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Abstract

Data is growing at an unprecedented pace. With the variety, speed and vol-
ume of data flowing through networks and databases, it has become more and
more difficult to find patterns that lead to meaningful conclusions. At the
same time, organizations need to find ways to make sense of all of this data.
Unlocking the most value from large, varied sets of information requires a
newer approach based on machine-learning. Machine learning allows a sys-
tem to analyze hundreds of variables simultaneously, along with how they
interconnect and it is well-suited to complex problems. However, the ma-
jority of machine learning algorithms were designed under the assumption
that the data would be represented as a single memory-resident table. For
large volumes of data these structures will certainly not fit in system mem-
ory. Thus, distributed computing have become essential, due to both speed
and memory constraints. In this thesis, we concentrate on methods that are
suitable for very large data and that have the potential for distributed imple-
mentation. Our contributions are two-fold. First, we implement methods for
improving the scalability of training algorithms. Second, we develop training
methods under the effect of skewed data distributions.

3



4



Resumen

La cantidad de datos almacenados actualmente está creciendo a un ritmo sin
precedentes. Con la variedad, velocidad y volumen de datos transmitiéndose
a través de redes de comunicación y bases de datos, encontrar patrones rele-
vantes en estos datos que conduzcan a conclusiones significativas se ha conver-
tido en un reto. En este contexto, el aprendizaje automático se ha convertido
en una pieza fundamental para extraer el mayor valor posible de estos con-
juntos de datos tan grandes y diversos. El aprendizaje automático permite
analizar cientos de variables simultáneamente, aśı como la interacción entre
ellas, y es muy adecuado para problemas complejos. Sin embargo, la mayoŕıa
de algoritmos de aprendizaje fueron diseñados con la suposición de que los
datos estaŕıan representados en la memoria principal de un computador en
formato de tabla pero, con el volumen de datos actual, estas estructuras son
demasiado grandes para ser almacenadas como una única tabla en memoria
principal. Aśı, la computación distribuida se ha convertido en un paradigma
esencial para enfrentar las restricciones actuales en términos de velocidad y
almacenamiento. En esta tesis, nos centramos en métodos que son adecua-
dos para trabajar con grandes volumenes de datos y que tienen el potencial
de ser implementados de forma distribuida. Nuestra contribución tiene dos
vertientes; en primer lugar, se implementan métodos para mejorar la es-
calabilidad de algoritmos de aprendizaje automático y, en segundo lugar, se
desarrollan métodos de aprendizaje que muestran sesgos en las distribuciones
de los datos.
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Resumo

A cantidade de datos almacenados actualmente está crecendo a un ritmo sen
precedentes. Coa variedade, velocidade e volume de datos transmit́ındose a
través de redes de comunicación e bases de datos, atopar patróns relevantes
nestes datos que conduzan a conclusións significativas converteuse nun reto.
Neste contexto, a aprendizaxe automática converteuse nunha peza fundamen-
tal para extraer o maior valor posible destes conxuntos de datos tan grandes
e diversos. A aprendizaxe automática permite analizar centos de variables
simultáneamente, aśı como a interacción entre elas, e é moi adecuado para
problemas complexos. Con todo, a maioŕıa de algoritmos de aprendizaxe
foron deseñados coa suposición de que os datos estaŕıan representados na
memoria principal dun computador en formato de táboa pero, co volume de
datos actual, estas estruturas son demasiado grandes para ser almacenadas
como unha única táboa en memoria principal. Aśı, a computacin distribúıda
converteuse nun paradigma esencial para enfrontar as restricciones actuais
en términos de velocidade e almacenamiento. Nesta tese, centrámonos en
métodos que son adecuados para traballar con grandes volumenes de datos
e que teñen o potencial de ser implementados de forma distribúıda. A nosa
contribución ten dúas vertentes; en primeiro lugar, impleméntanse métodos
para mellorar a escalabilidade de algoritmos de aprendizaxe automática e,
en segundo lugar, desenvólvense métodos de aprendizaxe que mostran sesgos
nas distribucións dos datos.
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Chapter 1

Introduction

Machine learning aims to extract knowledge from data, relying on funda-
mental concepts in computer science, statistics, probability and optimization.
Learning algorithms enable a wide range of applications, from everyday tasks
to bleeding edge applications. In the age of Big Data, with datasets rapidly
growing in size and complexity, machine learning techniques are fast becom-
ing a core component of large-scale data processing pipelines. Scalability has
become one of those core concept of Big Data. It’s all about scaling up.

1.1 REASONS FOR SCALING UP MACHINE LEARNING TO
LARGE DATASETS

The growth of data generated globally each year is 40%. According to a 2013
study, there were a massive number, over 550 billion, of documents on the
Web, mostly in the invisible Web or Deep Web. With the unprecedented
rate at which data is being collected today in almost all fields of human en-
deavor, there is an emerging economic and scientific need to extract useful
information from it. Big data and big data analytics are allowing compa-
nies to gain deep insights into all aspects of business. For example, many
companies already have data-warehouses in the petabyte-scale. Similarly,
scientific data is reaching gigantic proportions, e.g., NASA space missions,
Human Genome Project. Organizations that have the ability to handle large
volumes of data in real time, undertake predictive modeling and automate
decision-making and action-taking will be better able to exploit the insights
gained from analyzing big data. High-performance, scalable, parallel, and
distributed computing is crucial for ensuring system scalability and interac-
tivity as datasets continue to grow in size and complexity (Zaki & Ho, 2000).
In this section we showcase some of the outstanding research issues high-
lighted in (Zaki, 2000; Bekkerman, Bilenko, & Langford, 2011) for designing
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and implementing the next generation of large-scale learning methods.

HIGH INPUT DIMENSIONALITY. In some applications, data points are
represented by a very large number of features. Tasks involving natural lan-
guage, images, or video can easily have several millions of input features, far
exceeding the range of 10 − 1000 considered common until recently. With
many features the dimensionality of the feature space will increase, leading to
a general increase in distances between data points, leading to low data den-
sity. However problems will arise from learning models in high dimensional
spaces if there are insufficient training samples to learn from. In the usual
case of a finite number of data points, it was shown that there is an optimal
measurement dimension after which the test accuracy begins to drop. The
optimum dimension is a function of the number of data points, increasing
with greater volumes of data. This is a well known effect in machine learning
and is known as either Hughes’ phenomenon (Hughes, 1968), or the curse
of dimensionality. Namely that as the number of dimensions of a measure-
ment space increases, more data points are needed to accurately specify the
probability distributions in the high-dimensional space (Bailey, 2001). As if
this were not enough, current methods are only able to hand a few thousand
dimensions or attributes. In general, the complexity of different mining algo-
rithms may not be linear in the number of dimensions, and new distributed
methods are needed that are able to handle large number of attributes.

Parallelizing or distributing the computation across features can thus be
an effective pathway for scaling up computation to richer representations, or
just for speeding up algorithms that naturally iterate over features, such as
decision trees.

LARGE NUMBER OF INSTANCES. Databases continue to increase in size.
In many domains, the number of instances is extremely large and is increas-
ing at a high pace, such as Internet and finance, making single-machine pro-
cessing infeasible. Also, more and more devices include sensors continuously
logging information resulting in datasets of hundreds of thousands of millions
of records. Even if each feature takes only 1 byte to store, datasets collected
over time can easily reach the scale of terabytes (1012 bytes). Current meth-
ods are able to handle data in the gigabyte range, but are not suitable for
terabyte-scale. Even a single scan for these databases is considered expen-
sive. Most current algorithms are iterative, and scan data multiple times. In
general, minimizing the number of data scans is paramount. Another fac-
tor limiting the scalability of most mining algorithms is that they rely on
in-memory data structures. For large datasets these structures will certainly
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not fit in system memory. This means that temporary results will have to
be written out to disk or the dataset will have to be divided into partitions
small enough to be processed in memory, entailing further data scans.

The preferred way to effectively process datasets with large number of
instances is to combine the distributed storage and bandwidth of a cluster
of machines. Several computation frameworks have recently emerge to ease
the use of large quantities of data, such as MapReduce (Dean & Ghemawat,
2008), DryadLINQ (Yu et al., 2008), Hadoop (Apache, 2014b), and Spark
(Apache, 2014a).

INCREMENTAL METHODS. Everyday new data is being collected, and
existing data stores are being updated with the new data or purged of the old
one. To-date there have been very few parallel or distributed algorithms that
are incremental in nature, which can handle updates and deletions without
having to recompute patterns or rules over the entire database.

MODEL AND ALGORITHM COMPLEXITY. A number of complex learn-
ing algorithms either rely on nonlinear models or employ computationally
expensive routines, such as decision tree ensembles or multilayer neural net-
works. These complex learning algorithms are needed for high-accuracy
learning on data that has inherently nonlinear structure with respect to the
basic features. In this case, although the data may easily fit on one machine,
the learning process may simply be too slow. This is the case for some learn-
ing algorithms for which the computational complexity is exponential in the
number of training data points.

For problems of this nature, parallel or distributed implementations ap-
pear viable an have been employed successfully, allowing the use of complex
algorithms and models for large datasets.

TIME CONSTRAINTS. In some applications, predictions have to be made
in real time. Latency issues arise in any situation where systems are waiting
for a prediction, making the overall performance of the system decrease.

Utilizing highly parallelized or distributed hardware architectures has
been found effective (Vydyanathan, Catalyurek, Kurc, Sadayappan, & Saltz,
2007; Subhlok & Vondran, 1996; Moreira, Valente, & Bekooij, 2007).

PARAMETER TUNING AND MODEL SELECTION. In parameter tun-
ing, the learning algorithm is run multiple times with different settings, fol-
lowed by validation on a validation set. During statistical significance testing
procedures such as cross-validation or bootstrapping, training and testing is
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performed repeatedly on different datasets subsets, with results aggregated
for subsequent measurement of statistical significance.

The practice of developing, tuning, and evaluating learning algorithms
relies on workflow that is embarrassingly parallel: it requires no intercom-
munication between the tasks with independent executions. In so-called em-
barrassingly parallel problems, a computation consists of a number of tasks
that can execute more or less independently, without communication. These
problems are usually easy to adapt for parallel execution. Usefulness of par-
allel and distributed platforms is obvious for these tasks, as they can be
easily performed concurrently without the need to parallelize actual learning
algorithms.

The need for large-scale learning algorithms is real and immediate. Parallel
and distributed computing is essential for providing scalable, incremental and
interactive solutions. This field offers many interesting research directions to
pursue.

1.2 THE DISTRIBUTED LEARNING SETTING

In a standard machine learning setting, the problem of learning from a single
site is summarized as given a dataset D and a performance criterion E ,
the learning algorithm L constructs a hypothesis h that optimizes E . The
dataset D consists of a single set of training examples of attribute values
where one of the attributes corresponds to the desired output, in a supervised
learning environment, and the others represent the inputs to the learning
algorithm. In a distributed setting, each site stores only a fragment of the
dataset (Caragea, Silvescu, & Honavar, 2004). There are two common types
of data fragmentation —horizontal and vertical fragmentation. In horizontal
fragmentation, the examples of a dataset are split across multiple sites. Each
individual partition is referred to as a shard or dataset shard. Horizontal
fragmentation is illustrated in the examples presented in (Kargupta, Byung-
Hoon, & Johnson, 1999) and in Figure 1.1. Some prototypical examples
where one could find horizontal fragmentation are the following;

Case I. Two financial organizations want to cooperate for preventing
fraudulent intrusion into their computing systems. They need to share
data relevant to fraudulent intrusion.

Case II. A multinational corporation has thousands of establish-
ments throughout the world and wants to analyze the customer trans-
action records for developing a successful business strategy quickly.
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Sepal length Sepal width Petal length Petal width Species

5.1 3.5 1.4 0.1 I. setosa
4.9 3.0 1.4 0.2 I. setosa
4.7 3.2 1.3 0.2 I. setosa
4.6 3.1 1.5 0.2 I. setosa

(a) Shard #1.

Sepal length Sepal width Petal length Petal width Species

5.0 3.6 1.4 0.2 I. setosa
5.4 3.9 1.7 0.4 I. setosa
4.6 3.4 1.4 0.3 I. setosa

(b) Shard #2.

Figure 1.1: Example of horizontal fragmentation using a subset of the Iris
dataset.

Case III. Consider a defense organization wherein several sensor
systems are monitoring a situation and collecting data. A sensor net-
work consists of spatially distributed autonomous sensors to monitor
physical or environmental conditions.

In vertical fragmentation (see Figure 1.2), the attributes are split. Next, we
present some examples of vertical fragmentation drawn from (Kargupta et
al., 1999).

Sepal length Sepal width Species

5.1 3.5 I. setosa
4.9 3.0 I. setosa
4.7 3.2 I. setosa
4.6 3.1 I. setosa
5.0 3.6 I. setosa
5.4 3.9 I. setosa
4.6 3.4 I. setosa

(a) Partition #1.

Petal length Petal width Species

1.4 0.1 I. setosa
1.4 0.2 I. setosa
1.3 0.2 I. setosa
1.5 0.2 I. setosa
1.4 0.2 I. setosa
1.7 0.4 I. setosa
1.4 0.3 I. setosa

(b) Partition #2.

Figure 1.2: Example of vertical fragmentation using a subset of the Iris
dataset.

Case IV. Consider a group of epidemiologists, studying the spread
of hepatitis C in the US. They are interested in detecting any under-
lying relation of the emergence of hepatitis C in US with the weather
conditions. They have access to a large hepatitis C dataset at the
CDC and an environmental dataset at EPA.
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Case V. A drug manufacturing company is studying the risk factors
of breast cancer. It has a mammogram image database and several
databases containing patient tissue analysis results, food habits, age,
etc. The company wants to find out if there is any correlation between
the breast cancer markers in the mammogram images with the tissue
features or the age or the food habits.

If a dataset D is distributed among the sites 1, . . . , P containing fragments
of the dataset D1, . . . ,DP it is usually assumed that the fragments contain
all the information needed to rebuild the complete dataset D. Note also that
distributed datasets can exhibit mixtures of horizontal and vertical fragmen-
tation (see Figure 1.3).

Sepal length Sepal width Species

5.1 3.5 I. setosa
4.9 3.0 I. setosa
4.7 3.2 I. setosa
4.6 3.1 I. setosa

(a) Partition #1.

Petal length Petal width Species

1.4 0.1 I. setosa
1.4 0.2 I. setosa
1.3 0.2 I. setosa
1.5 0.2 I. setosa

(b) Partition #2.

Sepal length Sepal width Species

5.0 3.6 I. setosa
5.4 3.9 I. setosa
4.6 3.4 I. setosa

(c) Partition #3.

Petal length Petal width Species

1.4 0.2 I. setosa
1.7 0.4 I. setosa
1.4 0.3 I. setosa

(d) Partition #4.

Figure 1.3: Example of mixed—hybrid fragmentation using a subset of the
Iris dataset.

The application of standard machine learning algorithms in distributed
environments as those listed above requires collecting the data from physi-
cally distributed sites to a single data site for centralized processing. How-
ever, this is usually futile for the following reasons (Tsoumakas & Vlahavas,
2009).

PRIVACY. There are many machine learning applications that learn from
private and sensitive data—medical and financial records, etc. The mono-
lithic storage of such data may put their privacy at risk because data may be
delivered over unsecured networks. In some other cases, organizations may
want to cooperate but they do not want to share their data because they
want to maintain competitive advantage. For example, taking the previous
cases,
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Case I. The two financial organizations are not allowed to share the
data because they are private. Therefore, combining the databases
is not feasible. Standard machine learning algorithms cannot handle
this situation.

STORAGE COST. The cost of storing the entire dataset in a single site is
substantially larger than the sum of the costs of storing smaller subsets of
data in several sites. In some cases, the requirements for monolithic storage
are vast. A classical example is data from images of Earth and space. The
size of these datasets is on the exabyte scale. The monolithic storage of such
big datasets would demand an enormous data warehouse of enormous cost.

Case II. Collecting all the data from thousands of establishments to
a single site may be quite impractical.

COMMUNICATION COST. The deliver of a huge volume of data over a
network may take too much time. Even a small volume of data may cause
problems in a wireless network with limited bandwidth. Note also that com-
munication may be a continuous overhead because databases are not constant
and unchangeable. On the contrary, it is common to have databases that are
frequently updated with new data or data streams that constantly record
information—remote sensing, sports statistics, etc.

Case III. Fast analysis of incoming data and quick response is im-
perative. Communicating all the data to a central site may consume
too much time. Moreover, this approach is not scalable for state-of-
the-art systems with very large number of sensors.

COMPUTATIONAL COST. The cost of learning the entire dataset is con-
siderably larger than the sum of the costs of learning smaller shards of data
that also could be executed in parallel. Furthermore, in many cases it is likely
to be impossible to learn the entire dataset because most existing machine
learning algorithms were not designed to handle big data. In particular,
the majority were designed under the assumption that the dataset would
be represented as a single memory-resident table (Provost & Kolluri, 1999).
Note that large inputs that do not fit in main memory become a bottleneck
because of the cost of scanning data from secondary storage.

Cases IV & V. Data are at different places and analyzing them us-
ing a standard machine learning algorithm will require combining big
datasets at a single site and learning from a very big dataset that may
not fit in main memory, leading to a big computational cost and also
a big storage cost.
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The increasing interweave of computing and communications is likely to de-
mand distributed environments. In this context, distributed machine learn-
ing approaches the problem of learning from distributed data with distributed
computation. In a distributed machine learning setting, the problem of learn-
ing can be summarized as follows. Given the fragments D1, . . . ,DN of a entire
dataset D distributed across the sites 1, . . . , N and a performance criterion
E , the learning algorithm Ld constructs a hypothesis h that optimizes E . In
this context, a distributed machine learning algorithm Ld is exact in compar-
ison with a standard learning algorithm L if the hypotheses h are identical.
More specifically (Caragea, Silvescu, & Honavar, 2001),

HORIZONTAL FRAGMENTATION. It has the following property D1 ∪
· · · ∪ DN = D where ∪ denotes the union of sets across samples. Thus, a
distributed learning algorithm Ld is exact if

Ld(D1, . . . ,DN) = L(D1 ∪ · · · ∪ DN) = L(D)

that is, a distributed learning algorithm is exact if the model learned from
the different subsets of samples is the same as the model learned from the
union of the different subsets of samples into a single, joint dataset.

VERTICAL FRAGMENTATION. It has the following property D1 × · · · ×
DN = D where × denotes the union of sets across features. Thus, a dis-
tributed learning algorithm Ld is exact if

Ld(D1, . . . ,DN) = L(D1 × · · · × DN) = L(D)

that is, a distributed learning algorithm is exact if the model learning from
the different subsets of features is the same as the model learned from the
union of the different subsets of features into a single, joint dataset.

1.3 FOUNDATIONS OF DISTRIBUTED LEARNING

Many distributed learning algorithms have their foundations in ensemble
learning. Ensemble methods have gained attention within machine learn-
ing from the late 1990s. Examples of these techniques include bagging
(Breiman, 1996), boosting (Freund & Schapire, 1995, 1996), mixtures of ex-
perts (Freund, Schapire, Singer, & Warmuth, 1997; Jacobs, Jordan, Nowlan,
& Hinton, 1991), etc. These methods assign partitions of the training data
to different base classifiers that are independently trained. Subsequently, the
individual classifiers are combined in some manner to classify new instances.

28



Ensembles are often more accurate than the individual base classifiers them-
selves. A necessary and sufficient condition for this is that the classifiers
have an error rate better than random guessing and they are diverse, i.e., they
make different errors on new instances (Hansen & Salamon, 1990). There are
three fundamental reasons for supporting that it is possible to build effective
ensembles (T. Dietterich, 2000),

h1

h2

h3f

(a) Statistical.

h1

h2

h3f

(b) Computational.

h1

h2

h3

f

(c) Representational.

Figure 1.4: Three fundamental reasons why an ensemble may work better
than a single classifier.

STATISTICAL. A learning algorithm can be viewed as searching a space
of hypotheses to find the best one. The statistical problem arises when the
volume of data available is too small compared to the size of the hypothesis
space and the learning algorithm can find many hypotheses that are equally
optimal. Thus, the method for building the ensemble can average their
individual predictions and reduce the risk of learning the worst classifier.
Figure 1.4 shows this situation. Let f denote the true function in the space
H of hypotheses. As can be seen, it is possible to find a good approximation
of f by averaging the individual hypotheses h1, h2, . . . .

COMPUTATIONAL. Many learning algorithms perform local search that
may get stuck in local minima, e.g., neural networks trained by gradient
descent. In cases where there are enough data to avoid the statistical prob-
lem, it may still be very difficult for a learning algorithm to find the best
hypothesis from the computational point of view. In an ensemble, the base
classifiers start the local search from different points in the hypothesis space
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using a smaller subset of data. Ensembles are inherently scalable because an
increase in the volume of data can be compensated by increasing the number
of base classifiers.

REPRESENTATIONAL. In some applications of machine learning, the true
function f cannot be approximated by any of the hypotheses in H . This
issue is subtle because there are many learning algorithms that are universal
approximators, i.e., given enough training data these algorithms can explore
the space of all possible hypotheses (Hornik, Stinchcombe, & White, 1989;
Wang, 1992). Nonetheless, these algorithms will explore only a subset of the
entire hypothesis space when giving finite data.

Ensemble methods aim to reduce these three shortcomings of standard
machine learning algorithms. One might assimilate ensemble methods into
the framework of distributed learning, but ensemble methods are generally
designed in the classical model for machine learning that assume that the
training set is available on a single site. In general, the focus of ensemble
learning is on the statistical and algorithmic advantages of learning with an
ensemble and not on the nature of learning under communication constraints.
Nonetheless, many fundamental insights into distributed learning have arisen
from ensemble methods (Predd, Kulkarni, & Poor, 2006).

1.4 KNOWLEDGE TO BE COMBINED

In general, there exist two types of knowledge to be combined: the base
classifiers themselves or the predictions of the base classifiers (Chan & Stolfo,
1993a). In order to combine the classifiers themselves, there is the need of
defining a uniform representation to encapsulate all other representations
without losing relevant knowledge. But this is difficult, e.g., it is difficult to
define a uniform representation to combine the distance function of a nearest
neighbor algorithm with the tree of a decision tree algorithm. Indeed, it is
difficult to combine the base classifiers themselves even when they are trained
with the same learning algorithm.

An alternative approach is to combine the predictions of the base classi-
fiers. These predictions can be categorical or non-categorical, i.e., associated
with some quantitative measure such that probabilities, confidence values,
distances, etc. In this approach, the problem of finding a uniform repre-
sentation is much less severe, e.g., quantitative measures can be treated as
categorical by selecting the class with the highest confidence.
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1.5 PARALLEL AND DISTRIBUTED COMPUTING

Employing parallel and distributed systems gain increased performance in
machine learning applications driven by concurrent execution of tasks that
are otherwise performed serially. There are two major directions in which this
concurrency is realized: data parallelism and task parallelism (Bekkerman et
al., 2011). For many algorithms, scaling up can be most efficient achieved by
a mixture of data and task parallelism.

DATA PARALLELISM. Data parallelism refers to executing the same com-
putation on multiple inputs concurrently. It is a natural choice for many ma-
chine learning applications and algorithms that accept input data as a batch
of independent samples. There are two orthogonal directions for achiev-
ing data parallelism: horizontal fragmentation and vertical fragmentation.
The most basic example of data parallelism is encountered in embarrassingly
parallel algorithms, where the computation is split into concurrent subtasks
requiring no intercommunication, which run independently on separate data
subsets. A related simple implementation of data parallelism occurs within
the master-slave communication model : a master process distributes the data
across slave processes that execute the same computation.

TASK PARALLELISM. Unlike data parallelism defined by performing the
same computation on multiple inputs simultaneously, task parallelism refers
to dividing the overall algorithm into parts, some of which can be executed
concurrently (see Figure 1.5). The partitioning of an algorithm into tasks
can be represented by a directed acyclic graph, with nodes corresponding to
individual tasks, and edges representing inter-task dependencies. Data flow
between tasks occurs naturally along the graph edges. A prominent example
of such paradigm is MapReduce.

T0 T1

T2

T3

T4

T5

Figure 1.5: Example of task parallelism. Tasks T2, T3, and T4 can be executed
concurrently.
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1.6 THE MAPREDUCE PARADIGM

For large datasets, it has proven particularly valuable to think about pro-
cessing in terms of the same operation being applied independently to each
item in the dataset, either to produce a new dataset, or to produce summary
result for the entire dataset. This way of thinking often works well on par-
allel hardware, where each of many processors can handle one or more data
items at the same time. MapReduce (Dean & Ghemawat, 2008) is a simple
model for distributed computing that abstracts away many of the difficulties
in parallelizing data management operations across a cluster. MapReduce
provides a framework for performing a two-phase distributed computation
on a (large) dataset D. In the Map phase, the system partitions D into a
set of disjoint units that are assigned to worker processes, known as map-
pers. Each mapper in parallel with the others applies a user-specified map
function to its assigned data. The output of the map function is a set of
key-value pairs that are collected by the Shuffle phase, which groups them
by key. The master process redistributes the output to a series of worker
processes called reducers, which perform the Reducer phase. Each reducer
applies a user-specific reduce function to all the values for a key and outputs
the value of the reduce function. The collection of final values from all the
reducers is the final output of MapReduce.

To demonstrate how MapReduce works we bring the prototypical example
of a simple MapReduce program that counts how many times different words
appear in a set of documents (Bekkerman et al., 2011). In the Map phase, the
set of documents is partitioned into subsets, each of which is assigned to an
individual mapper. Each mapper scans its subset of documents and outputs
a series of < wordi, counti > values as the key-value pair, where counti is
the number of times wordi occurs among the subset of documents seen by
the mapper. Each reducer takes the values associated with a particular word
(key) an aggregates the word counts (values) for each word. The output of
the reducer phase are the counts per word across the entire set of documents.

For purposes of simplicity and clarity of explanation in the methods pre-
sented in this thesis, we will consider the most simple MapReduce architec-
ture in which each mapper is assigned to one processor and there exist just
one reducer that receives every output from the mappers as input and it
outputs the final result of the method. This procedure is similar to ensemble
learning where the base classifiers are the mappers and the combiner scheme
is the reducer. Note that in many of the methods that will be presented and
proposed in this thesis, parallelizing the reducer phase would be trivial for
practical considerations.
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1.7 STRUCTURE OF THIS THESIS

This thesis falls into four parts, which are relatively independent;

I Distributed machine learning. In this chapter, this thesis was intended
to provide a brief and general framework of distributed machine learn-
ing, starting by walking through the reasons for scaling up machine
learning to large data sets, the distributed learning setting, foundations
of distributed learning and knowledge to be combined, and finishing
by introducing parallel and distributed computing, and the MapReduce
paradigm. In the following chapters of this part, this thesis will review
the literature and current research on distributed machine learning, and
assessment of algorithms, from thinking about how to define perfor-
mance to evaluating the effectiveness of a distributed system.

II Scaling up learning algorithms. This part of the thesis is committed with
four novel distributed learning algorithms able to learn from very large
datasets. In general terms, these algorithms will aim to infer a global
learner that approximates the results one would get from a single, joint
data source. In many cases and applications, data is distributed across
different sites for several reasons –e.g. privacy, storage cost, computa-
tional cost, etc– but the data is considered to be generated by the same,
uniform process. Actually, under this view, distributed data is treated
exclusively as a technical issue. Thus, these algorithms have been de-
signed with accuracy and speed in mind.

III When Distribution is part of the semantics. In this part, the problem of
learning in a distributed machine learning setting is made more challeng-
ing. Real-world distributed data sets almost always present quite strong
differences between their partitions, e.g. buying patterns in different su-
permarkets from different countries. Under this view, the distribution of
data should not be treated as a mere technical issue, just because it has
deeper implications. Yet in spite of its importance, it has been no fully
considered in the literature. In this part, this thesis presents different
techniques for learning under these circumstances.

IV Bridging the gap. Finally, this part contains some guidelines to bridge
the gap between the previous two parts. It is devoted to the study of
distributed systems where the problem is not only the semantics of the
different partitions of data, but also the volume of data at each partition.
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Chapter 2

Review of Existing Research in
Distributed Learning

Many existing methods for distributed learning combine the predictions of
the base classifiers and define general frameworks where any base learning
algorithm can be used. In this section, we present an overview of several
outstanding methods for distributed learning. It is assumed that the dis-
tributed datasets have the same set of attributes with homogeneous schema.
This assumption is generally true when the datasets belong to the same or-
ganization.

2.1 FIXED RULES

Fixed rules are functions that take several classifications as input and give a
single classification as output (Kittler, Hatef, Duin, & Matas, 1998; Kittler,
1998). Consider a problem where instance x is to be assigned to one of the J
possible classes c1, . . . , cJ . Let yp, p = 1, . . . , P denote the output of the pth
classifier. In the output space, each class cj is modeled by the probability
density function p(yp | cj) and its a priori probability of occurrence is denoted
by p(cj). According to the Bayesian theory, given outputs yp, the instance
x should be assigned to class ck provided the a posteriori probability of that
interpretation is maximum, i.e., assign x→ ck if

p(ck | y1, . . . , yP ) = max
j
p(cj | y1, . . . , yP ) (2.1)

Although this is a correct statement of the classification problem but it may
not be a practicable proposition. The computation of the a posteriori prob-
ability functions would depend on the knowledge of high-order statistics de-
scribed in terms of joint probability density functions p(y1, . . . , yP | ck) which
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would be difficult to infer. Therefore, to avoid this problem and overcome
complexity of computation, the above rule shall be simplified and expressed
in terms of decision support computations performed by the individual clas-
sifiers.

When a measure of belief, confidence, or certainty is available, a posteriori
probability is estimated as y = p(cj | x). This approach will provide a
framework for the development of a range of efficient classifier combination
rules. Let yp,j(x) denote the output of the pth classifier in the class jth for
the instance x, provided that the outputs are normalized yp,j = yp,j/

∑
j yp,j.

Some of the most common rules are defined as follows,

— The product rule quantifies the likelihood of a hypothesis by combining
the a posteriori probabilities generated by the individual classifiers by
using a product operation. Thus, assign x→ ck if

∏
p

yp,k(x) = max
j

P∏
p=1

yp,j(x) (2.2)

— In some applications it may be appropriate to assume that the a pos-
teriori probabilities will not deviate dramatically from the prior prob-
abilities. Thus, the sum rule is obtained as

∑
p

yp,k(x) = max
j

P∑
p=1

yp,j(x) (2.3)

— The max rule approximates the sum rule under the assumption of equal
a priori probabilities of occurrence of classes,

max
p
yp,k(x) = max

j
max
p
yp,j(x) (2.4)

where the sum operation will be dominated by the output which pro-
vides the maximum support for a particular hypotheses.

— The min rule approximates the product rule under the assumption of
equal a priori probabilities of occurrence of classes,

min
p
yp,k(x) = max

j

P

min
p=1

yp,j(x) (2.5)

where the product operation will be dominated by the output which
provides the minimum support for a particular hypotheses.
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— Under the assumption of equal priors, the sum rule can be viewed as
the average a posteriori probabilities for each class. A robust estimate
of the mean is the median. Thus, the median rule assigns an instance x
to the class that maximizes the average of the a posteriori probabilities
for each class,

Mdnpyp,k(x) = max
j
MdnPp=1yp,j(x) (2.6)

where Mdn stands for median.

— The majority voting rule is based on the sum rule under the assumption
of equal priors and by hardening of the a posteriori probabilities to
produce binary valued functions ∆p,j(x) as

∆p,k(x) =

{
1 if yp,k(x) = maxJj=1 yp,j(x)

0 otherwise
(2.7)

results in combining decision outcomes rather than combining a poste-
riori probabilities. This approximation leads to the following rule,

∆p,k(x) =
J

max
j=1

P∑
p=1

∆p,j(x) (2.8)

which simply counts the votes received for the classes from the individ-
ual classifiers. The class which receives the largest number of votes is
selected.

As the combination schemes max rule and majority voting are related to
the sum rule, they are less sensitive to estimation errors, and are therefore
likely to perform better than the min rule which can be derived from the
product rule (Kittler et al., 1998).

2.2 META-LEARNING

Meta-learning is a general technique to combine the results of multiple clas-
sifiers. Rather than following fixed rules, the approach introduced in (Chan
& Stolfo, 1993b) is to meta-learn a set of classifiers whose training data are
based on predictions of a set of base classifiers. A base classifier is the out-
come of learning directly on raw data. A meta-classifier is a classifier that
is trained on the predictions produced by a set of base classifiers. Thus,
meta-learning can be loosely defined as learning from information generated
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by classifiers or it can also be viewed as the learning of meta-knowledge
(Prodromidis, Chan, & Stolfo, 2000; Chan & Stolfo, 1993a, 1995).

The authors experimented with three types of meta-learning schemes for
combining predictions that we discuss further below. Let D = {(xn, cn), n =
1, . . . , N} denote a dataset where xn is a vector representing the feature
values of the nth instance and cn is the desired class, randomly split the
dataset into P + 1 shards D = D1, . . . ,DP+1 where P is the number of
processors. Let DP+1 denote an independent subset of data not used for
training the base classifiers.

COMBINER. In the combiner scheme, the predictions of the base classi-
fiers on the independent dataset form the meta-level training examples. A
composition rule determines the input features of these examples from which
the meta-classifier is trained. The authors proposed three strategies for the
composition rule,

— Form the meta-level training examples with the predictions of the base
classifiers on the independent dataset, and the desired class

{y1(xn), . . . , yP (xn), cn}

where xn ∈ DP+1, yp is the output of the pth classifier, and cn is the
desired class of the nth instance. This strategy is similar to the one
proposed in Wolpert’s stacked generalization (Wolpert, 1992). Stacked
generalization is a general method for combining multiple classifiers by
learning the way that their output correlates with the desired class.
It works by deducing the biases of the classifiers with respect to an
independent dataset. This deduction proceeds by generalizing in a
second space whose features are the predictions of the classifiers for the
instances of the independent dataset, and the desired outputs are the
true class for those instances (Ting & Witten, 1999).

— Similar to the previous rule with the addition of the input features of
the base training example xn,

{xn, y1(xn), . . . , yP (xn), cn}

— Similar to the first composition rule except that the predictions of the
base classifiers are binary,

{y1,1(xn), . . . , y1,J(xn), . . . , yP,1(xn), . . . , yP,J(xn), cn}
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where yp,j denotes the output of the pth classifier in the jth class.
Thus, this strategy uses more specialized base classifiers in an attempt
to learn the correlation between the binary predictions and the desired
class.

Note that these rules are also used to classify new instances. Given a new
instance, first the base classifiers make their predictions. Then, the compo-
sition rule is applied to form a meta-level example which is classified by the
combiner to obtain the final output class.

ARBITER. In the arbiter scheme, the meta-level training examples are
drawn from the independent dataset based on the predictions of the base
classifiers on this dataset, i.e., the meta-level training examples rely on a par-
ticular distribution of the independent dataset. A selection rule determines
the subset of examples from the independent dataset that the meta-level
dataset will contain. The purpose of this rule is to choose examples that are
confusing. The authors proposed two strategies for the selection rule,

— Select the instances in which the base classifiers disagree on their clas-
sification,

{xn | y1(xn) 6= y2(xn) ∨ · · · ∨ yP−1(xn) 6= yP (xn)}

— Similar to the previous rule with the addition of the instances in which
the base classifiers agree but the classification is wrong,

{xn | y1(xn) 6= y2(xn) ∨ · · · ∨ yP−1(xn) 6= yP (xn)

∨ (y1(xn) = · · · = yP (xn) ∧ y1(xn) 6= cn)}

Once the meta-level training set is formed, an arbiter is trained on this
dataset. Then, given a new instance, first the base classifiers and the arbiter
make their predictions. Then, the instance is classified by majority voting,
breaking ties in favor of the arbiter.

HYBRID. The hybrid scheme merges the combiner and the arbiter schemes.
Given the predictions of the base classifiers on the independent dataset, a
selection rule draws examples as in the arbiter scheme. However, the meta-
level training examples are formed by a composition rule from the distribution
of the independent dataset as in the combiner scheme. Thus, the hybrid
scheme attempts to improve the arbiter scheme by correcting the predictions
on the controversial examples.
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2.3 KNOWLEDGE PROBING

Knowledge probing is first proposed in (Guo, Rueger, Sutiwaraphun, &
Forbes-Millott, 1997) as a method to extract descriptive knowledge from
black-box models like neural networks. The idea behind this method is to
obtain a descriptive model based on the predictions of the black-box model
on an unlabeled dataset. However, this idea can be easily extended to learn
in a distributed environment. The authors of knowldge probing mention
some limitations of meta-learning (see previous section for more details on
meta-learning) that were overcome with their model. The first one is the
problem of knowledge representation. Meta-learning serves the purpose of
prediction but lacks in the combination of statistics rather than knowledge
from the base classifiers. Moreover, it is noted in (Chan & Stolfo, 1997) that
the bias induced by a particular distribution of data has an effect upon the
performance of the algorithm.

Knowledge probing can be used to train a descriptive model which learns
the meta-knowledge of the base classifiers (Guo & Sutiwaraphun, 1999). The
key step is to use an independent dataset to probe the knowledge from the
base classifiers. Thus, the meta-classifier will be trained from the dataset
formed from the independent dataset as follows,

{xn, S(y1(xn), . . . , yP (xn))} (2.9)

where S is a scheme that combines the outputs yp, p = 1, . . . , P of the base
classifiers. Since the meta-classifier is trained from a dataset whose class
values are assigned by a prediction scheme—which integrates the predictions
of the base classifiers—it can be considered as an approximation of the com-
bination of the base classifiers.

2.4 PASTING VOTES

Pasting votes was proposed to build ensembles of classifiers from small shards
or bites of data. In (Breiman, 1999), two schemes were proposed: importance
vote (Ivote) and random vote (Rvote). Ivote act sequentially to generate sub-
sets of data by sampling with replacement used to train classifiers, such that
each new train subset of data has more instances that were more likely to be
misclassified by the ensemble of classifiers already trained. Thus, the selec-
tion of the instances that form the small training dataset of the subsequent
classifier relies on the combination of the hypotheses of the previous classi-
fiers. The sampling probabilities depend on the out-of-bag error (Breiman,
1998), that is, a classifier is tested on instances that do not belong to its
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training set. This estimation provides a good approximation of the gener-
alization error. Ivote is very similar to boosting, but the bites are much
smaller in size than the original dataset. Rvote requires the creation of many
random bites of a very small size. Rvote is faster and simpler than Ivote at
the expense of accuracy.

In (Chawla, Hall, Bowyer, Moore Jr, & Kegelmeyer, 2002), the authors
proposed DIvote and DRvote as a distributed implementation of Ivote and
Rvote. The steps of the procedure are summarized as follows,

1. Divide the dataset into P shards and assign each shard to a single
processor. Note that P is the number of processors.

2. Build the first bite of data by sampling with replacement on each pro-
cessor and train a classifier on each bite.

3. Build the subsequent bites of data by selecting the instances that are
misclassified by the majority voting of the out-of-bag classifiers, and
train a classifier on each bite. These instances are drawn at random
from the shards of data.

4. Repeat until the desired number of classifiers have been trained or some
convergence criteria are met.

Given a new instance, classify the instance by combining the predictions of
the base classifiers by majority voting to obtain the classification.

2.5 EFFECTIVE STACKING

Effective stacking (Tsoumakas & Vlahavas, 2002a, 2002b) is motivated by the
problem that arise in stacking-based methods when dealing with large-scale
distributed architectures, that is the increase in complexity of the meta-level
training examples when the number of processors is very large. Note that the
number of input features of the meta-level instances is directly proportional
to the number of processors (see section 2.2). Moreover, in meta-learning it
is necessary to retain independent instances to train the meta-classifier. The
problem is twofold because the base classifiers are deprived of some training
examples, and the meta-classifier is only trained on a small subset of the total
available data. Effective stacking proposed to circumvent these problems by
adopting the following procedure,

1. Divide the dataset into P shards and assign each shard to a single
processor. Train a base classifier on each shard and broadcast it to all
other processors, i.e., at the end of this step each processor will hold
every base classifier.
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2. Form the meta-level training examples with the average predictions
of the out-of-bag base classifiers on the local shard of data, and the
desired class—the meta-level instances are formed in every processor
by the predictions of all base classifiers except for the local classifier
that was trained on such data,{

1

P

∑
p

yp,1(xn), . . . ,
1

P

∑
p

yp,J(xn)

}

where yp,j is the output of the pth classifier in the jth class.

3. Train P meta-classifiers on the meta-level instances that describes the
knowledge of all base classifiers except for the local one in each proces-
sor.

Given a new instance, classify the instance by combining the predictions of
the meta-classifiers by using the sum rule (see section 2.1) to obtain the
classification.

2.6 DISTRIBUTED BOOSTING

In (Fan, Stolfo, & Zhang, 1999; Lazarevic & Obradovic, 2002), the authors
proposed a method for combining classifiers from multiple sites using a boost-
ing approach (Freund & Schapire, 1996). The main idea of boosting is that
the algorithm should focus on the instances that are difficult to classify. In
boosting, the instances are drawn using adaptive sampling according to the
performance of the previous classifiers to build an accurate ensemble of many
weak classifiers. In the distributed version, the classifiers are trained from dis-
joint partitions of the data set. This algorithm proceeds in a series of rounds.
In every round, a base classifier is trained with a different distribution Dt that
is modified by weighting the instances differently. Specifically, the distribu-
tion is updated to give larger weights to misclassified instances and smaller
weights otherwise. Assume there are P distributed sites—processors— where
site p stores dataset Dp, p = 1, . . . , P with Np instances. During the boosting
rounds t, the processor p maintains a local distribution ∆p,t and the local
weights wp,t that reflect the prediction accuracy on that site. The goal is to
emulate the global distribution ∆t obtained through iterations when standard
boosting is applied to a single dataset D = D1 ∪ · · · ∪ DP . To approximate
the global sampling distribution, the weight vectors wp,t from all distributed
sites are merged into a joint weight vector wt. The weight vector wt is used
to update the global distribution ∆t. In order to reduce the communication
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cost, instead of the entire vectors wp,t that depend on the size of the datasets,
only the sums of all their elements are broadcast because there is no need to
know the exact values of the elements in w. At the end, the base classifiers
are combined into a final hypothesis.

2.7 OTHER METHODS FOR DISTRIBUTED LEARNING

The combination schemes presented in the previous section contemplate data
distribution as a technical issue and treat distributed datasets as if they
were shards of a single dataset. This has often been regarded as a narrow
view of distributed machine learning (Provost, 2000; Wirth, Borth, & Hipp,
2001). Datasets that are inherently distributed frequently show data skew.
Data skew primarily refers to a non-uniform distribution in a dataset, when
the initial distribution of instances varies between partitions, e.g., datasets
that store diseases and causes of death from hospitals around the world, or
datasets that store shopping patterns in supermarkets in different regions.

The traditional approach of combining classifiers trained from distributed
datasets in an attempt to infer a single global classifier is not appropriate
for these cases. There may not exist a single model that optimally describes
these distributed datasets. There may exist two or more models. Thus, a
straightforward combination of classifiers is not recommended before explor-
ing the relationship between the distributed datasets and classifiers. There
is not much work on this area. In (Parthasarathy & Ogihara, 2000), an algo-
rithm to measure the similarity between homogeneous datasets is presented.
This measure compares the dataset in terms of how they correlate with the
attributes in the database. More relevant for our purposes is the framework
for clustering local classifiers trained on distributed datasets presented in
(Tsoumakas, Angelis, & Vlahavas, 2004). In that research, the authors in-
troduced the notion of classifier distance as a measure of how different two
classifiers are based on their predictions. Let h1 and h2 denote two classifiers.
The disagreement measure is computed as

d(h1, h2) =

∑
n δ(xn)

N
(2.10)

where

δ(x) =

{
1 if h1(x) = h2(x)

0 otherwise
(2.11)

Thus, only the base classifiers are exchanged between distributed sites safe-
guarding the privacy of the raw data.
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Chapter 3

Assessment of the Algorithms

In the past, the theory and practice of machine learning have been focused
on monolithic data sets from where learning algorithms generate a single
model. In this setting, evaluation metrics and methods are well defined.
Nowadays, several sources produce data creating environments with several
distributed data sets. Also big datasets collected in a central repository
in which processing imposes quite high computing requirements. Then one
actually thinks in distributed processing of the data as a way to have a more
powerful computing platform.

3.1 EVALUATING THE EFFECTIVENESS OF A DISTRIBU-
TED SYSTEM

First of all, some definitions and assumptions will be needed (Kumar &
Gupta, 1994);

— Parallel system: The combination of a parallel architecture and a paral-
lel algorithm implemented on it. We assume that the parallel computer
being used in a homogeneous ensemble of processors, i.e., all processors
and communication channels are identical in speed.

— Problem size W : The size of the problem is measured in terms of the
size of the dataset. The number of records will the number of input
features multiplied by the number of samples.

— Serial Fraction s: The ratio of the serial component of an algorithm
to its execution time on one processor. The serial component of the
algorithm is that part of the algorithm which cannot be parallelized
and has to be executed on a single processor.
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— Parallel Execution Time Tp: The time elapsed from the moment a
parallel computation starts, to the moment the last processor finishes
execution. For a given parallel system, Tp is normally a function of the
problem size W and the number of processors p

— Total Parallel Overhead To: The sum total of all the overhead incurred
due to parallel processing by all the processors. It includes communica-
tion costs, non-essential work and idle time due to synchronization and
serial components of the algorithm. Mathematically, To = p×TP −TS,
where Ts is the serial execution time.

In what follows we will use the term runtime to refer to the elapsed time
taken by the entire system to complete a specified task. We will use the
term workload of a processor to mean the number of instances held in its
associated memory. We will assume that the workload is the same for each
processor that is in use in the network. Finally, we will use the term total
workload to mean the sum of the workloads for each of the processors in use
in the network, again measured as a number of instances.

A distributed system can be evaluated in terms of three kinds of perfor-
mance: its scale-up, its size-up, and its speed-up (Bramer, 2013).

— Scale-up experiments evaluate the performance of the system with re-
spect to the number of processors for a fixed workload per processor.
We keep the workload per processor constant and measure the runtime
as additional processors are added. Ideally, the runtime measured this
way would remain constant. Figure 3.1 plots the runtime against the
number of processors. We can see that rather than remaining horizon-
tal, each plot increases as the number of processors increases. This is
caused by an additional communications overhead in the network as
more processors need to communicate information.

— Size-up experiments evaluate the performance of the system with re-
spect to the total workload for a fixed configuration of processors. We
keep the number of processors constant and measure the runtime as
the total number of training instances is increased. Figure 3.2 shows a
graph of relative runtime against number of instances. Each plot shows
and approximately linear size-up, i.e., the runtime is approximately a
linear function of the size of the training data.

— Speed-up experiments evaluate the performance of the system with
respect to the number of processors for a fixed total workload. We keep
the total workload of the system constant and measure the runtime

46



as the number of processors is increased. This shows how much a
distributed algorithm is faster than the serial (one processor) version,
as a large dataset is distributed to more and more processors. We
can define two performance metrics associated with speed-up. The
speedup factor Sp is the ratio of the serial execution time Ts to the
parallel execution time Tp on p processors. This measures how much
the runtime is faster using p processors than just one. An ideal case
is that Sp = p, but the usual situation is that Sp < p because of
communication or other overheads in the system. Mathematically, the
total parallel overhead is defined by T0 = p×Tp−Ts. Figure 3.3 shows
a graph of speedup factor against number of processors. This form of
display makes it straightforward to see the largest number of processors
that has a positive impact on the runtime, for a fixed workload. On the
other hand, the efficiency Ep is the ratio of speed-up S to the number
of processors p. Thus, Ep = Ts

p×Tp = 1

1+
Tp
Ts

. Ep is usually a number

between 0 and 1 but can occasionally by a value greater than one, in
the case of what is known as superlinear speedup.
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Figure 3.1: Scale-up

Given a parallel architecture and a problem instance of a fixed size, the
speedup of a parallel algorithm does not continue to increase with increasing
number of processors. The speedup tends to saturate or peak at a certain
value. In 1967, Amdahl (Amdahl, 1967) made the observation that if s
is the serial fraction in an algorithm, then its speedup is bounded by 1/s,
no matter how many processors are used. For a fixed problem size, the
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Figure 3.2: Size-up

speedup saturates either because the overheads grow with increasing number
of processors or because the number of processors eventually exceeds the
degree of concurrency inherent in the algorithm. Kumar and Rao (Kumar
& Rao, 1987) developed a scalability metric relating the problem size to the
number of processors necessary for an increase in speedup in proportion to
the number of processors. This metric is known as the isoefficiency function
(see Figure 3.4). If a parallel system is used to solve a problem of a fixed size,
then the efficiency decreases as p increases. The reason is that To increases
with p. For many parallel systems, if the problem size W is increased on
a fixed number of processors, then the efficiency increases because To grows
slower than W . For these parallel systems, the efficiency can be maintained
at some fixed value (between 0 and 1) for increasing p, provided that W is
also increased. For some parallel systems, the maximum obtainable efficiency
Emax is less than 1. Even such parallel systems are considered scalable if the
efficiency can be maintained at a desirable value between 0 and Emax. We
call such systems scalable parallel systems.

3.2 THINKING ABOUT PERFORMANCE

The measures introduced in the previous section provide a good starting
point for evaluating distributed algorithms. Moreover, we could add to this
evaluation framework the classical analysis of algorithms’ complexity based
on O-notation to bound and quantify computational costs. However, some-
thing is still missing. Both approaches meet difficulties with many machine
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learning algorithms, as they often include optimization-based termination
conditions for which no formal analysis exists. For example, a typical early
stopping algorithm may terminate when predictive error measured on a hold-
out test set begins to rise —something that is difficult to analyze because
the core algorithm does not have access to this test set by design. The term
“performance” is deeply ambiguous for parallel and distributed learning al-
gorithms, as it includes both predictive accuracy and computational speed,
each of which can be measured by a number of metrics. The variety of learn-
ing problems addressed in the literature makes the presented approaches
generally incomparable in terms of predictive performance: the algorithms
are designed to optimize different objectives in different settings. Even in
those cases where the same problem is addressed, differences in application
domains and evaluation methodology typically lead to incomparability in
accuracy results (Bekkerman et al., 2011).

In this novel situation, classical evaluation methods and metrics (Gama,
Rodrigues, & Sebastião, 2009) are unsuitable as new variables appear, like
communication costs, data distribution, etc. On the one hand, simulation
runs the algorithm in a simulated execution environment (Urban, Défago,
& Schiper, 2001). Such simulations often lead to models and metrics that
do not capture important aspects in distributed learning. The availability
of distributed data sets for experimenting is limited, an important obstacle
to empirical research on distributed learning. This raises the issue of how
to simulate the data properties of inherently distributed databases, in order
to setup a robust platform for experiments (Tsoumakas et al., 2004), e.g.,
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natural skewness and variability in context, which are found in real-world
distributed databases.

On the other hand, there are no standard measures for evaluating dis-
tributed algorithms. Many existing measures are inadequate in distributed
learning, showing low reliability or poor discriminant validity. Measures
might be concerned with the scalability and efficiency of distributed ap-
proaches with respect to computational, memory or communication resources.
Researchers usually vary the number of subsets of data and measured the pre-
diction accuracy on a disjoint test set. The scalability of the proposed ap-
proaches is evaluated by analyzing their computational complexity in terms
of training time. But this is a very narrow view of distributed learning
and scalability. Many comparisons are presented in the literature but these
usually focus on assessing a few algorithms or considering a few data sets.
Indeed they most usually involve different evaluation criteria. As a result,
it is difficult to determine how does a method behave and compare with the
other ones in terms of test error, training time and memory requirements,
which are the practically relevant criteria, from the size or dimensionality
of the data set, and from the trade-off between distributed resolution and
communication costs.

In the authors’ opinion, the PASCAL Challenge (Sonnenburg, Franc,
Yom-Tov, & Sebag, 2009) provides a good starting point for anyone interested
in pursuing a more in-depth study of scalability and distributed systems. To
assess the models in the parallel track, the PASCAL Challenge define three
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quite innovative plots measuring “training time vs. area over the precision
recall curve”, “data set size vs. area over the precision recall curve”, and
“data set size vs. training time”. Additionally, it may be useful to borrow
some ideas from (Peteiro-Barral, Bolon-Canedo, Alonso-Betanzos, Guijarro-
Berdinas, & Sanchez-Marono, 2012) in which the authors are concerned with
the scalability and efficiency of existing feature selection methods. All these
concepts will be explained in detail in the next section.

3.3 PASCAL LARGE SCALE LEARNING CHALLENGE AND
ITS PERFORMANCE MEASURES

The ideal goal would be to determine the best algorithm in terms of learning
accuracy, depending on the time budget allowed. Accordingly, the score of
an algorithm is computed as the average rank of its contribution with regard
to six scalar measures which will be calculated based in the following figures.
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Figure 3.5: Training time vs. area over the precision recall curve (aoPRC)

Figure 3.5 measures training time vs. area over the precision recall curve
(aoPRC). It is obtained by displaying the different time budgets and their
corresponding aoPRC on the biggest dataset. We compute the following
scores based on that figure:

— Minimum aoPRC

— Area under time vs. aoPRC curve
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— The time t for which the aoPRC x falls below a threshold

x− overall minimum aoPRC

x
< 0.05
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Figure 3.6: Dataset size vs. area over the precision recall curve (aoPRC)

Figure 3.6 measures dataset size vs. area over the precision recall curve
(aoPRC). It is obtained by displaying the different dataset sizes and their
corresponding aoPRC that the methods achieve. We compute the following
scores based on that figure:

— Area under size vs. aoPRC curve

— The size s for which the aoPRC x falls below a threshold

x− overall minimum aoPRC

x
< 0.05

Figure 3.7 measures dataset size vs. training time. It is obtained by
displaying the different dataset sizes and the corresponding training time
that the methods achieve. We compute the following scores based on that
figure:

— Slope of the curve b using a least squares fit to a× xb.
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Figure 3.7: Dataset size vs. training time

A CASE STUDY ON THE SCALABILITY OF TRAINING AL-
GORITHMS FOR NEURAL NETWORKS

In this section, a case study on the scalability of five popular training algo-
rithms for neural networks using the measures defined during the PASCAL
challenge is presented (Peteiro-Barral, Guijarro-Berdiñas, Pérez-Sánchez, &
Fontenla-Romero, 2013). The aim of the experiments is to get a good grasp
of the methods proposed by PASCAL for assessing the performance of algo-
rithms in terms of scalability and not simply in terms of error as is the case in
the majority of papers in the literature. The six scalar measures defined on
the three performance figures show some of the most important issues to the
end-user with regard to the scalability of learning algorithms: how long does
a learning algorithm take to reach a given performance? what is the amount
of data needed for reaching a given performance? and, how does the compu-
tational effort increase with dataset size? For this case study, the measures
defined in the PASCAL Large Scale Learning Challenge (see Section 3.3 for
more details) have been used in order to assess the performance of five of
the most popular training algorithms for artificial neural networks (ANNs).
Three of these algorithms are gradient descent (GD) (Bishop, 2006), gradient
descent with momentum and adaptive learning rate (GDX) (Bishop, 2006)
and stochastic gradient descent (SGD) (Bottou, 1991), whose computational
complexity is O(n). The other algorithms are scaled conjugated gradient
(SCG) (Møller, 1993) and Levenberg-Marquardt (LM) (Moré, 1978), whose
complexities are O(n2) and O(n3), respectively.
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Dataset Inputs Outputs Training Test Task
Connect-4 42 3 60, 000 7, 557 Classification
KDD Cup 99 42 2 494, 021 311, 029 Classification
Covertype 54 2/1 100, 000 50, 620 Class. / Regr.
MNIST 748 2/1 60, 000 10, 000 Class. / Regr.
Friedman 10 1 1, 000, 000 100, 000 Regression
Lorenz 8 1 1, 000, 000 100, 000 Regression

Table 3.1: Brief description of each dataset.

These algorithms were applied to the most common tasks in machine
learning: classification and regression. Table 3.1 shows the datasets1 used in
this experimentation along with a brief description of them (number of in-
puts, outputs, training samples and test samples; and task). Covertype and
MNIST datasets, which are originally classification tasks, were also trans-
formed into a regression task (Collobert & Bengio, 2001) by using only one
output neuron to predict −1 for samples of class 1; and +1 for samples of
class 2 . Friedman and Lorenz are artificial datasets. Friedman is defined
by the equation y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1)
where the input attributes x1, . . . , x10 are generated independently from a
uniform distribution on the interval [0, 1]. On the other hand, Lorenz is de-
fined by the simultaneous solution of three equations dX

dt
= δY − δX, dY

dt
=

−XZ + rX − Y, dZ
dt

= XY − bZ, where the systems exhibits chaotic behav-
ior for δ = 10, r = 28 and b = 8

3
. In order to choose the training algorithm

showing best scalability the following procedure was applied on each dataset.

— for n = 1 to N –i.e. different simulations were carried out for accurately
estimating the scalability of algorithms.

– Divide the dataset using holdout validation. This kind of valida-
tion is suitable because the size of the datasets is very large.

– Train a model setting its parameters to default values. Set the
number of hidden units of the ANN to 2× number of inputs+ 1
(Hecht-Nielsen, 1990). It is important to remark that the aim
here is not to investigate the optimal topology of an ANN for a
given dataset, but to check the scalability of learning algorithms
on large networks.

1Connect-4 and Covertype datasets are available on http://archive.ics.uci.edu/ml/-
datasets.html; KDD Cup 99 on http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.-
html; and MNIST on http://yann.lecun.com/exdb/mnist/
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– Run the algorithms to compute the six scalar measures defined in
Section 3.3.

– Rank the algorithms for each of these measures and calculate the
Score of each algorithm as its average position with regard to the
six rankings. For example, an algorithm that ranks first in three
measures and second in the remaining three will obtain a final
score of 1+1+1+2+2+2

6
= 1.5.

— Compute the mean overall score of the algorithms using the N results.

Regarding the desired output for training, for classification tasks, it com-
prises as many components as classes in the domain, where the value +1
is assigned to the desired class and -1 to the others. Thus, the hyperbolic
tangent, which is bounded in [−1,+1], was used as the transfer function of
the output units of the ANNs. In the case of prediction tasks, the desired
output comprises only one component, where its value is unbounded. Thus,
the linear function was used as transfer function of the output units. In all
cases, hyperbolic tangent function was used for the hidden units.

The results obtained are summarized in Tables 3.2 and 3.3. Notice that
the lower the score, as defined in Section 3.3, the higher the scalability. Un-
less otherwise specified, learning algorithms were trained using all available
samples for every dataset (see Table 3.1 for further details). However, some
learning algorithms are not able to do this, mostly due to their spatial com-
plexity. In this case, these measures are computed on the largest dataset the
learning algorithms are able to process. If this occurs, it is specified along
with the results.

As can be inferred from the results, these five popular training algorithms
for ANNs present, in general, two opposite behaviors: a lower error at the
expense of a longer training time (e.g. SCG or LM ), or a shorter training
time at the expense of a higher error (e.g. GD or GDX ). On the other hand,
SGD shows a good balance between training time and error, ranking the best
overall with regard to the general measure of scalability (Score). However,
notice that the current performance measures and the aggregation of the
ranks are detrimental to learning algorithms which are accurate but slow.
In this manner, the ranking could be scrambled by using a naive but fast
training algorithm. For example, in the regression task of MNIST dataset,
the algorithm GD ranks better than SCG, GDX and SGD due to its short
training time, early stopping, in spite of obtaining a huge error. Further
experiments showed convergence problems with regard to the training process
of the algorithm GD.

55



Name Score Err AuTE Te5% AuSE Se5% Eff
GD 2.67 0.38 5.16e1 1.08e2 0.97 1.00e2 0.43
GDX 2.17 0.31 3.71e1 7.98e1 0.92 6.00e4 0.40
SGD 2.67 0.16 5.32e1 2.36e2 0.54 6.00e4 0.54
SCG 2.67 0.21 7.01e1 2.62e2 0.77 1.00e4 0.50
LM† 3.5 0.23 3.79e2 7.80e2 0.77 1.00e4 0.77

(a) Connect-4.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD 2.67 0.38 1.24e2 2.78e2 1.20 1.00e3 0.49
GDX 2.50 0.42 4.74e1 1.01e2 1.32 1.00e4 0.41
SGD 2.50 0.13 1.21e2 7.83e2 0.62 1.00e5 0.58
SCG 2.83 0.20 1.64e2 5.80e2 0.81 1.00e5 0.55
LM† 3.83 0.24 6.41e2 1.74e3 0.94 1.00e4 0.84

(b) Covertype.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD‡ 2.00 0.13 4.29e1 5.53e1 0.43 1.00e2 0.50
GDX‡ 2.50 0.15 2.55e1 5.93e1 0.46 1.00e3 0.44
SGD 2.67 0.00 8.85e0 1.35e3 0.07 4.94e5 0.59
SCG‡ 3.50 0.14 1.10e2 3.54e2 0.51 1.00e4 0.55
LM† 3.67 0.11 2.21e2 1.24e3 0.46 1.00e4 0.80

(c) KDD Cup 99.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD† 2.17 0.36 1.41e2 2.26e2 0.85 1.00e2 0.65
GDX† 2.50 0.22 2.30e2 6.91e2 0.66 1.00e3 0.72
SGD 2.50 0.02 1.06e3 2.85e4 0.34 6.00e4 0.99
SCG† 2.83 0.05 2.85e2 1.62e3 0.40 1.00e4 0.81
LM − − − − − − −

(d) MNIST.

Table 3.2: Performance measures for classification tasks. Largest training
set it can deal with: †1e4 or ‡1e5 samples.
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Name Score Err AuTE Te5% AuSE Se5% Eff
GD 2.83 0.90 1.26e3 5.38e2 3.62 1.00e4 0.55
GDX 2.33 0.68 1.01e3 4.54e2 4.17 1.00e5 0.53
SGD 2.50 0.45 1.07e3 1.77e3 2.17 1.00e5 0.65
SCG 2.67 0.57 1.64e3 9.86e2 2.72 1.00e5 0.60
LM† 3.5 0.60 1.02e4 1.35e3 3.42 1.00e4 0.82

(a) Covertype.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD† 3.00 8.33 2.19e3 7.51e1 36.77 1.00e3 0.37
GDX† 2.50 4.41 1.83e3 7.20e1 24.57 1.00e5 0.37
SGD 3.17 0.21 2.24e4 1.12e4 6.88 1.00e5 0.68
SCG† 2.50 0.79 1.67e3 1.71e2 10.33 1.00e5 0.44
LM† 2.33 0.11 1.11e3 8.74e2 8.57 1.00e5 0.59

(b) Friedman.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD† 2.33 0.74 4.82e2 6.17e1 2.98 1.00e2 0.36
GDX† 2.33 2.66 2.45e2 2.04e1 13.63 1.00e4 0.26
SGD 4.00 0.01 6.54e3 9.96e3 0.69 1.00e6 0.67
SCG† 2.50 0.01 5.61e2 1.38e2 0.05 1.00e4 0.43
LM† 2.83 0.00 3.26e3 5.19e2 0.00 1.00e5 0.54

(c) Lorenz.

Name Score Err AuTE Te5% AuSE Se5% Eff
GD† 2.00 303.12 1.66e3 6.60e0 903.14 1.00e2 0.44
GDX† 2.33 9.25 7.49e4 9.71e2 66.06 1.00e4 0.75
SGD 3.17 0.14 8.74e4 6.50e4 221.79 6.00e4 1.02
SCG† 2.17 3.06 3.10e4 1.82e3 41.52 1.00e4 0.82
LM − − − − − − −

(d) MNIST

Table 3.3: Performance measures for regression tasks. Largest training set it
can deal with: †1e4 or ‡1e5 samples.
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3.4 SOME FINAL CONSIDERATIONS

Note that, in the previous case study, a learning algorithm showing conver-
gence problems is able to beat other algorithms in terms of scalability. This
is an isolated case and the conclusions of this case study are not affected
by it but, and this is the point, the performance measures must be revised
for specific applications. By no means this fact makes PASCAL evaluation
framework useless. Again, it would be an exercise of deciding which measure
is more appropriate for the specific domain. And maybe for a specific sce-
nario, the measures defined by the PASCAL challenge are a perfect match.
This chapter was intended to provide some guidelines of assessing machine
learning algorithms in terms of scalability and distribution. Of course, one
can find many other measures in the literature. The key point for any ap-
plication would be to find the most appropriate measure to assess the per-
formance of the algorithms. In this thesis, we borrowed some of the ideas of
the measures presented in this chapter in order to show the validity of the
different algorithms that will be introduced in the following chapters, but we
will keep the evaluation framework as simple and clear as possible.
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Part II

Scaling Up Learning
Algorithms
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Chapter 4

Distributed Single-Layer
Neural Networks

It is a fact that most traditional learning algorithms cannot look at very large
datasets and plausibly find a good solution with reasonable requirements of
computation. In this situation, distributed learning seems to be a promising
line of research. It represents a natural manner for scaling up algorithms
inasmuch as an increase of the amount of data can be compensated by an
increase of the number of sites wherein the data is processed. This chapter
introduces a novel distributed training algorithm based on single-layer neu-
ral networks and genetic algorithms (Peteiro-Barral, Guijarro-Berdinas, &
Pérez-Sánchez, 2012).

4.1 BACKGROUND: A FAST TRAINING ALGORITHM FOR
SINGLE-LAYER NEURAL NETWORKS

x1

x2

. . .

xI

y1

y2

. . .

yJ

Figure 4.1: Single-layer neural network.

This section describes the method introduced in (Castillo, Fontenla-Romero,
Guijarro-Berdiñas, & Alonso-Betanzos, 2002) for learning the weights of a
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single-layer neural network. A single-layer neural network is the simplest
kind of neural network, which consists of a single layer of output nodes; the
inputs are fed directly to the outputs. Figure 4.1 illustrates what is meant by
a single-layer neural network. Inputs x1, . . . , xI are shown as circles, which
are connected by the weights wj1, . . . , wjI to the output yj where I is the
number of inputs and J is the number of outputs. Notice that yj(x; w)
represents the output of unit j as a function of the input vector x and the
weight vector w. The independent variables have been omitted for purposes
of clarity. Each line connecting an input i to an output j corresponds to
a weight parameter wji The biases w10, . . . , wJ0 are represented as weights
from an extra input x0 which is permanently set to 1 (Bishop, 1995). We can
express the network output in terms of the components of the input vector
x and the weight vector w to give

yj = fj

(
I∑
i=0

wjixi

)
(4.1)

where j = 1, . . . , J , and fj is the activation function of the jth output unit.
The set of equations over all the samples in the training set can be written
as

yjn = fj

(
I∑
i=0

wjixin

)
(4.2)

where n = 1, . . . , N . System 4.2 has J×N equations in J×(I+1) unknowns.
In practice, the number of samples N is much larger than the number of
inputs I which leads to an incompatible system of equations. Thus we shall
consider some errors. The most common approach is to use the sum of
squares error function which is given by a sum over all samples in the training
set, and over all the outputs, of the form

E(w) =
1

2

N∑
n=1

J∑
j=1

(djn − yjn)2

=
1

2

N∑
n=1

J∑
j=1

(
djn − fj

(
I∑
i=0

wjixin

))2 (4.3)

where djn represents the desired value for output unit j when the input
vector is xn. This error function can be minimized by a variety of standard
techniques. Among them, a method proposed in (Castillo et al., 2002) for
learning the weights in single-layer neural networks is remarkable. It leads
to the existence of a global optimum that is easily obtained solving a system
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of linear equations. If we consider activation functions f1, . . . , fJ which are
invertible f−1

1 , . . . , f−1
J , the system of equations 4.3 that measures the error

in the outputs can be rewritten as

Q(w) =
1

2

N∑
n=1

J∑
j=1

(
f−1
j (djn)−

I∑
i=0

wjixin

)2

(4.4)

which measures the error in the input of the activation functions. Notice
that most commonly used activation functions are invertible. The solution
for the weight values at the minimum of error function can therefore be found
exactly by deriving Q with respect to the weights for each output j = 1, . . . , J

∂Q

∂wjp
=

N∑
n=1

(
f−1
j (djn)−

I∑
i=0

wjixin

)
xpn = 0 (4.5)

which leads to the system of linear equations

I∑
i=0

(
N∑
n=1

xinxpn

)
wji =

N∑
n=1

(
f−1
j (djn)− wj0

)
xpn (4.6)

which can be written as
I∑
i=0

Apiwij = bpj (4.7)

where

Api =
N∑
n=1

xinxpn bpj =
N∑
n=1

f−1
j (djn)xpn (4.8)

For every output unit j, Equation 4.7 has I+1 linear equations and I+1 un-
knowns. Hence, there exist only one solution that corresponds to the global
optimum of the objective function 4.4. The global optimum can be easily
obtained by well-known linear programming techniques. Computationally
efficient methods for solving systems of linear equations with complexity
O(J × (I + 1)2) can be found in the literature (Carayannis, Kalouptsidis,
& Manolakis, 1982; Bojańczyk, 1984). These techniques require much less
computational resources and computational time than those involved in min-
imizing E in Equation 4.3.
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4.2 SOME CONSIDERATIONS ON THE MINIMIZATION OF
THE SUM-OF-SQUARES ERROR FUNCTION

The minimization of the sum-of-squares error function (see Equation 4.3) led
to a simple solution for the parameter values. Consider a general classifi-
cation problem with J classes, with a 1-of-J binary coding scheme for the
desired output d. One justification for using least squares in a classifica-
tion problem is that it approximates the conditional expectation E(d | x) of
the desired output values d given the input vector x, where this conditional
expectation is given by the posterior class probabilities (Bishop, 2006). How-
ever, these probabilities are approximated rather poorly. If we use a 1-of-J
coding scheme for J classes, then the predictions made by the model will
have the property that the elements of the output y(x) will sum to 1 for
any value of x. However, this summation constraint alone is not sufficient to
interpret the model outputs as probabilities. In the classical linear regression
model the outputs are not bounded to lie within the interval [0, 1]. In the
single-layer neural network presented above, the outputs are bounded by the
transfer function that can be plugged in the outputs units. In particular,
the logistic function is appropriate because its output values lie within the
interval [0, 1]. But it is still not sufficient. Even as a discriminant model that
one can use to make decisions with a probabilistic interpretation, it suffers
from several problems. Least-squares solutions lack robustness to outliers
and class imbalance problems. As illustrated in Figure 4.2, the additional
data points in the bottom figure produce a significant change in the location
of the decision boundary, even though these data points would be correctly
classified by the original decision boundary in the top figure, showing that
least squares is highly sensitive to outliers and class imbalance problems.

Least squares corresponds to maximum likelihood under the assumption
of a Gaussian conditional distribution, whereas binary desired output vec-
tors clearly have a distribution that is far from Gaussian. By adopting more
appropriate models, one shall obtain classification models with much bet-
ter properties than least squares. However, least squares seems an efficient
method to train a single-layer neural network as demonstrated in (Castillo
et al., 2002) especially for regression problems. Moreover, the matrices of
coefficients A and b (see equations 4.8) are computed as a sum of terms
along the data points in the training set. Therefore, the following equalities
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(a) Data from two classes, denoted by crosses and circles, together with the decision
boundary found by the logistic regression model (solid line) and also by least
squares (dashed line).
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(b) The corresponding results obtained when extra data points are added at the
bottom left to the class denoted by circles.

Figure 4.2: Least squares is highly sensitive to outliers.
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hold

Api =
N∑
n=1

xinxpn =
∑

D1

xinxpn + · · ·+
∑
DP

xinxpn (4.9)

bpj =
N∑
n=1

f−1
j (djn)xpn =

∑
D1

f−1
j (djn)xpn + · · ·+

∑
DP

f−1
j (djn)xpn (4.10)

for arbitrary non-overlapping partitions of the data Dp, p = 1, . . . , P . That
is, the weight vector w can be computed incrementally regardless of the order
of the data points because of the commutative property of the sum. This
task is embarrassingly parallel and can be easily used in the development
of a distributed training algorithm. Assuming that the training dataset is
partitioned in P subsets D1, . . . ,DP , we can take different considerations
regarding to different tasks,

REGRESSION TASK. The solutions provided by least squares in the P
partitions are locally optimal, and the global optimum is obtained by simply
summing the corresponding matrices of coefficients Ap and bp where p =
1, . . . , P .

CLASSIFICATION TASK. The solutions provided by least squares in the
P partitions are locally suboptimal in terms of classification performance,
and summing the corresponding matrices of coefficients Ap and bp will lead
to a suboptimal solution.

4.3 COMBINING MODELS USING GENETIC ALGORITHMS

As explained in the previous section, combining single-layer neural networks
by means of a sum will lead to suboptimal solutions for classification prob-
lems. However, this combination may be improved by adding another step
in process that optimizes a more appropriate cost function that approximate
the actual loss we are trying to minimize, e.g. the standard loss functions
for classification is zero-one-loss, misclassification rate, and the ones used for
training classifiers are approximations of that loss. Thus, we propose to com-
bine the single-layer neural networks trained in each partition using a genetic
algorithm rather than a simple sum. The hypothesis here is that genetic algo-
rithms will make good use of the suboptimal solutions as the starting point
of the optimization method and then they will drive the model towards a
better solution based on a more appropriate cost function.
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Genetic algorithms (Holland, 1975; Goldberg & Holland, 1988) are stochas-
tic search methods that operate on multiple solutions to a problem. Genetic
algorithms work well on continuous and discrete combinatorial problems.
They are less susceptible to getting stuck at local optima than gradient search
methods at the expense of being computationally intensive. To use genetic
algorithms, one must encode a solution to the problem as a genome or chro-
mosome. Then, the genetic algorithm generates a population of feasible
solutions and applies genetic operators such as mutation and crossover to
evolve the individuals of the population in order to find the best solution to
the problem. The objective function determines how good each individual
is. The three most important parts of a genetic algorithm are

Definition of the fitness function, or objective function, f : X → R and
the general problem is to find minx∈X f where x is a vector of features and
X is the search space.

Definition of the genetic representation. One can use any representa-
tion for the individual genomes. Pioneers worked primarily with strings of
bits but one can use arrays, trees, lists, or any other data structure. The
important issue is that each individual must represent a complete solution
to the problem at hand.

Definition of the genetic operators; initialization, selection, crossover,
and mutation. Initialization is the method that builds the initial population
of individuals. The selection method uses the fitness of each individual to
choose which individuals are allowed to breed more often. Typically crossover
is defined as the manner in which two individuals (parents) are combined
to produce two more individuals (children or offspring). The fundamental
purpose of the crossover operator is to get genetic material from the previous
generation to the subsequent generation. The mutation operator introduces
a certain amount of randomness in the search. It can help to find solutions
that crossover alone might not find (Verma, Llora, Goldberg, & Campbell,
2009).

A general formulation of a genetic algorithm is presented as follows where
many different selection, crossover, and mutation operators can be accom-
modated, and a new population is generated in each generation.

1. Choose an initial population of individuals.

2. Select a subset of individuals for breeding by using the fitness function.
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3. Combine the parents to generate the offspring by using the crossover
operator.

4. Perform mutation on the offspring generated from crossover.

5. Repeat steps 2 and 3 until any termination condition is satisfied.

4.4 PROPOSED DISTRIBUTED LEARNING MODEL FOR SIN-
GLE-LAYER NEURAL NETWORKS

During the local, Map phase (see Section 1.6 for more information on the
MapReduce paradigm), single-layer neural networks are trained on the dif-
ferent partitions of the dataset xp ∈ Dp ⊂ D, by computing

Api =
∑
n

xinxpn, i = 1, . . . , I; bpj =
∑
n

f−1
j (djn)xpn, j = 1, . . . , J

and outputting the pair (p,< Ap, bp >) where p is the index of the partition.
Then, during the aggregation, Reduce phase, the different single-layer NNs
< Ap, bp > are combined using a genetic algorithm, as described in the
previous section. In particular;

FITNESS FUNCTION. As explained in the previous section, combining
single-layer neural networks by means of a sum will lead to suboptimal so-
lutions only for classification problems. Thus, for classification, the fitness
function is defined as the logistic regression function

J(w) = − 1

M

[∑
m

dm log h(ym) + (1− dm) log(1− h(ym))

]

or the softmax regression function if the class label can take more than two
possible values

J(w) = − 1

M

[∑
m

∑
j

1 {dm = j} log
eh(yjm)∑
j e

h(yjm)

]

where

h(y) =
1

1 + e−y

is the sigmoid function and 1{·} is the indicator function, so that 1{a true statement} =
1, and 1{a false statement} = 0, and yjm is the jth output for sample m.
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GENETIC REPRESENTATION. Each individual p is represented by the
pair of matrices < Ap, bp > (see Equation 4.8) that contains a solution to the
partition p of the data.

GENETIC OPERATORS.

Initialization. The initial population comprises the set of neural net-
works < Ap, bp >, p = 1, . . . , P trained on the P partitions of the data during
the Map phase.

Selection. We implement tournament selection without replacement
(Goldberg, Korb, & Deb, 1989). Tournament selection is a method of select-
ing an individual from a population of individuals where tournaments are
run among T (tournament size) randomly chosen individuals and the winner
(the one with the best fitness) is selected for breeding. Selection pressure is
easily adjusted by changing the tournament size. If the tournament size is
larger, weak individuals have a smaller chance to be selected. This process
is repeated P (population size) times.

Crossover. For individuals p and q, the child is derived from the sum
of the matrices A and b of the parents < Ap + Aq, bp + bq > (see equations
4.9 and 4.10).

Mutation. The mutation operator adds a random number taken from
a Gaussian distribution with mean 0 to random entries of the parent matrices
A and b. The standard deviation of the distribution is determined by the
range of values of the inputs.

4.5 EXPERIMENTAL STUDY

The objective of this section is to experimentally evaluate the performance of
the distributed training algorithm for single-layer neural networks proposed
in this chapter.

4.5.1 MATERIALS AND METHODS

In this experimentation, we compare the performance in terms of error and
training time of the original linear algorithm for single-layer neural networks
trained in batch mode in a single machine, against the distributed version
proposed in this chapter. In distributed scenarios, training data have been

69



scattered across 2, 4, and 8 different nodes. The evaluation of the methods
has been done using holdout, 90% for training, 10% for testing. Experiments
were run 100 times with random partitions of the datasets.

The distributed algorithm is evaluated on four regression datasets: Fried-
man, Lorenz, Covertype, and MNIST; and four classification datasets: Connect-
4, KDD Cup 99, Covertype, and MNIST. This is the same group of datasets
as the experimentation presented in Section 3.3 as a case study on the scala-
bility of training algorithms for neural networks –a more detailed description
of the datasets can be found there. Notice that we are using Covertype and
MNIST as regression and classification problems, using the same procedure
described in Section 3.3.

As stated before in Section 4.2, in regression tasks, the solutions pro-
vided by least squares in the different partitions are locally optimal, and the
global optimum is obtained by simply summing the corresponding matrices
of coefficients, i.e. there is no need of optimising the solution by means of
the genetic algorithm just because the solution is already optimal. Thus,
the weights of the neural network will be the same regardless of the setup
–batch or distributed– and regardless of the number of nodes –because it is
just a sum of terms–, so it is guaranteed that the performance of this model
will be the same in the distributed implementation. The reason for including
regression problems in this experimental study is to show the potential of the
algorithm for improving training time when it is executed in a distributed
environment.

4.5.2 RESULTS

In the four regression tasks considered in this study, the results in terms of
mean squared error of the single-layer neural network on the four regression
datasets are: 9.83 for Friedman, 0.76 for Covertype, 0.08 for Lorenz, and 1.89
for MNIST (these results are calculated as the average of 100 executions). As
mentioned in the previous section, these results hold for the different setups:
batch and distributed training, as the formulation of the algorithm as a sum
of terms makes the solution independent of the number of nodes. The most
interesting result for regression tasks is related to the training time for the
different setups. Table 4.1 shows the training time of the original algorithm
where the number of nodes is equal to 1, and the different configurations
for the proposed distributed algorithm, when the number of nodes is set to
2, 4, and 8. The training times showed in this table are the sum of the
training times for the 100 repetitions of the experiment. Also, Figure 4.3
plots the speed-up of the algorithm for the different number of processors
and regression datasets.
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Data set
Number of nodes

1 2 4 8
Friedman 33.67 17.66 12.11 12.32
Covertype 71.01 38.13 22.69 21.50
Lorenz 24.39 13.49 9.95 10.02
MNIST 5856.69 2953.36 1522.51 848.05

Table 4.1: Training time (s) of the proposed distributed algorithm for single-
layer neural networks on regression tasks.
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Figure 4.3: Speed-up of the proposed distributed algorithm for single-layer
neural networks on regression tasks.

On the other hand, regarding classification tasks, as stated in the previous
section, the solution provided by least squares in the different partitions are
locally suboptimal in terms of classification performance, and summing the
corresponding matrices of coefficients A and b will lead to a suboptimal
solution. Thus, we would expect an improvement in performance by using a
genetic algorithm for merging the different models trained in the distributed
locations. Table 4.2 shows the mean test classification error of the proposed
algorithm on the four classification tasks considered in this experimentation,
and for the different setups of the training algorithm using different number
of nodes. Finally, regarding the training time performance of the algorithm,
Table 4.3 shows the training time of the proposed algorithm for classification
tasks, and Figure 4.4 plots the speed-up of the distributed algorithm for the
different number of processors.
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Data set
Number of nodes

1 2 4 8
Connect-4 27.52 27.73 27.39 26.89
Covertype 26.94 26.76 25.27 24.45
KDD Cup 99 25.73 24.72 24.61 23.46
MNIST 13.34 13.45 12.54 12.05

Table 4.2: Test classification error (%) of the proposed distributed algorithm
for single-layer neural networks on classification tasks.

Data set
Number of nodes

1 2 4 8
Connect-4 26.91 15.69 13.79 20.24
KDD Cup 99 237.74 112.69 61.363 43.01
Covertype 64.97 33.65 22.488 22.98
MNIST 6623.88 3187.24 1594.74 927.46

Table 4.3: Training time (s) of the proposed distributed algorithm for single-
layer neural networks on classification tasks.

4.5.3 DISCUSSION AND CONCLUSIONS

Regarding regression tasks, as can be seen in Table 4.1 and Figure 4.3, for
MNIST the algorithm achieves almost linear speed up, i.e. doubling the
number of processors doubles the speed –reduces the training time by half.
For the remaining datasets, the speed-up saturates when the number of pro-
cessors is set to 4. This result is reasonable because the size of the datasets
is not big enough. If we compute the size of a dataset as the number of fea-
tures times the number of samples, MNIST is more than 2 times larger than
KDD Cup 99; more than 4, 5, and 8 times larger than Friedman, Lorenz,
and Covertype, respectively; and more than 17 times larger than Connect-
4. Thus, for these datasets apart from MNIST, increasing the number of
processors to a large number will not improve performance just because the
time the learning algorithm takes to learn in the local partitions is not very
different from a larger dataset. Notice, however, than these results are just
simulations. In real-world environments, the size of the datasets could be
many times larger than the datasets presented in this experimentation, so
we could expect almost linear speed-up in for a very large dataset. In any
case, these results show that the algorithm is able to train faster when we
increase the number of processors whilst maintaining error performance.

On the other hand, regarding classification tasks, as can be seen in Table
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Figure 4.4: Speed-up of the proposed distributed algorithm for single-layer
neural networks on classification tasks.

4.2, refining the solution achieved by least squares by optimising a classifica-
tion error function improves results when increasing the number of processors.
When the number of processors is higher, the diversity of the models dur-
ing the execution of the genetic algorithm is potentially higher, leading to a
higher chance of finding a better solution of the problem at hand. In average,
for the four classification datasets, training on 8 nodes improves, in relative
terms, the batch algorithm (1 node) by 8.23%. However, this improvement
in accuracy comes at the cost of making the training step slightly slower (see
Table 4.3 and Figure 4.4). Note that, unlike the training process for regres-
sion tasks, in classification, the distributed algorithm does not achieve linear
speedup because the genetic algorithm creates an overhead during the inte-
gration stage. With a large population size, the genetic algorithm searches
the solution space more thoroughly, thereby reducing the chance that the
algorithm returns a local minimum that is not a global minimum. However,
a large population size also causes the algorithm to run more slowly. How-
ever, notice that this overhead is quite small and the speed of the training
algorithm is still remarkable. Note also that in classification tasks, the out-
put layer of the single-layer neural networks has the size of the number of
clases, i.e. the number of computations is higher than in regression tasks
for a dataset with the same number of features and samples. In terms of
the performance of the algorithm in specific datasets, as it happened with
regression tasks, the distributed algorithm is almost able to achieve linear
speed-up on MNIST. Also, the performance of the algorithm on KDD Cup
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99 increases substantially when we increase the number of processors. On
the contrary, in the case of Covertype and Connect-4, we can observe a very
interesting effect; increasing the number of processors leads to a longer train-
ing time. In these two cases, the datasets are not very large so increasing
the number of processors to a large number will not improve performance
just because the time the learning algorithm takes to learn in the local par-
titions is not very different from a larger dataset, and on top of this, the
genetic algorithm will take longer because the number of models to combine
is larger. In any case, with large enough datasets as the ones we can find
in real-world scenarios, these results show that the distributed algorithm is
able to train faster on classification tasks when we increase the number of
processors, whilst maintaining error performance.

In light of the above, we can conclude that the distributed training al-
gorithm for single-layer neural networks shows a good performance in terms
of both training speed and error. In particular, regarding classification, the
genetic algorithm is able to improve the results obtained by just summing the
matrices of coefficients, only adding a relatively small overhead to the pro-
cess. Thus, the good scalability of the algorithm makes it very appropriate
for large scale learning problems and big data.
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Chapter 5

Distributed Two-Layer Neural
Networks

Single-layer neural networks are only capable of approximating linear prob-
lems, which may be enough in some scenarios, but not in some others. How-
ever, the universal approximation theorem for neural networks states that
every continuous function that maps intervals of real numbers to some out-
put interval of real numbers can be approximated to any desired degree of
accuracy by a multi-layer perceptron with just one hidden layer (Hornik et
al., 1989). In this chapter, this thesis expands the concepts seen in the
previous chapter to neural networks with one hidden layer (Peteiro-Barral,
Guijarro-Berdinas, Pérez-Sánchez, & Fontenla-Romero, 2011).

5.1 BACKGROUND: A SENSITIVITY-BASED LINEAR LEARN-
ING METHOD FOR TWO-LAYER NEURAL NETWORKS

Consider the single-layer neural network introduced in Section 4.1. As stated
in the previous chapter, the most common approach to compute the optimal
set of weights is to use the sum of squares error function which is given by a
sum over all samples in the training set, and over all the outputs. This error
function can be minimized by a variety of standard techniques. In particular,
the method proposed in (Castillo et al., 2002) leads to the existence of a
global optimum that is easily obtained solving a system of linear equations.
If we consider activation functions of the units of the neural network are
are invertible. Thus, under this framework, rather than minimizing the sum
of squares error in the output of the of the activation functions, one can
minimize the sum of squares error in the input of these activation functions,
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that leads to the equation we presented before, that is;

Q(w) =
1

2

N∑
n=1

J∑
j=1

(
f−1
j (djn)−

I∑
i=0

wjixin

)2

(5.1)

The solution for the weight values at the minimum of error function Q can
be found exactly by deriving Q with respect to the weights w which leads
to a system of linear equations which global optimum can be easily obtained
by well-known linear programming techniques. All these concepts were in-
troduced in the previous sections (see Section 4.1 for more details). Now,
we introduce the concept of sensitivity, which will be useful to expand the
formulation seen so far to two-layer neural networks as proposed in (Castillo,
Conejo, Pedregal, Garcia, & Alguacil, 2011). Sensitivity analysis is the study
of how the uncertainty in the output of a model can be apportioned to dif-
ferent sources of uncertainty in its inputs. Sensitivity analysis is useful here
because it increases the understanding of the relationships between input and
output variables in a model. In other words, sensitivity analysis answer the
question of how sensitive are the optimal values in a minimization problem
to the data points, i.e. what is the marginal increment in the optimum re-
sulting from changes in the data. The main implication is that sensitivities
measure the rate of change of the objective function in a small neighborhood
around the optimal solution (Castillo, Hadi, Conejo, & Fernández-Canteli,
2004). Thus, in this context, the sensitivities are computed as the derivative
of the cost function Q with respect to the input samples x, that is;

∂Q

∂xpq
= −

J∑
j=1

(
f−1
j (djq)−

I∑
i=0

wjixiq

)
wjr; ∀p, q (5.2)

and with respect to the output data d can be computed as

∂Q

∂dpq
=
f−1
p (dpq)−

∑I
i=0 wpixiq

f ′p(dpq)
;∀p, q (5.3)

Based on the previous equations, one can develop a training algorithm
for two-layer neural networks based on sensitivity analysis. Fist, consider the
two-layer neural network shown in Figure 5.1. Inputs x1, . . . , xI are connected
by the weights wk1, . . . , wkI to the output of the hidden layer zk(x) where
I is the number of inputs and K is the number of hidden units. Hidden
units z1, . . . , zK are connected by the weights wj1, . . . , wjK to the output
yj(z) where J is the number of outputs. A two-layer neural network can be
considered to be composed of two single-layer neural networks. Thus, using
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Figure 5.1: Two-layer neural network.

Equation 5.1 and assuming z is known, the cost function can be defined as
follows;

Q(z) = Q(1)(z) +Q(2)(z)

=
N∑
n=1

K∑
k=1

(
g−1
k (zkn)−

I∑
i=0

w
(1)
ki xin

)2

+
N∑
n=1

J∑
j=1

(
f−1
j (djn)−

K∑
k=0

w
(2)
jk zkn

)2

(5.4)

where superscript (1) refers to the first layer and superscript (2) refers to the
second layer, and the activation functions in the hidden units are denoted by
gk and the activation functions in the output units are denoted by fj. The

weights w
(1)
ki and w

(2)
jk can be learn independently for each layer using zks by

solving a system of linear equations. Thus, the sensitivities (see equations
5.2 and 5.3) with respect to wks are computed as follows

∂Q

∂zkn
=
∂Q(1)

∂zkn
+
∂Q(2)

∂zkn

=
g−1
k (zkn)−∑I

i=0 w
(1)
ki xin

g′k(zkn)

−
J∑
j=1

(
f−1
j (djn)−

K∑
k=0

w
(2)
jr zrn

)
w

(2)
jk

(5.5)

Then, the values of z are updated using Taylor series

Q(z + ∆z) = Q(z) +
N∑
n=1

K∑
k=1

∂Q(z)

∂zkn
≈ 0 (5.6)
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which leads to the following update rule

∆z = −ρ Q(z)

‖∇Q‖2
∇Q (5.7)

where ρ is a relaxation factor or step size. The concepts introduced so far
take shape in the subsequent algorithm, called SBLLM and introduced in
(Castillo, Guijarro-Berdiñas, Fontenla-Romero, & Alonso-Betanzos, 2006).
The input to the algorithm consists of the input data points xn and desired
outputs dn.

INITIALIZATION. Assign z to be the output computed on the input x and
some random weights w(1) plus a small random error

zkn = gk

(
I∑
i=0

w
(1)
ki xin

)
+ εkn (5.8)

where εkn ∈ U(−η, η) and η is set to a small value.

SOLUTION. Compute the weights and sensitivities by solving the systems
of linear equations

I∑
i=0

A
(1)
ri w

(1)
ki = b

(1)
rk (5.9)

K∑
k=0

A
(2)
qk w

(2)
jk = b

(2)
qj (5.10)

where

A
(1)
ri =

N∑
n=1

xinxrn b
(1)
rk =

N∑
n=1

g−1
k (zkn)xrn (5.11)

A
(2)
qk =

N∑
n=1

zkszqn b
(2)
qj =

N∑
n=1

f−1
j (djn)zqn (5.12)

where r = 1, . . . , I and q = 1, . . . , K. These systems of linear equations are
the same introduced in the previous section (see Equation 4.7), in this case,
for each of the two layers.
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EVALUATION. Evaluate Q by

Q(z) = Q(1)(z) +Q(2)(z)

=
N∑
n=1

K∑
k=1

(
g−1
k (zkn)−

I∑
i=0

w
(1)
ki xin

)2

+
N∑
n=1

J∑
j=1

(
f−1
j (djn)−

K∑
k=0

w
(2)
jk zkn

)2

(5.13)

and mean squared error E by

E(w) =
1

2

N∑
n=1

J∑
j=1

(
djn − fj

(
I∑
i=0

wjixin

))2

(5.14)

Stop the training process if |Qiter−Qiter−1| < ε or |Eiter−Eiter−1| < ε where
ε is a predefined parameter.

UPDATE. Compute the sensitivities

∂Q

∂zkn
=
∂Q(1)

∂zkn
+
∂Q(2)

∂zkn

=

∑I
i=0 w

(1)
ki xin − g−1

k (zkn)

g′k(zkn)

−
J∑
j=1

(
K∑
r=0

w
(2)
jr zrn − f−1

j (yjn)

)
w

(2)
jk

(5.15)

and update z using Taylor series

z = z− ρ Q(z)

‖∇Q‖2
∇Q (5.16)

where ρ is a predefined parameter. Then, go back to the solution step for
another iteration of the method.

5.2 PROPOSED DISTRIBUTED LEARNING MODEL FOR TWO-
LAYER NEURAL NETWORKS

The matrices of coefficients in the first layer A(1) and b(1) (see Equation
5.11) and the matrices of coefficients in the second layer A(2) and b(2) (see
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Equation 5.12) are computed as a sum of terms along the data points in the
training set. Therefore, the following equalities hold

A
(1)
ri =

N∑
n=1

xinxrn =
∑

D1

xinxrn + · · ·+
∑

Dp

xinxrn (5.17)

b
(1)
pk =

N∑
n=1

g−1
k (zks)xps =

∑
D1

g−1
k (zkn)xrn + · · ·+

∑
Dp

g−1
k (zkn)xrn (5.18)

and

A
(2)
qk =

N∑
n=1

zknzqn =
∑

D1

zknzqn + · · ·+
∑

Dp

zknzqn (5.19)

b
(2)
qj =

N∑
n=1

f−1
j (djs)zqs =

∑
D1

f−1
j (djn)zqn + · · ·+

∑
Dp

f−1
j (djn)zqn (5.20)

for arbitrary partitions of the data Dp, p = 1, . . . , P . That is, the weight
vectors w(1) and w(2) can be computed incrementally regardless of the order
of the data points because of the commutative property of the sum. Using this
property, it is possible to take a similar approach to the previous algorithm
for single-layer ANNs, and implement the combination of different two-layer
ANNs by means of a genetic algorithm. The implementation of this genetic
algorithm is very similar to the one proposed in the previous section, just
taking into account the different equations introduced in this section. Thus,
most of the considerations stated in the previous chapter are also valid here.

However, there is an important difference for regression problems in con-
nection with the training algorithm for single-layer neural networks. Note
that least squares is a good approximation of the cost function for regres-
sion problems, but in this case the solutions provided by least squares in the
different partitions are not guaranteed to be locally optimal, just because
adding a new layer to the neural network makes the problem not convex, i.e.
the optimization process could get stuck in a local minima. Thus, adding a
genetic algorithm as an integration step could lead to better solutions in this
context, since the combination of different models increments the chances of
finding the global minima. On the other hand, for classification problems,
the solutions provided by least squares is not optimal in terms of classifi-
cation performance, so we will define a more appropriate cost function that
approximate the actual loss we are trying to minimize, e.g. logistic regression
function, zero-one-loss, misclassification rate, and the ones used for training
classifiers are approximations of that loss.

80



Regarding the genetic representation, for both regression and classifica-
tion tasks, each individual will be represented with the four matrices A

(1)
p ,

b
(1)
p , A

(2)
p , and b

(2)
p that contains a solution to the partition p of the data.

Finally, the genetic operators will be the same used in the previous chapter,
just taking into account the representation of the two-layer neural networks
using the four matrices of coefficients.

5.3 EXPERIMENTAL STUDY

The objective of this section is to experimentally evaluate the performance
of the distributed training algorithm for two-layer neural networks proposed
in this chapter.

5.3.1 MATERIALS AND METHODS

The experimental setup will be the same as the one described in Section
4.5 for evaluating the performance of the distributed training algorithm for
single-layer neural networks. Thus, the algorithms are evaluated on four
regression datasets: Friedman, Lorenz, Covertype, and MNIST; and four
classification datasets: Connect-4, KDD Cup 99, Covertype, and MNIST. In
this experimentation, we compare the performance in terms of error –mean
squared error for regression tasks and classification error for classification
tasks– and training time of the original algorithm trained in batch in a sin-
gle machine, against the distributed version proposed in this chapter. In
distributed scenarios, training data have been scattered across 2, 4, and 8
different nodes. Again, the evaluation of the methods has been done using
holdout, 90% for training, 10% for testing. Experiments were run 100 times
with random partitions of the datasets. Regarding the number of hidden
units in the hidden layer, we set the number of the neural network to two
times the number of inputs. Note the aim here is not to investigate the op-
timal topology of the neural network for a given dataset, but to evaluate the
performance of the training algorithms on large networks. Finally, we will use
the sigmoid function as the activation function in the hidden layer, and linear
and sigmoid functions in the output layer for regression and classification,
respectively.

5.3.2 RESULTS

In the first place, we will show the results for regression tasks. Table 5.1
shows the mean squared error of the original algorithm where the number
of nodes is equal to 1, and the different configurations for the proposed
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Data set
Number of nodes
1 2 4 8

Covertype 0.70 0.70 0.68 0.67
Friedman 7.92 7.94 7.05 6.43
Lorenz 0.03 0.02 0.00 0.00
MNIST 1.91 1.84 1.87 1.78

Table 5.1: Test mean squared error of the proposed distributed algorithm for
two-layer neural networks on regression tasks.

Data set
Number of nodes

1 2 4 8
Friedman 889.62 389.71 209.27 129.67
Covertype 1762.94 914.16 626.70 670.05
Lorenz 526.68 267.51 145.25 92.92
MNIST 29587.73 14668.46 7550.82 4277.828

Table 5.2: Training time (s) of the proposed distributed algorithm for two-
layer neural networks on regression tasks.

distributed algorithm for two-layer neural networks, using 2, 4, and 8 nodes
(the number of samples in each node will be approximately the same); on the
four different regression tasks considered in this experimentation. Regarding
the training time performance, Table 5.2 shows the training time, and Figure
5.2 plots the speed-up of the distributed algorithm for the different number
of nodes. As in the experimental study for single-layer neural networks, the
training times showed in this table are the sum of the training times for the
100 repetitions of the experiment.

On the other hand, regarding classification tasks, Table 5.3 shows the
test classification error of the proposed algorithm on the four classification
datasets. With respect to the training time of the algorithm in classifica-
tion tasks, Table 5.4 shows the training time performance of the proposed
distributed algorithm for two-layer neural networks in classification tasks. Fi-
nally, Table 5.3 plots the speed-up of the distributed algorithm for two-layer
neural networks for the different number of nodes.

5.3.3 DISCUSSION AND CONCLUSIONS

Regarding regression tasks, as can be seen in Table 5.1, the trend is towards
a smaller mean squared error when increasing the number of nodes. If we
compare the performance of the original algorithm (number of nodes equal
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Figure 5.2: Speed-up of the proposed distributed algorithm for two-layer
neural networks on regression tasks.

Data set
Number of nodes

1 2 4 8
Connect-4 25.93 25.67 25.08 23.63
Covertype 24.11 24.17 22.84 21.73
KDD Cup 99 10.12 10.03 8.93 8.82
MNIST 14.91 15.13 13.87 11.67

Table 5.3: Test classification error (%) of the proposed distributed algorithm
for two-layer neural networks on classification tasks.

to 1) against the performance of the distributed algorithm when the number
of nodes is 8, the relative improvement in performance is around 11.75%.
This shows the effectiveness of the proposed approach when merging the so-
lutions calculated at the different locations using a genetic algorithm. How-
ever, decreasing mean squared error comes the cost of a overhead because
of running a genetic algorithm in the integration step, making the algorithm
perform slightly worse than linear speedup (see Table 5.2 and Figure 5.2).
However, the overhead of the genetic algorithm is quite small, and these re-
sults show that the algorithm is able to train faster when we increase the
number of processors whilst maintaining, or in many cases improving, error
peformance. In particular, for the largest datasets: Friedman, Lorenz, and
MNIST; the algorithm achieve sublinear speed-up, but not that far from be-
ing linear. In particular, the speedup for Friedman and MNIST is almost
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Data set
Number of nodes

1 2 4 8
Connect-4 714.23 402.41 320.42 414.33
KDD Cup 99 5793.57 2911.17 1634.84 992.50
Covertype 1678.39 911.91 639.08 680.06
MNIST 34256.23 16696.99 8853.41 4800.44

Table 5.4: Training time (s) of the proposed distributed algorithm for two-
layer neural networks on classification tasks.
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Figure 5.3: Speed-up of the proposed distributed algorithm for two-layer
neural networks on classification tasks.

7 when the number of nodes or processors is 8. For the smallest dataset of
this group, Covertype saturates in speed-up when the number of processors
is set to 4, even running slower when we increase the number of processors
to 8. As explained in the experimental section of the distributed learning
algorithm for single-layer neural networks (see Section 4.5 for more details),
Covertype is not a very large dataset so increasing the number of processors
to a large number will not improve performance just because the time the
learning algorithm takes to learn in the local partitions is not very different
from a larger dataset. Moreover, the overhead of the genetic algorithm is
higher because the number of models to combine is larger, so the time the
genetic algorithm will take to find a solution is longer.

On the other hand, regarding classification tasks, if we compare the per-
formance of the original algorithm (number of nodes equal to 1) against the
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performance of the distributed algorithm when the number of nodes is 8,
the relative improvement in performance is around 18.81%, which is remark-
able. This result shows the effectiveness in terms of classification error of
the proposed approach when merging the solutions calculated at the differ-
ent locations using a genetic algorithm. With respect to the performance of
the algorithm in terms of training time, the results are very similar as the
ones reported for regression tasks (see Table 5.4 and Figure 5.3). As can be
seen, using a genetic algorithm in the integration step makes the algorithm
perform slightly worse than linear speedup, but this overhead is again quite
small. The behaviour of the algorithm follows the same pattern it showed
in regression tasks. When the datasets are large, the distributed algorithm
is almost able to reach linear speedup. For smaller datasets, the speedup of
the algorithm saturates when dividing the dataset in more partitions is not
worth it, especially because of the small overhead of the genetic algorithm
during the integration stage.

Finally, it is also relevant to compare the performance of the distributed
training algorithm for single and two-layer neural networks. The results of
the single-layer neural network can be found in Section 4.5. For regression
tasks, using a two-layer neural network reduces, in average, the mean squared
error by 13.42% for Covertype, Friedman, and MNIST. For Lorenz, the two-
layer neural network is able to reach an error of zero, whilst the result using a
single-layer neural network was 0.08. Regarding classification, in average for
the four datasets, the classification error decreases by 22.18% when using a
two-layer neural network rather than a single-layer neural network. However,
the improvement in terms of error comes with the cost of the training time.
In average, for both regression and classification, training a two-layer neural
network takes around 15 times longer than training a single-layer neural
network. Note than the training algorithm for two-layer neural networks
need to iterate until convergence and also solve a system of linear equations
in each layer -being the hidden layer larger than the input layer in this
experimentation. As can be seen, scalability is a balance between error and
speed. If reaching the lowest possible error is not that important but learning
as fast as possible, most likely a single-layer neural network is a good choice.
On the contrary, if the speed of the training process is not critical but the
error of the model, most likely a two-layer neural network is a good choice.
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Chapter 6

Distributed Frontier Vector
Quantization Based on
Information Theory

In this chapter, a novel distributed learning algorithm built upon the Fron-
tier Vector Quantization based on Information Theory (FVQIT) method is
introduced (Peteiro-Barral & Guijarro-Berdiñas, 2013). The FVQIT is very
effective in classification problems but it shows poor training time perfor-
mance. Thus, distributed learning is appropriate here to speed up training.

6.1 BACKGROUND ON FRONTIER VECTOR QUANTIZA-
TION AND INFORMATION THEORY

The frontier vector quantization based on information theory (FVQIT) method
(Porto-Dı́az, Mart́ınez-Rego, Alonso-Betanzos, & Fontenla-Romero, 2012)
is a supervised learning algorithm based on information theoretic learn-
ing (ITL) (J. C. Principe, 2010) and vector quantization (Lehn-Schiøler,
Hegde, Erdogmus, & Principe, 2005). ITL is a framework to adapt systems
nonparametrically that has developed cost functions for machine learning
based on entropy and divergence expressed in terms of Renyi’s entropy and
nonparametric probability density function estimators. It has proven that
these cost functions build robust systems and obtain optimal parametriza-
tion (J. C. Principe, 2010). The development of the FVQIT is based on
vector quantization using information theoretic learning (VQIT). The prin-
ciple of vector quantization is to represent a dataset with a smaller number
processing elements (PEs). The central idea of the VQIT is to minimize the
free energy of an information potential function. It was shown that mini-
mizing free energy is equivalent to minimizing the divergence between the
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Parzen estimator of the distributions of data and the Parzen estimator of the
distribution of PEs.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PEs

Figure 6.1: Example of a partition of the input space into four parts.

A physical interpretation considers two types of particles from which po-
tential fields with opposite polarities are created. The data points are one
set of particles that occupy a fixed position in the input space. The PEs are
the other set of particles that are free to move. They will move according to
the forces that act on them by other particles and eventually minimizing the
free energy. The attracting forces from data to PEs will tend to place PEs in
the neighborhood of data points whilst the repulsion forces between PEs will
tend to spread the PEs in the input space. In the original formulation of the
VQIT, data points and PEs have opposite polarities. In the FVQIT, data
points from different classes have different polarities. The most frequent class
in the neighborhood of the PE will attract it whilst the second most frequent
class of the PE will repel it. Thus, multiple attraction and repulsion forces
converge on each PE. The idea is to place the PEs in the frontier between
data samples from two different classes (see Figure 6.1). In this situation, the
Parzen density estimators of the distribution of data points f(x) and PEs
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g(x) are defined as

f (x) =
1

N

N∑
n=1

G
(
x− xn, σ

2
f

)
(6.1)

g (x) =
1

K

K∑
k=1

G
(
x− ck, σ

2
g

)
(6.2)

where N is the number of data points, K is the number of PEs, G is the
Gaussian kernel, σ2

f and σ2
g are the variances of the Gaussian functions, x ∈

<d are the data points, and ck ∈ <d are the positions of the PEs. The
function of energy J(c) that calculates the divergence between the Parzen
estimators of the data points from two classes is computed as

J(c,x) = log

∫
f 2(x) dx+ 2 log

∫
f+(x)g(x) dx

− 2 log

∫
f−(x)g(x) dx+ log

∫
g2(x) dx

(6.3)

where f+(x) is the estimator of the distribution of data points from the
positive class and f−(x) is the estimator of the distribution of data points
from the negative class. According to (J. Principe, Xu, Zhao, & Fisher, 2000)
and (Porto-Dı́az et al., 2012), the first term of Equation 6.3 is the information
potential of the data points. This term will be zero for stationary data. The
second term is the cross correlation between the distribution of data of the
positive class and the PEs. The third term is the cross correlation between
the distribution of data of the negative class and the PEs. Last, the fourth
term is the information potential of the PEs. Assuming this formulation,
the PEs will be situated on the frontier between the two classes when the
energy function J(c) is minimized. Gradient descent is used to solve the
minimization problem. The solution for the position of the PEs c at the
minimum of error function can therefore be found exactly by deriving J (see
Equation 6.3) with respect to c. For purposes of simplicity it seem best to
develop J by means of its three relevant terms: positive class, negative class,
and PEs (entropy). Remember that the first term of the equation will be
zero, as the data is stationary. First, the term for the positive class is defined
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C+ =

∫
f+(x)g(x) dx

=
1

KN+

∫ N+∑
n

G(x− x+
n , σ

2
f )

K∑
k

G(x− ck, σ
2
g) dx

=
1

KN+

N+∑
n

K∑
k

∫
G(x− x+

n , σ
2
f )G(x− ck, σ

2
g) dx

=
1

KN+

K∑
k

N+∑
n

G(ck − x+
n , σ

2
a)

(6.4)

where K is the number of PEs, N+ is the number of data points from the
positive class, x+

n are the data points from the positive class, ck are the
positions of the PEs and σ2

a = σ2
f+σ2

g is the variance of the Gaussian function.
Second, the term for the negative class is defined as
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G(x− x−n , σ
2
f )
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k
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2
g) dx
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1
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n
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k

∫
G(x− x−n , σ

2
f )G(x− ck, σ

2
g) dx

=
1

KN−

K∑
k

N−∑
n

G(ck − x−n , σ
2
a)

(6.5)

where N− is the number of data points from the negative class and x−n are
the data points from the negative class. Third, the term for the PEs, entropy,
is defined as

V =

∫
g(x)2 dx

=
1

K2

K∑
k

K∑
q

G(ck − cq,
√

2σg)
(6.6)

Then, based on the three previous terms, the contribution to the gradient
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can be found by deriving J with respect to the positions c

∂J

∂cq
=

∂

∂cq
2 logC+ − ∂

∂cq
2 logC− +

∂

∂cq
V

= 2
∇C+

C+
− 2
∇C−
C−

+
∇V
V

(6.7)

where ∇ denotes the derivative of the following terms

∇C+ = − 1

KN+

N+∑
n

G(cq − x+
n , σa)σ

−1
a (cq − x+

n ) (6.8)

∇C− = − 1

KN−

N−∑
n

G(cq − x−n , σa)σ
−1
a (cq − x−n ) (6.9)

∇V = − 1

K2

K∑
k

G(ck − cq,
√

2σg)σ
−1
g (cq − ck) (6.10)

Equation 6.3 can then be minimized using gradient descent optimization by
means of Equation 6.7. In the nth iteration the position of the PEs ck will
be updated with the following rule

ck(n) = ck(n− 1)− η
(∇C+

C+
− ∇C

−

C−
+
∇V
V

)
(6.11)

where η is the step size. As with self-organizing maps, a good starting point is
to choose kernels such that all PEs interact with each other. Large Gaussian
variances and large step sizes allow a fast initial distribution of PEs in the
feature space. These values will by decreased or annealed later in the training
process to obtain stability and smooth convergence.

The operation of the FVQIT is summarized as follows. The input to
the algorithm consists of the input data points xn and desired outputs dn.
Initialize the positions ck, k = 1, . . . , K of the PEs randomly in the subspace
defined by the input space and repeat the following steps until convergence

1. Compute the k-nearest neighbors (Cover & Hart, 1967) of every PE.
The most frequent class will be the repelling class of the PE. The second
most frequent class will be the attracting class of the PE. Note that
the parameter k of the nearest neighbor algorithm is unrelated with
the counter k and the number of PEs K. We maintain the notation for
purposes of consistency with the literature.

2. Compute the cross information potential C+ between every PE and
the data points from the repelling class (see Equation 6.4), the cross
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information potential C− between every PE and the data points from
the attracting class (see Equation 6.5), and the entropy V between PEs
(see Equation 6.6).

3. Compute the derivative of the function of energy J (see Equation 6.7).

4. Update the positions ck of the PEs (see Equation 6.11).

Ideally, the PEs will find themselves well distributed on the frontiers be-
tween classes. Recalling the example illustrated in Figure 6.1 that showed
a simple two-class bi-dimensional example, each PE handles a region in the
feature space defined by proximity—the local model associated to each PE
is composed of the nearest samples according to Euclidean distance. At this
moment, the goal is to construct a classifier for each local model. The FVQIT
utilizes the single-layer neural network presented in Section 4.1, a lightweight
classifier trained with the efficient algorithm proposed in (Castillo et al.,
2002). As explained before, the weights of the neural network are computed
as follows

I∑
i=0

Apiwij = bpj (6.12)

where

Api =
N∑
n=1

xinxpn bpj =
N∑
n=1

f−1
j (djn)xpn (6.13)

allowing rapid supervised training and requires less computational resources
than classic methods (see Section 4.1 for more details). This classifier will
be in charge of classifying samples in the region assigned to its local model
and will be trained only with the points of the training set in this region
(see Figure 6.2). Note that the decision boundaries do not necessarily pass
through the position of the PEs and do not necessarily intersect in the region
boundaries.

6.2 PROPOSED DISTRIBUTED LEARNING MODEL: DFVQIT

The combination of the distributed, partial solutions of the FVQIT in a
comprehensive, global solution is not a straightforward process. A simple
idea may be to combine every PE from every node but this approximation
may lead to redundant, crowded areas in the input space. Figure 6.3 shows
an example of the combination of the PEs from two different sites. As can be
seen, several PEs are too close one each other. This will affect the predictive
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Figure 6.2: Example of a partition of the input space into four parts (dashed
lines) and the decision boundary associated to each region (solid lines).

ability of the model in the presence of noise. In order to overcome this
difficulty, we propose three strategies to optimize the combination of models.
The first one will be based on genetic algorithms, the second one will be
based on clustering, and the third one will be a combination of the previous
two methods in order to exploit the advantages of both.

Before going into the details of the methods, we would like to introduce
how to combine two PEs. Note that a PE is defined by its position in
the space and the neural network, discriminant function, associated to the
partition of the input space assigned to it. Consider the situation illustrated
in Figure 6.4. As can be seen, the two PEs in the left figure can be merged
in one with no loss in accuracy.

The procedure for combining two process elements is composed of two
steps. On the one hand, the position c of the resultant PE is located in
the midpoint of the positions c1 and c2 of the two original PEs, that is,
c = c1+c2

2
. On the other hand, using the incremental property of the neural

network employed in the FVQIT, the decision boundary of the resultant PE
is the sum of the matrices of coefficients of the two original PEs, that is,
A = A1 + A2 and b = b1 + b2.
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Figure 6.3: Example of a straightforward combination of the process elements
from two sites.

6.2.1 COMBINING MODELS USING GENETIC ALGORITHMS

The hypothesis now is that the genetic algorithm will optimize the initial
population of PEs by pruning the crowded areas in the input space whilst
also optimizing the decision boundaries (see Section 4.2 for more details in
the problems of least-squares). Moreover, it is expected that including some
global knowledge by means of a genetic algorithm, will expand the search
space and obtain a simpler and more general classifier. The challenge here
is the encapsulation of a candidate solution. The piecewise representation of
the FVQIT leads to complex crossover operators between different solutions.
Thus, we turn to consider each PE as an individual of the population in
order to have a simple yet powerful method. This change in approach will
cause that the optimization process will be driven by fitness-maximization of
the population rather than best individual. Note that in the FVQIT, each
individual (process element, PE) is defined by its location c in the input
space and its decision boundary contained in the matrices of coefficients A
and b. Under these conditions, the genetic algorithm we propose in this
research will be implemented as follows.
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(b) Combination of the two PEs in one.

Figure 6.4: Example of partition of the input space (dashed line) and dis-
criminant function (solid line) in the FVQIT.

FITNESS FUNCTION. The fitness function will become the class accu-
racy of the entire population because of the piecewise representation of the
FVQIT. Note that the initial population contains every PE from every node.

SELECTION OPERATOR. Selection is the step in which individuals are
chosen from the population for breeding. Note that individuals are usually
selected based on their fitness but, in this implementation, the fitness func-
tion comprehend the entire population. However, we can take advantage of
the locality of the FVQIT in order to propose an effectual selection method.
In this research, the population is selected using roulette-wheel selection
(Goldberg, 1989) by pairwise Euclidean distance between PEs; the closer the
PEs the larger the probability of being selected for breeding.

CROSSOVER OPERATOR. The crossover operator defines how two indi-
viduals of the population are combined together to produce the offspring.
The crossover operator is computed as already explained before of how to
combine two PEs: the two parents generate a child which its location is the
midpoint of their locations c = c1+c2

2
and its decision boundary is the sum of

their matrices of coefficients A = A1 + A2 and b = b1 + b2 which exploits
the incremental features of the algorithm described above. Due to the incre-
mental nature of the crossover operator, the child is expected to substitute
both parents if this improves the fitness function.
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MUTATION OPERATOR. The mutation operator defines how an individ-
ual is altered to produce a new individual. In this research, small random
disturbances are used to change the location c and the matrices of coefficients
A and b of the individuals.

6.2.2 EXPERIMENTAL STUDY

The objective of this section is to experimentally evaluate the performance
of the method based on genetic algorithms proposed in the previous section.

MATERIALS AND METHODS

Note that the genetic algorithm implemented in the previous section can
be also seen as a pruning method for the FVQIT algorithm, inasmuch as it
diminishes the number of PEs whilst trying to maintain, or even improve,
performance. Thus, we consider four distinct scenarios in the evaluation step:

— The original FVQIT

— The FVQIT pruned –the original FVQIT algorithm but adding a prun-
ing step after training by means of the genetic algorithm introduced in
the previous section

— The distributed FVQIT –the distributed version of the FVQIT, keeping
all the PEs created at every distributed location, without pruning

— The distributed FVQIT pruned –the same distributed method as be-
fore but adding a pruning step using the method based on genetic
algorithms introduced in the previous section as pruning method

The proposed algorithms are evaluated on twelve data sets of diverse kinds
of tasks. Table 6.1 summarizes the number of input features, samples, and
output classes of the data sets. A more detailed description of the twelve
data sets can be found in (Frank & Asuncion, 2010). The number of input
features range from 6 to 54, the number of samples from 4, 177 to 101, 241,
and the number of classes from 2 to 28.

In distributed scenarios, training data have been scattered across 5 differ-
ent nodes in which each node contains 10 PEs. In batch, monolithic scenarios
where all the data in stored in a single location, the learning algorithm uses
the entire data set in which the number of PEs is set to 50. The evaluation
of the methods has been done using holdout, 90% for training, 10% for test-
ing. When pruning is enabled, 10% of the training data have been used for
validation. Experiments were run 100 times with random partitions of the
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Name Features Samples Classes

Abalone 8 4,177 28
Adult 33 30,162 2
Chess 6 28,056 18
Connect4 42 67,557 3
Forest 54 101,241 7
Letter 16 20,000 26
Magic 10 19,020 2
Mushroom 22 8,124 2
Nursery 16 12,960 5
Poker 10 25,010 10
Shuttle 9 43,500 7
Waveform 21 5,000 3

Table 6.1: Brief description of the data sets.

data set. We use the Kruskal-Wallis test to check if there are significant dif-
ferences, then we apply a multiple comparison procedure to find the methods
which are not significantly different.

RESULTS

Table 6.2 shows the test classification error of the four implementations: the
original FVQIT, the FVQIT pruned, the distributed FVQIT, and the dis-
tributed FVQIT pruned. The best result, or those not significantly different
from the best one, are underlined for each data set. Table 6.3 presents the
number of PEs at the end of training. Note that for the original FVQIT
algorithm and the DFVQIT, the number of PEs is not always 50 even when
pruning is not enabled. This is due to the fact that PEs are removed during
the execution of the algorithm if they are not assigned to any sample in the
training dataset. Finally, Table 6.4 shows the average training time of the
four configurations of the algorithm.

DISCUSSION AND CONCLUSIONS

As can be seen in Table 6.2, regarding classification error, the pruned algo-
rithms obtain the best result, or not significantly different from the best one,
in 10 out of 12 data sets (when compared to DFVQIT) and 12 out of 12
(when compared to FVQIT). The original FVQIT is only competitive with
the proposed algorithms in 4 out of 12 data sets. In average, pruning de-
creases classification error by 5.43% and 5.96% with respect to the original
FVQIT and plain DFVQIT, respectively. This shows the effectiveness of the
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Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 84.00± 2.01 79.23± 2.49 82.37± 1.24 77.06± 2.58
Adult 24.24± 1.06 17.03± 0.66 25.18± 1.39 17.25± 0.83
Chess 62.95± 1.01 64.68± 1.51 73.27± 1.43 68.39± 1.17
Connect4 30.65± 0.41 25.99± 0.64 32.23± 0.79 25.96± 0.82
Forest 37.89± 1.27 36.31± 1.24 37.64± 1.14 34.87± 0.75
Letter 13.14± 1.01 14.31± 0.67 22.45± 0.96 22.84± 1.16
Magic 20.94± 0.83 15.79± 0.70 19.79± 1.65 15.69± 0.83
Mushroom 17.14± 2.29 11.53± 1.22 16.15± 2.57 11.34± 0.78
Nursery 7.24± 0.89 7.54± 1.09 8.74± 0.90 8.31± 0.87
Poker 72.74± 0.90 50.26± 1.01 72.71± 0.91 51.60± 1.13
Shuttle 0.51± 0.30 0.32± 0.13 1.92± 1.35 0.54± 0.12
Waveform 20.88± 2.09 16.14± 2.18 18.10± 1.86 17.16± 1.73

Table 6.2: Test classification error (%) for the four different methods pro-
posed in this section: the original FVQIT algorithm and the distributed
version, with and without pruning step

Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 47.10± 0.99 7.60± 2.22 49.90± 0.32 7.00± 1.70
Adult 49.90± 0.32 4.10± 2.47 50.00± 0.00 2.40± 1.35
Chess 49.90± 0.32 34.50± 2.92 50.00± 0.00 13.30± 2.54
Connect4 50.00± 0.00 6.70± 2.06 50.00± 0.00 2.40± 1.65
Forest 50.00± 0.00 35.89± 2.62 50.00± 0.00 17.89± 1.90
Letter 50.00± 0.00 48.40± 0.70 50.00± 0.00 27.40± 2.99
Magic 49.90± 0.32 9.80± 2.39 49.90± 0.32 7.10± 1.66
Mushroom 34.20± 2.70 13.50± 2.76 46.10± 1.45 11.30± 1.25
Nursery 41.60± 0.52 16.80± 3.39 48.40± 0.70 9.80± 2.44
Poker 43.80± 1.81 1.60± 0.70 50.00± 0.00 1.50± 0.71
Shuttle 44.20± 1.48 21.40± 2.59 49.00± 0.67 15.10± 2.56
Waveform 49.80± 0.42 6.21± 3.26 49.80± 0.42 6.20± 1.32

Table 6.3: Number of PEs for the four different methods proposed in this
section: the original FVQIT algorithm and the distributed version, with and
without pruning step.
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proposed method based on genetic algorithms as a pruning method and as a
combination method when the algorithm is trained in a distributed fashion.
On the other hand, regarding the number of PEs of the models, in average,
only the 36.63% and the 20.51% of the PEs are retained after pruning in the
original FVQIT and DFVQIT, respectively. Note that the FVQIT algorithm
is parametrized with the maximum number of PEs. If a PE do not cover
any training sample, it will be deleted. It is important to remark that a
smaller number of PEs is related with better generalization performance and
faster execution. Finally, regarding training time performance, in average,
DFVQIT performs 13.56 times faster than FVQIT. Furthermore, the larger
the data set the larger the difference. In Connect4 and Forest data sets,
DFVQIT is 19.24 and 22.72 times faster. If the genetic algorithm is used,
pruned DFVQIT trains 4.26 and 4.63 times faster than the original FVQIT
and the pruned FVQIT, respectively. Also, note that in the distributed setup,
the number of nodes is set to 5, so even when the genetic algorithm is used
during the integration step, the speedup of the distributed algorithm is close
to linear.

6.3 IMPROVING THE SCALABILITY OF THE DISTRIBUTED
FVQIT

The DFVQIT outperformed the original FVQIT algorithm in terms of time,
complexity of the resultant model and test accuracy. However, the use of
a genetic algorithm as integration method in the DFVQIT adds a temporal
and computational overhead that may result in lower scalability for some
particular datasets. In order to push the scalability of the DFVQIT even
further, two novel proposal are presented in this section. In the first place,
we propose the use of a clustering method rather than a genetic algorithm
during the integration stage. In the second place, we propose to prune the
distributed instances of the FVQIT during the map, parallel stage in order
to shrink the search space for the integration method during the reduce
phase. As demonstrated in the previous section, the integration method of
the DFVQIT can be also seen as a pruning method of the FVQIT.

6.3.1 COMBINING MODELS USING HIERARCHICAL CLUS-
TERING

Flat clustering is efficient and conceptually simple but it has a number of
drawbacks. The most important drawback for our purposes is that the num-
ber of clusters must be provided in advance—even when there is no clue of
the structure of the input space. Hierarchical clustering does not require us
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to specify in advance the number of clusters. This advantage of hierarchical
clustering come at the cost of lower efficiency. The most common hierarchi-
cal clustering algorithms have a complexity that is at least quadratic in the
number of data points compared to the linear complexity of K-means (Ceri
et al., 2013). Hierarchical clustering groups data by creating a cluster tree or
dendrogram. The tree is not a single set of clusters, but rather a multilevel
hierarchy, where clusters at one level are joined as clusters at the next level
(see Figure 6.5 for an example of the dendrogram drawn from Figure 6.3).
This allows to decide the level or scale of clustering that is most appropriate
for the specific application.
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Figure 6.5: Example of a dendrogram.

There are two types of strategies for hierarchical clustering: agglomerative
and divisive. Agglomerative clustering is a bottom-up approach in which
each data point starts in its own cluster, and pairs of clusters are merged as
one moves up the hierarchy. Divisive clustering is a top-down approach in
which all data points start in one cluster, and splits are performed recursively
as one moves down the hierarchy. In the general case, the complexity of
agglomerative clustering is O(n3) and the complexity of divisive clustering
with an exhaustive search is O(2n), which makes them too slow for large data
sets. However, note that the number of data points for the problem at hand
is the number of PEs, which is far smaller than the number of samples in
the training dataset. The general procedure proposed for using hierarchical
clustering in the DFVQIT consists of the following steps:

1. Compute the pairwise distance between PEs, i.e., find the similarity
or dissimilarity between every pair of PEs. There are many ways to
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calculate this distance information. The Euclidean distance has been
adopted for the purposes of this model, although other distance func-
tions are also possible such as Minkowski, Chebychev, Mahalanobis,
Hamming, etc.

2. Group the PEs into a binary, hierarchical cluster tree. In this step, the
method links pairs of PEs that are in close proximity, using the same
combination method explained in the previous section for merging PEs
during the execution of the genetic algorithm. As objects are paired
into binary clusters, the newly formed clusters are grouped into larger
clusters until a hierarchical tree, dendrogram is formed. As explained
before, a dendrogram consists of many U -shaped lines that connect
PEs in a hierarchical tree. The height of each U represents the distance
between the two PEs being connected. The new cluster will represent
a new PE calculated as explained in the previous section, in the same
manner as for the method based on genetic algorithms.

3. Determine where to cut the hierarchical tree into clusters. In this
step, one prunes branches off the bottom of the hierarchical tree, and
assign all the objects below each cut to a single cluster. This creates a
partition of the PEs. Find the optimal set of clusters by cross-validation
against the performance of the method for the different combinations
of clusters.

It is expected that the output model resulting from grouping PEs will be a
more general representation of the input space with fewer PEs.

6.3.2 A TWO-LEVEL APPROACH USING GENETIC ALGO-
RITHMS AND HIERARCHICAL CLUSTERING

The combination method of the FVQIT can be seen as a pruning method of
the topology of the model inasmuch as the combination method diminishes
the number of PEs whilst maintaining or improving classification perfor-
mance. Thus, one can think in a two-level pruning approach with a first,
local pruning and a second, global pruning during the combination stage.
The hypothesis here is that the first, local pruning will quickly shrink the
search space for the second, global pruning. Note that the two-level approach
does not depend on the combination algorithm so it will be suitable in both
hierarchical clustering and genetic algorithms approaches, i.e. both hierar-
chical clustering and genetic algorithms may be used in any of the two levels
of pruning.
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6.3.3 EXPERIMENTAL STUDY

The goal of this section is to experimentally evaluate the different approaches
proposed in this section. In particular, the following four implementations
of the DFVQIT are compared in this section: one-level GA-based approach
(DFVQIT proposed in the previous section, “gold standard” for comparison),
one-level cluster-based approach, two-level GA-based approach, and two-level
cluster-based approach.

MATERIALS AND METHODS

The same datasets used to assess the performance of the approach based on
genetic algorithms for the DFVQIT proposed in Section 6.2.1 are used here.
In distributed scenarios, training data have been scattered across 5 different
nodes in which each node contains 10 PEs. Thus, the number of PEs after
applying the reduce method may be up to 50. The evaluation of the methods
has been done using holdout validation: 90% of data for training and 10% for
testing. Additionally, 10% of the training data have been used for validation.
Experiments were run 100 times with random partitions of the data set to
ensure reliable results. Again, we use the Kruskal-Wallis test to check if
there are significant differences for a level of significance α = 0.05. If there
are differences, then we apply a multiple comparison procedure to find the
methods which are not significantly different.

RESULTS

The results for the test classification error of the four implementations pre-
sented in this section (one-level GA-based approach, one-level cluster-based
approach, two-level GA-based approach, and two-level cluster-based approach)
are shown in Table 6.5. The best result, or those not significantly different
from the best one, are underlined for each data set. Table 6.6 presents the
number of PEs at the end of training for the four models. Note that the orig-
inal number of PEs before pruning was 50. Finally, the average training time
of the four implementations using one and two-level approaches is shown in
Table 6.7.

DISCUSSION AND CONCLUSIONS

As can be seen in Table 6.5, the differences in terms of error between the one
and two-level approaches are negligible (< 0.23% in average). In the ques-
tion concerning the performance of GA-based against cluster-based methods,
the former outperform the latter by 3.77%. Significant differences are found
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Data set Original
FVQIT

Pruned
FVQIT

DFVQIT Pruned
DFVQIT

Abalone 9.82± 0.08 13.77± 0.82 1.10± 0.00 6.41± 0.51
Adult 96.06± 1.16 103.61± 2.56 6.33± 0.38 11.58± 2.00
Chess 24.39± 0.12 44.60± 1.21 2.15± 0.01 17.23± 1.61
Connect4 275.92± 5.08 294.09± 7.85 14.34± 0.10 33.80± 8.66
Forest 388.78± 9.41 517.17± 9.42 17.11± 0.40 142.67± 8.97
Letter 25.81± 0.13 57.88± 0.57 2.13± 0.01 32.41± 1.49
Magic 33.24± 2.32 41.68± 2.21 2.62± 0.17 7.51± 0.75
Mushroom 37.44± 3.16 32.80± 3.12 3.90± 0.30 7.63± 0.37
Nursery 25.96± 0.68 30.13± 1.51 2.13± 0.08 7.69± 0.76
Poker 38.06± 0.52 34.28± 2.00 3.15± 0.19 5.43± 2.11
Shuttle 52.60± 0.84 55.94± 1.38 3.17± 0.05 15.89± 0.69
Waveform 27.42± 3.77 26.93± 2.51 2.72± 0.48 5.27± 0.58

Table 6.4: Training time (s) for the four different methods proposed in this
section: the original FVQIT algorithm and the distributed version, with and
without pruning step.

Data set
One-level pruning Two-level pruning

GA-based Cluster-based GA-based Cluster-based

Abalone 77.06± 2.58 80.12± 1.92 77.32± 1.46 79.69± 1.03
Adult 17.25± 0.83 17.20± 1.08 16.71± 0.61 17.35± 1.02
Chess 68.39± 1.17 69.57± 1.00 69.42± 1.38 69.98± 1.06
Connect4 25.96± 0.82 27.89± 0.81 25.99± 0.70 27.28± 1.01
Forest 34.87± 0.75 35.77± 0.68 34.71± 0.64 36.68± 1.07
Letter 22.84± 1.16 22.50± 1.73 23.45± 1.12 22.84± 1.28
Magic 15.69± 0.83 18.10± 0.76 15.87± 0.49 17.31± 1.23
Mushroom 11.34± 0.78 13.79± 0.84 12.44± 1.34 13.35± 1.90
Nursery 8.31± 0.87 8.87± 0.74 8.52± 1.04 8.73± 1.25
Poker 51.60± 1.13 52.56± 1.99 51.46± 1.44 51.68± 1.95
Shuttle 0.54± 0.12 1.28± 0.56 0.57± 0.24 1.10± 0.35
Waveform 17.16± 1.73 17.12± 2.53 17.26± 2.49 16.72± 1.39

Table 6.5: Test classification error (%) for the four different methods pro-
posed in this section: the genetic-algorithm- and clustering-based methods,
using one- and two-level pruning.
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Data set
One-level pruning Two-level pruning

GA-based Cluster-based GA-based Cluster-based

Abalone 7.00± 1.70 7.80± 2.30 4.70± 1.42 9.50± 5.68
Adult 2.40± 1.35 1.40± 0.84 1.30± 0.67 2.10± 1.14
Chess 13.30± 2.54 19.60± 6.95 11.90± 1.73 14.30± 5.02
Connect4 2.40± 1.65 7.00± 3.43 1.50± 0.85 8.10± 3.88
Forest 17.89± 1.90 23.90± 6.30 15.22± 3.63 21.70± 7.11
Letter 27.40± 2.99 32.60± 5.85 29.00± 3.20 33.50± 3.67
Magic 7.10± 1.66 8.30± 4.57 5.00± 1.05 12.40± 6.12
Mushroom 11.30± 1.25 34.50± 11.19 9.30± 1.49 31.40± 8.10
Nursery 9.80± 2.44 18.90± 14.68 4.60± 1.58 19.30± 5.32
Poker 1.50± 0.71 1.60± 0.84 1.10± 0.32 1.00± 0.00
Shuttle 15.10± 2.56 32.00± 8.74 12.20± 2.62 27.40± 8.19
Waveform 6.20± 1.32 7.20± 4.57 5.10± 1.66 11.00± 8.76

Table 6.6: Number of PEs for the four different methods proposed in this
section: the genetic-algorithm- and clustering-based methods, using one- and
two-level pruning.

Data set
One-level pruning Two-level pruning

GA-based Cluster-based GA-based Cluster-based

Abalone 6.41± 0.51 1.68± 0.02 4.55± 0.58 1.37± 0.09
Adult 11.58± 2.00 8.17± 0.68 7.57± 2.66 5.25± 0.30
Chess 17.23± 1.61 3.08± 0.02 13.96± 1.06 3.03± 0.13
Connect4 33.80± 8.66 17.97± 0.22 19.40± 8.99 10.97± 0.25
Forest 142.67± 8.97 29.56± 0.30 104.69± 9.06 24.61± 0.88
Letter 32.41± 1.49 3.37± 0.04 24.46± 1.81 3.53± 0.03
Magic 7.51± 0.75 2.84± 0.01 4.69± 0.42 2.46± 0.06
Mushroom 7.63± 0.37 4.38± 0.40 5.81± 0.52 3.05± 0.26
Nursery 7.69± 0.76 2.46± 0.02 5.36± 0.78 2.26± 0.11
Poker 5.43± 2.11 3.29± 0.02 2.52± 1.52 2.49± 0.07
Shuttle 15.89± 0.69 3.86± 0.06 12.60± 1.35 3.72± 0.13
Waveform 5.27± 0.58 3.05± 0.33 3.76± 0.64 2.18± 0.24

Table 6.7: Training time (s) for the four different methods proposed in this
section: the genetic-algorithm- and clustering-based methods, using one- and
two-level pruning.
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between GA-based and cluster-based methods, but not between one and two-
level approaches. However, in 6 out of 12 data sets, GA-based methods are
not significantly different from cluster-methods. On the other hand, regard-
ing the number of PEs in the final model (see Table 6.6), both GA-based
and cluster-based pruning methods are able to significantly reduce the num-
ber of PEs (around 81% the former and 68% the latter). As conjectured,
the stochastic behavior of GAs plays in favor of flexible configurations of
PEs against the deterministic behavior of clustering. Moreover, the two-
level methods reduce the number of PEs by and extra 16.86% and 1.59% in
GA and cluster-based algorithms, respectively, in comparison with one-level
pruning methods. However, these differences are not statistically signifi-
cant. Finally, regarding the training time, in average, cluster-based methods
perform 3.51 and 3.23 times faster than GA-based methods in the one and
two-level pruning approaches, respectively. As expected, these differences are
significant with respect to the former implementation of the FVQIT. More-
over, the two-level approach is worth it in terms of time. This approach
reduces by 28.67% the training time of GA-based method and by 22.45%
of cluster-based methods. These results support the initial assumption that
states that the first, local pruning would quickly reduce the search space for
the second, global pruning. Note also that this response is expected to be
boosted for larger numbers of PEs.

In summary, all these results suggest that cluster-based methods are faster
than those based on genetic algorithms at the expense of slight higher num-
ber of PEs and performance error. If we compare one-level against two-
level approaches, the latter are faster and simpler –less number of PEs–
whilst maintains performance error. In light of the above, we can say that
if the learning process is strongly constrained by the training time then the
two-level cluster-based DFVQIT is recommendable. Contrarily, if the learn-
ing process is constrained by maximum-accuracy then the two-level genetic
algorithm-based DFVQIT is the most appropriate method.
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Chapter 7

Distributed One-Class Support
Vector Machine

This chapter presents a novel distributed one-class classification approach
based on an extension of the ν-SVM method. In this novel method (Castillo,
Peteiro-Barral, Berdiñas, & Fontenla-Romero, 2015), several models will be
considered, each one determined using a given local data partition on a pro-
cessor, and the goal is to find a global model. The cornerstone of this method
is the novel mathematical formulation that makes the optimization problem
separable whilst avoid some data points considered as outliers in the final
solution. This is particularly interesting and important because the decision
region generated by the method will be unaffected by the position of the
outliers and will fit the data in a more natural manner.

7.1 INTRODUCTION TO ONE-CLASS CLASSIFICATION

In classical supervised classification problems the discriminating models are
trained using positive and negative examples. Nevertheless, for a number of
practical problems, counter-examples are either rare or entirely unavailable.
One-class classifiers (Moya & Hush, 2013) have emerged as a technique for
situations where labeled data exists for only one of the classes in a two-class
problem. One-class classification is also called outlier (or novelty) detection
because the learning algorithm is being used to differentiate between data
that appears normal and abnormal with respect to the distribution of the
training data (Chandola, Banerjee, & Kumar, 2009). This type of classifiers
are relevant in many real applications, for example, machine fault detection
(Mahadevan & Shah, 2009; Fernández-Francos, Mart́ınez-Rego, Fontenla-
Romero, & Alonso-Betanzos, 2013), text classification (Manevitz & Yousef,
2007) and image analysis (Bilgin, Erturk, & Yildirim, 2011; Cyganek, 2008;
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Lai, Tax, Duin, Pekalska, & Pacĺık, 2004). Earlier research in this area was
directed on density estimation with parametric generative models, such as
Gaussian mixture models, however they usually make assumptions about
the nature of the underlying distribution. One of the most widespread
strategy is to enclose the provided training data by a boundary using a
hypersphere (D. M. J. Tax & Duin, 1999; Schölkopf, Platt, Shawe-Taylor,
Smola, & Williamson, 2001), a set or ellipsoids (Mart́ınez-Rego, Castillo,
Fontenla-Romero, & Alonso-Betanzos, 2013), the convex hull (Casale, Pujol,
& Radeva, 2011) or a convex polytope (Casale, Pujol, & Radeva, 2014), and
to measure the distance to the estimated surface. New lines of recent research
are also opening up in the field of Gaussian Processes (Kemmler, Rodner,
Wacker, & Denzler, 2013) and Random Forests (Désir, Bernard, Petitjean, &
Heutte, 2013). Two of the most well-known techniques are the Support Vec-
tor Domain Description (D. M. J. Tax & Duin, 1999) and one-class ν-SVM
(Schölkopf et al., 2001). Although they are successful tools for one-class clas-
sification, they applicability for large data sets is quite restricted due to their
high computational demand. Some attempts have been proposed to reduce
the training time and memory consuming such us the work in (Zhu, Ye, Yu,
Xu, & Li, 2014) that reduces the training set by selecting useful samples for
training; the work in (Cabral & Oliveira, 2011, 2012) based on prototype
reduction by creating artificial prototypes outside the normal description of
the class; or the work in (Clifton et al., 2014) which proposes a method that
allows interpreting the SVM output as a conditional class probability which
brings the advantage, among many others, that a cross-validation process is
avoided in order to select appropriate values for the SVM parameters, thus
saving computational time.

In this chapter, we will present an extension of the ν-SVM model to be
applied in a distributed one-class scenario, called DOC-SVM, thus permitting
its application to large datasets. In this distributed context, Das et col. (Das,
Bhaduri, & Votava, 2011) presented a one-class SVM for anomaly detection
when the dataset is vertically distributed. That is, when only a subset of
features is available at any physical partition. In this approach, a high accu-
racy compared to complete centralization is obtained with only centralizing a
very small sample of the subsets. In addition, some approaches for horizontal
distribution have also been proposed. In (Krawczyk, Woźniak, & Cyganek,
2014; Krawczyk & Woźniak, 2014) a highly parallel architecture is proposed
for creating ensembles of one-class classifiers based on the idea of data clus-
tering in the feature space into smaller partitions. The proposed framework,
called the one-class clustering-based ensemble (OCClustE), is very flexible
and places no restrictions on the clustering, the one-class classifier and the
ensemble fusion methods to be used. Another interesting proposal for hor-
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izontal distribution can be found in (To & Elati, 2013), where the authors
applied an island model for genetic programming for one-class classification
in which only the trees generated at each island are exchanged among them.

7.2 PROPOSED MODEL: DOC-SVM

This section describes, mathematically, the distributed one-class support vec-
tor machine presented in this chapter (DOC-SVM). In this novel algorithm,
the extension of the ν-SVM is inspired by the formulation of one-class Sup-
port Vector Machines (SVM) proposed by (Schölkopf et al., 2001). It employs
the idea of projecting the training samples to a higher dimensional feature
space and then separating most of the samples from the origin, as far as
possible, using a maximum margin hyperplane. This is equivalent to find the
smallest region (sphere) enclosing the data in the original space. However, in
our distributed method we will consider several regions, each one determined
using a given local data partition on a processor, and the goal is to find a
global classifier. The cornerstone of this method is the novel mathematical
formulation that makes the optimization problem separable, thus allowing to
learn in parallel from each partition on different processors, whilst avoiding
some data samples considered as outliers in the final solution. This is par-
ticularly interesting and important because the decision region generated by
the method will be unaffected by the position of the outliers and that will
contribute to obtain the smallest volume region that fits the data.

7.2.1 BACKGROUND: THE BASIC ONE-CLASS CLASSIFIER
MODEL

For the sake of comprehension, in this section we reproduce the basis of the
formulation of the one-class Support Vector Machine (SVM) proposed by
(Schölkopf et al., 2001) that will be used as the root model in our proposal.

Let Xm = {xi}, i = 1, . . . ,m be a set of m training samples of a single
class, where xi is a sample in IRd, the classifier estimates the boundary region
of a minimum volume that captures an appropriate fraction of data, so that
a if new sample lies within this boundary it is labeled as a normal class,
otherwise it is labeled as an outlier. The ν-SVM constructs the boundary
using the main ideas of support vector kernel methods. Therefore, first the
training data is mapped into a higher dimensional feature space induced
by a kernel function. Afterwards, on the assumption that the origin in the
transformed space belongs to the outlier class, these transformed samples are
separated from the origin by a maximum-margin hyperplane which is as far
away as possible from the origin. To separate the data set from the origin,
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the authors propose the following optimization problem in order to find the
parameters, normal weight vector w and a threshold ρ, of the hyperplane:

Minimize
w, ξ, ρ

1

2
||w||2 − ρ+

1

νm

m∑
i=1

ξi (7.1)

subject to

〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 (7.2)

where ν ∈ (0, 1] is an upper bound on the fraction of data that could be
outliers, ξi are the slack variables (errors) that allows relaxing the constraints
in some cases, φ(·) is a non-linear transformation, 〈·, ·〉 stands for the inner
product, and ||w|| stands for the norm of w. This primal problem can be
solved by introducing the Lagrange multipliers αi and finding the solution
for the corresponding dual problem:

Minimize
α

1

2

m∑
i,j=1

αiαj〈φ(xi), φ(xj)〉 (7.3)

subject to

0 ≤ αi ≤
1

νm
,
m∑
i=1

αi = 1 (7.4)

(7.5)

which, using the kernel trick and a kernel function k(·, ·), allows to obtain
the final decision by:

f(x) = sgn

(
m∑
i=1

αik(xi,x)− ρ
)

(7.6)

7.2.2 MATHEMATICAL FORMULATION OF THE PROPOSED
MODEL

Now, assume that the data points are distributed into K partitions, which are
referred by index k. These partitions could be artificially created or the data
can be distributed in origin. To determine the maximum-margin hyperplanes
associated with the different K partitions, we need to deduce their normal
vector wk and thresholds ρk by solving the following optimization problem:

Minimize
w, ξ,ρ,η,u

K∑
k=1

(
1

2
||wk||2 − ρk

)
+

1

νm

m∑
i=1

uiξi (7.7)
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subject to

∑
k

ηki (Aki + ρk − ξi) ≤ 0 : αi ∀i (7.8)∑
k

ηki = 1 : βi; ∀i (7.9)∑
i

ui = m− nout : γ; (7.10)

−ξi ≤ 0 : λi; ∀i (7.11)

ηki ≤ 1 : σki ∀i, k. (7.12)

−ηki ≤ 0 : τ ki ∀i, k (7.13)

ui ≤ 1 : πi ∀i (7.14)

−ui ≤ 0 : χi ∀i, (7.15)

where ui are variables that take value 0 for outliers and 1, otherwise; ηki
are variables that take value 1 if the sample point i is assigned to partition
k; αi, βi, γ, λi, σ

k
i , τ

k
i , πi, and χi are dual variables associated with the cor-

responding constraints (7.8)-(7.15); and φ() is a non-linear transformation
such that

Aki = −〈wk, φk(xi)〉. (7.16)

Equation (7.8), similarly to Equation (7.2) in the original non-distributed
problem, forces the points to be inside the corresponding decision regions;
Equation (7.9) forces each point i to be assigned to one and only one partition;
Equation (7.10) forces the number of outliers to be nout; Equation (7.11)
forces the non-negativity of ξi; Equations (7.12) to (7.15) define variables ui
and ηki to be continuous and defined on the range [0, 1]. In fact, the variables
ui and ηki should be binary variables, but we will demonstrate later on that
these variables can be replaced by continuous variables in the range [0, 1],
such as presented in the above formulation, to obtain an equivalent solution.

To facilitate the solution of Equation (7.7), the problem can be trans-
formed to a dual space representation using positive Lagrangian multipli-
ers. The primal Lagrangian function L(w, ξ,ρ,η,u;α,β, γ,λ,σ, τ ,π,χ) of
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Equation (7.7) is then given by

L =
∑
k

(
1

2
||wk||2 − ρk

)
+

1

νm

∑
i

uiξi

+
∑
i

αi

(∑
k

ηki
(
Aki + ρk − ξi

))

+
∑
i

βi

(∑
k

ηki − 1

)

+γ

(∑
i

ui −m+ nout

)
−
∑
i

λiξi

+
∑
i,k

σki (ηki − 1)−
∑
i,k

τ ki η
k
i

+
∑
i

πi(ui − 1)−
∑
i

χiui. (7.17)

and the Karush-Kuhn-Tucker (KKT) conditions are:

0 = wjk −
∑
i

αiη
k
i φ

j
k(xi); ∀k, j (7.18)

0 =
1

νm
ui −

∑
k

αiη
k
i − λi; ∀i (7.19)

0 =
∑
i

αiη
k
i − 1; ∀k (7.20)

0 = αi(A
k
i + ρk − ξi) + βi + σki − τ ki ; ∀i, k (7.21)

0 =
1

νm
ξi + γ + πi − χi; ∀i (7.22)
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∑
k

ηki (Aki + ρk − ξi) ≤ 0; ∀i (7.23)∑
k

ηki = 1; ∀i (7.24)∑
i

ui = m− nout; (7.25)

−ξi ≤ 0; ∀i (7.26)

ηki ≤ 1; ∀i, k. (7.27)

−ηki ≤ 0; ∀i, k (7.28)

ui ≤ 1; ∀i (7.29)

−ui ≤ 0; ∀i (7.30)

0 = αi

(∑
k

ηki
(
Aki + ρk − ξi

))
; ∀i (7.31)

0 = λiξi; ∀i (7.32)

0 = σki (ηki − 1); ∀i, k (7.33)

0 = τ ki η
k
i ; ∀i, k (7.34)

0 = πi(ui − 1); ∀i (7.35)

0 = χiui; ∀i (7.36)

0 ≤ σki , τ
k
i ; ∀i, k (7.37)

0 ≤ αi, λi, πi, χi; ∀i. (7.38)

where wjk and φjk(xi) are the j components of wk and φk(xi), respectively.
In the following sections, several results are given in order to finally obtain
a solution to the original optimization problem in Equations (7.7)-(7.15).

7.2.3 AVOIDING BINARY VARIABLES

In what follows we provide some results showing that the optimization prob-
lem presented in the previous subsection, with continuous variables in the
interval [0, 1], and its binary form (being ui and ηki binary variables) share
the same optimal value. This change in the formulation implies a substan-
tial reduction in CPU time, since the equivalent mixed integer program has
a higher computational complexity. This is because many combinations of
specific integer values for the variables must be tested, and each combination
requires the solution of a nonlinear optimization problem. Thus, the number
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of combinations rise exponentially with the size of the problem.

Theorem 7.2.1 (Binary and relaxed problems equivalence) The prob-
lem proposed previously in (7.7)-(7.15) and its binary form (making ui and
ηki binary) share the same optimal value of the objective function. In addi-
tion, for any optimal solution of the continuous problem there exists binary
solutions for ui and ηki which are also optimal solutions of the same prob-
lem. Consequently, the ui and ηki binary values of the binary problem can be
immediately obtained from the ui and ηki values of the relaxed (continuous)
problem.

Proof First we deal with the ui variables. If all the resulting values of ui
in the Problem (7.7)-(7.15) are zeros or ones, we have a binary solution
and then the relaxed and the binary problems provide the same solution.
Otherwise, all data points i with 0 < ui < 1 must share the same ξi = −γνm
value, as will be demonstrated later on in Theorem 7.2.2. This implies that
these points are just in the boundary between outliers and regular points and
since they must be nout outliers, we can freely choose arbitrary data points
among then to complete the nout outliers. In order to accomplish this, we
reassign the ui values to zeros, for the selected outliers, and ones, for those
points that we can keep as regular points. This change does not alter either
the sum

∑
i

ui in the constraint (Equation (7.10)) or the term
∑
i

uiξi in the

objective function, i.e. we obtain a feasible binary solution that provides the
same value of the objective function (Equation (7.7)). Since this can always
be done, we have proved that the relaxed and the binary problems reach the
same optimal value.

Next, we deal with the ηki variables. If all the resulting values of ηki are
zeros or ones, we have a binary solution and then the relaxed and the binary
problems provide the same solution. Otherwise, all data points i with 0 <
ηki < 1 must share the same Aki + ρk value. In this case, we can reassign
the ηki values to binary values by keeping its sum (Equation (7.9)) without
changing the solution regions because we do not change

∑
k η

k
i (Aki + ρk − ξi)

(see Equation (7.8)). Since this change in the ηki values does not alter the
objective function (Equation (7.7)) we obtain a feasible binary solution that
provides the same value of the objective function. Since this can be always
done, we have proved that the relaxed and the binary problems reach the
same optimal value.
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7.2.4 CRITERIA FOR OUTLIER DETERMINATION AND PAR-
TITION ASSIGNATION

The theorems included bellow establish the rules needed to select which data
are outliers and to reassign data samples to partitions.

Theorem 7.2.2 (Outlier selection rule) The nout outliers in Problem (7.7)-
(7.15) correspond to the nout data points with the largest values of ξi. In case
of tie, which occurs only when ξi = −γνm, any selection among tied cases is
a valid solution and all of them provide the same objective function value.

Proof From Equation (7.22) we get

1

νm
ξi + γ + πi − χi = 0; ∀i, (7.39)

and then we have:

1. If 0 < ui < 1, from Equations (7.35) and (7.36) we obtain πi = χi = 0,
respectively, and from Equation (7.39) we get ξi = −γνm, that is,
this case is possible only when the ξi share the same value for all the
corresponding i with πi = χi = 0. This proves that

ξi 6= −γνm ⇔ ui = 0 or ui = 1. (7.40)

2. If ui = 0 because of Equation (7.35) then πi = 0 and due to Equation
(7.39) we have

1

νm
ξi + γ − χi = 0,

which implies ξi = −γνm if χi = 0 and ξi > −γνm if χi > 0.

3. If ui = 1 because of Equation (7.36) then χi = 0 and due to Equation
(7.39) we have

1

νm
ξi + γ + πi = 0,

which implies ξi = −γνm if πi = 0 and ξi < −γνm if πi > 0.

This means that the ξi and the threshold value −γνm allow us to determine
whether or not a data point is an outlier, and that the three considerations
above imply the outlier selection rule indicated by the theorem. Conse-
quently, point i is selected as an outlier if its ξi is among the nout largest
values of ξi.
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Theorem 7.2.3 (Partition assignment rule) The optimal solution of prob-
lem (7.7)-(7.15) assigns data points to partitions using the following rule:
Point i is assigned to the partition k iff k = arg mink(A

k
i + ρk).

Proof From Equation (7.21) we get

αi(A
k
i + ρk − ξi) + βi + σki − τ ki = 0; ∀i, k, (7.41)

and then, we have:

1. If 0 < ηki < 1, from Equations (7.33) and (7.34) we obtain σki = τ ki = 0,
respectively, and then from Equation (7.41) we obtain ξi − βi/αi =
Aki + ρk, that is, this case is possible only when the corresponding data
points share the same value for all k. This proves that

(Aki + ρk) 6= ξi − βi/αi ⇔ ηki = 0 or ηki = 1.

2. If ηki = 0 because of Equation (7.33) then σki = 0 and due to Equation
(7.41) we have

αi(A
k
i + ρk − ξi) + βi − τ ki = 0,

which implies Aki + ρk = ξi−βi/αi if τ ki = 0 and (Aki + ρk) > ξi−βi/αi
if τ ki > 0.

3. If ηki = 1 because of Equation (7.34) then τ ki = 0 and due to Equation
(7.41) we have

αi(A
k
i + ρk − ξi) + βi + σki = 0,

which implies (Aki +ρk) = ξi−βi/αi if σki = 0 and (Aki +ρk) < ξi−βi/αi
if σki > 0.

This means that (Aki + ρk) and the threshold values ξi − βi/αi allow us
to determine whether or not a data point should be in partition k, and that
the three considerations above imply the assignment rule indicated by the
theorem. Consequently, point i is assigned to partition k if its (Aki +ρk) value
is the smallest value of (Aki + ρk); k = 1, 2, . . . , K.

7.2.5 ADDITIONAL PROPERTIES

Furthermore, the following properties hold:

1. If τ ki > 0 then (Aki + ρk) ≥ ξi − βi/αi.
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2. If σki > 0 then (Aki + ρk) ≤ ξi − βi/αi.

3. If χi > 0 then ξi ≥ −γνm.

4. If πi > 0 then ξi ≤ −γνm.

These properties can be derived from the Karush-Kuhn-Tucker conditions
in Equations 7.18-7.38 as follows:

1. If τ ki > 0 because of Equation (7.34) then ηki = 0 and due to Equation
(7.33) σki = 0. In this case, from Equation (7.41) we get

αi(A
k
i + ρk − ξi) + βi − τ ki = 0;

⇔ (Aki + ρk) ≥ ξi − βi/αi,

2. If σki > 0 because of Equation (7.33) then ηki = 1 and due to Equation
(7.34) τ ki = 0. In this case, from Equation (7.41) we get

αi(A
k
i + ρk − ξi) + βi + σki = 0;

⇔ (Aki + ρk) ≤ ξi − βi/αi,

3. If χi > 0 because of Equation (7.36) then ui = 0 and due to Equation
(7.35) πi = 0. In this case, from Equation (7.39) we get

1

νm
ξi + γ − χi = 0; ⇔ ξi ≥ −γνm.

4. If πi > 0 because of Equation (7.35) then ui = 1 and due to Equation
(7.36) χi = 0. In this case, from Equation (7.39) we get

1

νm
ξi + γ + πi = 0; ⇔ ξi ≤ −γνm.

7.2.6 SOLUTION TO THE PROBLEM: SEPARABLE OPTIMIZA-
TION APPROACH AND BI-LEVEL ALGORITHM

Since from the KKT conditions we were able to decide which data points
are outliers and to derive the rules to decide which data points must be
assigned to each partition, we can reconsider the Problem (7.7)-(7.15) and
use a bi-level approach in which the first level solves the Problem (7.7)-(7.15)
with known ηki and ui variables, and the second level simply decides about
outliers and assigns data points to partitions. This process can be repeated
until convergence is attained.
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Note that, if the assignment of the data points has been done and the
outliers have been identified, that is, variables ηki and ui are known, the
Problem (7.7)-(7.15) becomes the Problem:

Minimize
w, ξ,ρ

K∑
k=1

1

2
||wk||2 − ρk +

1

νm

∑
i=1|ūiη̄ki =1

ξi

 (7.42)

subject to

(Aki + ρk − ξi) ≤ 0 : αi ∀i|η̄ki = 1 (7.43)

−ξi ≤ 0 : λi; ∀i|η̄ki = 1, (7.44)

where the bar above the variables ηki and ui refer to the fact that they are
known values.

Problem (7.42)-(7.44) is separable in k, that is, we can distribute the
calculations over the k partitions into k different processors, such that the
kth processor solves the problem:

Minimize
w, ξ,ρ

1

2
||wk||2 − ρk +

1

νm

∑
i=1|ūiη̄ki =1

ξi (7.45)

subject to

(Aki + ρk − ξi) ≤ 0 : αi ∀i|η̄ki = 1 (7.46)

−ξi ≤ 0 : λi; ∀i|η̄ki = 1. (7.47)

The dual of the previous problem can be obtained by considering its
Lagrangian (for simplicity we remove the k index):

L =
1

2

∑
j

w2
j − ρ+

1

νm

∑
i

ξi

+
∑
i

αi(Ai + ρ− ξi)−
∑
i

λiξi, (7.48)

minimizing with respect to the primal variables, and the resulting objective
function maximized with respect to the dual variables subject to non-negative
values. Thus, obtaining the partial derivatives of the Lagrangian with respect
to the primal variables and considering (7.16), we get:

0 =
∂L
∂wj

= wj −
∑
i

αiφj(xi); ∀j (7.49)

0 =
∂L
∂ξi

=
1

νm
− αi − λi; ∀i (7.50)

0 =
∂L
∂ρ

= −1 +
∑
i

αi. (7.51)
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Replacing (7.49) to (7.51) into (7.48) we get

L =
1

2

∑
i,j

αiαjφi(xi)φj(xj)− ρ+
1

νm

∑
i

ξi

−
∑
i,j

αiαjφi(xi)φj(xj) + ρ
∑
i

αi

−
∑
i

αiξi +
∑
i

αiξi −
1

νm

∑
i

ξi

= −1

2

∑
i,j

αiαjφi(xi)φj(xj)

= −1

2

∑
i,j

αiαjK(xi,xj). (7.52)

Thus, each of these k Problems can be solved by considering their duals:

Minimize
α

1

2

mk∑
i,j

αiαjK(xi,xj) (7.53)

subject to

−αi ≤ 0 : ψi; ∀i = 1, 2, . . . ,mk (7.54)

αi ≤
1

νm
: ξi; ∀i = 1, 2, . . . ,mk (7.55)

mk∑
i=1

αi = 1 : ρ, (7.56)

where mk is the number of training samples in partition k, K(xi,xj) =
φi(xi)φj(xj), and Equation (7.56) comes from Equation (7.50).

7.3 IMPLEMENTATION CONSIDERATIONS

The previous section presented the mathematical foundations of the proposed
DOC-SVM method. In order to shed light on the implementation of the
method, the pseudocode of the algorithm is shown next, where i goes through
the data points, nout is set to the desired number of outliers in the dataset, and
k goes through the partitions. In order to implement the bi-level approach,
a master-slave architecture is used in which every processor is a slave that
learns the data of its partition and one of them acts also as the master
responsible for determining the global outliers and moving data between
partitions.
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1. Randomly initialize ui to value 0 for nout data and 1 for the rest, such
that

∑
i ui = nout;

2. Initialize ηki to value 1 if the sample point i is assigned to partition k
and 0 otherwise;

3. Repeat while convergence is not attained;

(a) At each partition: solve the problem (7.45)-(7.47) with fixed vari-
ables u and η;

(b) Outlier selection: Update u

i. Broadcast to the master the nout largest ξ’s from every parti-
tion;

ii. Master: Determine nout outliers that correspond to the nout
data points with largest value of ξ. In case of tie, random
selection is a valid solution. Inform the partitions about the
selection;

iii. At each partition update u accordingly;

(c) Partition assignment: Update η

i. Broadcast Aki and ρk among partitions;

ii. At each partition, for every data point i, calculate

k = arg min
k

(Aki + ρk), k = 1 . . . K

and move data i to partition k, if needed, updating η accord-
ingly;

Convergence is attained when variables u and η remain unchanged be-
tween iterations. Experimentation showed that the initialization of η is key-
stone to yield rapid convergence. Random initialization lead to uniform
distribution across partitions over the input space. Thus, the redistribution
rule k = arg mink(A

k
i + ρk) may hop data points repeatedly between parti-

tions taking a long time to converge with no further improvement with the
subsequent iterations. In an attempt to overcome this difficulty, the initial-
ization of η could be directed by clustering the input space into K pieces. In
the experimental part of this research, the K-means method has been shown
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to be effective in producing good values for η, where K is set to the number
of partitions. It is also worth noting that the k partitions can be distributed
over k processors, that can or cannot belong to the same machine. In this
sense, in what follows, the term partition could be interpreted as processor.
Finally, notice that nout is a lower bound on the number of global outliers:
when ν tends to zero, the number of total outliers tends to nout, otherwise,
the bound grows as a function of ν.

7.4 EXPERIMENTAL RESULTS

In this section, we present some results to investigate the performance of the
DOC-SVM. Firstly, we will present some results using artificial data in order
to illustrate the influence, on the decision region, of the position of the real
outliers, the number of partitions and the value of the nout parameter, as
well as, to study the evolution of the training time. Secondly, the proposed
method is compared to other known approaches to one-class classification
using real datasets.

7.4.1 EXPERIMENTS USING ARTIFICIAL DATA: ANALYZ-
ING THE PERFORMANCE OF DOC-SVM

In this first experiment, we compare the decision regions produced by the ν-
SVM and DOC-SVM and the influence of the position of the outliers on these
regions. With this aim, we have generated two simple datasets, as illustrated
in Figure 7.1. The figures in the top row correspond to a single cloud of
normal data points uniformly distributed with center (0, 0) and a single ring
of outliers separated from the border of the cloud by 1.5 units. The figures in
the bottom row correspond to two overlapping clouds of normal data points
uniformly distributed with centers (0, 0) and (2.5, 0), and a single ring of
outliers separated from the border of the two clouds by 1.5 units. Results
were obtained obtained using a Gaussian Kernel and γ = 0.2. As can be
observed, DOC-SVM fits the shape of the clouds much more accurately than
the ν-SVM. According to the formulation, this is based on the fact that
the decision region produced by the proposed method is unaffected by the
position of the outliers as the slack variables ξi do not add to the cost function
when variables ui take value zero for outliers (see Equation (7.7)).

In the second experiment, we analyze the influence of the number of
partitions on the decision regions produced by DOC-SVM by considering
architectures of 1, 2, and 4 partitions. Also, we analyze what happens when
the number of outliers nout is overestimated. With this aim we have run the
method over several clouds of data points, using again a Gaussian Kernel and
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Figure 7.1: Decision region (solid line) produced by the ν-SVM and DOC-
SVM for a cloud of normal data points (crosses) and a ring of data outliers
(triangles).
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γ = 0.2. Figures 7.2—7.5 shows a representative example of the obtained
results. The figures in the left column show clouds of data samples, in which
every data sample is considered as normal and DOC-SVM was trained to
cover every point (nout = 0). The figures in the right column show the same
cloud of data points plus three artificially generated outliers. In this case, the
proposed method was trained to leave four data points out of the decision
region (nout = 4). It is expected that it will cover every sample but the three
artificial outliers and the furthest data point from the cloud.

Regarding the effect of the number of partitions on the output, graphically
illustrated, the decision regions are displayed with different enclosing balls
for different partitions. One can see how the method splits up the inputs
space in several subspaces –equal to the number of partitions– and adjusts
the decision region to these subspaces. Note that the datasets are disjoint
between partitions even when the decision regions may be slightly overlapped
in the frontiers because of the tails of the Gaussian kernel functions coalesce.
Also it can be observed that relatively equal-size datasets are assigned for
each partition. This result relies on a good initialization of the method since
no constraints are imposed on the number of data points per partition.

In addition, the quality of the solution when the number of partitions
increases needs some discussion. On the left column of Figures 7.2—7.5, the
clouds of data points are accurately covered by DOC-SVM regardless of the
number of partitions. On the right column of Figures 7.2)—(7.5, the three ar-
tificially generated outliers are marked as such in every configuration. As the
number of outliers was overestimated, the fourth outlier will be some point
of the data cloud. For example, Figures 7.2—7.4 show that the same data
point is marked regardless of the number of partitions. This is an expected
result that occurred in our experiments whenever this data point seem to be
the outlier in the cloud. Conversely, Figure 7.5 shows a quite packed set of
data points wherein the fourth outlier will depend on the initialization of the
method and the frontiers between partitions.

Finally, the training time performance of the proposed method is analyzed
over the four artificial datasets. First, the evolution of the average training
time against the number of training samples was calculated when 1, 2, 4
and 8 processors (partitions) are used. Results are shown in Figure 7.6a.
As expected, the parallel time decreases with the increase of the number
of processors. Also, the speedup factor Sp was calculated, defined by Sp =
R1/Rp, where R1 and Rp are the training times of DOC-SVM on a single
processor (partition) and on p processors (partitions), respectively. This
measures how much the training time is faster using p processors rather than
one. Figure 7.6b shows the speedup factor against the number of processors
(1, 2, 4 and 8) for a training set from 8, 192 to 524, 288 samples. This
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Figure 7.2: Banana. Decision regions (solid curves –every closed curve corre-
sponds to one partition) produced by DOC-SVM for a cloud of normal data
samples (crosses) and three artificial outliers (triangles).
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Figure 7.3: Comet. Decision regions (solid curves –every closed curve corre-
sponds to one partition) produced by DOC-SVM for a cloud of normal data
samples (crosses) and three artificial outliers (triangles).
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Figure 7.4: Ex. Decision regions (solid curves –every closed curve corre-
sponds to one partition) produced by DOC-SVM for a cloud of normal data
samples (crosses) and three artificial outliers (triangles).
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Figure 7.5: Square. Decision regions (solid curves –every closed curve corre-
sponds to one partition) produced by DOC-SVM for a cloud of normal data
samples (crosses) and three artificial outliers (triangles).
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form of display is complementary to the more obvious plot of training time
versus number of processors, as it makes straightforward to see the largest
number of processors that has a positive impact on the training time, for
a fixed number of samples. We can see from Figure 7.6b that having more
that 4 processors reduces the speedup factor for the four smallest training
set sizes (up to 65, 536 samples) –i.e. the proposed method is slower using
8 processors rather than 4 because of communication and other overheads.
However, using a larger number of processors (up to 8 in these experiments)
is beneficial for the three largest training sizes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

·105

0

50

100

150

200

250

300

350

1

2

48

N# samples

T
im

e
(s
)

N#processors
1
2
4
8

(a) Training time (s).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

8192
16384

32768

65536

131072

262144

524288

Number of processors

Sp
e
e
d
u
p
fa
ct
o
r

N#samples
8192
16384
32768
65536
131072
262144
524288

(b) Speedup factor.

Figure 7.6: Performance measures of the proposed method.

7.4.2 EXPERIMENTS WITH BENCHMARKS: A COMPARA-
TIVE STUDY

In this section, the aim of the experiments was to assess the classification
quality of DOC-SVM in comparison with the base classifier ν-SVM and also
with other 18 known approaches for one-class classification. For the ν-SVM
the LIBSVM implementation (Chang & Lin, 2011) was used whilst for the
rest of the methods the implementation included in the DDtools toolbox
(D. Tax, 2014) was employed. To assess the performance of the methods
the mean Area Under the Curve (AUC) for the test sets was calculated. In
all the kernel methods, a radial basis was used as the kernel function with
a γ parameter. The optimal nout parameter was selected as the one that
provided the best result of the AUC. For DOC-SVM, 4 partitions were used.

This comparative study was done using real world data sets from the UCI
repository (Frank & Asuncion, 2010) that contains outliers artificially added.
These data sets were created by the Pattern Recognition Laboratory of the
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Name ID Target objects Outlier objects Features
Wisconsin Breast Cancer #505 458 241 9
Ionosphere #588 225 126 34
Liver-disorders #591 200 145 6
Waveform Data Generator #598 300 600 21
Dataset Vehicle saab #613 217 629 18
Haberman’s Survival Data > 5yr #616 225 81 3

Table 7.1: Data sets employed in the experimental comparative study.

Dataset ID
#505 #588 #591 #598 #613 #616

(γ = 0.1, (γ = 0.5) (γ = 0.001) (γ = 0.01) (γ = 0.001) (γ = 0.1)
nout = 70) nout = 6) nout = 19) nout = 220) nout = 5) nout = 24)

ν-SVM 99.5 (0.3) 96.4 (1.4) 54.2 (7.3) 79.9 (5.2) 62.4 (5.7) 68.7 (4.6)
DOC-SVM 99.6 (0.4) 95.0 (3.7) 55.3 (6.2) 84.3 (2.9) 60.8 (5.6) 67.5 (5.2)

Table 7.2: Mean AUC (x100) and the standard deviation (in brackets) for
the test sets in 50 random simulations.

Delft University of Technology1 and Table 7.1 contains their main charac-
teristics. Every method was applied to these data sets using 100 random
simulations. In each simulation a random training set was built composed
of 90% of the normal samples and 10% of the outliers. The rest of the data
was used as test set.

Table 7.2 contains the results obtained by DOC-SVM and the ν-SVM
used as the base classifier. Applying a statistical test (t-test) with a 5% of
significance level it was determined that only for data sets #588 and #598
the results of both classifiers are different. As an example, the ROC curves
for two data sets are shown in Figure 7.7. As can be seen, the curves are
slightly different for both models confirming that their behavior is not just
the same.

Moreover, in order to check how DOC-SVM copes with cases where each
partition has all possible data (global distribution), or nearly all, we accom-
plished a new experiment for the data sets #588 and #598. In this new
experiment two scenarios were compared: the first one consisting of repli-
cating the global data set in each node, and the second one in which the
data set is replicated, as many times as nodes, but performing a random
assignment of the data in each partition. For this experiment we used the
same parameter configuration as in the experiments in Table 7.2 but setting,
arbitrarily, the number of outliers (nout) to 30 (data set #588) and 280 (data
set #598). Nevertheless, the optimal value of nout is not relevant in this case,

1Data available at: http://homepage.tudelft.nl/n9d04/occ/index.html
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Figure 7.7: ROC curves for the datasets #588 and #598.

as the aim is to compare if the performance of the method is similar in both
scenarios (global and random distribution). Figure 7.8 contains the obtained
ROC curves that demonstrate that the results are almost equivalent for both
scenarios.
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Figure 7.8: ROC curves for a random or a global distribution of the dataset.

In addition, Table 7.3 contains the comparative study with 18 one-class
methods. The table shows the mean AUC values for each test set and,
in brackets, the ranking (1 corresponding to the best result). Analyzing the
table it can be observed that the proposed algorithm obtains, in all the cases,
better results than the mean classifier and is on the top 5 classifiers in most
of the cases. Also, summing the rankings the proposed method obtains the
first position with a sum equal to 34, the second place being for the Mixture
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of Gaussians data description (sum = 42).
Finally, we carried out an experiment using a large data set: MNIST

(LeCun, Bottou, Bengio, & Haffner, 1998). This is a well-known benchmark
problem for handwritten digits classification. The data set is formed by
70,000 images of 28× 28 pixels. We transformed this data set to a one class
problem using as the outlier class the data for the digit 0 and as the target
class the data for the other digits (digits 1 to 9). In this case 56,925 data
points were randomly selected as training set (0.25% of outliers), using data
from the target and the outlier class, and 13,075 data points were chosen as
the test set (51% of outliers). In this case the experiment was performed
using 16 nodes and γ = 0.01. The number of outliers nout was varied using
the values in the set {200, 1000, 4000, 6000}. Figure 7.9 contains the results
(ROC curves) for the test data set. As can be observed the performance is
improved as the value of the nout parameter is increased.
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Figure 7.9: ROC curves for the test set of the MNIST problem varying the
value of the noutparameter.
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Part III

When Distribution is Part of
the Semantics
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Chapter 8

Distribution of the
Distributions

In this chapter, the problem of learning in a distributed machine learning
setting is made more challenging. Thus, given the fragments D1, . . . ,DP of a
entire dataset D distributed across the sites 1, . . . , P , a performance criterion
E , and a set of constraints Z, the learning algorithm Ld constructs a hypoth-
esis h that optimizes E and meets Z. Clearly, the problem of learning in a
standard setting where P = 1, and the problem of learning in a distributed
setting with no constraints (Z = ∅) are special cases of this setting.

8.1 DISTRIBUTION MATTERS

In general terms, distributed learning algorithms aim to infer a global learner
that approximates the results one would get from a single, joint data source.
Note that this approach assumes that there is a single, global model that
could be induced from the distributed data sites. Under this view, distri-
bution is treated exclusively as a technical issue. However, there are deeper
implications (Wirth et al., 2001). Real-world distributed data sets almost
always present quite strong differences between their partitions, e.g. buying
patterns in different supermarkets from different countries. Yet in spite of
its importance, there has been no fully considered in distributed learning
settings. In (Zaki, 2000), Mohammed J. Zaki puts the focus on today’s out-
standing search issues and open problems for developing the next generation
of distributed machine learning algorithms. Two of them are of particular
interest to our purposes in this chapter.

DATA LOCATION. Big datasets are usually logically and physically dis-
tributed. They may even belong to different organizations that want to
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share knowledge but do not want to share raw data. The datasets may also
have heterogeneous schemes. In any case, it seems like having all the data in
a single site is no longer the model.

DATA SKEW. One of the problems adversely affecting load balancing in
parallel mining algorithms is sensitivity to data skew. Most methods par-
tition the database horizontally in equal-sized blocks. However, assuming
rule-based systems for argument’s sake, the number of rules generated from
each block can be heavily skewed, i.e., while one block may contribute many,
the other may have very few rules, implying that the processor responsible
for the latter block will be idle most of the time. Randomizing the blocks
is one solution, but it is still not adequate, given the dynamic and interac-
tive nature of mining. The effect of skewness on different algorithms needs
to be further studied. For example, in (Cheung & Xiao, 1999), data skew
is defined in terms of its effect on parallel mining of associations. In that
paper, the data skewness of a partitioned database is high if the supports
of most large itemsets –groups of items, frequently appearing together in
transactions– are clustered in a few partitions and it is low if the supports of
the most large itemsets are distributed evenly across the processors. On the
other hand, in (Walton, Dale, & Jenevein, 1991), data skew primarily refers
to a non-uniform distribution in a database and its effect on parallel joins.
In that research, the authors classify the effects of skewed data distribution
on a distributed execution, distinguishing intrinsic skew from partition skew.
Intrinsic skew is skew inherent in the dataset, e.g., there are more citizens
in Paris than in Waterloo (Liu & Özsu, 2009). Partition skew occurs on dis-
tributed implementations when the workload is not evenly distributed among
nodes, even when the input data is uniformly distributed. In particular, tu-
ple placement skew is the skew introduced when the initial distribution of
data examples varies between partitions, e.g., tuples may be partitioned by
clustering attribute in user specified ranges. In this thesis, the term data
skew will be used in the related sense of dataset shift between partitions. But
first, what is meant by dataset shift?

8.2 LESSONS FROM DATASET SHIFT IN STANDARD MA-
CHINE LEARNING

In the real world, the conditions in which one uses systems may differ from
the conditions in which they were developed. Given some data, and some
modeling framework, a model can be learned. This model can be used for
making predictions p(y|x) for some output y given some new input x. How-
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ever, what if there is a possibility that something may have changed between
training and test situations? Would this model be considered reliable?

The term dataset shift is defined as cases where the joint distribution of
inputs and outputs differs between training and test data (Storkey, 2009).
That is, when

ptr(Y,X) 6= ptst(Y,X) (8.1)

The problem of dataset shift is closely related to another area of study known
by various terms such as transfer learning or inductive transfer. Transfer
learning deals with the general problem of how to transfer information from
a variety of previous different environments to help with learning, inference,
and prediction in a new environment. Dataset shift is more specific: it deals
with the business of relating information in (usually) two closely related
environments to help with the prediction in one given the data in the other
(Quionero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2009). Faced with
the problem of dataset shift one need to know if it possible to characterize the
types of changes that occur from training to test situations. We present three
kinds of dataset shift that may appear in a classification problem (Moreno-
Torres, Raeder, Alaiz-Rodŕıguez, Chawla, & Herrera, 2012).

COVARIATE SHIFT. One simple assumption one can make about the con-
nection between the distributions of the training and the test data is that
given the same observation X = x, the conditional distributions of Y are the
same in the two datasets. However, the marginal distributions of X may be
different in the training and the test data. This difference is called covariate
shift (Shimodaira, 2000). Formally, it is defined as the case where

ptr(Y |X = x) = ptst(Y |X = x),∀x ∈ X (8.2)

ptr(X) 6= ptst(X) (8.3)

Let us take as example of covariate shift a problem where there is one co-
variate (feature) x0 and a target y. The training data distribution ptr(x0)
by the union of two Gaussian distributions N (−2, 0.75) and N (2, 0.75). The
conditional distribution is defined as

ptr(y|x0) =
1

1 + exp(− x0
0.2

)

Consider now that the conditional distribution in the test data remains un-
changed ptst(y|x0) = ptr(y|x0), but the Gaussian distributions that compose
the marginal distributions of X are N (−1, 0.75) and N (1, 0.75). Figure 8.1
illustrates this simple example of covariate shift.
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(a) Training data.
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(b) Test data.

Figure 8.1: Example of covariate shift.
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PRIOR PROBABILITY SHIFT. Another assumption is that given the same
class label, the conditional distributions of X are the same in the two data
sets. However, the class distributions may be different in the training and the
test domains. This difference is referred to as prior probability shift (Jiang,
2008). Formally, it is defined as the case where

ptr(X|Y = y) = ptst(X|Y = y),∀y ∈ Y
ptr(Y ) 6= ptst(Y ) (8.4)

As an example, assume one has a problem with one feature x0 and a target
y that may take the class values y = 0 and y = 1. In the training data,
ptr(y = 0) = ptr(y = 1) = 0.5 and ptr(x0|y) is defined as

x0 =

{
N (−2, 0.75) if y = 1

N (2, 0.75) otherwise

Consider now that in the test data, ptst(x0|y = 0) and ptst(x0|y = 1) remain
unchanged, but the class prior probabilities vary, taking the values ptst(y =
0) = 0.25 and ptst(y = 1) = 0.75. Figure 8.2 illustrates this simple example
of prior probability shift.

CONCEPT DRIFT. It happens when the relationship between the input
features and output classes changes. Formally, it is defined as

ptr(X = x) = ptst(X = x),∀x ∈ X
ptr(Y |X) 6= ptst(Y |X) (8.5)

As an example, consider the problem already used to illustrate the covariate
shift problem. If a concept drift appears, the test set distribution ptst(x0)
remains constant, but ptst(y|x0) changes (see Figure 8.3), for instance

ptr(y|x0) =
1(

1 + exp(−2+x0
0.2

)
) (

1 + exp(−2−x0
0.2

)
)

8.3 DATA SKEW IN DISTRIBUTED MACHINE LEARNING

The three types of dataset shift in standard machine learning considered
in this thesis (covariate shift, prior probability shift, and concept drift) are
easily amended to make them useful in a distributed setting. In distributed
learning, we define training and test datasets to be local and remote datasets,
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(b) Test data.

Figure 8.2: Example of prior probability shift.
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(b) Test data.

Figure 8.3: Example of concept drift.
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respectively. From the point of view of a processor, it will maintain its own
local, source data whilst the remainder processors will be seen to maintain
remote, target data. More formally, in the distributed setting, we define the
three types of dataset shift as follows:

COVARIATE SHIFT BETWEEN PARTITIONS. It is defined as

pt(Y |X = x) = ps(Y |X = x), ∀x ∈ X ;∀Dt,Ds ⊂ D
pt(X) 6= ps(X);∃Dt,Ds ⊂ D (8.6)

where pt(Y |X = x) and ps(Y |X = x) are the conditional distributions of Y
in the partitions Dt and Ds, respectively.

PRIOR PROBABILITY SHIFT BETWEEN PARTITIONS. It is defined as

pt(X|Y = y) = ps(X|Y = y),∀y ∈ Y ;∀Dt,Ds ⊂ D
pt(Y ) 6= ps(Y );∃Dt,Ds ⊂ D (8.7)

where pt(X|Y = y) and ps(X|Y = y) are the conditional distributions of X
in the partitions Dt and Ds, respectively.

CONCEPT DRIFT BETWEEN PARTITIONS. It is defined as

pt(X = x) = ps(X = x),∀x ∈ X ;∀Dt,Ds ⊂ D
pt(Y |X) 6= ps(Y |X);∃Dt,Ds ⊂ D (8.8)

where pt(X = x) and ps(X = x) are the distributions of X in the partitions
Dt and Ds, respectively.

Note that the three types of dataset shift in standard machine learning
are defined in terms of two sets of data. Here, in a distributed setting, they
are defined in terms of the P partitions of the dataset. Thus, it may often
happen that these shifts occur between subsets of partitions and not others.
It may also happen that subsets of partitions show different types of shifts
between them.

8.4 LEARNING FROM SKEWED DATA

Assume given a labeled data set D = {(xn, yn)}Nn=1 = X × Y ∈ X × Y =
Rm×{1, 2, . . . }. A data sample is a pair (xi, yi) consisting of an input sample
xi and its associated class label yi. In a distributed setting, data are assumed
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to be distributed across multiple sites D1,D2, . . . ,DP . The union of all these
sets constitutes the complete data set: D1 ∪ D2 ∪ · · · ∪ DP = D.

A classifier is a function h that maps from inputs to classes. The goal
of the learning process is to find an h that correctly predicts the class y =
h(x). This is accomplished by searching some space H of possible classifiers
(T. G. Dietterich, 2002). Nearly all of the works in distributed machine
learning make uniformity assumptions: samples are uniformly distributed
to sites. Then, the challenge is to obtain the learner one would get from a
single, joint data set:

h(D1,D2, . . . ,DP ) = h(D1 ∪ D2 ∪ · · · ∪ DP ) (8.9)

without providing the distributed learning algorithm h with simultaneous
access to D1,D2, . . . ,DP (Caragea et al., 2001). However, there is considerable
evidence that data skew—the non-uniform distribution of samples to sites—
exists. Taking this into account, does this equality remain unchanged under
data skew?

Data skew force us to revisit the earlier correspondence to make it fit into
this novel scenario. Thus, Equation 8.9 can be rewritten as follows ∀x ∈ X ,

h(D1,D2, . . . ,DP ) = h1(D1) ∪ h2(D2) ∪ · · · ∪ hP (DP )

where hp, p = 1, . . . , P , is the local hypothesis inferred from processor p.
Thus, when a new sample arrives for classification at one processor, it will be
this processor solely responsible for its classification. Note that it is assumed
that the new data will follow the distribution of the training data. However,
the problem with this approach is that it ignores the knowledge generated
in other processors even if the hypotheses from some other processors—but
maybe not all of them—are in some way compatible with its own local hy-
pothesis. A better approach may be to introduce the concept of similarity
between sites. Thus, the relevance of the local hypotheses can be weighted
by the probability of occurrence of the new sample x in the different sites,
that is, covariate shift,

h(x) = h1(x) p(D1 = x)

∪ h2(x) p(D2 = x)

∪ . . .
∪ hP (x) p(DP = x)

(8.10)

where p(Dp = x) is the probability of occurrence of data x in the site p. If we
consider prior probability shift, then the local hypotheses will be weighted
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by the changes in class distributions with respect to the site t, that is,

h(x) = h1(x) sim(p(Y1), p(Yt))

∪ h2(x) sim(p(Y2), p(Yt))

∪ . . .
∪ hP (x) sim(p(YP ), p(Yt))

(8.11)

where sim(p(Ys), p(Yt)) is a similarity function that measures the similarity
between the class prior probability p(Ys) of partition s and the class prior
probability p(Yt) of partition t. The similarity function sim outputs 1 if
the two probabilities take exactly the same values, and 0 otherwise. Values
between 0 and 1 quantify the degree of similarity.

Finally, if we consider concept drift with respect to the site t, then the
local hypotheses will be weighted by the changes in the relationship between
the input and class variables, that is,

h(x) = h1(x) sim(p(Y1|D1 = x), p(Yt|Dt = x))

∪ h2(x) sim(p(Y2|D2 = x), p(Yt|Dt = x))

∪ . . .
∪ hP (x) sim(p(YP |DP = x), p(Yt|Dt = x))

(8.12)

In a more general situation, one can interpret Equations 8.10, 8.11, and
8.12 as particular implementations of a reducer function R such that

h(x) = R (h1(x), h2(x), . . . , hP (x))

assuming that hp is the local hypothesis inferred from dataset Dp. According
to Equations 8.10, 8.11, and 8.12, one can think in two different situations:

RANDOM PARTITIONS. If the dataset is randomly divided into P parti-
tions then all these equalities hold (approximately),

1. p(Ds = x) ≈ p(Dt = x), ∀s, t.

2. sim(p(Ys), p(Yt)) ≈ 1,∀s, t.

3. sim(p(Ys|Ds = x), p(Yt|Dt = x)) ≈ 1,∀s, t.

Moreover, if the reducer function R is exact with respect to the hypothesis
h then R (h1(x), h2(x), . . . , hP (x)) = h(D1 ∪ D2 ∪ · · · ∪ DP ).

144



SKEWED PARTITIONS. If the dataset shows partition skew then each
local hypothesis hp will contribute to the final hypothesis depending on its
weight factor. Note that the presence of data skew is revealed if any of the
previous equalities is violated.

The question now is how to quantify the skewness between partitions with-
out communicating private data between nodes. The next section proposes
several approaches to deal with this problem. Either way, the output of this
process will be a dissimilarity matrix (also called distance matrix) that will
describe the pairwise distinction between the P partitions. The matrix that
defines the skewness of a distributed setting in terms of any distance function
is formulated as 

0 d1,2 . . . d1,n

0 . . . d2,n

. . .
...
0


where ds,t denotes the distance between partitions Ds and Dt, and the matrix
is symmetric, i.e., ds,t = dt,s. Note that a distance function is a measure of
how similar, or dissimilar, two elements are.

8.5 APPROXIMATING THE DISTRIBUTIONS

Given the former equations, the three different types of dataset shift consid-
ered –covariate shift, prior probability shift, and concept drift– are revealed
based on some violations of the conditions of uniformity of distributions.
However, the extent of the problem must be defined in a quantitative form in
order to exploit possible advantages associated with alternative combination
schemes. Thus, in the next sections we present some of the most common
ways to evaluate the different types of dataset shift: covariate shift by ap-
proximating the input distribution, prior probability shift by approximating
the class distribution, and covariate shift by approximating the relationship
between the input and class variables.

8.5.1 APPROXIMATING THE INPUT DISTRIBUTION

Consider the problem of estimating the probability p(D = x) that a data
point x in D-dimensional Euclidean space belongs to a dataset D. Three of
the most common approaches for approximating the input distribution are
the following.
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UNIVARIATE GAUSSIAN DISTRIBUTION. The first step would be to
find the center of mass of the sample points. Intuitively, the closer the point
in question is to this center of mass, the more likely it is to belong to the
dataset. However, one also need to know if the dataset is spread out over a
large range or a small range, so that we can decide whether a given distance
from the center is noteworthy or not. The simplistic approach is to estimate
the standard deviation of the distances of the sample points from the center
of mass. If the distance between the test point and the center of mass is
less than one standard deviation, then we might conclude that it is highly
probable that the test point belongs to the set. The further away it is, the
more likely that the test point should not be classified as belonging to the set.
This intuitive approach can be made quantitative by defining the normalized
distance between the test point and the set to be x−µ

σ
, where µ is the center

of mass and σ is the standard deviation. By plugging this into the normal
distribution we can derive the probability of the data point belonging to the
dataset (see Figure 8.4). The drawback of this approach is that we assumed
that the sample points are distributed about the center of mass in a spherical
manner.
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Figure 8.4: Example of a univariate Gaussian distribution.

MULTIVARIATE GAUSSIAN DISTRIBUTION. Were the distribution to
be decidedly non-spherical, for instance ellipsoidal, then we would expect the
probability of the data point belonging to the dataset to depend not only on
the distance from the center of mass, but also on the direction. In those
directions where the ellipsoid has a short axis the test point must be closer,
while in those where the axis is long the test point can be further away from
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the center. Putting this on a mathematical basis, the ellipsoid that best
represents the set’s probability distribution can be estimated by building the
covariance matrix of the samples (see Figure 8.5). The Mahalanobis distance
is simply the distance of the data point from the center of mass divided by
the width of the ellipsoid in the direction of the data point. Mahalanobis
distance is closely related to the leverage statistic. In statistics, high-leverage
points are those that are outliers with respect to the independent variables.
Leverage points are those that cause large changes in the parameter estimates
when they are deleted. Mahalanobis distance and leverage are often used to
detect outliers, especially in the development of linear regression models. A
point that has a greater Mahalanobis distance from the rest of the sample
population of points is said to have higher leverage since it has a greater
influence on the slope or coefficients of the regression equation. Mahalanobis
distance is also used to determine multivariate outliers. Regression tech-
niques can be used to determine if a specific case within a sample population
is an outlier via the combination of two or more variable scores. A point can
be a multivariate outlier even if it is not a univariate outlier on any variable
(consider a probability density similar to a hollow cube in three dimensions,
for example).

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

Figure 8.5: Example of a multivariate Gaussian distribution.

MIXTURE OF GAUSSIANS. A Gaussian model is commonly extended to
fit multivariate Gaussian distributions (see Figure 8.6). A Gaussian mixture
model is a weighted sum of K component Gaussian densities as given by the
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equation,

p(x|w, µ,Σ) =
K∑
k=1

wkG(x|µk,Σk) (8.13)

where x is a D-dimensional data point, wk is the k mixture weight, and
G(x|µk,Σk) is the k Gaussian density. The complete Gaussian mixture model
is parametrized by the mean vectors µ, covariance matrices Σ, and mixture
weights w. These parameters are usually estimated from training data using
the Expectation-Maximization (EM) algorithm (Dempster, Laird, Rubin, et
al., 1977). The EM algorithm is an efficient iterative procedure to compute
the maximum likelihood.
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Figure 8.6: Example of mixture of Gaussians. Density function of the train-
ing data (solid line) and mixture of three Gaussians (dashed line).

8.5.2 APPROXIMATING THE CLASS DISTRIBUTION

Let (p(Y1,s), p(Y2,s), . . . , p(YC,s)) be the prior class probabilities of the C
classes in the s-th site. Note that this sample is just a data point in a
C-dimensional space. The most popular metric to compute the distance be-
tween two data points—in this case representing the class prior probabilities
from two sites—is the Euclidean distance. Euclidean distances are special
because they conform to our physical concept of distance. But there are
many other distance measures which can be defined between multivariate
samples. These non-Euclidean distances are of different types: some still
satisfy the basic axioms of what mathematicians call a metric, while others
are not even metrics but still make very good sense as a measure of difference
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between samples in the context of certain data. In mathematics, a metric
d is a function that is required to satisfy the following conditions: positive
definiteness (d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y), symme-
try (d(x, y) = d(y, x)), and triangle inequality (d(x, z) ≤ d(x, y) + d(y, z))
(Bronshtein, Semendiaev, & Hirsch, 1985). Some of the most popular non-
Euclidean distance measures are the Hamming distance, the Canberra dis-
tance, and the Czekanowski coefficient (Krzanowski & Krzanowski, 2000).

8.5.3 APPROXIMATING THE RELATIONSHIP BETWEEN THE
INPUT AND CLASS VARIABLES

The notion of classifier distance introduced in (Tsoumakas et al., 2004) as a
measure of how different two models are based on their predictions can be
used to approximate the relationship between the input and class variables.
The measures that one can use for computing the distance between two
classifiers will depend on the type of classification. On the one hand, soft
classifiers explicitly estimate the class conditional probabilities p(y|x) and
then perform classification based on the estimated probabilities, i.e., the
classifier predicts membership grades for each class. In this case, the measures
that can be used are the same than when approximating the distance between
class distributions. The distance of two classifiers is defined as the distance
of their output vectors with respect to all data points of an independent
dataset. By independent we understand a dataset whose instances were not
in the training set of the classifier. This will ensure unbiased results, as the
predictions of classifiers on their training data tend to be optimistic.

On the other hand, hard classifiers directly target on the classification
boundary without producing the probability estimation, i.e., each data point
belongs to the class it most closely resembles. In an ensemble, it is intuitively
accepted that classifiers to be combined should be diverse. If they were iden-
tical, we could not gain any improvement by combining them. Therefore,
diversity among the ensemble has been recognized as a key issue. Because
of this, diversity has been widely investigated in the literature. However,
there is no single definition of diversity. There are different diversity mea-
sures available from different fields of research such as statistics and pattern
recognition. Some of these measures work on the whole ensemble of classi-
fiers whilst other measures consider the classifiers on a pairwise basis. For the
purposes of clustering classifiers, we are more interested in pairwise measures.

Consider two classifiers hs and ht and a 2 × 2 table for the case of cor-
rect/incorrect (1/0) classifier outputs (oracle-type outputs) as shown in Table
8.1. There are various statistics to assess the similarity of two classifier out-
puts based on the intuition that two diverse classifiers perform differently on
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ht correct (1) ht wrong (0)

hs correct (1) a b
hs wrong (0) c d

Table 8.1: Contingency table for two binary classifiers.

the same training data (Shipp & Kuncheva, 2002; Tang, Suganthan, & Yao,
2006).

— Yule’s Q statistic. The Yule’s Q statistic (Yule, 1900) for two classifiers
hs and ht is computed as

Qs,t =
ad− bc
ad+ bc

where Qs,t = 0 for statistically independent classifiers.

— Correlation coefficient ρ. The correlation between two binary classifier
outputs is

ρs,t =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
(8.14)

for any two classifiers, Q and ρ have the same sign.

— Disagreement measure D. In (Skalak, 1996), the authors proposed
the disagreement measure to evaluate the diversity between two base
classifiers. This measure is defined as

D =
b+ c

a+ b+ c+ d
(8.15)

— Double-fault measureDF . (Giacinto & Roli, 2001) proposed the double-
fault measure to select classifiers that are least related from a pool of
classifiers. The authors claimed that the more different two classifiers
are, the fewer the coincident errors between them. This measure is
defined as

D =
d

a+ b+ c+ d
(8.16)

8.6 FINAL REMARKS

In this chapter, we provided some background on the distribution of the
distributions of data. Borrowing ideas from the concept of dataset shift in
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standard machine learning, we extended these definitions to a distributed en-
vironment and reviewed some popular ways of evaluating the distribution of
the data in the input and output space of a learning model, and between the
input and the output. In the next two chapters, we make use of some of these
concepts and methods in order to expand the operation of the distributed
learning algorithms based on single and two-layer neural networks, and the
FVQIT (presented in the previous part of this thesis) when the distribution
of data is skewed.
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Chapter 9

Training Distributed Neural
Networks on Skewed Data

In Chapters 4 and 5, we introduced two distributed learning algorithms for
single-layer and two-layer artificial neural networks, respectively. These al-
gorithms are fast and accurate, making possible privacy-preserving classifi-
cation by not exchanging raw data across distributed locations but only the
neural networks. Furthermore, they minimize communications by using this
approach since the size of the neural networks is negligible in comparison with
the size of the raw data. However, the performance of these algorithms may
be affected when the distributions of data show skewness. With the aim of
overcoming this issue, in this chapter we take into account this skewness in or-
der to propose several improvements of the algorithms, based on distributing
the computation of the genetic algorithm (Peteiro-Barral, Guijarro-Berdinas,
& Pérez-Sánchez, 2011, 2012).

9.1 REVISITING THE DISTRIBUTED TRAINING ALGORI-
THMS FOR NEURAL NETWORKS

In order to learn from distributed data, the approach we followed to develop
the two distributed learning algorithms for neural networks was the MapRe-
duce paradigm, i.e. local learning and model integration; in the first place,
the classifiers are trained on their corresponding, local, subset of data and
then they are integrated using some combination method. These two algo-
rithms took advantage of this paradigm avoiding moving raw data across
the locations and therefore allows privacy-preserving classification as well as
minimizing communications, as described in Chapters 4 and 5.

As local classifiers, these two distributed algorithms used single-layer and
two-layer neural networks trained with efficient learning algorithms (Fontenla-
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Romero, Guijarro-Berdiñas, Pérez-Sánchez, & Alonso-Betanzos, 2010; Castillo
et al., 2006). It is well known that, when working with large data sets, it
is essential to employ low complexity algorithms due to time and memory
restrictions. These training algorithms present some advantages which make
them suitable for our purposes on distributed learning. On the one hand,
they are very efficient since the weights of the artificial neural networks are
computed analytically and, on the other hand, there are able to learn in an
incremental manner. Then, the weights of a single, global, neural network
representing the union of all, local, neural networks may be computed by
summing their corresponding matrices of coefficients A and b, solving the
new systems of linear equations. Notice that even when the knowledge of an
artificial neural network is contained in its weight matrix W it can be com-
puted from the coefficients A and b. However, this method may be improved
by aggregating the knowledge contained in the different neural networks by
means of a more appropriate cost function for classification problems. Thus,
the two distributed algorithms compute the global neural network using a
genetic algorithm. Basically, a genetic algorithm is defined by its fitness
function, crossover operator, and mutation operator; where the set of local
classifiers represented by the matrices of coefficients A and b are the initial
population of the algorithm. In order to find the best combination of local
neural networks, the genetic algorithm is run in a central location wherein
independent, validation data is stored. A high level view of the algorithms
would be the following;

1. For each location, train a local classifier on the data.

2. Broadcast each local model, represented by matrices A and b, to the
central location.

3. Train the genetic algorithm at the central location, using the data
stored in it.

4. For the central location, select the individual with the best fitness of
the population as the global classifier and broadcast it to all locations.
In this manner, we will be able to classify new samples at every loca-
tion. Notice that during this process only the classifiers, which have a
negligible size in comparison with the data, are sent across a commu-
nication network. In this manner, these algorithms are able to learn
from distributed data sets without exchanging any raw, private data.

The operation of the two algorithms follows a basic MapReduce approach,
and actually this approach works in practice for many problems. However,
notice that the algorithm needs to meet two requirements;
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— Distributed real-world data sets are usually not symmetric, i.e. the
distributions of data for different locations may not be the same. So,
in order to train a proper global classifier the genetic algorithm has
to be executed on unbiased independent data allocated in a central
location. But the concept of a central location with unbiased data does
not exists in most real-world applications. We could select at random
any location to play the role of the central location but, in this case,
the quality of the data is not assured. It could be biased. Notice that
the question is not the computation itself of the genetic algorithm but
the data used.

— As it is common in algorithms that involve learning in the model in-
tegration step, this algorithm requires to retain independent data in
order to train the global classifier. But this approach has two major
drawbacks. On the one hand, it deprives the local classifiers of some
training data and, on the other hand, the global classifier is trained
only on a small subsample of all data.

If we assume that the number of samples in the dataset is large, in princi-
ple, the necessity of retaining a subset of data as the validation set is not a
severe issue. However, the presence of a central location with unbiased data
could be the most important factor for achieving a good performance using
this algorithm. With the aim of overcoming these limitations three different
improvements of this algorithm are proposed in the next section. Notice that
any improvement of the algorithm must keep the advantages of the original,
that is allowing privacy-preserving classification and minimizing communi-
cation costs. Notice also that this improvements may be applied to both
single-layer and two-layer neural networks training algorithms presented in
chapters 4 and 5.

9.2 PROPOSED IMPROVEMENTS FOR TRAINING NEURAL
NETWORKS IN A DISTRIBUTED SETUP

In this section, we propose three improvements of the distributed training
algorithm for both single and two-layer neural networks.

#I. The first improvement tries to overcome the limitation of the need of
a central location by computing genetic algorithm in a distributed manner.
Thus, each location has its own validation set to compute part of the fitness
function, which will be coalesce with all other parts at a designated location.
Notice that, in this model, any distributed location can play this role, it is
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just a matter of computation, not data stored at any specific location. The
hypothesis here is that subsampling each location to form the validation data
set we will be able to make an unbiased sample of all data. The following
procedure summarizes the operation of the algorithm and describes how the
global classifier is obtained;

1. For each location, divide the data into training and validation sets, and
train a local classifier on the training data.

2. Broadcast each local classifier to all other locations, i.e. at the end of
this step each location will contain every local model or, what is the
same, the whole population.

3. Execute the genetic algorithm at the designated location. Repeat until
convergence (epochs, error. . . );

(a) For each location, compute the values of the fitness function on
the validation set for every individual of the population and send
them to the designated location.

(b) For the designated location, evolve the population and broadcast
to all other locations.

4. For the designated location, select the best individual of the population
as the global classifier and broadcast it to all other locations.

#II. The second improvement tries to overcome the limitation of retaining
independent data for training the global model by following the approach
proposed in (Tsoumakas & Vlahavas, 2002b). The key in this approach
is to bring the concept of partially-global classifiers in the algorithm. The
hypothesis here is that training both local and partially-global models on
more data will improve the performance of the classifiers. The procedure is
as follows;

1. For each location, train a local classifier on the data.

2. Broadcast each local model to all other locations, i.e. at the end of
this step each location will contain every local classifier or, what is the
same, the whole population.

3. For each location, execute the genetic algorithm on the data using
all classifiers except the local one. Do this in order to avoid biased
classifiers since the local classifier was trained on that data. Select the
best individual of the population as the partially-global classifier and
broadcast it to the designated location.
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4. For the designated location, build the global classifier by combining
the partially-global classifiers. Due to the incremental features of the
training algorithms, we are able to combine them by simply summing
their matrices of coefficients. Broadcast the global classifier to all other
locations.

#III. Finally, the third improvement merges the two previous improve-
ments to some extent. The hypothesis here is that this approach will be
able to exploit the strengths of both previous approaches, at the expense of
the higher complexity of the model. The following procedure summarizes the
operation of the algorithm;

1. For each location, divide the data into training and validation. Train
a local classifier on the training data.

2. Broadcast each local classifier to all other locations, i.e. at the end of
this step each location will contain every local model or, what is the
same, the whole population.

3. For each location, execute a genetic algorithm on the training data
using all classifiers except the local one. Do this in order to avoid biased
classifiers since the local classifier was trained on that data. Select the
best individual of the population as the partially-global classifier and
broadcast it to the designated location.

4. Execute the genetic algorithm at the designated location using the par-
tially-global classifiers as initial population. Repeat until convergence
(epochs, error. . . ),

(a) For each location, compute the values of the fitness function on
the validation set for every individual of the population and send
to the designated location.

(b) For the designated location, evolve the population and broadcast
to all locations.

5. For the designated location, select the best individual of the population
as the global classifier and broadcast it to all other locations.

9.3 EXPERIMENTAL STUDY

The experimentation presented below is focused on the assessment of the
three improvements proposed in this chapter. We will pay attention to the
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impact of different distributions of data on the performance of the algorithms.
This is important due to the inherent data skewness features shown in most
real-world distributed data sets. This fact may cause that the models at
different locations perform quite differently from one another in terms of
accuracy.

9.3.1 MATERIALS AND METHODS

Four well-known data sets selected from the UCI Machine Learning Repos-
itory (Frank & Asuncion, 2010) were used. For each data set, number of
inputs, classes and samples are shown in Table 9.1. In order to be as repre-
sentative as possible of different data sets, we included binary and multi-class
medium-large size datasets. Again, the lack of publicly available distributed
data sets is one of the most important issues we have to deal with. With
the aim of overcoming this issue, we develop distributed data sets based
on these publicly available, monolithic, data sets. However, as mentioned
above, notice that distributed data sets may show different distributions of
data among locations. In this experimentation, we focus our attention on
prior probability shift (see Section 8.3 for more details). We chose this kind
of skewness of data, in the class distributions, because it is easier to visualize
and represent than the other kinds of data skewness. Notice, however, that
the concepts and applications of the improvements presented in this chapter
are also suitable for those other kinds, i.e. covariate shift and concept drift.
For a given data set, we have defined the prior probability as the proba-
bility of classifying a sample in each class. In a less rigorous manner, it is
the percentage of samples per class at each location. If we use this concept
in a distributed context, we can define a uniform, distributed data environ-
ment as similar prior probability distributions for every location, that is, the
prevalence of each class is the same among the locations. On the other hand,
a nonuniform, or skewed, distributed data environment occurs when there
are an dissimilar prior probability distributions for at least two locations.
The latter opens the way for different degrees of skewness. Data skewness is
an important factor that affects learning. Therefore, in order to assess the
performance of the distributed algorithms in the most appropriate manner,
we simulate several distributions of data among locations; one uniform and
three skewed. The difference among the nonuniform distributions lies in the
degree of skewness: slight, quite and severe.

Figure 9.1 shows the different environments for each dataset considered in
this experimentation. The darker the shading the more skewed the distribu-
tion. The range of prevalence of each class in a given environment is depicted
as a segment bounded by the minimum and the maximum prevalence of that

158



Data set Inputs Classes Samples
Adult 14 2 30, 162
Connect4 42 3 67, 557
Covertype 54 7 581, 012
Shuttle 9 7 43, 500

Table 9.1: Properties of the datasets used for the experimentation.

class among the locations. Notice that the segments are continuous and
they are shown superimposed. In order to make clear the representation
consider Adult data set. In the uniform distribution of data, lightest gray,
the prevalence of class 1 is around 25% for every location. In the opposite
case, darkest gray for severe skewed distributions of data, its prevalence lies
between 0 and 75%, i.e. at least one location does not contain any sample
of class 1, at least one location contains 75% of samples of that class and,
finally, all other locations show a prevalence of class 1 somewhere between
0 and 75%. The remaining classes and data sets can be interpreted in the
same manner. With the aim of assessing the performance of the distributed
learning algorithm for neural networks and the three improvements presented
in this chapter, the following procedure was performed. For purposes of sim-
plicity, the distributed algorithm uses single-layer neural networks. The same
procedure would be valid for training two-layer neural networks as proposed
in Chapter 5.

— For each algorithm; repeat I = 100 times

– Divide the data set into N = 10 subsets. In this manner, each
subset of data will represent a distributed location.

– For each location, divide the data using holdout validation, i.e. a
subset of samples is chosen at random to form the test set and
the remaining observations are retained as the training set. 10%
of data is used for testing while 90% are for training. This kind
of validation is suitable because the size of the data sets is large.

– Train the distributed model.

– Test the model at each location by computing the standard class
accuracy (Weiss & Kulikowski, 1991) on the test data set. Also
compute the global test accuracy by averaging the test accuracy
among the locations.

— Compute the mean test accuracy and standard deviation of each model
over the 100 simulations.
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Figure 9.1: Prior probability distributions of data. The darker the shading
the more skewed the distribution.
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— Apply a Kruskal-Wallis test (Hollander & Wolfe, 1999) to check if there
are significant differences among the medians of the models for a level
of significance α = 0.05.

— If there are differences among the medians, then apply a multiple com-
parison procedure (Hsu, 1996) to find the simplest model, lowest com-
plexity, whose error is not significantly different from the model with
the best mean accuracy rate. In this work, a Tukey’s honestly signifi-
cant criterion (Hsu, 1996) was used as multiple comparison test.

Finally, apart from the test accuracy which is crucial, we believe that
another interesting measure of performance in skewed environments of this
distributed learning algorithm is the disparity of performance among different
locations. Once the classifiers are trained any location could receive new
samples for classification. Furthermore, those samples should be classified
at that location since usually we can not send raw samples of data to other
locations due to privacy issues. This is the point for maintaining the global
model at every location. All algorithms used in this chapter use a global
model for classifying new samples, and this global model is the same for
every location. However, notice that we assume a similar prior probability
distribution between the training samples and the new samples received for
every location. Thus if the distribution of data is not uniform the global
classifier could perform differently at different locations. In order to be able
to quantify how differently each algorithm performs on each location, we
also compute a measure of disparity (disp) by simply averaging all pairwise
differences in accuracy (acc) among locations,

disp =
P · (P − 1)

2

P−1∑
i=0

P∑
j=i+1

|acci − accj| (9.1)

P being the number of locations. We believe that the measure of disparity
is a good measure for having more insights about how well a distributed
algorithm performs in different distributions of data. Of course, the lower
the disparity the better, i.e. the more constant the performance of the model
in the different locations the better.

9.3.2 RESULTS

Table 9.2 shows the mean test accuracies and standard deviations of the
original distributed algorithm (see Chapter 4) and the three improvements
proposed in this chapter (see Section 9.2). The best result, or those not
significantly different from the best one, are underlined for each data set
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and degree of skewness. On the other hand, Table 9.3 shows the disparity
among locations. This is a measure of how different the locations perform
by averaging all pairwise differences in accuracy among them.

Dataset Skewness
Algorithm

Original Imprv 1 Imprv 2 Imprv 3

Adult

None 83.59± 0.72 83.22± 0.94 81.61± 2.61 83.43± 0.65
Slight 82.35± 1.25 83.46± 0.61 79.21± 5.04 83.30± 0.62
Quite 79.06± 3.61 83.59± 0.86 77.71± 7.71 82.86± 1.10
Severe 75.92± 5.71 83.15± 0.76 78.09± 7.59 83.34± 0.62

Connect4

None 75.56± 0.50 75.17± 0.64 73.82± 4.92 75.16± 0.52
Slight 74.43± 1.83 75.25± 0.31 73.89± 3.41 75.24± 0.64
Quite 71.56± 4.09 75.25± 0.53 61.77± 9.99 75.14± 0.52
Severe 68.20± 6.29 75.06± 0.50 67.90± 9.74 74.93± 0.55

Covertype

None 70.24± 0.24 70.18± 0.20 69.78± 1.18 70.33± 0.33
Slight 69.34± 1.49 70.48± 0.30 70.10± 0.54 70.59± 0.16
Quite 66.67± 1.99 70.38± 0.24 68.97± 1.35 70.09± 0.98
Severe 64.75± 4.84 69.79± 1.02 56.28± 9.99 68.68± 3.94

Shuttle

None 90.89± 0.98 90.30± 1.20 77.06± 9.99 94.13± 2.06
Slight 89.82± 1.23 90.63± 1.36 86.48± 4.27 90.54± 1.63
Quite 89.91± 1.94 91.40± 1.46 78.33± 9.99 92.47± 1.64
Severe 88.87± 3.57 91.80± 0.73 87.46± 3.77 90.98± 2.53

Table 9.2: Mean test accuracy (%) and standard deviation of the original al-
gorithm and its improvements for each data set and the four prior probability
distributions.

9.3.3 DISCUSSION AND CONCLUSIONS

The results presented in the previous section were focused on the test accu-
racy and disparity among locations of the original distributed algorithm for
neural networks and the three improvements introduced in this chapter. For
this experimentation we used single-layer neural networks, but the concepts
and procedures would be the same for two-layer neural networks. Regarding
the test accuracy, as can be inferred from Table 9.2:

— If we compare the performance of the original algorithm between none
and severe skewed distributions it falls by 7.67, 7.36, 5.49 and 2.02%
on Adult, Connect4, Covertype and Shuttle data sets, respectively. On
average, its performance is 5.64% worse. Notice that the probability of
selecting a biased location to play the role of the validation set increases
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Dataset Skewness
Algorithm

Original Imprv 1 Imprv 2 Imprv 3

Adult

None 2.35± 0.54 2.29± 0.32 2.42± 0.49 2.14± 0.74
Slight 4.39± 2.19 5.13± 1.37 6.55± 3.37 5.10± 1.44
Quite 9.11± 9.63 8.52± 1.78 5.46± 2.42 9.79± 3.53
Severe 13.04± 7.48 8.48± 2.73 8.05± 6.57 9.71± 3.01

Connect

None 1.89± 0.40 1.71± 0.38 1.77± 0.39 1.63± 0.32
Slight 7.05± 1.32 8.01± 1.55 8.07± 2.01 7.55± 1.63
Quite 14.19± 6.04 11.14± 2.60 13.06± 5.89 13.71± 4.31
Severe 18.78± 9.31 12.15± 3.79 13.60± 6.17 12.22± 2.65

Covtype

None 0.70± 0.15 0.56± 0.13 0.59± 0.12 0.60± 0.20
Slight 2.49± 0.64 1.84± 0.31 1.67± 0.47 1.78± 0.60
Quite 6.69± 1.71 4.30± 0.98 4.63± 1.42 5.08± 1.02
Severe 11.83± 6.02 5.40± 1.76 11.42± 7.99 7.26± 4.13

Shuttle

None 1.50± 0.33 1.27± 0.44 1.72± 0.63 0.97± 0.32
Slight 2.57± 1.19 2.04± 0.91 2.60± 1.53 1.62± 1.25
Quite 7.28± 2.40 4.81± 1.31 6.79± 1.99 4.63± 2.22
Severe 9.38± 2.60 8.78± 3.23 10.91± 4.22 11.18± 6.51

Table 9.3: Disparity (%) among locations of the original algorithm and its
improvements for each data set and prior probability distribution.

with the increasing skewness of data. Thus, it is logical that the higher
the heterogeneity the lower the accuracy.

— Almost the same performance is reached by the first improvement for
every distribution of data. Small variabilities can be explained as the
effect of randomness. As can be seen, distributing the computation of
the genetic algorithm works much better than selecting a location by
random as happened in the original algorithm. This improvement is
able to form an unbiased, and distributed, validation set.

— Notice that the performance of the second improvement is uncorrelated
with the distribution of data. In fact, it shows a worse performance
than the original algorithm in many cases. Notice also that the stan-
dard deviation for the second improvement is much greater than the
others. Even when the local classifiers were trained on a larger training
set, the integration of biased classifiers by simply summing led to a
biased global classifier.

— Almost the same performance is reached by the third improvement
for each distribution of data. The performance of the first and third
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improvements are not significantly different, but the former is much
simpler than the latter. In order to select the best algorithm in terms of
accuracy, the Kruskal-Wallis test was applied. We believe that the most
interesting results for the purposes of this chapter are those computed
on severe skewed distributions of data since they show the robustness of
the algorithms. Therefore, the statistical assessment of the algorithms
is performed on those results. A p-value of p < 0.001 was obtained
for each data set so we can reject the null hypothesis, all medians
are equal, for a level of significance of 0.05. Consequently, a multiple
comparison test to look at pairwise comparisons among the algorithms
was applied. Results show that the first and third improvements are
the best algorithms and also they are not significantly different from
each other. The original algorithm and the second improvement are
significantly worse than these two.

Finally, regarding the disparity in accuracy of the algorithms as can be
seen Table 9.3, the higher the heterogeneity the larger the disparity, this re-
sult being logical for every algorithm. In order to select the best algorithm in
terms of disparity, the Kruskal-Wallis test was applied. Remember that the
smaller disparity the better. A p-value of p < 0.001 was obtained for each
data set so we can reject the null hypothesis for a level of significance of 0.05,
i.e. significative differences were found among the medians of the models in
terms of disparity. A multiple comparison test show that the first improve-
ment is the best algorithm in terms of disparity, better or not significantly
worse than the others. In view of the above, the first improvement is chosen
as the best performing algorithm when the prior probability distributions of
data are skewed. The first improvement shows the best trade-off between per-
formance on different distributions of data and simplicity, while maintaining
privacy-preserving classification and reduced communication costs. However,
notice that the disparity in the performance among the different locations is
still an issue, and it increases when the skewness of data increases. Thus, in
the next chapter, we will go one step further in order to address this issue.
The key will be combining only similar knowledge, since combining all local
classifiers when there is a noticeable diversity in the knowledge contained in
the different models may be improved.
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Chapter 10

Training Algorithms on Skewed
Data using Island Models

In general terms, distributed learning algorithms aim to infer a global learner
that approximates the results one would get from a single, joint data source.
Note that this approach assumes that there is a single, global model that
could be induced from the distributed locations. Under this view, distribu-
tion is treated exclusively as a technical issue. However, there are deeper
implications. Real-world distributed data sets almost always present quite
strong differences between their partitions, e.g. buying patterns in differ-
ent supermarkets from different countries. In this chapter, we introduced a
novel proposal for distributed learning that requires no assumptions about
the statistical properties of the partitions of data. This novel algorithm is
based on the island model genetic algorithms. In the island model, several
populations are kept at the same time. From time to time, individuals move
from one population to another by migration. Hence, the various islands
maintain some degree of independence and interdependence from each other.
We believe that this idea is highly related to the topic in hand.

10.1 ISLAND MODEL GENETIC ALGORITHMS

Most genetic algorithms work with one large panmictic population. A pan-
mictic population is one where all individuals are potential partners. Those
genetic algorithms suffer from the problem that natural selection relies on
the fitness distribution over the whole population, i.e. it is based on global
knowledge (Gorges-Schleuter, 1991). Now we turn to the case in which the
population is viewed as the concept of keeping several panmictic subpopu-
lations at the same time. Each panmictic subpopulation evolves like a tra-
ditional genetic algorithm. The isolated populations may communicate by
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migration, that is from time to time individuals move from one population
to another population. This model is known under the name island model
(Gorges-Schleuter, 1991). Early studies of Grosso (Grosso, 1985) showed that
the subdivision of one large panmictic population into interacting subpopu-
lations leads to a performance improvement that will not be fully realized at
either of the two extremes of complete subpopulation interdependence (pan-
mixia) or complete subpopulation independence (no migration). One reason
for this is that the various islands maintain some degree of independence
and thus explore different regions of the search space while at the same time
sharing information by means of migration (Whitley, Rana, & Heckendorn,
1999).

10.2 SOME INSIGHTS ON SUBPOPULATION INTERDEPEN-
DECE AND INDEPENDENCE

The following experiment will shed light on the relation between subpopu-
lation interdependence and independence when the diversity of data across
partitions increases. For this purpose, assume a distributed setting with five
degrees of increasing skewness of data. Consider also the following proce-
dure: every site send a random individual of its subpopulation –migration–
to another random site in every generation. Figure 10.1 plots the average
percentage of individuals sent between sites that result in a decreasing rate
of error in the recipient site (this is just a result computed on the same setup
presented in Section 6, using the same datasets and scenarios). As can be
seen, the percentage of successful communications decreases according as the
skewness of the scenario increases. Namely, it is more cost effective to send
individuals between similar sites rather than dissimilar ones.

10.3 IMPLEMENTING THE ISLAND MODEL ON DISTRIBUTED
LEARNING ALGORITHMS

Optimally, a distributed learning algorithm should be aware of the distri-
bution of data in order to increase the rate of successful communications
between sites. The idea behind the island model will be helpful to give any
distributed learning algorithm some aware of the distribution of data. The ra-
tionale of this approach is based on the assumption that the migration stream
can be modulated by the differences between partitions. In the distributed
setting may occur different degrees of independence and interdependence be-
tween different sites. In the case of uniformly distributed data it is expected
low independence and high interdependence. Otherwise high independence
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Figure 10.1: Average percentage of successful crossings between sites , i.e.
successful communications.

and low interdependence. The idea that underlies this approach is to, in
some manner, cluster distributed sources of data to boost interdependence
between similar sites and promote independence –minimize communications–
between dissimilar ones. For this purpose, the matrix of distances between
sites proposed in Section 8.4 will be helpful. These distances can be trans-
lated into probabilities of communication between sites for migration. Thus,
the migration flow is modulated by distance –the shorter the distance, the
higher the chances of migration. Note that this approach permit commu-
nications between distant sites, but with low probability. This design max-
imizes communications between a priori related sites and minimizes those
communications between a priori unrelated sites. Thus, it is expected that
the number of spurious communication will be minimized whilst maximizing
valuable exchanges of individuals.

10.4 EXPERIMENTAL STUDY

The objective of this section is to experimentally evaluate the performance of
the island model on a distributed learning algorithm. Notice that the concept
of island model could be applied to any of the algorithms proposed in this
thesis. In particular, we will focus our attention of the implementation of the
distributed FVQIT proposed in Chapter 6. As a quick summary, the FVQIT
method is a supervised learning algorithm based on information theoretic
learning and vector quantization. The principle of vector quantization is to
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represent a dataset with a smaller number processing elements (PEs). The
task is to place the PEs in the input space. The most frequent class in
the neighborhood of the PE will attract it whilst the second most frequent
class of the PE will repel it. Thus, multiple attraction and repulsion forces
converge on each PE. The idea is to place the PEs in the frontier between
data samples from two different classes. The combination of the distributed,
partial solutions of the FVQIT in a comprehensive, global solution is not a
straightforward process. In order to overcome this difficulty, we proposed a
strategy to optimize the combination of models based on genetic algorithms
(see Chapter 6 for all the details about the implementation of the method).

10.4.1 MATERIALS AND METHODS

We compare the distributed method based on the island model against the
two extremes of complete subpopulation interdependence (panmixia, original
implementation of the DFVQIT) or complete subpopulation independence
(no migration). The algorithms are evaluated to classify the same twelve
datasets used in the experimentation of the DFVQIT (see Section 6.2.2 for
more details). In the distributed setting, training data have been scattered
across 5 different sites in which each site contains 10 PEs. The evaluation of
the methods has been done using holdout validation: 90% of data for training,
and 10% for testing. Additionally, 10% of the training data have been used
for validation. Experiments were run 10 times with random partitions of
the data set to ensure reliable results. We use the Kruskal-Wallis test to
check if there are significant differences for a level of significance α = 0.05. If
there are differences, then we apply a multiple comparison procedure to find
the methods which are not significantly different. Five different distributed
scenarios were considered. In each one of this scenarios, distributed data sets
present the following properties where the differences between partitions are
considered in terms of both prior probability shift and covariate shift;

— Level 1, very weak differences between partitions

— Level 2, weak differences between partitions

— Level 3, moderate differences between partitions

— Level 4, strong differences between partitions

— Level 5, very strong differences between partitions

Figures 10.2 and 10.3 show the different scenarios in the distributed set-
ting in terms of differences of probability of occurrence of classes (the darker
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the color of the bar the weaker the skewness). For example, in the very weak
scenario in Adult data set (see top right plot in Figure 10.2), the difference
across the sites in the prevalence of class 1 is under 2%. In the weak scenario,
the difference rise to around 10%. The present interpretation is valid for the
remaining classes and datasets included in this experimentation. Notice that
the y-axis is in logarithmic scale.

Similarly, Figures 10.4 and 10.5 show the different scenarios in the dis-
tributed setting in terms of differences of probability of occurrence of samples,
i.e. covariate shift. In this case, the differences are computed in terms of the
probability of every feature of a sample to belong to a site. In a very weak
scenario, it is expected that a sample may belong to any site with almost
equal probability. For example, in Abalone dataset (see top left plot in Fig-
ure 10.4), the difference in the feature 1 is below the 2%. On the contrary,
in the very strong scenario, the difference rises to 6%. These figures together
with Figures 10.2 and 10.3 enable an in depth analysis of the different data
sets in the different scenarios.

10.4.2 RESULTS

Figures 10.6 and 10.7 display the test performance error in complete subpopu-
lation interdependence (panmixia, original implementation of the DFVQIT),
complete subpopulation independence (no migration), and island model. Fig-
ure 10.8 summarizes these results by showing the average test error on the
twelve data sets.

10.4.3 DISCUSSION AND CONCLUSIONS

The original implementation of the DFVQIT (panmixia) obtains promising
results in basically uniform scenarios but shows a deterioration in its perfor-
mance when the skewness of the dataset increases. This trend is the opposite
than the DFVQIT without migration of individuals. These are logical results
of the fact that random partitioning scenarios elicit more general knowledge
whilst strong skewed scenarios elicit more specific knowledge. The implemen-
tation of the DFVQIT based on the island model exploits the advantages of
both general and specific knowledge, by weighting interdependence and in-
dependence between sites. In average, the island model is not statistically
significantly different from the original DFVQIT in the very weak (0.19%)
and weak (0.13%) scenarios. However, the island model improves the former
DFVQIT by 3.30% and 3.52% in strong and very strong scenarios, respec-
tively. On the other hand, the island model improves the model with no
migration by a large margin, more than 3% in every scenario. In this case,
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Figure 10.2: Maximum difference between sites in terms of prior probability
distributions of classes; prior probability drift or class imbalance problem.
The incremental skewness for the different scenarios is represented as stacked
bars. Part 1 of 2.
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Figure 10.3: Maximum difference between sites in terms of prior probability
distributions of classes; prior probability drift or class imbalance problem.
The incremental skewness for the different scenarios is represented as stacked
bars. Part 2 of 2.
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Figure 10.4: Maximum difference between sites in terms of probability of
occurrence of samples; covariate shift. The incremental skewness for the
different scenarios is represented as stacked bars. Part 1 of 2.
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Figure 10.5: Maximum difference between sites in terms of probability of
occurrence of samples; covariate shift. The incremental skewness for the
different scenarios is represented as stacked bars. Part 2 of 2.
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Figure 10.6: Test performance error in complete subpopulation interdepen-
dence (panmixia) displayed with solid lines and circle marks, complete sub-
population independence (no migration) displayed with dashed lines and
square marks, and island model displayed with dotted-dashed lines and tri-
angular marks. Part 1 or 2.
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Figure 10.7: Test performance error in complete subpopulation interdepen-
dence (panmixia) displayed with solid lines and circle marks, complete sub-
population independence (no migration) displayed with dashed lines and
square marks, and island model displayed with dotted-dashed lines and tri-
angular marks. Part 2 or 2. 175
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Figure 10.8: Average test performance error in complete subpopulation in-
terdependence (panmixia), complete subpopulation independence (no migra-
tion), and island model.

combining more knowledge from different sites improves the performance of
the overall model. Note that, if we would keep increasing the skewness of data
to the very limit, the performance of the island model and the model with
no migration would match. At that point, the skewness would be that high
that sharing knowledge between sites would not be worth it, i.e. actually, no
migration. Finally, note that the island model evaluated in this experimental
section is just a framework for dealing with data skewness. Thus, this very
same framework can be applied to any other distributed training algorithm,
as the two learning algorithms based on neural networks proposed in the
previous part of this thesis.
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Part IV

Bridging the Gap
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Chapter 11

Scaling Up Learning on Skewed
Data

In this chapter, we will briefly discuss the possibility of merging some of
the methods and techniques introduced in this thesis, in order to deal with
distributed systems where the challenge is not only the semantics of the
different partitions of data, but also the volume of data at each partition.

11.1 LEARNING FROM SKEWED DATA, FASTER

In the second part of this thesis, several techniques were introduced in order
to scale up learning algorithms. In general terms, the learning algorithms
presented aimed to infer a global learner that approximates the results one
would get from a single, joint data source. Thus, these algorithms have been
designed with accuracy and speed in mind. On the other hand, in the third
part of this thesis, we introduced several concepts related to the distribution
of the partitions of data. Real-world distributed data sets almost always
present quite strong differences between their partitions. Under this view,
the distribution of data was not treated as a mere technical issue, just because
it had deeper implications. The algorithms presented in the third part have
been designed with this circumstance in mind.

Thus, for argument’s sake, taking the example of buying patterns in dif-
ferent supermarkets from different countries, we may suspect that these pat-
terns could be different for different countries –so it would be desirable to
implement a distributed learning system that takes into account this issue,
using any of the techniques proposed in the third part of this thesis– but we
may also suspect that the volume of data in the different nodes could be very
large –so it would be desirable to implement a distributed learning system
that takes into account this other issue, using any of the algorithms proposed
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in the second part of this thesis. Note, however, that most of the methods
proposed in this thesis are fairly generic and could be applied in combination
with different strategies. Thus, using the different algorithms introduced in
the previous chapters, it would be easy to extend the implementation of these
algorithms for taking into account these two issues: large volume of data and
data shift between partitions. The idea would be learning from skewed data,
but faster –in a more scalable manner.

A general framework for achieving this would be a two-level approach,
where any of the algorithms proposed for scaling up learning is used in the
first, local stage; and any of the algorithms proposed for dealing with skew-
ness of data is used in the second, global stage. For example, if we take
the island model introduced in Chapter 10, in the experimental section we
basically trained a batch implementation of the FVQIT in each distributed
partition. However, if the volume of data had been very large, we could have
used the distributed implementation of the FVQIT introduced in Chapter 6
in each local partition. Note that the output of this algorithm is equivalent
in terms of model to the output of the batch algorithm. This is just an exam-
ple, it would be possible to make any other combination of algorithms. The
idea is that most of the techniques introduced in this thesis may be seen as
layers in a learning model. If one needs to tackle some specific problem for
a specific task, it would be a matter of adding the corresponding layer that
tackles the specific problem. Based on the results presented in this thesis,
where the distributed implementations of the different algorithms maintain
or even improve the performance of the original algorithms, we would ex-
pect that adding these different layers to the model will maintain, or even
improve, the overall performance of the system. In some way, by stacking
these layers, we propagate the advantages of each method to the next layer.
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Chapter 12

Final Conclusions of this Thesis

Machine learning aims to extract knowledge from data. Learning algorithms
enable a wide range of applications, from everyday tasks to bleeding edge ap-
plications. In the age of Big Data, with datasets rapidly growing in size and
complexity, machine learning techniques are fast becoming a core component
of large-scale data processing pipelines. Scalability has become one of those
core concept of Big Data. In the past, the theory and practice of machine
learning have been focused on monolithic data sets from where learning al-
gorithms generate a single model. Nowadays, several sources produce data
creating environments with several distributed data sets. Also big datasets
collected in a central repository in which processing imposes quite high com-
puting requirements. Then one actually thinks in distributed processing of
the data as a way to have a more powerful computing platform. This thesis
was intended to provide a brief and general framework of distributed machine
learning, starting by walking through the reasons for scaling up machine
learning to large data sets, the distributed learning setting, foundations of
distributed learning and knowledge to be combined, parallel and distributed
computing, current research on distributed machine learning, and assessment
of algorithms, from thinking about how to define performance to evaluating
the effectiveness of a distributed system.

It is a fact that most traditional learning algorithms cannot look at very
large datasets and plausibly find a good solution with reasonable require-
ments of computation. In this situation, distributed learning seems to be a
promising line of research. It represents a natural manner for scaling up al-
gorithms inasmuch as an increase of the amount of data can be compensated
by an increase of the number of sites wherein the data is processed. In many
cases and applications, data is distributed across different sites for several
reasons –e.g. privacy, storage cost, computational cost, etc– but the data is
considered to be generated by the same, uniform process. Actually, under

181



this view, distributed data is treated exclusively as a technical issue. Thus,
these algorithms should be designed with accuracy and speed in mind. In
this line of research, one part of the thesis was committed with four novel
distributed learning algorithms able to learn from very large datasets. The
first algorithm was a novel distributed training algorithm based on single-
layer neural networks and genetic algorithms. This algorithm showed good
performance for practical applications, but single-layer neural networks are
only capable of approximating linear problems, which may be enough in some
scenarios, but not in some others. On the other hand, the universal approx-
imation theorem for neural networks states that every continuous function
that maps intervals of real numbers to some output interval of real numbers
can be approximated arbitrarily closely by a multi-layer perceptron with just
one hidden layer. Thus, we expanded the concepts developed for the previous
algorithm to neural networks with one hidden layer. These two algorithms
are fast and accurate, making possible privacy-preserving classification by
not exchanging raw data across distributed locations but only the neural
networks. Furthermore, they minimize communications by using this ap-
proach since the size of the neural networks is negligible in comparison with
the size of the raw data. Also, these two algorithms are able to predict regres-
sion and classification problems. The next algorithm we introduced in this
thesis is specifically designed for classification; a novel distributed learning
algorithm built upon the Frontier Vector Quantization based on Information
Theory (FVQIT) method. The FVQIT was very effective in classification
problems but it shows poor training time performance. Thus, distributed
learning was appropriate to speed up training. Finally, we developed a novel
distributed one-class classification approach based on an extension of the ν-
SVM method. In this novel method, several models were considered, each
one determined using a given local data partition on a processor, and the
goal is to find a global model. The cornerstone of this method was the novel
mathematical formulation that makes the optimization problem separable
whilst avoid some data points considered as outliers in the final solution.
This is particularly interesting and important because the decision region
generated by the method will be unaffected by the position of the outliers
and will fit the data in a more natural manner.

In the next part of this thesis, the problem of learning in a distributed
machine learning setting was made more challenging. This part was commit-
ted to develop algorithms able to deal with skewed data as usually happens
in real-world distributed datasets that quite often present quite strong differ-
ences between their partitions, e.g. buying patterns in different supermarkets
from different countries. Yet in spite of its importance, we think it has not
been fully considered in the literature. In this part of the thesis, we pre-
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sented different techniques for learning under these circumstances. First, we
expanded the operation of the two distributed learning algorithms for single-
layer and two-layer artificial neural networks introduced in the previous part
of the thesis. With the aim of overcoming the issue of the algorithms deteri-
orating their performance when the distributions of data show skewness, we
took into account this skewness in order to propose several improvements of
the algorithms, based on distributing the computation of the genetic algo-
rithm. This modification of the algorithms led to better performance when
the distributions of data were different across the different locations of the
data. However, there was still something missing. In general terms, dis-
tributed learning algorithms aim to infer a global learner that approximates
the results one would get from a single, joint data source. Note that this
approach assumes that there is a single, global model that could be induced
from the distributed locations. Then, we introduced a novel proposal for
distributed learning that requires no assumptions about the statistical prop-
erties of the partitions of data. This novel algorithm is based on the island
model genetic algorithms. In the island model, several populations are kept
at the same time. From time to time, individuals move from one population
to another by migration. Hence, the various islands maintain some degree of
independence and interdependence from each other. This approach showed
promising results for different levels of skewness of data.

Finally, in the last part of the thesis, we focused our attention on bridging
the gap between the two scenarios we discussed during the thesis. For some
applications, it is quite often to find skewed partitions of data where the
partitions of data are also very large. In this scenarios, we proposed to
combine both approaches we presented in this thesis in order to deal with
the large volumes of data within partitions and the skewness of data across
partitions. One of the advantages of most of the methods presented in this
thesis is that they are quite generic and can be applied with a wide variety of
algorithms and applications, including the combination of these methods in
different layers in order to tackle different challenges of the problem at hand.
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Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation
and theory. In Numerical analysis (pp. 105–116). Springer.

Moreira, O., Valente, F., & Bekooij, M. (2007). Scheduling multiple in-
dependent hard-real-time jobs on a heterogeneous multiprocessor. In
Proceedings of the 7th acm & ieee international conference on embedded
software (pp. 57–66).

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodŕıguez, R., Chawla, N. V., &
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Appendix A

Resumen en Castellano

Según los últimos estudios, el volumen de datos generados globalmente au-
menta un 40% cada año. Aśı, algunas estimaciones sitúan el número de
documentos en la Web en torno a los 550 billones. El ritmo al que en la
actualidad se están almacenando datos en prácticamente todas las industrias
e instituciones, no tiene precedente en la historia, y ha creado la posibilidad
de utilizar estos datos con el objetivo de extraer información y conocimiento
de ellos. Sin embargo, el volumen de datos es tan grande que la utilización
de métodos manuales para su análisis es simplemente inconcebible. Aśı, em-
presas y organizaciones han tenido que hacer uso de técnicas y tecnoloǵıas
más avanzadas, siendo el aprendizaje automático una de las técnicas más
populares en la actualidad.

El objetivo fundamental del aprendizaje automático es extraer conoci-
miento a partir de datos, y tiene sus cimientos sobre conceptos de las cien-
cias de la computación, estad́ıstica, probabilidad, y optimización. Los difer-
entes algoritmos de aprendizaje automático posibilitan y aumentan el rango
de aplicaciones disponibles en la actualidad, desde aplicaciones relacionadas
con tareas diarias hasta aplicaciones de vanguardia y alta tecnoloǵıa. En
la era del Big Data, o datos masivos, con conjuntos de datos aumentando
frenéticamente en tamaño y complejidad, las diferentes técnicas del apren-
dizaje automático se han convertido, en los últimos años, en los compo-
nentes fundamentales de los grandes sistemas de procesamiento de datos.
Aśı, la escalabilidad de estos algoritmos se ha convertido en uno de los con-
ceptos centrales del Big Data. Sin embargo, los algoritmos de aprendizaje
automático más utilizados se han desarrollado en décadas pasadas, dónde el
único problema con el volumen de datos veńıa de la escasez de los mismos.
La escalabilidad no era un problema. Aśı, estos algoritmos son iterativos,
hacen múltiples pasadas sobre el conjunto de datos, y necesitan mantener
el conjunto de datos, completo, en memoria principal. En la actualidad,
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con conjuntos de datos alcanzando fácilmente la escala de los terabytes (1012

bytes), incluso una única pasada sobre los datos es muy costosa computa-
cionalmente, y, definitivamente, muchos conjuntos de datos son demasiado
grandes para almacenarse enteramente en memoria principal. Este hecho es
un buen ejemplo que demuestra la necesidad de implementar algoritmos de
aprendizaje máquina que consideren la escalabilidad de los mismos como un
tema central en su desarrollo.

En los últimos tiempos, la expansión de plataformas de computación de
alto rendimiento, de arquitectura distribuida y computación paralela ha rep-
resentado un hecho crucial para equilibrar el nivel de recursos necesarios y
cubrir la demanda de computación que ha representado el aumento masivo
en volumen y complejidad de los datos. Pero los algoritmos de aprendizaje
automático tienen que adaptarse a este nuevo paradigma de computación.
Esta tesis aborda el reto de desarrollar nuevos algoritmos de aprendizaje
distribuido y altamente escalables, y está organizada en cuatro partes relati-
vamente independientes.

I En la primera parte, se describe un marco general para el desarollo de
algoritmos de aprendizaje distribuido, empezando por las razones para
mejorar la escalabilidad de algoritmos de aprendizaje automático, con-
tinuando por los conceptos básicos y fundamentales de los algoritmos
distribuidos, y finalizando con una introducción de entornos de com-
putación paralela y distribuida, en particular el paradigma MapReduce
–un modelo de programación utilizado para dar soporte a la computación
paralela sobre grandes colecciones de datos en clústers de computadores.
Además, en esta parte, se hace una revisión de diferentes métodos y mo-
delos de aprendizaje distribuido encontrados en la literatura cient́ıfica.
Por último, se hace una revisión de diferentes medidas y procedimientos
para la evaluación de algoritmos distribuidos, ya que las medidas uti-
lizadas más habitualmente para la evaluación de algoritmos de apren-
dizaje automático no son suficientes para cubrir los diferentes ángulos
en los que se puede medir el rendimiento de un algoritmo distribuido.

II En la segunda parte, se presentan cuatro nuevos algoritmos de apren-
dizaje automático distribuido que son capaces de entrenar utilizando
conjuntos de datos de gran volumen. En ĺıneas generales, estos cua-
tro algoritmos aproximan el modelo global que se obtendŕıa si todos los
datos de entrenamiento estuviesen disponibles en un único conjunto –
aprendizaje automático tradicional. En muchos casos y aplicaciones, los
datos se encuentran distribuidos en diferentes localizaciones por varias
razones, por ejemplo por privacidad, coste de almacenamiento, coste
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computacional, etc; pero se considera que estos datos han sido generados
por el mismo proceso. De hecho, con esta interpretación, la distribución
de los datos se considera como un hecho exclusivamente técnico. Aśı,
los cuatro algoritmos que se presentan en esta parte de la tesis se han
diseñado e implementado principalmente para mejorar la velocidad de
entrenamiento de los diferentes modelos de aprendizaje.

— El primero de los algoritmos es una implementación distribuida de
un algoritmo de entrenamiento para redes de neuronas artificiales
de una capa. Las redes de neuronas artificiales son un paradigma
de aprendizaje inspirado en la forma en la que funciona el cerebro
de los animales. Una red de neuronas artificiales de una capa está
compuesta por una capa de entrada y una capa de salida, donde
las entradas están conectadas a las salidas mediante conexiones que
tienen asociadas pesos. Estos pesos son ajustados durante la fase de
entrenamiento. La red de neuronas utilizada para el desarrollo de
este algoritmo distribuido utiliza un algoritmo de aprendizaje que
es capaz de calcular los pesos de la red de forma anaĺıtica, lo que
hace que el proceso de entrenamiento sea muy rápido. Además, este
algoritmo presenta cierta propiedades que lo hacen muy apropiado
para un entorno distribuido. Sin embargo, todas estas caracteŕısti-
cas favorables son consecuencia de la utilización del error cuadrático
medio como función de error, en el que el proceso de optimización
está dirigido por mı́nimos cuadrados. Esta función es apropiada en
el caso de problemas de regresión, pero en problemas de clasificación
presenta ciertas limitaciones que impiden que el algoritmo obtenga
un mejor resultado más ajustado a las fronteras de decisión entre
clases. Aśı, con el objetivo de mejorar el rendimiento del algoritmo
distribuido en problemas de clasificación, se propone la combinación
de los diferentes modelos entrenados de forma local utilizando un
algoritmo genético. Los algoritmos genéticos hacen evolucionar una
población de individuos, en este caso particular las diferentes redes
de neuronas de una capa entrenadas en cada partición del conjunto
de datos, sometiéndola a acciones aleatorias semejantes a las que
actúan en la evolución biológica: mutaciones y recombinaciones
genéticas; aśı como también a una selección de acuerdo con algún
criterio, en función del cual se decide cuáles son los individuos más
adaptados, que sobreviven hasta la próxima generación, y cuáles
los menos aptos, que son descartados. Utilizando estos concep-
tos el algoritmo genético es capaz de optimizar una función más
apropiada para clasificación que el error cuadrático medio, como
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podŕıa ser el error de clasificación, mejorando la precisión del al-
goritmo distribuido para redes de una capa. La desventaja en la
implementación de un algoritmo genético durante la combinación
de las diferentes redes de una capa es que se añade una sobrecarga
en términos de computación al algoritmo, pero esta sobrecarga es
relativamente pequeña y en muchos casos no afecta de forma sus-
tancial al rendimiento y la escalabilidad del algoritmo distribuido
para redes de neuronas de una capa. Este pequeño coste computa-
cional es el precio a pagar por mejorar la precisión del algoritmo.

— El algoritmo distribuido para redes de una capa muestra un buen
rendimiento en términos de tiempo de entrenamiento y error con-
seguido. Sin embargo, una red de una capa es solamente capaz
de aproximar problemas lineales, lo cual puede ser suficiente en
algunos escenarios, pero no en todos. Con el objetivo de mejo-
rar el rendimiento del método en términos de error, en el sigu-
iente algoritmo distribuido que se propone en esta tesis, se utiliza
una red de neuronas con una capa oculta. Según el teorema de la
aproximación universal, una red de neuronas con una capa oculta
es suficiente para aproximar cualquier función continua. Aśı, uti-
lizando este tipo de red de neuronas artificiales y un algoritmo de
entrenamiento muy rápido basado en análisis de sensibilidad, im-
plementamos un nuevo algoritmo de aprendizaje distribuido para
redes con una capa oculta, o redes de dos capas. El procedimiento
que se ha seguido para desarrollar este nuevo algoritmo es muy
similar al utilizado en el caso del algoritmo distribuido para redes
de una capa. Aśı, también en este caso, se implementa un algo-
ritmo genético como mecanismo para la mejora del rendimiento,
en términos de error, del algoritmo durante la fase de combinación
de modelos. Sin embargo, a diferencia del caso anterior, este al-
goritmo genético también será de utilidad no sólo en problemas de
clasificación sino también en problemas de regresión. En el caso
espećıfico de clasificación, el problema es idéntico al presentado an-
teriormente al minimizar el error cuadrático medio; utilizando una
función objetivo más acorde como el error de clasificación, es posi-
ble mejorar la tasa de error durante el entrenamiento. Por otra
parte, añadir una capa adicional a la red de neuronas hace que la
función objetivo no sea convexa, existiendo el riesgo de que el pro-
ceso de entrenamiento no encuentre el mı́nimo global de la función,
sino simplemente un mı́nimo local. Este podŕıa ser el caso tanto
en clasificación como en regresión, y es aqúı cuando la utilización
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del algoritmo genético puede potencialmente dirigir el proceso de
entrenamiento hacia el mı́nimo global, o al menos un mı́nimo local
que sea más optimo que el conseguido localmente en las diferentes
particiones del conjunto de datos. Los resultados conseguidos con
este algoritmo demuestran que el algoritmo genético es efectivo en
muchos conjuntos de datos, mejorando los resultados de la simple
combinación de resultados locales. El algoritmo de aprendizaje dis-
tribuido para redes de dos capas muestra un mejor rendimiento en
términos de error que el algoritmo para redes de una capa, pero
el tiempo de entrenamiento de este algoritmo es considerablemente
mayor que el anterior. En general, la escalabilidad de un algoritmo
es un balance entre el tiempo de entrenamiento y el error cometido.

— El tercer algoritmo presentado en esta tesis es un algoritmo de clasi-
ficación que está basado en cuantificación vectorial y teoŕıa de la
información, cuyo nombre es FVQIT. La técnica de cuantificación
de vectores se usa para dividir el espacio de entradas en diferentes
regiones, y para cada región se define un elemento de procesado
que la representa. La idea fundamental de este algoritmo es situar
los diferentes elementos de procesado en la frontera de separación
entre clases. Para ello se utiliza la interpretación f́ısica de difer-
entes part́ıculas interactuando en el espacio de entrada, donde los
elementos de procesado son atráıdos por los datos pero repelidos
por otros elementos de procesado. Aśı, el objetivo es distribuir de
la forma más óptima posible estos elementos de procesados en el
espacio de entradas. En el paso siguiente, una vez que los datos
han sido asignados a su elemento de procesado más cercano, se
entrena una red de neuronas de una capa para clasificar los difer-
entes ejemplos en la cercańıa de los elementos de procesado. En
general, la idea es representar la estructura de los datos de en-
trada utilizando las fronteras entre clases, y a continuación crear
las fronteras de decisión entre clases utilizando modelos locales lin-
eales, que son eficientes para entrenar. Este algoritmo tiene una
fundamentación sólida y un buen rendimiento en términos de error
de clasificación. Sin embargo, el tiempo de entrenamiento es muy
elevado. Aśı, la implementación distribuida de este método es una
solución apropiada para acelerar el proceso de entrenamiento. La
idea del algoritmo distribuido es entrenar el algoritmo FVQIT en
cada partición de datos y, a continuación, combinar las diferentes
soluciones locales utilizando dos métodos: un algoritmo genético
o un método de agrupamiento estático (clustering). La utilización

201



de algoritmos genéticos para la combinación de resultados obtiene
mejores resultados en términos de error pero a costa de un coste
temporal y computacional mayor que la utilización de un método
de clustering. Aśı, teniendo en cuenta que los dos métodos tienen
ciertas ventajas pero ciertas desventajas, también se propone la
combinación de ambos métodos en dos niveles: una primera etapa
en la que se reduce el número de elementos de procesado antes de
la etapa combinación, y una segunda etapa en la que se combinan
todos los resultados locales que han sido previamente reducidos y
simplificados. Esta aproximación muestra un buen rendimiento en
términos de error de clasificación y tiempo de entrenamiento.

— El cuarto algoritmo de aprendizaje distribuido que se presenta es
un algoritmo de clasificación de una única clase, también conocida
como detección de anomaĺıas. En aprendizaje automático, en un
problema de clasificación de una clase el objetivo es identificar ob-
jetos de una clase espećıfica entre todos los objetos posibles, cuando
solamente se tiene acceso en el conjunto de entrenamiento a ejem-
plos de esa clase espećıfica. Este problema es diferente a una tarea
de clasificación tradicional donde el objetivo es diferenciar ejemplos
entre dos o más clases, pero el conjunto de entrenamiento contiene
ejemplos de todas ellas. El algoritmo distribuido presentado en esta
tesis para problemas de detección de anomaĺıas es una extensión
de una máquina de vectores de soporte que, gracias a una formu-
lación alternativa presentada en esta tesis, permite el aprendizaje
distribuido. Además, este método permite evitar algunos ejemplos
que se consideran anómalos en la solución final, haciendo que la
región de decisión construida por este algoritmo no se vea afectada
por la posición de estos ejemplos anómalos y contribuyendo a una
región de decisión más ajustada a los datos de entrenamiento.

III La tercera parte de esta tesis toma una dirección ligeramente difer-
ente a los algoritmos presentados en la segunda parte. Estos algorit-
mos hab́ıan sido diseñados e implementados para mejorar la escalabil-
idad, reduciendo el tiempo de entrenamiento y manteniendo, o mejo-
rando, el rendimiento de los algoritmos en términos de error. En esta
tercera parte, el problema de aprender de forma distribuida incluye
nuevas restricciones y retos que se observan en muchos conjuntos de
datos del mundo real. Aśı, estos conjuntos distribuidos normalmente
presentan diferencias significativas en las distribuciones de datos entre
sus diferentes particiones. Por ejemplo, los diferentes patrones de com-
portamiento de clientes y productos comprados en supermercados en
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diferentes páıses. En este caso, la distribución f́ısica de los datos no
puede considerarse una simple cuestión técnica; tiene más implicaciones
y afecta a la semántica de las distribuciones en las diferentes particiones
de datos. En esta parte de la tesis se hace una revisión a diferentes
métodos para evaluar las distribuciones de los datos en las diferentes
particiones: desde el porcentaje de ejemplos pertenecientes a las difer-
entes clases entre las diferentes particiones, hasta las distribuciones es-
tad́ısticas de las caracteŕısticas de entrada de los conjuntos de datos y,
finalmente, a la relación entre las entradas y las salidas de un modelo
de aprendizaje. Usando estos conceptos, en esta tesis proponemos dos
estrategias generales que permiten gestionar las diferentes distribuciones
de datos entre diferentes particiones de datos de una forma más eficiente
en términos de error.

— La primera estrategia está relacionada con la ejecución de la etapa
de combinación de los diferentes algoritmos distribuidos utilizando
un enfoque distribuido. Si asumimos que las distribuciones de los
datos entre las diferentes particiones no están sesgadas, la fase de
combinación de los modelos locales en los algoritmos presentados en
la segunda parte de esta tesis, podŕıa ejecutarse en un subconjunto
de datos en cualquiera de las particiones –ya que las propiedades es-
tad́ısticas de las particiones son las mismas. Sin embargo, si las par-
ticiones están sesgadas (por ejemplo, si la proporción de ejemplos
pertenecientes a una clase es muy diferente entre las particiones),
elegir una partición de datos u otra dirigirá el proceso de entre-
namiento hacia un conjunto sesgado de datos, es decir, no será un
ejemplo representativo del universo del problema en cuestión. Para
superar esta limitación, se propone la implementación distribuida
de los métodos de combinación presentados en la segunda parte de
esta tesis. En particular, en esta parte se presentan dos casos de
estudio utilizando los algoritmos de aprendizaje distribuido desar-
rollados anteriormente para redes de neuronas artificiales de una y
dos capas, utilizando una implementación distribuida de los algo-
ritmos genéticos utilizados en la fase de combinación de modelos
locales. Aśı, estos algoritmos genéticos son ejecutados sobre sub-
conjuntos extráıdos de todas las particiones de datos, no solamente
de una, asegurando una distribución más uniforme de los ejemplos
de entrenamiento y evitando sesgos en la fase de combinación.

— La segunda estrategia está relacionada con la optimización de al-
goritmos distribuidos en las diferentes particiones de datos. En
la primera estrategia, todas las particiones de datos contribúıan
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de igual forma al modelo final de una forma uniforme. Sin em-
bargo, si las distribuciones de datos son muy diferentes entre las
diferentes particiones, el proceso de aprendizaje podŕıa optimizarse
entrenando modelos espećıficos en cada grupo de particiones. Aśı,
las particiones que son más similares entre ellas, intercambiarán
más conocimiento que aquellas particiones que sean muy diferentes.
Esta estrategia se implementa en esta tesis utilizando una versión de
algoritmo genético conocida como modelo de isla. En este modelo,
se ejecuta un algoritmo genético en cada partición, y los cruces en-
tre diferentes individuos se producen solamente entre ciertas islas;
aquellas similares entre ellas. El modelo de islas es un balance entre
dos modelos más extremos: un algoritmo con conocimiento global
como el implementado en la estrategia previa, y un modelo con solo
conocimiento local y sin intercambio de conocimiento con ninguna
otra partición del conjunto de datos. En esta tesis, demostramos la
efectividad del modelo de islas utilizando como caso de estudio el al-
goritmo distribuido implementado sobre el FVQIT. Los resultados
muestran el buen rendimiento de esta estrategia tanto en términos
de error como de tiempo de entrenamiento.

IV Finalmente, la última parte de la tesis presenta algunas reglas generales
para la utilización de los algoritmos, métodos y técnicas presentadas en
las dos partes anteriores en un único marco común. Aśı, si suponemos
que las diferentes particiones del conjunto de datos tienen un gran vo-
lumen pero además existen diferencias notables entre la semántica de
las diferentes particiones, será necesario utilizar varios de los algoritmos
presentados en esta tesis. Por ejemplo, si las diferentes particiones del
conjunto de datos están sesgadas, será necesario utilizar alguna de las
técnicas presentadas en la tercera parte de esta tesis; pero si además
las diferentes particiones tienen un volumen de datos demasiado grande,
será necesario utilizar alguno de los algoritmos presentados en la segunda
parte de esta tesis (distribuyendo las diferentes particiones en datos en
más particiones sin fuese necesario).

En resumen, la implementación de algoritmos de aprendizaje distribuido
abre la puerta a multitud de aplicaciones. En una época en la que los conjun-
tos de datos están creciendo a un ritmo acelerado en tamaño y complejidad,
los algoritmos de aprendizaje automático se han convertido en partes fun-
damentales de los sistemas de procesamiento de datos a gran escala. El
propósito de esta tesis ha sido desarrollar un marco general para el desar-
rollo de algoritmos de aprendizaje distribuido, cubriendo las diferentes partes
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involucradas en la implementación eficiente de estos algoritmos, desde su con-
cepción hasta su evaluación.

205



206



Appendix B

Publications Supporting This
Thesis

DISTRIBUTED MACHINE LEARNING SETTING

— Peteiro-Barral, D., Guijarro-Berdiñas, B., & Pérez-Sánchez, B. (2011).
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