
1

Comput. Methods Appl. Mech. Engrg. 193 (2004) 893–911

www.elsevier.com/locate/cma
A low-order mixed finite element method for a class of
quasi-Newtonian Stokes flows.

Part II: a posteriori error analysis

Gabriel N. Gatica a,*, Mar�ıa Gonz�alez b, Salim Meddahi c

a GI2MA, Departamento de Ingenier�ıa Matem�atica, Universidad de Concepci�on, Casilla 160-C, Concepci�on, Chile
b Departamento de Matem�aticas, Universidade da Coru~na, 15071 A Coru~na, Spain

c Departamento de Matem�aticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain

Received 9 December 2002; received in revised form 8 September 2003; accepted 10 November 2003
Abstract

This is the second part of a work dealing with a low-order mixed finite element method for a class of nonlinear

Stokes models arising in quasi-Newtonian fluids. In the first part we showed that the resulting variational formulation is

given by a twofold saddle point operator equation, and that the corresponding Galerkin scheme becomes well posed

with piecewise constant functions and Raviart–Thomas spaces of lowest order as the associated finite element sub-

spaces. In this paper we develop a Bank–Weiser type a posteriori error analysis yielding a reliable estimate and propose

the corresponding adaptive algorithm to compute the mixed finite element solutions. Several numerical results illus-

trating the efficiency of the method are also provided.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We first recall from [5] the boundary value problem of interest. Indeed, let X be a bounded and simply

connected domain in R2 with Lipschitz-continuous boundary C. Our goal is to determine the velocity
u :¼ ðu1; u2Þt and the pressure p of a nonlinear Stokes fluid occupying the region X under the action of an

external force. More precisely, given f 2 ½L2ðXÞ�2 and g 2 ½H 1=2ðCÞ�2, we look for ðu; pÞ in appropriate spaces

such that
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� divðwðjrujÞru� pIÞ ¼ f in X;

divðuÞ ¼ 0 in X; and u ¼ g on C;
ð1:1Þ

where div and div are the usual vector and scalar divergence operators, ru is the tensor gradient of u, j � j is
the euclidean norm of R2, I is the identity matrix of R2�2, and w : Rþ ! Rþ is the nonlinear kinematic

viscosity function of the fluid. We remark that g 2 ½H 1=2ðCÞ�2 must satisfy the compatibility conditionR
C g � mds ¼ 0, where m is the unit outward normal to C.
We now let w : R2�2 ! R2�2 be the tensor defined by wðrÞ :¼ ðwðjrjÞrijÞ for all r 2 R2�2. Then, the mixed

variational formulation of (1.1), as deduced in [5], which introduces r :¼ wðruÞ � pI and t :¼ ru as further

unknowns, reads as follows: Find ðt; ðr; pÞ; ðu; nÞÞ 2 X1 �M1 �M such that

½A1ðtÞ; s� þ ½B1ðsÞ; ðr; pÞ� ¼ 0;

½B1ðtÞ; ðs; qÞ� þ ½Bðs; qÞ; ðu; nÞ� ¼ ½G; ðs; qÞ�;
½Bðr; pÞ; ðv; gÞ� ¼ ½F; ðv; gÞ�;

ð1:2Þ

for all ðs; ðs; qÞ; ðv; gÞÞ 2 X1 �M1 �M , where X1 :¼ ½L2ðXÞ�2�2
, M1 :¼ Hðdiv;XÞ � L2ðXÞ, M :¼ ½L2ðXÞ�2 � R,

and the operators A1 : X1 ! X 0
1, B1 : X1 ! M 0

1, and B : M1 ! M 0, and the functionals ðG;FÞ 2 M 0
1 �M 0, are

defined as follows:

½A1ðrÞ; s� :¼
Z
X
wðrÞ : sdx; ½B1ðrÞ; ðs; qÞ� :¼ �

Z
X
s : rdx�

Z
X
qtrðrÞdx; ð1:3Þ

½Bðs; qÞ; ðv; gÞ� :¼ �
Z
X
v � divsdxþ g

Z
X
trðsÞdx; ð1:4Þ

½G; ðs; qÞ� :¼ �hsm; giC and ½F; ðv; gÞ� :¼
Z
X
f � vdx; ð1:5Þ

for all r, s 2 X1, ðs; qÞ 2 M1, and ðv; gÞ 2 M .

Hereafter, ½�; �� stands for the duality pairing induced by the corresponding operators and functionals,

h�; �iC denotes the duality pairing of ½H�1=2ðCÞ�2 and ½H 1=2ðCÞ�2 with respect to the ½L2ðCÞ�2-inner product,
and Hðdiv;XÞ is the space of tensors s 2 ½L2ðXÞ�2�2

satisfying divðsÞ 2 ½L2ðXÞ�2. It is well known that

Hðdiv;XÞ, provided with the inner product hf; siHðdiv;XÞ :¼ hf; si½L2ðXÞ�2�2 þ hdivf; divsi½L2ðXÞ�2 , is a Hilbert

space, where h�; �i½L2ðXÞ�2�2 and h�; �i½L2ðXÞ�2 stand for the usual inner products of ½L2ðXÞ�2�2
and ½L2ðXÞ�2,

respectively. The other notations to be used in this paper are the same as those employed in [5].

In order to define the corresponding mixed finite element scheme, we now assume for simplicity that C is

a polygonal curve, and let fThgh>0 be a regular family of triangulations of X by triangles T of diameter hT
such that h :¼ maxfhT : T 2 Thg and X ¼ [fT : T 2 Thg. For each T 2 Th we let RT0ðT Þ be the local

Raviart–Thomas space of order zero, that is RT0ðT Þ :¼ span
1
0

� �
;

0
1

� �
;

x1
x2

� �� �
, where

x1
x2

� �
is a

generic vector of R2. In addition, given a nonnegative integer k and a subset S of R2, we let PkðSÞ be the
space of polynomials defined on S of degree 6 k.

Then we introduce the following finite element subspaces:

X1;h :¼ s 2 ½L2ðXÞ�2�2
: sjT 2 ½P0ðT Þ�2�2 8T 2 Th

n o
;

Mr
1;h :¼ s :¼ ðsijÞ 2 Hðdiv;XÞ : ðsi1si2ÞtjT 2 RT0ðT Þ8i 2 f1; 2g; 8T 2 Th

� �
;
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Mp
1;h :¼ fq 2 L2ðXÞ : qjT 2 P0ðT Þ 8T 2 Thg;

M1;h :¼ Mr
1;h �Mp

1;h;

Mu
h :¼ fv 2 ½L2ðXÞ�2 : vjT 2 ½P0ðT Þ�2 8T 2 Thg;

and

Mh :¼ Mu
h � R:

Hence, the Galerkin scheme associated with (1.2) reads: Find ðth; ðrh; phÞ; ðuh; nhÞÞ 2 X1;h �M1;h �Mh

such that

½A1ðthÞ; sh� þ ½B1ðshÞ; ðrh; phÞ� ¼ 0;

½B1ðthÞ; ðsh; qhÞ� þ ½Bðsh; qhÞ; ðuh; nhÞ� ¼ ½G; ðsh; qhÞ�;

½Bðrh; phÞ; ðvh; ghÞ� ¼ ½F; ðvh; ghÞ�;

ð1:6Þ

for all ðsh; ðsh; qhÞ; ðvh; ghÞÞ 2 X1;h �M1;h �Mh.

In [5] we proved that, under suitable assumptions on the nonlinear kinematic viscosity function w (see
Eqs. (1.2) and (1.3) in [5]), the continuous formulation (1.2) and the Galerkin scheme (1.6) are well posed.

In addition, we derived there the associated a priori error analysis and the corresponding rate of conver-

gence. We refer to Theorems 2.4, 3.1, and 3.2 in [5] for details.

On the other hand, we recall that the application of adaptive algorithms, based on a posteriori error

estimates, usually guarantees the quasi-optimal rate of convergence of the finite element solution to

boundary value problems. In addition, this adaptivity is specially necessary for nonlinear problems where no

a priori hints on how to build suitable meshes are available. To this respect, we have shown recently that the

combination of the usual Bank–Weiser approach from [1] with the analysis from [3,4] allows to derive fully
explicit and reliable a posteriori error estimates for the dual-mixed variational formulations (showing a two-

fold saddle point structure) of some linear and nonlinear problems (see, e.g. [2,6,7]). However, no a pos-

teriori error analysis has been developed yet for the nonlinear Stokes problems studied in [5]. Therefore, as a

natural continuation of our results in [5], in the present paper we apply the Bank–Weiser type a posteriori

error analysis mentioned above to derive reliable estimates for the mixed finite element scheme (1.6). The rest

of this work is organized as follows. In Section 2 we collect some basic results on Sobolev spaces and state the

main result of this paper. The proof of our a posteriori estimate, which makes use of the Ritz projection of

the error, is provided in Section 3. In Section 4 we prove the quasi-efficiency of the estimator and discuss on
suitable choices for the auxiliary functions needed for its computation. Finally, several numerical results

illustrating the good performance of the adaptive algorithm are reported in Section 5.
2. The main result

2.1. Preliminaries

Let us first introduce some notations. Given T 2 Th, we let EðT Þ be the set of its edges, and let Eh be the

set of all edges of the triangulation Th. In particular, we put EhðCÞ :¼ fe 2 Eh : e � Cg. Also, h�; �iHðdiv;T Þ
denotes the inner product of Hðdiv; T Þ, and mT stands for the unit outward normal to oT .

In addition, given a polygonal domain S � R2 and s 2 ð1;1Þ, the Sobolev space W 1;sðSÞ is the space of
functions v 2 LsðSÞ such that the first order distributional derivatives of v are functions of LsðSÞ (see [8]). It
is well known that W 1;sðSÞ endowed with the norm
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kvkW 1;sðSÞ :¼ kvksLsðSÞ

�
þ krvks½LsðSÞ�2

�1=s

is a Banach space. The trace Theorem ensures that there exists a linear continuous map c : W 1;sðSÞ 7!
LsðoSÞ such that cv ¼ vjoS for each v 2 W 1;sðSÞ \ CðSÞ. It is usual to denote W 1�1=s;sðoSÞ :¼ cðW 1;sðSÞÞ
which is a strict subspace of LsðoSÞ (see [8]). We also recall, by virtue of a Sobolev imbedding theorem, that
W 1;sðSÞ � CðSÞ if s > 2.

We now take in particular S :¼ T 2 Th. Then when s ¼ 2 we use the standard notation and write

H 1=2ðoT Þ instead of W 1=2;2ðoT Þ. The fractional Sobolev spaces H 1=2ðoT Þ may be equivalently defined by the

completion of the space of indefinitely differentiable functions in the norm:

kvkH1=2ðoT Þ ¼ kvk2L2ðoT Þ
�

þ jvj2H1=2ðoT Þ

�1=2

;

where

jvj2H1=2ðoT Þ :¼
Z
oT

Z
oT

jvðxÞ � vðyÞj2

jx� yj2
dsx dsy :

Let us now consider an edge e 2 EðT Þ. Then, H 1
0 ðeÞ stands for the closure in H 1ðeÞ of the space of

indefinitely differentiable functions with compact support in e. Finally, we recall that the interpolation

space with index 1/2 between H 1
0 ðeÞ and L2ðeÞ is H 1=2

00 ðeÞ (cf. [8]), and its norm is given by

kvk
H1=2

00
ðeÞ ¼ jvj2H1=2ðeÞ

�
þ
Z
e

v2ðxÞ
jx� a1j

dsx þ
Z
e

v2ðxÞ
jx� a2j

dsx

�1=2

;

where a1 and a2 are the end points of the edge e. The space H 1=2
00 ðeÞ may be alternatively defined as the

subspace of functions in H 1=2ðeÞ whose extensions by zero to the rest of oT belong to H 1=2ðoT Þ.
We will also need in the sequel the dual space of H 1=2ðoT Þ denoted here H�1=2ðoT Þ. It is important to

retain that the restriction of an element in H�1=2ðoT Þ over e does not belong in general to H�1=2ðeÞ, but to
the dual of H 1=2

00 ðeÞ, usually denoted by H�1=2
00 ðeÞ, and which is larger than H�1=2ðeÞ. According to this, in

what follows we denote by h�; �ie the duality pairing between ½H�1=2
00 ðeÞ�2 and ½H 1=2

00 ðeÞ�2 with respect to the

½L2ðeÞ�2-inner product. Further, we also denote by h�; �ioT the duality pairing between ½H�1=2ðoT Þ�2 and

½H 1=2ðoT Þ�2 with respect to the ½L2ðoT Þ�2-inner product.

2.2. The a posteriori error estimate

The main result of this paper is stated as follows.

Theorem 2.1. Let ~t :¼ ðt; ðr; pÞ; ðu; nÞÞ 2 X1 �M1 �M and ~th :¼ ðth; ðrh; phÞ; ðuh; nhÞÞ 2 X1;h �M1;h �Mh be
the solutions of the continuous and Galerkin formulations (1.2) and (1.6), respectively. Assume there exists
s > 2 such that g 2 ½H 1=2ðCÞ \ W 1�1=s;sðCÞ�2 and let uh be a function in ½H 1ðXÞ \ W 1;sðXÞ�2 such that
uhð�xÞ ¼ gð�xÞ for each vertex �x of Th lying on C. In addition, let r̂T 2 Hðdiv; T Þ be the unique solution of the
local problem

hr̂T ; siHðdiv;T Þ ¼ Fh;T ðsÞ 8s 2 Hðdiv; T Þ; ð2:1Þ

where Fh;T 2 Hðdiv; T Þ0 is defined by

Fh;T ðsÞ :¼
Z
T
s : thdxþ

Z
T
uh � divsdx� nh

Z
T
trðsÞdx� hsmT ;uhioT þ

X
e2EðT Þ\EhðCÞ

hsmT ;uh � gie:
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Then, there exists C > 0, independent of h, such that

k~t�~thkX1�M1�M 6Ch :¼ C
X
T2Th

h2T

( )1=2

; ð2:2Þ

where for each triangle T 2 Th we define

h2T :¼ kr̂Tk2Hðdiv;T Þ þ krh � wðthÞ þ phIk2½L2ðT Þ�2�2 þ kf þ divrhk2½L2ðT Þ�2 þ ktrðthÞk2L2ðT Þ: ð2:3Þ

Further, let ~uh be a function in ½L2ðXÞ�2 such that ~uh;T :¼ ~uhjT 2 ½H 1ðT Þ�2 for each T 2 Th. Then, there

exists ~C > 0, independent of h, such that

k~t�~thkX1�M1�M 6 ~C~h :¼ ~C
X
T2Th

~h2T

( )1=2

; ð2:4Þ

where

~h2T :¼ kth �r~uh;Tk
2

½L2ðT Þ�2�2 þ kuh � ~uh;Tk
2

½L2ðT Þ�2 þ h2T jnhj
2 þ

X
e2EðT Þ\EhðCÞ

kuh � gk2½H1=2

00
ðeÞ�2

þ kuh � ~uh;Tk
2

½H1=2ðoT Þ�2 þ krh � wðthÞ þ phIk2½L2ðT Þ�2�2 þ kf þ divrhk2½L2ðT Þ�2 þ ktrðthÞk2L2ðT Þ: ð2:5Þ

In particular, if we take ~uh ¼ uh, then (2.4) becomes

k~t�~thkX1�M1�M 6 Ĉĥ :¼ Ĉ
X
T2Th

ĥ2T

( )1=2

; ð2:6Þ

where

ĥ2T :¼ kth �ruhk
2

½L2ðT Þ�2�2 þ kuh � uhk
2

½L2ðT Þ�2 þ h2T jnhj
2 þ

X
e2EðT Þ\EhðCÞ

kuh � gk2½H1=2

00
ðeÞ�2

þ krh � wðthÞ þ phIk2½L2ðT Þ�2�2 þ kf þ divrhk2½L2ðT Þ�2 þ ktrðthÞk2L2ðT Þ: ð2:7Þ

The proof of Theorem 2.1 is given in the following section. We just remark here that the hypotheses on g

and uh guarantee, by virtue of the Sobolev imbedding theorems, that g and uh are both continuous and that

ðg� uhÞje 2 ½H 1=2
00 ðeÞ�2 for each e 2 EhðCÞ.
3. The proof of the main result

The proof itself is provided below in Section 3.2. For this purpose, we need to introduce first the Ritz

projection of the error.

3.1. Ritz projection of the error

Let X :¼ X1 �M1 and introduce the nonlinear saddle point operator A : X ! X 0 given by the first two

rows and two columns of (1.2), that is
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½Aðt; ðr; pÞÞ; ðs; ðs; qÞÞ� :¼ ½A1ðtÞ; s� þ ½B1ðsÞ; ðr; pÞ� þ ½B1ðtÞ; ðs; qÞ�;
for all ðt; ðr; pÞÞ, ðs; ðs; qÞÞ 2 X .

Then we define the Ritz projection of the error, with respect to the inner product of X , as the unique

ð�t; �r; �pÞ 2 X such that

hð�t; �r; �pÞ; ðs; s; qÞiX ¼ ½Aðt; ðr; pÞÞ; ðs; ðs; qÞÞ� � ½Aðth; ðrh; phÞÞ; ðs; ðs; qÞÞ� þ ½Bðs; qÞ; ðu; nÞ � ðuh; nhÞ�
8ðs; ðs; qÞÞ 2 X ; ð3:1Þ

where hð�t; �r; �pÞ; ðs; s; qÞiX :¼ h�t; si½L2ðXÞ�2�2 þ h�r; siHðdiv;XÞ þ h�p; qiL2ðXÞ.
The following lemma provides a suitable upper bound for kð�t; �r; �pÞkX .

Lemma 3.1. For each T 2 Th, let r̂T 2 Hðdiv; T Þ be the unique solution of the local problem (2.1). Then there
holds

kð�t; �r; �pÞk2X 6
X
T2Th

kr̂Tk2Hðdiv;T Þ

n
þ krh � wðthÞ þ phIk2½L2ðT Þ�2�2 þ ktrðthÞk2L2ðT Þ

o
: ð3:2Þ
Proof. From the first two equations of (1.2) we have

½Aðt; ðr; pÞÞ; ðs; ðs; qÞÞ� þ ½Bðs; qÞ; ðu; nÞ� ¼ �hsm; giC;
and hence

hð�t; �r; �pÞ; ðs; s; qÞiX ¼ �hsm; giC � ½Aðth; ðrh; phÞÞ; ðs; ðs; qÞÞ� � ½Bðs; qÞ; ðuh; nhÞ�; ð3:3Þ
for all ðs; ðs; qÞÞ 2 X .

According to the definitions of the operators A and B, we deduce from (3.3) that

�t ¼ rh � wðthÞ þ phI; �p ¼ trðthÞ; ð3:4Þ
and

h�r; siHðdiv;XÞ ¼ �hsm; giC þ
Z
X
s : th dxþ

Z
X
uh � divsdx� nh

Z
X
trðsÞdx; ð3:5Þ

for all s 2 Hðdiv;XÞ.
On the other hand, using Gauss�s formula on each T 2 Th and on X, we obtainX

T2Th

hsmT ;uhioT ¼
X
T2Th

Z
T
ruh : sdx

�
þ
Z
T
uh � divsdx

�
¼

Z
X
ruh : sdxþ

Z
X
uh � divsdx ¼ hsm;uhiC;

that is

hsm;uhiC �
X
T2Th

hsmT ;uhioT ¼ 0: ð3:6Þ

In addition, since ðuh � gÞje 2 ½H 1=2
00 ðeÞ�2 for each e 2 EhðCÞ, we can write

hsm;uh � giC ¼
X

e2EhðCÞ
hsm;uh � gie: ð3:7Þ

Then, including (3.6) into the right hand side of (3.5), and using (3.7) and the fact that

� 1

2
k�rk2Hðdiv;XÞ ¼ min

s2Hðdiv;XÞ

1

2
ksk2Hðdiv;XÞ

�
� h�r; siHðdiv;XÞ

�
;
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we find that

� 1

2
k�rk2Hðdiv;XÞ ¼ min

s2Hðdiv;XÞ

X
T2Th

QT ðsT Þ
( )

;

where sT is the restriction of s to the triangle T , and QT ðsT Þ :¼ 1
2
ksk2Hðdiv;T Þ �Fh;T ðsT Þ.

Next, since Hðdiv;XÞ is contained in fs 2 ½L2ðXÞ�2�2
: sT 2 Hðdiv; T Þ 8T 2 Thg, it follows that

� 1

2
k�rk2Hðdiv;XÞ P

X
T2Th

min
sT2Hðdiv;T Þ

QT ðsT Þ
� �

¼ � 1

2

X
T2Th

kr̂Tk2Hðdiv;T Þ:

This inequality and (3.4) yield (3.2) and complete the proof. h
3.2. Proof of Theorem 2.1

We begin with the main a posteriori error estimate.
Lemma 3.2. There exists C > 0, independent of h, such that

k~t�~thkX1�M1�M 6Ch:
Proof. We first recall from the proof of Theorem 2.4 in [5] that DA1ð~rÞ is a uniformly bounded and uni-

formly elliptic bilinear form on X1 � X1, for all ~r 2 X1, and that the operators B and B1 satisfy the corre-

sponding continuous inf–sup conditions. Therefore, the linear operator obtained by adding the three

equations of the left hand side of (1.2), after replacing A1 by the Gâteaux derivative DA1ð~rÞ at any ~r 2 X1,

satisfies a global inf–sup condition with a constant ~C > 0, independent of ~r.
In particular, we consider ~r 2 X1 such that DA1ð~rÞðt� th; sÞ ¼ ½A1ðtÞ; s� � ½A1ðthÞ; s� for all s 2 X1, and

apply the above inf–sup condition to the error~t�~th, thus obtaining

1

~C
k~t�~thkX1�M1�M 6 sup

k~sk6 1

½Aðt; ðr; pÞÞ; ðs; ðs; qÞÞ�
n

� ½Aðth; ðrh; phÞÞ; ðs; ðs; qÞÞ�

þ ½Bðs; qÞ; ðu� uh; n� nhÞ� þ ½Bðr� rh; p � phÞ; ðv; gÞ�
o
;

where~s :¼ ðs; ðs; qÞ; ðv; gÞÞ.
Using now the Ritz projection ð�t; �r; �pÞ 2 X (cf. (3.1)), the definition of the operator B, and the third

equations of the continuous and Galerkin formulations (1.2) and (1.6), respectively, the above estimate

becomes

1

~C
k~t�~thkX1�M1�M 6 sup

k~sk6 1

hð�t; �r; �pÞ; ðs; s; qÞiX
�

þ
Z
X
ðf þ divrhÞ � vdx

�
: ð3:8Þ

Finally, (3.8), Lemma 3.1, and Cauchy–Schwarz�s inequality, conclude the proof. h

We provide now a priori estimates for the solution of the local problem (2.1).
Lemma 3.3. Let uh and ~uh be as indicated in Theorem 2.1. Then there exists C > 0, independent of h and T ,
such that
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kr̂Tk2Hðdiv;T Þ 6C kth

(
�r~uh;Tk

2

½L2ðT Þ�2�2 þ kuh � ~uh;Tk
2

½L2ðT Þ�2 þ h2T jnhj
2

þ
X

e2EðT Þ\EhðCÞ
kuh � gk2½H1=2

00
ðeÞ�2 þ kuh � ~uh;Tk

2

½H1=2ðoT Þ�2

)
: ð3:9Þ

Furthermore, for any z 2 ½H 1ðXÞ \ W 1;sðXÞ�2, with s > 2, such that z ¼ g on C, we get

kr̂Tk2Hðdiv;T Þ 6C kth
n

�rzk2½L2ðT Þ�2�2 þ kuh � zk2½L2ðT Þ�2 þ h2T jnhj
2 þ kJh;T ðzÞk2½H1=2ðoT Þ�2

o
; ð3:10Þ

where Jh;T ðzÞ :¼
0 on oT \ C;
z� uh otherwise:

�

Proof. We recall from (2.1) that kr̂TkHðdiv;T Þ ¼ kFh;TkHðdiv;T Þ0 , where

Fh;T ðsÞ :¼
Z
T
s : th dxþ

Z
T
uh � divsdx� nh

Z
T
trðsÞdx� hsmT ;uhioT þ

X
e2EðT Þ\EhðCÞ

hsmT ;uh � gie:

ð3:11Þ
Then, using that hsm;uhioT ¼ hsm;uh � ~uh;T ioT þ hsm; ~uh;T ioT , applying Gauss�s formula to the term

hsm; ~uh;T ioT , and replacing back into (3.11), we get (3.9).

The proof of (3.10) is similar. We just need to observe that

�hsmT ;uhioT þ
X

e2EðT Þ\EhðCÞ
hsmT ;uh � gie ¼ �hsmT ; zioT þ hsmT ; z� uhioT þ

X
e2EðT Þ\EhðCÞ

hsmT ;uh � zie

¼ �hsmT ; zioT þ hsmT ; Jh;T ðzÞioT ;

and then proceed as before, applying now Gauss�s formula to hsmT ; zioT . h

Consequently, the proof of Theorem 2.1 follows straightforwardly from Lemma 3.2 and the estimate

(3.9) (cf. Lemma 3.3).

At this point we observe that it would also be desirable to obtain an efficiency result for the a posteriori

error estimate. This basically means to be able to prove the existence of a constant C > 0 such that
h6Ck~t�~thk. As we show next, we do not prove the above inequality but just a related result.
4. Quasi-efficiency and choice of uh and ~uh

We remark first that Theorem 2.1 and Lemma 3.1 do not require any further assumptions on the given

functions uh and ~uh. However, we show now in Section 4.1 that h (cf. Theorem 2.1) becomes efficient up to

the traces of ðu� uhÞ on the edges of Th. This property of the a posteriori error estimator leads us to the
concept of quasi-efficiency, which restricts the possible choices of uh. We also notice that the introduction of

the second auxiliary function ~uh yields an additional degree of freedom for the definition and computation

of the local estimator. We refer again to these points in Section 4.2 below.

4.1. Quasi-efficiency

It is well known that the Bank–Weiser type a posteriori error analysis does not yield efficiency, and that it

is possible to derive an explicit lower bound of the error only through the use of another estimator, usually
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of residual type. Nevertheless, motivated by the a priori estimate (3.10) (cf. Lemma 3.3), we prove next that
the reliable estimate h is quasi-efficient, which means that it is efficient up to a term depending on the traces

ðu� uhÞ on the edges e of Th.

Lemma 4.1. Let uh be as stated before, and assume that u 2 ½W 1;sðXÞ�2, with s > 2. Then there exists C > 0,
independent of h, such that for all T 2 Th

h2T 6C kt
n

� thk2½L2ðT Þ�2�2 þkr�rhk2Hðdiv;T Þ þkp�phk2L2ðT Þ þku�uhk2½L2ðT Þ�2 þh2T jn�nhj2þkJh;T ðuÞk2½H1=2ðoT Þ�2
o
;

ð4:1Þ

and hence

h2 6C k~t
(

�~thk2X1�M1�M þ
X
T2Th

kJh;T ðuÞk2½H1=2ðoT Þ�2

)
: ð4:2Þ
Proof. The first equation of (1.2) yields r ¼ wðtÞ � pI in X. In addition, from the second equation of (1.2)

we easily get n ¼ 0 and trðtÞ ¼ 0 in X. Then, taking s 2 ½C1
0 ðXÞ�2�2

in this equation, we deduce that t ¼ ru

in X, and u ¼ g on C, whence u 2 ½H 1ðXÞ�2. Also, it follows from the third equation of (1.2) that divr ¼ �f

in X and
R
X trðrÞdx ¼ 0.

Then, applying (3.10) (cf. Lemma 3.3) with z ¼ u, we deduce that

kr̂Tk2Hðdiv;T Þ 6C kth
n

� tk2½L2ðT Þ�2�2 þ kuh � uk2½L2ðT Þ�2 þ h2T jn� nhj2 þ kJh;T ðuÞk2½H1=2ðoT Þ�2
o
: ð4:3Þ

On the other hand, we have

krh � wðthÞ þ phIk½L2ðT Þ�2�2 6 krh � rk½L2ðT Þ�2�2 þ kr� wðthÞ þ phIk½L2ðT Þ�2�2

6 krh � rk½L2ðT Þ�2�2 þ kwðtÞ � wðthÞk½L2ðT Þ�2�2 þ kphI� pIk½L2ðT Þ�2�2

6Cfkr� rhk½L2ðT Þ�2�2 þ kt� thk½L2ðT Þ�2�2 þ kp � phkL2ðT Þg; ð4:4Þ

where the term kwðtÞ � wðthÞk½L2ðT Þ�2�2 has been bounded using the Lipschitz continuity of the nonlinear

operator A1 (restricted to the triangle T 2 Th).

Next, it is easy to see that

kf þ divrhk½L2ðT Þ�2 6 kr� rhkHðdiv;T Þ and ktrðthÞkL2ðT Þ 6 kt� thk½L2ðT Þ�2�2 : ð4:5Þ

Therefore, (4.3)–(4.5), and the definition of hT (cf. Theorem 2.1), imply (4.1).

Finally, the quasi-efficiency of h (given by (4.2)) is obtained summing up (4.1) over all the triangles

T 2 Th. h
4.2. Further comments and choice of uh and ~uh

We observe that the solution of the local problem (2.1) lives in the infinite dimensional space Hðdiv; T Þ.
This implies that (2.1) must be solved approximately by using, for instance, the h or the h� p version of the
finite element method, which yields approximations of the local indicators hT (and hence of h). Never-

theless, the main property of h, as proved by Lemma 4.1, is that it constitutes a quasi-efficient and reliable a

posteriori error estimate.
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Alternatively, the advantage of ~h and ĥ, which are not necessarily quasi-efficient, lies on the fact that they
do not require neither the exact nor any approximate solutions of the local problems (2.1), and hence they

constitute fully explicit reliable a posteriori error estimates.

Now, concerning the choice of uh and ~uh, and because of (4.2) (cf. Lemma 4.1), we first realize that the

traces uhjoT have to be as close as possible to the exact traces ujoT for all T 2 Th. Certainly, since the exact

solution u is not known, the above criterion must be understood in an empirical sense. Also, although a

priori uh and ~uh are not necessarily related, the terms kuh � ~uh;Tk
2

½H1=2ðoT Þ�2 appearing in the definition of ~hT
suggest that these functions should be close to each other as well. Further, since the restrictions of ~uh on the

triangles T 2 Th can be defined independently, one may choose these local functions so that the compu-
tation of ~hT becomes simpler.

According to the above, for each T 2 Th we suggest to take ~uh;T as the function in ½CðT Þ�2 satisfying the

following conditions:

1. ~uh;T 2 ½P1ðT Þ�2.
2. r~uh;T ¼ thjT .
3. ~uh;T ð�xT Þ ¼ uhjT , where �xT is the barycenter of the triangle T .

We remark that ~uh;T is uniquely determined by the above conditions, which yield a straightforward

computation of this function. Certainly, the terms kth �r~uh;Tk½L2ðT Þ�2�2 now disappear from the definition of

the local indicator ~hT (cf. Theorem 2.1).

Then, we take uh as the continuous average of the local functions ~uh;T . More precisely, uh 2 ½CðXÞ�2 is the
unique function satisfying the following conditions:

1. uhjT 2 ½P1ðT Þ�2 for all T 2 Th.

2. uhð�xÞ ¼ gð�xÞ for each vertex �x of Th lying on C.
3. For each vertex �x ofTh lying in X, uhð�xÞ is the weighted average of the values ~uh;T ð�xÞ on all the triangles

T 2 Th to which �x belongs. The weighting here is either constant or with respect to the areas of those

triangles.

We end this section by observing that the H 1=2-norms appearing in the definition of ~hT (cf. Theorem 2.1)

can be bounded by using the interpolation theorem. In particular, given T 2 Th, e 2 EðT Þ, and q 2
½H 1

0 ðeÞ�
2
, we have

kqk2½H1=2

00
ðeÞ�2 6 kqk½L2ðeÞ�2kqk½H1

0
ðeÞ�2 :
5. Numerical results

In this section we provide some numerical examples illustrating the performance of the mixed finite

element scheme (1.6) and the explicit a posteriori error estimate given in Theorem 2.1.

In what follows, N is the number of degrees of freedom defining the subspaces X1;h, M1;h, and Mh, that is

N :¼ 7 (number of triangles of Th) + 2 (number of edges of Th) + 1.
Further, the individual and total errors are defined as follows:

eðtÞ :¼ kt� thk½L2ðXÞ�2�2 ; eðrÞ :¼ kr� rhkHðdiv;XÞ;

eðpÞ :¼ kp � phkL2ðXÞ; eðuÞ :¼ ku� uhk½L2ðXÞ�2 ; eðnÞ :¼ jn� nhj;



G.N. Gatica et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 893–911 903

11
and

e :¼ f½eðtÞ�2 þ ½eðrÞ�2 þ ½eðpÞ�2 þ ½eðuÞ�2 þ ½eðnÞ�2g1=2;
where ðt; ðr; pÞ; ðu; nÞÞ and ðth; ðrh; phÞ; ðuh; nhÞÞ are the unique solutions of the continuous and discrete

mixed formulations (1.2) and (1.6), respectively.

In addition, given two consecutive triangulations with degrees of freedom N and N 0, and corresponding

total errors given by e and e0, the experimental rate of convergence is defined by c :¼ �2 logðe=e0Þ
logðN=N 0Þ.

Now, the a posteriori error estimate to be used in the mesh refinement process for the computation of the

solutions of (1.6) is the reliable one given by ~h (see (2.4) and (2.5)) with the functions uh and ~uh defined in

Section 4.2.
Table 1

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the uniform refinement (Example 1)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

89 0.9436 3.4698 0.7774 0.4146 3.8782 0.9546 –

337 0.7135 4.7834 0.4239 0.1900 4.9657 0.9784 –

1313 0.4901 5.2289 0.2252 0.0890 5.3116 0.9898 –

5185 0.2970 4.2814 0.1164 0.0435 4.3211 0.9936 0.2949

20 609 0.1622 2.7426 0.0577 0.0216 2.7622 0.9949 0.6466

82 177 0.0838 1.5084 0.0278 0.0108 1.5181 0.9953 0.8650

Table 2

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the adaptive refinement (Example 1)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

89 0.9436 3.4698 0.7774 0.4146 3.8782 0.9546 –

211 0.8055 4.8320 0.6367 0.2258 5.0337 0.9824 –

333 0.6519 5.2927 0.5994 0.1565 5.3888 0.9962 –

455 0.5517 4.3776 0.5906 0.1420 4.4389 1.0034 1.1960

577 0.5071 2.9355 0.5876 0.1394 2.9931 1.0155 3.2177

699 0.4949 1.9459 0.5870 0.1390 2.0176 1.0391 3.8708

821 0.4927 1.5886 0.5869 0.1390 1.6724 1.0579 2.1119

2681 0.3159 0.8790 0.3271 0.0686 0.9549 1.0388 0.9777

4079 0.2116 0.6971 0.1888 0.0425 0.7565 0.9964 1.3086

10 359 0.1356 0.4149 0.1126 0.0252 0.4619 0.9775 1.1000

16 738 0.1078 0.3373 0.0905 0.0193 0.3727 0.9822 0.8737

40 921 0.0684 0.2080 0.0551 0.0123 0.2324 0.9730 1.0783

69 385 0.0536 0.1674 0.0422 0.0093 0.1866 0.9701 0.8428

Table 3

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the uniform refinement (Example 2)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

89 0.5597 1.2555 0.7527 0.6447 1.4444 1.1732 –

337 0.3630 0.9359 0.3959 0.3214 1.0686 1.0536 0.6140

1313 0.2089 0.8348 0.1932 0.1597 0.8978 0.9983 0.3354

5185 0.1126 0.8025 0.0908 0.0796 0.8253 0.9928 0.1306

20 609 0.0588 0.7208 0.0436 0.0397 0.7283 0.9964 0.1759

82 177 0.0301 0.5608 0.0214 0.0199 0.5634 0.9982 0.3686



Table 4

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the adaptive refinement (Example 2)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

89 0.5597 1.2555 0.7527 0.6447 1.4444 1.1732 –

326 0.3530 0.9306 0.3916 0.3204 1.0579 1.0555 –

448 0.3020 0.9360 0.3363 0.2679 1.0209 1.0514 –

570 0.2917 0.9455 0.3311 0.2628 1.0177 1.0573 –

692 0.2893 0.8907 0.3306 0.2624 0.9636 1.0660 0.4794

814 0.2887 0.7753 0.3305 0.2623 0.8570 1.0837 1.2414

936 0.2885 0.6586 0.3305 0.2623 0.7528 1.1075 1.5458

1491 0.2309 0.4710 0.2250 0.1946 0.5857 1.0296 1.3913

2645 0.1596 0.3415 0.1491 0.1281 0.4198 1.0127 1.2198

6376 0.1184 0.2209 0.1044 0.0918 0.2912 0.9842 0.8962

12 859 0.0758 0.1564 0.0658 0.0577 0.1975 0.9854 1.1036

20 797 0.0650 0.1184 0.0555 0.0496 0.1580 0.9759 0.9680

49 037 0.0398 0.0802 0.0330 0.0294 0.1033 0.9663 1.0146

78 877 0.0338 0.0607 0.0281 0.0253 0.0820 0.9636 0.9834

Fig. 1. Total error e for uniform and adaptive refinements (Example 1).

Fig. 2. Total error e for uniform and adaptive refinements (Example 2).
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The corresponding adaptive algorithm, which applies a usual procedure from [10], reads as follows:

1. Start with a coarse mesh Th.

2. Solve the discrete problem (1.6) for the actual mesh Th.

3. Compute ~hT for each triangle T 2 Th.

4. Evaluate stopping criterion and decide to finish or go to next step.

5. Use blue–green procedure to refine each T 0 2 Th whose indicator ~hT 0 satisfies

~hT 0 P 1
2
maxf~hT : T 2 Thg:

6. Define resulting mesh as actual mesh Th and go to step 2.

The numerical results presented here were obtained in a Compaq Alpha ES40 Parallel Computer using a

MATLAB code. Some aspects of this computational implementation and further details on the solution of

(1.6) will be reported in a separate work.
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Fig. 3. Adapted intermediate meshes with 577, 4079, and 16 738 degrees of freedom, respectively, for Example 1.
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We first consider the linear version of the boundary value problem (1.1) on the square X :¼ ð0; 2Þ�
ð0; 2Þ. We take the kinematic viscosity function w � 1, and choose the data f and g so that the exact

solution of (1.1) is, respectively, for Examples 1 and 2,

u1ðxÞ :¼ ð�ð4:1� x1 � x2Þ�1=3
; ð4:1� x1 � x2Þ�1=3Þt; p1ðxÞ :¼ x1 þ x2;
Table 5

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the uniform refinement (Example 3)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

69 5.2794 10.7222 5.7792 1.7154 12.0815 1.1081 –

257 3.1864 8.3151 3.7115 0.6670 8.3606 1.1566 0.4948

993 2.7048 7.0207 3.3386 0.5004 6.8517 1.2036 0.2356

3905 2.3132 4.7988 2.5155 0.2964 5.1273 1.1504 0.4894

15 489 2.1680 3.4936 1.9672 0.1642 4.3630 1.0454 0.3732
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Fig. 4. Adapted intermediate meshes with 570, 6376, and 20 797 degrees of freedom, respectively, for Example 2.
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and

u2ðxÞ :¼ ð�ð4:01� x1 � x2Þ3=4; ð4:01� x1 � x2Þ3=4Þt; p2ðxÞ :¼ x1 þ x2;

for all x :¼ ðx1; x2Þ 2 X. We notice that u1 and u2 are divergence free in X and singular in an exterior

neighborhood of the point ð2; 2Þ.
In Tables 1–4, we give the errors for each unknown (except eðnÞ, which converges very rapidly to zero),

the error estimate ~h, the effectivity index e=~h, and the experimental rate of convergence c for the uniform

and adaptive refinements. The individual and global errors are computed on each triangle using a 7 points

Gaussian quadrature rule (see [9]). We observe here that the effectivity indexes are bounded above and

below, which confirms the reliability of the a posteriori estimate ~h (cf. Theorem 2.1), and provides
Table 6

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the adaptive refinement (Example 3)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

69 5.2794 10.7222 5.7792 1.7154 12.0815 1.1081 –

202 3.2431 9.6118 4.3531 0.8386 8.1037 1.3661 0.3538

326 1.8141 5.8557 1.1372 0.3873 6.0926 1.0253 2.3911

528 1.1815 3.7349 0.2741 0.2353 4.1806 0.9410 1.9183

730 0.8565 2.3970 0.2993 0.2173 2.8618 0.8988 2.6230

1667 0.5601 1.5001 0.2795 0.1477 1.8178 0.8979 1.1017

3590 0.3975 1.0074 0.1671 0.1134 1.2672 0.8694 1.0246

9034 0.2528 0.6283 0.0978 0.0717 0.8054 0.8543 1.0200

15 492 0.1893 0.4895 0.0690 0.0531 0.6230 0.8539 0.9542

36 185 0.1265 0.3115 0.0468 0.0355 0.4049 0.8427 1.0473

Table 7

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the uniform refinement (Example 4)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

69 5.5291 20.7907 6.9546 1.6773 20.9411 1.0827 –

257 3.7377 14.9927 3.5568 0.7641 15.4037 1.0305 0.5421

993 2.9702 11.6530 3.2730 0.5219 11.8187 1.0554 0.3568

3905 2.4196 7.9531 2.4870 0.2999 8.3101 1.0448 0.5292

15 489 2.2007 5.1378 1.9601 0.1646 5.8258 1.0171 0.5547

Table 8

Individual errors, error estimate ~h, effectivity index, and rate of convergence for the adaptive refinement (Example 4)

N eðtÞ eðrÞ eðpÞ eðuÞ ~h e=~h c

69 5.5291 20.7907 6.9546 1.6773 20.9411 1.0827 –

111 5.3733 17.1622 6.6382 1.5643 17.6647 1.0890 0.6916

317 4.3304 14.4414 6.3571 1.2294 13.3123 1.2328 0.3026

878 3.0736 10.7921 4.8276 0.7634 9.6218 1.2721 0.5758

1109 1.2380 7.3492 0.6084 0.1824 7.6423 0.9787 4.2166

1537 0.9658 5.1429 0.4443 0.1657 5.4367 0.9664 2.1642

2979 0.6404 3.1625 0.3380 0.1353 3.3701 0.9635 1.4544

4411 0.5447 2.5478 0.3043 0.1328 2.7265 0.9633 1.0810

10 140 0.3987 1.6597 0.2001 0.1017 1.8212 0.9453 1.0148

16 879 0.2809 1.3344 0.1452 0.0658 1.4366 0.9557 0.8881

42 271 0.1941 0.8190 0.0909 0.0478 0.9025 0.9396 1.0498
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numerical evidences for it being efficient. Then, Figs. 1 and 2 show e versus the degrees of freedom N for
Examples 1 and 2. In each case the total error e of the adaptive algorithm decreases much faster than that of

the uniform one. In particular, the slow convergence observed in the uniform refinement of Example 2 is

considerably improved by the corresponding adaptive strategy. These facts are also emphasized by the

experimental rates of convergence provided in the tables, which show that the adaptive method recovers the

order of convergence guaranteed by Theorem 3.2 in [5], that is OðhÞ. Next, Figs. 3 and 4 display some

intermediate meshes obtained with the refinement procedure. We remark, as expected, that the algorithm is

able to recognize the neighborhood of the singular point ð2; 2Þ in both examples.

We now consider the full nonlinear boundary value problem (1.1) on the L-shaped domain X :¼
ð�1; 1Þ2 � ð0; 1Þ2. We take the kinematic viscosity function w as given by the Carreau law with j0 ¼ j1 ¼
1=2 and b ¼ 3=2 (see Section 1 in [5]), that is wðtÞ :¼ 1

2
þ 1

2
ð1þ t2Þ�1=4

, and choose the data f and g so that

the exact solution of (1.1) is, respectively, for Examples 3 and 4,

u3ðxÞ :¼ ðx1
h

� 0:1Þ2 þ ðx2 � 0:1Þ2
i�1=2

ðx2 � 0:1; 0:1� x1Þt; p3ðxÞ :¼ 2ð � x1 � x2Þ1=2;
Fig. 5. Total error e for uniform and adaptive refinements (Example 3).

Fig. 6. Total error e for uniform and adaptive refinements (Example 4).
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and

u4ðxÞ :¼ ðx1
h

� 0:1Þ2 þ ðx2 � 0:1Þ2
i�1=2

ðx2 � 0:1; 0:1� x1Þt; p4ðxÞ :¼ 1=ðx1 � 1:1Þ;

for all x :¼ ðx1; x2Þ 2 X. We note that u3 and u4 are divergence free in X and singular in an exterior

neighborhood of ð0; 0Þ. In addition, the singularity of p4 runs along the line x1 ¼ 1:1.
Similarly as for the linear case, we present in Tables 5–8 the errors for the main unknowns, the error

estimate ~h, the effectivity index e=~h, and the experimental rate of convergence c. The discrete scheme (1.6) is

solved by Newton�s method with an initial guess given by the solution of the linear problem (w � 1), and a

tolerance of 10�3 for the relative error. The number of iterations needed in each mesh is 3 (for both

examples). Next, Figs. 5 and 6 show e versus the degrees of freedom N , and Figs. 7 and 8 provide some

intermediate meshes obtained with the refinement method.

The remarks and conclusions here are the same of the linear examples. In particular, the effectivity

indexes confirm the reliability of ~h and constitute experimental evidences of an eventual efficiency. Further,
the adaptive procedure leads again to the quasi-optimal linear rate of convergence, and it is able to identify

the singularities of each problem. This means, as observed in Figs. 7 and 8, that the adapted meshes are
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Fig. 7. Adapted intermediate meshes with 528, 3590, and 15 492 degrees of freedom, respectively, for Example 3.
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Fig. 8. Adapted intermediate meshes with 878, 4411, and 16 879 degrees of freedom, respectively, for Example 4.
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highly refined around the point ð0; 0Þ for Examples 3 and 4, and also around the segment x1 ¼ 1:0 for

Example 4.

Summarizing, the results presented in this section provide enough support for the adaptive algorithm

being much more efficient than a uniform discretization procedure when solving the mixed finite element

scheme (1.6).
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