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Abstract

The survPresmooth package for R implements nonparametric presmoothed estimators
of the main functions studied in survival analysis (survival, density, hazard and cumulative
hazard functions). Presmoothed versions of the classical nonparametric estimators have
been shown to increase efficiency if the presmoothing bandwidth is suitably chosen. The
survPresmooth package provides plug-in and bootstrap bandwidth selectors, also allowing
the possibility of using fixed bandwidths.
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1. Introduction

Survival analysis is oriented to the study of the random time (lifetime, failure time) T from an
initial point to the occurrence of some event of interest. An important goal is to estimate the
functions that characterize the distribution of T (in the following, assumed to be absolutely
continuous): (a) the distribution function, F (t) = P (T ≤ t) or, equivalently, the survival
function, S(t) = 1 − F (t), (b) the density function, f(t) = F ′(t), c) the hazard function,
λ(t) = lim∆t→0+ P (t ≤ T < t + ∆t|T ≥ t)/∆t = f(t)/S(t) and d) the cumulative hazard
function, Λ(t) =

∫ t
0 λ(v)dv, for t > 0. The handling of incomplete observations is one of the

major problems one has to face in the analysis of lifetimes. Typically, the true lifetimes are
incompletely observed due to censoring. In the right censoring (RC) model, the lifetime T
can be observed only if its value is smaller than that of an independent censoring variable
C. Thus, based on a random sample (Ti, Ci), i = 1, . . . , n, the actual information for the ith
observation is conveyed by the pair (Zi, δi), where Zi = min(Ti, Ci) is the observed time and
δi = 1{Ti<Ci} indicates whether the observation is censored (δi = 0) or not (δi = 1).

Posed in statistical terms, the problem is how to estimate the different functionals of the
lifetime T using the observed (Z, δ). Classical nonparametric estimators in the presence of
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right censoring are well established in the literature. The Kaplan-Meier (KM) estimator of
the survival function (Kaplan and Meier 1958), the kernel estimator of the density with KM
weights (Földes, Rejtö, and Winter 1981), the kernel estimator of the hazard function by
Tanner and Wong (1983) and the Nelson-Aalen (NA) estimator of the cumulative hazard
function (Nelson 1972; Aalen 1978) are a representative selection of this type of estimators.
A general account of these estimators can be found in standard texts on survival analysis (see
e.g., Klein and Moeschberger 2003).

To motivate the presmoothing procedures, note that the KM and NA estimators are step
functions with jumps located only at the uncensored observations. Therefore, when many
data are censored, the KM and NA estimators have only a few jumps with increasing sizes
and the accuracy of the estimation might not be acceptable. Heavily censored data sets are
becoming more frequent, since developments lead to increasing lifetimes, and if the testing
time is not enlarged (and it usually can not be enlarged), an increase in lifetimes leads to
increasing censoring. In such a situation, more efficient competitors for the classical estimators
are essential. The presmoothed estimators are a good alternative, since they are computed by
giving mass to all the data, including the censored observations. Central to the idea behind
presmoothing is the function p(t) = P (δ = 1|Z = t), i.e., the conditional probability that the
observation at time t is not censored. The function p depends on the observable variables
(Z, δ), and for this reason, it can be easily estimated. Another important feature of p is that
functionals of the incomplete lifetimes T can be expressed in terms of p(t) and functions of
the observed (Z, δ). For example, for the cumulative hazard rate we have

Λ(t) =

∫ t

0

p(u)dH(u)

1−H(u−)
,

where H denotes the distribution function of Z. The classical NA estimator of Λ is obtained
by replacing H with its empirical estimator Hn and the value of p(Zi) by the corresponding
indicator of non-censoring δi, giving rise to a step function with jumps only at the uncensored
data:

Λ̂NAn (t) =
1

n

∑
i:Zi≤t

δi
1−Hn(Zi) + 1/n

. (1)

The straightforward idea on which the presmoothed estimators are based is to consider a
smoother estimator of p(Zi) rather than δi. This has important implications:

(a) The new estimators are computed by giving mass to each observation regardless of
whether it is censored or not. Thus, more information on the local behavior of the
lifetime distribution is provided. The accuracy of the estimation is then increased,
above all for heavily censored data.

(b) Using the smooth estimator of p, the available information can be extrapolated to better
describe the tail behavior.

Since δ is a dichotomic variable, p can also be written as a regression function p(t) = E(δ|Z =
t). Thus, p can be estimated parametrically (e.g., using a logistic fit) or nonparametrically, for
example, using the Nadaraya-Watson (NW) kernel estimator (Nadaraya 1964; Watson 1964)
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with bandwidth b1:

p̂b1(t) =

n∑
i=1

Kb1(t− Zi)δi
n∑
i=1

Kb1(t− Zi)
, (2)

where K is a kernel function and Kb(t) = b−1K(t/b) denotes the rescaled kernel. Typically
K is a symmetric density function compactly supported, without loss of generality, in the
interval [−1, 1].

Estimation of S and Λ with a logistic fit of p has been studied by Dikta (1998, 2000, 2001).
It is shown in Dikta (1998) that, when the parametric model assumed for p is correct, this
semiparametric estimator of S is at least as efficient as the KM estimator in terms of the
asymptotic variance. As a drawback, there is a clear risk of a miss-specification of the para-
metric model for p.

The presmoothed approach is based on the NW estimator of p, and has been extensively
studied in the literature in the estimation of S and Λ (Cao, López-de-Ullibarri, Janssen, and
Veraverbeke 2005), the density f (Cao and Jácome 2004; Jácome and Cao 2007; Jácome,
Gijbels, and Cao 2008), the hazard rate λ (Cao and López-de-Ullibarri 2007), and also the
quantile function (Jácome and Cao 2008) (for an illustration of the use of nonparametric
regression estimators other than the NW smoother, see Jácome et al. 2008). Nonparametric
kernel regression, as the NW estimator, does not requires preliminary specification of a para-
metric family. In contrast, a bandwidth b1 must be chosen for the computation of p̂b1(t). Note
that when the bandwidth is very small then p̂b1(Zi) ' δi, and the presmoothed estimators
reduce to the classical ones.

The beneficial effect of presmoothing depends, as expected, on the choice of the presmooth-
ing bandwidth b1. When the asymptotically optimal bandwidth is used, the presmoothed
estimators have smaller asymptotic variance and, therefore, a better performance in terms
of mean squared error (MSE). This improvement is of second order in the estimation of S
and Λ (Cao et al. 2005), but may be of first order for the density function (Cao and Jácome
2004). The simulation studies confirm this gain in efficiency under moderate sample sizes.
Moreover, they also show that the presmoothed estimators are better than the classical ones,
not only for the optimal value of the bandwidth but for quite wide ranges of values of b1.
A comparison of the semiparametric and presmoothed estimators of S has been carried out
under left truncation and right censored (LTRC) data by Jácome and Iglesias-Pérez (2008),
where the nice behavior of both estimators, with respect to the classical one, is shown in
a simulation study. Specifically, the presmoothed estimator has a better performance than
the classical estimator in the complete interval of computation, and than the semiparametric
estimator for inner points, while the improvement vanishes in the boundary of the interval.
In summary, this good performance suggests that presmoothing is a competitive method that
may outperforms the classical estimators.

The survPresmooth package (López-de-Ullibarri and Jácome 2013) provides an implementa-
tion in R (R Core Team 2013) of the presmoothed estimators of the functions S, f , λ and
Λ in the RC model, including methods for bandwidth selection and correction of possible
boundary effects.

Our main purpose on writing this paper was twofold: (a) to introduce the survPresmooth
package to R users, providing at the same time a review of presmoothing techniques; and (b) to
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show the performance of presmoothed estimators both in the analysis of a real dataset and in
simulated scenarios. The presmoothed estimators implemented in the package are reviewed
in Section 2. The two following sections deal with additional technical aspects of presmooth-
ing, like bandwidth-parameter selection (Section 3) or boundary-effect correction (Section 4).
In Section 5, after describing the package functions, the implemented presmoothed estima-
tion procedures are applied to a real dataset and their performance is shown by means of a
simulation study. Some concluding remarks are given in Section 6.

2. Presmoothed estimators

Survival and distribution functions

The presmoothed estimator of the survival function S (Jácome and Cao 2007) is

ŜPb1(t) =
∏
i:Zi≤t

(
1− p̂b1(Zi)

n(1−Hn(Zi) + 1/n)

)
.

It can be derived from the KM estimator,

ŜKMn (t) =
∏
i:Zi≤t

(
1− δi

n(1−Hn(Zi) + 1/n)

)
,

just by replacing δi with the value at point Zi of the NW estimate of p in Equation 2. An
obvious presmoothed estimator of the distribution function F is F̂Pb1 = 1− ŜPb1 .

The estimator ŜPb1 is a decreasing step function, with jumps at the observed (censored or

uncensored) times. In this aspect it differs from ŜKMn , whose jumps are restricted to the
uncensored times. Two further properties relating the presmoothed estimator with its classical
counterpart should be mentioned. Firstly, when b1 ↓ 0, then ŜPb1 coincides in the limit with

ŜKMn . Secondly, when there is no censoring, ŜPb1 reduces to the empirical estimator of S.

Density function

If F is estimated by a step function F̂ , the density f = F ′ can be estimated by smoothing
the increments of F̂ . This is the idea behind the most popular nonparametric estimator of f ,
Parzen-Rosenblatt’s (PR) kernel density estimator (Parzen 1962; Rosenblatt 1956):

f̂b2(t) =

∫ ∞
0

Kb2(t− u)dF̂ (u) (3)

where b2 ≡ b2n ↓ 0 is the smoothing parameter and K a kernel function.

If, for example, F̂ ≡ F̂KMn = 1 − ŜKMn , simple calculations show that the estimator in
Equation 3 takes the form

f̂KMb2 (t) =

n∑
i=1

Kb2(t− Z(i))W
KM
(i) ,

where Z(i) denotes the ith ordered observation and the weights WKM
(i) are defined as WKM

(i) =

F̂KMn (Z(i)) − F̂KMn (Z(i−1)). This is the density estimator proposed by Földes et al. (1981).
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Note that without censoring, WKM
(i) = 1/n and Zi = Ti for i = 1, . . . , n. Then, the well-known

kernel estimator for uncensored data, f̂b2(t) =
∑n

i=1Kb2(t− Ti)/n, is recovered.

In a similar way, if F̂Pb1 is used to estimate F , a presmoothed estimator of the density function
is obtained:

f̂Pb1,b2(t) =

∫ ∞
0

Kb2(t− u)dF̂Pb1 (u) =
n∑
i=1

Kb2(t− Z(i))W
P
(i),b1

, (4)

where WP
(i),b1

= F̂Pb1 (Z(i)) − F̂Pb1 (Z(i−1)). This estimator depends on two parameters: the

presmoothing bandwidth b1, needed to compute p̂b1 , and a smoothing bandwidth b2. Key

properties of f̂Pb1,b2 , such as its asymptotic normality and an almost sure asymptotic repre-
sentation, are proved in Cao and Jácome (2004), Jácome and Cao (2007) and Jácome et al.
(2008).

Hazard function and cumulative hazard function

There is a rich literature on nonparametric hazard function estimation. Here we restrict our-
selves to the estimator proposed by Tanner and Wong (1983) for right-censored data. Noting
that λ = Λ′ the Tanner-Wong estimator (TW), very similar to the independent proposals by
Ramlau-Hansen (1983) and Yandell (1983), is obtained by smoothing the increments of the
NA estimator in Equation 1:

λ̂b2(t) =

∫ ∞
0

Kb2(t− u)dΛ̂NAn (u) =
1

n

n∑
i=1

Kb2(t− Zi)δi
1−Hn(Zi) + 1/n

.

As was pointed out in Section 1, the presmoothed NA estimator of the cumulative hazard
function results from substituting δi with p̂b1(Zi), and is defined by:

Λ̂Pb1(t) =
1

n

∑
i:Zi≤t

p̂b1(Zi)

1−Hn(Zi) + 1/n
.

An asymptotic representation and asymptotic distributional properties of Λ̂Pb1 can be found
in Cao et al. (2005). Some evidence of the beneficial effect of presmoothing is also provided
in that reference.

Following the same ideas leading to Equation 4 in the density case, a presmoothed version of
the Tanner-Wong estimator of λ (Cao and López-de-Ullibarri 2007) can be obtained:

λ̂Pb1,b2(t) =

∫ ∞
0

Kb2(t− u)dΛ̂Pb1(u) =
1

n

n∑
i=1

Kb2(t− Zi)p̂b1(Zi)

1−Hn(Zi) + 1/n
. (5)

Like the presmoothed density estimator, λ̂Pb1,b2 also depends on two parameters, b1 and the
smoothing bandwidth b2.

3. Bandwidth selection

The new estimators depend on the presmoothing bandwidth b1, needed to compute the NW
estimator p̂b1 . In the case of f and λ, their presmoothed estimators, as the classical counter-
parts, also depend on a second smoothing bandwidth b2, which controls the degree of kernel
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smoothing. If b2 is very small, the resulting estimator is too rough and contains spurious
features. On the contrary, if b2 is too large, oversmoothed estimates are obtained, where
important features of the underlying structure of f and λ may have been smoothed away.

In general terms, let us denote by ϕ the target function (i.e., S, Λ, f or λ) and by b the
(scalar or vectorial) bandwidth (b = b1 for S or Λ and b = (b1, b2) for f or λ). A way of
choosing b is as the minimizer of some error measure, usually the mean integrated squared
error (MISE):

MISEϕ(b) = E [ISEϕ(b)] = E

[∫ ∞
0

(
ϕ̂Pb (t)− ϕ(t)

)2
ω(t)dt

]
, (6)

where ω is a nonnegative weight function, introduced to allow elimination of boundary effects
(Gasser and Müller 1979). In our implementation ω is an indicator function with user-defined
support.

Since the MISE depends on the unknown function ϕ, the optimal bandwidth b is in practice
obtained by minimizing an approximation of the MISE. Different bandwidth selectors are
obtained depending on the way the MISE is approximated. The survPresmooth package
provides plug-in and bootstrap bandwidth selectors (allowing also the possibility of using
fixed bandwidths). Both methodologies are competitive in the sense that neither of them can
be claimed to be the best procedure in all cases.

When b1 is close to zero no significant presmoothing is carried out. The survPresmooth pack-
age makes possible, by fixing the bandwidth b1 = 0, to compute all the classical estimators,
and for f and λ also select automatically the smoothing bandwidth for the kernel estimation.
In this sense, the usefulness of the package is clear.

3.1. Plug-in bandwidth selector

The complicated structure of the presmoothed estimators makes the MISE in Equation 6
difficult to handle. However, ϕ̂Pb can be decomposed as a sum of independent and identically
distributed (i.i.d.) variables plus a negligible term of lower order (see Cao et al. 2005; Cao
and López-de-Ullibarri 2007; Jácome and Cao 2007). Replacing ϕ̂Pb in Equation 6 with this
i.i.d. representation yields a more tractable approximation of the MISE, which will be called
AMISE. The plug-in methodology consists in replacing the unknown quantities in that AMISE
with estimates of them and finding the bandwidth b minimizing that approximation.

Both for ϕ = S and Λ, the AMISE bandwidth is:

bAMISE
1,ϕ =

(
eKQ

2nd2
KA

)1/3

, (7)

where eK =
∫ 1
−1 uK(u)

∫ u
−1K(t)dtdu, dK =

∫ 1
−1 t

2K(t)dt and A and Q are defined by:

Q =

∫ ∞
0

q(t)ω(t)dt with q(t) =
p(t)(1− p(t))h(t)

(1−H(t))2
,

A =

∫ ∞
0

α2(t)ω(t)dt with α(t) =

∫ t

0

p′′(u)h(u)/2 + p′(u)h′(u)

1−H(u)
du,

and h = H ′ is the density of Z. The plug-in bandwidth selector of b1 results from replacing
in Equation 7 the constants Q and A with estimates of them (obtained by replacing H, h, h′,
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p, p′, and p′′ with their corresponding estimators). In our implementation, we use for H the
empirical estimator, while kernel-type estimators are used for p (NW estimator) and h (PR
estimator) with pilot bandwidths g1 and g2 respectively:

p̂g1(t) =
ψ̂g1(t)

ĥg1(t)
,

with ψ̂g1(t) = 1
n

∑n
i=1Kg1(t− Zi)δi and ĥg2(t) = 1

n

∑n
i=1Kg2(t− Zi).

For h′, p′ and p′′, the derivatives of h and p are estimated by the derivatives of the same order
of the corresponding kernel estimator with pilot bandwidth g2:

ĥ(k)
g2 (t) =

1

n

n∑
i=1

K(k)
g2 (t− Zi)

p̂′g2 (t) =
ψ̂′g2 (t) ĥg2 (t)− ψ̂g2 (t) ĥ′g2 (t)

ĥ2
g2 (t)

,

p̂′′g2 (t) =
ψ̂′′g2 (t) ĥ2

g2 (t)− ψ̂g2 (t) ĥ′′g2 (t) ĥg2 (t)− 2ψ̂′g2 (t) ĥ′g2 (t) ĥg2 (t) + 2ψ̂g2 (t) ĥ′g2 (t)2

ĥ3
g2 (t)

,

where ψ̂
(k)
g2 (t) =

1

n

n∑
i=1

K
(k)
g2 (t− Zi) δi and K

(k)
g2 (t) = 1

gk+1
2

K(k)
(
t
g2

)
. The choice of g1 and g2

will be addressed in Section 3.3.

Turning to f and λ, the AMISE depends on two bandwidths, b = (b1, b2). Following Jácome
and Cao (2007) for f and Cao and López-de-Ullibarri (2007) for λ, the AMISE is

AMISEϕ(b) =
1

4
d2
Kc

ϕ
1

(
b1
b2

)
b42 +

1

nb2
cϕ2

(
b1
b2

)
(8)

where cϕ1 and cϕ2 have different expressions for ϕ = f and ϕ = λ:

cf1(x) =

∫ ∞
0

{
f ′′ (t) + 2x2 ((1− F (t))α (t))′

}2
ω (t) dt,

cf2(x) =

∫ ∞
0

p(t)h(t)

(
1− F (t)

1−H(t)

)2

{p (t) cK + (1− p (t))AK (x)}ω (t) dt,

and

cλ1(x) =

∫ ∞
0

{
(λH(t)p(t))′′ + x2

(
λH(t)p′′(t) + 2(λ′H(t)− λ2

H(t))p′(t)
)}2

ω(t)dt,

cλ2(x) =

∫ ∞
0

λH(t)p(t)

1−H(t)

{
p(t)cK + (1− p(t))AK(1/x)

x

}
ω(t)dt,

where λH = h/(1−H) is the hazard rate of Z, cK =
∫ 1
−1K

2(t)dt and

AK(x) =

∫ 1

−1

∫ 1

−1

∫ 1

−1
K(t)K(u)K(v)K(t+ x(u− v))dtdudv.

The AMISE bandwidths are obtained by minimizing the function in Equation 8:(
bAMISE
1,ϕ , bAMISE

2,ϕ

)
= argmin

(b1,b2)∈R+×R+

AMISEϕ(b1, b2).
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It can be shown that without presmoothing (i.e., b1 = 0) thenAK(0) = limx→∞ x
−1AK(1/x) =

cK . As a consequence, AMISEϕ reduces to that of the classical estimators of f and λ, and the
minimization in b2 of AMISEϕ (0, b2) gives the well-known plug-in bandwidth for the classical
kernel estimates of f and λ (see Sánchez-Sellero, González-Manteiga, and Cao 1999).

Again, the plug-in bandwidth selector for b = (b1, b2) requires some estimates of the functions
H, p, p′, p′′, h, h′, h′′, F and f ′′ (the last two only for ϕ = f) to be plugged-in into the terms
cϕ1 and cϕ2 of Equation 8 and proceeds by numerically minimizing the resulting estimate of
AMISEϕ. As before, our implementation makes use of the empirical estimator for H, the

NW estimator and derivatives with pilot bandwidth b̃1 for p, p′ and p′′, and the PR estimator
and derivatives with pilot bandwidth b̃3 for h, h′ and h′′. When ϕ = f , we estimate F and

f using the presmoothed estimators with bandwidths b = b̃1 and b =
(
b̃1, b̃2

)
respectively.

Section 3.3 below explains the procedure we follow to choose the needed pilot bandwidths
b̃1, b̃2 and b̃3.

3.2. Bootstrap bandwidth selector

The bootstrap bandwidth selector for b is obtained by minimizing a bootstrap estimate of
the MISE in Equation 6 according to the following algorithm:

1. Generate B bootstrap resamples {Z∗i , δ∗i }
n
i=1 from the original data {Zi, δi}ni=1. The

resampling method must be adapted to the censored data context. Here we use the
procedure called ‘presmoothed simple’ in Jácome et al. (2008), which, in general, exhibits
a good practical performance:

(a) Draw {Z∗i }
n
i=1 by sampling randomly with replacement from {Zi}ni=1.

(b) Draw {δ∗i }
n
i=1 from the conditional Bernoulli distribution with parameter p̂

b̃1
(Z∗i ).

Here, p̂
b̃1

(·) is the NW estimator of p computed with the pilot bandwidth b̃1 (see
Section 3.3 for pilot bandwidth selection).

2. For the jth bootstrap resample (j = 1, . . . , B), compute ϕ̂
P∗(j)
bl

, the presmoothed esti-
mator with bandwidth bl, l = 1, 2, . . . , L, in a grid of L bandwidths.

3. With the original sample {Zi, δi}ni=1 compute the presmoothed estimator ϕ̂P
b̃

using the

pilot bandwidth b̃ (see Section 3.3 for pilot bandwidth selection).

4. Obtain the Monte Carlo approximation of the bootstrap version of MISE for each
bandwidth bl, l = 1, 2, . . . , L:

MISE ∗ϕ(bl) '
1

B

B∑
j=1

∫ ∞
0

(
ϕ̂
P∗(j)
bl

(t)− ϕ̂P
b̃

(t)
)2
ω (t) dt. (9)

5. The bootstrap bandwidth, b∗ϕ, is the minimizer of MISE ∗ϕ over the grid of bandwidths:

b∗ϕ = argmin
b∈{b1,b2,...,bL}

MISE ∗ϕ(b).
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3.3. Selection of the pilot bandwidths

As discussed above, both the bootstrap and plug-in methods require the preliminary compu-
tation of some pilot bandwidths.

Plug-in bandwidth

When the estimand ϕ is S or Λ, the plug-in bandwidth selector of b = b1 is obtained by
replacing in Equation 7 the constants Q and A with the following estimates:

Q̂g1 =
1

n

n∑
i=1

p̂g1(Zi)(1− p̂g1(Zi))ω(Zi)

(1−Hn(Zi) + 1/n)2
,

Âg2 =

∫ ∞
0

α̂2
g2(v)ω(v)dv with α̂g2(t) =

∫ t

0

1
2 p̂
′′
g2(u)ĥg2(u) + p̂′g2(u)ĥ′g2(u)

1−Hn(u) + 1/n
du.

Theorems 7 and 8 of Cao et al. (2005) give expressions for the optimal pilot bandwidths g1

and g2, in the sense of minimizing the asymptotic MSE of Q̂g1 and Âg2 . These bandwidths
depend on some unknown functions: p, H and their first four derivatives. At this stage, we
estimate g1 and g2 parametrically by fitting a logistic regression model for p and assuming a
Weibull model for H.

In the case of ϕ = f, λ, we choose the pilot bandwidths b̃1, b̃2 and b̃3 following the procedure
adopted by Jácome (2005). Specifically, the first pilot bandwidth b̃1, used for the NW esti-
mates of p and its derivatives, is obtained by cross-validation (see Stone 1974). When ϕ = f ,
we use for F and f ′′ the corresponding presmoothed estimators with bandwidths b = b̃1 and

b =
(
b̃1, b̃2

)
respectively, where:

b̃2 =


cK′′

n∑
i=1

(
1− F̂KMn (Zi)

1−Hn(Zi) + 1/n

)2

δiω(Zi)

ndK
∫∞

0 f̂ ′′′(t)2ω(t)dt


1/7

, (10)

with cK′′ =
∫ 1
−1K

′′(t)2dt. This expression for the bandwidth b̃2 is an estimate of the optimal

bandwidth for estimating the curvature
∫∞

0 f ′′(t)2ω(t)dt under censoring (see Sánchez-Sellero
et al. 1999). The estimation of f ′′′ in Equation 10 is not an easy matter. We use a parametric,
but flexible, procedure, which fits a mixture of three Weibull distributions by maximum
likelihood.

Finally, to compute the PR estimates of h and its derivatives, we use another pilot bandwidth
b̃3, which is essentially equivalent to b̃2 in a setting without censoring:

b̃3 =

(
cK′′

ndK
∫∞

0 ĥ′′′(t)2ω(t)dt

)1/7

. (11)

The estimation of h′′′ in Equation 11 is carried out in a similar way to that of f ′′′ in Equa-
tion 10.
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Bootstrap bandwidth

If the estimands are S or Λ, one pilot bandwidth b̃1 is required to compute the NW estimator
p̂b̃1 and the presmoothed estimator in steps 1 and 3 of the algorithm described in Section 3.2.

On the other hand, when the estimands are f or λ a second bandwidth, b̃2 is required for
computing ϕ̂P

b̃
in step 3 of the algorithm mentioned above.

In our implementation, b̃1 is obtained by the same cross-validation procedure used in the
plug-in bandwidth case. For b̃2, we take:

b̃2 =


cK

n∑
i=1

(
1− F̂KMn (Zi)

1−Hn(Zi) + 1/n

)2

δiω(Zi)

nd2
K

∫∞
0 f̂ ′′(t)2ω(t)dt


1/5

, (12)

where f ′′ is estimated by the same method described for f ′′′ in Equation 10. The bandwidth
in Equation 12 corresponds to that proposed by Sánchez-Sellero et al. (1999) for density
estimation under right censoring, and its use when ϕ = f has been advocated by Jácome
et al. (2008). Even if the use of b̃2 in the case ϕ = λ is not supported on rigorous theoretical
grounds, here we use it after considering both the close relationship between the two settings
and the satisfactory empirical evidence we have gathered (see Section 5.3). With simpler
alternatives, like the pilot bandwidth suggested in Müller and Wang (1994) (i.e., r/(8n0.2

u ),
with r a right endpoint of the support of λ and nu the number of uncensored observations),
we have observed worse results.

4. Correcting the boundary effect

When the support of ϕ = f or λ has finite endpoints, both classical and presmoothed kernel
estimators ϕ̂ may be inconsistent. Let b2 be the smoothing bandwidth. For 0 ≤ t = cb2 < b2,
with c ∈ [0, 1), we have

E[ϕ̂b2(t)] = ϕ(t)

∫ c

−1
K(x)dx+ o(1),with

∫ c

−1
K(x)dx 6= 1.

A similar phenomenon occurs at the right finite endpoint, say r. There is an extensive liter-
ature on how to correct this boundary effect. Among the great variety of methods available,
we have chosen the boundary kernel method described in Gasser, Müller, and Mammitzsch
(1985) for the density function, in Müller and Wang (1994) for the hazard rate, the latter
being implemented in the R package muhaz (Hess and Gentleman 2010). The idea is that the
presmoothed kernel estimators (4) and (5) remain invariable at the ‘interior’, where boundary
effects do not occur, while near the endpoints the kernel K is substituted for Kt, a kernel
depending on the point t, 0 ≤ t < b2 or r− b2 < t ≤ r, where the estimate is to be computed.
Explicit formulas for the most used boundary kernels are given in Table 1 in Müller and
Wang (1994). Boundary kernels may take negative values, which leads to negative density
and hazard rate estimates near endpoints. To correct this deficiency, the negative estimates
are usually truncated to zero.
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In our implementation the selected bandwidth b is the same independently of whether the
boundary effect is corrected or not. This is justified by the fact that b is a global bandwidth
chosen as the minimizer of the MISEϕ in Equation 6, where the weight function ω discards
the boundary points.

5. The survPresmooth package

This section contains a brief description of the package functionality. This is followed by the
results of the analysis of a real dataset and a simulation study, both of them carried out with
the package.

5.1. General description

The main function of the survPresmooth package is presmooth. This function computes the
presmoothed estimates of S, Λ, f or λ, as defined in Section 2. The precise function which
will be estimated when presmooth is called is specified through the estimand argument.
The reader should refer to Table 1 for details on the correct way of passing values to this
or other arguments of presmooth. For every estimand, the plug-in or bootstrap bandwidths
described in Section 3 can be computed. The bandwidth selection method used is specified
by the value of the bw.selec argument. Besides, the estimation can also be carried out
with an arbitrarily chosen bandwidth, whose value must then be passed to the fixed.bw

argument. In this case, when the presmoothing bandwidth is set to zero, one gets classical,
non-presmoothed estimates. In fact, the function provides an alternative way of getting non-
presmoothed estimates, through the presmoothing argument (see also Table 1 and the next
subsection). Although the default estimates computed by presmooth are not corrected for
possible boundary effects, in the case of f and λ estimation the bound argument makes it
possible to apply the technique for boundary effect correction discussed in Section 4 at one
or both endpoints.

The additional arguments of presmooth are also listed and briefly described in Table 1. Their
role covers a variety of aspects like data input (times, status and dataset arguments),
choice of kernel function (kernel argument) and specification of some grids of bandwidths
(grid.bw.pil and grid.bw arguments), characteristics of the output (x.est argument) or
control parameters (control argument).

The standard way of passing values to the control argument is by assigning to it the output of
a call to the secondary function control.presmooth. This function’s arguments are related to
a series of factors controlling details of the computation of the presmoothed estimators. One
of them is the weight function ω, which, as commented in Section 3, is an indicator function
in our implementation. The endpoints of the support of ω are specified via the q.weight

argument of control.presmooth. Another influential factor in bootstrap bandwidth selection
is the number B of bootstrap resamples taken to compute the MISE in Equation 9 on a
grid of bandwidths (incidentally, the grid itself may be set with the argument grid.bw of
presmooth). The value of B is set with the n.boot argument of control.presmooth. Also,
the MISE values can be saved by means of the save.mise argument. Thus, e.g., the user
can plot the MISE values against the bandwidths to inspect the MISE function (the reader is
referred to the help of the presmooth function, where he can find some examples). Section 5.2
contains an example illustrating how control.presmooth is used.
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Argument Description

times An object of mode numeric giving the observed times. If dataset is not
NULL it is interpreted as the name of the corresponding variable of the
dataset.

status An object of mode numeric giving the censoring status of the times coded
in the times object. If dataset is not NULL it is interpreted as the name
of the corresponding variable of the dataset.

dataset A data frame in which the variables named in times and status are in-
terpreted. If NULL, times and status must be objects of the workspace.

estimand A character string identifying the function to estimate: "S", the default,
for S, "H" for Λ, "f" for f and "h" for λ.

bw.selec A character string specifying the bandwidth selection method: "fixed",
the default, if no bandwidth selection is done, "plug-in" for plug-in band-
width selection and "bootstrap" for bootstrap bandwidth selection.

presmoothing A logical value indicating if the presmoothed estimates (TRUE, the default)
or their non-presmoothed counterparts (FALSE) will be computed.

fixed.bw A numeric vector with the fixed bandwidth(s) used when the value of the
bw.selec argument is "fixed". It has length 1 for estimating S and Λ, or
2 for f and λ (then, the first element is the presmoothing bandwidth b1).

grid.bw.pil A numeric vector specifying the grid where the presmoothing pilot band-
width will be selected using the cross-validation method. Not used in
plug-in bandwidth selection for S or Λ estimation.

grid.bw A list of length 1 (for S or Λ estimation) or 2 (for f and λ estimation)
whose component(s) is (are) a (two) numeric vector(s) specifying the grid
of bandwidths needed for bootstrap bandwidth selection when the value
of the bw.selec argument is "bootstrap". For S or Λ estimation, it can
also be a numeric vector.

kernel A character string specifying the kernel function used. One of "biweight",
for biweight kernel (the default), and "triweight", for triweight kernel.

bound A character string specifying the end(s) of the data range where boundary
correction is applied. If "none", the default, no correction is done; if
"left", "right" or "both", the correction is applied at the left, right or
both ends.

x.est A numeric vector specifying the points where the estimate is computed.
control A list of control values. The default value is the output returned by the

control.presmooth function called without arguments.

Table 1: Arguments of the presmooth function and their description.

The output produced by presmooth is a list of class survPresmooth. The package implements
a method for printing objects of this class, which by default (i.e., when the object name is en-
tered in the command line) performs only a minimal formatting of the output. In Section 5.2,
an example showing how to call explicitly the print method is given.

From a computational point of view, although R is the programming environment for the
package, for efficiency reasons the main function (i.e., presmooth) makes extensive use of
compiled C code.
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5.2. Application to a real dataset

Here we present an analysis of a dataset taken from Klein and Moeschberger (2003). This is the
alloauto dataset included as part of the R package KMsurv (Klein, Moeschberger, and Yan
2012). It collects information about a sample of 101 patients with acute myelogenous leukemia
reported to the International Bone Marrow Transplant Registry. All patients received a bone
marrow transplantation, but they may differ with respect to its type: allogeneic (ALLO)
or autologous (AUTO). It should be clear that our purpose when analyzing this dataset is
only to illustrate the functionality of the package through a real example, not to answer any
substantive questions about the data itself.

In this dataset, event (i.e., death or relapse) times may be right censored by end of follow-up.
The incidence of censoring is moderate (50.5%), slightly higher in the ALLO group (56.0%)
than in the AUTO group (45.1%). The variables in data frame alloauto are: time, the
time (months) to death or relapse; delta, an indicator of death or relapse (0 = alive without
relapse, 1 = death or relapse); and type, the type of transplant (1 = ALLO, 2 = AUTO). A
total of 50 patients had ALLO and 51 AUTO transplants.

Before starting our analysis, we create one separate R object for each group of patients.

R> library("KMsurv")

R> data("alloauto")

R> allo <- alloauto[alloauto$type == 1, c("time", "delta")]

R> auto <- alloauto[alloauto$type == 2, c("time", "delta")]

Next, it is shown how to use the presmooth function to obtain estimates of the functions that
characterize the survival time for each of the two groups defined by type of transplant:

R> library("survPresmooth")

R> allo.S.pi <- presmooth(times = time, status = delta, dataset = allo,

+ estimand = "S", bw.selec = "plug-in")

R> allo.H.pi <- presmooth(time, delta, allo, "H", "plug-in")

R> allo.S.boot <- presmooth(time, delta, allo, "S", "bootstrap")

R> allo.H.boot <- presmooth(time, delta, allo, "H", "bootstrap")

R> auto.S.pi <- presmooth(time, delta, auto, "S", "plug-in")

R> auto.H.pi <- presmooth(time, delta, auto, "H", "plug-in")

R> auto.S.boot <- presmooth(time, delta, auto, "S", "bootstrap")

R> auto.H.boot <- presmooth(time, delta, auto, "H", "bootstrap")

As can be seen from the code, the identity of the curve which is estimated and the bandwidth
selection method used are determined by the values passed to the estimand and bw.selec

arguments, respectively. Let us point out that the program sets an upper bound equal to the
range of the observed times for any selected bandwidth.

For comparison reasons, it is interesting to obtain the KM and NA estimates for the two
groups of patients. As mentioned before, these classical estimators are recovered from the
corresponding presmoothed estimators when the presmoothing bandwidth b1 is zero. With the
presmooth function this can be done by setting the bw.selec argument to "fixed" (actually,
this is the default value) and the fixed.bw argument to 0:
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Presmoothing bandwidth b1 Smoothing bandwidth b2

Group Estimand Plug-in Bootstrap Plug-in Bootstrap

ALLO S,Λ 4.51 6.06 – –
f 8.46 8.56 6.63 (6.87) 10.78
λ 7.59 6.06 3.91 (4.41) 12.09

AUTO S,Λ 17.53 7.83 – –
f 12.26 11.06 13.89 (14.05) 22.07
λ 14.60 9.86 12.05 (11.96) 24.76

Table 2: Selected bandwidths for the alloauto dataset. The bandwidths between parentheses
correspond to the non-presmoothed estimates shown in Figure 2 (see text for details).

R> allo.km <- presmooth(time, delta, allo, "S", "fixed", fixed.bw = 0)

R> allo.na <- presmooth(time, delta, allo, "H", "fixed", fixed.bw = 0)

R> auto.km <- presmooth(time, delta, auto, "S", "fixed", fixed.bw = 0)

R> auto.na <- presmooth(time, delta, auto, "H", "fixed", fixed.bw = 0)

An alternative method of obtaining these non-presmoothed estimates consists in passing the
value FALSE to the argument presmoothing. For example, allo.km could also be computed
by

R> presmooth(time, delta, allo, "S", presmoothing = FALSE)

Figure 1 is a plot of the estimates of the S and Λ functions. It is easily drawn from the objects
created by the previous code (i.e., from the information contained in their components x.est
and estimate), by using R’s basic plotting facilities. For example, the top left panel is
produced by executing:

R> plot(allo.S.pi$x.est, allo.S.pi$estimate, type = "s", xlab = "Time",

+ ylab = "Survival", ylim = c(0, 1), main = "Allogeneic transplant",

+ col = "blue")

R> lines(allo.S.boot$x.est, allo.S.boot$estimate, type = "s", col = "red")

R> lines(allo.km$x.est, allo.km$estimate, type = "s", lty = "dotted")

A general comparison of the different estimates of Figure 1 reveals mainly minor small-scale
differences. As expected, the presmoothed estimates are characterized by jumps that are
smaller and more frequent than in the corresponding empirical estimates. This reflects the
fact that the presmoothed estimates carry more information on the local behavior of the
lifetime distribution. Only in the case of the AUTO group with plug-in bandwidth, striking,
large-scale differences affecting the right tail of the estimates are observed. Of course, all
these facts are determined by the specific values of the bandwidths, which are collected in
Table 2.

The selected bandwidths are saved in the bandwidth component of the objects of class
survPresmooth. They are printed by default by the print method for objects of the class. If
a formatted output including other components of the survPresmooth object is needed, the
print.survPresmooth function must be explicitly called, with the name of the component(s)
assigned to the more argument. For example, to print the pilot bandwidths:
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Figure 1: alloauto dataset. Estimates of S (top panels) and Λ (bottom panels), conditioned
by type of transplant. The presmoothed estimates were obtained with either plug-in (blue
lines) or bootstrap (red lines) bandwidth selection. Also shown are the KM and NA estimates
of S and Λ, respectively (dotted black lines).

R> print(allo.S.pi, more = "pilot.bw")

Presmoothed estimation of the survival function, S(t)

t S(t)

1 0.030 0.9800045

2 0.493 0.9601144

....
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49 58.322 0.5208789

50 60.625 0.5208789

Bandwidth selection method: plug-in

Bandwidth(s):

presmoothing: 4.510372

Pilot bandwidth(s):

[1] 5.612775 8.989902

As for the f and λ functions, Figure 2 provides a plot of their presmoothed estimates. The
selected plug-in and bootstrap bandwidths are also collected in Table 2. The bootstrap selec-
tor seems to give slightly large smoothing bandwidths b2, which entails smoother estimations
than those with the plug-in bandwidth selection. We also show how the estimates change
depending on whether the boundary effect is corrected or not.

Here we only give details on the R code run to get the estimates displayed on Figure 2 for the
case of f estimation in the ALLO group:

R> allo.f.pi <- presmooth(time, delta, allo, "f", "plug-in")

R> allo.f.boot <- presmooth(time, delta, allo, "f", "bootstrap")

R> allo.f.pi.bound <- presmooth(time, delta, allo, "f", "plug-in",

+ bound = "both")

R> allo.f.boot.bound <- presmooth(time, delta, allo, "f", "bootstrap",

+ bound = "both")

The estimates are computed at the points given by the x.est argument (see Table 1). When,
as in the previous lines of code, its value is not explicitly set, presmooth computes it internally.
With the default value of x.est, estimation is done at a sequence of 50 equispaced points
between the minimum and the 90th percentile of the observed times. As a guideline, density
and hazard estimates at the right tail should be taken very cautiously due to their increased
bias and variance.

A warning should be given about computing time, which is usually markedly longer for boot-
strap than for plug-in bandwidth selection. Of course, this difference is due to the computer-
intensive nature of bootstrap methods. On a machine with an Intel Core i7-3610QM processor
and 7.7 GB of memory, the last two lines of code took respectively 3.372 and 14.857 seconds
of CPU time.

Our bandwidth selectors for f and λ can be extended to the case without presmoothing,
allowing the selection of plug-in and bootstrap smoothing bandwidths for the correspond-
ing classical kernel estimators of these curves. For reference, the classical non-presmoothed
estimates of f and λ thus obtained (with plug-in bandwidth selection) have been added to
Figure 2 (and the values of the corresponding bandwidths to Table 2). For f , this estimate
is computed by:

R> allo.f.pi.np <- presmooth(time, delta, allo, "f", "plug-in",

+ presmoothing = FALSE)
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Figure 2: alloauto dataset. Estimates of f (top panels) and λ (bottom panels), conditioned
by type of transplant. Estimates were obtained with either plug-in (blue lines) or bootstrap
(red lines) bandwidth selection, and without (solid lines) or with (dashed lines) correction of
the boundary effect. The dotted black lines are non-presmoothed plug-in estimates of f and
λ obtained with survPresmooth. The dotted-dashed green lines are alternative estimates of
λ computed with the R package muhaz.

For λ, the plot also shows the hazard estimates obtained with the muhaz function in R package
muhaz, using the default settings for global bandwidth selection (local bandwidth selection,
also possible with muhaz, is currently not available in survPresmooth). Note the clearly
undersmoothed shape of the resulting hazard estimate in the AUTO group.

R> library("muhaz")

R> allo.muhaz <- muhaz(allo$time, allo$delta, bw.method = "global")



18 survPresmooth: Presmoothed Estimation in Survival Analysis in R

T C

Model αT βT αC βC π

I 1 4 1 5 0.48
II 1 0.7 0.25 0.9 0.73
III 1 4 0.8 4 0.71

Table 3: Characteristics of the simulated models I , II and III .

Further aspects of the computation of the presmoothed estimates of S, Λ, f or λ can be
fine-tuned by means of other arguments, including the control argument and the associated
control.presmooth function. For example, the following code would compute the pres-
moothed estimate of S for the AUTO group with bootstrap bandwidth selected from a grid
of 150 equispaced bandwidths between 1 and 50, taking B = 10000 bootstrap resamples, and
a weight function with support on the interval defined by the 10th and 90th percentiles of the
observed times:

R> presmooth(time, delta, auto, "S", "bootstrap",

+ grid.bw = seq(1, 50, length.out = 150),

+ control = control.presmooth(n.boot = 10000, q.weight = c(0.1, 0.9)))

5.3. Simulations

The practical performance of the presmoothed estimators and bandwidth selectors imple-
mented in survPresmooth may be shown by means of simulation experiments. We have
simulated four different models in order to describe the behavior in (non-cumulative and cu-
mulative) hazard function estimation with varying sample size. For the sake of brevity, we
do not give any results for survival and density functions. The models we have simulated
try to define scenarios showing different combinations of purportedly influential conditions,
like the intensity of censoring, the constant or non-constant nature of the p function, and the
increasing, decreasing or non-monotonic nature of the hazard function.

In models I , II and III , both survival and censoring times follow a Weibull distribution with
hazard function:

λ(t) =
β

α

(
t

α

)β−1

, t > 0,

where α and β are the scale and shape parameters.

The parameters characterizing the survival and censoring times of these models are collected
in Table 3. Also shown is the value of the unconditional probability of censoring π = 1 −∫∞

0 p(t)h(t)dt, where h is the density of Z.

For model IV we have considered the distribution proposed by Chen (2000). For parameters
α > 0, β > 0, Chen’s hazard function is

λ(t) = αβtβ−1 exp(tβ), t > 0.

It can be shown that λ has a bathtub shape for β < 1 and it is an increasing function for β ≥ 1
(Chen 2000). In model IV , the survival and censoring times have Chen distributions with
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Figure 3: Graphs of p (black) and λ (red) for the simulated models. The dotted vertical lines
identify the 20th and 80th quantiles of the observed time, which are the endpoints of the
default weight function used for bandwidth selection by survPresmooth.

α = 1 and β parameter equal to 0.7 and 1.2, respectively. For this choice, the unconditional
probability of censoring is 0.41. Plots of the p and λ curves of models I –IV can be found in
Figure 3.

A total of 500 independent pseudorandom samples have been drawn from each model for
small (n = 30), moderate (n = 150) and large (n = 3000) sample sizes. For each sample,
presmoothed and non-presmoothed estimates of Λ and λ have been computed using, where
applicable, our plug-in and bootstrap bandwidth selectors (actually, for n = 3000, due to
computational burden, our experimentation has excluded the bootstrap bandwidth selector).
For each simulated sample the integrated squared error (ISE) has been approximated by
Simpson’s rule for numerical integration. For any bandwidth selector, let us denote by ISEP

the ISE of a presmoothed estimate and by ISENP that of the corresponding non-presmoothed
estimate. We have computed the ratio of ISEs ISENP/ISEP as a measure of the relative
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Figure 4: Simulation results: box plots of the ISENP/ISEP ratios for the non-presmoothed
and presmoothed estimates of Λ (for notation, see text). PI: plug-in bandwidth; BOOT:
bootstrap bandwidth.

efficiency of presmoothed and non-presmoothed estimators. When ISENP/ISEP takes a value,
say r, greater than 1, presmoothing is more efficient for that sample; more specifically, the
presmoothed estimator is then r times more efficient than the non-presmothed one.

The box plots of the sampling distributions of the ISE ratios under the different simulated
scenarios are shown in Figure 4 for the case of Λ estimation, and in Figure 5 for λ. In these
plots, a logarithm scale has been used to facilitate comparison. The numerical values of the
medians of the ISE ratios have been collected in Table 4. It is observed that, whatever the
bandwidth selector chosen, for most of the simulated scenarios the presmoothed estimators
are more efficient than the non-presmoothed ones. This is more striking for Model III ; the
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Figure 5: Simulation results: box plots of the ISENP/ISEP ratios for the non-presmoothed
and presmoothed estimates of λ. Notation is the same as in Figure 4.

reason is that the p function of this model is constant, a condition where first order efficiency
is attained (see Cao and Jácome 2004). As expected, the differences between both approaches
tend generally to balance as n increases, but quite slowly, with the presmoothed estimators
still being more efficient for n = 3000 in a majority of scenarios. The exception to this pattern
is again Model III , where the ISE ratio seems to increase with n. This is hardly surprising
since, as noted before, this model simulates a first order efficiency scenario. Overall, these
results demonstrate the convenience of presmoothing, and the usefulness of the survPresmooth
package for analyzing right censored data.
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Plug-in Bootstrap

Estimand Model n = 30 n = 150 n = 3000 n = 30 n = 150

Λ I 1.180 1.172 1.151 1.156 1.149
II 1.119 1.078 1.009 1.199 1.135
III 1.538 1.621 1.766 1.498 1.610
IV 1.051 1.056 1.031 1.049 1.028

λ I 1.049 1.014 1.021 1.216 1.057
II 1.125 1.280 1.077 1.075 1.194
III 1.261 1.227 1.542 1.528 1.186
IV 1.050 1.042 0.998 1.082 0.977

Table 4: Simulation results: medians of the ISENP/ISEP ratios for the non-presmoothed and
presmoothed estimates of Λ and λ (for notation, see text).

6. Conclusions

This paper deals mainly with the implementation in R of the presmoothed estimators of the
survival, density, and cumulative and non-cumulative hazard functions of a right-censored
lifetime. The new R package survPresmooth is introduced and described. Also, the theory
underlying presmoothing has been summarized and further evidence showing the advantages
of presmoothed estimators over their classical counterparts has been provided. The presmooth
function of the package computes the presmoothed estimators in a user-friendly way. The
function also implements two different methods for computing of the required bandwidths,
based on bootstrap and plug-in techniques. Additionally, our software allows to compute well-
known classical, non-presmoothed estimators (including, where applicable, their bandwidths),
which may be interpreted as particular cases of presmoothed estimators.

There are several topics that are not dealt with by our package. We close the discussion with
an enumeration of some of these issues, which give the opportunity for future developments
of the package.

Although initially the graphical comparison of two or more distributions (straightforwardly
done with survPresmooth) may be enough, hypothesis testing of the equality of survival
distributions is more satisfactory from a statistical point of view. It is possible to adapt the
log-rank test and, in general, all the weighted tests in the literature to the use of presmoothed
estimators. However, these “presmoothed tests” remain largely unexplored and they should
be carefully worked out before being implemented.

Our package does not provide confidence bands for the estimated functions. A way of con-
structing them could be based on the bootstrap. The same resampling plan used for bootstrap
bandwidth selection could be applied in order to compute the percentiles of the bootstrap dis-
tribution of the estimates. The limits of pointwise confidence intervals could be constructed
from these percentiles.

Sometimes, in addition to right censoring (RC), lifetimes are also subject to left trunca-
tion (LT). The good properties of presmoothing are conserved in the so-called LTRC model:
see Jácome and Iglesias-Pérez (2008) for the case of S and Λ estimation, and Jácome and
Iglesias-Pérez (2010) for f . This suggests that, in principe, the procedures implemented in
surPresmooth could also be extended to include LTRC data.
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Another issue not considered in survPresmooth is the possible presence of covariates. Pres-
moothing ideas are relatively new, and though survival analysis adjusting for covariates is
of great interest, it has been scarcely investigated in the context of presmoothed estima-
tion. For a semiparametric approach see de Uña-Álvarez and Rodŕıguez-Campos (2004) and
Iglesias-Pérez and de Uña-Álvarez (2008).

Finally, let us point out that the properties of presmoothed estimators have been studied
only in the setting of independent data, but in some studies survival times may be depen-
dent. Under rather weak conditions for dependence, the KM estimator is still consistent and
asymptotically normal (Ying and Wei 1994; Cai 1998). Similar ideas could be applied to try
to prove that properties regarding consistency and asymptotic normality of the presmoothed
estimators are also valid under the same weak conditions for dependence.
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