n3α4
b

n∑
i=1

n∑
j=1

n∑
k=1

K ′b

(
Xi −Xj

αb

)
K ′b

(
Xi −Xk

αb

)
,

where D =
´
f ′ (x)2 f (x) dx, K

′
b is the derivative of a kernel Kb (not necessarily the same

as K), and αb is its associated bandwidth parameter. In practice, it is common to chose

αb = α and Kb = K.

Cross-validation

The modi�ed cross-validation of Bowman et al. (1998) consists in selecting the bandwidth

that minimizes the function

CVB (h) =
1

n

n∑
i=1

ˆ [
I(−∞,x] (Xi)− F̂−i (x)

]2
dx,

and

F̂−i (x) =
1

n− 1

n∑
j=1,i 6=j

K
(
x−Xj

h

)
.

Bowman et al. (1998) showed that, generally, better results are obtained with their

method compared with that of Altman and Léger. However, the main disadvantage is that

it is somewhat heavy from the computational point of view.

On the other hand, Sarda's proposal (Sarda, 1993) consists in selecting the bandwidth

that minimizes

CVS (h) =
n∑
i=1

[
F̂n (Xi)− F̂−i (Xi)

]2
,

where F̂n is the empirical distribution function. Nevertheless, this proposal has shown not

to provide good results in practice.
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2.3 Summary

In this chapter, a brief overview about kernel density and distribution estimators, and

some of their main properties, was given. The theoretical developments show that the

kernel estimator, both for the density and distribution estimation, is more e�cient than

traditional tools like the histogram and the empirical distribution function, respectively.

It is this advantage that makes prefer the kernel estimator, with a suitable modi�cation,

for its use with grouped data.

It has been shown that the kernel estimator depends on two choices: the kernel function

and the bandwidth. Although the kernel function is not really important, the right selection

of the bandwidth is truly decisive for the estimator to have a good performance. Given

its importance, in this chapter an overview of the most iconic techniques for bandwidth

selection has also been given, from the fastest and simplest ones to some others more

elaborate procedures like the plug-in or the bootstrap.

Certainly, there is no consensus as to which method is the best, since one method

may work better than others depending on the intended density estimate. Leaving aside

the quick and basic rules for bandwidth selection, on the one hand, the cross-validation

methods shown here tend to give relatively small bandwidths (which indeed can be useful

when estimating very rough densities), or also often being unstable, in general. This

instability can be corrected, but paying a price on the bias. On the other hand, the plug-in

and bootstrap bandwidth selectors seem to be e�ective in achieving a good compromise

between bias and variance, as well as having better rates of convergence. That is why they

have been so popular for many years. However, in recent times there have been a number

of important contributions on the subject of bandwidth selection (Heidenreich et al., 2013).

In the next chapter, an important step in this research will be given. A modi�cation

to the kernel estimator will be proposed, so that it can be applied to grouped data. Its

asymptotic properties will be studied, and the practical e�ects of the sample size, the

bandwidth and the degree of data grouping on the performance of the estimator will also

be shown.
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Chapter 3

Kernel density estimation for

grouped data

In this chapter, the problem of estimating the probability density function, when the data

are grouped, is fully addressed. As seen in Chapter 2, besides being one of the most popular

nonparametric estimation techniques, kernel estimation has good statistical properties and

has proved to be very e�ective in �nding structure in data sets where the parametric

approach is inappropriate. Therefore, in this work, the kernel density estimator is taken

as a reference and will be modi�ed, so that it can be used with grouped data.

In this chapter, this new modi�ed estimator will be de�ned and some important prop-

erties will be derived, such as its asymptotic bias and variance. In addition, by means of

simulations studies, its performance will be examined under distinct scenarios, like using

di�erent sample sizes, bandwidths or varying the degree of grouping of the data. This will

allow to give some preliminary practical guidelines.

3.1 Introduction

Because of the limitations of measuring instruments or the inability to monitor systems

continuously, strictly speaking all of the experimental data distributions are discrete. As a

consequence, it is expected that the measurement uncertainty may have an impact on the

estimation of the density function.

Although from slightly di�erent perspectives, this problem has received some attention.

A pioneer study related to the subject is that of Hall (1982), in which the in�uence of

rounding errors in kernel density estimation is analyzed. Another early work on this topic

is that of Titterington (1983), where the problem of considering grouped, censored or

truncated data in kernel density estimation is addressed, under the condition that some

information of the overall density must be available (which very frequently is not the case).

Strongly based on Hall (1982), Scott and Sheather (1985) study the e�ect of using equally
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spaced binned data in kernel density estimation. Assuming that there is a reasonable

initial bandwidth, their results allow to control the increase in the MISE due to binning

the data by means of choosing an adequate (constant) binwidth.

A similar problem is that related with reducing the computational time of the kernel

estimator. Suppose that the density is to be estimated at a grid of points, so that estimates

can be plotted. Let us denote the grid points by b1, b2, ..., bM . Then, the approach is to

use

f̂h (bj) =
1

n

n∑
i=1

Kh (bj −Xi) ,

for j = 1, 2, ...,M .

Notice that the number of evaluations involved for obtaining f̂h (bj) is nM . Certainly,

nM can be a realizable number of operations depending on n andM , but it can rapidly turn

worse for other kernel estimators, as in (2.31), which requires O
(
n2
)
operations. For saving

computation time, the idea is to associate the data to grid counts, c1, c2, ..., cM , where cj
represents the amount of data on the surroundings of bj . By doing so, the number of kernel

evaluations reduces to only O (M), which may represent an important computational time

reduction, mainly when working with large sample sizes. In this sense, considering general

binning rules, accuracy related issues of kernel density estimation based on binned data

were studied in Hall and Wand (1996). Their results allow to choose a reasonable number

of grid points M to reduce the computational time, while making the error due to binning

negligible to some extent.

Clearly, the last problem described is somewhat similar to the problem discussed in

this thesis, although there are important di�erences. On the one hand, in the last problem

continuous data are known, and these are grouped on purpose to improve computational

speed. Also, one can conveniently choose the length of the intervals to minimize the

impact on theMISE due to binning the data. Moreover, the data are binned by means of

a constant interval length. On the other hand, in the problem studied in this dissertation,

continuous data are unknown and come in a grouped fashion from the very beginning.

Furthermore, the length of the intervals is given beforehand and they all are not necessarily

of the same length, depending on the experimental conditions on which data were obtained.

Thus, the purpose of this study is quite di�erent: given a sample size and an arbitrary

set of intervals, not necessarily of the same length, the objective is to obtain the best

possible kernel density estimate with some already grouped (or binned) data, under those

restrictions over which the data analyst has no control.

Finally, one more clari�cation is necessary. In survival analysis is common that survival

times cannot be observed exactly. For example, in clinical trials, patients can only be

examined at intervals whose duration can be one or more months, which may �rst appear

as grouped data. However, for each individual, such follow-up times can be random. This
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type of data is known as interval censored, in clear connection with the common problem

of right censoring. Although there is some resamblence to grouped data, they should not

be confused, as in grouped data, monitoring times (i.e., the interval breaks) are the same

for each individual.

3.2 Binned kernel density estimator and general grouped data

Suppose that X is the random variable of interest and let (X1, X2, ..., Xn) be a random

sample from a density f , with distribution function F , and consider a set of intervals

[yj−1, yj), j = 1, 2, ..., k. The j-th interval length is lj = yj − yj−1, its midpoint is tj =
1
2 (yj−1 + yj), and denote the number of observations within each interval by (n1, n2, ..., nk).

In the spirit of Scott and Sheather (1985), when the interval length l is constant, the binned

kernel density estimator may be written as

f̂sh (x) =
1

n

k∑
i=1

niKh (x− ti) . (3.1)

The problem here considered is more general: it is a non-equally spaced grouped data

case, where the interval length is not constant. The number of intervals k, the interval

lengths (l1, ..., lk) and the breaks (y0, y1, ..., yk) typically depend on the sample size n. Also,

in more restrictive situations, only the sample proportions (w1, w2, ..., wk) in each interval

are available, where wj = nj/n = Fn (yj−) − Fn (yj−1−) is the actual observed random

quantity, with Fn (y−) denoting the left-side limit of the empirical distribution function

Fn. This is called a general grouped data case.

As mentioned in Chapter 1, some motivation for the present study comes from weed

science, where weed emergence observations are often a set of non-equally spaced grouped

data. Hydrothermal times (an index combining, for each day, values of temperature and

water potential) are typically available in k inspection times and the number of emerged

seedlings at each consecutive inspection are observed. Moreover, sometimes only Fn(yj),

j = 0, 1, ..., k, are reported. Considering the sample proportions (w1, w2, ..., wk), statisti-

cal indices based on a more general version of the binned kernel density estimator have

been proposed, and its good performance was experimentally proved using real Bromus

Diandrus emergence data (Cao et al., 2011). However, a deeper statistical study requires

the derivation of asymptotic properties of the binned kernel density estimator in the gen-

eral grouped data case. The present study theoretically complements the good properties

shown in practice by this estimator and opens the possibility to use it in other research

areas.
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3.3 Asymptotic results

In this section, the general binned kernel density estimator is presented and its asymptotic

bias and variance are obtained and compared with those of the standard kernel density

estimator, (Eq. (2.1)). For this, the following assumptions are required:

Assumption 3.1. The kernel K is symmetric probability density function with support in

[−1, 1], 6 times di�erentiable and such that K(6) is bounded.

Assumption 3.2. The distribution F has compact support [L,U ], is 7 times di�erentiable

and its j-th derivative F (j) is bounded for 1 6 j 6 7.

Assumption 3.3. The bandwidth h = hn is a non random sequence of positive numbers

such that limn→∞ h = 0 and limn→∞ nh =∞.

Assumption 3.4. Given a set of k = kn intervals [yj−1, yj), j = 1, 2, ..., k, y0 6 L and

yk > U , the average interval length is l = ln = 1
k

∑k
i=1 li, where li is the abbreviated

notation of the i-th interval length li,n. It is assumed that limn→∞ l = 0, limn→∞ nl = ∞
and l = o

(
h2
)
. Finally, it is supposed that maxi

∣∣li − l∣∣ = max16i6k

∣∣li − l∣∣ = o
(
l
)
.

Assumptions 3.1 and 3.2 are just smoothness and di�erentiability conditions about the

kernel K and the distribution function F , and Assumption 3.3 is the typical one used in

kernel density estimation concerning the sample size n and the bandwidth h. However,

Assumption 3.4 is of special importance and deserves some comments, since it introduces

the necessary conditions to be met between the parameters that de�ne the set of intervals

along with the sample size n and the bandwidth h.

Condition limn→∞ l = 0 simply states that, as the sample size increases, the average

interval length shrinks, which means that the whole set of intervals are shrinking as well.

However, limn→∞ nl =∞ states that n should increase faster than l decreases. This is an

important condition, as if the intervals shrink faster than n increases, at some point there

would be more intervals than data points, and some of the intervals would be empty or

there would be not enough density points in each interval.

Condition l = o
(
h2
)
states an intuitive idea: as the sample size n increases, the average

length l must vanish faster than, at least, h (concretely, faster than h2). This condition

has a practical basis. Since the average distance between points is l, in order to obtain

information of the surroundings at a certain point x, the bandwidth must be greater than

l at all times. In other words, as n increases, h must vanish, but always behind l.

Regarding the condition about maxi
∣∣li − l∣∣, at �rst this is necessary from the strictly

mathematical viewpoint, but in practice it is a way for controlling the variability of the

intervals. In other words, in our assumptions we unquestionably accept di�erent interval

lengths in order to generalize the binned estimator, but within certain limits, and these

limits of maximum variability are controlled by l via maxi
∣∣li − l∣∣ = o

(
l
)
.
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Going back to the general grouped data case, and assuming that (w1, w2, ..., wn) are

the observed random quantities, the general binned kernel density estimator is de�ned as

f̂gh (x) =
k∑
i=1

wiKh (x− ti) , (3.2)

where the superscript g stands for the grouped case.

The asymptotic bias and variance of (3.2) are stated in the following theorem. Its proof

is included in Appendix D.

Theorem 3.1. Under assumptions 3.1 to 3.4,

MSEg = MSE
[
f̂gh (x)

]
=

1

4
h4µ2 (K)2 f ′′2 (x) +

1

nh
f (x)A (K) + o

(
h4
)

+ o

(
1

nh

)
(3.3)

and

MISEg = MISE
[
f̂gh

]
= AMISE

[
f̂gh

]
+ o

(
h4
)

+ o

(
1

nh

)
, (3.4)

where

AMISEg = AMISE
[
f̂gh

]
=

1

4
µ2 (K)2 h4A

(
f ′′
)

+
1

nh
A (K) . (3.5)

Following similar arguments as for the standard kernel density estimator (Eq. (2.1)), it

is possible to obtain optimal (global or local) bandwidths. In this case, the asymptotically

optimal global bandwidth is obtained from (3.5), which yields

hAMISEg =

[
A (K)

µ2 (K)2A (f ′′)n

] 1
5

. (3.6)

Two aspects are worth mentioning. Firstly, as long as assumptions 3.1 to 3.4 hold,

(2.1) and (3.2) have the same asymptotic expressions for the MSE and the MISE. Con-

sequently, (2.12) and (3.6) appear to be the same except for one important di�erence: in

(3.6), A (f ′′) has to be estimated considering grouped data. In this situation, the esti-

mation of A (f ′′) requires of adapted density functionals estimators. Based on (2.31), a

possible choice is the nonparametric estimator proposed in Cao et al. (2011), given by

Âg
(
f ′′
)

=
1

η5

k∑
i=1

k∑
j=1

L(4)

(
ti − tj
η

)
wiwj , (3.7)

where L(4) is the fourth derivative of the kernel L, and η is the auxiliary smoothing parame-

ter. Thus, substituting (3.7) in (3.6), the asymptotically optimal global plug-in bandwidth

selector is
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ĥg =

[
A (K)

µ2 (K)2 Âg (f ′′)n

] 1
5

. (3.8)

Secondly, for a given sample size and an interval partition, the expectation of (3.2) is

increased by a term depending on l, as can be seen in (D.27). Hall (1982) found the same for

(3.1), except that he referred to rounding errors in terms expressed as the multiplicative

inverse of the number of intervals. Here, it was proved that in the context of di�erent

rounding errors (i.e., di�erent interval lengths), its e�ect can be noticed via l, although by

the assumptions made, it is asymptotically negligible.

3.4 Simulations

To have an idea of the potential of the proposed density estimator, some simulation stud-

ies under di�erent scenarios of sample sizes, bandwidths and degree of grouping were

performed. For this, the free statistical software R and the nor1mix package have been

used to implement the di�erent procedures (R Core Team, 2015; Mächler, 2013).

In the �rst place, it was of interest to con�rm the consistency of (3.2) by the behavior

of its MISEg as the sample size increases, considering two di�erent grouping scenarios.

In second place, the MISEg was studied as a function of h and l by means of a �xed

sample size. As a result, a 3-D map of the MISEg was obtained, which enabled to

observe its behavior under di�erent grouping situations (by means of l), as well as detecting

minimal zones of the MISEg for di�erent bandwidths. Additionally, in both studies, the

performance of the optimal bandwidth minimizing the MISEg (denoted by hMISEg), and

the plug-in bandwidth selector for grouped data, ĥg, given in (3.8), was analyzed.

For doing the simulations, a reference density was needed. A normal mixture f (x) =∑4
i=1 αiφµi,σi was used, where φµ,σ is a N

(
µ, σ2

)
density, α = (0.70, 0.22, 0.06, 0.02),

µ = (207, 237, 277, 427) and σ = (25, 20, 35, 50), where α, µ and σ are the mixture weights,

means and standard deviations, respectively. This normal mixture was used in weed science

to model the relationship between weed emergence of Bromus diandrus and hydrothermal

time (Cao et al., 2011).

Regarding the kernel function, considering the practical information about these func-

tions given in Subsection 2.1.3, it was decided to use the Gaussian kernel throughout the

simulations.

3.4.1 Simulation study 1

In this �rst simulation experiment, the behavior of the MISEg is studied as a function

of h considering di�erent sample sizes. For this, and regarding Assumption 3.4 and Eq.

(3.6), two scenarios that may impact on the behavior of the MISEg are considered.
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As mentioned before, Assumption 3.4 is particularly important for the validity of The-

orem 3.1, and thus for the validity of Eq. (3.6). Among all the conditions stated in that

assumption, it is speci�cally important that l = o
(
h2
)
holds. On the one hand, the former

condition is necessary from the mathematical point of view, as can be seen in Appendix D.

On the other hand, its importance is related with the fact that, when it does not hold, l

is not shrinking at the right pace with respect to n, which is (theoretically) increasing. In

practice, this condition can be interpreted as a heavy grouping case; i.e., a case in which l

is relatively large compared to the sample size in turn.

To see this, recall from (3.6) that the AMISEg optimal bandwith is of precise order

n−
1
5 . So, since it was assumed that l = o

(
h2
)
holds, then l = o

(
n−

2
5

)
. This should be

the right pace at which l shrinks with respect to n, and this will be the �rst scenario.

The second scenario is just the opposite, in which l does not shrink at the right pace with

respect to n. Naturally, it is expected that the second scenario, i.e., a practical heavy

grouping case, will have a negative impact on the performance of the estimator (3.2).

Both scenarios can also be succinctly written as follows

� Scenario 1 (S1): n
2
5 l→ 0

� Scenario 2 (S2): n
2
5 l→∞

As to how to calculate the MISEg in our simulations, let us bring to mind that, for a

generic estimator f̂n, the MISE can be written as

MISE
(
f̂n

)
=

ˆ
B2
[̂
fn (x)

]
dx+

ˆ
V
[̂
fn (x)

]
dx.

Hence, each of the integrals in the last expression can be approximated via Monte Carlo

by

ˆ b

a
B2
[̂
fn (x)

]
dx ≈ (b− a)

1

B1

B1∑
i=1

 1

B

B∑
j=1

f̂n,(j) (xi)− f (xi)

2

and

ˆ b

a
V
[̂
fn (x)

]
dx ≈ (b− a)

1

B1

B1∑
i=1

 1

B

B∑
j=1

f̂2n,(j) (xi)−

 1

B

B∑
j=1

f̂n,(j) (xi)

2 ,

where [a, b] is the support interval; xi, i = 1, 2, ..., B1 is a set of B1 equally spaced grid

points in [a, b], and B is the number of replications, f̂n,(j) (x), j = 1, 2, ..., B. The interval

considered was [a, b] = [0, 509.25]. With this election, the probability under the reference

normal mixture is 0.999.
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Figure 3.1: MISEg curves by scenario and sample size. Solid lines are for n = 60, dashed lines for

n = 240, and dotted lines for n = 960. Thin lines represent the MISEg curves in S1, while thick

lines represent the MISEg curves in S2 (note that the MISEg curves for n = 60 are practically

identical in both scenarios).

In regard to how to simulate the set of intervals as n increases, three sample sizes were

considered: (n1, n2, n3) = (60, 240, 960). Then, the next steps were followed:

Step 3.1. Consider l = En−α and an = Fn−β, where E, α, F and β are positive constants.

Step 3.2. Take a small initial set of intervals {li}. For instance, i = 1, 2, ..., 5 and l1 =

l − 4an, l2 = l + 0.5an, l3 = l − 1.5an, l4 = l + 3an, l5 = l + 2an were considered.

Step 3.3. For i > 5, li = l(i−1)mod5+1, where mod stands for the modulo operation. That is

to say, the initial set of intervals is repeated one after another, as many times as necessary.

Note in Step 3.2 that with this initial selection of intervals, l remains the same. Al-

though in Step 3.3 this initial set of intervals is repeated as many times as necessary, by

the previous selection of intervals, its variability is already kept under control.

Constants E and F are just �tted according to the support interval. For choosing the

positive constants α and β, let us consider the following. According to the initial set of

intervals in Step 3.2, it follows that

max
i

∣∣li − l∣∣ = 4an = 4Fn−β.
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ĥ g
h M

IS
E

g

Figure 3.2: Boxplots for ĥg/hMISEg for both scenarios.

Assumption 3.4 and Step 3.1 imply that

4Fn−β = o
(
l
)

= o
(
En−α

)
,

which basically is

n−β = o
(
n−α

)
. (3.9)

So, for (3.9) to hold, nα−β → 0, which only occurs when α− β < 0, i.e., when β > α.

Now, recall that for S1, l = o
(
h2
)

= o
(
n−

2
5

)
must hold. Thus, according to Step 3.1,

l = En−α = o
(
n−

2
5

)
,

which basically is

n−α = o
(
n−

2
5

)
, (3.10)

which only occurs when 2
5 − α < 0; i.e., when α > 2/5.

In brief, for simulating S1, (3.9) and (3.10) must hold, i.e., β > α > 2/5 must be true.

On the other hand, for simulating S2, (3.9) must hold but (3.10) must not hold. It is

required that n−
2
5 l→∞, so both β > α and α < 2/5 must be true. Particularly, for doing

our simulations we chose for S1 (E,α, F, β) = (800, 4/5, 150, 1), and for S2, (E,α, F, β) =

(37.1, 1/20, 150, 1).

For each sample size and each scenario, the simulation experiment was done following

these steps:

Step 3.4. An n-size sample is simulated from the normal mixture reference density f .
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Figure 3.3: Natural logarithm of MISEg by average length l and bandwidth h for a �xed sample

size n = 240.

Step 3.5. The data range is divided into intervals [yi−1, yi) of length li. The basic set of

�ve intervals is repeated until covering the range. For each interval, its midpoint ti and its

relative frequency wi are considered.

Step 3.6. For a grid of values of h, the density estimation f̂gh (x) is obtained in each of

the B1 = 512 points.

Step 3.7. The process is repeated B = 1000 times and the MISEg is calculated.

Figure 3.1 presents the MISEg curves in both scenarios for the three di�erent sample

sizes. TheMISEg curves have the same typical U shape as theMISE curves for the stan-

dard kernel estimator, with one global minimum. In both scenarios the MISEg decreases

as the sample size increases, which seems to con�rm the consistency for the estimator (3.2).

However, the di�erent shape of the MISEg curves in both scenarios, for a large sample

size of n = 960, reveals the importance of condition l = o
(
h2
)
to get expressions (3.4)

and (3.5). If this condition is not ful�lled, although the estimator (3.2) still seems to be

consistent, the expression for theMISEg will be di�erent to that obtained in Theorem 3.1,

as some other additional terms depending on l remain important. Therefore, the band-

width selector given in (3.6) will not be a good approximation for the optimal bandwidth

hMISEg .

It should also be noted in Figure 3.1 that the values of h that minimize the MISEg,

by sample size, are not the same in both scenarios. This is an important consideration,

since one would expect that the bandwidth selector (3.8) may give good approximations

in just one of the scenarios, but not in both simultaneously.
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Figure 3.4: Normal mixture reference density for the simulation studies. As well as in (a), in

(b) the density's support is roughly divided into �ve intervals (vertical dashed lines), but slightly

shifted. In each case, the intervals capture di�erent zones of the density.

To see this, the practical behavior of the bandwidth selector (3.8) was deeply studied.

A second simulation experiment for each sample size and for each scenario went as follows:

Step 3.8. Simulate an n-size sample from the reference normal mixture density f .

Step 3.9. Divide the data range into intervals [yi−1, yi) of length li (according to the

previous guidelines in Steps 3.1 to 3.3).

Step 3.10. Estimate A (f ′′) using equation (3.7) and calculate ĥg by (3.8).

Step 3.11. Compute ĥg/hMISEg .

Step 3.12. Repeat Steps 3.8 to 3.11 B = 1000 times.

Figure 3.2 shows boxplots for ĥg/hMISEg in both scenarios for the three di�erent sample

sizes. Both scenarios start from the same conditions: a sample size 60 and with relatively

heavy grouping, so that the �rst boxplot in both scenarios reveals that the sampling dis-

tribution of ĥg is not that accurate nor precise. However, as the sample size increases, it

is observed that in S1, the sampling distribution of ĥg becomes more accurate and precise,

while in S2, it does get more precise, but is quite far from being accurate. This con�rms

ĥg as a good bandwidth selector under scenario S1 conditions; i.e., under the assumption

that l = o
(
h2
)
holds.

It is worth emphasizing that this phenomenon is due to the conditions that are met in

each scenario. Under S1 conditions, some other terms in the bias of (3.2), which depend
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Figure 3.5: Sampling distribution of ĥg/hMISEg for di�erent average lengths for sample
size n = 240.

on l, becomes quickly negligible. Since (3.6) was obtained from (3.5), and (3.5) is a good

approximation of (3.4), ĥg is then a good approximation of hMISEg . In contrast, S2

conditions make ĥg a bad bandwidth selector, since (3.5) is not a good approximation of

(3.4) due to the fact that some other terms in the bias, depending on l, are not vanishing

yet.

3.4.2 Simulation study 2

To study situations in which sample size increases and intervals shrink at di�erent paces

may be of great theoretical interest, but in practice, that does not occur. What in fact

occurs is that there is usually just a single sample with a �xed sample size and a �xed

given set of intervals. Thus, the present simulation is of interest because it may give some

practical ideas for implementation.

For doing this simulation, a �xed sample size n = 240 was considered along with 110

sets of intervals, each set with an average length
{
l1, l2, l3..., l110

}
= {1, 2, 3, ..., 110}. Also,

a grid of 130 values of h {h1, h2, ..., h130} was considered, with h1 = 0.5 and hi+1 = hi+0.5,

for i = 1, ..., 129. With the previous speci�cations, the simulation was carried out as follows:

Step 3.13. Simulate an n-size sample from the reference normal mixture density f .

Step 3.14. Divide the data range into intervals such that its average length is li.

Step 3.15. Select hj and compute MISEg.
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Figure 3.6: Kernel estimation using estimator (3.2) with a sample of size 240. In (a) it was used

l = 15, and bandwidths hMISEg
= 10.5 (dotted line) and ĥg = 10.2 (dashed line). In (b) it was

used l = 25 and hMISEg
= 12.5 (dotted line) and ĥg = 5.2 (dashed line). In both, solid lines

represent the reference mixture density.

Step 3.16. Repeat the previous steps considering the grid of possible pairs
(
li, hj

)
.

Figure 3.3 shows the natural logarithm of theMISEg as a function of the average length

l and the bandwidth h for the medium sample size, n = 240. The feature that draws most

attention at �rst is the wave-like behavior of the MISEg natural logarithm, especially

at some minima regions. Minima occurring at
(
h, l
)

= (23, 62) and
(
h, l
)

= (26, 87)

are actually abnormal cases where intervals midpoints are, by chance, a good guess of the

average location of the data therein. But to better understand this, it is helpfull to visually

rely on the graph of the reference density.

Figure 3.4 shows the normal mixture reference density used in this simulations. In

Figure 3.4 (a), the density's support has been divided in roughly �ve intervals (for the
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sake of simplicity, all of the same length). In Figure 3.4 (b), these same intervals has

been slightly shifted, so in each case the intervals capture di�erents zones of the density

function. In Figure 3.4 (a), one of the central intervals captures an area where practically

all of the mass is located. Moreover, this interval captures a quite symmetric part of the

density. This is particularly advantageous, since the average position of the sample points

within that interval is very close to the midpoint, so that in this case, the midpoint is truly

representative of the sample points therein. In contrast, in Figure 3.4 (b), this same region

of the density has been captured by two central intervals, not one. Each of them capture a

zone of the density that is not constant nor symmetric. Thus, the average position of the

sample points in each interval would not be that close to the mid interval point; hence, the

midpoint would not be a good representative point of the sample points therein.

From the above, the lesson is that even though both cases represent heavy grouping (just

a few intervals), it may coincidentally happen that one (or even more) intervals capture

areas of density that are constant or symmetrical, and midpoints are really representative,

as in Figure 3.4 (a). If this were the case, one would expect a very good performance of the

estimator by means of a relatively low MISEg. On the contrary, in cases like Figure 3.4

(b), where midpoints are not representative, one would expect a poor performance, like in

Figure 3.4 (b), re�ected by a relatively high MISEg. That is what is happening in Figure

3.3, in those minimal white zones associated with large average lengths, and hence the

observed wave-like behavior as the average length decreases. Nevertheless, and in general,

the estimator should not be expected to perform well in such (or worst) conditions of heavy

grouping. Rather, it should be expected to better perform as the grouping becomes lighter;

i.e., as the average length decreases.

Applications in mind, the important zone in Figure 3.3 is the minimum located at the

bottom left, at l about 20 units or less, where the estimator performs the best. Also, in this

zone the bandwidth varies from around 8 to 14 units. The average of this range is close to

the minimum observed in Figure 3.1 for S1, which is 10.5. In other words, and considering

this reference density in particular, given a �xed sample size and a set of intervals, the

estimator can be expected to perform well if the average length is less than twenty units.

To better understand this, let us take into account the average sample range r̄, which

for this simulation happend to be around 340 units. This means that for this sample size,

the estimator can be expected to perform well whenever the ratio l/r is around 0.06 or

less, since in this case, l/r = 20/340 ≈ 0.06.

To reinforce the latter idea, Figure 3.5 shows boxplots with the sampling distribution

of ĥg/hMISEg for sample size n = 240. Note that when l is reaching 20 units (i.e., 6% of

r̄), the distribution of ĥg starts to behave a bit biased, and as soon as it surpasses this

limit, its distribution becomes really biased. This means that when l is into the zone of

0.06r̄, ĥg gives quite good approximations of hMISEg , thus making f̂gh a good estimator

of the true density. Out of that zone of 0.06r̄, ĥg is unable to estimate well hMISEg , and
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Figure 3.7: (a) ĥg/ĥs versus ω = l/r. (b) Integrated squared distance (ISD)´ [
f̂g
ĥg

(u)− f̂ĥs
(u)
]2
du versus ω.

then, the estimator is expected to behave badly. This can be visually con�rmed in Figure

3.6. In (a), the estimator (3.2) was used over a sample of size 240 and l = 15, using

both hMISEg and its estimation ĥg. As in this case ĥg/hMISEg ≈ 1, both estimations are

practically the same, and they resamble the true density. As opposed, in (b) the estimator

was used over the same sample with l = 25 and hMISEgand ĥg as well. Notice that as

ĥg/hMISEg ≈ 0.4, which is far from the target, the estimator performs poorly, giving a

very wiggly estimation.

3.5 Applications

To test the proposed estimator with some real data, it was used the time between eruptions

set for the Old Faithful geyser in Yellowstone National Park, Wyoming, United States,

55



available in the R environment for statistical computing datasets.

The 272 sample data was grouped using intervals of di�erent average lengths. Notice

that the geyser data is similar to the sample size used in the last simulation, which was

240. This favors for results comparisons. Now there is just one sample and there is no

average range r̄; instead, the sample range r can be used to express all those di�erent

average lengths as a proportion of it, which for these data set is r = 53 units. This ratio

is called ω = l/r.

Since the data come from an unknown density, it is considered as a reference the

estimation provided by the standard estimator (2.1) using the complete data and the plug-

in bandwidth ĥs (where s stands for 'standard'), the equivalent version of ĥg when using

complete data.

Figure 3.7 shows the ratio ĥg/ĥs and
´ [

f̂g
ĥg

(u)− f̂ĥs (u)
]2
du , the integrated squared

distance (ISD), versus ω. As it can be seen in Figure 3.7 (a), the bandwidth selector

ĥg works well up to some middle point ω between [0.05, 0.10]. Although it is di�cult to

precise this value, it would not be unreasonable to say that this middle point is around

0.075, which is very close to the previous mark of 0.06. This suggests that the proposed

density estimator f̂gh will perform well up to approximately ω = 0.075, as can be con�rmed

in Figure 3.7 (b), where the integrated squared distance erratically begins to increase

around this value. This seems to empirically con�rm what was found in the simulation

experiment.

The last assertion can also be veri�ed in Figure 3.8. In (a), the standard estimator was

used as a visual reference. In (b), the general estimator f̂gh was used with lightly grouped

data, using ω = 0.04, with an estimated bandwidth ĥg that is almost the same as ĥs.

This gives a very acceptable estimation. In (c), the general estimator f̂gh was used with

somewhat heavy grouped data, using ω = 0.08, with an estimated bandwidth ĥg that is

relatively far from ĥs; thus, the estimator does not perform well in this situation.

3.6 Summary

In this chapter, a generalization of the standard kernel density estimator was proposed

and studied. When working with non-equally spaced grouped data, it was found that the

bias of the general binned kernel estimator is increased by a term depending on l, which

by the assumptions made, it asymptotically vanishes, making this general estimator an

asymptotically unbiased one. This general estimator and the results obtained generalize

Scott and Sheather (1985) and Hall and Wand (1996) results, who considered a constant

interval length and a constant rounding error, respectively.

By means of simulation studies, it was also investigated the consistency of the general

density estimator. It was found that, although consistency is not a�ected in any case, the

importance of condition l = o
(
h2
)
in Assumption 3.4 relies in that it let us determine
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Figure 3.8: Kernel density estimation: (a) Using the standard estimator f̂h with ungrouped data,

and ĥs = 2.481; (b) using f̂gh with ω = 0.04 and ĥg = 2.428; (c) using f̂gh with ω = 0.08 and

ĥg = 2.199.
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under what grouping conditions the bandwidth selector ĥg can be expected to perform

succesfully, as well as the estimator f̂gh , in consequence.

It was found that there is an important relationship between the degree of grouping and

the sample size. From the theoretical point of view, as sample size increases, the number

of intervals should increase as well, or equivalently, the average length l should decrease.

In practice, where there is usually just one sample and a given intervals set over which

the data analyst has no control, the potential application of the general kernel estimator

looks promising whenever data are not heavily grouped, meaning that the average interval

length should be not greater than around 6% of the sample data range. Although the

application to the real data set of Old Faithful Geyser seems to empirically con�rm this,

it is of course just a preliminary rule of thumb that should be taken with caution, as it

is necessary to perform more simulations and theoretical developments in order to give a

general rule of application to di�erent probability density functions and sample sizes.

Finally, more studies are needed regarding the bandwidth selector. On the one hand,

it is necessary to theoretically study the functional estimator Âg, (Eq. (3.7)) as it was

used for getting ĥg without prior information about its statistical properties in this case

of grouped data. On the other hand, bear in mind that what makes the general estimator

(and whatever other kernel estimator) to work the best is a right bandwidth selection.

Thus, it may be thought that even in cases of heavy grouping, by rightly choosing the

bandwidth it is possible to correct to some extent the undesirable e�ect of relatively large

interval average lengths on the estimations. Perhaps, it may not be achieved the estimator

to work as well as in the case of light grouping, but at least, it may bring some improvement

when estimating the density in those cases. This is what the next chapter is about.
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Chapter 4

Bandwidth selection in kernel

density estimation for grouped data

In the previous chapter, the asymptotic properties of the estimator (3.2) were obtained and,

under certain assumptions, it was also obtained an AMISE-based bandwidth selector. It

was found that the plug-in bandwidth selector for grouped data fails when assumptions are

not met, which in practice means the presence of heavy grouping. Also, this bandwidth

selector for grouped data happend to coincide with that for continuous data, with the

subtle di�erence that the functional A (f ′′) is to be estimated not with continuous, but

grouped data.

Trying to cover those cases of heavy grouping, in this chapter, an alternative bootstrap

method for bandwidth selection is proposed. Through a comprehensive simulation study,

the smoothing parameters obtained by both methods are compared considering di�erent

scenarios, including light and heavy grouping depending on the sample size. It is also

analyzed the impact of these parameters on the performance of the estimator (3.2). Besides,

it is studied the consistency of the estimator of the functional A (f ′′) and, at the same time,

the consistency for the plug-in bandwidth selector, both considering grouped data.

4.1 Bandwidth selectors

4.1.1 Plug-in bandwidth selector

Remember that under Assumptions 3.1 to 3.4, the asymptotic properties of (3.2) were

obtained, from which it follows that (Eq. (3.5))

AMISEg

(
f̂gh

)
=

1

4
µ2 (K)2 h4A

(
f ′′
)

+
1

nh
A (K) ,

and

59



hAMISEg =

(
A (K)

µ2 (K)2A (f ′′)n

) 1
5

.

Unlike hAMISE for continuous data (Eq. (2.12)), in this context, A (f ′′) has to be

estimated using a sample of grouped data. The following estimator was proposed in Cao

et al. (2011), (Eq.(3.7))

Âg
(
f ′′
)

=
1

η5

k∑
i=1

k∑
j=1

L(4)

(
ti − tj
η

)
wiwj ,

where L(4) is the fourth derivative of a possibly di�erent kernel L, and η is an auxiliary

smoothing parameter. Plugging Âg (f ′′) in hAMISEg , a plug-in bandwidth is obtained

(Eq.(3.8)),

ĥg =

(
A (K)

µ2 (K)2 Âg (f ′′)n

) 1
5

.

Next, the consistency of ĥg as an estimator of the bandwidth minimizing the MISEg

is shown. For this, since hAMISE is asymptotically equivalent to the bandwidth that

minimizes theMISE, hMISE (Cao, 1990), it is su�cient to prove that (3.7) is a consistent

estimator of A (f ′′).

Generalizing Eq. (2.31) for grouped data, it follows that

ψ̂gu =
1

ηu+1

k∑
i=1

k∑
j=1

L(u)

(
ti − tj
η

)
wiwj , (4.1)

where, as in the case of continuous data, it is su�cient to study functionals for u even.

Note that Eq. (3.7) is just a particular case, for u = 4.

For obtaining the asymptotic properties of (4.1), the following assumptions are needed.

Assumption 4.1. The s-th order kernel L (with s > 0 and even) is a Lipschitz symmetric

density function with support in [−1, 1], u + 1 times di�erentiable and L(u+1)continuous.

The notation µs (L) =
´
xsL (x) dx is used.

Assumption 4.2. The distribution function F is a p + 1 times di�erentiable function

with compact support [L,U ], such that F (p+1) is continuous, p > max {u, s+ 1}, and

A
(
F (u+1)

)
= A

(
f (u)

)
<∞, where f is the density function.

Assumption 4.3. The bandwidth η = ηn is a non random sequence of positive numbers

such that limn→∞ η = 0 and limn→∞ nη
2u =∞.

Assumption 4.4. Given a set of k = kn intervals [yj−1, yj), j = 1, 2, ..., k, with y0 6 L
and yk > U , the average interval length is l = ln = 1

k

∑k
i=1 li, where li = li,n is the length
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of the i-th interval. It is assumed that limn→∞ l = 0, limn→∞ nl = ∞ and l = o
(
η2u+1

)
.

Finally, we suppose that maxi
∣∣li − l∣∣ = o

(
l
)
.

The consistency of (4.1) is stated in the following theorem. Its proof is included in

Appendix E.1.

Theorem 4.1. Under Assumptions 4.1 to 4.4, ψ̂gu → ψu, in probability.

As mentioned above, it is observed that for light grouping frameworks, the behavior of

ĥg is satisfactory. However, when grouping is heavy, the results obtained for this bandwidth

selector are rather de�cient. In the following subsection, an alternative bootstrap procedure

for bandwidth selection will be proposed.

4.1.2 Bootstrap bandwidth selector

Recall that wj is the proportion of observations in the j-th interval, for j = 1, 2, ..., k. Using

standard calculations (Appendix E.2), it is straightforward to obtain a closed expression

for the MISEg.

Theorem 4.2. Let F be a distribution with probability density F ′ = f , and K a ker-

nel function. Let (X1, . . . , Xn) be a random sample from f. Consider a set of inter-

vals [yj−1, yj), j = 1, 2, . . . , k, whose j-th midpoint is given by tj = (yj−1 + yj) /2. Let

(n1, . . . , nk) be the number of observations within each interval, and let (w1, . . . , wk), be

the sample proportions, where wj = nj/n. Assume that F (yk) = 1 and F (y0) = 0. Then,

MISE
(
f̂gh

)
= E

[ˆ (
f̂h (x)− f (x)

)2
dx

]

=

ˆ [ k∑
i=1

piKh (x− ti)− f (x)

]2

dx

+
A (K)

nh
− 1

n

k∑
i=1

k∑
j=1

pipj (K ∗K)h (ti − tj) , (4.2)

where pj = F (yj)− F (yj−1), for j = 1, 2, ..., k, and the symbol ∗ stands for convolution.
Eq. (4.2), considered as a function of h (and denoted by MISEg (h)), can be used in

simulations to approximate hMISEg , the optimal global bandwidth minimizing the mean

integrated squared error.

Based on bootstrap techniques, in this subsection, an estimator of the optimal band-

width minimizing the MISEg is de�ned. Bootstrap procedures for bandwidth selection in

kernel density estimation for continuous data have been studied since the works of Tay-

lor (1989); Faraway and Jhun (1990); Cao (1993); Marron (1992). It is now proposed a

bootstrap bandwidth selection method for grouped data.
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Let

f̂gζ (x) =
k∑
i=1

wiKζ (x− ti)

be the estimator (3.2) based on a pilot bandwidth ζ. Draw a bootstrap sampleX∗1 , X
∗
2 , . . . , X

∗
n

from f̂gζ and, given a bandwidth h, consider the analogue of the kernel density estima-

tor, f̂g∗h (x) =
∑k

i=1w
∗
iKh (x− ti) , where w∗i = F ∗n (yj−) − F ∗n (yj−1−), with F ∗n (y) =

1
n

∑n
i=1 I(−∞,y] (X∗i ). The bootstrap version of the mean integrated squared error,MISE∗,

is de�ned as

MISE∗
(
f̂g∗h

)
= E∗

[ˆ (
f̂g∗h (x)− f̂gζ (x)

)2
dx

]
. (4.3)

Using a parallel process to that followed to obtain (4.2), it is possible to derive a closed

representation for (4.3) (Appendix E.2.1). This expression is given by

MISE∗
(
f̂g∗h

)
=

ˆ [ k∑
i=1

wζiKh (x− ti)− f̂gζ (x)

]2

dx

+
A (K)

nh
− 1

n

k∑
i=1

k∑
j=1

wζiw
ζ
j (K ∗K)h (ti − tj) , (4.4)

where wζi = E∗ [w∗i ] = F̂ζ (yi)− F̂ζ (yi−1), being

F̂ζ (y) =

ˆ y

−∞
f̂gζ (u)du =

k∑
i=1

wiK
(
y − ti
ζ

)
,

with K (u) =
´ u
−∞K (v) dv.

Doing some elaborations, it is possible to show that

MISE∗
(
f̂g∗h

)
=

n− 1

n

k∑
i=1

k∑
j=1

wζiw
ζ
j (K ∗K)h (ti − tj)

−2
k∑
i=1

k∑
j=1

wζiwj (Kh ∗Kζ) (ti − tj)

+
k∑
i=1

k∑
j=1

wiwj (K ∗K)ζ (ti − tj) +
A (K)

nh
. (4.5)

Note that expression (4.5) directly allows to evaluate the MISE∗ over a grid of values

of h without using Monte Carlo. In other words, this bootstrap bandwidth selection,

unlike many other bootstrap procedures, does not require the generation of any bootstrap

resample in practice. This feature is also ful�lled in the bootstrap method proposed by

Cao (1993) for the continuous data case.
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The bootstrap bandwidth h∗MISE is obtained minimizing (4.5), i.e.,

h∗MISE = arg min
h>0

MISE∗
(
f̂g∗h

)
,

and if K is a Gaussian kernel, it is straightforward to see that

MISE∗
(
f̂g∗h

)
=

n− 1

n

k∑
i=1

k∑
j=1

wζiw
ζ
jK
√

2h (ti − tj)

−2

k∑
i=1

k∑
j=1

wζiwjK
√
h2+ζ2 (ti − tj)

+

k∑
i=1

k∑
j=1

wiwjK√2ζ (ti − tj) +
A (K)

nh
. (4.6)

where Kδ stands for a Gaussian density function with mean 0 and standard deviation δ.

An important issue in the previous bootstrap method is the choice of the pilot band-

width ζ. In the bootstrap procedures for bandwidth selection in kernel density estimation,

it is well studied that the pilot bandwidth ζ should be the optimal value ζopt that minimizes

E
{[
Âζ (f ′′)−A (f ′′)

]2
}
(Cao, 1993). Assuming that f is N

(
µ, σ2

)
and K is a Gaussian

kernel, it is easy to see that for continuous data (see Appendix E.3),

ζopt ≈ 0.78σn−
2
13 . (4.7)

Intuitively, it seems clear that for grouped data, ζopt will tend to increase as average

length increases. For obtaining a relationship between the optimal ζ for grouped data, ζoptg ,

and ζopt, some simulations for di�erent average lengths and sample sizes were performed.

Results suggest that for sample sizes n < 150, ζoptg ≈ 0.8ζopt for ω = l
r 6 0.10, where

r is the sample range, and ζoptg ≈ ζopt (4ω + 0.4) otherwise. For sample sizes n > 150,

ζoptg ≈ ζopt for ω 6 0.075; otherwise, ζg ≈ ζopt (7ω + 0.5) (see Appendix E.4). Once

obtained ζoptg , h
∗
MISE can be numerically approximated.

4.2 Simulation studies

In Section 3.4, it was already studied the practical behavior of the plug-in bandwidth

selector for light and heavy grouping conditions. Figure 3.1 showed that althought consis-

tency seems to be con�rmed in both scenarios, the values of h that minimize the MISEg,

hMISEg , are di�erent from one scenario to another. Figure 3.2 con�rms that only under

the conditions of S1, the plug-in selector (3.8) performs well and gives good approximations

for hMISEg .

The present simulation study compares not only the practical behavior of both the
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Figure 4.1: Boxplots for ĥg/hMISEg for both scenarios.

60 240 960

0.
0

0.
5

1.
0

1.
5

Scenario 1

Sample Size

h M
IS

E
*

h M
IS

E
g

60 240 960

0.
0

0.
5

1.
0

1.
5

Scenario 2

Sample Size

h M
IS

E
*

h M
IS

E
g

Figure 4.2: Boxplots for h∗
MISE/hMISEg for both scenarios.
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plug-in and the bootstrap selector in giving good approximations for hMISEg , but also the

impact of these bandwidth selectors, ĥg and h∗MISE , on the quality of the density estimator

f̂gh via the MISEg. For these purposes, the free statistical software R and some particular

packages were used (R Core Team, 2015; Mächler, 2013; Wand, 2013).

As in Section 3.4, it is considered as a reference density the normal mixture f (x) =∑4
i=1 αiφµi,σi (x), where φµ,σ is aN

(
µ, σ2

)
density, with weights α = (0.70, 0.22, 0.06, 0.02),

means µ = (207, 237, 277, 427), and standard deviations σ = (25, 20, 35, 50).

For comparing the accuracy of bandwidth selectors ĥg and h∗MISE , the following steps

were followed:

1. Simulate an n-size sample from f .

2. Divide the data range into intervals [yi−1, yi) of length li according to the previous

guidelines (see Subsection 3.4.1).

3. Using a Gaussian kernel, L, and a similar iterative process to that described in

Wand and Jones (1995), but adapted to grouped data, select a pilot bandwidth η

and estimate A (f ′′) according to equation (3.7). Then, compute ĥg.

4. Selecting a pilot bandwidth ζoptg as described in Subsection 4.1.2, approximate

h∗MISE .

5. Compute the ratios ĥg
hMISEg

and
h∗MISE
hMISEg

.

6. Repeat the previous steps 1000 times.

For making readability easier, Figure 3.2 is included again, which now is presented as

Figure 4.1.

Regarding the plug-in selector (Figure 4.1), it is clear that starting from n = 60 with

heavy grouping, under conditions in S1, ĥg improves its performance in approximating

hMISEg as sample size increases, since heavy grouping fades at the right pace. The opposite

occurs in S2, where starting in the same conditions of sample size and heavy grouping, ĥg
performs worse at each stage.

On the other hand, it is evident from Figure 4.2 that the bootstrap bandwidth selector

outperforms the plug-in selector in approaching hMISEg . Despite a slight bias, in general,

the bootstrap selector shows more stability under any sample size and scenario, which

means that it can be used both in cases of light or heavy grouping. On the contrary, the

plug-in selector outperforms the bootstrap selector only in medium to large sample sizes,

and only in cases of light grouping, as can be seen in Figure 4.1.

To see the e�ect of using ĥg or h∗MISE in both scenarios on the performance of the

estimator f̂gh(x), the MISEg (h) was evaluated at every single of the 1000 bandwidths ĥg
and h∗MISE , and compared with the MISEg(h) evaluated at hMISEg . The results can be
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Figure 4.3: Box-plots for ln

[
MISEg(ĥg)

MISEg(hMISEg)

]
for both scenarios.

seen in Figure 4.3 and Figure 4.4 for the plug-in and bootstrap bandwidths, respectively.

They are presented as natural logarithms for comparison purposes.

The consequences are clear: when using ĥg, while in S1 the quality of f̂gh(x) becomes

better as n increases, S2 shows on average increasingly disastrous density estimations that

go as far as �ve orders of magnitude compared with S1 (Figure 4.3). On the other hand,

as happened with the plug-in selector, when using the bootstrap bandwidth in S1 (Figure

4.4), the quality of the density estimations improves as sample size increases. Morover,

the bootstrap selector performs better than the plug-in for sample size 60. In Scenario

S2, similar results are shown, although it looks like the e�ect of heavy grouping makes the

estimator more sensitive to slight changes in the bandwidth, as can be seen for sample size

960.

A visual support can be useful to better understand the latest ideas. Figure 4.5 shows

the application of the estimator (3.1) in the case of heavy grouping; that is, S2. To esti-

mate the density it was used the average bandwidth returned by the plug-in and bootstrap

selectors for this scenario at each sample size. The �rst row shows that both selectors

provide acceptable bandwidths for sample size 60, although the estimation using the boot-

strap bandwidth is somewhat better. The second row shows how the estimation using the

plug-in bandwidth begins to deteriorate for sample size 240, while the estimation using

the bootstrap bandwidth still holds acceptable. The third row, for sample size 960, shows

that the estimate obtained with the plug-in bandwidth is very wiggly, while the estimate

obtained with the bootstrap bandwidth, although it could be improved, it still remains

closer to the true density.

The above suggests that no matter the sample size, it should be avoided using ĥg in
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Figure 4.4: Box-plots for ln

[
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]
for both scenarios.

cases of heavy grouping. In that instance, it would be preferable to use the bootstrap

bandwidth selector, h∗MISE .

4.3 Summary

It has been shown that under suitable assumptions, ψ̂gu is asymptotically consistent, so that

ĥg approaches to hMISEg as the sample sizes increases. However, in practice, there are

some limitations that need to be considered in order to get the best performance of f̂gh in

each situation. In previous analyses, it was found that the plug-in bandwidth selector, ĥg,

has some limitations when performing in heavy grouping conditions. Thus, for overcoming

these inconveniences, in this chapter, it was proposed and studied the performance of an

alternative bootstrap bandwidth selector.

Given a grouped data sample, simulation studies showed that the plug-in bandwidth

selector ĥg should be the �rst option only when sample size is medium or large, and

grouping is not heavy. Under other conditions, whether sample size is small or grouping is

heavy, other bandwidth selectors should be considered.

Bootstrap bandwidth selector appears to be an option that in general outperforms ĥg.

Although slightly biased, stability under any scenario or sample size is its best feature,

giving quite acceptable density estimations. Results also show that despite the slight

bias of bootstrap bandwidth selectors, they exhibit a good performance in nonparametric

density estimation.

It is important to stress that since ĥg is focused on minimizing the AMISEg, there are

some other terms in the MISEg series expansion that depend on the average length and
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Figure 4.5: Kernel density estimation for heavy grouped data (S2). On the left, density estimations

using the plug-in bandwidth selector (pbw) ; on the right, using the bootstrap selector (bbw). The

�rst row corresponds to sample size 60; the second row, 240, and the third one, 960. Bandwidths

used were: (a) pbw=12.4; (b) bbw=16.6; (c) pbw=7.8; (d) bbw=11.9; (e) pbw=3.1; (f) bbw=8.6.

68



that, under heavy grouping, they are not negligible at all. The result is a bad performance

of ĥg in all cases of heavy grouping, whether sample size is large or small. On the contrary,

the bootstrap bandwidth selector obtains good pilot information about the distribution via

f̂ζ , which allows it to reproduce important features of the distribution under any scenario

or sample size.

Finally, concepts like heavy or light grouping deserve some handy reference. Simula-

tion studies suggest that, in general, light grouping can be considered when ω < 0.075,

approximately. The transition between light and heavy grouping (medium grouping, so to

speak) could be considered when ω is somewhere between 0.075 and 0.10. Typically, heavy

grouping cases can be considered when ω > 0.10.
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Chapter 5

Kernel distribution estimation for

grouped data

In this chapter, the problem of estimating the distribution function F with grouped data is

addressed. Based on the density estimator de�ned in Chapter 3, Eq. (3.2), in this chapter,

an appropriate estimator of the cumulative distribution function F is derived, which by

construction, is already adapted for grouped data. Its asymptotic properties are derived,

and its performance in di�erent grouping scenarios is analyzed through simulation studies.

Also, a brief study on bandwidth selection in this context is included.

5.1 Introduction

As mentioned in Subsection 1.3.3, just as the density function f does, the distribution

function F also describes the structure of a data set, but from another point of view. In

many applications, including some problems of weed science, data are given not only in an

aggregated fashion, but also cumulative. In these cases, the most appropiate approach is

to estimate not the density f , but the distribution function F .

It is straightforward to construct a kernel estimator for the distribution F based on

Eq. (2.1), as was explained in Section 2.2. Nevertheless, the topic of kernel distribution

estimation has not been as popular as kernel density estimation, and the same is valid for

the case of grouped data.

A seminal paper on this topic is the one of Turnbull (1976), which is concerned with the

nonparametric estimation of F when data are grouped, censored or truncated, by means

of an algorithm based on the idea of self-consistency. This work is very related to previous

and later works about survival curves, hazard models and censored data.

As explained in Section 3.1, the problem studied in this thesis is of a di�erent kind.

Given a set of intervals, not necessarily of the same length, and given the number (or the

proportion) of data in each interval, the objective is to use kernel estimation to estimate
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f or F in the best possible way by rightly choosing the bandwidth under those particular

grouping conditions, whether light or heavy.

5.2 Asymptotic results

Integrating Eq. (3.1), the kernel distribution estimator for binned or grouped data is

F̂ gh (x) =

ˆ x

−∞
f̂gh (u) du =

k∑
i=1

wiK
(
x− ti
h

)
, (5.1)

where K (x) =
´ x
−∞K (z) dz. The asymptotic bias and variance of (5.1) are stated in the

next theorem. Its proof is included in the Appendix F.

Assumption 5.1. The kernel K is a symmetric probability density function with support

in [−1, 1], at least 5-times di�erentiable and such that K(5) is bounded.

Assumption 5.2. The distribution F has compact support [L,U ], it is 7-times di�eren-

tiable and F (7) is bounded.

Assumption 5.3. The bandwidth h = hn is a non random sequence of positive numbers

such that limn→∞ h = 0 and limn→∞ nh =∞.

Assumption 5.4. Given a set of k = kn intervals [yj−1, yj), j = 1, 2, ..., k, y0 6 L and

yk > U , the average interval length is l̄ = l̄n = 1
k

∑k
i=1 li, where li is the abbreviated

notation of the i-th interval length li,n. It is asumed that limn→∞ nl̄ = ∞ and l̄ = o
(
h2
)
.

Finally, we suppose that maxi
∣∣li − l̄∣∣ = max16i6k

∣∣li − l̄∣∣ = o
(
l̄
)
.

Note that Assumptions 5.1 to 5.4 are basically the same as in the case of density

estimaton for grouped data (Section 3.3). The only slight di�erence is the hypothesis

about the di�erentiability of the kernel K. This makes sense: the estimator (3.2) requires

the kernel K to be at least 6 times di�erentiable. Since the estimator (5.1) contains the

integral of K, it only needs the kernel K to be at least 5 times di�erentiable. Besides

that, the assumptions regarding the distribution F and the elements that characterize a

grouped data set (the number of intervals k, the set of breaks (y0, y1, . . . , yk), the average

length l, the maximum absolute di�erence maxi
∣∣li − l̄∣∣ and their relationship with n and

h) are the same.

Theorem 5.1. Under Assumptions 5.1 to 5.4,

MSE
[
F̂ gh (x)

]
=
h4

4
F ′′ (x)2 +

1

n
F (x) [1− F (x)]− h

n
F ′ (x)C0 +O

(
h2

n

)
+ o

(
h4
)

and
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MISE
[
F̂ gh

]
= AMISE

[
F̂ gh

]
+O

(
h2

n

)
+ o

(
h4
)
,

where

AMISE
[
F̂ gh

]
=
h4

4
µ2 (K)2A

(
f ′
)

+
1

n

ˆ
F (x) [1− F (x)] dx− h

n
C0 (5.2)

and

C0 = 2

ˆ
zK (z)K (z) dz.

From Eq. (5.2), it is immediate to get an asymptotically optimal global bandwidth.

Taking the �rst derivative of (5.2), equating to zero and solving for h, it is obtained

hAMISE =

[
C0

nµ2 (K)2A (f ′)

] 1
3

, (5.3)

Note that Eq. (5.3) coincides with Eq. (2.50), since both are obtained via the MISE

considering no weights w(x), as in (2.48), in contrast with (2.52). Regarding C0, recall from

Subsection 2.2.1 that it is a key constant that let F̂h, and hence, F̂ gh , be asymptotically

more e�cient than the empirical distribution function F̂n, since this constant is always

positive.

For Eq. (5.3) to be a practical expression, an estimate of A (f ′) is required, since the

remaining factors depend on known quantities. As it was done in Section 3.3 regarding the

asymptotically optimal global bandwidth for kernel density estimation for grouped data, in

this case it will also be used a nonparametric estimate of A (f ′). For estimating A (f ′), as

proposed by Polansky and Baker (2000) (see Subsection 2.2.3, Eq.(2.56)) in the context of

grouped data, the sample of mid points will be used instead of the complete sample (which

in practice is unknown). Let us call ÂPBg (f ′) the estimate of A (f ′) using the Polansky

and Baker method in the grouped data case. Pluging ÂPBg (f ′) into (5.3) gives a practical

plug-in expression,

ĥPBg =

[
C0

nµ2 (K)2 ÂPBg (f ′)

] 1
3

. (5.4)

5.3 Simulations

In this section, the e�ectiveness of the estimator (5.1) will be tested by means of a sim-

ulation study. The procedure will be parallel to the simulation study in Section 3.4, and

the same normal mixture and di�erent scenarios of sample sizes, bandwidths and degree

of grouping will be considered. Besides the free statistical software R and the already
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Figure 5.1: ln (MISEg) curves by scenario and sample size. Solid lines are for n = 60, dashed

lines for n = 240 and dotted lines for n = 960. Thick lines represent curves in S1, while thin lines

represent curves in S2 (note that curves for n = 60 are practically the same in both scenarios).

used package nor1mix, it will also be used the package kerdiest (Quintela-del-Río and

Estévez-Pérez, 2012).

5.3.1 Simulation study 1

In this �rst simulation study, the behavior of the MISE in the case of grouped data

(MISEg) is studied depending on the bandwidth h for the three di�erent sample sizes

considered. As it was done in the case of the density, in the actual case of the distribution,

two di�erent scenarios are considered based on Assumption 5.4 and Eq. (5.3). These

two scenarios may impact the behavior of the bandwidth selector (5.4) and, therefore, the

performance of the estimator (5.1).

From Eq. (5.3), the asymptotically optimal global bandwidth is O
(
n−1/3

)
. Since it is

assumed that l = o
(
h2
)
, then l = o

(
n−2/3

)
should be the right pace at which the average

length decreases as the sample size increases. In other words, under this scenario (S1),

it should be expected that the bandwidth selector (5.4) gives good approximations to the

values of h that minimize the MISEg, hMISEF̂
. The second scenario (S2) is just the

opposite, in which the statement l = o
(
n−2/3

)
does not hold.

Those two scenarios can be expressed as follows

� S1: n−2/3l→ 0
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� S2: n−2/3l→∞

The procedure for calculating the MISEg is the same as the one explained in Subsection

3.4.1. Also, the same Steps 3.1 to 3.3 are to be followed to simulate the intervals set as n

increases. As to how to choose the constants α and β, based on Eqs. (3.9) and (3.10), it

is inferred that β > α > 2/3 must be true for simulating S1, and both β > α and α < 2/3

must hold for simulating S2. Thus, the same values (E,α, F, β) used for each scenario in

the case of the density, are still valid for the distribution case. To carry out the simulation

experiment, the same Steps 3.4 to 3.7 will be followed.

Figure 5.1 shows the MISEg curves for the three di�erent sample sizes in both scenar-

ios. Note that a semilogarithmic scale was used in order to better appreciate the minima

values, which was not necessary in the case of the density function (see Figure 3.1). This

is because in the case of the distribution, very little di�erences are found in the MISEg

curves for small values of h, particularly for the largest sample size. This suggests that

even in the case of grouped data, little deviations from the optimal bandwidth may still

give quite good distribution estimates (particularly for large sample sizes), making the

distribution estimation a relatively more robust procedure than the density estimation.

As happend with the density estimation for grouped data for both scenarios, the

MISEg decreases as the sample size increases, which seems to con�rm consistency of

the estimator (5.1). However, it is expected that the bandwidth selector (5.4) will give

good aproximations to hMISEF̂
whenever l = o

(
n−2/3

)
holds (i.e., under S1 conditions).

To con�rm the latter, a second simulation experiment was conducted. This simulation

follows the same Steps 3.8 to 3.11, and consists in comparing the sample distribution of

(5.4) with the target values hMISEg , the ones that minimize the MISEg in each sample

size and scenario.

Figure 5.2 resembles to the behavior of the sampling distribution of (3.8) in the case of

density estimation. Starting from the same grouping conditions and sample size, in S1, the

sampling distribution gets narrower and accurate as the sample size increases, while in S2

it gets precise but far from the target value. This con�rms that (5.4) is a good bandwidth

selector as long as S1 conditions hold. The explanation is the same as before: under S1

conditions, l decreases faster enough as the sample size increases, so that the remaining

terms of the bias of (5.1) quickly become negligible. On the contrary, under S2 conditions,

those remaining terms depending on l do not vanish as fast as required for (5.4) to be a

good bandwidth selector.

Figure 5.3 shows the impact of the bandwidth selector (5.4) on the distribution esti-

mator (5.1). Clearly, in S2, the impact of poor bandwidth selections are evident in the

quality of the estimation of the distribution, wich negatively increases by up to two orders

of magnitude. However, it should be noted that in the present case of the distribution, a

poor bandwidth choice does not impact so negatively in the corresponding estimates as in

the case of the density (see Figure 4.3).

74



60 240 960

0.
0

0.
5

1.
0

1.
5

Scenario 1

Sample Size
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Figure 5.2: Boxplots for ĥPBg
/hMISEg

for both scenarios.
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Figure 5.4: Natural logarithm of MISEg by average length l and bandwidth h for a �xed sample

size n = 240.

5.3.2 Simulation study 2

It is of interest to study situations in which it is ideally observed the sample size increasing

and the average length decreasing at di�erent rates, but in practice this seldom really

occurs. Thus, this simulation deals with a more factual situation in which there is a given

sample size and a given set of �xed intervals.

For this simulation, it is considered a sample size n = 240, a set of average lengths

and a grid of values of h, just as did in Subsection 3.4.2. The same Steps 3.13 to 3.16 are

followed.

Natural logarithms ofMISEg are shown in Figure 5.4. As in the case of the density, it

is striking the wavelike behavior and the three minima regions. As before, the explanation

is the same: sometimes, by chance, midpoints are really representative of the average

location of datapoints into the intervals, and the estimator performs well, even though the

two minima closest to the top correspond to heavy grouping; however, in general, it should

not be expected the estimator (5.1) to perform well in such instances.

What seems really interesting from the practical viewpoint is the minimum closest to

the bottom left, where the estimator reaches its better performance and clearly corresponds

to cases of light grouping. This zone is caracterized by an average length l ≈ 23 units or

less, or dividing by the average range r, by a ratio l/r ≈ 0.08 or less, which gives a clue

about when to expect a good performance of the estimator (5.1) in a practical situation.

Figure 5.5 supports the last statement. When the average length l is around 20 units
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Figure 5.5: Sampling distribution of ĥPBg
/hMISEg

for di�erent average lengths for sample size

n=240.

or less, the sampling distribution of (5.4) is centered somewhere around the target value

and its variability is more or less constant. As soon as l reaches the value of 20, it seems

to perform more unstable: a bit biased and more dispersed. When l surpasses the value of

20, the bandwidth selector behaves poorly.

Figure 5.6 is a visual example of what may happen when estimating the distribution

for values greater or lesser than around 20 units. In the case of l = 15, using the optimal

hMISEg and the estimated bandwidth ĥPBg , both estimations are indistinguishable since

both bandwidths are practically the same (i.e., the bandwidth selector performs well).

On the contrary, when l = 25, ĥPBg is quite far from its target, hMISEg . Then, the

corresponding estimates are notoriously di�erent.

5.4 Applications

As in the case of kernel density estimation for grouped data, to verify the performance of

the estimator (5.1) via the bandwidth selector (5.4), the Old Faithful geyser data will be

used. It contains the time between eruptions for the Old Faithful geyser in the Yellowstone

National Park, Wyoming, United States. The dataset is available in the R environment

for statistical computing. It is worth to note that the sample size of this data set is 272,

similar to 240, one of the sample sizes considered in the previous simulation studies, which
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Figure 5.6: Kernel estimation using estimator (5.1) with a sample of size 240. In (a) l = 15

and bandwidths hMISEg = 7 (dashed line) and ĥPBg
= 6.4 (dotted line). In (b), l = 25 and

hMISEg = 9.5 (dashed line) and ĥPBg
= 1.3 (dotted line). In both, solid lines represent the

reference mixture distribution.

favors for comparison.

Instead of the average range r, it will be used the data range r and the ratio ω = l/r.

The reference distribution will be the one provided by the standard estimator (2.41) for

complete data using the plug-in bandwidth ĥPB.

Figure 5.7 (a) shows similar results to that obtained by the simulation study in Subsec-

tion 5.3.2: the ratio ĥPBg/ĥPB appears to have an average value of 1 up to approximately

ω = 0.075. From this value onwards, the bandwidth selections begin to fall short. This

is also veri�ed in 5.7 (b), where the ISD between F̂ gh and F̂h begin to markedly increase

starting from ω ≈ 0.075. However, in this case of distribution estimation, after ω ≈ 0.075,

bandwidth selections begin to fall short not so quickly as in the case of the density (Figure
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3.7 (a)). This means that the bad performance of the estimator begins to be notorious for

a bit more heavy grouped data; i.e., this suggests again that kernel distribution estimation

for grouped data is somewhat more robust than kernel density estimation in the same case.
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Figure 5.7: (a) ĥPBg/ĥPB versus ω = l/r. (b) Integrated squared distance (ISD)

´ [
F̂ g
ĥPBg

(u)− F̂ĥPB
(u)

]2
du versus ω.

The latter can be seen in Figure 5.8. Note that unlike the case of density estimation

(Figure 3.8), in this case it was neccesary to consider a more heavy grouped data case to

really start noticing the bad performance of the bandwidth selector ĥPBg as well as the

estimator F̂ gh .
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Figure 5.8: Kernel distribution estimation: (a) using the standard estimator F̂h with ungrouped

data and ĥs = 2.012; (b) using F̂ gh with ω = 0.05 and ĥs = 2.013; (c) using F̂ gh with ω = 0.08

and ĥs = 1.937; (d) using F̂ gh with ω = 0.15 and ĥs = 1.571. In all four cases, the solid line

represents the kernel distribution estimation using F̂h(ungrouped data), while dashed lines are the

kernel distribution estimations using F̂ gh (grouped data).

5.5 Summary

In short, it has been shown that under the right assumptions, the kernel distribution

estimator is an e�ective tool due to the good performance of the corresponding plug-in

bandwidth selector. In practice, when there is a �xed sample size and a given set of

intervals, the good performance of the plug-in bandwidth selector is limited to a certain

degree of grouping, which in this context may be referred to as light grouping.

The di�erent simulations performed in this chapter show that the kernel distribution

estimator is somewhat more robust than the kernel density estimator, in the sense that

bandwidth selections slightly di�erent from the optimal bandwidth do not greatly in�uence

the distribution estimation, as it does in the case of kernel density estimation.

The latter is reinforced by studying the behavior of the plug-in bandwidth selector

considering di�erent grouping levels. Our simulations show that, in the case of the dis-

tribution, the plug-in bandwidth selector can give good results in grouping conditions for
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which, in the case of density estimation, it falls short. This property gives the kernel dis-

tribution estimator certain advantage over the kernel density estimator, since its plug-in

bandwidth resists more in cases of relatively heavy grouping; thus, letting the kernel dis-

tribution estimator perform well at grouping levels in which the kernel density estimator

needs the use of somewhat more elaborated bandwidth selectors. Because of this, in the

case of distribution estimation, an alternative bandwidth selector is not that necessary as

in the case of density estimation. Nevertheless, it would be of great advantage to propose

a more accurate bandwidth selector. This is an interesting issue for future research.
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Chapter 6

Applications and empirical studies

A key part of any research in statistical techniques is its application to real data. This

chapter considers three real grouped data sets on seedling emergence obtained in weed

science studies1. The aim is to estimate the density and distribution functions on each

data set by means of the estimators studied in the previous chapters, and to compare

their performance with parametric techniques commonly used by weed scientists. Also,

based on those grouped data sets, the bandwidth selectors studied in Chapter 4 are tested

over di�erent grouping conditions through a simulation study. The results suggest that, in

general, the nonparametric techniques proposed in this work perform acceptably and, in

some cases, they would be more suitable than parametric methods for studying emergence

curves in weed science.

6.1 About the grouped data sets

The three grouped data sets considered refers to Phalaris paradoxa L. (hood canary grass)

seedling emergence, which is one of the most problematic weeds of winter cereals in Mediter-

ranean climates (Alemseged et al., 2001; Jiménez-Hidalgo et al., 1997). It is very abundant

in cereal �elds in southern Spain, where it represents a major problem (González-Andújar

and Saavedra, 2003). Phalaris paradoxa is an agressive crop competitor and, when un-

managed, it may reduce wheat yields up to 40% (Delow and Milne, 1986). The way of

controlling this weed is mainly by herbicides, implying a realtively large investment in

this kind of products and the possibility of creating herbicide resistant populations. Some

changes in farming practices have exacerbated the incidence of this weed, especially the

adoption of conservation tillage.

Seedling emergence experiments were conducted from fall to spring during three con-

secutive seasons in an area with no previous history of P. paradoxa infestation in the

ETSIA experimental �eld of the University of Seville (37.35 N, 5.93 W; 21 m a.s.l., Seville,

1Very special thanks to José María Urbano, from the University of Seville, who kindly provided these
data.
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Experiment 1

CHTT A. Counts C. counts wi C. proportion

41.08 9.5 9.5 0.057 0.057
82.16 14.5 24.0 0.087 0.144
103.42 27.0 51.0 0.162 0.306
124.68 36.5 87.5 0.219 0.526
171.79 38.8 126.3 0.233 0.759
231.32 16.5 142.8 0.099 0.858
243.74 6.5 149.3 0.039 0.897
269.13 5.8 155.1 0.035 0.932
346.03 5.3 160.4 0.032 0.963
422.16 2.0 162.4 0.012 0.975
471.02 1.3 163.7 0.008 0.983
519.68 1.0 164.7 0.006 0.989
593.37 0.5 165.2 0.003 0.992
642.64 1.3 166.5 0.008 1.000

Table 6.1: Average counts, cumulative average counts, weights and cumulative proportions of P.

paradoxa seeds emerged at each CHTT.

Andalusia, Southern Spain). For the experiments, mature caryopses of P. paradoxa (from

now on, seeds) were collected in June 2005 from a wheat �eld near Jerez, about 90 km

Southwest of Seville, and stored in airtight containers at 4°C until ready for use.

In each study season, four 25 x 25 cm plots were randomly established and the soil up to

5 cm deep was replaced by a substrate. The substrate was a mixture of 50% Kekkilä garden

peat (Kekkilä Oy, Finland), 25% sand, and 25% local silt loam soil. After sterilization

by steam under pressure, the amount of substrate for each plot was mixed with 500 P.

paradoxa seeds and incorporated to plots on 11, 22, and 29 November 2005, 2006, and 2007,

respectively, within the local range of cereal sowing dates. Seed losses to surface-foraging

predators were prevented by placing 2-mm mesh cages over the plots.

In each season, numbers of emerged seedlings were recorded at weekly intervals from

sowing until seedling emergence ceased (approx. mid April). Censed seedlings were imme-

diately removed with minimum disturbance of the substrate.

Climatic variables were obtained from a meteorological station located 15 km away

from the experimental �eld. Soil temperature and water potential (ψ) at 5 cm depth were

estimated using the STM2 software (Spokas and Forcella, 2009). STM2 requires inputs of

daily weather data, along with information on the geographical location, soil texture and

organic matter content.

Soil temperature and water potential were used to calculate HTT for day t, θHTT (t),

by means of the following equation (Schutte et al., 2008):

θHTT (t) = θH (t) · θT (t) ,
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Experiment 2

CHTT A. counts C. counts wi C. proportion

88.91 2.0 2.0 0.012 0.012
102.20 40.8 42.8 0.242 0.254
128.94 7.3 50.1 0.043 0.297
183.71 6.8 56.9 0.040 0.337
265.37 8.0 64.9 0.047 0.385
311.71 8.5 73.4 0.050 0.435
317.70 27.0 100.4 0.160 0.595
323.13 14.0 114.4 0.083 0.679
348.51 30.8 145.2 0.183 0.861
402.07 5.0 150.2 0.030 0.891
455.87 12.3 162.5 0.073 0.964
504.58 4.3 166.8 0.026 0.989
559.84 1.8 168.6 0.011 1.000

Table 6.2: Average counts, cumulative average counts, weights and cumulative proportions of P.

paradoxa seeds emerged at each CHTT.

Experiment 3

CHTT A. counts C. counts wi C. proportion

88.67 138.3 138.3 0.813 0.813
112.32 4.8 143.1 0.028 0.841
176.92 13.8 156.9 0.081 0.922
235.57 6.5 163.4 0.038 0.961
253.25 2.5 165.9 0.015 0.975
259.55 0.3 166.2 0.002 0.977
280.57 1.3 167.5 0.008 0.985
295.29 1.8 169.3 0.011 0.995
316.14 0.5 169.8 0.003 0.998
336.98 0.3 170.1 0.002 1.000

Table 6.3: Average counts, cumulative average counts, weights and cumulative proportions of P.

paradoxa seeds emerged at each CHTT.
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where θH (t) = I[ψ(b),∞) (ψt). Therefore, θH (t) = 1 when the actual water potential at

day t, ψ (t), is larger than or equal to the base water potential for seed germination, ψb;

otherwise, θH (t) = 0 and

θT (t) = max {T (t)− Tb, 0} ,

where T (t) is the daily average soil temperature at day t and Tb is the base temperature

for seed germination. Cumulative hydrothermal time (CHTT) starting at weed sowing up

to day s is de�ned as

ΘCHTT (s) =

s∑
t=1

θHTT (t) .

Base temperature (Tb) and water potential (ψb) for P. paradoxa seedling emergence

were considered at 0.8°C and −1.50 MPa, respectively.

Concerning the data, it should be noted that time (in seconds, hours, or days) and

cumulative hydrothermal time are not changing synchronously. At a given time ti−1, there

is an observed cumulative hydrothermal time CHTTi−1. For a next inspection at time ti,

there is an associated CHTTi. There are two possibilities: 1) CHTTi > CHTTi−1, or 2)

CHTTi = CHTTi−1. In the �rst case, the number of emerged seeds between CHTTi−1

and CHTTi, ni, is associated with the midpoint of the interval. In the second case, ni
is just associated to the still observed value CHTTi = CHTTi−1 (which can be thought

of as a �midpoint� itself). Under these considerations, the grouped data sets are shown

in Tables 6.1, 6.2 and 6.3. The �rst column, CHTT, refers to the values of the so called

�midpoints�. The second column stands for �average counts� observed at each CHTT, since

in each experiment there were four repetitions. The elements in the third column are just

the cumulative counts; the fourth column contains the �weight� associated to each CHTT,

by means of wi = ni/n, where n is the total number of emerged seedlings. The �fth column

contains the cumulative proportion of emerged seedlings at each CHTT.

6.2 Density estimation and simulation study

A �rst goal is to determine the structure of the data by means of estimating the density.

For this, a suitable bandwidth selector, plug-in or bootstrap, has to be picked. A quick

�rst analysis of the data reveals that the average distance between CHTT is around 48

units for the �rst two experiments and 21 units for the third. Also, for each experiment,

the range of the data is roughly 602, 471 and 248 units, respectively. Dividing the former

by the latter in each experiment gives ω1 ≈ 0.081, ω2 ≈ 0.101 and ω3 ≈ 0.084. According

to our previous guidelines, the advise is to choose the plug-in selector whenever the data is

lightly grouped, and to choose the bootstrap selector otherwise. The values ω1, ω2 and ω3

suggest that data are somewhat heavily grouped, so, in principle, the bootstrap selector
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Figure 6.1: Kernel density estimation of P. paradoxa seedling emergence: (a) experiment 1 (Table

6.1), using bandwidth h∗MISE = 27.2; (b) experiment 2 (Table 6.2), with bandwidth h∗MISE = 33.7;

(c) experiment 3 (Table 6.3), using bandwidth h∗MISE = 13.0. The Gaussian kernel was used in

all three cases. 86
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Figure 6.2: Kernel density estimation of P. paradoxa seedling emergence: (a) experiment 1

(Table 6.1), using bandwidth ĥg = 16.5; (b) experiment 2 (Table 6.2), with bandwidth ĥg = 12.0;

(c) experiment 3 (Table 6.3), using bandwidth ĥg = 2.9. The Gaussian kernel was used in all three

cases. 87



should be chosen.

The possible structure of the data in each experiment is shown in Figures 6.1 and

6.2, using the bootstrap and plug-in selectors, repectively. As can be seen, the density

estimations in Figure 6.2 are too wiggly due to the relatively small bandwidths given by

the plug-in selector. On the other hand, softer and more reasonable structures are obtained

using the bootstrap selector.
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Figure 6.3: Kernel density estimation of P. paradoxa seedling emergence: (a) experiment 1 (Table

6.1), using the Sheather and Jones bandwidth ĥSJ = 2.5; (b) experiment 2 (Table 6.2), with

bandwidth ĥSJ = 6.9. The Gaussian kernel was used in both cases. It was not possible to obtain

the Sheather and Jones bandwidth using the data from experiment 3 (Table 6.3), due to the data

sparseness.

Besides, Figure 6.3 shows the density estimations when using the method of Sheather

and Jones, one of the most popular data-driven bandwidth selectors over the past years
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(Sheather and Jones, 1991). Clearly, the Sheather and Jones bandwidth selector is not

adequate at all to be used with grouped data, since due to the lack of information, it seems

to be even more sensitive than the plug-in bandwidth selector ĥg. Note that the Sheather

and Jones bandwidths are still lower than those given by the plug-in selector when using

data from experiments 1 and 2, and when using those from experiment 3, the method is

unable to deal with the data sparseness and hence giving no results. Thus, from now on,

the structures shown in Figure 6.1 will be considered.

At this point, the density estimations obtained for each experiment may be used by

weed scientists to determine probabilities of P. paradoxa seedling emergence. However,

one more step further will be given. Trusting on the visual impression and assuming

that the density estimations are valid, let us consider these estimates as a sort of �pilot�

density estimations and then propose acceptable models for the seedling emergence in

each experiment. In doing so, it is possible to test the recommendations for chosing the

bandwidth selector by means of a simulation study, considering samples from this models

and evaluating the density estimates based on plug-in or bootstrap selectors at di�erent

grouping conditions.

Reasonable normal mixtures for the seedling emergence patterns in the three experi-

ments considered are

f1 (x) =

3∑
i=1

α1iφµ1i,σ1i (x) ,

f2 (x) =

3∑
i=1

α2iφµ2i,σ2i (x)

and

f3 (x) =
3∑
i=1

α3iφµ3i,σ3i (x) ,

where φµ,σ is a N (µ, σ), µji is the i-th component of the j-th vector of means, σji is the

i-th component of the j-th vector of standard deviations, and αji is the i-th component

of the j-th vector of weights. Speci�cally, ~µ1 = (150, 230, 340), ~σ1 = (38, 25, 30), ~α1 =

(0.79, 0.16, 0.05); ~µ2 = (110, 340, 490), ~σ2 = (30, 48, 40), ~α2 = (0.30, 0.61, 0.09); ~µ3 =

(90, 175, 240), ~σ3 = (38, 25, 30), ~α3 = (0.83, 0.10, 0.07).

To assess the accuracy of the estimations at di�erent degrees of grouping, the mean inte-

grated squared error using the kernel density estimator with complete data, MISE
(
f̂h

)
,

considering (2.34) as the bandwidth selector , was considered as a reference. At each

grouping level, once the density was estimated, the integrated squared error ISE
(
f̂gh

)
=

´ [
f̂gh (u)− fj (u)

]2
du, for j = 1, 2, 3, was calculated. Then, to assess the accuracy, it was
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used the ratio ρ = ISE
(
f̂gh

)
/MISE

(
f̂h

)
.

This process is summarized in the following steps:

1. Consider a set of average interval lengths values
{
li
}
, i = 1, 2, 3, · · · ,m.

2. Consider the model fj , j = 1, 2, 3, and simulate a sample of size n0 = 170 (this

sample size is similar to those used in the three experiments).

3. At the i-th trial, group the data according to li.

4. Consider ωi = li/ri, where ri is the data range. The grouped data consists of the

midpoints of the intervals repeated as many times as the number of data in each

interval. Using this censored sample, obtain the bandwidth with both the plug-in

and bootstrap selectors.

5. Use each bandwidth to estimate the density and for j = 1, 2, 3, calculate ISEi
(
f̂gh

)
=

´ [
f̂gh (u)− fj (u)

]2
du.

6. Compute ρi = ISEi

(
f̂gh

)
/MISE

(
f̂h

)
.

7. In order to obtain the average trend, for each i, repeat the previous steps 1000

times and obtain the average ISEi
(
f̂gh

)
(i.e., the MISEi

(
f̂gh

)
). Then, compute

ρi = MISEi

(
f̂gh

)
/MISE

(
f̂h

)
.

As before in this work, the simulation was done using the environment for statistical

computing R (R Core Team, 2015).

Figure 6.4 shows the common logarithm of ρi and ρi at each value ωi for both the plug-

in and the bootstrap bandwidth selectors presented in Section 4.1, when simulating from

each of the three models proposed. In general, the �rst thing to note is that for small values

of ω, the average trend of log10 (ρ) is close to zero, which means that the MISEi

(
f̂gh

)
is quite close to the MISE

(
f̂h

)
. In other words, for ω up to around 0.075 (or a little

bit more in some case), both selectors perform well in general, and so, the kernel density

estimator for grouped data seems to perform as good as in the case of continuous data.

Nevertheless, it has to be mentioned that in the cases (b) and (c), the plug-in bandwidth

performs a bit better on average than the bootstrap one. Based on this, it could be said

that in cases of light grouping, although bootstrap selectors perform well, the �rst choice

should be the plug-in selector.

The situation is quite di�erent for large values of ω. Of course, since there is more

uncertainty in the data, it is naturally expected that density estimations get worse as the

degree of grouping increases. However, and because of that, it is remarkable to observe the

smaller error in density estimations when using the bootstrap with respect to the plug-in

selector.
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(a) (b) (c)
p.i. b p.i. b p.i b

ω

0.05 0.0095 0.0091 0.0552 0.2358 0.0512 0.1282
0.10 0.2405 0.0885 0.3315 0.4292 0.6929 0.3384
0.15 1.6945 0.2679 1.2615 0.6879 1.7774 0.6266
0.20 2.1798 0.5104 1.6216 0.8980 2.0585 0.9721

Table 6.4: log10 ρ for di�erent values of ω, considering the plug-in (p.i) and the bootstrap
(b) selectors in each of the three models proposed: (a) f1, (b) f2, (c) f3.

For example, when ω = 0.15 (which means that data is contained in around 7 intervals),

and considering the three models jointly, log10 (ρ) ranged from around 0.3 to 0.7, meaning

that the MISEi

(
f̂gh

)
ranged from approximately 2 to 5 times MISE

(
f̂h

)
. In contrast,

when using the plug-in selector, log10 (ρ) happend to range from around 1.3 to 1.8, so that,

on average, the ISEi
(
f̂gh

)
roughly went from 20 to 60 times the MISE

(
f̂h

)
. Moreover,

considering the most extreme grouping case, ω = 0.20 (data contained in just around �ve

intervals), note that log10 (ρ) did not surpass 1 when using the bootstrap selector; i.e., the

MISEi

(
f̂gh

)
was, overall the three models, at most 10 times MISE

(
f̂h

)
. On the other

hand, when using the plug-in selector, log10 (ρ) ≈ 2 in all three cases, meaning that the

MISEi

(
f̂gh

)
was around a hundred times MISE

(
f̂h

)
. Table 6.4 helps to clarify this.

To have an idea of how the density estimates look at di�erent grouping conditions,

three representative values for ω were considered: 0.05, 0.10, 0.15. The �rst still represents

light grouping; the second one may represent a degree of grouping somewhat in the border

between light and heavy grouping. The third one is clearly a case of heavy grouping. In

each case, the models f1, f2 and f3 were estimated considering the plug-in for the �rst

value of ω, and the bootstrap selector for the other two values.

Figure 6.5 shows how the estimates naturally become more and more de�cient as ω

increases. In the lightest case, the estimator is capable to approximate the structure

of the data in all cases. As the grouping e�ect increases, the quality of the estimations

diminishes, but it is worthy of attention that even when there are as few as 10 to 7 intervals,

the estimator is able to still reveal some of the structure of the data by choosing the right

bandwidth selector.

6.3 A comparison between kernel distribution estimation and

parametric approaches

At the beginning of this thesis, it was mentioned that in trying to assess the relationship

between seedling emergence and cumulative hydrothermal time, weed scientists have typi-

cally used parametric regression models. However, the main drawback of this approach is

perhaps its rigidity to capture complex details in the distribution, like thin spikes, heavy
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Figure 6.5: Kernel density estimation for: (a) model f1; (b) model f2; (c) model f3, all in solid

line. The dashed line corresponds to ω = 0.05, using the plug-in selector. The bootstrap selector

was used for ω = 0.10 (dotted line) and ω = 0.15 (dot-dashed line).
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tails or subtle details in certain zones. Nonparametric techniques are characterized by its

�exibility, which suggests that kernel distribution estimation could be a good option to

describe that relationship.

In this section, the performance of some nonlinear parametric regression models is com-

pared to the performance of the nonparametric kernel distribution estimator for grouped

data proposed in (5.1). Typical nonlinear regression models used in weed science are the

Logistic, Gompertz and Weibull models.

The R function nls can be used for �tting nonlinear regression. A common problem

when using nonlinear least-squares algorithms is that most of them require to specify start-

ing values for the parameters. For getting them automatically, the self-starting nonlinear

models can be used (see, for instance, Bates and Watts (1988) for a description of some

techniques for �nding starting values, and Pinheiro and Bates (2000) for more information

about the self-starting models available in R).

In R, Logistic, Gompertz and Weibull self-starting models are de�ned as follows:

� Logistic

mLΦ
(x) =

φ1

1 + exp [(φ2 − x) /φ3]

� Gompertz

mGΦ
(x) = φ1 exp [−φ2φ

x
3 ]

� Weibull

mWΦ
(x) = φ1 − φ2 exp

[
− exp (φ3)xφ4

]
,

where Φ is the vector of parameters in each model, and x may refer to the cumulative

hydrothermal time in the weed science context.

6.3.1 Comparison of goodness of �t to real data

In this subsection, the three real data sets (Tables 6.1, 6.2 and 6.3) will be used to compare

the goodness of �t of the above parametric models and the kernel distribution estimator

for grouped data. For this, the standard error of the estimate will be used, de�ned in

general as

S =

√√√√1

k

k∑
i=1

(Yi − Y ′i )2,

where Yi is the i-th observed value and Y ′i is the i-th model predicted value. In the present

context, Yi represents the observed cumulative emergence fraction at midpoint ti, F̂n (ti),

94



(a) (b) (c)
K 5.2 5.8 12.9
L 3.3 9.3 4.2
G 2.5 9.9 3.9
W 3.2 8.4 2.4

Table 6.5: Standard error of the estimate (multiplied by 100, for readability) when using kernel

distribution estimation (K), Logistic (L), Gompertz (G) and Weibull (W) regressions considering

data from: (a) Table 6.1, (b) Table 6.2, (c) Table 6.3.

and Y ′i may represent whether the kernel distribution estimation at ti, F̂
g
h (ti), or the

parametric regression estimation at ti, m̂Φ (ti).

Figure 6.6 shows the three parametric models considered �tted to the data, as well

as the kernel distribution estimation in each case. Regarding the �rst experiment data

(Figure 6.6 (a)), it seems that all the parametric models �t reasonably well. All three,

Logistic, Gompertz and Weibull regressions seem to �t very natural to the data, although

on the region near to zero, the latter does not satisfy the condition of being greater or

equal to zero, as a distribution function should be. Of course, this could be achieved by

setting some parameters beforehand, but this could be a disadvantage, because the model

would �t the data forcedly. In turn, the �exibility of the kernel distribution estimation

allows to better describe the data structure in the top right region, close to one, where all

the parametric models fall short due to its rigidity.

Figure 6.6 (b) shows data whose structure is somewhat more complicated. The location

of the points suggests that the parametric models will have serious problems to smoothly

adjust to the data, as can be con�rmed by the graphs. Again, some parameters could

be set in advance to try the models to �t the data while satisfying the characteristics of

a distribution function, but the result could be quite forced, or there may be errors due

the impossibility of convergence in the remaining parameters. It is in this situation where

the �exibility of the kernel distribution estimation method greatly exceeds the possibilities

of parametric methods. As can be seen in the �gure, it smoothly follows through the

empirical distribution function.

Figure 6.6 (c) shows a challenging situation, especially for parametric models. There

is an important lack of information regarding the cumulative emergence of seeds for small

values of the cumulative hydrothermal time. Since the data available corresponds only

to high values of the cumulative emergence, when leaving parameters to freely vary, the

parametric methods �assume� that the available points correspond to the top of a sigmoid,

whose bottom is located in a negative region for the cumulative hydrothermal time. This

is a nonsense region for a distribution function of seedling emergence. Hence, under these

circumstances, it is necessary to force parametric models to �t to the data �xing beforehand

some parameters, which in some cases may not lead to wise results.

An example of this is the Weibull model �t. As can be seen in Figure 6.6 (c), although
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Figure 6.6: Cumulative emergence data (solid dots) from: (a) Table 6.1, (b) Table 6.2, (c)

Table 6.3. The models �tted are the kernel distribution estimation (solid line), Logistic (dashed),

Gompertz (dotted) and Weibull (dotdashed). The empirical distribution function has also been

added (longdash). 96



they tend to oversimplify the structure, somewhat reasonable functions were obtained when

using Logistic or Gompertz regressions, but the Weibull one is unacceptable in the sense

that can generate discontinuities near zero. In contrast, the kernel distribution estimation

does not have any of the di�culties mentioned above, and just by appropriately choosing

the bandwidth may give quite reasonable results. Again, it can be seen how the kernel

distribution estimation smoothly passes through the empirical distribution function, being

able to better describe the upper part of the distribution.

Some information regarding the goodness of �t of the three parametric models and

the kernel distribution estimation can be seen in Table 6.5. In case (a), it is clear that

the location of the points favors the three parametric models to �t well to the data, as

con�rmed by the values of the standard error of the estimate. Besides, without necessarily

being a bad choice, the kernel distribution estimation has the worst punctuation.

Case (b) numerically con�rms what has been explained: the rigidity of the parametric

models makes it di�cult to adequately describe the distribution of such data. Clearly, the

kernel distribution estimation outperforms all of them, obtaining by far the best score.

Case (c) is worth to analyze. Apparently, just based on the standard error of the

estimate, any of the three parametric models could be considered as a better choice than

the kernel distribution estimation. However, some aspects should be taken into account

before deciding. On the one hand, the standard error of the estimate certainly supports

that the parametric models are, by far, closer to the observed data points than the kernel

distribution estimation, but, since they have been forced to meet some conditions, the

price to pay is that they oversimplify the structure. So, paradoxically, on average they

are closer to the data, but barely describe the distribution. On the other hand, the kernel

distribution estimation appears to be more distant to the data points, but it seems to

better describe the distribution. Indeed, its relatively high score regarding the standard

error of the estimate is mainly due to its vertical distance to the most left-handed data

point. This fact is, by the way, consistent with the lack of information on that region.

6.3.2 Comparison of goodness of �t to model distributions

Next, the goodness of �t of the parametric models and the kernel distribution estimator

will be tested by means of a simulation. It will be carried out obtaining samples from the

models f1, f2, f3, and reproducing the grouping conditions in each experiment. To evaluate

the closeness of the parametric models and the kernel density estimator for grouped data

to the model distributions F1, F2, F3, the MISE will be used.

To carry out the simulation, the grouping conditions of the data in each experiment

(see Tables 6.1, 6.2 and 6.3) were reproduced; i.e., based on the normal mixtures models

associated to each experiment, f1, f2 and f3 (see Section 6.2), samples were simulated and

grouped in such a way that the grouped samples had ω1 ≈ 0.081 when using f1, ω2 ≈ 0.101

and ω3 ≈ 0.084 when using f2 and f3, respectively.
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As for the kernel distribution estimation, the simulation went as follows:

1. Consider the model fj , j = 1, 2, 3, and simulate a sample of size n0 = 170.

2. Group the sample in such a way that the ratio l/r ≈ ωj . The grouped sample consists

of the midpoints of the intervals repeated as many times as the number of data in

each interval.

3. Considering the grouped sample, obtain the bandwidth using the Polansky & Baker

selector (2.56) and estimate the distribution over a suitable grid of values {xi}, i =

1, 2, 3, · · · ,m1, using F̂
g
h (Eq. 5.1).

4. Calculate the integrated squared error ISE

(
F̂ g
ĥPBg

)
=
´ [

F̂ g
ĥPBg

(u)− Fj (u)

]2

du,

where Fj is the distribution function related to the model fj ; i.e., F ′j = fj .

5. Repeat the process 1000 times and obtain the average and the standard deviation of

those thousand ISE

(
F̂ g
ĥPBg

)
.

As for the parametric models, the simulation went as follows:

1. Consider the model fj , j = 1, 2, 3, and simulate a sample of size n0 = 170.

2. Group the sample in such a way that the ratio l/r ≈ ωj . The grouped sample consists

of the midpoints of the intervals repeated as many times as the number of data in

each interval.

3. Using the grouped sample, estimate the empirical distribution function (Eq. 1.5)

over a suitable grid of points {xi}, i = 1, 2, 3, · · · ,m2.

4. With the set of pairs
[
xi, F̂n (xi)

]
, adjust the models mLΦ

, mGΦ
, mWΦ

and estimate

the parameter vector Φ by Φ̂.

5. For each model, obtain the ISE
[
mLΦ̂

]
, ISE

[
mGΦ̂

]
, ISE

[
mWΦ̂

]
.

6. Repeat the process 1000 times and obtain the average and standard deviation of

those thousand ISE for each model.

For the kernel distribution estimation and for the Polansky & Baker bandwidth selector,

the Gaussian kernel was used along with the R package kerdiest (Quintela-del-Río and

Estévez-Pérez, 2012).

Table 6.6 shows results about how well the set of estimated distribution and regression

curves approximate the actual underlying cumulative emergence curves Fj , j = 1, 2, 3.

Regarding the �rst model, f1, it can be noted that among the three parametric models

used, one of them, the Gompertz model, is a solid candidate to model the distribution F1
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(a) (b) (c)
Mean SD Mean SD Mean SD

K 0.182 0.148 0.450 0.398 0.207 0.148
L 0.319 0.180 2.592 1.168 0.793 0.347
G 0.187 0.154 3.124 1.766 0.464 0.196
W 4.532 7.239 3.995 1.032 NA NA

Table 6.6: Mean and standard deviation of the ISE using kernel distribution estimation (K),

Logistic (L), Gompertz (G) and Weibull (W) regressions when simulating samples from: (a) f1,

(b) f2, (c) f3.

of seedling emergence. But also, note that kernel distribution estimation is a very good

option for modelling seedling emergence under this model. Both Gompertz and kernel

distribution estimation have very similar performances concerning closeness to F1 (mean

ISE) and precision (SD). Knowing the rigidity of parametric models, F1 should be an

easy curve to describe, with no complex features nor very special variations. This can be

con�rmed in a sense by looking at Figure 6.1, plot (a). Despite some speci�c details of the

density on the right tail, its main feature is given by the big bell-shaped part on the left.

Concerning the second model, f2, the results show that its distribution F2 is a bit

more di�cult to approximate. Among the parametric models, the one that seems to

better perform is the Logistic, but the kernel distribution estimator clearly outperforms it.

Certainly, based on Figure 6.1, plot (b), it can be inferred that the combination of notably

high and low density zones gives the distribution some details that are di�cult to capture

by the rigid parametric models.

With respect to model f3, the Logistic and Gompertz models had better results than

those obtained in model f2, and regarding the self-starting Weibull algortihm, it was strik-

ing that for the majority of samples it was not capable of �nding the optimal parameters

for adjusting the model. This is, in fact, an added problem that may appear in practice,

and the ease of use of the automatic procedures should be replaced by manual procedures

in which the user has to �gure out either the starting values of the parameters or, plainly, to

select the optimal parameters �by eye�. In contrast, the nonparametric kernel distirbution

estimator performed very decently, obtaining similar results to those obtained in model f1.

Based on Table 6.6, Figure 6.7 shows examples of kernel distribution estimation com-

pared to the parametric regression �ts in each model. In (a), except the Weibull one,

Logistic and Gompertz regressions as well as the kernel distribution estimation �t very

well and very similarly to each other, although the nonparametric method seems to adjust

better at subtle features of the distribution, like at the most upper right or bottom left

part of the plot. These little di�erences may give this method a slight advantage over the

parametric regression, as numbers con�rm in Table 6.6.

Case (b) clearly shows that sometimes, parametric models may be innapropiate, as

they may simplify too much. Even though it is not a very complex one, the structure of
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Figure 6.7: Comparison between kernel distribution estimation (solid, black line) and parametric

regressions: Logistic (dashed), Gompertz (dotted), Weibull (dotdashed). The actual distributions

(a) F1, (b) F2, (c) F3, are in grey, thick solid line.
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the data gives the distribution function special characteristics that are impossible for the

parametric model to reproduce. It is in cases like this where the �exibility of nonparametric

methods is very suitable.

Case (c) is somewhat similar to case (b), in the sense that the distribution shows speci�c

features that the parametric model cannot reproduce, tending to oversimplify the structure.

Although the Gompertz regression model roughly gives a good �t, the nonparametric

approach is able to more �nely describe those subtle details, mainly at the most upper

right part of the plot. The other two regression models are clearly out of consideration.

6.4 Summary

In this chapter, kernel density estimation has been used for estimating the structure of

three grouped data sets coming from real experiments performed in weed science. These

data sets consist of the number of seedlings (P. paradoxa) emerged at certain cumulative

hydrothermal times.

By means of rightly choosing the bandwidth, kernel density estimation proved to be

an e�ective tool for �nding structure in the data, even though the data sets were heavy

grouped. Taking those pilot density estimations as a reference, suitable normal mixture

models were proposed for describing the emergence of seedlings, allowing subsequent sim-

ulation studies where the plug-in and bootstrap bandwidth selectors were tested under

di�erent grouping conditions.

The results con�rmed what was seen in previous chapters; namely,

1. If data grouping is light (ω < 0.075), both plug-in or bootstrap bandwidth selectors

may be used, although it is slightly preferable to use the plug-in selector.

2. In case of heavy grouping (ω > 0.075), the plug-in selector is not recommended at

all, and the bootstrap selector should be prefered in any case.

Proceeding in this way, the density estimation error remained under control in both cases,

but most importantly, it remained fairly bounded in cases of heavy grouping, allowing

kernel density estimator to detect most or some of the data structure, even in cases of very

heavy grouping.

The �rst sumulation study showed that some densities are more di�cult to estimate

than others. Those having multiple modes or alternated areas of high and low density

(spiky modes) are more complicated for the kernel density estimator. This was to be

expected: if grouping itself hides valuable information about the density of the data, the

loss of information becomes more pronounced in cases of greater curvature. The latter,

and considering that only a single bandwidth all over the support is used for capturing

information, make these type of densities more challenging to estimate. Nevertheless, using
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the adequate bandwidth selector according to the degree of grouping, the estimator showed

to overcome that problem to some extent.

On the other hand, a comparison of the goodness of �t of nonlinear parametric re-

gression methods and the kernel distribution estimator was made considering the three

real data sets available. It showed that, unless the distribution is relatively smooth and

sigmoidal shape, the former may have serious problems to describe some speci�cs of the

data distribution. Instead, the nonparametric method proved to be a good choice overall,

giving quite competitive results both with sigmoidal or more curvy distributions functions.

Moreover, the comparison of goodness of �t between the already mentioned methods

was also made by means of a simulation study. By simulating the same grouping conditions

found in the three real grouped data sets, this study corroborated that, on average, the

kernel distribution estimator performed quite competitive or better than those traditional

parametric approaches used in weed science. Thus, kernel distribution estimation is a

valid option for describing the relationship between seedling emergence and cumulative

hydrothermal time. Furthermore, its �exibility was found to be really helpful in describing

structures that are not that simple, as those having more than one mode or having subtle

features or variations in the density. Parametric models, due to its rigidity, showed to be

limited for describing those cases.
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Discussion and conclusions

After all the theoretical and computational work done in this dissertation, this chapter

presents a conceptual discussion of both the statistical tools that have been proposed and

the results obtained. Also, the main conclusions of this work are set and some research

lines for the future are identi�ed, which could help to get a deeper understanding about

the problems posed by the limited information provided by grouped data compared to

complete data.

Discussion

Samples of grouped data are very useful in descriptive statistics, since in just a glance,

they give an idea of how the data at hand are distributed. This simplicity makes tools like

the histogram so popular in various areas of knowledge. However, while an advantage in

some sense, grouped data can also be a disadvantage if inferences are desired within a high

degree of accuracy.

An example of the latter is the problem that gave rise to this thesis: in weed science,

it is essential to estimate probabilities of seedling emergence as accurately as possible,

since implementing e�cient programs to eradicate weeds depends on them. When from

experimental reasons data are obtained in grouped fashion (i.e., data cannot be ungrouped),

making clear-cut inferences is an issue that can be challenging. This is essentially the

problem that this thesis has tried to solve.

The problem at hand has been tackled trying to be simple, but formal. Thus, since

the theory shows that the kernel estimator (whether for estimating the density or the dis-

tribution) is asymptotically more e�cient than very basic tools like the histogram or the

empirical distribution function, the natural choice has been to choose the kernel estimator

and to propose a suitable modi�cation, so it can be used with grouped data. This modi�-

cation is, essentially, a way to disaggregate the data. Since it is not even known the way in

which the data are distributed into any interval, the easiest way of disaggregation has been

to propose the midpoint of every interval as a representative of the data whithin, and to

consider it as many times as data therein. In other words, it has been implicitly assumed

that the distribution of the data within the intervals is symmetric, which occurs when the
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probability density function, in a given interval, is symmetric. The simplest case of this

situation is that of a constant density within every interval.

The above is, perhaps, the �rst of the limitations of the estimator that can be pointed

out. This lets us understand one of the reasons why, in general, kernel density (or distri-

bution) estimation for grouped data gets better as the interval lengths decreases. Assume

there is a nontrivial density function (i.e., one with a certain degree of curvature). There

could be some cases in which, by chance, one or more intervals capture a symmetric region

of the density, so that, in these cases, the midpoint choice is adequate. Nevertheless, it

is not reasonable to expect that to happen with all intervals and, therefore, the choice of

the midpoint is not suitable, in general, when the intervals are large. On the other hand,

when the intervals are small, to consider that the region of the density captured by the

intervals is symmetric is not that severe; hence, the distance between the truly represen-

tative point of the data whithin the intervals and the midpoints tends to be small. This

reasoning leads to think that some improvement in the quality of the estimates can be

achieved when considering more complex forms of disaggregating the data.

The choice of representative data points in�uences the way in which the asymptotic

properties of the estimator are obtained. Based on the experience of weed scientists, in

this dissertation, it has been considered that the intervals are of di�erent length and that

they remain �xed from one experiment to another. From the statistical point of view, this

means that from one trial to another, the observed random quantity is the number (or

the proportion) of data within the intervals, but not the midpoints. Indeed, considering

a scheme in which intervals change from trial to trial (and therefore, the midpoints as

well) adds a source of variability. From the mathematical point of view, it represents an

additional challenge in obtaining the asymptotic properties of the estimator. Of course,

to consider other criteria of data disaggregation could also increase the complexity of the

mathematical treatment.

In addition to the suitability of the midpoints as representative of the data within

the intervals, another factor that a�ects the quality of the estimation is the bandwidth

selection. In this sense, it has been proved that under the assumptions made about the

density and kernel functions, as well as the variability of the intervals and their asymp-

totic relationship to the bandwidth, the expression for the AMISE optimal bandwidth

selector for grouped data fairly coincides with the AMISE optimal bandwidth selector

for ungrouped data. It is important to note that this is only true when those assumptions

hold. Otherwise, the non leading terms of the Taylor's representation of the MISE are

not negligible, and that AMISE expression is not a good approximation of the MISE.

Naturally, this leads us to basically distinguish two scenarios: light and heavy grouping.

Speaking in these terms, the use of the plug-in selector is only indicated in cases of light

grouping (that is why the non-leading terms of the Taylor's representation of the MISE

actually vanish). However, it became necessary to de�ne what is meant by light grouping
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in practice. Moreover, it was also necessary to propose an alternative selector for those

cases in which the plug-in is not adequate; i.e., heavy grouping cases.

Given a reasonable sample size and di�erent sets of intervals, the di�erent simulations

performed helped to identify what light grouping is in practice. Facing applications, the

importance of this is huge, since it allows to establish guidelines on when to conveniently

use the plug-in selector. For those cases in which the plug-in selector cannot be used,

it was proposed a bootstrap bandwidth selector, which is based on minimizing a closed

expression of the bootstrap version of the MISE.

The results obtained when using the bootstrap bandwidth selector where highly satis-

factory. A preliminary reading of the results showed that the bootstrap bandwidth selector

outperformed the plug-in in general. Although the plug-in selector slightly outperformed

the bootstrap selector in cases of light grouping, the bootstrap selector clearly had a bet-

ter performance than the plug-in selector in cases of heavy grouping. It is important to

highlight that the bootstrap bandwidth selector has the valuable advantage of getting pilot

information about the distribution, since it operates by �rst obtaining a pilot estimation,

for which it is necessary a pilot bandwidth. This way, it reproduces important features

of the distribution under any scenario or sample size. The key is to adequately select the

pilot bandwidth. To do that, a proper estimation of the curvature is needed.

Another viewpoint to study the structure of the data is through the distribution func-

tion. As derived from the kernel density estimator for grouped data, the kernel distribution

estimator for grouped data showed to be an e�ective tool due to the good performance of

its own plug-in bandwidth selector. However, compared with the kernel density estimator,

it was observed a subtle di�erence that may be important in practice: the kernel distribu-

tion estimator is somewhat more �robust� than the kernel density estimator, since slighlty

di�erent bandwidth selections from the optimal bandwidth do not have such a great impact

on the distribution estimation, as it occurs in the case of kernel density estimation. This

di�erence gives the kernel distribution estimator certain advantage in practice, as it seems

to be more resistant to the presence of heavy grouping; i.e., it may perform acceptably

in cases when the kernel density estimator for grouped data fails, hence, needing the use

of more elaborated selectors, like the bootstrap. This evidence suggests that it would be

very interesting to propose an alternative bandwdith selector for the kernel distribution

estimator for grouped data, to be used in cases of heavy or very heavy grouping.

The chapter about applications to real data con�rmed that kernel density and distri-

bution estimators for grouped data are worth to study. The real datasets showed di�erent

types of structures that allowed to evaluate the performance of these estimators in such

contexts. Despite considering more complex densities (i.e., with more curvature), it was

positively striking to note that the guidelines obtained in previous chapters, based on rel-

atively smooth densities, were still valid to some extent to identify regions of light and

heavy grouping. Of course, the more the curvature, the more di�cult for both estimators
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to estimate the structure of the data, and regions of heavy or light grouping may slightly

change. However, it seems that the boundary between light and heavy grouping can be

identi�ed within certain ranges, regardless of the complexity of the data structure.

The last of the applications turned out to be quite innovative and successful. When

comparing the kernel distribution estimator versus the typical nonlinear regression models

used by weed scientists, it was observed that the �exibility of the nonparametric tool can

be decisive to adequately describe the data structure without actually oversimplifying, as

may occur with some parametric methods. These subtle di�erences (or sometimes not that

subtle) can make the di�erence between accurate and inaccurate seedling emergence pre-

diction, which is the basis for proper implementation of mechanisms for weed erradication,

a matter of great importance from the social and economical standpoint.

Finally, it is worth mentioning that most of the contents of this study have been

submitted (or are about to be sent) to specialized journals on the subject (Reyes et al.

(2015a), Reyes et al. (2015b), González-Andujar et al. (2015)).

Conclusions

The �ndings are encouraging. On the one hand, the objective of smoothly estimating the

density or the distribution function when the data at hand are grouped has been met, which

in the case of weed science, it means to be able to obtain more accurate probabilities of

seedling emergence. On the other hand, a complete and formal theoretical work has been

done regarding the asymptotic properties of the kernel density and distribution estimators

proposed, as well as a comprehensive study regarding some bandwidth selectors. These

bandwidth selectors have proven to be e�ective in di�erent grouping scenarios, keeping

the estimation error relatively under control. Lastly, helpful guidelines of use have been

established for identifying light and heavy grouping in practice.

There are some possible future work lines. For example,

1. To explore more complex criteria of data disaggregation, which, in turn, would entail

more complex mathematical treatments.

2. To look for an automatic plug-in bandwidth selector for grouped data in both kernel

density and distribution estimation cases (perhaps, by a possible modi�cation to the

plug-in selector that allows to automatically correct the lack of information when

working with grouped data, specially in heavy grouping scenarios).

3. Since the estimation of the curvature is a key for both selectors (the plug-in and

the bootstrap), it will be helpful to consider more elaborate and e�ective ways for

estimating the curvature.

4. Besides the plug-in, to propose alternative bandwidth selectors in the case of the
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kernel distribution estimation for grouped data. Presumably, this would considerably

improve the performance of this tool in cases of heavy or very heavy grouping.

5. To apply the proposed nonparametric estimators considering data coming from other

areas of knowledge. Also, to consider more complex data structures.

6. To consider other approaches, like nonparametric isotonic regression, or more com-

plex models like those based on nonhomogeneous Poisson processes.
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Appendix A

Notation

This is a summary of some of the main notation used in this dissertation.

Let % be a real valued univariate function.

� %h (u) = 1
h%
(
u
h

)
, for h > 0.

�

´
% (x) dx =

´∞
−∞ % (x) dx.

� %(r) (x) = dr

dxr % (x).

� A (%) =
´
% (x)2 dx.

� µl (%) =
´
xl% (x) dx.

� The convolution of % and %0, where %0 is another real valued function, is represented

by

(% ∗ %0) (x) =

ˆ
% (x− u) %0 (u) du.

� Given a density f and r an even integer,

ψr =

ˆ
f (r) (x) f (x) dx.

Let an and bn be two real valued deterministic sequences.

� an = O (bn) as n→∞ if and only if lim supn→∞ |an/bn| <∞.

� an = o (bn) as n→∞ if and only if limn→∞ |an/bn| = 0.

� an ∼ bn if and only if limn→∞ (an/bn) = 1.

Some other abbreviations:

� HTT: hydrothermal time.
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� CHTT: cumulative hydrothermal time.

� MSE: mean squared error.

� MISE: mean integrated squared error.

� AMSE: asymptotic mean squared error.

� AMISE: asymptotic mean integrated squared error.
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Appendix B

Asymptotic notation and Taylor

expansion

Order and asymptotic notation

The order notation O (�big oh�) and o (�little oh�) is commonly used for the large sample

analysis of density estimators. Although this notation is de�ned for general real valued

functions (Ser�ing, 1980), in this context it will be enough to consider it for real valued

sequences.

Let an and bn be sequences of real numbers. On the one hand, it is said that an is �big

oh� bn (i.e., an is of order bn) as n increases, which is written as an = O (bn), if and only if

lim
n→∞

sup

∣∣∣∣anbn
∣∣∣∣ <∞;

that is to say, an = O (bn) if
∣∣∣anbn ∣∣∣ remains bounded as n increases.

On the other hand, it is said that an is �little oh� bn (i.e., an is of small order bn) as n

increases, written as an = o (bn), if and only if

lim
n→∞

∣∣∣∣anbn
∣∣∣∣ = 0.

In the case of sequences, it is usually understood that n increases with no limit, so the

condition �as n→∞� will be assumed.

Besides, the notation an = O (1) means that an is bounded, and an = o (1) means that

an approaches to zero as n increases. It is also said that an is asymptotically equivalent to

bn, which is expressed as an ∼ bn, if and only if

lim
n→∞

an
bn

= 1.
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Taylor expansion

Taylor expansion is a very useful tool for getting asymptotic approximations. Let f be an

m+ 1 times di�erentiable function. Then, Taylor's theorem states that

f (x) = f (a)+f ′ (a) (x− a)+
1

2!
f ′′ (a) (x− a)2+...+

1

m!
f (m) (a) (x− a)m+Rm(x). (B.1)

The polynomial

f (a) + f ′ (a) (x− a) +
1

2!
f ′′ (a) (x− a)2 + ...+

1

m!
f (m) (a) (x− a)m

is called the m-th Taylor expansion of f around a, and Rm(x) is called the remainder term.

A possible explicit expression for Rm is the following, due to Lagrange,

Rm(x) =
1

(m+ 1)!
f (m+1) (c) (x− a)m+1 , (B.2)

for some value c between x and a. When x is near a, Rm(x) is small and Rm(x) =

o ([x− a]m) when x→ a.

In some multivariate applications, Taylor's theorem is also very useful. Let ~x and ~x0

be d-dimensional vectors. Then, the second order Taylor's formula is

f (~x) = f ( ~x0) +
d∑
i=1

(xi − x0i)
∂f

∂xi
( ~x0) +

1

2

d∑
i,j=1

(xi − x0i) (xj − x0j)
∂2f

∂xi∂xj
( ~x0) +

R2 (~x, ~x0) ,

where

R2 (~x, ~x0) =
1

3!

d∑
i,j,k=1

∂3f

∂xi∂xj∂xk
(~c) (xi − x0i) (xj − x0j) (xk − x0k) ,

and ~c is somewhere on the line joining ~x and ~x0.
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Appendix C

Some useful results

Result C.1. Under Assumption 3.4,

lmax = O
(
l
)
.

Proof. By de�nition,

lmax = max
i
|li| . (C.1)

Adequately modifying (C.1), in terms of l,

lmax = max
i

∣∣li − l + l
∣∣ 6 l + max

i

∣∣li − l∣∣ .
But, from assumption 3.4, maxi

∣∣li − l∣∣ = o
(
l
)
. Hence,

lmax = O
(
l
)
. (C.2)

Result C.2. Under Assumption 3.4,

l2 = l
2

+ o
(
l
2
)
.

Proof. By de�nition,

l2 =
1

k

k∑
i=1

l2i .

The last expression can be modi�ed as
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1

k

k∑
i=1

l2i =
1

k

k∑
i=1

li
(
li − l

)
+

1

k
l
k∑
i=1

li,

from which,

l2 = l
2

+
1

k

k∑
i=1

li
(
li − l

)
. (C.3)

Bounding the second term on the right hand side of (C.3),

∣∣∣∣∣1k
k∑
i=1

li
(
li − l

)∣∣∣∣∣ 6 1

k
max
i

∣∣li − l∣∣ k∑
i

li

6 o
(
l
2
)
,

since from assumption 3.4, maxi
∣∣li − l∣∣ = o

(
l
)
. Finally, going back to (C.3),

l2 = l
2

+ o
(
l
2
)
. (C.4)

Result C.3. Under Assumption 3.4 and Eq. (C.2),

max
i

∣∣∣l2i − l2∣∣∣ = o
(
l
2
)
.

Proof. Adequately modifying
∣∣∣l2i − l2∣∣∣,

∣∣∣l2i − l2∣∣∣ =
∣∣∣l2i − lil + lil − l2

∣∣∣
6 li

∣∣li − l∣∣+
∣∣∣lil − l2∣∣∣

6 lmax max
i

∣∣li − l∣∣+
∣∣∣lil − l2∣∣∣ . (C.5)

Let us �nd an upper bound for
∣∣∣lil − l2∣∣∣.
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∣∣∣lil − l2∣∣∣ =

∣∣∣∣∣∣li 1k
k∑
j=1

lj −
1

k

k∑
j=1

l2j

∣∣∣∣∣∣
=

∣∣∣∣∣∣1k
k∑
j=1

(
lilj − l2j

)∣∣∣∣∣∣
6

1

k

k∑
j=1

lj |li − lj |

6
1

k

k∑
j=1

lj
(∣∣li − l∣∣+

∣∣l − lj∣∣) ,
but 1

k

∑k
j=1 lj

(∣∣li − l∣∣+
∣∣l − lj∣∣) = l

∣∣li − l∣∣+ 1
k

∑k
j=1 lj

∣∣l − lj∣∣. Then,
∣∣∣lil − l2∣∣∣ 6 l

∣∣li − l∣∣+
1

k

k∑
j=1

lj
∣∣l − lj∣∣

6 lmax
i

∣∣li − l∣∣+ lmax
i

∣∣l − li∣∣
6 2lmax

i

∣∣l − li∣∣ .
Now, going back to Eq. (C.5),

∣∣∣l2i − l2∣∣∣ 6 lmax max
i

∣∣li − l∣∣+ 2lmax
i

∣∣l − li∣∣
6
[
lmax + 2l

]
max
i

∣∣li − l∣∣ . (C.6)

Eq. (C.6) is valid for all i, particularly for the maximum. So,

max
i

∣∣∣l2i − l2∣∣∣ 6 [lmax + 2l
]

max
i

∣∣li − l∣∣
6 O

(
l
)
o
(
l
)

6 o
(
l
2
)
, (C.7)

since by Assumption 3.4 and the Eq. (C.2), maxi
∣∣li − l∣∣ = o

(
l
)
and lmax = O

(
l
)
.

Result C.4. Consider the distribution function F at the endpoints yi and yi−1. By Taylor's

theorem, there exist some τi ∈ [ti, yi] and τi−1 ∈ [yi−1, ti] such that
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F (yi) = F (ti) + F ′ (ti) (yi − ti) +
1

2
F ′′ (ti) (yi − ti)2 + · · · (C.8)

+
1

m!
F (m) (ti) (yi − ti)m +

1

(m+ 1)!
F (m+1) (τi) (yi − ti)m+1 ,

and

F (yi−1) = F (ti) + F ′ (ti) (yi−1 − ti) +
1

2
F ′′ (ti) (yi−1 − ti)2 + · · · (C.9)

+
1

m!
F (m) (ti) (yi−1 − ti)m +

1

(m+ 1)!
F (m+1) (τi−1) (yi−1 − ti)m+1 .

Substracting (C.9) from (C.8), we have

F (yi)− F (yi−1) =
m∑
j=1

1

j!
F (j) (ti)αji +Rτ , (C.10)

where

Rτ =
1

(m+ 1)!

[
F (m+1) (τi) (yi − ti)m+1 − F (m+1) (τi−1) (yi−1 − ti)m+1

]
(C.11)

and

αji =

(
li
2

)j
−
(
− li

2

)j
=

0 for j even

2
(
li
2

)j
else

. (C.12)

Next, it will be proved that under Assumption 3.2,

|(m+ 1)!Rτ | 6 2LF (m+1)

(
li
2

)m+2

+ ‖ F (m+1) ‖∞ αm+1,i,

where LF (m+1) is the Lipschitz constant of Fm+1.

Proof. Let us add F (m+1) (ti)− F (m+1) (ti) to both F (m+1) (τi) and F (m+1) (τi). Through

associative operations we have

∣∣∣F (m+1) (τi) o1 − F (m+1) (τi−1) o2

∣∣∣ 6
∣∣∣F (m+1) (τi)− F (m+1) (ti)

∣∣∣ |o1|

+
∣∣∣F (m+1) (τi−1)− F (m+1) (ti)

∣∣∣ |o2|

+
∣∣∣F (m+1) (ti)

∣∣∣ |αm+1,i| ,
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where o1 =
(
li
2

)m+1
and o2 =

(
− li

2

)m+1
.

As long as F (m+1) is Lipschitz,∣∣∣F (m+1) (τi)− F (m+1) (ti)
∣∣∣ 6 LF (m+1) |τi − ti| ,

and ∣∣∣F (m+1) (τi−1)− F (m+1) (ti)
∣∣∣ 6 LF (m+1) |τi−1 − ti| .

Since |τi − ti| 6 1
2 li and |τi−1 − ti| 6 1

2 li, then,

∣∣∣F (m+1) (τi) o1 − F (m+1) (τi−1) o2

∣∣∣ 6 LF (m+1) lio1+ ‖ F (m+1) ‖∞ αm+1,i, (C.13)

or, equivalently, recalling (C.11) ,

|(m+ 1)!Rτ | 6 2LF (m+1)

(
li
2

)m+2

+ ‖ F (m+1) ‖∞ αm+1,i. (C.14)

Result C.5. Under Assumptions 3.1 and 3.3, for a �xed x ∈ (y0, yk) and a su�ciently

large sample size n,

ˆ yk

y0

φ′′1 (t) dt = φ′1 (yk)− φ′1 (y0) = 0,

where φ1 (t) ≡ F ′ (t)K
(
x−t
h

)
.

Proof. By de�nition,

φ′1 (t) = F ′ (t)K ′
(
x− t
h

)(
−1

h

)
+K

(
x− t
h

)
F ′′ (t) .

Consider a �xed point x ∈ (y0, yk). Then, x− y0 = d0 > 0, so,

φ′1 (y0) = F ′ (y0)K ′
(
d0

h

)(
−1

h

)
+K

(
d0

h

)
F ′′ (y0) .

Using Assumption 3.3, since h approaches to zero as n increases, there is a su�ciently

large sample size n such that d0/h > 1. By Assumption 3.1, the kernel support is [−1, 1].

Then, K
(
d0
h

)
= K ′

(
d0
h

)
= 0. Thus,

φ′1 (y0) = 0.

When choosing yk, x− yk = dk < 0. As before, there is a su�ciently large sample size

n such that d0/h < −1, so that K
(
dk
h

)
= K ′

(
dk
h

)
= 0. Then,
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φ′1 (yk) = 0,

and

ˆ yk

y0

φ′′1 (t) dt = φ′1 (yk)− φ′1 (y0) = 0. (C.15)

Result C.6. Under assumption 3.1 and Eq. (C.7),∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′1 (t) dt

∣∣∣∣∣ 6 o

(
l
2

h

)
.

Proof. On the one hand, based on the de�nition, the �rst and second derivatives of φ1 (t)

are

φ′1 (t) = F ′ (t)K ′
(
x− t
h

)(
−1

h

)
+K

(
x− t
h

)
F ′′ (t)

and

φ′′1 (t) = K

(
x− t
h

)
F ′′′ (t)− 2

h
F ′′ (t)K ′

(
x− t
h

)
+

1

h2
F ′ (t)K ′′

(
x− t
h

)
.

Note that if t /∈ [x− h, x+ h],
∣∣x−t
h

∣∣ > 1; hence, φ′′1 (t) = 0. Otherwise,

∣∣φ′′1 (t)
∣∣ 6‖ φ10 ‖∞ +

1

h
‖ φ11 ‖∞ +

1

h2
‖ φ12 ‖∞ . (C.16)

where φ10(t) = K
(
x−t
h

)
F ′′′ (t), φ11 (t) = −2F ′′ (t)K ′

(
x−t
h

)
and φ12 (t) = F ′ (t)K ′′

(
x−t
h

)
.

On the other hand, using (C.7)

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′1 (t) dt

∣∣∣∣∣ 6 max
i

∣∣∣l2i − l2∣∣∣ k∑
i=1

∣∣∣∣∣
ˆ yi

yi−1

φ′′1 (t) dt

∣∣∣∣∣
6 o

(
l
2
)ˆ yk

y0

∣∣φ′′1 (t)
∣∣ dt,

and since φ′′1 (t) = 0 ∀ t ∈ [x− h, x+ h], then∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′1 (t) dt

∣∣∣∣∣ 6 o
(
l
2
)ˆ x+h

x−h

∣∣φ′′ (t)∣∣ dt. (C.17)

Considering Eq. (C.16),
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ˆ x+h

x−h

∣∣φ′′1 (t)
∣∣ dt 6‖ φ10 ‖∞

ˆ x+h

x−h
dt+

‖ φ11 ‖∞
h

ˆ x+h

x−h
dt+

‖ φ12 ‖∞
h2

ˆ x+h

x−h
dt

6 2h ‖ φ10 ‖∞ +2 ‖ φ11 ‖∞ +
1

h
‖ φ12 ‖∞

= O

(
1

h

)
,

and so, Eq. (C.17) becomes∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′1 (t) dt

∣∣∣∣∣ 6 o

(
l
2

h

)
. (C.18)

Theorem C.1. Ostrowski's inequality. Let f be a continuous real function such that

f ∈ C1 ([a, b]), x ∈ (a, b). Then, for all x ∈ (a, b),

∣∣∣∣f (x)− 1

b− a

ˆ b

a
f (t) dt

∣∣∣∣ 6
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)Lf, (C.19)

where Lf =‖ f′ ‖∞ is the Lipschitz constant for f. (Ostrowski, 1938; Anastassiou, 1995).

Theorem C.2. Multivariate Ostrowski's inequality. Let f ∈ C1 (Π [ai, bi]), where

ai < bi; ai, bi ∈ R, i = 1, ..., k, and let ~x0 = (x01, ..., x0k) ∈ Πk
i=1 [ai, bi] be �xed. Then,

∣∣∣∣f (~x0)− 1

Πk
i=1ci

ˆ b1

a1

· · ·
ˆ bk

ak

f (Z1, . . . , Z) dZ1 . . . dZk

∣∣∣∣ 6 k∑
i=1

[
c2a0i + c2b0i

2ci

] ∥∥∥∥ ∂f∂Zi
∥∥∥∥
∞
,

(C.20)

where ca0i = (x0i − ai), cb0i = (bi − x0i) and ci = bi−ai. Clearly, Eq. (C.20) generalizes
Eq. (C.19) (Anastassiou, 1997).
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Appendix D

Proof of Theorem 3.1

Proof. To prove Theorem 3.1, Taylor's theorem (Appendix B) will be used intensively.

Let us �rst obtain the bias of the estimator f̂gh . Applying the expectation operator to

(3.2), we obtain

E
[
f̂gh (x)

]
=

1

h

k∑
i=1

K

(
x− ti
h

)
E [wi]

=
1

h

k∑
i=1

K

(
x− ti
h

)
pi

=
1

h

k∑
i=1

K

(
x− ti
h

)
[F (yi)− F (yi−1)] , (D.1)

where pi = [F (yi)− F (yi−1)] is the di�erence of the distribution function evaluated at the

limits of the i-th interval, and all the e�ect of grouping the data is in pi. According to our

objectives, to get it in a more tractable and intuitive form, let us use a Taylor expansion

of pi around ti. This was already done in (C.10):

F (yi)− F (yi−1) =

m∑
j=1

1

j!
F (j) (ti)αji +Rτ , (D.2)

where the values of αji = (yi − ti)j − (yi−1 − ti)j are given in (C.12) and Rτ is given in

Eq. (C.11).

An aspect to consider is how many terms we should take into account in (C.10). For

this, consider Eq. (C.14). Note that taking m+ 1 as an even number simpli�es the result,

since by the parity conditions (C.12), the second term on the right hand side is zero. Then,

taking m + 1 = 2 would be too little, with just one leading term, and taking more than

four would be too much and unnecessary. Then, m + 1 = 4 seems an adequate choice,

giving:

119



E
[
f̂gh (x)

]
=

1

h

k∑
i=1

K

(
x− ti
h

)[
F ′ (ti)α1i +

1

3!
F ′′′ (ti)α3i +Rτ

]
,

=
1

h
(A+B + C) , (D.3)

where

A =
k∑
i=1

liF
′ (ti)K

(
x− ti
h

)
,

B =
1

24

k∑
i=1

l3iF
′′′ (ti)K

(
x− ti
h

)
and

C =
1

24

k∑
i=1

K

(
x− ti
h

)[
F (4) (τi)

(
li
2

)4

− F (4) (τi−1)

(
− li

2

)4
]
.

Note that there are two leading terms (since the term containing α2i is zero) plus the

remainder, which can be easily bounded by (C.14).

Recall that the number of intervals k increases as the sample size does, so we may then

approximate A and B by integrals over the support. Recall φ1 (t) = F ′ (t)K
(
x−t
h

)
. Then,

A =
k∑
i=1

liφ1 (ti) .

Using again a Taylor expansion, the integral over the i-th interval can be expressed as

ˆ yi

yi−1

φ1 (t) dt =

ˆ yi

yi−1

[
φ1 (ti) + (t− ti)φ′1 (ti) +

1

2
(t− ti)2 φ′′1 (ti)

+
1

3!
(t− ti)3 φ′′′1 (ti) +

1

4!
(t− ti)4 φ

(4)
1 (ξi)

]
dt,

for some ξi between t and ti. Then, using the change of variable

s = t− ti (D.4)

and by the parity properties in (C.12),

ˆ yi

yi−1

φ1 (t) dt = liφ1 (ti) +
1

24
l3i φ
′′
1 (ti) +

1

4!80
l5i φ

(4)
1 (ξi) . (D.5)

Adding all over the k intervals in both sides of (D.5),

120



ˆ yk

y0

φ1 (t) dt =

k∑
i=1

liφ1 (ti) +
1

24

k∑
i=1

l3i φ
′′
1 (ti) +

1

4!80

k∑
i=1

l5i φ
(4)
1 (ξi) , (D.6)

i.e., since the �rst term on the right hand side of (D.6) is A,

A =

ˆ yk

y0

φ1 (t) dt− 1

24

k∑
i=1

l3i φ
′′
1 (ti)−

1

4!80

k∑
i=1

l5i φ
(4)
1 (ξi) . (D.7)

Look that, by the de�nition of φ1 (t), every time we di�erentiate the function, we

will get an h in the denominator, so that the n-th derivative of φ1 (t) has the following

expression

φ
(n)
1 (t) = φ10 +

1

h
φ11 +

1

h2
φ12 + ...+

1

hn
φ1n, (D.8)

where φ10, φ11, ..., φ1n are functions of products of derivatives of F ′ (t) and K
(
x−t
h

)
. So,

∣∣∣∣∣
k∑
i=1

l5i φ
(4)
1 (ξi)

∣∣∣∣∣ 6 kl5max ‖ φ
(4)
1 ‖∞

=
yk − y0

l
O
(
l
5
)
O

(
1

h4

)
= O

(
l
4

h4

)
, (D.9)

where we used the result (C.2), we also used that l = yk−y0

k , and by Eq. (D.8), ‖ φ(4)
1 ‖∞=

O
(
h−4

)
.

Let us go back to Eq. (D.7). The second term on the right hand side can be decomposed

as

1

24

k∑
i=1

l3i φ
′′
1 (ti) =

1

24

[
k∑
i=1

(
l2i − l2

)
liφ
′′
1 (ti) + l2

k∑
i=1

liφ
′′
1 (ti)

]
. (D.10)

Following the same argument as for obtaining Eq. (D.7),

l2
k∑
i=1

liφ
′′
1 (ti) = l2

ˆ yk

y0

φ′′1 (t) dt− l2

24

k∑
i=1

l3i φ
(4)
1 (ti)−

l2

4!80

k∑
i=1

l5i φ
(6)
1 (ξi) .

Note that for a �xed x and for a su�ciently large sample size,
´ yk
y0
φ′′1 (t) dt = φ′1 (yk)−

φ′1 (y0) = 0, as demonstrated in (C.15). As for the other two terms, following the same

lines as for (D.9),
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∣∣∣∣∣l2
k∑
i=1

l5i φ
(6)
1 (ξi)

∣∣∣∣∣ 6 O
(
l
2
)
kl5max ‖ φ

(6)
1 ‖∞

= O

(
l
6

h6

)
, (D.11)

where result (C.4) has been used. Similarly,

∣∣∣∣∣l2
k∑
i=1

l3i φ
(4)
1 (ξi)

∣∣∣∣∣ 6 O
(
l
2
)
kl3max ‖ φ

(4)
1 ‖∞

= O

(
l
4

h4

)
. (D.12)

Updating Eq. (D.10) using (D.12) and (D.11),

1

24

k∑
i=1

l3i φ
′′
1 (ti) =

1

24

k∑
i=1

(
l2i − l2

)
liφ
′′
1 (ti) +O

(
l
4

h4

)
. (D.13)

Proceeding as before, the �rst term on the right hand side of (D.13) can be expressed

as

k∑
i=1

(
l2i − l2

)
liφ
′′
1 (ti) =

k∑
i=1

(
l2i − l2

) ˆ yi

yi−1

φ′′1 (t) dt (D.14)

− 1

4!

∑
i=1

(
l2i − l2

)
l3i φ

(4)
1 (ti)−

1

4!80

k∑
i=1

(
l2i − l2

)
l5i φ

(6)
1 (ξi) .

Now, using (C.7), it is easy to prove that

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)
l5i φ

(6)
1 (ξi)

∣∣∣∣∣ 6 max
i

∣∣∣l2i − l2∣∣∣O (l5) yk − yo
l

‖ φ(6)
1 ‖∞ (D.15)

= o

(
l
6

h6

)
,

and very similarly,
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∣∣∣∣∣
k∑
i=1

(
l2i − l2

)
l3i φ

(4)
1 (ti)

∣∣∣∣∣ 6 max
i

∣∣∣l2i − l2∣∣∣O (l3) yk − yo
l

‖ φ(4)
1 ‖∞

= o

(
l
4

h4

)
. (D.16)

Equations (D.16), (D.15), (C.18) and (D.13) imply that

1

24

k∑
i=1

l3i φ
′′
1 (ti) = o

(
l
2

h

)
,

and so, going back to Eq. (D.7),

A =

ˆ yk

y0

φ1 (t) dt+ o

(
l
2

h

)
.

Consider the change of variable

r =
x− t
h

. (D.17)

.

Then,

ˆ yk

y0

φ1 (t) dt = h

ˆ x−y0
h

x−yk
h

F ′ (x− hr)K (r) dr.

Note that as n increases, the limits of integration tends to −∞ and ∞. By a Taylor

expansion of F ′ (x− hr) around x, and since F ′ (x) = f (x),

ˆ yk

y0

φ1 (t) dt = h

ˆ
K (r)

[
f (x) + f ′ (x) (−hr) +

1

2
f ′′ (x) (−hr)2 +O

(
h3
)]
dr.

Due to the properties of the kernel K,

ˆ yk

y0

φ1 (t) dt = h

[
f (x) +

1

2
h2f ′′ (x)µ2 (K) +O

(
h3
)]
, (D.18)

so

A = h

[
f (x) +

1

2
h2f ′′ (x)µ2 (K) +O

(
h3
)]

+ o

(
l
2

h

)
. (D.19)

Let us now de�ne φ2 ≡ F ′′′ (t)K
(
x−t
h

)
. Then,
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B1 = 24B =

k∑
i=1

l3i φ2 (ti) ,

which can be decomposed as

B1 =
k∑
i=1

(
l2i − l2

)
liφ2 (ti) + l2

k∑
i=1

liφ2 (ti) . (D.20)

The �rst term on the right hand side of Eq. (D.20) can be bounded as

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)
liφ2 (ti)

∣∣∣∣∣ 6
k∑
i=1

∣∣∣(l2i − l2) liφ2 (ti)
∣∣∣

6 max
i

∣∣∣l2i − l2∣∣∣ lmaxk ‖ φ2 ‖∞

= o
(
l
2
)
, (D.21)

where (C.7), (C.2), k = yk−y0

l
and ‖ φ2 ‖= O (1) were considered.

As to the second term on the right hand side of (D.20), Ostrowski's inequality, given

in Eq. (C.19), and (C.7) are to be used. Multiplying Ostrowski's inequality by li and

evaluating it at the midpoint ti, we get∣∣∣∣∣liφ2 (ti)−
ˆ yi

yi−1

φ2 (t) dt

∣∣∣∣∣ 6 1

4
l2i ‖ φ′2 ‖∞ .

Summing all over the k intervals,

k∑
i=1

∣∣∣∣∣liφ2 (ti)−
ˆ yi

yi−1

φ2 (t) dt

∣∣∣∣∣ 6 1

4
‖ φ′2 ‖∞ kl2.

Given the de�nition of φ2 (t), its �rst derivative is

φ′2 (t) = φ20 (t) +
1

h
φ21 (t) ,

where φ20 (t) = K
(
x−t
h

)
F (4) (t) and φ21 (t) = −F ′′′ (t)K ′

(
x−t
h

)
. So,

k∑
i=1

∣∣∣∣∣liφ2 (ti)−
ˆ yi

yi−1

φ2 (t) dt

∣∣∣∣∣ 6 1

4

[
‖ φ20 ‖∞ +

1

h
‖ φ21 ‖∞

]
yk − y0

l
O
(
l
2
)

= O

(
l

h

)
,

i.e.,
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k∑
i=1

liφ2 (t) =

ˆ yk

y0

φ2 (t) dt+O

(
l

h

)
. (D.22)

Using (C.4), (D.22) and (D.21), Eq. (D.20) becomes

B1 =
[
l
2

+ o
(
l
2
)] [ˆ yk

y0

φ2 (t) dt+O

(
l

h

)]
+ o

(
l
2
)
,

which simplifying gives

B1 = l
2
ˆ yk

y0

φ2 (t) dt+O

(
l
3

h

)
. (D.23)

Again, considering the change of variable (D.17),

ˆ yk

y0

φ2 (t) dt = h

ˆ x−y0
h

x−yk
h

F ′′′ (x− hr)K (r) dr.

By a Taylor expansion of F ′′′ (x− hr) around x, and since F ′ (x) = f (x),

ˆ yk

y0

φ2 (t) dt = h

ˆ
K (r)

[
f ′′ (x) + f ′′′ (x) (−hr) +

1

2
f (4) (x) (−hr)2 +O

(
h3
)]
dr,

and due to the properties of the kernel K,

ˆ yk

y0

φ2 (t) dt = h

[
f ′′ (x) +

1

2
h2f (4) (x)µ2 (K) +O

(
h3
)]
. (D.24)

Thus, substituting (D.24) in (D.23) and dividing by 24,

B =
1

24
l
2
h

[
f ′′ (x) +

1

2
h2f (4) (x)µ2 (K) +O

(
h3
)]

+O

(
l
3

h

)
. (D.25)

Regarding the term C in Eq. (D.3), using (C.13) it is obtained∣∣∣∣∣F (4) (τi)

(
li
2

)4

− F (4) (τi−1)

(
− li

2

)4
∣∣∣∣∣ = O

(
l
5
)
,

then,

∣∣∣∣∣
k∑
i=1

K

(
x− ti
h

)[
F (4) (τi)

(
li
2

)4

− F (4) (τi−1)

(
− li

2

)4
]∣∣∣∣∣ 6 k ‖ K ‖∞ O

(
l
5
)

(D.26)

= O
(
l
4
)
,
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since k = (yk − y0) /l.

By (D.26), (D.25) and (D.19), doing a general update of Eq. (D.3) and using Assump-

tion 3.4, results in

E
[
f̂gh (x)

]
=

[
f (x) +

1

2
h2f ′′ (x)µ2 (K) + o

(
h2
)]

+

[
l
2

24
f ′′ (x) + o

(
l
2
)]

. (D.27)

Using again Assumption 3.4, and substracting f (x), it is obtained

B
[
f̂gh (x)

]
=

1

2
h2f ′′ (x)µ2 (K) + o

(
h2
)
. (D.28)

Let us now apply the variance operator to the estimator (3.2),

V
[
f̂gh (x)

]
= V

[
1

h

k∑
i=1

wiK

(
x− ti
h

)]

=
1

h2


k∑
i=1

V
[
wiK

(
x− ti
h

)]
+ 2

∑
i<j

C
[
wiK

(
x− ti
h

)
, wjK

(
x− tj
h

)]
=

1

h2


k∑
i=1

K2

(
x− ti
h

)
V [wi] + 2

∑
i<j

K

(
x− ti
h

)
K

(
x− tj
h

)
C [wi, wj ]

 .

Note that the vector (n1, n2, ...nk) follows a multinomial distribution with parameters

n =
∑k

i=1 ni and ~p = (p1, p2, ..., pk), where pi = E [wi]. Since V [ni] = npiqi and pi =

[F (yi)− F (yi−1)], where qi = 1− pi, C [ni, nj ] = −npipj for i 6= j, we have

V
[
f̂gh (x)

]
=

1

h2
(D + E) , (D.29)

where

D =
1

n

k∑
i=1

K2

(
x− ti
h

)
piqi

and

E = − 2

n

∑
i<j

K

(
x− ti
h

)
K

(
x− tj
h

)
pipj .

By Eq. (C.10), it can be written

pi = F ′ (ti)α1i +
1

3!
F ′′′ (ti)α3i +Rτ (D.30)

and

126



qi = 1− F ′ (ti)α1i −
1

3!
F ′′′ (ti)α3i −Rτ .

Multipliying pi by qi and according to Eq. (C.12),

piqi = F ′ (ti) li +O
(
l
2
)
.

De�ne

D1 = nD =

k∑
i=1

K2

(
x− ti
h

)[
F ′ (ti) li +O

(
l
2
)]
,

and de�ne φ3 (t) ≡ K2
(
x−t
h

)
F ′ (t), so that

D1 =

k∑
i=1

K2

(
x− ti
h

)
F ′ (ti) li +O

(
l
2
)
k ‖ K2 ‖∞

=

k∑
i=1

liφ3 (ti) +O
(
l
)
. (D.31)

Using a Taylor series expansion, the integral over the i-th interval is

ˆ yi

yi−1

φ3 (t) dt =

ˆ yi

yi−1

[
φ3 (ti) + (t− ti)φ′3 (ti) +

(t− ti)2

2
φ′′3 (ti) +

(t− ti)3

3!
φ′′′3 (ti)

+
(t− ti)4

4!
φ

(4)
3 (ξi)

]
dt

= liφ3 (ti) +
1

24
l3i φ
′′
3 (ti) +

1

4!

ˆ yi

yi−1

(t− ti)4 φ
(4)
3 (ξi) dt,

where ξi is some intermediate point between t and ti, and the change of variable (D.4) was

used. Solving for liφ3 (ti) and summing up all over the k intervals lead to

k∑
i=1

liφ3 (ti) =

ˆ yk

y0

φ3 (t) dt− 1

24

k∑
i=1

l3i φ
′′
3 (ti)−

1

4!

k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(4)
3 (ξi) dt. (D.32)

As to the third term on the right hand side of (D.32), it can be said that

∣∣∣∣∣ 1

4!

k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(4)
3 (ξi) dt

∣∣∣∣∣ 6
1

4!

k∑
i=1

ˆ yi

yi−1

(t− ti)4
∥∥∥φ(4)

3

∥∥∥
∞
dt.
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Integrating the right hand side of the last equation, and since each time φ3 (t) is dif-

ferentiate an h in the denominator is obtained, it follows that

1

4!

k∑
i=1

ˆ yi

yi−1

(t− ti)4
∥∥∥φ(4)

3

∥∥∥
∞
dt =

1

4!80

∥∥∥φ(4)
3

∥∥∥
∞

k∑
i=1

l5i

= kO
(
l
5
)∥∥∥φ(4)

3

∥∥∥
∞

= O

(
l
4

h4

)
,

and so, ∣∣∣∣∣ 1

4!

k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(4)
3 (ξi) dt

∣∣∣∣∣ = O

(
l
4

h4

)
.

The second term on the right hand side of (D.32) can be written as

k∑
i=1

l3i φ
′′
3 (ti) =

k∑
i=1

(
l2i − l2

)
liφ
′′
3 (ti) + l2

k∑
i=1

liφ
′′
3 (ti) . (D.33)

As in (D.32), the second term on the right hand side of (D.33) can be expressed as

l2
k∑
i=1

liφ
′′
3 (ti) = l2

ˆ yk

y0

φ′′3 (t) dt− 1

24
l2

k∑
i=1

l3i φ
(4)
3 (ti)−

1

4!
l2

k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(6)
3

(
ξ′i
)
dt.

As did in C.5, similar steps can be followed to prove that
´ yk
y0
φ′′3 (t) dt = 0. As before,

∣∣∣∣∣l2
k∑
i=1

l3i φ
(4)
3 (ti)

∣∣∣∣∣ 6 kO
(
l
2
)
O
(
l
3
)∥∥∥φ(4)

3

∥∥∥
∞

6 O

(
l
4

h4

)

and

l2
k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(6)
3

(
ξ′i
)
dt 6 l2

∥∥∥φ(6)
3

∥∥∥
∞

k∑
i=1

ˆ yi

yi−1

(t− ti)4 dt,

which in turn follows that
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l2
∥∥∥φ(6)

3

∥∥∥
∞

k∑
i=1

ˆ yi

yi−1

(t− ti)4 dt =
1

80
l2
∥∥∥φ(6)

3

∥∥∥
∞

k∑
i=1

l5i

= l2kO

(
l
5

h6

)

= O

(
l
6

h6

)
,

i.e.,

l2
k∑
i=1

ˆ yi

yi−1

(t− ti)4 φ
(6)
3

(
ξ′i
)
dt = O

(
l
6

h6

)
,

so that

l2
k∑
i=1

liφ
′′
3 (ti) = O

(
l
4

h4

)
. (D.34)

Regarding the �rst term on the right hand side of (D.33),

k∑
i=1

(
l2i − l2

)
liφ
′′
3 (ti) =

k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′3 (t) dt− 1

4!

k∑
i=1

(
l2i − l2

)
l3i φ

(4)
3 (ti)

− 1

4!

k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

(t− ti)4 φ
(6)
3

(
ξ′i
)
dt. (D.35)

Due to (C.7), the second and third terms in (D.35) are o
(
l
4

h4

)
and o

(
l
6

h6

)
, respectively.

As to the �rst term,

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′3 (t) dt

∣∣∣∣∣ 6
k∑
i=1

∣∣∣∣∣(l2i − l2)
ˆ yi

yi−1

φ′′3 (t) dt

∣∣∣∣∣
6 max

i

∣∣∣l2i − l2∣∣∣ k∑
i=1

∣∣∣∣∣
ˆ yi

yi−1

φ′′3 (t) dt

∣∣∣∣∣
6 o

(
l
2
) k∑
i=1

ˆ yi

yi−1

∣∣φ′′3 (t)
∣∣ dt

= o
(
l
2
)ˆ yk

y0

∣∣φ′′3 (t)
∣∣ dt.

As was done with φ1, based on (D.8), φ′′3 (t) may be written as
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φ′′3 (t) = φ30 + φ31
1

h
+ φ32

1

h2
,

where φ30, φ31, φ32 are products of derivatives of F ′′′ (t) and K2
(
x−t
h

)
. Note that if

t /∈ [x− h, x+ h], then
∣∣x−t
h

∣∣ > 1 and φ′′3 (t) = 0. Otherwise,

∣∣φ′′3 (t)
∣∣ 6 ‖φ30‖∞ +

1

h
‖φ31‖∞ +

1

h2
‖φ32‖∞ ,

and since
´ yk
y0
|φ′′3 (t)| dt =

´ x+h
x−h |φ

′′
3 (t)| dt, then

ˆ x+h

x−h

∣∣φ′′3 (t)
∣∣ dt 6 ‖φ30‖∞

ˆ x+h

x−h
dt+

1

h
‖φ31‖

ˆ x+h

x−h
dt+

1

h2
‖φ32‖

ˆ x+h

x−h
dt

6 2h ‖φ30‖+ 2 ‖φ31‖+
2

h
‖φ32‖

= O

(
1

h

)
.

Thus, the �rst term on the right hand side of (D.33) is∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

φ′′3 (t) dt

∣∣∣∣∣ 6 o

(
l
2

h

)
. (D.36)

By (D.36) and (D.34), Eq. (D.33) becomes

k∑
i=1

l3i φ
′′
3 (ti) = o

(
l
2

h

)
,

so that Eq. (D.32) is �nally expressed as

k∑
i=1

liφ3 (ti) =

ˆ yk

y0

φ3 (t) dt+ o

(
l
2

h

)
,

and Eq. (D.31) as

D1 =

ˆ yk

y0

φ3 (t) dt+O
(
l
)
.

Using the change of variable (D.17), and for a su�ciently large sample size n,

ˆ yk

y0

φ3 (t) dt = h

ˆ
K2 (r) f (x− hr) dr

= h

ˆ
K2 (r)

[
f (x)− hrf ′ (x) +O

(
h2
)]
dr

= h
[
f (x)A (K) +O

(
h2
)]

;
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i.e.,

D1 = hf (x)A (K) + o
(
h2
)
,

or, multiplying by 1/n,

D =
1

n
hf (x)A (K) + o

(
h2

n

)
. (D.37)

Let us now start working with the covariance term in (D.29). As a starting point, by

(D.30) and the parity conditions (C.12),

pipj = F ′ (ti)F
′ (tj) lilj +O

(
l
4
)
.

De�ne

E1 = −n
2
E =

∑
i<j

K

(
x− ti
h

)
K

(
x− tj
h

)[
F ′ (ti)F

′ (tj) lilj +O
(
l
4
)]
,

and de�ne φ4 (z1, z2) ≡ K
(
x−z1
h

)
K
(
x−z2
h

)
F ′ (z1)F ′ (z2). Then,

E1 =
∑
i<j

liljφ4 (ti, tj) +O
(
l
2
)
.

The partial derivatives of φ4, ∂φ4/∂z1 and ∂φ4/∂z2, can be expressed as

∂φ4

∂z1
= φ40z1

+
1

h
φ41z1

∂φ4

∂z2
= φ40z2

+
1

h
φ41z2

,

where φ40z1
, φ41z1

, φ40z2
and φ41z2

are functions of products ofK
(
x−z1
h

)
, K

(
x−z2
h

)
, F ′ (z1),

F ′ (z2) and derivatives. Thus, by multivariate Ostrowski's inequality, given in Eq. (C.20),

∣∣∣∣∣liljφ4 (ti, tj)−
ˆ yi

yi−1

ˆ yj

yj−1

φ4 (z1, z2) dz2dz1

∣∣∣∣∣ 6 1

4

[
l2i lj

∥∥∥∥∂φ4

∂z1

∥∥∥∥
∞

+ l2j li

∥∥∥∥∂φ4

∂z2

∥∥∥∥
∞

]
6

1

4
l3max

[(∥∥φ40z1z2

∥∥
∞ +

1

h

∥∥φ41z1z2

∥∥
∞

)]
= O

(
l
3

h

)
,

where φ40z1z2=φ40z1
+ φ40z2

and φ41z1z2=φ41z1
+ φ41z2

.

Summing all over the 1
2

(
k2 − k

)
intervals,
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∑
i<j

∣∣∣∣∣liljφ4 (ti, tj)−
ˆ yi

yi−1

ˆ yj

yj−1

φ4 (z1, z2) dz2dz1

∣∣∣∣∣ 6 1

2

(
k2 − k

)
O

(
l
3

h

)

= O

(
l

h

)
;

i.e.,

∑
i<j

liljφ4 (ti, tj) =
∑
i<j

ˆ yi

yi−1

ˆ yj

yj−1

φ4 (z1, z2) dz2dz1 +O

(
l

h

)
,

or, considering the de�nition of φ4 (z1,z2) and for a su�ciently large n,

∑
i<j

liljφ4 (ti, tj) =

ˆ ˆ ∞
z1

K

(
x− z1

h

)
K

(
x− z2

h

)
F ′ (z1)F ′ (z2) dz2dz1.

For convenience, let us call

I =

ˆ ˆ ∞
z1

K

(
x− z1

h

)
K

(
x− z2

h

)
F ′ (z1)F ′ (z2) dz2dz1, (D.38)

and let us �rst take the most inner integral. Considering the change of variable (D.17),

with z2 instead of t, and a Taylor series expansion,

ˆ ∞
z1

K

(
x− z2

h

)
F ′ (z2) dz2 = h

ˆ x−z1
h

−∞
K (r)F ′ (x− hr) dr

= h

ˆ x−z1
h

−∞
K (r)

[
F ′ (x)− hrF ′′ (x) +

1

2
h2r2F ′′′ (x) + o

(
h2
)]
dr

= hF ′ (x)

ˆ x−z1
h

−∞
K (r) dr +O

(
h2
)
.

De�ne K (u) =
´ u
−∞K (r) dr. Then, going back to (D.38),

I =

ˆ
K

(
x− z1

h

)
F ′ (z1)

[
hF ′ (x)K

(
x− z1

h

)
+O

(
h2
)]
dz1.

Considering the change of variable (D.17), with w instead of r and z1 instead of t, and

again, a Taylor expansion,
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I = h

ˆ
K (w)

[
hF ′ (x) +O

(
h2
)] [

hF ′ (x)K (w) +O
(
h2
)]
dw

=

ˆ [
h2F ′2 (x)K (w)K (w) +O

(
h3
)]
dw

= h2F ′2 (x)

ˆ
K (w)K (w) dw +O

(
h3
)
.

Since K′ (x) = K (x),

I = h2F ′ (x)2

[
1

2
{K (w)}2

]∞
−∞

+O
(
h3
)

= h2F ′ (x)2

[
1

2

{
K2 (∞)−K2 (−∞)

}]∞
−∞

+O
(
h3
)

=
1

2
h2F ′ (x)2 +O

(
h3
)
,

so that E1 is

E1 =
1

2
h2F ′2 (x) +O

(
h3
)

+O

(
l

h

)
+O

(
l
2
)

=
1

2
h2F ′2 (x) + o

(
h2
)

+O

(
l

h

)
,

or, multiplying by −2/n and considering that F ′ (x) = f (x),

E = − 1

n
h2f2 (x) + o

(
h2

n

)
+O

(
l

h

)
. (D.39)

Substituting (D.39) and (D.37) in (D.29),

V
[
f̂gh (x)

]
=

1

h2

{
1

n
hf (x)A (K)− 1

n
h2f2 (x) + o

(
h2

n

)
+O

(
l

h

)}
=

1

nh
f (x)A (K) + o

(
1

nh

)
. (D.40)

Finally, squaring (D.28) and adding (D.40),

MSEg = MSE
[
f̂gh (x)

]
=

1

4
h4µ2 (K)2 f ′′2 (x) +

1

nh
f (x)A (K) + o

(
h4
)

+ o

(
1

nh

)
.

The proof for theMISEg expression is parallel to the one for theMSEg. The neglected
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terms have to be proved to be negligible again, when integrating all over the x-domain.
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Appendix E

Proofs and results of Chapter 4

E.1 Proof of Theorem 4.1

Proof. Let us consider the cases i = j and i 6= j separately. Then, Eq. (4.1) becomes

ψ̂gu =
1

ηu+1
L(u)(0)

k∑
i=1

w2
i +

1

ηu+1

∑
i 6=j

L(u)

(
ti − tj
η

)
wiwj . (E.1)

Recall that E [XY ] = E [X]E [Y ] + C [X,Y ]. Since (n1, n2, ..., nk) is a multinomial

random vector, applying the expectation operation to (E.1) gives

E
(
ψ̂gu

)
= α1 + α2 (E.2)

where

α1 =
1

ηu+1
L(u)(0)

(
k∑
i=1

p2
i +

1

n

k∑
i=1

piqi

)
(E.3)

and

α2 =
1

ηu+1

∑
i 6=j

L(u)

(
ti − tj
η

)
pipj

(
1− 1

n

)
,

being pi = F (yi)− F (yi−1), qi = 1− pi.
On the one hand, by Eq. (C.10), and considering only the main term,

p2
i =

[
F ′ (ti) li +

l2i
8

[
F (2) (τi)− F (2) (τi−1)

]]2

= F ′ (ti)
2 l2i +

1

4
F ′ (ti) l

3
i

[
F (2) (τi)− F (2) (τi−1)

]
+

1

64
l4i

[
F (2) (τi)− F (2) (τi−1)

]2
.

Then
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k∑
i=1

p2
i =

k∑
i=1

F ′ (ti)
2 l2i +

1

4

k∑
i=1

F ′ (ti) l
3
i

[
F (2) (τi)− F (2) (τi−1)

]
+

1

64

k∑
i=1

l4i

[
F (2) (τi)− F (2) (τi−1)

]2
.

By Assumptions 4.2 and 4.4, and because k = (yk − y0) /l,

∣∣∣∣∣
k∑
i=1

l4i

[
F (2) (τi)− F (2) (τi−1)

]2
∣∣∣∣∣ 6

k∑
i=1

∣∣∣∣l4i [F (2) (τi)− F (2) (τi−1)
]2
∣∣∣∣

6
k∑
i=1

∣∣l4i ∣∣ ∣∣∣∣[F (2) (τi)− F (2) (τi−1)
]2
∣∣∣∣

6 kO
(
l
4
)

6 O
(
l
3
)
.

Similarly,

∣∣∣∣∣
k∑
i=1

F ′ (ti) l
3
i

[
F (2) (τi)− F (2) (τi−1)

]∣∣∣∣∣ 6
k∑
i=1

∣∣∣F ′ (ti) l3i [F (2) (τi)− F (2) (τi−1)
]∣∣∣

6
k∑
i=1

∣∣F ′ (ti)∣∣ ∣∣l3i ∣∣ ∣∣∣[F (2) (τi)− F (2) (τi−1)
]∣∣∣

6 k
∥∥F ′∥∥∞O (l3) 2

∥∥F ′′∥∥∞
6 O

(
l
2
)
,

so

k∑
i=1

p2
i =

k∑
i=1

F ′ (ti)
2 l2i +O

(
l
2
)
.

On the other hand, following similar steps,

k∑
i=1

piqi =

k∑
i=!

F ′ (ti) li +O
(
l
)
.

Going back to (E.3),
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α1 =
1

ηu+1
L(u) (0)

[
k∑
i=1

F ′ (ti)
2 l2i +O

(
l
2
)

+
1

n

k∑
i=1

F ′ (ti) li +O

(
l

n

)]
. (E.4)

As to the �rst term in brackets in (E.4), it can be rewritten as

k∑
i=1

F ′ (ti)
2 l2i =

k∑
i=1

(
li − l

)
liF
′ (ti)

2 + l
k∑
i=1

liF
′ (t2i ) . (E.5)

Using Assumption 4.4, the �rst term on the right hand side in (E.5) can be bounded

by

∣∣∣∣∣
k∑
i=1

(
li − l

)
liF
′ (ti)

2

∣∣∣∣∣ 6
k∑
i=1

∣∣∣(li − l) liF ′ (ti)2
∣∣∣

6 max
i

∣∣li − l∣∣ klmax ∥∥F ′2∥∥∞
6 o

(
l
)
. (E.6)

Regarding the second term on the right hand side of (E.5), by (C.19)

∣∣∣∣∣liF ′ (ti)2 −
ˆ yi

yi−1

F ′ (t)2 dt

∣∣∣∣∣ 6 1

4
l2iLF ′2 .

Summing up over all k intervals and by Eq. (C.4),

k∑
i=1

∣∣∣∣∣liF ′ (ti)2 −
ˆ yi

yi−1

F ′ (t)2 dt

∣∣∣∣∣ 6 1

4
LF ′2

k

k

k∑
i=1

l2i (E.7)

6
1

4
LF ′2

(yk − y0)

l
l2

6 O
(
l
)
.

So, by (E.7) and (E.6), Eq. (E.5) is

k∑
i=1

F ′ (ti)
2 l2i = l

ˆ yk

y0

F ′ (t)2 dt+ o
(
l
)
.

As to the third term in brackets in (E.4), again, by (C.19),∣∣∣∣∣F ′ (ti) li −
ˆ yi

yi−1

F ′ (t) dt

∣∣∣∣∣ 6 1

4
l2iLF ′ ,
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and summing all over the k intervals,

k∑
i=1

∣∣∣∣∣F ′ (ti) li −
ˆ yi

yi−1

F ′ (t) dt

∣∣∣∣∣ 6 1

4
LF ′

k

k

k∑
i=1

l2i

6
1

4
LF ′

(yk − y0)

l
l2

6 O
(
l
)
,

i.e.,

k∑
i=1

F ′ (ti) li =

ˆ yk

y0

F ′ (t) dt+O
(
l
)

=

ˆ yk

y0

f (t) dt+O
(
l
)

= 1 +O
(
l
)
.

Going back to (E.4),

α1 =
1

ηu+1
L(u) (0)

[
l

ˆ yk

y0

F ′ (t)2 dt+ o
(
l
)

+
1

n

[
1 +O

(
l
)]

+O

(
l

n

)]
=

1

ηu+1
L(u) (0)

[
lA (f) + o

(
l
)]

= O

(
l

ηu+1

)
. (E.8)

Concerning α2, by Eq. (C.10) and just considering the main term, multiplying pi and

pj gives

pipj = F ′ (ti)F
′ (tj) lilj +O

(
l
3
)
,

so

α2 =

(
1− 1

n

)
1

ηu+1

∑
i 6=j

Φ1 (ti, tj) lilj +O
(
l
3
)∑
i 6=j

L(u)

(
ti − tj
η

) , (E.9)

where Φ1 (z1, z2) ≡ L(u)
(
z1−z2
η

)
F ′ (z1)F ′ (z2).

As to the second term in brackets in Eq. (E.9),

138



∣∣∣∣∣∣
∑
i 6=j

L(u)

(
ti − tj
η

)∣∣∣∣∣∣ 6
∑
i 6=j

∣∣∣∣L(u)

(
ti − tj
η

)∣∣∣∣
6
(
k2 − k

) ∥∥∥L(u)
∥∥∥
∞

6

(
(yk − y0)2

l
2 − (yk − y0)

l

)∥∥∥L(u)
∥∥∥
∞
.

Then,

O
(
l
3
)∑
i 6=j

L(u)

(
ti − tj
η

)
= O

(
l
)
.

Substituting in (E.9),

α2 =

(
1− 1

n

)
1

ηu+1

∑
i 6=j

Φ1 (ti, tj) lilj +O
(
l
) .

Note that as the sample size increases, by Assumption 4.4, the number of intervals k

increases and the average length l decreases. So, the �rst term in brackets can be expressed

as

∑
i 6=j

Φ1 (ti, tj) lilj =

ˆ ˆ
Φ1 (z1, z2) dz2dz1 +O

(
l
)
,

so that

α2 =

(
1− 1

n

)
1

ηu+1

[ˆ ˆ
Φ (z1, z2) dz2dz1 +O

(
l
)]
.

Now, putting the factor 1
ηu+1 into the double integral in the last equation and de�ning

r = Z1−Z2
η , integrating by parts and by convolution properties, α2 becomes

α2 =

(
1− 1

n

)[ˆ ˆ
L (r) f (z2 + ηr) f (u) (z2) dz2dr +O

(
l

ηu+1

)]
. (E.10)

By Taylor series of f (z2 + ηr) around z2,

ˆ ˆ
L (r) f (z2 + ηr) f (u) (z2) dz2dr =

ˆ ˆ
L (r) f (u) (z2)

[
f (z2) + ηrf ′ (z2) + ...

+
ηsrs

s!
f (s) (z2) +

ηs+1rs+1

(s+ 1)!
f (s+1) (ξ)

]
dz2dr.

Now, standard algebra and using that L is of order s (Assumption 4.1), lead to
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ˆ ˆ
L (r) f (z2 + ηr) f (u) (z2) dz2dr =

ˆ
f (u) (z2) f (z2) dz2 +

ηs

s!
µs (L)

ˆ
f (u) (z2) f (s) (z2) dz2 +

O
(
ηs+1

)
= ψu +

ηs

s!
µs (L)ψu+s +O

(
ηs+1

)
. (E.11)

Substituting (E.11) into (E.10) and multiplying by
(
1− 1

n

)
,

α2 = ψu +
ηs

s!
µs (L)ψu+s +O

(
ηs+1

)
+O

(
l

ηu+1

)
. (E.12)

So, by (E.12) and (E.8), the expectation (E.2) can be �nally written as

E
(
ψ̂gu

)
= O

(
l

ηu+1

)
+ ψu +

ηs

s!
σsLψu+s +O

(
ηs+1

)
,

from which, the bias is

B (ψgu) =
ηs

s!
σsLψu+s +O

(
ηs+1

)
+O

(
l

ηu+1

)
. (E.13)

Regarding the variance of (4.1), it is expressed as

V
(
ψ̂gu

)
=

1

η2u+2

k∑
i=1

k∑
j=1

k∑
r=1

k∑
v=1

L(u)

(
ti − tj
η

)
L(u)

(
tr − tv
η

)
C (wiwj , wrwv) . (E.14)

In Eq. (E.14), the covariance can be treated by considering all the di�erent 7 cases

in which indices are equal or unequal between each other. In each case, there could be

equivalent situations, from which only one will be treated, as all of them are of the same

order. In what follows, all those covariance cases will be expressed as moments of the

multinomial distribution (Newcomer et al., 2008). The term corresponding to case a will

be expressed as Va
(
ψ̂gu
)
, such that V

(
ψ̂gu
)

= 4V1

(
ψ̂gu
)

+4V2

(
ψ̂gu
)

+V3

(
ψ̂gu
)

+V4

(
ψ̂gu
)

+

2V5

(
ψ̂gu
)

+ V6

(
ψ̂gu
)

+ 2V7

(
ψ̂gu
)
.

� Case 1: i 6= j and [i = r 6= s; j 6= v]. Expressing covariance as expectations:

C (wiwj , wiwv) = E
(
w2
iwjwv

)
− E (wiwj)E (wiwv)

=
1

n4
E
(
n2
injnv

)
− 1

n4
E (ninj)E (ninv) .

According to Newcomer et al. (2008), doing some algebra and substituting back in
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(E.14), the main term is

V1

(
ψ̂gu

)
≈ 1

η2u+2
O

(
1

n

) k∑
i,j,v=1
i 6=j 6=v 6=i

γ1 (ti, tj , tv) liljlv,

where

γ1 (z1, z2, z3) = L(u)

(
z1 − z2

η

)
L(u)

(
z1 − z3

η

)
F ′ (z1)F ′ (z2)F ′ (z3) .

By Assumption 4.4, the sum in V1

(
ψ̂gu
)
can be approximated by a triple integral,

so that

V1

(
ψ̂gu

)
=

1

η2u+2
O

(
1

n

)ˆ ˆ ˆ
γ1 (z1, z2, z3) dz3dz2dz1 + o

(
1

η2u+2n

)
,

and �nally,

V1

(
ψ̂gu

)
= O

(
1

η2un

)
. (E.15)

The other three situations like this occur when i 6= j, and [i = v 6= r; j 6= r], [j = r 6= v; i 6= v],

or [j = v 6= r; i 6= r].

� Case 2: i 6= j and r = v = i.

C (wiwj , wiwi) =
1

n4
E
(
n3
inj
)
− 1

n4
E (ninj)E

(
n2
i

)
.

Considering the moments of the multinomial distribution,

V2

(
ψ̂gu

)
≈ 1

η2u+2
O

(
1

n

)
L(u) (0)

∑
i 6=j

γ2 (ti, tj) l
2
i lj ,

where γ2 (z1, z2) = L(u)
(
z1−z2
η

)
F ′2 (z1)F ′ (z2).

By Assumption 4.4,

V2

(
ψ̂gu

)
=

1

η2u+2
O

(
l

n

)ˆ ˆ
γ2 (z1, z2) dz2dz1 +

1

η2u+2
o

(
l

n

)
,

so that, using the change of variable r = (z1 − z2) /η,

V2

(
ψ̂gu

)
= O

(
l

η2u+1n

)
. (E.16)

The other three situations like this are: [i 6= j; r = v = j],[i = j = r 6= v] and [i = j = v 6= r].
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� Case 3: i = j = v = r.

C (wiwi, wiwi) = V
(
w2
i

)
=

1

n4
E
(
n4
i

)
− 1

n4
E
(
n2
i

)2
.

Considering the moments of the multinomial distribution,

V3

(
ψ̂gu

)
≈ 1

η2u+2
L(u)(0)2O

(
1

n

) k∑
i=1

γ3 (ti) l
3
i ,

where γ3(t) = F ′3(t).

Proceeding as in (E.5), and by Assumption 4.4,

V3

(
ψ̂gu

)
=

1

η2u+2
L(u)(0)2O

(
l
2

n

)ˆ yk

y0

γ3(t)dt+ o

(
l
2

nη2u+2

)
,

i.e.,

V3

(
ψ̂gu

)
= O

(
l
2

nη2u+2

)
. (E.17)

There are no more situations like this.

� Case 4: i = j 6= r = v.

C (wiwj , wrwv) = C
(
w2
i , w

2
r

)
=

1

n4
E
(
n2
in

2
r

)
− 1

n4
E
(
n2
i

)
E
(
n2
r

)
.

Using the moments of the multinomial distribution,

V4

(
ψ̂gu

)
≈ L(u) (0)2

nη2u+2

∑
i 6=r

γ4 (ti, tr) l
2
i l

2
r ,

where γ4 (z1, z2) = F ′(z1)2 F ′ (z2)2. By Assumption 4.4,

V4

(
ψ̂gu

)
=
l
2
L(u) (0)2

nη2u+2

ˆ ˆ
γ4 (z1, z2) dz1dz2 + o

(
l
2

nη2u+2

)
,

which means that

V4

(
ψ̂gu

)
= O

(
l
2

nη2u+2

)
. (E.18)

and there are no more situations like this.

� Case 5: v 6= i = j 6= r 6= v.

C (wiwj , wrwv) = C
(
w2
i , wrwv

)
=

1

n4
E
(
n2
inrnv

)
− 1

n4
E
(
n2
i

)
E (nrnv) .
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Moments of the multinomial distribution lead us to

V5

(
ψ̂gu

)
≈ L(u)(0)

η2u+2
O

(
1

n

) ∑
v 6=i=j 6=r 6=v

γ5 (ti, tr, tv) l
2
i lrlv,

where γ5 (z1, z2, z3) = L(u)
(
z2−z3
η

)
F ′ (z1)2 F ′ (z2)F ′ (z3). Proceeding as in (E.5)

and by Assumption 4.4,

V5

(
ψ̂gu

)
=
L(u)(0)

η2u+2
O

(
1

n

)
l

ˆ ˆ ˆ
γ5 (z1, z2, z3) dz3dz2dz1 + o

(
l

nη2u+2

)
,

so that,

V5

(
ψ̂gu

)
= O

(
l

nη2u+1

)
. (E.19)

There is also one more situation like this, which is i 6= j 6= r = v 6= i.

� Case 6: i 6= j 6= r 6= v, and r 6= i 6= v 6= j (i.e. #{i, j, r, v} = 4)

C (wiwj , wrwv) =
1

n4
E (ninjnrnv)−

1

n4
E (ninj)E (nrnv)

and by the moments of the multinomial distribution,

V6

(
ψ̂gu

)
≈ 1

η2u+2
O

(
1

n

) ∑
#{i,j,r,v}=4

γ6 (ti, tj , tr, tv) liljlrlv,

where

γ6 (z1, z2, z3, z4) = L(u)

(
z1 − z2

η

)
L(u)

(
z3 − z4

η

)
F ′ (z1)F ′ (z2)F ′ (z3)F ′ (z4) .

By Assumption 4.4,

V6

(
ψ̂gu

)
=

1

η2u+2
O

(
1

n

)ˆ ˆ ˆ ˆ
γ6 (z1, z2, z3, z4) dz4dz3dz2dz1

+ o

(
1

nη2u+2

)
,

i.e.,

V6

(
ψ̂gu

)
= O

(
1

nη2u

)
. (E.20)

� Case 7: i = r 6= j = v.

C (wiwj , wrwv) = C (wiwj , wiwj) = V (wiwj) ,
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Using the moments of the multinomial distribution:

V7

(
ψ̂gu

)
≈ 1

nη2u+2

∑
i 6=j

γ7 (ti, tj) l
2
i lj ,

where γ7 (z1, z2) = L(u)
(
z1−z2
η

)2
F ′ (z1)2 F ′ (z2) . By assumption 4.4,

V7

(
ψ̂gu

)
=

l

nη2u+2

ˆ ˆ
γ7 (z1, z2) dz2dz1 + o

(
l

nη2u+2

)
.

so that,

V7

(
ψ̂gu

)
= O

(
l

nη2u+1

)
. (E.21)

There is one more case like this, which is i = v 6= j = r.

Considering equations (E.15) to (E.21) and Assumption 4.4, the order of (E.14) is

V
(
ψ̂gu

)
= O

(
1

nη2u

)
. (E.22)

On the one hand, using Assumptions 4.3 and 4.4, although ψ̂gu is not an unbiased

estimator, it is asymptotically unbiased, as can be seen in (E.13). On the other hand, by

Assumption 4.3, Eq. (E.22) shows that variance asymptotically vanishes. This means that

as n increases, ψ̂gu converges in quadratic mean to ψu, and the probability of the estimator

being arbitrarily close to ψu converges to one. Thus, the weak consistency of (4.1) has

been proved.

E.2 Proof of Theorem 4.2

Proof. Recall that, by de�nition,

f̂gh (x) =
1

h

k∑
i=1

wiK

(
x− ti
h

)
=

k∑
i=1

wiKh (x− ti) ,

where Kh(u) = 1
hK

(
u
h

)
and wi = ni

n , where ni is the number of data in the i-th interval

and n is the sample size. Then, MISEg = MISE
(
f̂gh

)
is

MISEg = E
[ˆ [

f̂gh (x)− f (x)
]2
dx

]
=

ˆ
E
{[
f̂gh (x)− f (x)

]2
}
dx

=

ˆ [
E
[
f̂gh (x)

]
− f (x)

]2
dx+

ˆ
V
[
f̂gh (x)

]
dx. (E.23)
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But

E
[
f̂gh (x)

]
=

k∑
i=1

E (wi)Kh (x− ti) =
k∑
i=1

piKh (x− ti) ,

where pi = F (yi)− F (yi−1), so

ˆ [
E
[
f̂gh (x)

]
− f (x)

]2
dx =

ˆ [ k∑
i=1

piKh (x− ti)− f (x)

]2

dx. (E.24)

Besides,

V
[
f̂gh (x)

]
=

k∑
i=1

V (wi)Kh (x− ti)2 +

2

k∑
i<j

C (wi, wj)Kh (x− ti)Kh (x− tj) . (E.25)

Since wi = ni
n and (n1, n2, ..., nk) is a random multinomial vector, then

V (wi) =
1

n
pi (1− pi) (E.26)

and, for i < j,

C (wi, wj) = − 1

n
pipj . (E.27)

Thus, substituting (E.27) and (E.26) in (E.25),

V
[
f̂gh (x)

]
=

1

n

k∑
i=1

pi (1− pi)Kh (x− ti)2 −

2

n

∑
i<j

pipjKh (x− ti)Kh (x− tj)

=
1

n

k∑
i=1

piKh (x− ti)2 − 1

n

k∑
i,j=1

pipjKh (x− ti)Kh (x− tj) ,

and so,

ˆ
V
[
f̂gh (x)

]
dx =

1

n

k∑
i=1

pi

ˆ
Kh (x− ti)2 dx− 1

n

k∑
i,j=1

pipj

ˆ
Kh (x− ti)Kh (x− tj) dx.

(E.28)
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Now, substituting (E.28) and (E.24) in (E.23),

MISEg =

ˆ [ k∑
i=1

piKh (x− ti)− f (x)

]2

dx+
1

n

k∑
i=1

pi

ˆ
Kh (x− ti)2 dx−

1

n

k∑
i,j=1

pipj

ˆ
Kh (x− ti)Kh (x− tj) dx. (E.29)

The above expression can be simpli�ed considering that

ˆ
Kh (x− ti)2 dx =

1

h2

ˆ
K

(
x− ti
h

)2

dx

=
1

h

ˆ
K (u)2 du

=
1

h
A (K) , (E.30)

where the change of variable u = x−ti
h was used. Also,

ˆ
Kh (x− ti)Kh (x− tj) dx =

1

h2

ˆ
K

(
x− ti
h

)
K

(
x− tj
h

)
dx

=
1

h

ˆ
K

(
tj + hu− ti

h

)
K (u) du

=
1

h

ˆ
K

(
u+

tj − ti
h

)
K (u) du

=
1

h

ˆ
K

(
ti − tj
h
− u
)
K (u) du

=
1

h
K ∗K

(
ti − tj
h

)
= (K ∗K)h (ti − tj) , (E.31)

where the change of variable u =
x−tj
h was used. Therefore, using (E.31) and (E.30) in

(E.29),

MISEg =

ˆ [ k∑
i=1

piKh (x− ti)− f (x)

]2

dx+
A (K)

nh
− 1

n

k∑
i,j=1

pipj (K ∗K)h (ti − tj) ,

(E.32)

which is expression (4.2).
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E.2.1 Obtaining Equation (4.6)

When using the bootstrap method for selecting the bandwidth h, a pilot bandwidth ζ is

used, which generally is asymptotically greater than h. Then, the estimator

f̂gζ (x) =
k∑
i=1

wiKζ (x− ti)

is considered as a reference density.

Next, a generic bootstrap sample X∗1 , X
∗
2 , ..., X

∗
n from f̂gζ is obtained and the bootstrap

MISE is de�ned as

MISE∗ = MISE∗
(
f̂g∗h

)
= E∗

[ˆ (
f̂g∗h (x)− f̂gζ (x)

)2
dx

]
,

where

f̂g∗h (x) =

k∑
i=1

w∗iKh (x− ti) ,

and w∗i are the observed proportion of data in the i-th interval when sampling from f̂gζ .

Following analog steps to those that yielded (E.32), it is obtained that

MISE∗ =

ˆ [ k∑
i=1

wζiKh (x− ti)− f̂gζ (x)

]2

dx+
A (K)

nh
− 1

n

k∑
i,j=1

wζiw
ζ
j (K ∗K)h (ti − tj) ,

(E.33)

where wζi = E∗ (w∗i ) is the proportion of data in the i-th interval of the reference density

f̂gζ ; in other words, wζi = F̂ζ (yi)− F̂ζ (yi−1), where

F̂ζ (y) =

ˆ y

−∞
f̂gζ (u) du

=

k∑
i=1

wi

ˆ y

−∞
Kζ (u− ti)

=
k∑
i=1

wi
1

ζ

ˆ y

−∞
K

(
u− ti
ζ

)
du

=
k∑
i=1

wi

ˆ y−ti
ζ

−∞
K (v) dv

=

k∑
i=1

wiK
(
y − ti
ζ

)
,
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and the change of variable v = u−ti
ζ was considered. This is,

wζi =
k∑
j=1

wjK
(
yi − tj
ζ

)
−

k∑
j=1

wjK
(
yi−1 − tj

ζ

)

=
k∑
j=1

wj

[
K
(
yi − tj
ζ

)
−K

(
yi−1 − tj

ζ

)]
. (E.34)

Then, the bootstrap integrated squared bias can be expressed as

ˆ [ k∑
i=1

wζiKh (x− ti)−
k∑
i=1

wiKζ (x− ti)

]2

dx =

ˆ { k∑
i=1

[
wζiKh (x− ti)− wiKζ (x− ti)

]}2

dx

=
k∑

i,j=1

ˆ {[
wζiKh (x− ti)− wiKζ (x− ti)

]
[
wζjKh (x− tj)− wjKζ (x− tj)

]}
dx

=

k∑
i,j=1

{
wζiw

ζ
j

ˆ
Kh (x− ti)Kh (x− tj) dx−

wζiwj

ˆ
Kζ (x− ti)Kζ (x− tj)−

wiw
ζ
j

ˆ
Kζ (x− ti)Kh (x− tj) +

wiwj

ˆ
Kζ (x− ti)Kζ (x− tj)

}
. (E.35)

Parallel to equation (E.31),

ˆ
Kζ (x− ti)Kζ (x− tj) dx = (K ∗K)ζ (ti − tj) . (E.36)

Similarly,

ˆ
Kh (x− ti)Kζ (x− tj) dx =

ˆ
Kh (tj + u− ti)Kζ (u)

=

ˆ
Kh (ti − tj − u)Kζ (u) du

= (Kh ∗Kζ) (ti − tj) , (E.37)

where the change of variable u = x− tj was used. Thus,
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ˆ
Kζ (x− ti)Kh (x− tj) dx = (Kζ ∗Kh) (ti − tj) . (E.38)

Substituting (E.38), (E.37) and (E.36) in (E.35), and then in (E.33), a closed expression

for the bootstrap MISE is obtained,

MISE∗ =

k∑
i,j=1

wζiw
ζ
j (K ∗K)h (ti − tj)− 2

k∑
i,j=1

wζiwj (Kh ∗Kζ) (ti − tj)

+

k∑
i,j=1

wiwj (K ∗K)ζ (ti − tj) +
A (K)

nh

− 1

n

k∑
i,j=1

wζiw
ζ
j (K ∗K)ζ (ti − tj) ;

i.e.,

MISE∗ =
n− 1

n

k∑
i,j=1

wζiw
ζ
j (K ∗K)h (ti − tj)− 2

k∑
i,j=1

wζiwj (Kh ∗Kζ) (ti − tj)

+
k∑

i,j=1

wiwj (K ∗K)ζ (ti − tj) +
A (K)

nh
. (E.39)

Eq. (E.39) evaluates MISE∗ in h with no need of using Monte Carlo; i.e., without

throwing di�erent samples. Note that wζi , w
ζ
j , wi, wj and (K ∗K)ζ (ti − tj) do not de-

pend on h, and therefore they can be evaluated only once, while varying h to numerically

approximate

hMISE∗ = arg min
h
MISE∗.

If K were the Gaussian kernel, it is easy to see that K ∗K is a N (0, 2), (K ∗K)h is a

N
(
0, 2h2

)
, Kh ∗Kζ is a N

(
0, h2 + ζ2

)
and Kζ ∗Kζ is a N

(
0, 2ζ2

)
. As a consequence, in

this particular case, Eq. (E.39) becomes

MISE∗ =
n− 1

n

k∑
i,j=1

wζiw
ζ
jK
√

2h (ti − tj)− 2
k∑

i,j=1

wζiwjK
√
h2+ζ2 (ti − tj)

+
k∑

i,j=1

wiwjK√2ζ (ti − tj) +
A (K)

nh
,

which is Eq. (4.6).
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E.3 Pilot bandwidth ζopt

For using the bootstrap bandwidth selector, a pilot bandwidth ζ is necessary. It has been

well studied that this bandwidth ζ should be the one that gives the best approximation to

the curvature of the density f , A (f ′′). In other words, ζ should be the one that minimizes

E
{[
Âζ (f ′′)−A (f ′′)

]2
}
. According to Cao (1990), A (f ′′) may be approximated by

Âζ
(
f ′′
)
≈ 1

n2ζ6

∑
i 6=j

ˆ
K ′′
(
x− xi
ζ

)
K ′′
(
x− xj
ζ

)
dx, (E.40)

and also,

n−2ζ−6
∑
i 6=j

ˆ
K ′′
(
x− xi
ζ

)
K ′′
(
x− xj
ζ

)
dx = A

(
f ′′
)
− ζ2µ2 (K)A

(
f ′′′
)
(E.41)

+Un +O
(
n−

1
2

)
+O

(
ζ3
)

where Un is an U -statistic, such that

E [Un] = 0 (E.42)

and

V [Un] = 2n−2ζ−9A (f)A
[
K ′′ ∗K ′′

]
+O

(
ζ3
)
. (E.43)

Thus,

A
(
f ′′
)
− Âζ

(
f ′′
)
≈ ζ2µ2 (K)A

(
f ′′′
)
− Un +O

(
n−

1
2

)
+O

(
ζ3
)
. (E.44)

Squaring (E.44) and applying the expectation operator, the mean squared error is

obtained,

E
{[
A
(
f ′′
)
− Âζ

(
f ′′
)]2
}

=
{
E
[
Âζ
(
f ′′
)]
−A

(
f ′′
)}2

+ V
[
Âζ
(
f ′′
)]
,

and by (E.44) and (E.43),

E
{[
A
(
f ′′
)
− Âζ

(
f ′′
)]2
}
≈ ζ4µ2 (K)2A

(
f ′′′
)2

+2n−2ζ−9A (f)A
[
K ′′ ∗K ′′

]
+O

(
n−1

)
+O

(
ζ6
)
.

De�ne

χ (ζ) = aζ4 + bn−2ζ−9, (E.45)
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where a = µ2 (K)2A (f ′′′)2 and b = 2A (f)A [K ′′ ∗K ′′]. Then, imposing that the �rst

derivative of (E.45) equals zero,

χ′ (ζ) = 4aζ3 − 9bn−2ζ−10 = 0. (E.46)

Now, solving for ζ, it is �nally obtained

ζopt =

[
9A (f)A [K ′′ ∗K ′′]n−2

4µ2 (K)2A (f ′′′)2

] 1
13

. (E.47)

For having a practical expression for ζopt, the quantities A [K ′′ ∗K ′′] , A (f) and A (f ′′′)2

need to be known or estimated. Assuming that f is a N
(
µ, σ2

)
and K is a Gaussian kernel,

it is easy to see that

µ2 (K) = 1,

A (f) =
1

2σ
√
π
,

A
(
f ′′′
)

=
15

16σ7
√
π
,

and

A
[
K ′′ ∗K ′′

]
=

11

512
√

2π
,

which substituting into (E.47) gives

ζopt =

(
11

200
√

2
σ13n−2

) 1
13

≈ 0.78σn−
2
13 . (E.48)

In practice, given a sample of size n, σ can be estimated and plugged into (E.48). More

detailed explanations about all expressions presented here can be found in Cao (1990,

1993).

E.4 On how to select the pilot bandwidth ζ for grouped data

For using the bootstrap bandwidth selector, it is necessary a pilot bandwidth ζ. It was

shown in Appendix E.3 that, for continuous data, the optimal ζ can be given by Eq. (E.48).

In this subsection, some guidelines for selecting ζ for grouped data will be obtained.

Note that Eq. (E.48) depends only on the sample size, n, and the standard deviation,

σ, which for a given sample can be estimated. When estimating σ, there will be small

di�erences whether proceeding with continuous or grouped data; nevertheless, although
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not exactly equal, results from (E.48) will be quite similar in any case.

Recall that ζ should be the one that better allows to estimate the curvature A (f ′′).

Then, the idea is to simulate how the optimal ζ
(
ζoptg

)
behaves for di�erent grouping

conditions (i.e., for di�erent average lentghs) with respect to ζ obtained for continuous

data (ζopt) via Eq. (E.48). Intuitively, it can be thought that as grouping becomes heavier,

ζ needs to be larger in order to capture more information from the surroundings.

For performing the simulation, it was used the same normal mixture as in Section

3.4, namely, a normal mixture f (x) =
∑4

i=1 αiφµi,σi , where φµ,σ is a N
(
µ, σ2

)
density,

α = (0.70, 0.22, 0.06, 0.02), µ = (207, 237, 277, 427) and σ = (25, 20, 35, 50), where α, µ

and σ are the mixture weights, means and standard deviations, respectively. Also, the

same three di�erent sample sizes were used: 60, 240 and 960.

For each sample size, the simulation went as follows:

1. From f , simulate B0 = 200 samples of size n and compute the average ζopt, ζ̄opt.

2. Consider a grid of average lengths
(
l1, l2, l3...

)
. For li, simulate a sample of size n

and divide the data range into intervals such that the average length is li. Then,

consider the midpoints ti as many times as ni, the number of data at each interval.

3. For each of a grid of values (ζ1, ζ2, ζ3, ...), estimate the curvature A (f ′′) based on the

grouped sample using the kernel density estimator (3.2), and keep the value of ζ that

minimizes
[
Âζ (f ′′)−A (f ′′)

]2
. This is the value that was called ζoptg .

4. Compute the ratio ζr =
ζoptg
ζ̄opt

.

5. Follow Steps 2 to 4 for each li, i = 1, 2, 3, ...

In Step 3, the curvature A (f ′′) was estimated by means of the R function dkde, available

in the package kedd (Guidoum, 2014). Given a sample, a kernel function and a bandwidth,

dkde computes the r-th derivative of the kernel density estimator over a grid of values.

Considering r = 2, the grouped sample obtained in step 2 and the default Gaussian

kernel, a grid of bandwidths (ζ1, ζ2, ζ3, ...) was used, one at a time. Then, the estimates of

the 2-nd derivative were squared, and the integral over the domain was approximated via

Monte Carlo.

E.1 shows three di�erent patterns of ζr versus ω, one for each sample size. Patterns for

sample sizes 240 and 960 are quite similar. Roughly speaking, in these cases the message

is that for ω 6 0.075, since ζr is on average 1, the bandwidth ζoptg should be taken the

same as ζopt for continuous data, while for ω > 0.075, ζoptg should be taken accordingly

to the relationship given by the line with positive slope, which is practically the same in

both cases. For sample size 60, the plot suggest that for ω 6 0.10, ζoptg should be taken

as around 0.8ζopt, while for ω > 0.10, ζoptgshould be taken following the line with positive
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Figure E.1: Plots showing ζr versus ω for sample sizes (a) 60, (b) 240, (c) 960.
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slope. These results con�rm the preliminary idea: for large ω (i.e., heavy grouping), ζoptg
should be somewhat larger than ζopt.

The plots also suggest that the pattern between ζr and ω may change at some value

between sample size 60 and 240. From this, practical guidelines for selecting ζoptg can be

stated as follows: for sample sizes 150 or below, choose ζoptg ≈ 0.8ζopt whenever ω 6 0.10,

and ζoptg ≈ ζopt (4ω + 0.4) otherwise. For sample sizes over 150, select ζoptg ≈ ζopt for

ω 6 0.075, and ζoptg ≈ ζopt (7ω + 0.5) for ω > 0.075.
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Appendix F

Proof of Theorem 5.1

Proof. Applying the expectation operator to (5.1),

E
[
F̂ gh (x)

]
= E

[
k∑
i=1

wiK
(
x− ti
h

)]

=
k∑
i=1

E
[
wiK

(
x− ti
h

)]

=
k∑
i=1

K
(
x− ti
h

)
E [wi]

=

k∑
i=1

K
(
x− ti
h

)
pi, (F.1)

where pi = F (yi)− F (yi−1).

Using a Taylor expansion of pi around ti, as in (C.10), by the parity conditions (C.12),

substituting into (F.1) gives

E
[
F̂ gh (x)

]
=

k∑
i=1

K
(
x− ti
h

){
F ′ (ti) li + F ′′′ (ti)

l3i
24

+
1

4!
o3

}
,

where o3 = F (4) (ξi)
(
li
2

)4
− F (4) (ξi−1)

(
− li

2

)4
. Then,

E
[
F̂ gh (x)

]
=

k∑
i=1

liF
′ (ti)K

(
x− ti
h

)
+

1

24

k∑
i=1

l3iF
′′′ (ti)K

(
x− ti
h

)
+

1

4!

k∑
i=1

K
(
x− ti
h

)
o3. (F.2)

Due to eq. (C.13), it follows that
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∣∣∣∣∣
k∑
i=1

K
(
x− ti
h

)
o3

∣∣∣∣∣ 6
k∑
i=1

∣∣∣∣K(x− tih

)
o3

∣∣∣∣
6 ‖K‖∞

k∑
i=1

|o3|

6 ‖K‖∞ kO
(
l
5
)

= O
(
l
4
)
,

so, de�ning H1 (t) = F ′ (t)K
(
x−t
h

)
and H2 (t) = F ′′′ (t)K

(
x−t
h

)
,

E
[
F̂ gh (x)

]
=

k∑
i=1

liH1 (ti) +
1

24

k∑
i=1

l3iH2 (ti) +O
(
l
4
)
. (F.3)

Considering the �rst term on the right hand side of (F.3), taking the integral over the

i-th interval, and using a Taylor expansion, gives

ˆ yi

yi−1

H1 (t) dt =

ˆ yi

yi−1

[
H1 (ti) +H ′1 (ti) (t− ti) +

1

2
H ′′1 (ti) (t− ti)2 +

1

3!
H ′′′1 (ti) (t− ti)3 +

1

4!
H

(4)
1 (ξi) (t− ti)4

]
dt.

Using the change of variable s = t− ti and the parity conditions (C.12),

ˆ yi

yi−1

H1 (t) dt = liH1 (ti) +
1

24
l3iH

′′
1 (ti) +

1

4!

k∑
i=1

ˆ yi

yi−1

H
(4)
1 (ξi) (t− ti)4 dt,

and summing all over the k intervals and reordering,

k∑
i=1

liH1 (ti) =

ˆ
H1 (t) dt− 1

24

k∑
i=1

l3iH
′′
1 (ti)−

1

4!

k∑
i=1

ˆ yi

yi−1

H
(4)
1 (ξi) (t− ti)4 dt. (F.4)

Bounding the third term on the right hand side of (F.4),
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∣∣∣∣∣ 1

4!

k∑
i=1

ˆ yi

yi−1

H
(4)
1 (ξi) (t− ti)4 dt

∣∣∣∣∣ 6 1

4!

∥∥∥H(4)
1

∥∥∥
∞

k∑
i=1

[
s5

5

] li
2

− li
2

6
1

4!80

∥∥∥H(4)
1

∥∥∥
∞

k∑
i=1

l5i

6 kl5max
1

4!80

∥∥∥H(4)
1

∥∥∥
∞

(F.5)

= O

(
l
4

h4

)
, (F.6)

where it was used the result (C.2) and the fact that each derivative of H1 takes a 1/h out

of the expression.

Now, working on the second term on the right hand side of (F.4), it can be open out

as

k∑
i=1

l3iH
′′
1 (ti) =

k∑
i=1

(
l2i − l2

)
liH
′′
1 (ti) + l2

k∑
i=1

liH
′′
1 (ti) . (F.7)

The second term on the right hand side of (F.7) can be expressed as

l2
k∑
i=1

liH
′′
1 (ti) = l2

ˆ
H ′′1 (t) dt− l2

24

k∑
i=1

l3iH
(4)
1 (ti)−

l2

4!

k∑
i=1

ˆ yi

yi−1

H
(6)
1 (ξi) (t− ti)4 dt.

Bounding l2

4!

∑k
i=1

´ yi
yi−1

H
(6)
1 (ξi) (t− ti)4 dt,

∣∣∣∣∣ l24!

k∑
i=1

ˆ yi

yi−1

H
(6)
1 (ξi) (t− ti)4 dt

∣∣∣∣∣ 6 l2

4!

∥∥∥H(6)
1

∥∥∥
∞

k∑
i=1

ˆ yi

yi−1

(t− ti)4 dt

6
l2

4!80

∥∥∥H(6)
1

∥∥∥
∞

k∑
i=1

l5i

6
l2

4!80

∥∥∥H(6)
1

∥∥∥
∞
kl5max

= O

(
l
6

h6

)
,

where results (C.4) and (C.2) were used. Using similar arguments,∣∣∣∣∣
k∑
i=1

l3iH
(4)
1 (ti)

∣∣∣∣∣ 6 O

(
l
4

h4

)
.
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In turn, bounding l2
´
H ′′1 (t) dt results in

∣∣∣∣l2 ˆ H ′′1 (t) dt

∣∣∣∣ 6 O
(
l
2
) ∣∣∣∣ˆ H ′′1 (t) dt

∣∣∣∣
6 O

(
l
2
)ˆ ∣∣H ′′1 (t)

∣∣ dt (F.8)

Let us consider an explicit expression for H ′′1 , which is

H ′′1 (t) = K
(
x− t
h

)
F ′′′ (t)− 1

h
2F ′′ (t)K

(
x− t
h

)
+

1

h2
F ′ (t)K ′

(
x− t
h

)
.

By Assumption 5.1, when x−t
h < −1 then

K
(
x− t
h

)
= K ′

(
x− t
h

)
= K

(
x− t
h

)
= 0,

so in this case,

H ′′1 (t) = 0. (F.9)

When x−t
h > 1, then

K ′
(
x− t
h

)
= K

(
x− t
h

)
= 0

and

K
(
x− t
h

)
= 1,

so in this case,

H ′′1 (t) = F ′′′ (t) . (F.10)

As a consequence,

ˆ ∞
−∞

∣∣H ′′1 (t)
∣∣ dt =

ˆ x−h

−∞

∣∣H ′′1 (t)
∣∣ dt+

ˆ x+h

x−h

∣∣H ′′1 (t)
∣∣ dt

=

ˆ x−h

−∞

∣∣F ′′′′ (t)∣∣ dt+

ˆ x+h

x−h

∣∣∣∣K(x− th

)
F ′′′ (t)− 1

h
2F ′′ (t)K

(
x− t
h

)
+

1

h2
F ′ (t)K ′

(
x− t
h

)∣∣∣∣ dt,
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hence,

ˆ ∞
−∞

∣∣H ′′1 (t)
∣∣ dt 6 ˆ x+h

−∞

∣∣F ′′′′ (t)∣∣ dt+ 2
∥∥F ′′∥∥∞ ˆ 1

−1
K (u) du+

2

h

∥∥F ′∥∥∞ ∥∥K ′∥∥∞
6
ˆ ∞
−∞

∣∣F ′′′ (t)∣∣ dt+ 2
∥∥F ′′∥∥∞ +

2

h

∥∥F ′∥∥∞ ∥∥K ′∥∥∞
= O

(
1

h

)
.

Thus, from eq. (F.8),

∣∣∣∣l2 ˆ H ′′1 (t) dt

∣∣∣∣ 6 O
(
l
2
)
O

(
1

h

)
= O

(
l
2

h

)
.

Updating (F.7), gives

k∑
i=1

l3iH
′′
1 (ti) =

k∑
i=1

(
l2i − l2

)
liH
′′
1 (ti) +O

(
l
2

h

)
. (F.11)

For bounding the �rst term on the right hand side of (F.11), realize that by previous

elaborations,

k∑
i=1

(
l2i − l2

)
liH
′′
1 (ti) =

k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

H ′′1 (t) dt− 1

4!

k∑
i=1

(
l2i − l2

)
l3iH

(4)
1 (ti)−

1

4!

k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

H
(6)
1 (ξi) (t− ti)4 dt. (F.12)

Using result (C.7), the last two terms can be bounded as

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)
l3iH

(4)
1 (ti)

∣∣∣∣∣ 6 max
i

∣∣∣l2i − l2∣∣∣ kl3max ∥∥∥H(4)
1

∥∥∥
∞

= o

(
l
4

h4

)
(F.13)

and
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∣∣∣∣∣ 1

4!

k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

H
(6)
1 (ξi) (t− ti)4 dt

∣∣∣∣∣ 6 1

4!80
max
i

∣∣∣l2i − l2∣∣∣ kl5max ∥∥∥H(6)
1

∥∥∥
∞

= o

(
l
6

h6

)
. (F.14)

For bounding
∑k

i=1

(
l2i − l2

) ´ yi
yi−1

H ′′1 (t) dt, note that

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)ˆ yi

yi−1

H ′′1 (t) dt

∣∣∣∣∣ 6 max
i

∣∣∣l2i − l2∣∣∣ k∑
i=1

∣∣∣∣∣
ˆ yi

yi−1

H ′′1 (t) dt

∣∣∣∣∣
6 o

(
l
2
) k∑
i=1

ˆ yi

yi−1

∣∣H ′′1 (t)
∣∣ dt

6 o
(
l
2
)ˆ ∣∣H ′′1 (t)

∣∣ dt, (F.15)

which is a similar expression to (F.8). Using the same arguments as before, Eq. (F.15)

becomes ∣∣∣∣∣
k∑
i=1

(
l2i − l2

) ˆ yi

yi−1

H ′′1 (t) dt

∣∣∣∣∣ = o

(
l
2

h

)
. (F.16)

Considering equations (F.12), (F.13), (F.14), (F.15) and (F.16),

k∑
i=1

l3iH
′′
1 (t) = O

(
l
2

h

)
. (F.17)

By eqs. (F.17) and (F.5), Eq. (F.4) is

k∑
i=1

liH1 (ti) =

ˆ
H1 (t) dt+O

(
l
2

h

)
. (F.18)

Integrating by parts and a change of variable lead to

ˆ
H1 (t) dt =

ˆ
F (x− hu)K (u) du.

Using a Taylor expansion on F and by kernel properties,

ˆ
H1 (t) dt = F (x) +

h2

2
F ′′ (x)µ2 (K) +O

(
h4
)

;

i.e., from (F.18),
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k∑
i=1

liH1 (ti) = F (x) +
h2

2
F ′′ (x)µ2 (K) +O

(
h4
)

+O

(
l
2

h

)
. (F.19)

Regarding the second term on the right hand side of (F.3),

k∑
i=1

l3iH2 (ti) =

k∑
i=1

(
l2i − l2

)
liH2 (ti) + l2

k∑
i=1

liH2 (ti) . (F.20)

The �rst term on the right hand side of (F.20) can be easily bounded usign (C.2) and

(C.7) as

∣∣∣∣∣
k∑
i=1

(
l2i − l2

)
liH2 (ti)

∣∣∣∣∣ 6
k∑
i=1

∣∣∣(l2i − l2) liH2 (ti)
∣∣∣ (F.21)

6 max
i

∣∣∣l2i − l2∣∣∣ lmaxk ‖H2‖∞

= o
(
l
2
)
,

since ‖H2‖∞ = O (1). As to the second term, note that by Ostrowski's inequality (C.19),∣∣∣∣∣liH2 (ti)−
ˆ yi

yi−1

H2 (t) dt

∣∣∣∣∣ 6 1

4
LH2 l

2
i ,

which summing up all over the k intervals and considering (C.4) and the fact that LH2 =

‖H ′2‖∞, lead to

k∑
i=1

∣∣∣∣∣liH2 (ti)−
ˆ yi

yi−1

H2 (t) dt

∣∣∣∣∣ 6 1

4
LH2

k

k

k∑
i=1

l2i

=
1

4
LH2kl

2

= O

(
l

h

)
,

which in turn, by (C.4), implies that

l2
k∑
i=1

liH2 (ti) =
[
l
2

+ o
(
l
2
)] [ˆ

H2 (t) dt+O

(
l

h

)]
= l

2
ˆ
H2 (t) dt+ o

(
l
2
)
.

Integrating by parts and a change of variable lead to
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ˆ
H2 (t) dt =

ˆ
F ′′ (x− hu)K (u) du.

Now, by a Taylor expansion on F ′′ and simplifying due to the kernel K properties,

ˆ
H2 (t) dt = F ′′ (x) +

h2

2
F (4) (x)µ2 (K) +O

(
h3
)
,

so that

l2
k∑
i=1

liH2 (ti) = l
2
[
F ′′ (x) +

h2

2
F (4) (x)µ2 (K) +O

(
h3
)]

+ o
(
l
2
)
. (F.22)

Using (F.22) and (F.21), Eq. (F.20) is

k∑
i=1

l3iH2 (ti) = l
2
[
F ′′ (x) +

h2

2
F (4) (x)µ2 (K) +O

(
h3
)]

+ o
(
l
2
)
. (F.23)

So, joining (F.23) and (F.19) into (F.3),

E
[
F̂ gh (x)

]
= F (x) +

h2

2
F ′′ (x)µ2 (K) +O

(
h4
)

+O

(
l
2

h

)
+

[
l
2

24
F ′′ (x) + o

(
l
2
)]

,

or simply, using Assumption 5.4,

E
[
F̂ gh (x)

]
= F (x) +

h2

2
F ′′ (x)µ2 (K) + o

(
h2
)
,

from which, the bias is

B
[
F̂ gh (x)

]
=

1

2
h2F ′′ (x)µ2 (K) + o

(
h2
)
. (F.24)

Regarding the variance, applying this operator to (5.1) gives

V
[
F̂ gh (x)

]
= V

[
k∑
i=1

wiK
(
x− ti
h

)]

=

k∑
i=1

V
[
wiK

(
x− ti
h

)]
+ 2

∑
i<j

C
[
wiK

(
x− ti
h

)
, wjK

(
x− tj
h

)]

=

k∑
i=1

K2

(
x− ti
h

)
V (wi) + 2

∑
i<j

K
(
x− ti
h

)
K
(
x− tj
h

)
C (wi, wj) .

Considering that (n1, n2, . . . , nk) is multinomial random vector, and since wi = ni/n,
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the last equation can be rewritten as

V
[
F̂ gh (x)

]
=

1

n

k∑
i=1

K2

(
x− ti
h

)
pi (1− pi)−

2

n

∑
i<j

K
(
x− ti
h

)
K
(
x− tj
h

)
pipj . (F.25)

Since pi = F (yi) − F (yi−1), using Taylor expansions around ti, as in (C.10) and by

parity conditions (C.12), the �rst term on the right hand side of (F.25) (except a factor

1/n) can be written as

k∑
i=1

K2

(
x− ti
h

)
pi (1− pi) =

k∑
i=1

liH3 (ti) +O
(
l
)
, (F.26)

where H3 (t) = K2
(
x−t
h

)
F ′ (t). Integrating H3 over the i-th interval and using a Taylor

expansion, gives

ˆ yi

yi−1

H3 (t) dt =

ˆ yi

yi−1

[
H3 (ti) + (t− ti)H ′3 (ti) +

1

2
H ′′3 (ti) (t− ti)2 +

1

3!
H ′′′3 (ti) (t− ti)3 +

1

4!
H(4) (ξi) (t− ti)4

]
dt.

Taking the variable s = t− ti and by parity condtions (C.12),

ˆ yi

yi−1

H3 (t) dt = liH3 (ti) +
1

24
l3iH

′′
3 (ti) +

1

4!

ˆ yi

yi−1

H
(4)
3 (ξi) (t− ti)4 dt,

and summing all over the k intervals and reordering,

k∑
i=1

liH3 (ti) =

ˆ
H3 (t) dt− 1

24

k∑
i=1

l3iH
′′
3 (ti)−

1

4!

k∑
i=1

ˆ yi

yi−1

H
(4)
3 (ξi) (t− ti)4 dt. (F.27)

Following parallel steps after (F.4), it is easy to see that

∣∣∣∣∣ 1

4!

k∑
i=1

ˆ yi

yi−1

H
(4)
3 (ξi) (t− ti)4 dt

∣∣∣∣∣ 6 1

4!

∥∥∥H(4)
3

∥∥∥
∞

k∑
i=1

ˆ yi

yi−1

(t− ti)4 dt

6
1

4!80

∥∥∥H(4)
3

∥∥∥
∞

k∑
i=1

l5i

= O

(
l
4

h4

)
(F.28)

and
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k∑
i=1

l3iH
′′
3 (ti) = O

(
l
2

h

)
. (F.29)

Considering (F.29), (F.28) and (F.27), Eq. (F.26) transforms into

k∑
i=1

K2

(
x− ti
h

)
pi (1− pi) =

ˆ
H3 (t) dt+O

(
l
)
. (F.30)

As before, using integration by parts and the change of variable u = (x− t) /h,

ˆ
H3 (t) dt = 2

ˆ
F (x− hu)K (u)K (u) du

= 2

ˆ
K (u)K (u)

[
F (x)− huF ′ (x) +

1

2
h2u2F ′′ (ξ)

]
du

= 2

ˆ
K (u)K (u)F (x) du− 2h

ˆ
K (u)K (u)F ′ (x)udu+O

(
h2
)
,

where ξ is a value between x and x− hu.
Note that d

duK
2 (u) = 2K (u)K′ (u) and thatK′ (u) = K (u), so d

duK
2 (u) = 2K (u)K (u).

Then,

ˆ
H3 (t) dt = F (x)− hF ′ (x)C0 +O

(
h2
)
,

where C0 = 2
´
K (u)K (u)udu. Substituting the last expression into (F.30) gives

k∑
i=1

K2

(
x− ti
h

)
pi (1− pi) = F (x)− hF ′ (x)C0 +O

(
h2
)
, (F.31)

since by Assumption 5.4, l = o
(
h2
)
.

Let us turn back to eq. (F.25). Because pi = F (yi)−F (yi−1), using Taylor expansions

around ti, as in (C.10) and by parity conditions (C.12), the second term on the right hand

side of (F.25) (except a factor −2/n) can be written as

∑
i<j

K
(
x− ti
h

)
K
(
x− tj
h

)
pipj =

∑
i<j

H4 (ti, tj) lilj +O
(
l
2
)
, (F.32)

where H4 (z1, z2) = K
(
x−z1
h

)
K
(
x−z2
h

)
F ′ (z1)F ′ (z2).

Considering the second order Taylor expansion around (ti, tj) and by parity conditions

(C.12),

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1 = H4 (ti, tj) lilj +
T0

2
, (F.33)
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where

T0 =

ˆ yi

yi−1

ˆ yj

yj−1

[
∂2H4

∂z2
1

(ξ1, ξ2) (z1 − ti)2 + 2
∂2H4

∂z1∂z2
(ξ1, ξ2) (z1 − ti) (z2 − tj)

+
∂2H4

∂z2
2

(ξ1, ξ2) (z2 − tj)2

]
dz2dz1

Summing all over the k (k − 1) /2 enclosures in (F.33) and reordering,

∑
i<j

liljH4 (ti, tj) =
∑
i<j

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1 −
1

2

∑
i<j

T0. (F.34)

The second term on the right hand side of (F.34), can be easily bounded:

∣∣∣∣∣∣12
∑
i<j

T0

∣∣∣∣∣∣ 6 1

2

∑
i<j

(
l3i lj
12

∥∥∥∥∂2H4

∂z2
1

∥∥∥∥
∞

+ 2
l2i l

2
j

16

∥∥∥∥ ∂2H4

∂z1∂z2

∥∥∥∥
∞

+
lil

3
j

12

∥∥∥∥∂2H4

∂z2
2

∥∥∥∥
∞

)

= O

(
k2l4max
h2

)
= O

(
l
2

h2

)
.

As a consequence,

∑
i<j

liljH4 (ti, tj) =
∑
i<j

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1 +O

(
l
2

h2

)
. (F.35)

On the other hand,

∑
i<j

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1 =
1

2

∑
i 6=j

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1

=
1

2

k∑
i,j=1

ˆ yi

yi−1

ˆ yj

yj−1

H4 (z1, z2) dz2dz1

−1

2

k∑
i=1

ˆ yi

yi−1

ˆ yi

yi−1

H4 (z1, z2) dz2dz1

=
1

2

ˆ ˆ
H4 (z1, z2) dz2dz1 +O

(
l
)
. (F.36)

Now, using (F.36) and (F.35),
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∑
i<j

liljH4 (ti, tj) =
1

2

ˆ ˆ
H4 (z1, z2) dz2dz1 +O

(
l
)

+O

(
l
2

h2

)
. (F.37)

Integration by parts and two changes of variable [u1 = (x− z1) /h, u2 = (x− z2) /h]

lead to

1

2

ˆ ˆ
H4 (z1, z2) dz2dz1 =

1

2

[ˆ
F (x− hu)K (u) du

]2

.

A Taylor expansion around x gives,

1

2

ˆ ˆ
H4 (z1, z2) dz2dz1 =

1

2

[
F (x) +

1

2
h2F ′′ (x)µ2 (K) +O

(
h4
)]2

=
1

2

[
F 2 (x) +O

(
h2
)]
, (F.38)

so that, considering (F.38), (F.37) and Assumption 5.4, Eq. (F.32) becomes

∑
i<j

K
(
x− ti
h

)
K
(
x− tj
h

)
pipj =

1

2
F 2 (x) +O

(
h2
)
. (F.39)

Now, putting back (F.39) and (F.31) in (F.25) and simplifying,

V
[
F̂ gh (x)

]
=

1

n
F (x) [1− F (x)]− h

n
F ′ (x)C0 +O

(
h2

n

)
. (F.40)

Joining (F.40) and (F.24), it is obtained

MSE
[
F̂ gh (x)

]
=

1

4
h4F ′′ (x)2 µ2 (K)2 +

1

n
F (x) [1− F (x)]− h

n
F ′ (x)C0

+O

(
h2

n

)
+ o

(
h4
)
. (F.41)

Finally, dealing with the integrated versions of the terms coming up in the proof of

(F.41), it can be obtained the following asymptotic expression for AMISE,

AMISE
[
F̂ gh

]
=

1

4
h4µ2 (K)2A

(
f ′
)

+
1

n

ˆ
F (x) [1− F (x)] dx− h

n
C0,

which corresponds with just integrating the leading terms in (F.41).

166



Appendix G

Resumen extenso

Esta tesis surge a partir de un problema planteado por investigadores del Instituto de Agri-

cultura Sostenible (CSIC), en Córdoba, España, al equipo de Modelización, Optimización

e Inferencia Estadística (MODES) de la Universidade da Coruña (UDC). El problema en

cuestión era sobre cómo predecir con cierta precisión la emergencia de malas hierbas, con

el problema añadido de que debido a las condiciones experimentales, los datos disponibles

se obtenían de manera agrupada.

Las malas hierbas se caracterizan por ser persistentes, muy competitivas y por disminuir

el rendimiento de los cultivos, lo que tiene consecuencias negativas tanto en lo económico

como en lo social. Resulta evidente, por una parte, la importancia de combatir de manera

e�ciente a las malas hierbas mediante programas de erradicación apropiados. Por otra

parte, la e�ciencia de estos programas depende en gran medida de una buena capacidad

de predicción de la emergencia de este tipo de plantas.

El problema de modelizar y predecir la emergencia de malas hierbas no es nuevo, y en

el ámbito de la malherbología se ha abordado mediante el ajuste de modelos paramétricos

no lineales de regresión, tales como los modelos de regresión Logística, de Gompertz o de

Weibull. El ajuste se hace considerando como variable dependiente el número acumulado

de plantas emergidas, y como variable independiente, el tiempo hidrotermal acumulado.

Sin embargo, este enfoque tiene algunos inconvenientes. Uno de ellos es que los métodos

paramétricos no son lo su�cientemente �exibles para capturar ciertas características com-

plejas que pueden aparecer en los valores observados de emergencia acumulada, tales como

saltos abruptos o la presencia de colas pesadas. Por otra parte, los valores de la emergen-

cia acumulada obtenida monitorizando tiempos hidrotermales acumulados consecutivos, no

son independientes estadísticamente, con lo cual se ve afectada la obtención de intervalos

de con�anza y tests de hipótesis que requieren que los residuos no estén correlacionados.

Además, aunque la experiencia puede ayudar a elegir el tipo de modelo adecuado, si el

modelo elegido no describiera adecuadamente la emergencia acumulada, existe el peligro

de que el análisis proporcione conclusiones erróneas. No obstante, en la literatura cientí-
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�ca de la malherbología no se suele considerar lo anterior, siendo el ajuste del modelo de

regresión el principal objetivo.

La propuesta alternativa a los modelos paramétricos es la aproximación no paramétrica,

que no exige modelo alguno a las variables aleatorias en consideración, dejando que sean

los datos los que hablen �por sí mismos�. Así, los métodos no paramétricos proveerían

mayor �exibilidad en la descripción y la estimación de la emergencia de las malas hierbas.

Además de la aproximación no paramétrica, el problema se puede abordar desde el

punto de vista de la búsqueda de estructura en los datos, ya sea mediante la estimación de

la función de densidad o de distribución. En efecto, si no hubiera limitaciones debidas a

la monitorización y se pudiera observar el tiempo hidrotermal acumulado al momento de

la emergencia de cada planta, lo lógico sería plantear el problema en términos de sólo una

variable aleatoria (tiempo hidrotermal acumulado a la emergencia), con la cual se podría

estimar la función de densidad, o bien, dado que la emergencia acumulada es una función

creciente cuyos valores se encuentran entre 0 y 1, también es lógico pensar en ella como un

problema de estimación de la distribución.

Una herramienta no paramétrica clásica para estimar la estructura de un conjunto de

datos es la suavización tipo núcleo, ya sea para estimar la densidad o la distribución. Sin

embargo, tal como se mencionó al principio, los datos obtenidos por los malherbólogos

complica su utilización, pues sólo se conoce el número de emergencias entre dos obser-

vaciones consecutivas del tiempo hidrotermal acumulado. Así, para usar los estimadores

núcleo de la densidad o de la distribución es necesario modi�carlos de alguna manera para

obtener estimaciones de dichas funciones a partir de datos agrupados.

Esta tesis comienza con una revisión de los principales conceptos usados en malher-

bología, así como en la estimación no paramétrica de la densidad y la distribución. Se pre-

sentan el histograma y la función de distribución empírica como estimadores que aunque

tienen ciertas buenas propiedades, sus estimaciones tienen la desventaja de ser escalonadas.

Ante la relativa aspereza de las estimaciones del histograma y de la función de distribu-

ción empírica, la estimación tipo núcleo resulta idónea para obtener esa suavidad extra que

siempre es deseable en las estimaciones de las funciones de densidad y distribución. Desde

el punto de vista matemático, la estimación tipo núcleo es relativamente sencilla, lo que

permite estudiar sus propiedades estadísticas con cierta facilidad. Por tal razón, esta tesis

incluye un capítulo con los principales resultados sobre la estimación tipo núcleo de la

densidad y de la distribución, resaltando sus propiedades asintóticas y, dada su importan-

cia en el desempeño de los estimadores, se incluye también una revisión de los principales

selectores de ventana usados tradicionalmente.

La primera contribución de esta investigación comienza con una propuesta para mo-

di�car el bien conocido estimador tipo núcleo de la densidad, f̂h, (ecuación 2.1) para

poder usarlo con datos agrupados, dando como resultado el estimador f̂gh , (capítulo 3,

ecuación 3.2). Puesto que los datos están contenidos (agrupados) en intervalos, se propone
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considerar a los puntos medios de los intervalos y repetirlos tantas veces como datos haya

al interior de éstos. En esencia, esta propuesta es una forma de desagregar los datos, y

tiene la ventaja de ser sencilla, fácil de implementar y hasta intuitiva. En efecto, ante la

falta de información adicional, parece razonable elegir el punto medio del intervalo para

representar la localización de un dato al interior de éste.

Un elemento clave para el buen desempeño del estimador núcleo de la densidad es elegir

adecuadamente el parámetro de suavización o ventana. Cuando los datos disponibles son

completos (no agrupados), los desarrollos clásicos permiten obtener una expresión para la

ventana óptima desde el punto de vista del error cuadrático medio integrado asintótico

(AMISE), es decir, una ventana AMISE óptima, hAMISE (ecuación (2.12)). Ya que

la estructura del estimador modi�cado para datos agrupados es básicamente la misma,

un primer impulso sería considerar esa misma expresión de la ventana. Sin embargo, al

considerar los puntos medios de los intervalos en la expresión del estimador modi�cado,

se introduce un error en las mediciones, un error que puede llegar a ser notablemente más

grande que el error experimental que, en principio, cabría esperar en cualquier medición

no agrupada. Por lo anterior, es pertinente preguntarse en qué medida sería correcto

considerar la ventana hAMISE en el caso del estimador núcleo modi�cado.

Una re�exión sobre el tema permite concluir que lo anterior dependerá del grado de

agrupación de los datos. Es decir, que cuanto más pequeños sean los intervalos, más cerca

se está del caso de datos completos y, por lo tanto, el error que se pueda cometer al utilizar

la ventana hAMISE para datos completos será cada vez más despreciable. Dicho desde el

punto de vista contrario, existe un límite máximo para el grado de agrupación de los datos,

a partir del cual el error introducido al considerar los puntos medios se vuelve importante,

y justo a partir de ese límite sería incorrecto utilizar esta ventana AMISE óptima. Esto

plantea dos objetivos: el primero, demostrar rigurosamente bajo qué supuestos es posible

usar la ventana hAMISE en el caso de datos agrupados. Como es habitual, esos supuestos

deberán estar expresados en términos de la función que se quiera estimar, de la función

núcleo utilizada y de la relación asintótica entre el parámetro de suavizado y el tamaño

muestral, pero también se deberá considerar alguna cantidad representativa del grado de

agrupación de los datos. El segundo objetivo consiste en encontrar, en la práctica, cuál es

ese límite en la agrupación de los datos.

El teorema 3.1, cuya demostración se incluye en el apéndice D, enuncia de manera

rigurosa cuáles son los supuestos que se deben satisfacer para que la ventana hAMISE

sea la misma en el caso de datos completos que en el caso de datos agrupados. Como

ya se adelantaba, los supuestos están expresados en términos de la función que se desea

estimar (en este caso, la densidad f), la función núcleo, el parámetro de suavizado, el

tamaño muestral, y como medida del grado de agrupación de los datos, se ha considerado

la longitud promedio de los intervalos, l. Además, se ha incluido una cota para la máxima

diferencia absoluta entre la longitud de los intervalos y la longitud media de los mismos,
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que permite controlar el grado de variabilidad en la longitud de los intervalos (véanse los

supuestos 3.1 a 3.4 en la sección 3.3). Este resultado es importante, pues demuestra que

cuando se cumplen esos supuestos, aunque los datos estén agrupados, la expresión del

AMISE es la misma que para el caso de datos no agrupados (compárense las ecuaciones

(3.5) y (2.11)) . Lo anterior signi�ca que los términos no dominantes en la expresión del

error cuadrático medio integrado (MISE) (que en el caso de datos agrupados dependen

de su grado de agrupación, mediante l) se han desvanecido lo su�cientemente rápido al

teóricamente aumentar el tamaño muestral, razón por la cual el término dominante (esto

es, el AMISE) coincide con el AMISE en el caso de datos completos. No obstante,

si esos supuestos no se satisfacen, los términos no dominantes del MISE siguen siendo

importantes en el caso de datos agrupados, con lo que el AMISE es una mala aproximación

del MISE.

El razonamiento anterior lleva a distinguir dos tipos de agrupaciones: agrupación ligera

y agrupación pesada. En la agrupación ligera, la expresión de la ventana hAMISE coincide

en el caso de datos agrupados y no agrupados. En el caso de agrupación pesada, dado

que el AMISE no es una buena aproximación del MISE, no sería recomendable usar

dicha ventana. Surge de manera natural preguntarse cuál es, en la práctica, ese límite de

agrupamiento de los datos que de�ne la frontera entre agrupación ligera y pesada, y que

permite el uso (o no) de la ventana hAMISE en el caso de datos agrupados.

Otro aspecto importante concerniente a la ventana hAMISE es el de las cantidades de

las que depende. Además de depender del tamaño muestral y de cantidades que dependen

de la función núcleo elegida, también depende de la curvatura de la función de densidad,

A (f ′′). En la práctica, lo que se hace es considerar una estimación de ésta y sustituirla

en la expresión hAMISE , obteniendo así un selector plug-in. Así, aunque en teoría, y

siempre que se cumplan las condiciones necesarias, la ventana hAMISE es la misma para

datos completos que para datos agrupados, en la práctica existe una sutil diferencia: la

estimación de la curvatura se hace, en un caso, con datos completos; en el otro, con datos

agrupados (véanse las ecuaciones (3.6), (3.7) y (3.8)).

Para evaluar el desempeño del estimador núcleo de la densidad para datos agrupados

usando el selector plug-in, se consideraron tres tamaños muestrales (60, 240 y 960) y se

realizaron dos estudios de simulación (sección 3.4). Simulando muestras de esos tamaños

muestrales a partir de una mixtura de normales, en el primer estudio se consideraron dos

escenarios: a) En el primer escenario (S1) se simuló que la longitud de los intervalos se

reducía de manera rápida al aumentar el tamaño muestral. b) En el segundo (S2), la

longitud de los intervalos se reducía de manera muy lenta conforme el tamaño muestral

aumentaba. Es decir, el primer escenario simulaba una transición rápida a intervalos

pequeños (agrupación ligera) al aumentar el tamaño muestral, mientras que el segundo

escenario simulaba una transición muy lenta (agrupación pesada).

Los resultados con�rmaron lo que la teoría predecía. Conforme el tamaño muestral
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aumenta, si las agrupaciones son ligeras, el selector plug-in es una buena opción para

aproximarse a la ventana que minimiza el MISE en el caso de datos agrupados, hMISEg ,

obteniéndose cada vez mejores estimaciones de la densidad. En cambio, si al aumentar el

tamaño muestral las agrupaciones se mantienen gruesas (pesadas), el selector plug-in es

incapaz de dar resultados cercanos a la ventana hMISEg , por lo que, de usarse, se obtendrían

malas estimaciones de la densidad.

En el segundo estudio de simulación se consideró un sólo tamaño muestral (240) y se

consideraron diferentes conjuntos de intervalos con longitudes promedio que iban desde

valores muy pequeños (bastantes intervalos) hasta valores relativamente grandes (pocos

intervalos), y se obtuvo el MISEg del estimador para diferentes valores de ventana h. Los

resultados mostraron que existe un rango especí�co de valores de l para los cuales, usando

la ventana que minimiza el MISEg, el estimador f̂gh tiene su mejor desempeño. Además,

en la simulación se encontró que el selector plug-in proveía buenas aproximaciones de la

ventana hMISEg en esa región especí�ca de valores de l, mostrando de manera preliminar

que, en la práctica, el valor de l que de�nía la frontera entre agrupación ligera y pesada

era de alrededor de 0.06 veces el rango de los datos, r. Lo anterior se puso a prueba

considerando datos reales adecuadamente agrupados, obteniéndose que el selector plug-in

proveía buenos resultados hasta valores de l de alrededor de 0.075r, valor muy cercano al

obtenido en las simulaciones.

Como ya se mencionó, el selector plug-in requiere estimar la curvatura de la densidad,

A (f ′′), por lo que era importante demostrar la consistencia del estimador de la curvatura

para datos agrupados, Âg (capítulo 4). Bajo las condiciones adecuadas, la consistencia

se enuncia en el teorema 4.1, mismo que se demuestra en el apéndice E.1. Sin embargo,

aunque de este resultado se in�ere la consistencia del selector plug-in, hay que recordar que

éste sólo provee buenos resultados cuando la agrupación es ligera. Así, quedaba pendiente

la propuesta de un selector de ventana para los casos de agrupación pesada.

La solución que se propone es un selector bootstrap. A partir de una expresión exacta

delMISE para datos agrupados (véase el teorema 4.2, cuya demostración se encuentra en

el apéndice E.2), mediante procedimientos paralelos se deriva una expresión exacta para

el MISE versión bootstrap, MISE∗(ecuación 4.4). A partir de esta última, mediante

algunos desarrollos es posible obtener una expresión operativa para el MISE∗, dada por

la ecuación (4.5). Así, el selector bootstrap propuesto se basa en evaluar numéricamente

esta última ecuación, y seleccionar la ventana h que la minimice. En el caso de que se use

un núcleo Gaussiano, la ecuación (4.5) se convierte en la ecuación (4.6) (véase el apéndice

E.2.1).

El selector bootstrap depende inicialmente de una estimación piloto de la densidad,

para lo cual es necesario contar con una ventana piloto ζ. La teoría demuestra que la

ventana piloto ζ debe ser aquella que minimice el promedio de la diferencia cuadrática

entre la curvatura A (f ′′) y su estimación núcleo usando ζ, Âζ (f ′′). Asumiendo que la
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densidad es normal y que el núcleo es Gaussiano, es posible demostrar que la ventana

piloto se puede obtener mediante la ecuación (4.7). Para obtener reglas de selección de ζ

para datos agrupados, se realizaron algunos estudios de simulación cuyos resultados pueden

verse en los los apéndices E.3 y E.4.

Para evaluar el desempeño del estimador f̂gh usando el selector bootstrap, se realizaron

algunos estudios de simulación (véanse los detalles en la sección 4.2). Se consideraron

los mismos escenarios que en el caso del selector plug-in, S1 y S2. Los resultados fueron

bastante buenos, ya que el selector bootstrap demostró proveer buenas aproximaciones

de la ventana hMISEg en ambos escenarios, a diferencia del selector plug-in, que solo

provee buenos resultados en S1. Ciertamente, puede notarse una ligera ventaja del selector

plug-in sobre el selector bootstrap en S1, pero aún así, los resultados del selector bootstrap

resultaron bastante competitivos. En resumen, la recomendación es usar el selector plug-in

cuando la agrupación sea ligera y el tamaño muestral sea mediano o grande. En cualquier

otro caso (es decir, agrupación pesada y cualquier tamaño muestral), se recomienda el

selector bootstrap.

Las guías previas sobre la frontera entre agrupación ligera y pesada se con�rman. Se

dice que hay agrupación ligera cuando l ≈ 0.075r o menos, y la agrupación pesada comienza

a partir de l ≈ 0.075r. Si no hay certeza de qué tipo de agrupación está presente en los

datos, la recomendación es usar el selector bootstrap.

El otro enfoque no paramétrico planteado es el de la estimación tipo núcleo de la

distribución (capítulo 5). Este estimador se obtiene directamente al integrar el estimador

tipo núcleo de la densidad para datos agrupados, f̂gh , (ecuación 3.2), dando como resultado

el estimador de la distribución, F̂ gh , (ecuación (5.1)), que por construcción puede usarse

con datos agrupados.

Al igual que en el caso del estimador núcleo de la distribución para datos completos, F̂h,

(ecuación (2.41)), el estimador F̂ gh requiere seleccionar la ventana de manera adecuada para

tener un buen desempeño. En este sentido, en el caso de datos completos, una posibilidad es

considerar la ventana hAMISEF , dada por la ecuación (2.50). Dado que ambos estimadores

están de�nidos de manera similar, cabe preguntarse en qué circunstancias sería correcto

utilizar la ventana hAMISEF en el caso de datos agrupados.

Haciendo un ejercicio similar al realizado con el estimador f̂gh , el teorema 5.1 (de-

mostrado en el apéndice F) establece de manera rigurosa bajo qué supuestos el AMISE

de ambos estimadores, F̂h y F̂ gh , coinciden y, por lo tanto, la expresión de la ventana

AMISE óptima, hAMISEF , es la misma. Salvo el orden de diferenciabilidad de la fun-

ción núcleo, nótese que los supuestos son esencialmente los mismos. Este teorema premite

obtener la ecuación (5.3), que en efecto, es la misma que (2.50).

Al igual que en el caso del estimador f̂gh , se debe estimar el funcional A (f ′) con datos

agrupados para que la ecuación (5.3) sea utilizable en la práctica, ya que el resto de canti-

dades son conocidas o calculables. Procediendo según Polansky y Baker (véase la sección
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2.2.3, ecuación (2.56)), se obtiene una estimación de A (f ′), ÂPBg (f), que al sustituir en

(5.3) se convierte en el selector plug-in ĥPBg , (ecuación 5.4).

Mediante estudios de simulación se analizó el desempeño del estimador núcleo de la dis-

tribución para datos agrupados usando el selector ĥPBg , considerando los mismos tamaños

muestrales, escenarios de agrupación ligera y pesada, S1 y S2, y demás características

(véanse los detalles en la sección 5.3). A diferencia del estimador f̂gh , las curvas delMISEg

del estimador F̂ gh mostraron diferencias mínimas para valores ligeramente diferentes de la

ventana h que minimiza el MISEg. En otras palabras, que cuando se quiere estimar la

distribución, el margen para equivocarnos en el valor de la ventana h óptima es algo más

grande que en el caso de la densidad, con lo cual, las estimaciones de la distribución se ven

menos afectadas que las estimaciones de la densidad. Este resultado es interesante, pues

sugiere que a pesar de que los datos son agrupados, la estimación de la distribución tipo

núcleo es un procedimiento más robusto, en el sentido de que es menos sensible a ligeras

desviaciones del valor de la ventana h seleccionada con respecto a la ventana óptima.

Los resultados de la simulación considerando diferentes grados de agrupación y un sólo

tamaño muestral refuerzan lo anterior. Al igual que en el caso del estimador de la densidad

f̂gh , es posible identi�car una región de agrupación para la cual el selector ĥPBg da buenas

aproximaciones de la ventana óptima que minimiza el MISEg, y además, esta región de

agrupación es más amplia que en el caso de la estimación de la densidad. Es decir, en el

caso de la densidad, ahí donde el selector plug-in falla, en el caso de la distribiución aún da

buenos resultados. Esta propiedad le da al estimador F̂ gh cierta ventaja sobre el estimador

f̂gh , ya que su selector plug-in resiste más en casos de agrupación pesada. Esto permite

que el estimador F̂ gh tenga un buen desempeño en niveles de agrupamiento en los que el

estimador f̂gh necesita el uso de selectores de ventana más elaborados. Por lo anterior, en el

caso de la estimación de la distribución tipo núcleo con datos agrupados no es tan necesaria

la propuesta de un selector alternativo como en el caso de la estimación de la densidad.

Sin embargo, es evidente que sería de gran ventaja proponer un selector de ventana más

preciso. Este podría ser un tópico interesante en investigaciones futuras.

La última parte de esta tesis (capítulo 6) muestra la aplicación de los estimadores y los

selectores propuestos a conjuntos de datos de emergencia reales. Lo primero que se hizo

fue usar el estimador f̂gh para estimar la estructura de los tres conjuntos de datos. A pesar

de que los datos mostraban agrupación pesada, eligiendo la ventana adecuadamente (de

acuerdo con los criterios para distinguir entre agrupación ligera y pesada, obtenidos en los

capítulos anteriores), la estimación tipo núcleo mostró ser una herramienta efectiva para

encontrar la estructura de los datos.

A partir de esas estimaciones de la densidad se propusieron modelos apropiados de

mixturas de normales para describir a los datos de emergencia, lo que permitió realizar

estudios de simulación en donde los selectores plug-in y bootstrap fueron puestos a prueba

bajo diferentes condiciones de agrupación. Los resultados con�rmaron lo que ya se había
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encontrado previamente en este trabajo, a saber: 1) Que cuando la agrupación es ligera

(l < 0.075r), pueden usarse ambos selectores, plug-in y bootstrap, aunque es ligeramente

preferibe usar el plug-in. 2) En caso de que la agrupación sea pesada (l > 0.075r), no se

recomienda el uso del selector plug-in, recomendándose absolutamente el uso del selector

bootstrap. Prcoediendo de esta manera, el error de estimación de la densidad permanece

bajo control en ambos casos, pero lo más importante es que permanece razonablemente

acotado en casos de agrupación pesada, permitiendo así al estimador f̂gh detectar la es-

tructura de los datos (aunque sea de manera parcial o aproximada) incluso en casos de

agrupación muy pesada.

El primer estudio de simulación mostró también que algunas densidades son más difí-

ciles de estimar que otras. Las que que resultan más difíciles de estimar son aquellas que

tienen múltiples modas o áreas alternadas de alta y baja densidad, lo cual es esperable: si

la propia agrupación de los datos oculta información valiosa de su estructura, la pérdida de

información es más pronunciada en casos de mayor curvatura. Lo anterior, y el hecho de

que sólo se está considerando una ventana a lo largo de todo el dominio, hace más difícil la

estimación de este tipo de densidades. No obstante, este problema se resuelve hasta cierto

punto usando el selector de ventana adecuado según el grado de agrupación de los datos.

Por otra parte, se realizó una comparación de la bondad de ajuste entre algunos méto-

dos paramétricos de regresión no lineal (Logística, Gompertz y Weibull) y el estimador

tipo núcleo de la distribución para datos agrupados, F̂ gh . Los resultados mostraron que a

menos de que la distribución sea relativamente suave y sigmoidal, los métodos de regresión

mencionados pueden tener serios problemas para describir algunos detalles de la distribu-

ción de los datos. En cambio, el método no paramétrico demostró ser una buena opción

en general, con resultados bastante competitivos en casos tanto de funciones claramente

sigmoidales como en casos de funciones más curvas.

Más aún, la comparación de la bondad de ajuste entre las regresiones paramétricas

mencionadas y el estimador tipo núcleo de la distribución también se realizó mediante

estudios de simulación. Simulando las mismas condiciones de agrupación presentes en

los tres conjuntos de datos, este estudio corroboró que, en promedio, el estimador no

paramétrico de la distribución tiene un desempeño bastante competitivo o en algunos casos

incluso mejor que los métodos no paramétricos habitualmente usados en malherbología.

Así, la estimación tipo núcleo de la distribución para datos agrupados es una opción válida

para describir la relación entre al emergencia de las malas hierbas y el tiempo hidrotermal

acumulado. Además, su �exibilidad resultó ser muy útil para describir estructuras que

no son tan sencillas, como aquellas que tienen más de una moda o tienen características

o variaciones sutiles en la densidad. Los modelos paramétricos, debido a su rigidez, se

muestran bastante limitados para describir estos últimos casos.

Por último, puede decirse que los resultados son alentadores. Por una parte, se ha

cumplido el objetivo de estimar suavemente tanto la función de densidad como la función
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de distribución cuando los datos se presentan agrupados, lo que para los malherbólogos

signi�ca la posibilidad de calcular con mayor precisión las probabilidades de emergencia

de las malas hierbas. Por otra parte, se ha realizado un trabajo teórico y formal bastante

completo en relación con las propiedades asintóticas de los estimadores propuestos, así

como estudios de simulación para veri�car el desempeño tanto de los estimadores como de

los selectores de ventana propuestos. En particular, los selectores de ventana han probado

ser efectivos en diferentes escenarios de agrupación, manteniendo el error de estimación

realtivamente bajo control. Finalmente, ha sido posible establecer algunas guías de uso

para distinguir en la práctica si un conjunto de datos presenta agrupación ligera o pesada,

y a partir de eso actuar en consecuencia eligiendo el selector de ventana apropiado.

Quedan varias líneas de investigación por explorar. Por ejemplo: 1) Considerar crite-

rios más complejos de desagregación de datos, lo que implicaría considerar tratamientos

matemáticos más complejos. 2) Buscar un selector tipo plug-in tanto no sólo para el caso

de agrupación ligera, sino pesada, tanto en el caso de la estimación de la densidad como de

la distribución. 3) Considerar formas más elaboradas y efectivas de estimar la curvatura,

dada su importancia para los selectores plug-in y bootstrap. 4) Además del selector plug-

in, proponer selectores de ventana alternativos en el caso de la estimación tipo núcleo de la

distribución para datos agrupados, lo que presumiblemente mejoraría de manera notable el

desempeño de este estimador en casos de agrupación pesada o muy pesada. 5) Estudiar la

aplicación de los métodos no paramétricos propuestos en esta investigación considerando

datos procedentes de otras áreas del conocimiento, así como considerar datos con estruc-

turas más complejas. 6) Considerar otras aproximaciones al problema planteado, como

la regresión isotónica no paramétrica, o modelos más complejos como aquellos basados en

procesos de Poisson no homogéneos.
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