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Resumen
Este trabajo considera un sistema Broadcast Channel (BC) que consiste en un

transmisor equipado con múltiples antenas y varios usuarios con una o más antenas.

Dependiendo del número de antenas en el lado receptor, tales sistemas son conocidos

como Multiple-User Multiple-Input Single-Output (MU-MISO), para usuarios con

una única antena, o Multiple-User Multiple-Input Multiple-Output (MU-MIMO), para

usuarios con varias antenas.

Este modelo es adecuado para sistemas actuales de comunicaciones inalámbricas.

Respecto a la dirección del flujo de datos, diferenciamos entre el canal downlink o BC, y

canal uplink o Multiple Access Channel (MAC). En el BC las señales se envı́an desde la

estación base a los usuarios, mientras que la información perteneciente a los usuarios es

transmitida a la estación base en el MAC.

En este trabajo nos centramos en el BC donde la estación base aplica precodificación

lineal aprovechando las múltiples antenas. La información sobre el estado del canal

se asume perfecta en todos los usuarios. Sin embargo, los usuarios no cooperan, y la

estación base solo tiene información de canal parcial obtenida a través de un canal de

realimentación en los sistemas Frequency-Division Duplex (FDD), que tiene un ancho

de banda limitado. Esta limitación fuerza a los usuarios a aplicar algunos métodos, como

quantización, para reducir la cantidad de datos a enviar a la estación base. La combinación

de la información proporcionada por los usuarios es interpretada en la estación base

como información de canal estocástica, y constituye un factor crı́tico en el diseño de

los precodificadores.

En la literatura se han considerado varios métodos para evaluar el rendimiento del

BC, a saber, Signal to Interference-plus-Noise Ratio (SINR), Minimum Mean Square

Error (MMSE), y tasa. Algunos trabajos calculan las medidas correspondientes para cada

usuario mientras que otros consideran la suma de todos ellos como la métrica de interés.

En nuestro caso, nos centramos en la tasa como figura de mérito. En particular, estamos

interesados en garantizar ciertas tasas por usuario. De esta manera, evitamos situaciones

injustas que surgen de utilizar la tasa suma como criterio, en las que a los usuarios con

canales pobres se les asignan tasas bajas, o incluso cero. Además, reducir la cantidad de

potencia necesaria para satisfacer las restricciones de calidad de servicio mencionadas

es una caracterı́stica deseable en los sistemas de comunicaciones inalámbricas. Ası́,

abordamos el problema de optimización consistente en minimizar la potencia total en

el transmisor empleada para cumplir un conjunto de restricciones de calidad de servicio,

expresadas como tasas por usuario.

Durante los últimos años el problema de minimización de potencia ha sido estudiado

ampliamente para información tanto perfecta como imperfecta de canal, en los escenarios

BC. Asumir conocimiento de canal perfecto es poco realista y, por tanto, consideramos
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que los usuarios envı́an la información de canal a la estación base por medio de un

canal de realimentación, normalmente disponible en los estándares de comunicación

recientes. Aunque algunos autores han empleado modelos de incertidumbre limitada para

el conocimiento de canal tales como rectangular, elipsoidal, o esférico, y han aprovechado

esa asunción para resolver el problema de minimización de potencia, no asumimos una

forma particular para esa incertidumbre sino un modelo de error estocástico.

En el modelo de sistema considerado, MU-MIMO, el número de antenas en la

estación base es mayor que el número de antenas en cada usuario, e.g. MU-MISO.

Además, los usuarios no cooperan para separar las señales recibidas. Debido a ésto y

a la falta de grados de libertad en los usuarios, es necesario el uso de filtros transmisores,

también llamados precodificadores, para eliminar las interferencias entre usuarios. De

este modo, en este trabajo diseñamos conjuntamente los precodificadores lineales y los

filtros receptores minimizando la potencia total en el transmisor sujeta a restricciones de

tasa por usuario. Esta formulación del problema no es convexa y, por tanto, es complicada

de manejar. Por este motivo, aplicamos la desigualdad de Jensen a las restricciones de tasa

para obtener otras basadas en el MMSE. Como consecuencia, nuestro objetivo es diseñar

los precodificadores y filtros que minimizan el MMSE para todos los usuarios. Para ello,

distintos tipos de dualidades basadas en SINR, Mean Square Error (MSE), o tasa, han sido

empleadas para el diseño de los filtros como fórmulas para intercambiar entre el BC y el

MAC por conveniencia. En particular, empleamos la dualidad de MSE con conocimiento

de canal imperfecto. Además, para la distribución de potencias, explotamos el marco

teórico de las standard Interference Function, planteado para resolver el algoritmo de

control de potencia. De esta manera, proponemos un algoritmo para solucionar el

problema de minimización de potencia en el BC.

Para comprobar la factibilidad de las restricciones de calidad de servicio, proponemos

un test que permite determinar si el algoritmo converge o no. Además, el algoritmo

propuesto permite resolver el problema dual, ésto es, encontrar los objetivos de tasa

balanceados correspondientes a una potencia total en el transmisor. Finalmente, algunas

aplicaciones de la minimización de potencia surgen de diferentes escenarios y se

resuelven por medio del algoritmo propuesto.

Usando el lenguaje de programación MATLAB se simulan experimentos con el

objetivo de mostrar el rendimiento de los métodos propuestos.
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Resumo
Este traballo considera un sistema Broadcast Channel (BC) que consiste nun

transmisor equipado con múltiples antenas e varios usuarios cunha ou máis antenas.

Dependendo do número de antenas no lado receptor, tales sistemas son coñecidos como

Multiple-User Multiple-Input Single-Output (MU-MISO), para usuarios cunha única

antena, ou Multiple-User Multiple-Input Multiple-Output (MU-MIMO), para usuarios

con varias antenas.

Este modelo é adecuado para sistemas actuais de comunicacións sen fı́os. Respecto á

dirección do fluxo de datos, diferenciamos entre a canle downlink ou BC, e a canle uplink

ou Multiple Access Channel (MAC). No BC os sinais envı́anse dende a estación base

aos usuarios, mentres que a información pertencente aos usuarios é transmitida á estación

base no MAC.

Neste traballo centrámonos no BC onde a estación base aplica precodificación lineal

aproveitando as múltiples antenas. A información sobre o estado da canle asúmese

perfecta en todos os usuarios. Por contra, os usuarios non cooperan e a estación base só ten

información da canle parcial obtida a través dunha canle de realimentación nos sistemas

Frequency-Division Duplex (FDD), que ten un ancho de banda limitado. Esta limitación

forza aos usuarios a aplicar algúns métodos, como quantización, para reducir a cantidade

de datos que se envı́an á estación base. A combinación da información proporcionada

polos usuarios é interpretada na estación base como información da canle estocástica, e

constitúe un factor crı́tico no deseño dos precodificadores.

Na literatura consideráronse varios métodos para avaliar o rendemento do BC, a saber,

Signal to Interference-plus-Noise Ratio (SINR), Minimum Mean Square Error (MMSE),

e taxa. Algúns traballos calculan as medidas correspondentes para cada usuario mentres

que outros consideran a suma de todos eles como a métrica de interese. No noso

caso, centrámonos na taxa como figura de mérito. En particular, estamos interesados

en garantir certas taxas por usuario. Deste xeito evitamos situación inxustas que xurdan

de utilizar a taxa suma como criterio, nas que aos usuarios con canles pobres se lles

asignan tasas baixas, ou incluso cero. Ademais, reducir a cantidade de potencia necesaria

para satisfacer as restriccións de calidade de servizo mencionadas é unha caracterı́stica

desexable nos sistemas de comunicacións se fı́os. Ası́, acometemos o problema de

optimización consistente en minimizar a potencia total no transmisor empregada para

cumprir un conxunto de restricións de calidade de servizo, expresadas como taxas por

usuario.

Durante os últimos anos o problema de minimización de potencia foi estudado

amplamente para información tanto perfecta como imperfecta de canle, nos escenarios

BC. Asumir coñecemento perfecto de canle é pouco realista e, por tanto, consideramos

que os usuarios envı́an a información de canle á estación base por medio dunha canle de
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realimentación, normalmente dispoñible nos estándares de comunicación recentes. Aı́nda

que algúns autores empregaron modelos de incerteza limitada para o coñecemento de

canle tales como rectangular, elipsoidal, ou esférico, e aproveitaron esa asunción para

solucionar o problema de minimización de potencia, non asumimos unha forma particular

para esa incerteza senón un modelo de error estocástico.

No modelo de sistema considerado, MU-MIMO, o número de antenas na estación

base é maior que o número de antenas en cada usuario, e.g. MU-MISO. Ademais,

os usuarios non cooperan para separar os sinais recibidos. Debido a isto e á falta de

graos de liberdade nos usuarios, é preciso o uso de filtros transmisores, tamén chamados

precodificadores, para eliminar as interferencias entre usuarios. Deste xeito, neste traballo

deseñamos conxuntamente os precodificadores lineais e os filtros receptores minimizando

a potencia total no transmisor suxeita a restriccións de taxa por usuario. Esta formulación

do problema non é convexa e, por tanto, é complicada de manexar. Por este motivo,

aplicamos a desigualdade de Jensen ás restriccións de taxa para obter outras baseadas no

MMSE. Como consecuencia, o noso obxectivo é deseñar os precodificadores e filtros

que minimizan o MMSE para todos os usuarios. Para iso, distintos tipos de dualidades

baseadas en SINR, Mean Square Error (MSE), ou taxa, foron empregadas para o deseño

dos filtros coma fórmulas para intercambiar entre o BC e o MAC por conveniencia.

En particular, empregamos a dualidade de MSE con coñecemento de canal imperfecto.

Ademais, para a distribución de potencias, explotamos o marco teórico das standard

Interference Function, formulado para resolver o algoritmo de control de potencia. Desta

maneira, propomos un algoritmo para resolver o problema de minimización de potencia

no BC.

Para comprobar a factibilidade das restriccións de calidade de servizo, propomos

un test que permite determinar se o algoritmo converxe ou non. Ademais, o algoritmo

proposto permite resolver o problema dual, ı́sto é, atopar os obxectivos de taxa

balanceados correspondentes a unha potencia total no transmisor. Finalmente, algunhas

aplicacións da minimización de potencia xorden de diferentes escenarios e resólvense por

medio do algoritmo proposto.

Usando a linguaxe de programación MATLAB simúlanse experimentos co obxectivo

de mostrar o rendemento dos métodos propostos.
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Summary

This work considers a Broadcast Channel (BC) system, where the transmitter is

equipped with multiple antennas and each user at the receiver side could have one or

more antennas. Depending on the number of antennas at the receiver side, such a system

is known as Multiple-User Multiple-Input Single-Output (MU-MISO), for single antenna

users, or Multiple-User Multiple-Input Multiple-Output (MU-MIMO), for several antenna

users.

This model is suitable for current wireless communication systems. Regarding the

direction of the data flow, we differentiate between downlink channel or BC, and uplink

channel or Multiple Access Channel (MAC). In the BC the signals are sent from the Base

Station (BS) to the users, whereas the information from the users is sent to the BS in the

MAC.

In this work we focus on the BC where the BS applies linear precoding taking

advantage of multiple antennas. The Channel State Information (CSI) is assumed to be

perfectly known at each user. However, the users do not cooperate, and the BS only has

partial CSI obtained via a feedback link in Frequency-Division Duplex (FDD) systems,

which is bandwidth limited. This limitation forces the users to apply some methods, like

quantization, to reduce the amount of data to be sent to the BS. The combination of the

information provided by the users is interpreted as stochastic CSI at the BS, so that the

partial CSI is critical for the design of the precoders.

Several criteria have been considered to evaluate the BC performance in the literature,

namely, Signal to Interference-plus-Noise Ratio (SINR), Minimum Mean Square Error

(MMSE), and rate. While some works compute the corresponding metric for each of the

users, others consider the sum of all of them as the value of interest. In our case, we

concentrate on rate as figure of merit. In particular, we are interested in guarantying

certain per-user rates. That way, we avoid unfair situations of the sum rate criterion

arising when the channels for some of the users are poor with assigned low, even zero,

rates. Moreover, reducing the amount of power required to fulfill the mentioned Quality-

of-Service (QoS) restrictions is a desirable feature for a wireless communication system.

Thus, we address the optimization problem consisting on minimizing the total transmit

power employed at the BS to fulfill a set of given QoS constraints, expressed as per-user

rates.

The power minimization problem has been widely studied during the last years for

both perfect and imperfect CSI at the BS scenarios. The assumption of perfect CSI is

rather unrealistic so that, as we mentioned previously, we consider that the users send

the channel information to the BS by means of the feedback channel, usually available

in recent wireless communication standards. Although some authors have employed
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bounded uncertainty models for the CSI such as rectangular, ellipsoidal, or spherical,

and have taken advantage of that assumption to solve the power minimization problem,

we do not assume a particular shape for that uncertainty, but is modeled as a stochastic

error.

In the considered MU-MIMO system model the number of antennas at the BS is

larger than the number of antennas at each user, e.g. MU-MISO. Moreover, the users

do not cooperate to separate the received signals. Due to that and to the lack of degrees

of freedom at the users, it makes necessary the use of transmit filters, also denoted as

precoders, to remove inter-user interference. Thus, in this work we jointly design the

linear precoders and receive filters minimizing the total transmit power subject to per-user

rate constraints. This problem formulation is non-convex. As a consequence, it is difficult

to deal with. For such a reason, we apply the Jensen’s inequality to the rate constraints to

obtain a MMSE based restrictions. Consequently, our aim is to find the precoders and the

filters that minimize the MMSE for all the users. To that end, several types of dualities

based on SINR, Mean Square Error (MSE), or rate have been employed for the design

of the filters as conversion formulas that allow to switch between the BC and the MAC

for convenience. We employ the MSE BC/MAC duality for imperfect Channel State

Information at the Transmitter (CSIT). Furthermore, for the power allocation design, we

take advantage of the standard Interference Function (IF) framework, proposed to solve

the power control algorithm. In such a way, an algorithm is proposed to solve the power

minimization problem in the BC.

To check the feasibility of the QoS constraints, we propose a test that allows to

determine the convergence of the algorithm. Additionally, the proposed algorithm can

be employed to solve the dual problem, i.e., find the balanced targets for given total

transmit power. Finally, some applications of the power minimization problem arising

from different scenarios are studied and solved by means of the proposed algorithm.

Simulation experiments are carried out using the technical programming language

MATLAB in order to show the performance of the proposed methods.
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Chapter 1

Introduction

1.1. Problem Overview

The Broadcast Channel (BC) is a communication system model in which a centralized

transmitter sends information to several decentralized receivers. The BC arises when

modeling a large number of practical situations in wireless communications, typically

in the downlink of cellular systems. For this reason, the transmitter in a BC is usually

referred to as the Base Station (BS) and the receivers are referred as users. The BC is

the dual of the Multiple Access Channel (MAC) where several decentralized transmitters

(users) send information to a centralized receiver (BS). The MAC is a model that typically

arises when considering the uplink in a cellular system.

Both the BC and the MAC are examples of what in the literature of information theory

is known as Multiuser Communication systems. In wireless communications, the BC and

the MAC can be classified according to the number of antennas used by the transmitter and

the receiver. When all terminals employ a single antenna, the term Single-Input Single-

Output (SISO) is used to label both the BC and the MAC.

In wireless communications, performance is drastically improved if several antennas

are deployed. This is particularly feasible at the BSs which are typically terminals with

larger resources in terms of power supply and size. In such case, the BC is labeled

Multiple-Input Single-Output (MISO) and the dual MAC is labeled Single-Input Multiple-

Output (SIMO). Finally, if users are also equipped with several antennas, both the BC

and the MAC are referred to as Multiple-Input Multiple-Output (MIMO). Along this

work we assume that data sent to all the users (or received from them) is statistically

independent. In addition, users do not cooperate to mitigate the inter-user interference

nor share information about the channel.

The performance of a wireless communication system, like the BC considered in this

work, is given by its capacity. The channel capacity is the limiting information rate,

1
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expressed in terms of bits per second (bps), that can be achieved with arbitrarily small

error probability [1].

Most work in the literature of BC assumes perfect Channel State Information at the

Transmitter (CSIT) and Channel State Information at the Receiver (CSIR). In a practical

system, receivers estimate the channel response from the incoming signal. Hence, it is

reasonable to assume that receivers have a perfect knowledge of their individual Channel

State Information (CSI). The availability of CSI at the transmitter is a more intriguing

issue. In a Time-Division Duplex (TDD) system, CSI can be estimated at the transmitter

during the uplink transmissions and invoking the reciprocity principle. In a Frequency-

Division Duplex (FDD) system, CSI can be estimated at the receivers and sent back to

the transmitter over a feedback channel. The data rate in the feedback channels is usually

limited and CSI must be compressed to ensure tight scheduling constraints are satisfied.

Such restriction will be referred to as limited feedback along this work.

Either in TDD or FDD it is rather unrealistic to assume that perfect CSIT is available.

For the limited feedback systems considered along this work, the information sent to the

BS depends only on channel statistics. Thus, the channel uncertainty will be modeled by

a stochastic error whose distribution is known at the transmitter, and the average rates are

computed taking the conditional expectation of the rate on the available CSI.

The BC capacity region under partial CSIT knowledge has not been found yet.

Therefore, obtaining the filters that minimize the total power fulfilling given average rate

restrictions is a challenging problem. Moreover, not only the precoders and the receive

filters have to be designed, but also the distribution of the power among the different

users appears as a critical issue in our system. Since the power allocation and the filters

are coupled, any solution to the proposed problem jointly optimizes both parameters.

The feasibility of the average rate constraints is another important consideration since the

optimization problem could not have solution. A discussion in terms of feasibility regions

is a fundamental starting point to be taken into account by the system designer.

One problem commonly studied in the literature will be addressed using the method

proposed in this work. In such optimization problem, the goal is to get some balancing

between the per-user rates subject to a power restriction. In other words, the per-user

average rates are affected by a common factor which is to be optimized employing all the

available power.

Additionally, we study more complex scenarios that can be addressed using the

methods proposed for the BC. We consider the system model where the users can

transmit more than one stream at the same time. This extension of the original problem

means an additional complexity layer and the proposed algorithm has to be adapted

accordingly. Moreover, we tackle the power minimization in the Orthogonal Frequency

Division Multiplexing (OFDM) MIMO BC, resulting into a procedure similar to the one

employed in the multiple-stream scenario. Other practical implementation arises from the
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joint design of the feedback and the precoders, which is solved by means of the so-called

Lloyd’s algorithm.

1.2. Previous Work

The capacity of a Single-User Multiple-Input Multiple-Output (SU-MIMO) Gaussian

channel was obtained in [2]. The multiuser scenario is considered in [3–5], and it is shown

that the non-linear signaling technique Dirty Paper Coding (DPC) [6] is able to approach

the sum capacity of a BC. On the other hand, some authors consider more practical

low-complexity BC with linear precoding and minimize the transmit power subject to

Quality-of-Service (QoS) constraints, as done in this work. Optimization is carried out

employing different criteria like Signal to Interference-plus-Noise Ratio (SINR) [7], or

Minimum Mean Square Error (MMSE) [8].

These contributions, however, only consider the ideal case where the CSIT is perfectly

known. In the more practical case, where only an estimate of the CSI is available, the BC

capacity region has not yet been found.

Regarding CSI, several considerations have been made in the literature. Some authors

have employed bounded uncertainty models, such as rectangular [9], ellipsoidal (e.g.

[10, 11]), or spherical (e.g. [12, 13]). Establishing such assumptions it is possible to

formulate the problem with convex constraints and solve it via a SemiDefinite Program

(SDP) [14]. Other authors, however, model that uncertainty as a stochastic error, (e.g.

[15–21]), as done in this work.

Various metrics can be used to evaluate the BC performance, such as SINR [9–

13, 21–29], MMSE [30], sum MMSE [15–17, 31, 32], weighted sum rate [18–20], or

MMSE balancing [9, 31]. Moreover, we can distinguish between works focused on

minimizing the power subject to some restrictions, consisting on achieving certain per-

user values for a given metric or some level via a combination of these values over all

the users [9–11, 13, 18, 21, 22, 29, 30]; and works where the goal is to obtain the best

performance in terms of any of the previously mentioned metrics for given transmit

power [12, 15–17, 19, 20, 22, 23, 25, 28, 29, 31].

Several methods have been proposed in the literature to solve this type of problems.

For example, the authors in [18] use an approximation of the SINR where the Jensen’s

inequality is applied in both the numerator and the denominator. This approach

was previously introduced in [7] and it has been extensively employed in many

works considering SINR-based metrics with imperfect CSI. However, using such an

approximation the gap between the real SINR and the approximated one is hard to

evaluate. A different SINR-based problem formulation is presented in [21], where the

authors propose two conservative approaches using second-order-cone formulations to



4 Chapter 1 Introduction

satisfy the QoS constraints with certain outage probability for Gaussian and uniform

channel estimation error distributions.

The sum MMSE minimization under these assumptions has been previously

considered, and several methods have been also proposed to find the optimum power.

In [15] the sum MMSE problem in the BC is transformed into the dual Multiple

Access Channel (MAC), and efficiently solved using SDP methods. In [31], however,

both the sum MMSE and the max weighted MMSE are minimized introducing Mean

Square Error (MSE) dualities and using Geometric Programing (GP) (see [33]) and the

algorithm presented in [34], respectively. Both works do not provide relationships with

the ergodic rate and only MMSE-based metrics are considered as performance measure.

However, the connection between the two metrics is exploited in other works where the

weighted sum rate maximization via weighted sum MMSE is presented [19, 20]. The

problem is formulated using the additional weighting matrices shown in [35], and solved

using heuristic approaches like Deterministic Annealing (DA) or Sample Averaging

Approximation (SAA).

Since maximizing the sum MMSE could lead to unfair situations where some of the

users get low (or even zero) rates, which is obviously non-desirable, we focus instead on

minimizing the transmit power fulfilling some QoS constraints, e.g. [9,10,21], expressed

in our case as per-user rate requirements, as we will explain in more detail in the following

section.

1.3. Main Contributions

This work focus on the minimization of the transmit power in the MIMO BC subject

to per-user rate constraints with imperfect CSI. This is as difficult problem since the

design of the linear filters at transmission and reception is not jointly convex [14].

The average rates can be lower bounded by the average MMSE by means of the

Jensen’s inequality [36]. In that way, we obtain new MMSE-based restrictions that allow

us to tackle the optimization problem in a more manageable way. The design of the filters

in this new power minimization problem subject to average per-user MMSE constraints

can be addressed with an Alternate Optimization (AO) process. Thus, the optimal receive

filters are computed for fixed transmit filters as the minimum MSE receivers and then,

keeping these receive filters fixed, the transmit filters are updated. Such an iterative

process will lead us to the joint optimal solution for the filters design. This AO iteration

has been frequently used in the literature combined with some sort of duality between the

BC and the MAC, so this work is not an exception. In particular, we employ the average

MSE duality proposed in [37] for imperfect CSIT and perfect CSIR. In this work the

authors find the factors which allow to switch from the average MSE obtained in the BC
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to the average MSE reached in the dual MAC, preserving both the per-user average MSEs

and the total transmit power.

As mentioned before, the optimal filters are designed using the AO method. However,

we still have to decide how the transmit power is distributed among the users. Such

decision has a direct impact on the level of intra-user interference and, as a consequence,

is critical in the system performance. For the design of the power allocation, we rely

on the standard Interference Function (IF) framework proposed by Yates in [38]. This

framework, successfully employed in previous works to distribute the available power

among the users (e.g. [31, 39]), solves the power control algorithm and also provides

useful properties like convergence and optimum uniqueness.

The AO of the filters together with the interference functions provide us the

mechanisms needed to implement the algorithm that solves the optimization problem.

We also show that the algorithm converges if the QoS can be fulfilled. Nevertheless,

the algorithm is meaningless if the optimization problem is not feasible. Therefore, we

also provide a test for checking the feasibility of the problem restrictions. This test is a

generalization of that presented in [40] for the vector BC and perfect CSI for both the

transmitter and the receivers, where the polytope (or bounded polyhedron) containing the

feasible MMSE targets is described. In the simulation results we show how the proposed

method solves the power minimization problem via the algorithmic implementation.

Additionally, we propose an algorithm to solve the balancing problem, that is,

minimizing weighted per-user MMSEs under restricted total transmit power. The

proposed algorithm takes advantage of the solution elaborated for the power minimization

problem and the well-know bisection search. This method divides an interval on the real

axis where the optimum yields and then selects a subinterval where the optimum lies for

further iterations.

Finally, we studied the application of the proposed method to address some additional

situations. The Multiple-User Multiple-Input Multiple-Output (MU-MIMO) where each

user transmits more than one stream is considered. Due to the additional spatial dimension

emerging from the multiple streams per user, the per-user rates have to be distributed

among the different streams. In such terms, we develop a method that optimally divides

the rates between the streams to find a local minimum of the total transmit power. A

different method is obtained for the OFDM MU-MIMO. In this case, the rates can be

distributed between the subcarriers that constitute the OFDM signal. However, due to

the particular structure of the OFDM channels, the multiple stream approximation does

not apply in this scenario. Moreover, a joint design of the CSI and the transmit filters is

considered in this work. To that end, the Lloyd’s algorithm is employed.
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1.4. Publications

The international conference and journal papers presented below exhibit the
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1.5. Thesis Overview

This thesis is organized as follows:

In Chapter 2, we present the system model for MIMO systems, considering both

Single-User and Multi-User scenarios. We introduce the parameters that allow to

characterize the wireless channels and the signal model for the downlink of a multiuser

system. Finally, the two major options (FDD and TDD) to perform the channel state

information acquisition are introduced.

Next, in Chapter 3 we review different fundamental concepts for the understanding

of this work, viz. channel capacity, MSE, and dualities between the BC and the MAC

preserving different MSE layers and the total transmit power.

In Chapter 4, we study the power minimization in the MISO BC for perfect and

imperfect CSIT assumptions. An algorithm solution is proposed and evaluated with

simulation experiments.

In Chapter 5, we extend the model to the MIMO BC and solve the power minimization

problem. Moreover, we develop a test to determine the feasibility of the QoS constraints.

Finally, a different problem is studied, where the total transmit power is fixed and the

average rates for all the users are balanced.

In Chapter 6, we address several additional issues, namely, allocating multiple streams

per-user or employing the OFDM modulation, both of them resulting into additional

complexity to design the minimum transmit power precoders. Furthermore, the design

of the feedback is considered and it is optimized jointly with the precoders.

Finally, Chapter 7 is dedicated to the conclusions and future work.
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1.6. Notation

In this section we introduce the notation used throughout this work.

Real scalar x ∈ R

Complex scalar x ∈ C

Complex conjugate (·)∗
Real part ℜ{·}
Imaginary part ℑ{·}
Absolute value | · |√
−1 j

Set union
⋃
(·)

Statistical expectation E[·]
Conditional expectation E[·|x]
Probability of an event x Pr{x}
Euler number

∞∑

n=0

1
n!
≈ 2.71828 e

Minimization of f(x) w.r.t. x minx f(x)
Maximization of f(x) w.r.t. x maxx f(x)
Argument x′ that minimizes f(x) x′ = argminx f(x)
Logarithmic function log(·)
Sign function f(x) = x

|x| sgn(·)

Table 1.1: General notation.
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Matrix X

Column vector x

Canonical vector, all components equal to 0 except for the kth

which is 1
ek

M ×N real matrix X ∈ RM×N

M ×N complex matrix X ∈ CM×N

Element at row j and column k [X]j,k
Diagonal matrixD, with [D]i,i = di diag(di)

N ×N identity matrix IN

All zeros vector 0

All ones vector 1

Transpose (·)T
Hermitian (·)H
Real part ℜ{·}
Circularly Symmetric Complex Gaussian random variable X

with mean µx and covariance Cx
X ∼ NC(µx,Cx)

Block diagonal matrix blockdiag(Xi)

Vectorize the R × N matrix A such that

a = [[A]T1:R,1, . . . , [A]1:R,N ]
T]T

vec(·)
Matrix inverse A−1

Cholesky decomposition ofA A1/2

Rank rank(·)
Trace tr(·)
Determinant det(·)
One norm || · ||1
Euclidean norm || · ||2
Frobenious norm || · ||F

Table 1.2: Vector and Matrix Notation.
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1.7. Assumptions

All the derivations are based on zero-mean circularly symmetric complex Gaussian

random symbols. In addition, the symbols for the different users are independent. We

also assume perfect knowledge of the second-order statistics of the zero-mean Gaussian

noise and that all random variables are stationary. We consider that CSI is perfectly known

at each user. Moreover, the users do not cooperate to reduce the interference, nor share

knowledge about the CSI, so that each one sends information to the BS about the channel

statistics. The feedback link between the users and the BS is bandwidth limited. Thus, the

users must reduce the amount of data to be sent to the transmitter by using compression

techniques, like quantization. A combination of the information obtained from all the

users is the CSI available at the BS. Regarding the CSI uncertainty, we do not assume a

particular shape for that, and it is modeled as a stochastic error.



Chapter 2

System Model

Contrarily to wired communications where the channel remains almost unchanged

during long periods of time, in wireless communications is not possible to foresee the

channel behavior. Due to that, wireless channels are modeled as a random process.

A transmitted radio signal usually propagates through several different paths before

arriving at the receiver. This effect is known as multipath propagation. The multiple paths

arise from different effects such as scattering, reflection, diffraction, or refraction, caused

by obstacles in the propagation environment. As a result, the received signal consists of

an infinite sum of attenuated, delayed, and phase-shifted replicas of the transmitted signal.

This combination of signals can be constructive or destructive, depending on the phase

of each wave, and can lead to severe performance degradations. The fluctuations in the

received signal level are termed fading. All these effects have been widely studied in the

literature, e.g. [41, 42].

In this complicated environment, the use of multiple antennas at both ends of

the communication link (i.e. Multiple-Input Multiple-Output (MIMO)) increases the

reliability due to diversity gain. Having a MIMO channel also provides an additional

spatial dimension and a degree of freedom gain, resulting in channel capacity gains

without any extra bandwidth or power. The first works considering MIMO techniques

appeared during the 1990s decade [43]. Spatial multiplexing allows to send several

data streams simultaneously, and serve more than one user at the same time. The cost

of deploying MIMO technologies is the added complexity to process multidimensional

signals and perform the spatial data separation.

The benefits of using MIMO are appreciated by the introduction of this technology

into modern wireless communication standards such as IEEE 802.11n, IEEE 802.11ac

(WiFi) [44], 4G, Third Generation Partnership Project (3GPP) Long-Term Evolution

(LTE), Worldwide Interoperability for Microwave Access (WiMAX), or High-Speed

Packet Access (HSPA)+.

Current wireless communication systems often have a transmitter that sends

13



14 Chapter 2 System Model

independent data streams to several users. Thanks to MIMO technologies it is possible

to send different signals towards different users simultaneously, and over the same

bandwidth. Signals are separated at reception due to the MIMO channel spatial

dimension. This communication link between a Base Station (BS) and more than one

users is known as Broadcast Channel (BC). When the data flow goes in the opposite

direction, several users send information at the same time to the BS and this is termed

Multiple Access Channel (MAC). For both of them the users share the channel and the

capacity has to be divided among them, that is, the resource allocation is an additional

task to be considered when there exists more than one user in the system.

2.1. Single-User MIMO Systems

x1

xN

h1,1

hN,1

hR,1

hR,1

y1

yR

η1

ηR
Tx Rx

Figure 2.1: Sigle-User MIMO Model.

Figure 2.1 shows the block diagram of a general single-user MIMO communication

system with N antennas at the transmitter and R at the receiver. Single-Input Single-

Output (SISO) denotes the system with only one transmit and receive antenna i.e.,

N = R = 1. Multiple-Input Single-Output (MISO) indicates a scenario with only one

receive antenna but several antennas at the transmitter, i.e., N > R = 1. And finally,

Single-Input Multiple-Output (SIMO) is used to denote those systems with one transmit

antenna but more than one receive antenna i.e., R > N = 1.

The MIMO channel is represented by an R×N matrix whose elements correspond to

the equivalent channel impulse responses for every combination of pairs between transmit

and receive antennas. More specifically, MIMO channels are represented by the channel
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matrixH(τ, t) defined as

H(τ, t) =








h1,1(τ, t) h1,2(τ, t) · · · h1,N (τ, t)
h2,1(τ, t) h2,2(τ, t) · · · h2,N (τ, t)

...
...

. . .
...

hR,1(τ, t) hR,2(τ, t) · · · hR,N (τ, t)








(2.1)

where t and τ stands for the time and the tap, respectively, and [H(τ, t)]i,j = hi,j(τ, t)

is the channel impulse response between the jth transmit antenna and the ith receive

antenna.

Using MIMO schemes allows increasing the reliability of a communication link

thanks to diversity. It allows reducing the probability of a fade by increasing the number

of antennas. That way, the probability of having poor gains in all the independent paths at

the same time is low. On the other hand, the multiple antennas provide additional degrees

of freedom from the spatial dimension, allowing to multiplex several independent data

streams into the channel. As a consequence, the spatial multiplexing leads to a higher

channel capacity.

When we restrict ourselves to a narrowband (flat fading) channel, the parameter τ

is removed. Moreover, if the MIMO channel is time-invariant, the coefficients are the

same for every t, and obviously the time variable is no longer needed. Hence, the MIMO

channel reduces to

H =








h1,1 h1,2 · · · h1,N

h2,1 h2,2 · · · h2,N
...

...
. . .

...

hR,1 hR,2 · · · hR,N








. (2.2)

Under the assumptions of flat fading and time invariance, the received signal in a

single-user MIMO channel (see Fig. 2.1) is given by

y =Hx+ η, (2.3)

where x ∈ CN and y ∈ CR are the vectors of transmitted and received symbols,

respectively, and η ∈ CR is the noise vector that represents the additive noise at the

receiver, e.g. η ∼ NC(0, σ
2
IR). This notation represents a zero-mean Gaussian noise.

Note that such noise is white since the vector components are statistically independent

(the covariance matrix is diagonal).

2.2. Multi-User Systems

We now consider multi-user systems, where a centralized transmitter (receiver) having

multiple antennas transmits (receives) independent data streams to different users possibly

having multiple antennas themselves.
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This type of scenarios is more complex to model than the former ones. To establish

a communication link with more than one user means that the channel has to be shared

between all of them. This fact constitutes a new challenge since the resources are divided

among the users following some policy, making the multiuser systems difficult to deal

with. In the ensuing sections, we will distinguish between two types of multi-user

communications.

2.2.1. Broadcast Channels

Here we consider the BC, where a single transmitter (BS) serves to several users.

One example of BC is the WiFi router, which sends information to some devices; or a

cellular system where a BS serves several mobile terminals in a certain area. When the

data is transmitted from the BS to the users, this communication is also commonly named

downlink. Fig. 2.2 shows the system model of a MISO BC. The BS is equipped with

s1

s2

sK

h1,1

h1,2

h1,N

hK,1

hK,2

hK,N

ŝ1

ŝK

BS

User 1

User K

Figure 2.2: MISO Broadcast Channel.

N transmit antennas and sends K independent data signal sk ∈ C, k ∈ {1, . . . , K}.
Before the transmission, each data signal is transformed to obtain the signal xk ∈ CN .

The transformation (either linear or non-linear) that produces the transmitted symbols xk

from the input data symbols sk is often referred to as precoding. Then, x =
∑K

i=1 xi

propagates over the MISO channels hk ∈ C
N , also known as vector channels. Such

MISO channels hk are assumed to be a flat fading (see Section 2.3), for all k. At the user

k, the received signal yk perturbed with the noise ηk ∼ NC(0, σ
2
ηk
) is obtained as follows

yk = h
H
k x+ ηk. (2.4)

Finally, the received signal is processed to get ŝk, the estimated data at the kth user.

Note that the transmitted signal x is the linear combination of the signals containing

the data for the K users. Since the users are equipped with one antenna each and the
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receivers are very simple, the complexity is concentrated at the BS where the precoders

make the spatial separation possible. This scheme is useful when the users have low

computational capacity.

Along this work we restrict ourselves to the case where the signal processing at the

transmission and reception is carried out by means of linear filtering. More specifically,

we assume that the transmitted signal xk is obtained by linear precoding the data signal

sk, i.e. xk = pksk where pk ∈ CN represents the response of the kth user linear precoder.

Hence, the signal transmitted over the BS is x =
∑K

i=1 pisi. At the users, the received

signal yk (cf. (2.4)) is also linearly filtered. In a MISO BC, the receiver linear filter

response reduces to a scalar value fk ∈ C. Elaborating the signal model, the estimated

data ŝk = f ∗
kyk is given by

ŝk = f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk. (2.5)

2.2.2. Multiple Access Channel

In this subsection we introduce a different type of multiuser communication system

termed MAC. In the MAC, multiple users share a common communication channel to

transmit information to a single receiver. In this scenario, the users may have one or

more antennas while the BS is often equipped with more than one. The data flow is the

opposite to that in the BC, and it is also commonly referred as the uplink. MAC is the

typical scheme in cellular systems when the mobile users communicate with the BS.

s1

sK

h1,1

h1,2

h1,N

hK,1

hK,2

hK,N

ŝ1

ŝ2

ŝK

BS

User 1

User K

Figure 2.3: MISO Multiple Access Channel.

Figure 2.3 depicts the block diagram of a MISO MAC. The data sent by the user

k, sk ∈ C, are transformed to get the transmitted signal xk. It then propagates over the
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vector channel hk. The signal at the centralized receiver, y, is given by

y =
K∑

i=1

hixi + η, (2.6)

where η ∼ N (0, σ2
ηI) represents the thermal noise. The received signal y is then

processed to extract the information from each user.

Observe that the received signal contains the linear combination of the channels

multiplied by the transmitted signals for all the users, together with the noise. Just like in

the BC, the complexity is located at the BS, where the multiple antennas provide degrees

of freedom enough to separate the data.

As for the BC, along this work we assume that signals are processed at either the

transmitter and the receiver with linear filters. Hence the users send the transmit signal

xk = tksk, where tk ∈ C is the linear precoder. After the propagation over the channel,

the BS filters the vector y with the linear receive filter of each user, gk ∈ CN , to obtain

the estimated data ŝk

ŝk = g
H
k

K∑

i=1

hitisi + g
H
k η. (2.7)

The natural extension of the BC and MAC systems above presented is to incorporate

additional antennas at the users. That way, the dimensions of receive filters in the BC,

precoders in the MAC, and channels of each user increase leading to the MIMO BC and

MIMO MAC, respectively.

2.3. Channel Model

Wireless communications consist of electromagnetic radiation from the transmitter to

the receiver. The channel models the propagation of the waves and takes into account

obstructions caused by ground, buildings, mountains, etc, as well as other effects. When

the wave reflects on certain objects, we have multiple versions of the transmitted signal

that will arrive at the receiver from different paths either constructively or destructively.

Then, for a point-to-point SISO communication, the received signal can be modeled as a

Linear Time-Invariant (LTI) system [45, 46]

y (t) =

P∑

i=1

ai(t)x(t− τi(t)) + η(t), (2.8)

where ai(t) and τi(t) are the attenuation and delay of the ith path, respectively, P is the

number of paths, η(t) is the noise, and x(t) is the sine wave signal. Therefore, the base-
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band equivalent discrete-time model reads as

y [m] =
P∑

i=1

hi [m] x [m− i] + η[m]. (2.9)

In the following, we will introduce some parameters that characterize the time-variant

channel [2, 46].

The delay spread, denoted as Td, is the time difference between the first and the last

paths. It is important because it determines the channel coherence bandwidth, Wc =
1

2Td

i.e., the range of frequencies where the channel is considered as constant. In other words,

the channel changes significantly when we move more than Wc Hertz (Hz) from a given

frequency.

Another channel parameter is the coherence time, Tc. The definition is analogous

to that of the frequency coherence, and it represents the interval where the time domain

channel, hi(t), does not significantly change.

A large number of applications exists that transmit information over wireless channels.

Depending on the application, there exists an allowed delay for which the application is

working properly. This delay is translated into a bandwidth W in the frequency domain.

According to the relationship between the coherence time Tc and the symbol period

Ts =
1
W

, the channels are classified as slow or fast fading in the literature. That is, when

the coherence time is shorter than the time requirement of each symbol, i.e., Tc ≪ Ts,

we have a fast fading channel and a single symbol is transmitted over several channel

fades. Conversely, when the coherence time is larger than the symbol period we have

slow fading, which means that the symbol is transmitted over a single channel fade.

Regarding the symbol bandwidth W and the channel coherence bandwidth, we can

distinguish between flat fading and frequency-selective fading channels. The first case

occurs when the bandwidth of the input signal is smaller than the coherence bandwidth,

i.e., W ≪ Wc, and implies that the channel is represented with a single tap. However, in

the opposite case, the frequency-selectivity has to be expressed with multiple taps.

The following table summarizes the relationships between the parameters explained

above and the channel characterizations [45].

Parameter specification Channel type

Tc ≪ Ts Fast fading

Tc ≫ Ts Slow fading

W ≪Wc Flat fading

W ≫Wc Frequency-selective fading

Table 2.1: Channel Characterization.



20 Chapter 2 System Model

When considering MIMO systems, the location of the antennas also plays an

important role in the resulting channel. The angle spread refers to the spread in angles of

arrival (or departure) of the multipath components at the antenna array. It causes space

selective fading, which means that the received signal amplitudes depend on the antennas’

spatial location. Space selective fading is characterized by the coherence distance, which

is inversely proportional to the angle spread.

2.3.1. Rayleigh Channels

Wireless channels are typically modeled by random processes. More specifically, a

general assumption is to model wireless channels as ergodic random processes. When

ergodicity holds, the time average for all the moments of the process equals the statistical

average regardless the moment that is chosen. In other words, the statistics can be

observed.

In this section we focus on a statistical channel model. Particularly, we present a flat

fading channel. That is to say, the channel is represented with a single tap h[m], where m

is the sample of the equivalent discrete-time base-band model. In practice, the different

paths hi[m] present in (2.9) are modeled as statistically independent circularly symmetric

random variables. Moreover, in Non Line-of-Sight (NLOS) scenarios, where no direct

vision between the transmitter and the receiver exists, all contributions have the same

importance. Due to the fact that the number of paths, P , is large, the summation of all

these contributions follows a zero-mean Gaussian distribution due to the Central Limit

Theorem, i.e.

h ∼ NC(0, σ
2). (2.10)

Note that we dropped the sample index [m] for the sake of notational brevity. Furthermore,

together with the uniform distribution of the phase of the random variables, it leads to

the absolute value of the tap |h| being Rayleigh distributed, i.e., the probability density

function (pdf) is

f|h| (|h|) =
|h|
σ2

e
−|h|2

2σ2 , |h| ≥ 0, (2.11)

where σ2 is the variance of the random variable h.

We now extend these concepts to the Multi-User (MU) MISO channel model, where a

transmitter with N antennas, N > 1, sends data to a single antenna receiver corresponding

to user k, i.e. hk = [hk,1, . . . , hk,N ]
T. We assume each entry in hk is Gaussian distributed

hk,i ∼ NC(0, σ
2
k,i), ∀k, i. Moreover, the antenna array is assumed to be constructed in

a way that the channel response between two different transmit antennas is statistically

independent, i.e., E[hk,ih
∗
k,j] = 0 for j 6= i and E[hk,ih

∗
k,j] = σ2

k,i for j = i, respectively.

In summary, the kth user’s channel vector response is modeled as a stationary zero-mean
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circularly symmetric complex Gaussian random vector hk ∼ NC(0,Chk
), where Chk

is

the covariance matrix, given by

Chk
= E[hkh

H
k ] = diag

(
σ2
k,1, . . . , σ

2
k,N

)
. (2.12)

Finally, we assume that the channels corresponding to the different users are statistically

independent.

Observe that the previous channel model can be obtained from a circularly symmetric

white Gaussian random vector, hw ∼ NC(0, I). Then, the kth channel vector can be

represented as

hk = C
1/2
hk
hw, (2.13)

where (·)1/2 is the Cholesky decomposition (see Section C.5 of Appendix C). The matrix

C
1/2
hk

represents the spatial correlation between the antennas, and it is realistic to assume

that it is constant since it changes very slowly. Notice that the expectation of the right

side of (2.13) is E[C
1/2
hk
hw] = C

1/2
hk

E[hw] = 0, whereas the covariance reads as

E[C
1/2
hk
hwh

H
wC

1/2,H
hk

] = C
1/2
hk

E[hwh
H
w]C

1/2,H
hk

= Chk
, (2.14)

since E[hwh
H
w] = I.

2.3.2. OFDM Channels

Orthogonal Frequency Division Multiplexing (OFDM) [47, 48] is a signaling

technique widely exploited in multiple communication standards, like WiMAX, LTE

4G mobile communications, digital television, or audio broadcasting. It is employed in

wideband communications due to its ability to cope with the channel frequency selectivity

(see Table 2.1).

OFDM divides the wideband frequency-selective fading channel into multiple flat

fading narrowband channels. One of the OFDM strengths with respect to other

multicarrier modulations lies on the partial frequency overlapping of the subcarriers that

allows to efficiently take advantage of the wideband channel.

Let us consider the baseband equivalent channel model presented in (2.9). In the

OFDM modulator block diagram shown in Fig. 2.4, a block of N data symbols x ∈ C
N

is transmitted. The N symbols are transformed prior to transmission by means of the

Inverse Discrete Fourier Transform (IDFT) i.e., s = F Hx, where F is the Discrete

Fourier Transform (DFT) matrix. The k, i entry of F is given by

[F ]k,i =
1√
N

e
−j2πki

N k, i = 1, ...., N. (2.15)
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x
S/P

x s
IDFT

s
CP P/S

To channel

Figure 2.4: OFDM Modulator.

In the next step a cyclic prefix of length P , where P is greater or equal than the number

of channel taps minus one (i.e., P ≥ P − 1), is added in order to remove the channel

Inter-Symbol Interference (ISI). This results in an OFDM symbol of length L = N + P

that can be represented by s = [sN−P+1, . . . , sN , s1, . . . , sN ]
T. When the OFDM symbol

is sent over the channel, the received signal is

y[l] =
P∑

i=1

his[l − i+ 1] + η[l], l = 1, . . . , L, (2.16)

where η[l] ∼ NC(0, σ
2). When the L samples of the OFDM symbol are received i.e.,

the vector y is received, we remove the cyclic prefix to get y = Hs + η. That way, the

N ×N matrixH becomes circular and is given as follows

H =








h1 hN . . . h2

h2 h1 . . . h3
...

...
. . .

...

hN hN−1 . . . h1








, (2.17)

where hl = 0, ∀l > P .

At the receiver, the DFT is applied to the received signal, i.e. Fy = FHs +

Fη = FHF Hx + η̃. Then, the equivalent channel is that given by Heq =

FHF H, and the white noise is preserved since E[η̃η̃H] = E[FηηHF
H
] = σ2IN .

Notice that the normalized eigenvector of the ith column of the circular matrix is

ui = 1/
√
N [1, ej2πi/N , . . . , ej2π(N−1)i/N ]T [49]. On the other hand, the eigenvalue

decomposition (see Section C.1 of Appendix C) of the matrix H is H = UΛUH. As a

consequence, the DFT matrixF contains the eigenvectors of the matrixH , so that the left

product times the DFT and the right product times the IDFT matrices gives the following

diagonal matrix,

Heq = FUΛU
HF H = FF HΛFF H = diag(λ1, . . . , λN), (2.18)
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where λi =
∑P

p=1 hp e
−j2πi(p−1)/N (see [49]). Note that the eigenvectors of circular

matrices are independent of the matrix coefficients. Therefore, the equivalent channel

employing the OFDM modulation is the diagonal channel Heq,

Heq =








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λN








. (2.19)

In summary, the effect produced by the channel over the transmitted OFDM symbols

are N multiplications by different scalars, which correspond to the eigenvalues of the

equivalent channelHeq. It is important to note that our frequency-selective fading channel

has been transformed into N flat fading parallel channels employing the matrices F H and

F at the transmitter and the receiver, respectively, and adding a proper cyclic prefix. In

other words, the N symbols are transmitted independently in the frequency domain.

We can naturally extend the OFDM channel to MIMO scenarios. Recall the equivalent

channel matrix in (2.19) for single-user SISO communications. When the transmitter has

more than one antenna there exist interferences between the subcarriers n ∈ {1, . . . , N},
and m ∈ {1, . . . , N} from other antennas only if m = n. However, if the cyclic prefix

is long enough, the interference with other subcarriers can be totally removed during

the demodulation process i.e., with the DFT at the receiver, leading to the following

equivalent channel,

Heq =








H1 0 . . . 0

0 H2 . . . 0

...
...

. . .
...

0 0 . . . HN








, (2.20)

where the matrices Hi ∈ C
R×T , ∀i, with T and R being the number of transmit and

receive antennas, respectively. In conclusion, the equivalent MIMO-OFDM channel is

represented by a block-diagonal matrix when the cyclic prefix is long enough.

2.4. Channel State Information

Channel State Information (CSI) is fundamental in the design of wireless

communication systems. However, the channel knowledge by the two sides of the

communication link, transmitter(s) and receiver(s), is usually different in practical

systems. We denote the channel information available at transmission as Channel

State Information at the Transmitter (CSIT), whereas Channel State Information at the

Receiver (CSIR) stands for the channel knowledge at reception.



24 Chapter 2 System Model
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Figure 2.5: Obtaining CSIT using Reciprocity.

Since the channel is not known prior to transmission in practical systems, the

assumption of perfect CSIT knowledge is unrealistic. As a consequence, it is important

to explain how this information is acquired.

Bearing in mind that most communication systems are bidirectional, the uplink

and downlink channels must be separated into orthogonal signaling dimensions. This

separation is called duplexing. We consider two types of systems, Time-Division Duplex

(TDD) and Frequency-Division Duplex (FDD), where different solutions are applied [50].

2.4.1. Channel State Information in TDD Systems

Figure 2.5 shows the way of obtaining CSIT in TDD systems. The transmitter only

acquires the CSI indirectly since the signal goes into the channel only after leaving the

transmitter [50]. Therefore, the CSI can be obtained by using the reciprocity principle.

The reciprocity of the wireless channel implies that the channel from the transmitter

to the receiver is estimated during the transmission in the opposite direction i.e., from

the receiver to the transmitter, since the relationship between both of them is only the

Hermitian (e.g. [51, 52]). Pilot symbols are often used for channel estimation. The

reciprocity holds if both forward and reverse links are located at the same frequency, the

same time, and the same antenna locations. In practical systems, however, the forward

and reverse links cannot use identical frequency, time, and spatial locations, but the

reciprocity still holds if the lags between both links are respectively much smaller than

the channel coherence time, the channel coherence bandwidth, and the channel coherence

distance [53].

Practical channel acquisition based on reciprocity may be applicable in TDD-Time-

Division Multiple Access (TDMA) systems [50, 54–56]. TDMA consists of dividing the

frame duration Tf into T non-overlapping subintervals, each of duration Tf/T . Each

transmitter has to use a particular subinterval within each frame. In TDD systems,

orthogonal time slots are assigned to each user to transmit to the base station and to

receive from the base station. While TDD-TDMA systems have identical forward and

reverse frequency bands and antennas, there is a time lag between the forward and reverse

links. As mentioned above, such time lags must be negligible compared to the channel

coherence time. Even in this case, reciprocity is difficult to accomplish due to the need

for very good calibration (e.g. [57]).
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Figure 2.6: Obtaining CSIT using Feedback.

2.4.2. Channel State Information in FDD Systems

Since in FDD systems the reciprocity is usually not applicable, a feedback channel

should be used to send the CSI from the transmitter to the receiver, as illustrated in

Fig. 2.6. The channel response is estimated at the receiver during the transmission from

the transmitter to the receiver, and the resulting estimation is sent back to the transmitter

on the reverse link. Such reverse channels are actually implemented in most wireless

communication standards [58–60]. In this case, calibration errors are estimated as part of

the CSI and no special problems arise from calibration as for TDD. However, the time

lag, D, between the channel measurement at the receivers and its use at the transmitter is

a source of errors unless it is much smaller than the channel coherence time.

Moreover, the data rate of the feedback channel is highly limited. One drawback of

feedback is the possible overhead of the reverse channel and the increasing consumption

of transmit resources. Therefore, methods of reducing feedback overhead in a simple way,

such as quantization or truncation of the feedback information, are crucial for practical

implementations. As a consequence of the quantization, any system with limited rate CSI

feedback suffers from erroneous CSI at the transmitter.

The same is true in a multiuser system. In Frequency-Division Multiple Access

(FDMA) systems, the available channel bandwidth is split into a number of F frequency

non-overlapping subchannels. Each subchannel is assigned to a user on demand. With

FDD, separate frequency bands are assigned to each user for transmitting to or receiving

from the base station. Therefore, FDD-FDMA systems often have identical temporal

and spatial channel dimensions, but the frequency offset between the forward and reverse

links is usually much larger than the channel coherence bandwidth. Therefore, since the

channel reciprocity is not true the limited feedback channels must be used to allow the

transmitter to get CSI from the users.

2.4.3. Perfect and Imperfect CSI

In this section, we distinguish between the case when there exists perfect (or full) CSI,

i.e. the true channel is known, and the case where only imperfect (or partial) information
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about the channel is available.

Let us introduce the channel given by the random variable h, and the corresponding

pdf fh(h). Consider now a realization of h, i.e. h̃. When there exists perfect CSI on

both the transmitter and the receiver, the available information about the channel is h̃.

Nevertheless, the general assumption in this work is imperfect CSIT and perfect CSIR,

which constitutes a more realistic approach. Then, depending on h̃, which is known by

the receiver, any of the strategies above introduced (TDD or FDD) is implemented to

decide the CSI sent to the transmitter. In particular, the receiver selects one value for the

random variable v from the set of all possible values V . Thus, the information available

at the transmitter is v together with the conditional pdf fh|v(h|v). Hence, the channel

knowledge at the transmitter is statistical and, due to the partial CSI, the channel pdf is

obtained using the Bayes’ rule as follows

fh (h) =

∫

V

fh|v(h|v)fv(v)dv. (2.21)

2.5. Conclusions

In this chapter some fundamental concepts about wireless communication systems

have been reviewed.

First, we have introduced the single-user MIMO system model, and the benefits of

including the spatial dimension have been also explained. Afterwards, we considered

a more complicated scenario where several users receiving (or transmitting) in a

simultaneous way have been included. Such scenarios are termed BC and MAC,

respectively. Moreover, the users could be equipped with more than one antenna.

A brief review of the wireless channel characterization was also presented. We

introduced the some useful concepts in order to classify the channels depending on how

the electromagnetic waves propagate. Additionally, two different channel models have

been introduced in the chapter. In particular, we studied the flat fading Rayleigh and the

frequency selective OFDM channel models, considering single and multiple antennas in

both cases.

Finally, a discussion about the CSI acquisition is included. The FDD and TDD

systems are described as the main methods to share information about the channel state

between the transmitter and the receivers.



Chapter 3

Preliminary Concepts

In this chapter we present the main tools and concepts employed over this work. First,

entropy, mutual information, and capacity concepts are introduced. Next, we determine

the capacity of the Multiple-Input Multiple-Output (MIMO) channel for both perfect

and imperfect Channel State Information at the Transmitter (CSIT), and end up with

the MIMO Broadcast Channel (BC) capacity. Afterwards, we will introduce the BC/

Multiple Access Channel (MAC) dualities for imperfect CSIT. In particular, the per-user

Mean Square Error (MSE) duality under imperfect CSIT is a useful tool to avoid certain

difficulties arising from finding the optimal MSE filters because it enables to get rid of the

dependence of the transmit filters in the BC.

3.1. Channel Capacity

In 1948 Claude Shannon presented revolutionary ideas for information theory in

wireless communications. Shannon introduced the channel capacity as the maximum

of the mutual information over all the possible input distributions [1]. Channel capacity

is the limiting data rate that can be achieved with asymptotically small error probability,

and represents a key feature of any communication channel.

Let us start introducing the concept of entropy of a random variable x, denoted as

H(x), as the expected value of data (in bits) contained in that variable, i.e.,

H(x) = −
∫

C

fx (x) log2 (fx (x)) dx, (3.1)

where fx(x) is the probability density function (pdf) of x. Let us now consider a second

random variable, y, that depends on x. The conditional entropy of y with respect to x is

defined as

H (y|x) = −
∫

C

∫

C

fx,y (x, y) log2
(
fy|x (y|x)

)
dxdy, (3.2)

27
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where fx,y(x, y) is the joint distribution of x and y, and fy|x (y|x) is the distribution of

y conditioned to x. Taking into account the mutual dependency of x and y, another

insightful measure is the joint entropy, which is defined as

H (x, y) = −
∫

C

∫

C

fx,y (x, y) log2 (fx,y (x, y)) dxdy. (3.3)

Furthermore, the joint entropy of a pair of random variables is the sum of the entropy of

one of them plus the conditional entropy of the other one [61], i.e.,

H (x, y) = H (x) +H (y|x) . (3.4)

The mutual information between a pair of random variables x and y, denoted as

I(x; y), is defined as the amount of uncertainty that is reduced in one of them due to

the knowledge about the other one, that is,

I (x; y) = H (y)−H (y|x) . (3.5)

Note that, if x and y are independent, H(y|x) = H(y), and the mutual information

is zero. Contrarily, if y = x, then the conditional entropy is H(y|x) = 0, and the

mutual information is maximized i.e., I(x; y) = H(y). Considering x as the input of

a communication channel and y as the output, the channel capacity is defined as

C = max
fx(x)
I (x; y) . (3.6)

We now particularize the previous concepts to the single-user MIMO system presented

in Section 2.1 of Chapter 2. In such case, a data vector x ∈ C
N is transmitted from N

antennas to a receiver with R antennas. Without loss of generality, x is assumed to be

zero-mean and E[xxH] = Cx. We consider the channel H ∈ C
R×N is deterministic,

and the Additive White Gaussian Noise (AWGN) η, is zero-mean circularly symmetric

complex Gaussian i.e., η ∼ NC(0,Cη). Hence, the output of the system is y =Hx+η.

The capacity is the maximization of the mutual information, which can be written

in terms of the entropy as H(y) − H(y|x) (c.f. (3.5)). The second term in the last

expression, H(y = Hx + η|x), can be reduced to H(η) since the data and the noise

are statistically independent. Therefore, maximizing the mutual information is equal to

maximizingH(y).
It is proven that a zero-mean circularly symmetric complex Gaussian vector is the

entropy maximizer [2]. As a consequence, if x is zero-mean circularly symmetric

complex Gaussian, the output signal y = Hx + η would maximize the mutual

information. The pdf of a circularly symmetric complex Gaussian variable x, with mean

µx and covariance Cx, is given by

fx(x) = det (πCx)
−1 e(−(x−µ)HC−1

x (x−µ)) . (3.7)
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In particular, when µx = 0 the entropy is given by [2]

H(x) = Ex [− log2 (fx (x))]

= log2 det (πCx) + log2 (e) Ex

[
xHC−1

x x
]

= log2 det (πCx) + log2 (e) Ex

[
tr
(
xHC−1

x x
)]

= log2 det (πCx) + log2 (e) Ex

[
tr
(
xxHC−1

x

)]

= log2 det (πCx) + log2 (e) tr
(
Ex

[
xxH

]
C−1

x

)

= log2 det (π eCx) . (3.8)

Hence, the capacity expression for a MIMO deterministic channel is [2, 61]

I (x; y) = H (y)−H (y|x)
= log2 det

(
π e
(
HCxH

H +Cη

))
− log2 det (π eCη)

= log2
(
det
(
π e
(
HCxH

H +Cη

))
(det (π eCη))

−1)

= log2

(

det
(
π e
(
HCxH

H +Cη

)) 1

det (π eCη)

)

= log2

(

det
(
π e
(
HCxH

H +Cη

))
det

(
1

π e
C−1

η

))

= log2 det
((
HCxH

H +Cη

)
C−1

η

)

= log2 det
(
HCxH

HC−1
η + IR

)
. (3.9)

Consider now that H is a random channel generated by an ergodic process as

explained in Chapter 2. We assume that the channel is known at the receiver but not at the

transmitter. That is, there exists perfect Channel State Information at the Receiver (CSIR)

and no CSIT. Therefore, the expression (3.9) is no longer valid since it assumes that the

channel is perfectly known at both sides of the link. Thus, when the transmitter does

not know the channel, the capacity is given by the average of the capacities obtained for

each channel realization, so it depends on the channel distribution. In other words, the

capacity is computed as the expectation of (3.9) over the channelH , and is called ergodic

capacity [2, 45, 54], i.e.

C = E
[
log2 det

(
HCxH

HC−1
η + IR

)]
. (3.10)

3.1.1. MIMO Broadcast Channel Capacity

In the previous section we introduce the concept of channel capacity for the MIMO

single-user system model. The use of MIMO technologies at the Base Station (BS)

results in an increase of degrees of freedom from having multiple antennas. Thus, it
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is possible to simultaneously transmit or receive data from multiple users. Then, the

previous definition of capacity makes no sense in such a scenario, where the channel has

to be divided between all the users. The multiuser channel capacity is given by a capacity

region [45, 54]. Such a region contains the set of vector rates that can be maintained

simultaneously by all the users, providing a reliable communication. Since the users

share the channel, if one of them desires to increase the rate, the others may reduce their

respective rates, hence establishing a trade-off between all the users.

The achievable rate region has been found employing a technique named as Dirty

Paper Coding (DPC) [6]. To explain how it works, let us introduce the permutation π(·)
to order the users in the way that is more convenient for this technique. When we apply

DPC, the user π(2) presubstracts the interference of user π(1). Analogously, the user π(3)

is able to cancel the interference of users π(1) and π(2), and so forth. Hence, the user

π(k) is affected from the interference of the users π(j) such that j > k.

Let us now introduce an N × R MIMO BC system model where Hk and Ck stands

for the channel and the covariance matrix of the transmitted signal for the user k ∈
{1, · · · , K}, respectively. Note that the covariance matrix contains the data affected by

the transformation applied prior to transmission, e.g., a multiplication times a precoding

matrix. Thus, considering AWGN for all the users, we obtain the following achievable

rate for the user π(k) [5],

Rπ(k) = log2




det
(

IR +Hπ(k)

∑

i≥kCπ(i)H
H
π(k)

)

det
(

IR +Hπ(k)

∑

i>kCπ(i)H
H
π(k)

)



 . (3.11)

When we collect the rates of all the users in a vector, we obtain R(π,C), with C =

blockdiag(C1, . . . ,CK). Notice that the achievable rates depend on both the permutation

and the covariance matrices contained in C. Hence, the achievable capacity region

CDPC(Ptx,H) is given by the convex hull of the union of the previously mentioned rate

vectors over all the possible permutations and covariance matricesC fulfilling the power

constraint tr(C) ≤ Ptx, i.e.,

CDPC(Ptx,H) = Co

(
⋃

π,C

(R (π,C))

)

. (3.12)

The dirty paper region has been shown to be equal to the capacity region for the MIMO BC

[62]. Moreover, the dirty paper region is equivalent to the capacity region corresponding

to the dual MIMO MAC, as shown in [5].

However, the DPC technique is a non-linear scheme and is only possible when

assuming perfect knowledge of the channel at the transmitter to presubstract the inter-

user interference. On the contrary, if only linear filtering is applied, the user k experiences
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interference from all the other users i 6= k and, therefore, the MIMO BC capacity with

linear filtering is obtained as follows,

Rk = log2




det
(

IR +Hk

∑K
i=1CiH

H
k

)

det
(

IR +Hk

∑

i 6=kCiH
H
k

)





= log2 det





(

IR +Hk

K∑

i=1

CiH
H
k

)(

IR +Hk

∑

i 6=k

CiH
H
k

)−1




= log2 det





(

IR +Hk

K∑

i=1

CiH
H
k

)(

IR +Hk

∑

i 6=k

CiH
H
k

)−1




= log2 det

((

(
HkCkH

H
k

)
+

(

IR +Hk

∑

i 6=k

CiH
H
k

))

×
(

IR +Hk

∑

i 6=k

CiH
H
k

)−1




= log2 det



IR +HkCkH
H
k

(

IR +Hk

∑

i 6=k

CiH
H
k

)−1


 . (3.13)

Analogously to the BC/MAC duality for the DPC region, any rate vector in the BC

employing linear filters can be achieved in the dual MAC, as shown in [63].

Consider now random channels for all the users. In the single-user MIMO scenario

with perfect CSIR, and no CSIT, the ergodic capacity is given by (3.10). The possible

data rate for the user k is then

E[Rk] =

∫

C

Rk(Hk)fHk
(Hk)dHk. (3.14)

When there exist partial CSIT, the channel pdf is given by the following expression using

Bayes’ rule (see Section 2.4 of Chapter 2)

fHk
(Hk) =

∫

V

fHk|v(Hk|v)fv(v)dv, (3.15)

where v ∈ V is the scalar random variable representing the information about the channel
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known at the transmitter. Consequently, we rewrite the ergodic rate (3.14) as

E[Rk] =

∫

C

Rk(Hk)

∫

V

fHk|v(Hk|v)fv(v)dvdHk

=

∫

V

fv(v)

[

Rk(Hk)

∫

C

fHk|v(Hk|v)dHk

]

︸ ︷︷ ︸

E[Rk|v]

dv

= E[E[Rk|v]]. (3.16)

Therefore, due to imperfect CSIT the ergodic rate depends not only on the channel

statistics but also on the information that is fed back to the transmitter. Hence, there

exist an average rate corresponding to every realization of the random variable v, and the

ergodic rate is computed as the expectation over all the possible values of v.

3.2. Mean Square Error (MSE)

In statistics, the MSE of an estimator is a measure of how close is the estimator to

the data. The difference between data and the corresponding estimator is referred to

as the error. Hence, the MSE is the average of the squared errors. We study the BC

system model that assumes linear filtering presented in Section 2.2.1 of Chapter 2, where

hk ∈ CN , pk ∈ CN , fk ∈ C, ηk ∈ C, and sk are the Multiple-Input Single-Output (MISO)

channel, the precoder, the receive filter, the noise, and the data for the user k, respectively,

with N the number of transmit antennas. In such a scenario, the estimated symbol at the

receiver k is given by ŝk, that is

ŝk = f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk. (3.17)

Accordingly, the MSE for the user k is computed as follows

MSEk = E
[
|sk − ŝk|2

]
. (3.18)
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Substituting the estimated symbols ŝk, we obtain

MSEBC
k = E





∣
∣
∣
∣
∣
sk − f ∗

kh
H
k

K∑

i=1

pisi − f ∗
kηk

∣
∣
∣
∣
∣

2




= E

[(

sk − f ∗
kh

H
k

K∑

i=1

pisi − f ∗
kηk

)(

s∗k −
K∑

i=1

s∗ip
H
i hkfk − η∗kfk

)]

= E
[
|sk|2

]
− E

[
K∑

i=1

sks
∗
ip

H
i hkfk

]

− E [skη
∗
kfk]− E

[

f ∗
kh

H
k

K∑

i=1

pisis
∗
k

]

+ E

[

|fk|2 hH
k

K∑

i=1

pisi

K∑

j=1

s∗jp
H
j hk

]

+ E

[

|fk|2 hH
k

K∑

i=1

pisiη
∗
k

]

− E [f ∗
kηks

∗
k]

+ E

[

|fk|2
K∑

i=1

ηks
∗
ip

H
i hk

]

+ E
[
|fk|2 |ηk|2

]
. (3.19)

Considering a unit variance for the transmitted signal and σ2
ηk

for the noise,

respectively, and bearing in mind that the data for different users and the noise are

statistically independent, i.e., E[sks
∗
i ] = 0 ∀k 6= i and E[skη

∗
i ] = 0, the previous equation

reduces to

MSEBC
k = 1− 2ℜ

{
f ∗
kh

H
k pk

}
+ |fk|2 hH

k

K∑

i=1

pip
H
i hk + |fk|2 σ2

ηk
. (3.20)

Analogously, the previous derivation can be obtained for the MAC system model

shown in Section 2.2 of Chapter 2, where tk ∈ C, hk ∈ CN , gk ∈ CN , and η ∈ CN are

the MAC precoders, the channel, the receive filter, and the noise, respectively. Therefore,

using the data estimates

ŝMAC
k = gHk

K∑

i=1

hitisi + g
H
k η, (3.21)

we calculate the MSE for every user in the MAC as

MSEMAC
k = 1− 2ℜ

{
gHk hktk

}
+ gHk

K∑

i=1

hi |ti|2 hH
i gk + g

H
kCηgk, (3.22)

with Cη being the covariance of the noise. Note that MSEBC and MSEMAC are used to

denote the MSEs in the BC and the MAC, respectively.

So far, we have considered perfect CSIR and CSIT in the BC to compute the MSE.

Consider now the random channels presented in Chapter 2. In addition, we assume perfect
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CSIR but imperfect CSIT. Then, the MSE has to be computed as the average over the

channel, i.e., E[MSEk].

In Section 3.1.1 the capacity for the MIMO BC with perfect CSIR and imperfect CSIT

has been studied. In the case of MSE, the reasoning is analogous. We apply the Bayes’

rule to obtain the average MSE as (cf. (3.16))

E [MSEk] = E [E [MSEk|v]] . (3.23)

In other words, optimizing the average MSE conditioned to v for every possible

realization of the random variable results into the average MSE optimization.

3.3. Broadcast Channel / Multiple Access Channel

Dualities

Over the last years, a large family of works have employed different dualities between

the BC and the MAC in recent years. These dualities allow for a reformulation of the

BC problem into the dual MAC, where some advantageous properties can be applied.

Moreover, the figures of merit (e.g. rate, MSE, Signal to Interference-plus-Noise Ratio

(SINR)) are equal in both the BC and the dual MAC, and the total transmit power is also

the same in both domains.

Dualities with respect to the SINR [4, 7, 64], rate [5, 63], and MSE [8, 32] were

presented in many previous works. Additionally, different types of dualities could be

used depending on the problem formulation. In particular we focus on MSE dualities

as done in [8], where three kinds of dualities are presented. The first kind preserves

both the sum MSE and the total power constraint. For the second and third kinds before

mentioned, every users’ or stream-wise’s MSEs remain unchanged while the same total

power is achieved.

All these dualities are based not only on the assumption of perfect CSIR but also

on perfect CSIT in the BC. Since we are interested in the BC, where the BS has

partial knowledge of the Channel State Information (CSI), we focus on [37] instead.

In this work we find formulas that allow to switch between the BC and the dual MAC

keeping the per-user average MSEs unchanged, where the average is determined by the

stochastic CSI available at the BS. Other dualities considering imperfect CSIT can be

found in [15, 17, 31].

In the ensuing sections we will focus on the MSE dualities for both perfect and

imperfect CSI.
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3.3.1. MSE Duality with Perfect CSIR and CSIT

As previously mentioned, different kinds of dualities have been studied in [8]. For

arbitrary filters, the equivalent ones in the dual domain are derived with different precision

levels. For all of them, both the MSE of interest and the total power are preserved.

Sum-MSE Duality

We start with the less restrictive duality, in which the system sum-MSE remains the

same. Simultaneously, it preserves the total power at transmission. In order to do that,

only one degree of freedom is needed. The scalar α ∈ R+ defines the relationship between

the filters in the following way

pk = αgk and fk = α−1tk, (3.24)

where the filters correspond to the BC and MAC system models presented in Chapter

2. Moreover, the noise covariance in the BC is set to E[ηkη
∗
k] = σ2

η , whereas the noise

covariance in the MAC reads as Cη = E[ηηH] = σ2
ηIN . Introducing (3.24) into (3.20)

and equating to (3.22), we get

K∑

i=1

∣
∣t∗kh

H
k gi
∣
∣
2
+

σ2
η

α2
|tk|2 =

K∑

i=1

∣
∣gHk hiti

∣
∣
2
+ σ2

η ‖gk‖22 . (3.25)

Since the equality holds for the sum-MSE, the last expression reduces to
∑K

i=1 1/α
2|tk|2 =

∑K
i=1 ‖gk‖

2
2. Thus, the value of α that satisfies the desired properties

is found as

α2 =

∑K
i=1 |fi|2

∑K
i=1 ‖gi‖22

. (3.26)

Per-user MSE duality

If we are interested in leaving the individual MSEs for all the users unchanged, we

need different scalars αk for each of them. This way the relationship between the filters

is characterized as

pk = αkgk and fk = α−1
k tk. (3.27)

Substituting pk and fk in the expression of the MSE for the BC, MSEBC
k of (3.20), and

equating to (3.22), we obtain

K∑

i=1

∣
∣gHk hiti

∣
∣
2
+ σ2

η ‖gk‖22 =
K∑

i=1

α2
i

α2
k

∣
∣gHi hktk

∣
∣
2
+

σ2
η

α2
k

|tk|2 . (3.28)
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Multiplying by α2
k and moving to the right side all the terms except the one independent

of αj , ∀ j ∈ {1, . . . , K}, we get

α2
k

(
∑

i 6=k

∣
∣gHk hiti

∣
∣
2
+ σ2

η ‖gk‖22

)

−
∑

i 6=k

α2
i

∣
∣gHi hktk

∣
∣
2
= σ2

η |tk|2 , (3.29)

which is rewritten in matrix notation as

Z
[
α2
1, . . . , α

2
K

]T
= σ2

η

[
|t1|2 , . . . , |tK |2

]T
, (3.30)

where the matrix Z is

[Z]k,j =

{∑

i 6=k

∣
∣gHk hiti

∣
∣
2
+ σ2

η‖gk‖22 j = k,

−
∣
∣gHj hktk

∣
∣2 j 6= k.

(3.31)

The matrix Z is non-singular [8] (see also Section 3.3.2) and, as a consequence, the

positive real-valued scalars αk can always be found as

[
α2
1, . . . , α

2
K

]T
= Z−1σ2

η

[
|t1|2 , . . . , |tK |2

]T
. (3.32)

Similarly, the conversion from BC to MAC can be derived. For given BC filters, the

same average MSEs can be achieved using the following MAC relationship between the

filters in both domains

gk = β−1
k pk tk = βkfk. (3.33)

After substituting (3.33) in the expression of the MSE for the MAC, i.e. MSEMAC
k from

(3.22), we equate to (3.20) to get

β2
k

(
∑

i 6=k

|f ∗
kh

H
k pi|2 + σ2

η |fk|2
)

=
∑

i 6=k

β2
i

∣
∣pHk hifi

∣
∣
2
+ σ2

η ‖pk‖22 , (3.34)

after multiplying by β2
k both sides of the equality. Then, we follow the same steps as for

the MAC to BC conversion (when the matrix Z was obtained), to find the matrixW that

allows us to rewrite the equalities in matrix notation

W
[
β2
1 , . . . , β

2
K

]T
= σ2

η

[
‖p1‖22, . . . , ‖pK‖22

]T
. (3.35)

Hence, such matrixW is computed as follows

[W ]k,j =

{∑

i 6=k |fk|2
∣
∣hH

k pi
∣
∣2 + σ2

η |fk|2 j = k,

− |fj |2
∣
∣hH

j pk
∣
∣
2

j 6= k.
(3.36)
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Observe that W satisfies the same properties as Z from MAC to BC derivation. Thus,

we have guaranteed that we are able to find positive real valued βk, ∀k, such that

∀k: MSEMAC
k = MSEBC

k .

When the receivers have more than one antenna, which corresponds to MIMO

scenarios, multiple streams can be allocated among the users taking advantage of the

spatial multiplexing. In [8], another kind of duality is considered when the equivalence

between the BC/MAC MSEs has to be fulfilled not only per-user but also per-stream.

However, we will consider that case as a particular MIMO scenario, where each stream

can be treated as a virtual user, bearing in mind that every stream of a real user propagates

over the same channel.

Note that the per-stream duality implies that the per-user and the sum-MSE dualities

have to be fulfilled. Therefore, the multiple-stream scenario could be seen as a more

general case, whereas less degrees of freedom are needed for the first and second kinds.

3.3.2. MSE Duality with Perfect CSIR and Imperfect CSIT

In the previous section, some kinds of MSE dualities have been presented. However,

all of them considered perfect CSI for both sides of the communication link. This

assumption is rather unrealistic, so, for the BC system model, we consider the case

where only partial information about the channel state is available at the BS, whereas

the receivers perfectly know their own channel. Remember that in Section 3.2 the

imperfect CSIT has been already considered (see (3.23)), and it has been characterized

by the random variable v. However, in this section we will focus on the average MSE

conditioned to v, i.e. MSE
BC

k = E[MSEBC
k |v].

Multiple Access Channel to Broadcast Channel

Here, the necessary coefficients for switching from the BC to the dual MAC for single-

antenna receivers are computed. Contrarily to Section 3.3.1, where the noise variance is

equal for all the users, we deal with the more general scenario where the noise in the

dual MAC is set to η ∼ NC(0, IN) and the dual channel is defined as σ−1
ηk
hk, with σ2

ηk

being the noise variance for the user k in the BC. Hence, considering the system models

presented in Fig. 2.2 and Fig. 2.3 of Chapter 2, we define the relationship between the

BC and the dual MAC filters as in [37], i.e.

pk = αkgk and fk = σ−1
ηk
α−1
k tk, (3.37)
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with αk ∈ R+. Then, we rewrite the average MSE in the BC conditioned to the imperfect

CSIT v

MSE
BC

k = E

[

1− 2ℜ{f ∗
kh

H
k pk}+ |fk|2 hH

k

K∑

i=1

pip
H
i hk + |fk|2 σ2

ηk
| v
]

. (3.38)

Accordingly, this leads us to

MSE
BC

k = E

[

1− 2ℜ
{
σ−1
ηk
t∗kh

H
k gk
}
+ α−2

k |tk|2 +
K∑

i=1

α2
i

α2
k

σ−2
ηk

∣
∣gHi hktk

∣
∣
2 | v
]

. (3.39)

By equating the last expression to the average MSE in the dual MAC conditioned to v,

i.e.

MSE
MAC

k = E

[

1− 2ℜ{σ−1
ηk
gHk hktk}+ gHk

K∑

i=1

σ−2
ηi
hi|ti|2hH

i gk + ‖gk‖22 | v
]

, (3.40)

we get

E
[
|tk|2 | v

]
+ E

[
K∑

i=1

α2
iσ

−2
ηk

∣
∣gHi hktk

∣
∣
2 | v
]

= α2
k‖gk‖22 + α2

k E

[
K∑

i=1

σ−2
ηi
|gHk hiti|2| v

]

,

(3.41)

after multiplying by α2
k both equation sides. Now we simplify and rewrite (3.41) in matrix

notation. To that end, we collect the αk factors in the vector

a =
[
α2
1, . . . , α

2
K

]T
, (3.42)

and the MAC average powers E[|tk|2| v] in

ς =
[
E
[
|t1|2 | v

]
, · · · ,E

[
|tK |2 | v

]]
. (3.43)

Finally, defining Γ ∈ R
K×K as follows

[Γ ]k,j =

{∑

i 6=k σ
−2
ηi

E[|gHk hiti|2 | v] + ‖gk‖22 j = k,

−σ−2
ηk

E[|gHj hktk|2 | v] j 6= k,
(3.44)

we get the following K equalities expressed in matrix notation

Γa = ς. (3.45)

Since Γ is diagonally dominant, i.e. |[Γ ]i,i| ≥
∑

j 6=i |[Γ ]i,j|, ∀i ∈ {1, . . . , K}, it is

non-singular. Additionally, Γ has positive diagonal and non-positive off-diagonal entries.

Thus, Γ−1 has non-negative entries [8, 65] and the resulting α2
k are non-negative. In

other words, we can always find αk ∈ R+ such that MSE
BC

k = MSE
MAC

k , ∀k. Note that
∑K

i=1 ‖gi‖22α2
i =

∑K
i=1 E[|ti|2 | v], which results from left multiplying (3.45) by the all-

ones vector 1T. Therefore, we can infer that the same average transmit power is used in

the BC as in the dual MAC, using the relationship in (3.37).
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Broadcast Channel to Multiple Access Channel

We now focus on the conversion from MAC to BC. For given BC filters, MAC filters

achieving the same average MSEs with the same transmit power can be found [37]. The

duality can be obtained in the same way as for the MAC to BC conversion. First of all,

we define the relationships

gk = β−1
k pk and tk = σηkβkfk. (3.46)

After substituting (3.46) in the average MSE expression for the dual MAC, i.e. MSE
MAC

k

from (3.40), we obtain

MSE
MAC

k = E

[

1− 2ℜ{pHkhkfk}+
K∑

i=1

β2
i

β2
k

∣
∣pHkhifi

∣
∣
2
+ β−2

k ‖pk‖22 | v
]

. (3.47)

Then, equating to MSE
BC

k and multiplying by β2
k , we get

β2
k E

[
K∑

i=1

|f ∗
kh

H
k pi|2| v

]

+ β2
kσ

2
ηk
E
[
|fk|2 | v

]
= E

[
K∑

i=1

β2
i

∣
∣pHk hifi

∣
∣
2 | v
]

+ ‖pk‖22.

(3.48)

Following the procedure presented for the opposite conversion, we obtain the following

equalities in matrix notation

Ωb = τ , (3.49)

where

b =
[
β2
1 , . . . , β

2
K

]T
, (3.50)

and

τ =
[
‖p1‖22 , . . . , ‖pK‖22

]T
. (3.51)

Thus, the entries ofΩ are given by

[Ω]k,j =







∑

i 6=k E
[

|fk|2
∣
∣hH

k pi
∣
∣2 | v

]

+ σ2
ηk
E
[
|fk|2 | v

]
j = k,

−E
[

|fj |2
∣
∣hH

j pk
∣
∣
2 | v
]

j 6= k.
(3.52)

Note that Ω satisfies the same properties as Γ from previous derivation. As

a consequence, it is always possible to find positive real valued βk, ∀k, such that

MSE
MAC

k = MSE
BC

k , ∀k, with the same total transmit power for both the BC and the

MAC.
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3.4. Conclusions

In this chapter we have presented some concepts fundamental for the understanding

of the rest of work presented in this dissertation. The channel capacity was introduced

as the theoretical limit for the rate transmission that can be achieved with asymptotically

small error probability. Moreover, the capacity of the multiuser systems was discussed

considering both linear and non-linear transmit strategies in the BC. Another key point is

the CSI available at the transmitter. If only partial CSIT is acquired, the ergodic rate turns

to be the adequate metric.

A different performance measure is also introduced in this chapter, that is, the MSE.

It consists on evaluating the error incurred in the estimated signal with respect to the

original one. Such metric is widely used in the literature of wireless communications.

Again, we distinguish between scenarios where the CSIT is perfectly known and the ones

where only imperfect information is available.

The MSE duality has been also presented in this chapter as a powerful tool to

circumvent the difficulty of jointly determining the optimal precoders in the BC. Instead,

the corresponding MAC receive filters can be easily obtained due to the proposed

dualities. Furthermore, several kinds of dualities have been studied, from those that

preserve the per-user MSE, or the per-stream MSE, to those oriented to the sum-MSE.

Finally, imperfect CSIT and perfect CSIR assumptions have been included in the per-user

MSE duality.



Chapter 4

Transmit Power Minimization in MISO

Broadcast Channels

In this chapter we focus in the Multiple-Input Single-Output (MISO) Broadcast

Channel (BC) where data streams are transmitted from a multi-antenna base station to

several non-cooperative single-antenna receivers. At the base station, data is precoded

with linear filters that are designed to accomplish individual rate requirements while

minimizing the total transmit power. Perfect Channel State Information (CSI) is typically

assumed when designing such linear filters. In practical settings, however, CSI is obtained

via a limited feedback channel or estimation in the reverse link. Hence, only imperfect

CSI is actually available at the base station (cf. Section 2.4 of Chapter 2).

The minimization of the transmit power subject to Quality-of-Service (QoS)

constraints for imperfect CSI scenarios is a difficult problem. Exploiting the relationship

between Minimum Mean Square Error (MMSE) and rate, we approximate the original

formulation to be conveniently addressed. Based on the appropriate duality between the

Multiple Access Channel (MAC) and the BC for the Mean Square Error (MSE), the

BC filters design problem is reformulated in the dual MAC. Due to the assumption of

erroneous CSI, however, the dualities presented in [5, 7, 8, 32, 63, 66] cannot be applied.

Instead, we have to resort to the duality shown in [37] which allows different levels of

CSI at both the transmitter and the receivers.

We employ a stochastic error model, e.g., resulting from estimation in the reverse link

or feedback, and a formulation based on ergodic rates as in [27], where bounds to the

achievable rates for linear zero-forcing precoders based on imperfect CSI were presented.

In [10, 22, 29, 67], however, the precoder design was based on a model with bounded

errors, which is well suited in feedback systems. For a stochastic error model, the average

sum MSE has been minimized in several works, e.g. [15, 37]. The precoder design under

probabilistic constraints has been also considered in [9, 21, 68]. Additionally, we do not

apply the assumption that the CSI errors are identical at both sides of the communication

41
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link, as done in [15].

Our contribution is an algorithmic solution to the transmit power minimization

problem under the assumption of imperfect Channel State Information at the Transmitter

(CSIT) exploiting the duality result of [37]. In particular, we highlight the possibility

of using a standard Interference Function (IF) [38] based on the MMSE resulting from

applying scalar receivers in the MISO MAC, which leads to a low complexity of the

fixed-point iteration used to allocate the power.

In the ensuing sections both perfect and imperfect CSIT scenarios are studied. An

algorithmic solution is proposed for the perfect CSIT case, and it is then extended for the

more realistic scenario where the assumption of partial CSIT is available.
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s2

sK

p1

p2

pK

h1

h2

hK

ŝ1

ŝ2

ŝK

η1

η2

ηK

f1

f2

fK

Figure 4.1: MISO Broadcast Channel.

4.1. Scenario 1: Perfect Channel State Information at the

Transmitter

Figure 2.2 in Chapter 2 depicts the BC model to be considered along this work. The

BC channel in our particular scenario is that shown in Fig. 4.1. We assume a Gaussian

zero-mean data signal sk ∈ C for user k, with 1 ≤ k ≤ K and E[|sk|2] = 1, is precoded

by pk ∈ CN , where K and N are the number of users and transmit antennas, respectively.

The transmit signal propagates over a MISO channel hk ∈ CN . The Additive White

Gaussian Noise (AWGN) is ηk ∼ NC(0, σ
2
ηk
). The data signals are mutually independent

and also independent from the noise. The linear receive filter fk ∈ C provides the

following estimates of the data symbols

ŝk = f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk. (4.1)
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In this section, we consider perfect CSIT and perfect Channel State Information at

the Receiver (CSIR). The rate for the user k is particularized from the Multiple-Input

Multiple-Output (MIMO) BC in (3.13), with the number of receive antennas R equal to

one and the covariance of the transmitted signal asCk = E[pksks
∗
kp

H
k ] = pk E[sks

∗
k]p

H
k =

pkp
H
k i.e.,

Rk = log2



1 + pHk hk

(

σ2
k + h

H
k

∑

i 6=k

pip
H
i hk

)−1

hH
k pk



 . (4.2)

Our aim is to minimize the total transmit power PT =
∑K

i=1 ||pi||22 necessary to guarantee

certain QoS constraints, that is, a given rate for each user, denoted by ρk, k ∈ {1, . . . , K}.
That leads us to the following optimization problem

min
{pk}

K
k=1

PT =
K∑

i=1

‖pi‖22 subject to Rk ≥ ρk, ∀k. (4.3)

4.1.1. Problem Formulation

Consider now the performance measure given by MSEk = E
[
|sk − ŝk|2

]
, as

presented in (3.20) of Chapter 3

MSEk = 1− 2ℜ
{
f ∗
kh

H
k pk

}
+ |fk|2 hH

k

K∑

i=1

pip
H
i hk + |fk|2 σ2

ηk
. (4.4)

Recall that the transmitter and the receiver have full CSI, i.e., perfect CSIT and CSIR,

respectively. Hence, any meaningful MSE receivers fk are functions of the channel state

fMMSE
k = argminfk

E
[
|sk − ŝk|2

]

= argminfk
E

[

|sk − f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk|2

]

. (4.5)

To compute the MMSE receivers fMMSE
k , we calculate the derivative of MSEk in (4.4)

with respect to f ∗
k i.e.,

∂MSEk

∂f ∗
k

= −hH
k pk + fk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)

. (4.6)

Equating the last expression to zero, we get

fMMSE
k =

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk. (4.7)



44 Chapter 4 Transmit Power Minimization in MISO Broadcast Channels

Now, substituting (4.7) into the MSE expression of (4.4) we get the following MMSE for

user k

MMSEk = 1− 2pHk hk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk

+ pHkhk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk

= 1− f ∗,MMSE
k hH

k pk

= 1− pHk hk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk. (4.8)

Notice that it is possible to find a relationship between the rate in (4.2) and the MMSE in

(4.8). Rewriting (4.8) using the equality 1− a
a+b

= (1 + a
b
)−1, we get

MMSEk =



1 + pHk hk

(

hH
k

∑

i 6=k

pip
H
i hk + σ2

ηk

)−1

hH
k pk





−1

, (4.9)

and then the relationship with the rate given by (4.2) can be easily obtained as

Rk = log2
(
MMSE−1

k

)
. (4.10)

Since log2(·) is a monotonic increasing function, reducing the MMSEk of the user k

leads to increasing the corresponding rate Rk. Contrarily, any increase in the MMSEk

causes a reduction in the rate Rk of the corresponding user. Due to that, we focus on

MMSE instead of rate in our problem formulation: the optimization problem presented

in (4.3) can be reformulated based on the MMSE equivalent constraints, such that

MMSEk ≤ εk, ∀k. To fulfill the original QoS constraints, we compute the corresponding

MMSE restrictions εk = 2−ρk . In that way, our new problem formulation equivalent to

that presented in (4.3) reads as

min
{pk,fk}

K
k=1

PT =

K∑

i=1

‖pi‖22 subject to MMSEk ≥ 2−ρk , ∀k. (4.11)

4.1.2. Exploiting the MSE Duality

In (4.7) we have derived the receivers that minimize the MMSE for the user k. Note

that these receivers can be individually optimized since fk does not have any impact in
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the MSE of the other users. Contrary to that, the precoder pk has influence on the MSEi,

when i 6= k.
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Figure 4.2: MISO Multiple Access Channel.

Consider now the MAC system model shown in Fig. 2.3, which is presented in more

detail in Fig. 4.2. In such a scenario, we set the dual MAC of the BC with tk ∈ C,

σ−1
ηk
hk ∈ CN , η ∈ CN , and gk ∈ CN being the precoders, the dual channel, the AWGN,

and the receivers, respectively. The MSE in the MAC has been computed in (3.22), and it

reads in the dual MAC as

MSEMAC
k = 1− 2ℜ

{
gHk θktk

}
+ gHk

K∑

i=1

θi |ti|2 θHi gk + gHk gk, (4.12)

where θk is σ−1
ηk
hk and η ∼ NC(0, IN). It is important to note that in (4.12) the receive

filters gk can be individually optimized, whereas the precoders tk are coupled and any

change in one of them has impact on the MSE of all the users. Therefore, we employ the

MSE dualities presented in Section 3.3 of Chapter 3 to find the optimal BC receive filters

fk in the BC domain, whereas the BC precoders are computed in the dual MAC as the

optimum gk. In that way, we avoid the difficult problem of finding the transmit and the

receive filters in the domain where they are coupled.

In particular we are interested in preserving the per-user MSEs. Therefore, we employ

the second kind of duality explained on Section 3.3.1 of Chapter 3, which was based

on [8], but including the noise variance, i.e.

pk = αkgk and fk = σ−1
ηk
α−1
k tk. (4.13)

Recall that it is always possible to find αk ∈ R+ such that MSEMAC
k = MSEBC

k employing

the same total average transmit power. Likewise, it is possible to obtain the MAC filters

from the BC ones in such a way that the per-user MSE and the total transmit power

remains unchanged. This relationship is given by

gk = β−1
k pk tk = σkβηkfk, (4.14)
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as we previously showed in Section 3.3.1 of Chapter 3. Thus, for the computation of

the optimal precoders, a reformulation in the dual MAC is necessary. The MSE duality

guarantees that the solution in one domain can be achieved in the dual one. Therefore, we

equivalently study the optimization problem of (4.11) in the dual MAC

min
{tk ,gk}

K
k=1

PMAC
T =

K∑

i=1

|ti|2 subject to MMSEMAC
k ≤ 2−ρk . (4.15)

From duality it is straightforward to see that the same total transmit power is reached in

both domains, i.e., PT = PMAC
T .

Hence, the optimal MAC receivers, that is, the BC precoders, are computed as the

MMSE receive filters gMMSE
k deriving (4.12) with respect to g∗k as follows (cf. matrix

derivatives in Section C.6 of Appendix C)

∂MSEMAC
k

∂g∗k
= −θktk +

(
K∑

i=1

θi |ti|2 θHi + IN

)

gk. (4.16)

Observe that since the MSEMAC
k is scalar, we can equivalently calculate the derivative of

tr(MSEMAC
k ). Now, equating the derivative to zero we get the optimal MAC receive filter

gMMSE
k =

(
K∑

i=1

θi |ti|2 θHi + IN

)−1

θktk. (4.17)

Taking advantage of the mentioned duality, we compute the BC precoders as the MAC

receivers using (4.17) and the BC receivers are those from (4.7). Observe that when

an update of the BC precoders pk is performed, the receiver filters fk are modified

accordingly by means of (4.7). Likewise, updating the MAC precoders tk affects the

MAC filters gk (cf. (4.17)). Thus, we propose to find the optimal transmit and receive

filters following an iterative process where both the transmit and receive filters are updated

in an alternate manner, which is named as Alternate Optimization (AO) approach, as we

will see in Section 4.1.4.

4.1.3. Power Allocation using Interference Functions

So far we have shown how to compute the optimal transmit and receive filters using

the AO procedure aforementioned, taking advantage of the MSE BC to MAC and MAC

to BC dualities. However, an additional issue arises in the Multiuser systems, the power

allocation. That is, how we distribute a certain amount of power between the users. Note

that such decision has a major impact in the system performance, since the interference

suffered for each user depends on the power assigned to the rest of them. Hence, the
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power allocation has to be updated to fulfill the QoS constraints. Therefore, we split off

the power allocation in the MAC ξk = |tk|2, i.e., tk =
√
ξkτk, with |τk|2 = 1. Accordingly,

the MAC MSE reads as (cf. (4.12))

MSEMAC
k = 1− 2

√

ξkℜ{gHk θkτk}+
K∑

i=1

ξi |τi|2 gHk θiθHi gk + ‖gk‖22 . (4.18)

The optimal receivers gMMSE
k still have the form given by (4.17) but using the power

normalization previously introduced in this section the can be rewritten as

gMMSE
k =

(
K∑

i=1

ξiθi |τi|2 θHi + IN

)−1

θkτk
√

ξk. (4.19)

Substituting (4.19) into (4.18) provides the following MMSE expression

MMSEMAC
k = 1− 2ξk |τk|2 θHk

(
K∑

i=1

ξiθi |τi|2 θHi + IN

)−1

θk+

ξk |τk|2 θHk

(
K∑

i=1

ξiθi |τi|2 θHi + IN

)−1( K∑

i=1

ξiθi |τi|2 θHi + IN

)

(
K∑

i=1

ξiθi |τi|2 θHi + IN

)−1

θk

= 1− gMMSE,H
k θkτk

√

ξk

= 1− ξk |τk|2 θHk

(
K∑

i=1

ξiθi |τi|2 θHi + IN

)−1

θk. (4.20)

Note that this expression depends on the normalized precoders τk and the power allocation

ξ = [ξ1, . . . , ξK]
T ≥ 0.

To find the minimum power necessary to fulfill the QoS constraints, we resort to

the standard interference function framework proposed by [38] (see Appendix B). This

framework is useful to provide a solution to power allocation problems where there exist

interference between the different users.
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Using ϕk =
√
ξkτkθk andXk =

∑

i 6=k ξiθi|τi|2θHi + IN we rewrite (4.20) as follows

MMSEMAC
k = 1− ϕH

k

(
Xk +ϕkϕ

H
k

)−1
ϕk (4.21)

= 1− ϕH
k

(

X−1
k −X−1

k ϕk

(
1 +ϕH

kX
−1
k ϕk

)−1
ϕH

kX
−1
k

)

ϕk (4.22)

= 1−
(

ϕH
kX

−1
k ϕk −

(
ϕH

kX
−1
k ϕk

)2 (
1 +ϕH

kX
−1
k ϕk

)−1
)

= 1−
(

ϕH
kX

−1
k ϕk

(
1 +ϕH

kX
−1
k ϕk

)−1
)

=
(
1 +ϕH

kX
−1
k ϕk

)−1

=
1

ξk




1

ξ k

+ |τk|2 θHk

(
∑

i 6=k

ξiθi |τi|2 θHi + IN

)−1

θk





−1

. (4.23)

Equation (4.20) can be rewritten as (4.21). Then, applying the matrix inversion lemma

(see Section C.4 in Appendix C) we get (4.22). Thus, we define the interference function

for the user k as Ik(ξ) = ξkMMSEMAC
k , as follows

Ik(ξ) =




1

ξ k

+ |τk|2 θHk

(
∑

i 6=k

ξiθi |τi|2 θHi + IN

)−1

θk





−1

. (4.24)

To use the special properties of the standard interference functions we have to proof that

Ik(ξ) satisfies the conditions presented in Appendix B, i.e., positivity, monotonicity, and

scalability. Taking into account that ξ ≥ 0, and (
∑

i 6=k ξiθi|τi|2θHi + IN)
−1 is a positive-

definite matrix (see Section C.5 of Appendix C), Ik(ξ) ≥ 0, and positivity is fulfilled.

Moreover, when we consider the power allocation ξ′ ≥ ξ, (
∑

i 6=k ξ
′
iθi|τi|2θHi + IN)

−1 ≤
(
∑

i 6=k ξiθi|τi|2θHi +IN)
−1, and 1/ξ′k ≤ 1/ξk. Thus, Ik(ξ

′) ≥ Ik(ξ), and the monotonicity

condition is proved. Consider now the power allocation αξ, with α > 1. Then, using that

α > 1, we have

Ik(αξ) =




1

αξ k

+
|τk|2
α
θHk

(
∑

i 6=k

ξiθi |τi|2 θHi +
1

α
IN

)−1

θk





−1

<




1

αξ k

+
|τk|2
α
θHk

(
∑

i 6=k

ξiθi |τi|2 θHi + IN

)−1

θk





−1

= αIk(ξ), (4.25)

and the scalability property is also satisfied. Now we can reformulate the optimization

problem in the dual MAC of (4.15) employing the interference function Ik(ξ), that is

min
ξ

PMAC
T =

K∑

i=1

ξi s.t.: Ik (ξ) /ξk ≤ 2−ρk , ∀k. (4.26)
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We have shown that Ik(ξ) satisfies the conditions for the standard interference

functions. These properties imply that I(ξ) = [I1(ξ), . . . , IK(ξ)] is also standard.

The QoS requirements can be described by the inequality ξ ≥ Q−1I(ξ), with Q =

diag(2−ρ1 , . . . , 2−ρK ). From the properties of I(ξ), it can be concluded that the fixed

point iteration ξ(ℓ) = Q−1I(ξ(ℓ−1)) converges to the global optimum of (4.26) for given

MAC transmit filters tk, as it is proven in [38] (see also Appendix B). Since Ik(ξ) is a

function of |tk|2, ∀k, and the receive filters gk are implicitly updated when calculating the

interference function, the power minimization reduces to find the optimum ξ and compute

the corresponding filters afterwards, as it can be seen in Algorithm 4.1: PM.MISO.PCSI in

the ensuing section.

Finally, note that the solution for the power allocation is unique, ξopt (c.f. Appendix

B).

4.1.4. Algorithmic Solution

Algorithm 4.1: PM.MISO.PCSI. Power Min. in the MISO BC with Perfect CSI

1: Initialize: ℓ← 0, random initialization for p
(0)
k ∀k

2: for k = 1 to K do

3: fk←update BC receiver using (4.7)

4: end for

5: tk, gk, ∀k ← BC-to-MAC conversion (see Section 4.1.2)

6: ξ
(0)
k ← |tk|2, ∀k

7: repeat

8: ℓ← ℓ+ 1
9: I(ξ(ℓ−1))← update the interference function using (4.24)

10: for k = 1 to K do

11: ξ
(ℓ)
k ← 2ρk Ik(ξ

(ℓ−1))
12: end for

13: until
∥
∥ξ(ℓ) − ξ(ℓ−1)

∥
∥
1
≤ δ

14: for k = 1 to K do

15: topt

k ←
√

ξ
(ℓ)
k

16: end for

17: for k = 1 to K do

18: g
opt

k ← update MAC receiver using (4.19)

19: end for

20: p
opt

k , f opt

k , ∀k ←MAC-to-BC conversion (see Section 4.1.2)

Algorithm 4.1: PM.MISO.PCSI shows the pseudocode that solves the power
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minimization problem (4.11). First, the BC precoders pk are randomly initialized. Next,

the corresponding BC receivers are computed in the line 3. Then, the conversion to the

dual MAC is performed by means of the duality that allows to transform the filters from

the BC domain to the dual MAC via the relationships presented in Section 4.1.2 (line 5).

The initial power allocation is calculated in the line 6 prior to the loop. At every iteration,

the line 9 allows to calculate the interference function for all the users. Note that the MAC

receivers gk are also implicitly updated. After that, the new power allocation is found in

the line 11, and the process is repeated until a fixed precision is reached. The threshold

δ in the line 13 determines when the loop is finished. Once the optimal power allocation

is found, the corresponding optimal MAC transmitters are computed in the line 14, and

using them we obtain the optimal MAC receivers from the step 18. With the dual MAC

filters we eventually get the optimal BC filters performing the conversion from the MAC

to the BC, as shown in Section 4.1.2 (line 20).

Notice that every iteration step in the algorithm reduces the total transmit power or

remains unchanged when the solution is feasible. Due to the existence of a unique

minimum of (4.26), this property implies that the power converges [38] (see also

Appendix B). However, it is easy to see that the solution for gk and tk is not unique

since the product of the filter by a complex number of the form ejφ does not have any

impact on the final result (cf. (4.12)).

4.1.5. Simulation Results

In this section we present the results of some experiments carried out to show the

performance of the proposed algorithm, referred to as Algorithm 4.1: PM.MISO.PCSI in

the previous section. In such experiments, we consider a scenario where the Base

Station (BS) equipped with N = 4 transmit antennas sends data to K = 4 single

antenna users. The rate targets for all the users are set to ρ1 = 1, ρ2 = 2, ρ3 = 2.5

and ρ4 = 1.5 bits per channel use, respectively. Equivalently, the MMSE targets are

ε1 = 0.5000, ε2 = 0.2500, ε3 = 0.1768, and ε4 = 0.3536. The channel for the user k, hk,

is modeled using the Rayleigh channel model described in Section 2.3.1 of Chapter 2, i.e.,

hk ∼ NC(0, IN), channels are statistically independent among users. The stop threshold

δ of Algorithm 4.1: PM.MISO.PCSI is set to 10−4 and the noise variance is equal to 1 for

all the users, i.e. σ2
k = 1, ∀k.

Figure 4.3 shows the evolution of the rates for all the users throughout the execution

of the Algorithm 4.1: PM.MISO.PCSI. As it can be seen from the figure, the rates

converge to the values given by the QoS constraints after only few iterations. Figure

4.4 shows the corresponding MMSE achieved after some iterations. Since the Algorithm

4.1: PM.MISO.PCSI solves the problem reformulated so that the QoS restrictions

expressed as rates are transformed into new equivalent MMSE ones, this figure shows
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Figure 4.3: Power Minimization in the MISO BC with Perfect CSI: Rate vs. Number of

Iterations.

how the performance of the measure of interest evolves by using the Algorithm 4.1:

PM.MISO.PCSI. Observe that rates converge to the desired values. Finally, Fig. 4.5

depicts the total transmit power, i.e. the sum of the powers employed for all the users,

PT , to get the MMSE targets. This total power is initially 15 dB and it is reduced to

8.5 dB after 6 iterations. The behavior observed in this figure is the expected evolution of

the total transmit power bearing in mind that both the rate targets and the corresponding

MMSE targets are feasible.

4.2. Scenario 2: Imperfect Channel State Information at

the Transmitter

In this section we consider the power minimization in the MISO BC subject to QoS

constraints with perfect CSIR and imperfect CSIT [69].

Let us consider the system model of a MISO BC depicted in Fig. 4.1. We assume that

the BS is equipped with N transmit antennas. This BS sends the data signal sk ∈ C to the
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user k ∈ {1, . . . , K}. Furthermore, data signals are zero-mean unit-variance Gaussian

(i.e., sk ∼ NC(0, 1) ∀k), and uncorrelated (i.e., E[s∗ksj] = 0 for j 6= k). Such signals

are then precoded with the linear filters pk ∈ C
N at the BS and propagate over the vector

channels hk ∈ CN . At the users, the received signals are linear filtered with fk ∈ C to

produce an estimate of the kth user data signal, which is expressed as

ŝk = f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk, (4.27)

where ηk ∼ NC(0, σ
2
ηk
) represents the AWGN which is independent from the data signals.

According to (4.27), ŝk is a noisy version of the data signal sk, and the achievable data

rate in such situation is given by

Rk = log2(1 + h
H
k pkp

H
k hkx

−1
k ), (4.28)

where we introduced the scalar

xk = hH
k

(
∑

i 6=k

pip
H
i

)

hk + σ2
ηk
. (4.29)

Note that this expression can be obtained particularizing the rate in (3.13) to the scenario

where the users have only one antenna, and setting the covariance of the transmitted signal

accordingly toCk = E[pksks
∗
kp

H
k ] = pk E[sks

∗
k]p

H
k = pkp

H
k .

We assume that the receiver k has perfect knowledge of all the linear precoding vectors

{pk}Kk=1 and the following CSI: its own channel, hk, and the variance of its own AWGN,

σ2
ηk

. Contrarily, the BS has only access to partial CSI modeled by the random variable v

and the conditional probability density function (pdf)s fhk |v(hk|v).
The partial CSI model is particularized as follows. It is reasonable to assume that

the receiver k perfectly knows its corresponding true channel hk. In Frequency-Division

Duplex (FDD) systems, all the users can feed back some information regarding their CSI

to the transmitter, which is combined to get v. Alternatively, the channel can be estimated

in the uplink of Time-Division Duplex (TDD) systems, assuming channel reciprocity

between the uplink and the downlink (see Section 2.4 of Chapter 2 for further information

about CSI acquisition). In both cases, the transmitter only knows hk statistically via v.

Note that no additional assumptions are made, e.g. no bounded CSI error models, nor CSI

errors with a particular shape. However, the following model for the imperfect CSIT is

made

hk = h̄k + h̃k, (4.30)

with h̄k = E[hk| v] and h̃k being the error due to imperfect CSI. Note that the true

channel hk is unknown at the transmitter but h̄k can be recovered from v. We assume
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h̃k ∼ NC(0,Ch̃k
), where Ch̃k

= E[(hk − h̄k)(hk − h̄k)
H| v]. The error covariance

matrix of the kth user, Ch̃k
, represents the quality of the CSIT from user k. In the limit

case where Ch̃k
= 0, the BS has perfect knowledge of the channel hk and the power

minimization is solved by means of the Algorithm 4.1: PM.MISO.PCSI presented in the

previous section.

As it can be seen in Section 3.1.1 of Chapter 3, when there exists partial CSIT and the

channel is given by an ergodic process, the rate to be possibly achieved turns out to be

E[Rk] = E[log2(1 + h
H
k pkp

H
khkx

−1
k )]. (4.31)

Hence, let ρk, ∀k, be the per-user average rate to be accomplished by the system.

Remember that our ultimate objective is to design the precoders pk that minimize the

average transmit power, PT , therefore fulfilling the inequality constraints E[Rk] ≥
ρk, ∀k. Such constrained minimization problem, however, is difficult to solve. Notice,

nevertheless, that by means of Bayes’ rule the average rate E[Rk] can be rewritten as

E[E[Rk| v]], where the outer expectation is over v, while the inner one is over hk| v. Thus,

finding the optimum pk that minimize the transmit power, PT , for all the possible values

of v is equivalent to minimizing the overall transmit power.

Therefore, for given imperfect CSI realization v we seek to determine the optimal

precoders pk that minimize the average transmit power PT =
∑K

k=1 ||pk||22 subject to the

per-user conditioned average rate constraints E [Rk| v] ≥ ρk, ∀k, i.e.,

min
{pk}

K
k=1

PT =
K∑

k=1

‖pk‖22 subject to E [Rk| v] ≥ ρk, ∀k. (4.32)

In the ensuing section we exploit the relationship between the average rate and the

average MMSE to reformulate the optimization problem (4.32) in a more manageable

way.

4.2.1. Problem Formulation

Let us start considering the kth user MSE in the BC, denoted by MSEBC
k . Assuming

perfect CSI at both ends of the BC, such MSE is given by E[|sk − ŝk|2], i.e.

MSEBC
k = 1− 2ℜ

{
f ∗
kh

H
k pk

}
+ |fk|2

∣
∣hH

k pk
∣
∣
2
+ |fk|2 xk, (4.33)

where xk is given by (4.29). The derivation of this performance measure can be found in

Section 3.2 of Chapter 3. Correspondingly, the filter minimizing the MSE is the so-called

MMSE receive filter, which is given by
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fMMSE
k = argminfk

E
[
|sk − ŝk|2

]

= argminfk
E

[

|sk − f ∗
kh

H
k

K∑

i=1

pisi + f ∗
kηk|2

]

. (4.34)

The MMSE receive filters are easily found computing the derivative of MSEk with respect

to f ∗
k , i.e.,

∂MSEk

∂f ∗
k

= −hH
k pk + fk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)

. (4.35)

Now, by equating the last derivative to zero, we obtain

fMMSE
k =

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk. (4.36)

The minimum MSE accomplished by the user k in the BC, denoted as MMSEBC
k , is simply

obtained substituting (4.36) into (4.33), i.e.

MMSEk = 1− f ∗,MMSE
k hH

k pk

= 1− pHk hk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk. (4.37)

Finally, having in mind (4.28) and applying the matrix inversion lemma (see Section C.4

of Appendix C) to rewrite the MMSEBC
k given by (4.37), the kth user rate can be expressed

as

Rk = − log2(MMSEBC
k ). (4.38)

Equations (4.33), (4.36), and (4.37) are suitable for the BC design when perfect CSI

is available at both ends. Notice, however, that this is not the scenario studied in this

section, in which the specific channel realizations hk, although available at the receivers,

are unknown at the transmitter. Instead, the transmitter obtains realizations of the acquired

partial CSI, v.

For this reason, we now define the average MSE at the BC as MSE
BC

k = E[MSEBC
k | v]

as follows

MSE
BC

k = E
[

1− 2ℜ
{
f ∗
kh

H
k pk

}
+ |fk|2

∣
∣hH

k pk
∣
∣
2
+ |fk|2 xk| v

]

, (4.39)

where the expectation is taken over hk| v, i.e. over all possible channel realizations hk

for given v. The derivation of such MSE can be found in Section 3.3.2 of Chapter 3.
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Notice that such expectation can be calculated at the transmitter since the pdf fhk |v(hk|v)
is assumed to be known. Correspondingly, and having in mind (4.36), the average MMSE

in the BC is given by MMSE
BC

k = E[MMSEBC
k | v], i.e.

MMSE
BC

k = E
[

1− fMMSE,∗
k hH

k pk| v
]

= E



1− pHk hk

(

hH
k

K∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk| v



 . (4.40)

We now recall that, in our power minimization problem (4.32), the users average rate

conditioned to v has to satisfy the QoS constraints E [Rk| v] ≥ ρk, ∀k. Contrarily to the

perfect CSIT scenario, where the relationship between rate and MMSE is given by (4.38),

we have to employ an approximation. Taking advantage of the concavity of the log2(·)
function and employing Jensen’s inequality (see Appendix A), it is possible to find a lower

bound for the average rate in (4.31) as

E[Rk| v] ≥ log2(E[1 + h
H
k pkp

H
k hkx

−1
k | v]). (4.41)

Due to that, we arrive at the following MMSE lower bound for the average rate applying

the matrix inversion lemma (see Section C.4 of Appendix C) in (4.40)

E [Rk| v] ≥ − log2

(

MMSE
BC

k

)

. (4.42)

Therefore, the QoS constraints in the problem formulation of (4.32) can be replaced by

the more restrictive average MMSE-based constraints − log2

(

MMSE
BC

k

)

≥ ρk. The

resulting conservative average MMSE bounds read as

MMSE
BC

k ≤ 2−ρk . (4.43)

Note that the original average rate constraints are fulfilled using the average MMSE

constraints introduced in (4.43). Thus, the optimization problem (4.32) can be

reformulated as follows

min
{pk,fk}

K
k=1

PT =

K∑

k=1

‖pk‖22 subject to MMSE
BC

k ≤ 2−ρk , ∀k. (4.44)

Notice that the average transmit power resulting from this reformulation is larger than

that obtained by (4.32), since the constraints in (4.44) are more restrictive than those in

(4.32). From now on, we focus on solving the power minimization problem given by

(4.44) to obtain the BC filters. In the following section, the optimal MSE transmit and

receive filters are studied employing the duality known as BC/MAC MSE duality.
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4.2.2. Exploiting BC/MAC MSE Duality

It is important to note that MSE
BC

k in (4.39) is independent of the receive filter fj
for j 6= k, but depends on the precoders pj for j 6= k. This means that it is possible

to optimize the kth user receive filter individually using (4.36). Recall that each user

perfectly knows its own channel. However, all the precoders should be jointly optimized.

We propose to avoid such dependence by exploiting the MAC/BC MSE duality described

in [37] (see Section 3.3.2 of Chapter 3).

Figure 4.2 depicts the block diagram of the Gaussian Single-Input Multiple-Output

(SIMO) MAC dual to the Gaussian MISO BC. The receive and transmit filters are

represented by gk ∈ CN and tk ∈ C, respectively, while θk = hkσ
−1
ηk
∈ CN and

n ∼ NC(0, IN) represent the channel response and the AWGN in the dual MAC. The

estimated symbols at the MAC receiver are

ŝMAC
k = gHk

K∑

i=1

θitisi + g
H
k n. (4.45)

For given transmit and receive filters, and channel realization, the MSE in the MAC reads

as (see Section 3.2 of Chapter 3)

MSEMAC
k = 1− 2ℜ

{
gHk θktk

}
+

K∑

i=1

|ti|2
∣
∣gHk θi

∣
∣
2
+ ‖gk‖22 . (4.46)

In the following, we demonstrate the MSE duality between the MISO BC and the

SIMO MAC. Remember that the receivers have full CSI in the BC, whereas the

transmitter only has partial CSI via v. Therefore, the obtaining of the dual MAC precoder

weights tk can be based on full CSI, while the obtaining of the dual MAC equalizers

gk is limited to the knowledge of only v, i.e. partial CSIR. The average MSE in the

BC, denoted as MSE
BC

k , is given by (4.39). Thus, the average MSE in the dual MAC,

MSE
MAC

k = E[MSEMAC
k | v], is given by (cf. (3.22) of Section 3.2)

MSE
MAC

k = 1− 2 E
[
ℜ
{
gHk θktk

}
| v
]
+ ‖gk‖22 + E

[
K∑

i=1

|ti|2
∣
∣gHk θi

∣
∣
2 | v
]

. (4.47)

We now seek for conversion formulas that enable us to switch between the MAC and

the BC. Suppose that the transmit and receive filters in the MAC, i.e., tk and gk, ∀k,

respectively, are given. We introduce the set of real positive scalars {αk}Kk=1, and the

following relationships between the BC and the MAC filters

pk = αkgk and fk = α−1
k σ−1

ηk
tk. (4.48)
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In Section 3.3.2 of Chapter 3 the scalars αk such that MSE
BC

k = MSE
MAC

k , ∀k, are found,

and it is proven that they always exist. Note that the relationship given by (4.48) not only

preserves the user-wise average MSE but also the average transmit power.

A procedure similar to the one just described can be followed to determine the set of

real positive scalars that enable us to determine the dual MAC filers for given BC transmit

and receive filters pk and fk, i.e.,

gk = β−1
k pk and tk = σηkβkfk. (4.49)

In summary, the problem based on MSE
BC

k in the BC can be equivalently reformulated

in the dual MAC with the MSE
MAC

k in (4.47), and vice-versa. This duality result is

exploited to reformulate the problem in the MAC domain as follows,

min
{gk ,tk}

K
k=1

PMAC
T =

K∑

k=1

E
[
|tk|2 | v

]
subject to MMSE

MAC

k ≤ 2−ρk , ∀k. (4.50)

Due to the BC/MAC duality, the average transmit power achieved is the same for both

problem formulations, that is, PT = PMAC
T . Hence, the optimal MAC receivers, that is,

BC precoders, are computed as follows

∂MSE
MAC

k

∂g∗k
= −E [θktk| v] +

(
K∑

i=1

E
[
θi |ti|2 θHi | v

]
+ IN

)

gk, (4.51)

where we take into account the linear property of the expectation E[·] and the equality

tr(MSE
MAC

k ) = MSE
MAC

k , to calculate the derivative with respect to the complex vector

gk, as detailed in Section C.6 of Appendix C. Finally, to obtain the optimal MAC receiver

we equate the previous derivative to zero, which leads to

gMMSE
k =

(
K∑

i=1

E
[
θi |ti|2 θHi | v

]
+ IN

)−1

E [θktk| v] . (4.52)

Remember that the users perfectly know their own channel. Then, the optimum receive

filters are found in the BC as shown in (4.36). For computing the MMSE BC precoders,

however, we move to the dual MAC where the interdependence is removed, and it is

possible to calculate them as the optimal MAC receivers, gMMSE
k . Finding the optimum

filters is not trivial since any precoder updating has an impact over the receivers, and vice-

versa. Moreover, we move from one domain to another to find individually the optimal

filters. Thus, finding the optimal filters is an AO process since we iterate until achieving

the convergence of both filters.
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4.2.3. Power Allocation Via Interference Functions

The discussion in the previous section leads us to the expressions of the optimal

MMSE transmit and receive filters. In (4.52), the MMSE receivers of the dual MAC are

given. Observe, however, that there exist two expectations which have to be computed. In

order to do that, our proposal is to perform Monte Carlo numerical integration with the M

realizations obtained from the pdfs fhk|v(hk|v), assumed to be available at the transmitter.

We previously established the information obtained via v as {h̄k,Ch̃k
}Kk=1, with the

imperfect CSI channel model given by (4.30). Observe that no further assumptions are

made. Then, the channel realizations are computed as

ĥ
(m)
k = h̄k + h̃

(m)
k , (4.53)

where h̃
(m)
k ∼ NC(0,Ck). We collect the M channel realizations ĥ

(m)
k , with m =

1, . . . ,M , into Θk = σ−1
ηk
[ĥ

(1)
k , . . . , ĥ

(M)
k ] ∈ CN×M , for k = 1, . . . , K. The average

transmit power is accordingly defined as ξk =
1
M

∑M
m=1 |t

(m)
k |2. We also define the matrix

Tk ∈ CM×M containing the normalized transmit filters of user k, which for notation

simplicity are expressed as

Tk =
1√
ξk

diag
(

t
(1)
k , . . . , t

(M)
k

)

. (4.54)

Therefore, the expectations of (4.47) are approximated by matrix products. Introducing

the all ones vector 1, the new average MSE reads as

MSE
MAC

k = 1− 2

M
ℜ
{

gHkΘkTk1

√

ξk

}

+ ‖gk‖22 +
1

M
gHk

K∑

i=1

ξiΘiTiT
H
i Θ

H
i gk, (4.55)

and the MAC filters are rewritten accordingly, that is,

gMMSE
k =

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i + IN

)−1

1

M

√

ξkΘkTk1. (4.56)

Hence, the MMSE in the dual MAC is obtained by substituting (4.56) into (4.55) to get

MMSE
MAC

k = 1− 1

M2
ξk1

TTH
k Θ

H
k

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i + IN

)−1

ΘkTk1. (4.57)

Note that equalities (4.55) and (4.56) are true if the number of channel realizations M is

sufficiently large and ergodicity holds true. In such case, the Monte Carlo numerical

integrations implicit in (4.55) and (4.56) are tight approximations to the conditional
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expectations in (4.47) and (4.52). Likewise, substituting (4.56) into (4.55) we obtain

the expression for the average MMSE (4.57).

As described above, the optimal transmit and receive filters have been obtained

although it is still necessary to allocate the powers, that is, how the power is distributed

among the users. To that end, we first rewrite the expression of the MMSE including the

matrix Xk = 1
M

∑

i 6=k ξiΘiTiT
H
i Θ

H
i + IN that contains the inter-user interference and

the noise, as follows

MMSE
MAC

k = 1− 1

M2
ξk1

TTH
k Θ

H
k

(
ξk
M
ΘkTkT

H
k Θ

H
k +Xk

)−1

ΘkTk1

= 1− 1

M2
ξk1

TTH
k Θ

H
k

(
X−1

k −X−1
k ΘkTk

(
M

ξk
IM + TH

k Θ
H
kX

−1
k ΘkTk

)−1

TH
k Θ

H
kX

−1
k

)

ΘkTk1 (4.58)

= 1− 1

M2
ξk1

TTH
k Θ

H
k

(
X−1

k ΘkTk

(

IM −
(
M

ξk
IM + TH

k Θ
H
kX

−1
k ΘkTk

)−1

TH
k Θ

H
kX

−1
k ΘkTk

))

1

=
1

M
1
T

(

IM − TH
k Θ

H
kX

−1
k ΘkTk

(
M

ξk
IM + TH

k Θ
H
kX

−1
k ΘkTk

)−1
)

1

=
1

ξk
1
T

(
M

ξk
IM + TH

k Θ
H
kX

−1
k ΘkTk

)−1

1, (4.59)

where we have applied the matrix inversion lemma (see Section C.4 of Appendix C) to

get (4.58). Thus, the new expression for the MAC MMSE is

MMSE
MAC

k =
1

ξk
1
T




M

ξk
IN + TH

k Θ
H
k

(

1

M

∑

i 6=k

ξiΘiTiT
H
i Θ

H
i + IN

)−1

ΘkTk





−1

1.

(4.60)

Now, we resort to the standard interference function framework proposed in [38] (see also

Appendix B). This framework provides useful tools for functions that satisfy the required

properties. We define the interference function for the user k, as Ik(ξ) = ξkMMSE
MAC

k ,

i.e.

Ik(ξ) = 1
T




M

ξk
IN + TH

k Θ
H
k

(

1

M

∑

i 6=k

ξiΘiTiT
H
i Θ

H
i + IN

)−1

ΘkTk





−1

1. (4.61)

In the following we show that the proposed interference function satisfies the required

properties to be standard, i.e., positivity, monotonicity, and scalability.
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To proof positivity, we focus on the matrix

Ak =
1

M

∑

i 6=k

ξiΘiTiT
H
i Θ

H
i + IN , (4.62)

which is positive definite (see Section C.5 of Appendix C). The same property holds for its

inverse,A−1
k , and for the matrix productBk = TH

k Θ
H
kA

−1
k ΘkTk. Finally, taking that into

account we conclude that the inverse of the matrix Ck = M/ξkIN +Bk is also positive

definite, leading to Ik(ξ) > 0 for ξ ≥ 0. Consider now the power allocation ξ′ ≥ ξ. Then,

the corresponding matrix A
′,−1
k ≤ A−1

k and the same is true for the matrices B′
k ≤ Bk

andC ′
k ≤ Ck. Accordingly, Ik(ξ

′) ≥ Ik(ξ) and the monotonicity property is fulfilled. To

check if the scalability property is satisfied we introduce the power allocation αξ, with

α > 1, to obtain

Ik(αξ) = 1
T




M

αξk
IN +

1

α
TH
k Θ

H
k

(

1

M

∑

i 6=k

ξiΘiTiT
H
i Θ

H
i +

1

α
IN

)−1

ΘkTk





−1

1

< α1T




M

ξk
IN + TH

k Θ
H
k

(

1

M

∑

i 6=k

ξiΘiTiT
H
i Θ

H
i + IN

)−1

ΘkTk





−1

1

= αIk(ξ). (4.63)

Then, the necessary properties are fulfilled and the vector containing the interference

functions for all the users I(ξ) = [I1(ξ), . . . , IK(ξ)]
T is standard. Notice, however,

that every iteration in the power control algorithm performs an update of the interference

function I(ξ), which corresponds to computing the two matrix inversions of (4.61).

Therefore, we propose an alternative interference function that allows to avoid such costly

computational operations.

We introduce the scalar receive filter in the MAC, rk, so that gk = rkg̃k. Such

scalar filters allow a simple update of the receive filters norm in the power iteration step.

Considering this alternative notation, the MAC average MSE reads as

MSE
MAC

k,scalar = 1− 2

M
ℜ
{

r∗kg̃
H
kΘkTk1

√

ξk

}

+ |rk|2 ‖g̃k‖22

+ |rk|2 g̃Hk

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i

)

g̃k. (4.64)

The MMSE scalar receiver is calculated by doing the derivative of (4.64) with respect to

r∗k, that is,

∂MSE
MAC

k,scalar

∂r∗k
=

√
ξk

M
g̃HkΘkTk1+ rkg̃

H
k

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i

)

g̃k + rk ‖g̃k‖22 . (4.65)
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Equating the last expression to zero, we get the MMSE scalar filters as follows,

rMMSE
k =

1
M
g̃HkΘkTk1

√
ξk

g̃Hk

(
1
M

∑K
i=1 ξiΘiTiT

H
i Θ

H
i

)

g̃k + ‖g̃k‖22
. (4.66)

Substituting the optimal scalar receiver, rMMSE
k , into (4.64) we can, eventually,

compute the scalar receiver MMSE as follows

MMSE
MAC

k,scalar = 1− 2ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2
y−1
k (ξ) +

ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2
y−1
k (ξ)yk(ξ)y

−1
k (ξ)

= 1− ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2
y−1
k (ξ) , (4.67)

where

yk(ξ) = g̃
H
k

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i

)

g̃k + ‖g̃k‖22 . (4.68)

This new MMSE expression can be rewritten applying the equality 1− a
b
= (1 + a

b−a
)−1,

as follows

MMSE
MAC

k,scalar =

(

1 +
ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2
z−1
k (ξ)

)−1

, (4.69)

with zk (ξ) = yk (ξ)− ξk
M2 |g̃HkΘkTk1|2.

So far, we have found the optimal vector and scalar receivers in the MAC, g̃k and

rMMSE
k , respectively, corresponding to the BC precoder pk. The receivers depend on the

normalized MAC precoders Tk, i.e., the normalized BC receivers, and the MAC power

allocation ξ. In the following, we will find the jointly optimal MAC power allocation,

ξ, and receivers, gk, for given normalized precoders, Tk. To that end, we rely again on

standard interference functions.

Accordingly, we define the interference function Jk(ξ) = ξkMMSE
MAC

k,scalar that can be

interpreted as the interference for user k,

Jk(ξ) =

(
1

ξk
+

1

M2

∣
∣g̃HkΘkTk1

∣
∣
2
z−1
k (ξ)

)−1

. (4.70)

Consequently, we need to check if the required conditions for the function Jk(ξ) to be

standard are satisfied.

First, the positivity property is straightforward to be proved taking into account that

zk(ξ) = yk(ξ)− ξk
M2 |g̃HkΘkTk1|2, with yk(ξ) from (4.68), is monotonically increasing in

ξ and positive. That is, if we focus on the difference for the elements of the user k in

zk(ξ), we get
ξk
M
g̃HkΘkTk(IM − 1/M11

T)TH
k Θ

H
k g̃k, (4.71)



4.2 Scenario 2: Imperfect Channel State Information at the Transmitter 63

which contains the matrix Π = IM − 1/M11
T. Such a matrix is Hermitian and its

eigenvalues (see Section C.1 of Appendix C for further details) are M − 1 one elements

and only one 0. Therefore, Π is positive-semidefinite. Then, the expression inside

brackets in (4.70) is positive.

Secondly, monotonicity comes from zk (ξ) being monotonically increasing in ξ, as

we previously mentioned. Therefore, the second term in (4.70), 1
M2 |g̃HkΘkTk1|2z−1

k , is

decreasing in ξ, as well as the first one, 1/ξk, and, finally, the inverse of the summation

inside brackets in (4.70) increases with ξ. That is Ik(ξ) ≥ Ik(ξ
′), with ξ ≥ ξ′, fulfilling

the required property.

Finally, scalability is proved considering the scalar α > 1. Then, we have that

αJk(ξ) = α

(
1

ξk
+

1

M

∣
∣g̃HkΘkTk1

∣
∣
2
z−1
k (ξ)

)−1

>

(
1

αξk
+

1

M

∣
∣g̃HkΘkTk1

∣
∣
2

(

αg̃Hk

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i

)

g̃k + ‖g̃k‖22 − α
ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2

)−1




−1

= Jk(αξ). (4.72)

Consider now the optimal MMSE receive filter in the dual MAC given by (4.56). Let

us introduce the variablesR = 1
M

∑K
i=1 ξiΘiTiT

H
i Θ

H
i and µk =

1
M

√
ξkΘkTk1 such that

gMMSE
k = (R+ IN)

−1µk. Substituting g̃k = gMMSE
k in zk(ξ) from (4.69) gives

zk(ξ) = µ
H
k (R + I)−1µk −

(
µH

k (R+ I)−1µk

)2
. (4.73)

Employing this expression in the scalar average MMSE expression of (4.69), where the

MMSE scalar receiver rMMSE
k is used, we get for g̃k = gMMSE

k that

MMSE
MAC

k,scalar =

(

1 +

(
µH

k (R+ IN)
−1
µk

)2

µH
k (R+ IN)

−1
µk −

(
µH

k (R+ IN)
−1
µk

)2

)−1

= 1− µH
k (R+ IN)

−1
µk

= MMSE
MAC

k . (4.74)

As can be seen, applying (1 + a/(1 − a))−1 = 1 − a leads to the conclusion that

MMSE
MAC

k,scalar = MMSE
MAC

k , with MMSE
MAC

k given by (4.57), if g̃k = gMMSE
k . Thus, the

two interference functions lead to the same power allocation in every step if the receive

filters are updated at every step of the fixed point iteration using the scalar interference

function.

Remember the average MSE duality and the relationship between the average rate and

the average MMSE. Then, the QoS constraints of the original problem formulation can
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equivalently be expressed as MMSE
MAC

k ≤ 2−ρk , as previously shown in the optimization

problem (4.50). Now, we introduce the interference function MMSE
MAC

k,scalar = Jk(ξ)/ξk,

to get eventually the MAC problem reformulation as follows

min
ξ,{g̃k}

K
k=1

K∑

i=1

ξi subject to Jk (ξ) /ξk ≤ 2−ρk , ∀k. (4.75)

Recall that Jk(ξ) satisfies the conditions for the standard interference functions.

These properties imply that J(ξ) = [J1(ξ), . . . , JK(ξ)] is also standard. The

QoS requirements can be described by the inequality ξ ≥ Q−1J(ξ), with Q =

diag(2−ρ1, . . . , 2−ρK). From the properties of J(ξ), it can be concluded that the fixed

point iteration ξ(ℓ) = Q−1J(ξ(ℓ−1)) converges to the global optimum of (4.26) for given

gk, as proven in [38] (see also Appendix B). In [70], the iteration was extended to find the

global optimum of (4.26), i.e., to find the optimal filter gk as considered in that work.

We next define an auxiliary function Zk(ξ, g̃k), which is equal to Jk(ξ) when a

fixed g̃k is employed, and set to Z(ξ, G̃) = [Z1(ξ, g̃1), . . . , ZK(ξ, g̃K)]
T, with G̃ =

[g̃1, . . . , g̃K ]. Since Z(ξ, G̃) is standard, also minG̃Z(ξ, G̃) is standard with the

element-wise minimization [38]. As shown in [70], the iteration

∀k :g̃
(ℓ)
k ← argmin

g̃k
Zk

(
ξ(ℓ−1), g̃k

)
,

ξ(ℓ) ← Q−1Z
(

ξ(ℓ−1), G̃(ℓ)
)

, (4.76)

converges to the global optimum of (4.75). However, it is important to note that the

power allocation and the filters are optimum if and only if the following conditions are

simultaneously achieved for all k

g̃
opt

k = argmin
g̃k

Zk (ξ
opt, g̃k) ,

ξopt

k = 2ρkZk

(
ξopt, g̃opt

k

)
. (4.77)

The last line of (4.77) has to be fulfilled for the optimum power allocation, reached at the

convergence of the power control algorithm.

Consider now that there exists a receiver leading into an interference lower than that

achieved with g
opt

k . Then it is possible to find a power allocation smaller than ξopt

k for

which the last line of (4.77) holds. Therefore, ξopt will not be the optimum anymore.

Hence, both conditions have to be satisfied at the same time.

Note that the solution for the power allocation is unique, ξopt (cf. Appendix B).

Nevertheless, that is not true for the MAC receive filters g
opt

k since the product ejφ gopt

k ,

for any φ, does not impact the MSE, e.g. (4.64). Hence, when the conditions (4.77) are

reached, we optimally solve one of the steps in the AO. Such step is where the MAC
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power allocation and the MAC receiver, which corresponds to the BC precoder due to the

duality (see (4.48)), are found for given MAC precoders, i.e. BC receivers.

The BC receivers fk are computed for given BC precoders pk (see (4.36)). With the

BC/MAC dual transform, the obtained BC receivers become the MAC precoders, tk. In

the dual MAC, the optimum MAC power allocation, ξ, and the MAC receiver, gk, are

calculated by means of the iteration of (4.76). Again, applying the BC/MAC duality, the

optimum MAC receivers become the BC precoders and the iteration loop continues with

the search of the optimal BC receivers for given BC precoders, as we will show in the

ensuing section.

4.2.4. Algorithmic Solution

Algorithm 4.2: PM.MISO.ICSI.1. Power Min. by AO. (First Implementation)

1: ℓ← 0, initialize p
(0)
i , ∀i

2: repeat

3: ℓ← ℓ+ 1
4: for m = 1 to M do

5: f
(ℓ−1,m)
k ← update BC receiver using (4.36), ∀k

6: end for

7: t
(ℓ−1,m)
k , g̃

(l−1)
k , ∀k, ∀m← BC-to-MAC conversion (see Section 4.2.2)

8: ξ
(ℓ−1)
k ← 1

M

∑M
m=1 |t

(ℓ−1,m)
k |2, ∀k

9: T
(ℓ)
k ← 1/

√

ξ
(ℓ−1)
k diag(t

(ℓ,1)
k , . . . , t

(ℓ,M)
k ), ∀k

10: n← 0, ξ[0] ← [ξ
(ℓ)
1 , . . . , ξ

(ℓ)
K ]T, g̃

[0]
k ← g̃

(ℓ−1)
k , ∀k

11: repeat

12: J(ξ[n])← update interference function (4.70)

13: ξ
[n+1]
k ← 2ρk Jk(ξ

[n]), ∀k
14: g̃

[n+1]
k ← update MAC receiver (4.56), ∀k

15: n← n+ 1
16: until ||ξ[n] − ξ[n−1]||1 ≤ δ1
17: ξ(ℓ) ← ξ[n], g̃

(ℓ)
k ← g̃

[n]
k , ∀k

18: for m = 1 to M do

19: t
(ℓ,m)
k ←

√

ξ
(ℓ)
k [T

(ℓ)
k ]m,m update MAC precoder, ∀k

20: end for

21: p
(ℓ)
k , f

(ℓ,m)
k , ∀k, ∀m←MAC-to-BC conversion (see Section 4.2.2)

22: until
∥
∥ξ(ℓ) − ξ(ℓ−1)

∥
∥
1
≤ δ
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Algorithm 4.3: PM.MISO.ICSI.2. Power Min. by AO. (Second Implementation)

1: ℓ← 0, initialize p
(0)
i , ∀i

2: repeat

3: ℓ← ℓ+ 1
4: for m = 1 to M do

5: f
(ℓ−1,m)
k ← update BC receiver using (4.36), ∀k

6: end for

7: t
(ℓ−1,m)
k , g̃

(ℓ−1)
k , ∀k, ∀m← BC-to-MAC conversion (see Section 4.2.2)

8: ξ
(ℓ−1)
k ← 1

M

∑M
m=1 |t

(ℓ−1,m)
k |2, ∀k

9: T
(ℓ)
k ← 1/

√

ξ
(ℓ−1)
k diag(t

(ℓ−1,1)
k , . . . , t

(ℓ−1,M)
k ), ∀k

10: J(ξ(ℓ−1))← update interference function (4.70)

11: ξ
(ℓ)
k ← 2ρk Jk(ξ

(ℓ−1)), ∀k
12: g̃

(ℓ)
k ← update MAC receiver (4.56), ∀k

13: for m = 1 to M do

14: t
(ℓ,m)
k ←

√

ξ
(ℓ)
k [T

(ℓ)
k ]m,m update MAC precoder, ∀k

15: end for

16: p
(ℓ)
k , f

(ℓ,m)
k , ∀k, ∀m←MAC-to-BC conversion (see Section 4.2.2)

17: until ||ξ(ℓ) − ξ(ℓ−1)||1 ≤ δ



4.2 Scenario 2: Imperfect Channel State Information at the Transmitter 67

In this section, we present two implementations of the algorithm for power

minimization referred to as Algorithm 4.2: PM.MISO.ICSI.1, and Algorithm 4.3:

PM.MISO.ICSI.2, respectively. These algorithms solve the minimization problem (4.44)

in a suboptimally way via AO. The first part of the algorithms, from the lines 1 to 9, is

common to both of them. After the initialization, the line 5 updates the BC receivers for

every channel realization m ∈ 1, . . . ,M and user k ∈ 1, . . . , K, and given BC precoders.

Then, we switch from the BC to the MAC to obtain the corresponding MAC transmit and

receive filters in the line 7. The transmit filters are decomposed in the lines 8 and 9 to

get first the power allocation and then the normalized MAC transmit matrices. Now, we

focus on the Algorithm 4.2: PM.MISO.ICSI.1, where an initialization for the inner loop

is performed in step 10. Such an inner loop naturally arises to perform the fixed point

iteration of (4.76), i.e., the interference functions are computed in the line 12 to find the

new power allocation that satisfies the QoS conditions in the line 13. Then, it follows

the updating of the MAC receivers in the line 14. Recall that employing J(ξ) instead of

I(ξ) to reduce the computation complexity involves to explicitly update the MAC receive

filters, contrarily to what happened with I(ξ). The iteration of the inner loop is repeated

until desired accuracy, δ1, is reached, and the power allocation and the MAC receivers are

updated (line 17). Nevertheless, the inner loop entails some difficulties as we will explain

in the following.

In the aforementioned inner loop, the MAC receiver updating is incorporated into

the interference function as a minimization. That is considered inside the standard

interference function framework [38] (see Appendix B for further details). In other words,

employing both of them the required properties for the function are fulfilled. However,

inside such an inner loop only the power allocation and the receive filters are updated. Due

to that, the use of the fixed transmit filters could lead to situations where the optimization

problem is not feasible, that is, the QoS cannot be fulfilled for given MAC precoders

tk, ∀k. This behavior, although non desirable, can be avoided since the convergence of the

inner loop is not necessary for the overall convergence of the algorithm, as we observed

from our simulation experiments with Algorithm 4.3: PM.MISO.ICSI.2.

In Algorithm 4.3: PM.MISO.ICSI.2, we propose to prevent these unfeasible

parameters without including the inner loop. In the line 10 the interference function is

calculated. Afterwards, as in the Algorithm 4.2: PM.MISO.ICSI.1, the power allocation

and the MAC receive filters are updated (see the lines 11 and 12, respectively), i.e,

the iteration (4.76) is performed. Finally, the subsequent code is again common to

both algorithms 4.2: PM.MISO.ICSI.1 and 4.3: PM.MISO.ICSI.2. The computation

of the new power assignment for the MAC transmit filters is shown in the line 19

for the Algorithm 4.2: PM.MISO.ICSI.1, and the line 14 for the Algorithm 4.3:

PM.MISO.ICSI.2. Next, we switch back to the BC. The overall convergence of both

algorithms is checked in the last line of the code, where the threshold is set to δ. Due
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to the existence of a unique minimum in (4.44), and to the fact that every step in the

Algorithm 4.3: PM.MISO.ICSI.2 either reduces the average MMSE or the power, with

the power lower bounded by 0, the convergence of the algorithm is guaranteed if the QoS

constraints are feasible.

4.2.5. Simulation Results

Here, we present the numerical results obtained from the simulation experiments

carried out to show the performance of the two algorithms proposed in the

previous section, denoted as Algorithm 4.2: PM.MISO.ICSI.1 and Algorithm 4.3:

PM.MISO.ICSI.2. In our scenario, the BS equipped with N = 4 transmit antennas sends

information to K = 4 single-antenna users.
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Figure 4.6: Power Minimization in the MISO BC with Imperfect CSI: Rate vs. Number

of Iterations (Algorithm 4.2: PM.MISO.ICSI.1).

We employ the channel model presented in (4.30), where the CSI at the transmitter is

given by v. Such a model allows to generate the channel realizations ĥ
(m)
k = h̄k + h̃

(m)
k ,

for k = {1, . . . , K}, and m = {1, . . . ,M}, with h̃
(m)
k ∼ NC(0,Ch̃k

). We generated

M = 1 000 channel realizations considering Ch̄k
= IN , and h̄k ∼ NC(0,Ch̄k

), ∀k. The
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AWGN is considered to be equal for all the users with a variance σ2
ηk

= 1, ∀k.

We choose different average rate requirements for all the users, viz., ρ1 =

0.5146, ρ2 = 0.737, ρ3 = 1, and ρ4 = 0.2345 bits per channel use, respectively. These

requirements correspond to the following MMSE lower bounds ε1 = 0.7, ε2 = 0.6, ε3 =

0.5, and ε4 = 0.85, respectively, using εk = 2−ρk , ∀k. The finishing thresholds for both

algorithms are set to δ = 10−4, and δ1 = 10−3 for the stop threshold of the inner loop in

the Algorithm 4.2: PM.MISO.ICSI.1. The initial precoders are randomly generated since

its choice does not affect the algorithm’s convergence nor the final result.

The performance of the Algorithm 4.2: PM.MISO.ICSI.1 is depicted in Figs. 4.6 to

4.8. Fig. 4.6 shows the evolution of the average rates for all the users with the number

of iterations. Observe that the QoS constrains are fulfilled in a conservative way, which

corresponds to higher transmit total average power. Figure 4.7 represents the evolution

of the corresponding average MSEs. During the first iterations, the MSE targets are not

feasible for the given MAC precoders, which translates into high total average powers.

The number of iterations of the outer loop is limited, otherwise for infeasible constraints

the total average power increases trying to fulfill the MSE targets and the convergence of

the inner loop is never reached. After the first iterations, the average MSEs remain flat

due to the convergence of the inner loop with feasible conditions and updated versions

of the MAC transmit filters. Finally, Fig. 4.8 shows how the power evolves during the

algorithm computation. Observe that for the first iterations corresponding to non-feasible

requirements the power grows to large values. Then, after few iterations the power reduces

at every iteration until the desired accuracy is reached at 3 dB.

Figure 4.9 shows how the MMSE of each user converges to the desired target εk for

the Algorithm 4.3: PM.MISO.ICSI.2. Since the problem is feasible, the minimum total

average power will be reached when the constraints in (4.75) are fulfilled with equality.

As can be seen, the first iterations go in the direction of fulfilling the requirements so

the MMSEs are reduced or increased accordingly. Nevertheless, the subsequent iterations

refine the MMSEs until the targets εk are reached for all the users. Correspondingly, as

shown in Fig. 4.10, the total average power (i.e.,
∑K

i=1 ξi) gradually reduces throughout

the iterations until convergence is reached at about 3 dB. The total average power is

dramatically reduced during the first iterations whereas the improvement is marginal for

the last iterations.

Figure 4.11 shows the evolution of the average rates over the iterations. Considering

the MMSE-based targets εk, the real average rates are lower bounded by E[Rk| v] ≥
− log2(εk), as discussed in Section 4.2.1 (see also [13]). The gap between the average

rates obtained with Algorithm 4.3: PM.MISO.ICSI.2 and the average rate targets

corresponding to the QoS constraints can be also observed in Fig. 4.11. Moreover, we also

include in this figure the rates obtained employing the Signal to Interference-plus-Noise

Ratio (SINR) approximation utilized in [7] and widely employed afterwards (e.g. [13],
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Figure 4.7: Power Minimization in the MISO BC with Imperfect CSI: MMSE vs. Number

of Iterations (Algorithm 4.2: PM.MISO.ICSI.1).
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Figure 4.8: Power Minimization in the MISO BC with Imperfect CSI, Power vs. Number

of Iterations (Algorithm 4.2: PM.MISO.ICSI.1).
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[23], [18]). This approach determines the average rates as E[Rk| v] = log2(1 + SINRk),

where SINRk is obtained from applying separately the expectation operator to both the

numerator and the denominator of the SINR, i.e.

SINRk =
pHk E

[
hkh

H
k | v
]
pk

σ2
ηk

+
∑

i 6=k p
H
i E [hkh

H
k | v]pi

. (4.78)

Figure 4.11 shows the resulting values for log2(1 + SINRk) along the iterations in

Algorithm 4.3: PM.MISO.ICSI.2. Note that the average rates for the SINR approximation

are larger than the true average rates for users 2 and 3, but smaller for users 1 and 4.

Hence, it is not possible to know beforehand whether the given average rate requirements

are fulfilled or not because this approximation does not allow to determine whether the

rates are larger or smaller than the desired ones. Contrarily, fulfilling the MMSE-based

targets, as proposed in our approach, ensures average rates which are larger than the target

rates.
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Figure 4.9: Power Minimization in the MISO BC with Imperfect CSI: MMSE vs. Number

of Iterations (Algorithm 4.3: PM.MISO.ICSI.2).
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Figure 4.10: Power Minimization in the MISO BC with Imperfect CSI: Power vs. Number

of Iterations (Algorithm 4.3: PM.MISO.ICSI.2).
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Figure 4.11: Power Minimization in the MISO BC with Imperfect CSI: Rate vs. Number

of Iterations (Algorithm 4.3: PM.MISO.ICSI.2).
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4.3. Conclusions

In this chapter we have addressed the problem of the power minimization in the MISO

BC. First, the perfect CSIT scenario is considered as a simpler approximation to the

problem of interest. Our proposal consists on exploiting the relationship between the rate

and the MMSE, to allow for a problem formulation easier to deal with. Moreover, using

the MSE BC/MAC duality, it is possible to perform an AO to find the MMSE transmit and

receive filters. The total transmit power is minimized by means of standard interference

functions. An algorithmic solution is finally proposed to solve the optimization problem.

In the second section, we move to the more involved problem where the CSIT is only

partial. Applying the methods proposed for the perfect CSIT scenario, together with an

approximation via the Jensen’s inequality, we eventually find a solution. We proposed

an algorithm for the power minimization in the MISO BC under minimum ergodic

rate constraints via imposing conservative average MMSE constraints. Furthermore,

two different standard interference functions are proposed, allowing to reduce the

computational complexity.

Two possible implementations of the proposed algorithm are evaluated. The first

one is rejected since convergence problems arise for some iterations of the algorithm

even when the QoS constraints are feasible. However, with the second proposed

implementation, the convergence to the minimum total transmit power is guaranteed.

We have carried out computer experiments with the purpose of comparing the results

obtained with the Jensen’s inequality based on the lower bound, with those resulting from

the ergodic rate approximation above mentioned. The comparison demonstrates that using

the lower bound the original QoS constraints are fulfilled. On the contrary, the QoS

restrictions can be violated when the approximation is used. Moreover, such experiments

also show that the gap between the lower bound and the true average rate is small.
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Chapter 5

Transmit Power Minimization and QoS

Feasibility in MIMO Broadcast

Channels

In this chapter we aim to jointly achieve individual rate requirements and minimum

total transmit power in a Multiple-User Multiple-Input Multiple-Output (MU-MIMO)

Broadcast Channel (BC). Data streams are transmitted from a multi-antenna Base Station

(BS) to several independent and non-cooperative multi-antenna users. Perfect Channel

State Information (CSI) is assumed to be known at the receivers and it fed back to the

transmitter, where only partial CSI is used for the design of the linear transmit filters. Note

that the optimization of the linear precoders based on data rates is difficult in the case of

imperfect CSI. Therefore, we rely on the average Mean Square Error (MSE) to end up

with the optimization of the average rates lower bounds. Moreover, employing the duality

between the Multiple Access Channel (MAC) and the BC with respect to the average MSE

we design the linear filters for both the transmitter and the receivers. The duality proof

conserving the average total transmit power was shown in [37] (see also Section 3.3 of

Chapter 3). Thanks to that, and identifying standard interference functions, it is possible

to find the optimal transceivers and power allocation by means of a fixed-point iteration.

In such a way, we propose an algorithmic joint solution for the transmit filter design and

the power allocation.

We also show that the resulting algorithm converges if the Quality-of-Service (QoS)

constraints can be fulfilled. Nevertheless, the algorithm is meaningless if the optimization

problem is not feasible. Therefore, we will provide a test to check the feasibility of the

average rate restrictions. There are several works concerning feasibility (e.g. [7, 39, 40])

but they are based on the perfect CSI assumption. The mentioned test is a generalization

of that presented in [40] for the vector BC and perfect CSI assumptions for both the

transmitter and the receivers.

75
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Additionally, we consider the balancing problem, that is, the maximization of the

minimum of the weighted average rates under a total transmit power constraint. Again,

this problem is reformulated by conservatively bounding the average rates based on the

average Minimum Mean Square Error (MMSE)s, leading to the minimization of the

maximum weighted average MMSE with a total power constraint. Note that, contrarily

to the power minimization, the balancing problem is always feasible. The proposed

algorithm takes advantage of the solution elaborated for the power minimization problem,

and performs a bisection search to find the larger balanced average rates for given average

transmit power.

5.1. Power Minimization in the MIMO BC with

Imperfect CSIT

In this section we extend the solution proposed for Multiple-Input Single-Output

(MISO) BC in Section 4.2 of Chapter 4 to the Multiple-Input Multiple-Output (MIMO)

BC. Again, perfect Channel State Information at the Receiver (CSIR) and imperfect

Channel State Information at the Transmitter (CSIT) are considered [71].
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Figure 5.1: MIMO Broadcast Channel.

Figure 5.1 depicts the BC model considered in this section. The zero-mean Gaussian

data signal sk ∈ C for user k, with 1 ≤ k ≤ K, and E[|sk|2] = 1, is precoded by

pk ∈ CN , where K and N are the number of users and transmit antennas, respectively.

The transmit signal propagates over a MIMO channel Hk ∈ CN×R, with R being the

number of receive antennas for each user. The Additive White Gaussian Noise (AWGN)

in the MIMO channel is ηk ∼ NC(0,Cηk
). The data signals are mutually independent

and also independent from the noise. The linear equalizer fk ∈ CR provides the data
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symbols estimates as follows

ŝk = fH
k H

H
k

K∑

i=1

pisi + f
H
k ηk. (5.1)

In Section 3.1.1 of Chapter 3, it is shown that the rate of the MIMO BC is given by (3.13).

Taking into account the system model for the BC described in this section, the covariance

of the transmitted signal is Ck = E[pksks
∗
kp

H
k ] = pk E[sks

∗
k]p

H
k = pkp

H
k , and (3.13) can

be rewritten as

Rk = log2 det



IR +HH
k pkp

H
kHk

(

Cηk
+HH

k

∑

i 6=k

pip
H
i Hk

)−1


 . (5.2)

We consider the transmitter does not have a perfect knowledge of the CSI but a partial

one modeled through v. We assume the conditional probability density function (pdf)s

fHk|v (Hk|v) are available for all k. Contrarily, the receivers are assumed to know their

own channel Hk, i.e, we consider perfect CSIR. To model the random variable v we

assume the same conditions as in Section 4.2 of Chapter 4, i.e., only statistical information

is contained into the imperfect CSI v. Hence, we model the error as follows

Hk = H̄k + H̃k, (5.3)

with H̄k = E[Hk| v] and H̃k being the imperfect CSI error, with H̃k ∼ NC(0,CH̃k
),

where CH̃k
= E[(Hk − H̄k)(Hk − H̄k)

H| v]. The CSI quality at the BS is given by this

error covariance. Observe that this model is a reasonable approach for both Frequency-

Division Duplex (FDD) and Time-Division Duplex (TDD) types of CSI acquisition (see

Chapter 2).

As previously mentioned, we address the minimization of the total transmit power

when certain QoS restrictions given as per-user rates have to be fulfilled. In (5.2) the rate

for the MIMO BC was presented. However, this expression holds only when the CSIT is

perfect. Due to that, and considering that the channel is given by an ergodic process, we

have to employ the ergodic rate expression obtained in Section 3.1.1 of Chapter 3

E[Rk] = E



log2 det



IR +HH
k pkp

H
kHk

(

Cηk
+HH

k

∑

i 6=k

pip
H
i Hk

)−1






 . (5.4)

As already shown in Section 3.1.1, when there exists partial CSIT the Bayes’ rule can

be applied to obtain the ergodic rate as the average over all possible realizations of the

random variable v, for the average rates conditioned to v, i.e., E[Rk] = E[E[Rk| v]]. In

other words, if E[Rk| v] ≥ ρk, ∀k, with {ρk}Kk=1 being the set of targets for all the users
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for every realization of v, then also E[Rk] ≥ ρk, ∀k, is fulfilled. Therefore, we focus on

E[Rk| v] from now on.

Let us define the total transmit power as PT =
∑K

k=1 ||pk||22. Likewise, finding the

optimum precoders pk which minimize the transmit power PT for all possible values of

v is equivalent to minimizing the overall transmit power. Therefore, the problem can be

equivalently solved via the optimization for all the values of v, that is

min
{pk}

K
k=1

PT =

K∑

k=1

‖pk‖22 subject to E [Rk| v] ≥ ρk, ∀k. (5.5)

Due to the conditional expectation this problem is hard to solve without further

assumptions. The optimization problem (5.5) is non-convex, and our strategy in the

following is to find an approximation that allows us to reformulate the problem with new

constraints based on the average MSE.

5.1.1. Problem Formulation

Let us introduce the MIMO MSE for the BC, i.e MSEBC
k = E[|sk − ŝk|2], as an

extension emerging from the Single-Input Single-Output (SISO) MSE computed in (3.20)

MSEBC
k = 1− 2ℜ

{
fH
k H

H
k pk

}
+ fH

k H
H
k

K∑

i=1

pip
H
i Hkfk + f

H
k Cηk

fk. (5.6)

Recall that the users perfectly know their own channel. Hence, any meaningful receive

filters are functions of the channel state (see [37]). The receive filters that minimize the

MSE measure read as

fMMSE
k = argminfk

E
[
|sk − ŝk|2

∣
∣Hk

]

= argminfk
E





∣
∣
∣
∣
∣
sk − fH

k H
H
k

K∑

i=1

pisi + f
H
k ηk

∣
∣
∣
∣
∣

2

|Hk



 . (5.7)

In order to compute the derivative of the MSEBC
k in (5.6) with respect to f ∗

k , we first

rewrite the MSE as tr(MSEBC
k ) and employ the results in Section C.6 of Appendix C to

calculate the following derivative

∂ tr
(
MSEBC

k

)

∂f ∗
k

= −HH
k pk +

(

HH
k

K∑

i=1

pip
H
i Hk +Cηk

)

fk. (5.8)

Thus, we get the optimal MSE filters equating this expression to zero, i.e.

fMMSE
k =

(

HH
k

K∑

i=1

pip
H
i Hk +Cηk

)−1

HH
k pk, (5.9)
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and the minimum MSE for user k is easily calculated plugging (5.9) into (5.6), i.e.

MMSEBC
k = 1− fMMSE,H

k HH
k pk

= 1− pHkHk

(

HH
k

K∑

i=1

pip
H
i Hk +Cηk

)−1

HH
k pk. (5.10)

Consider now the vectors ck =H
H
k pk ∈ CR and bk = c

H
k , and the matrixXk ∈ CR×R =

HH
k

∑

i 6=k pip
H
i Hk + Cηk

. Then, MMSEBC
k = 1 − bk (Xk + ckbk)

−1
ck and its inverse

after applying the matrix inversion lemma (see Section C.4 of Appendix C) reads as

MMSE
BC,−1
k =

(
1 + bkX

−1
k ck

)−1

=



1 + pHkHk

(

HH
k

∑

i 6=k

pip
H
i Hk +Cηk

)−1

HH
k pk





−1

. (5.11)

Applying the determinant to the last expression, we get

det
(

MMSE
BC,−1
k

)

= det



1 + pHkHk

(

HH
k

∑

i 6=k

pip
H
i Hk +Cηk

)−1

HH
k pk


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−1

= det



IR +HH
k pkp

H
kHk

(

HH
k

∑

i 6=k

pip
H
i Hk +Cηk

)−1




−1

,

(5.12)

where the last expression is obtained by employing the Sylvester’s theorem (see Section

C.2 of Appendix C). Hence, we arrive at the following relationship between the rate and

the MMSE as

Rk = − log2
(
MMSEBC

k

)
. (5.13)

Recall that we have made the assumption of perfect CSIR and imperfect CSIT. Due to

that, it is not possible for us to employ the relationship of (5.13), since we are interested in

certain average per-user rate constraints. Analogously, bearing in mind the partial CSIT,

v, the MSE is the MIMO extension of that from Section 3.3.2 of Chapter 3, that is

MSE
BC

k = E

[

1− 2ℜ
{
fH
k H

H
k pk

}
+ fH

k H
H
k

K∑

i=1

pip
H
i Hkfk + f

H
k Cηk

fk| v
]

, (5.14)

where the expectation is taken over all the possible channel realizations for a given

realization of the partial CSI v. Remember that the pdf fHk|v(Hk|v) is known at the

transmitter.
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Since the users know their corresponding channels Hk, the optimal MSE receive

filters from (5.9) hold. Then, the average MMSE at the BC is given by MMSE
BC

k =

E[MMSEBC
k | v], i.e.

MMSE
BC

k = E
[

1− fMMSE,H
k HH

k pk| v
]

= E



1− pHkHk

(

HH
k

K∑

i=1

pip
H
i Hk +Cηk

)−1

HH
k pk| v



 . (5.15)

Our goal is to ensure minimum average rates ρk for all the users. Due

to Jensen’s inequality (see Appendix A) and the concavity of log2 (·), we have

log2(E[x]) ≥ E[log2(x)]. Since the instantaneous data rate can be expressed as Rk =

− log2(MMSEBC
k ), we have that

E[Rk| v] = E[− log2(MMSEBC
k )| v] ≥ − log2(E[MMSEBC

k | v]). (5.16)

Based on the above discussion, it is possible to circumvent the difficult optimization

of the average rates and focus on the average MSE instead. This way the new QoS

constraints are expressed as maximum MSEs, as follows

MMSE
BC

k ≤ 2−ρk , (5.17)

and the average rate satisfies the inequality

E[Rk| v] ≥ − log2



E



1− pHkHk

(

HH
k

K∑

i=1

pip
H
i Hk +Cηk

)−1

HH
k pk| v







 .

(5.18)

In other words, when ensuring an average MMSE, a minimum average rate is guaranteed.

From our simulation results we observe that the gap between the two performance

measures is small. An example of how tight the gap is can be found in Appendix A.

Note that employing the average MMSE instead of the original average rate constraints

establishes an upper bound for the minimum total transmit power.

Thus, the optimization problem (5.6) can be reformulated as follows

min
{pk,fk}

K
k=1

PT =
K∑

k=1

‖pk‖22 subject to MMSE
BC

k ≤ 2−ρk , ∀k. (5.19)

Observe that the new problem formulation includes the optimization of the BC receive

filters, in addition to the BC precoders. Therefore, we have to jointly optimize both filters

to minimize the MSE. Since this problem is easier to solve than the former one, we will

focus on minimizing the total transmit power for given average MMSE constraints for

which the original average rate constraints hold. The optimization of the filters is studied

in the ensuing section.
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5.1.2. Exploiting MSE Duality

In the previous section the BC MMSE filters are found and given by (5.9). Then, we

obtained the optimal filters for the problem reformulation presented in (5.19). However,

we also have to design the optimal BC precoders pk.

Note that since the derivation of the receive filters fk is straightforward, the precoders

pk are coupled and it is not possible to individually optimize them following the same

procedure as for the receive filters. For this reason, we leverage the average MSE duality

presented in [8] to avoid such inconvenience.

s1
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sK

t1

t2

tK

H1

H2

HK
η

ŝMAC
1

ŝMAC
2

ŝMAC
K

gH1

gH2

gHK

Figure 5.2: MIMO Multiple Access Channel.

Let us first introduce the dual MIMO MAC system model depicted in Fig. 5.2. The kth

precoder is tk ∈ CR. The transmit signal propagates over the channelHkC
−H/2
ηk

∈ CN×R,

where C
−H/2
ηk

is the Cholesky decomposition of Cηk
= C

H/2
ηk
C

1/2
ηk

(see Section C.5 of

Appendix C). The received signal is perturbed by the AWGNη ∼ NC(0, IN) and filtered

with the receiver gk ∈ CN to get the estimated symbol of user k, i.e.

ŝMAC
k = gHk

K∑

i=1

HiC
−H/2
ηi

tisi + η. (5.20)

Note that the MAC receivers gk depend on the partial CSI v, whereas the MAC precoders

tk are functions of the current channel state. The MSE for the MISO system model was

presented in Section 3.2 of Chapter 3 and is easily extended to the MIMO scenario as

follows

MSEMAC
k = 1− 2ℜ

{
gHkHkC

−H/2
ηk

tk
}
+ gHk

K∑

i=1

HiC
−H/2
ηi

tit
H
i C

−1/2
ηi

HH
i gk + ‖gk‖22 .

(5.21)

Note that the previous expression holds for both perfect CSIT and CSIR. In our case, the

average MSE for imperfect CSIR in the dual MAC, MSE
MAC

k , has to be computed as the
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expectation over the possible channel realizations for given v, i.e.

MSE
MAC

k = E

[

1− 2ℜ
{
gHkHkC

−H/2
ηk

tk
}
+

K∑

i=1

∣
∣gHkHiC

−H/2
ηi

ti
∣
∣
2
+ ‖gk‖22 | v

]

. (5.22)

We now present the conversion formulas to switch from the BC to the MAC, and vice-

versa, preserving both the average MSE and the total transmit power. Following the same

procedure described in Section 3.3, we define the relationship between the BC and the

MAC for given MAC filters as

pk = αkgk and fk = α−1
k C

−H/2
ηk

tk, (5.23)

with {αk}Kk=1 ∈ R+. Accordingly, the average MSE in the BC given by (5.14), MSE
BC

k ,

is rewritten as

MSE
BC

k = E

[

1− 2ℜ
{
tHkC

−1/2
ηk

HH
k gk

}
+ α−2

k ‖tk‖22 +
K∑

i=1

α2
i

α2
k

∣
∣gHi HkC

−H/2
ηk

tk
∣
∣
2 | v
]

.

(5.24)

Equating this expression to (5.22), we get the K equalities that have to be fulfilled. Let

us define the vector containing the scalar factors α2
k, i.e. a = [α2

1, . . . , α
2
K ]

T, and the

vector ςi = E[‖ti‖2 | v] ∈ R
+
0 , which contains the transmit power for all the users. Such

definition enable us to rewrite the equalities in matrix form as

Γa = ς, (5.25)

where the entries of Γ ∈ RK×K are given by

[Γ ]k,j =

{∑

i 6=k E[|gHkHiC
−H/2
ηi ti|2 | v] + ‖gk‖22 j = k,

−E[|gHj HkC
−H/2
ηk

tk|2 | v] j 6= k.

Note that Γ is non-singular since it is diagonally dominant (see Section 3.3 of Chapter 3

for further details). Additionally, Γ has positive diagonal and non-positive off-diagonal

entries. Thus, Γ−1 has non-negative entries and the scalar factors in a read

a = Γ−1ς. (5.26)

Note that since α2
k ≥ 0, ∀k, we can get {αk}Kk=1 ∈ R+, as desired.

Analogously, the conversion from MAC to BC is now addressed. This is necessary

for the Alternate Optimization (AO) procedure employed to optimize the filters that we

will explain in the following. Therefore, for given BC filters, the MAC filters achieving

the same average MSEs and employing identical total transmit power can be found [37]
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(see also the MISO case in Section 3.3). The duality can be obtained in the same way as

for the MAC to BC conversion using the following relationships

gk = β−1
k pk and tk = βkC

H/2
ηk
fk. (5.27)

Now, substituting (5.27) into the average MSE expression for the dual MAC of (5.22), we

get

MSE
MAC

k = E

[

1− 2ℜ{pHkHkfk}+
K∑

i=1

β2
i

β2
k

∣
∣pHkHifi

∣
∣
2
+ β−2

k ‖pk‖22 | v
]

. (5.28)

Then, equating (5.28) to the MSE
BC

k expression given by (5.14) and multiplying both sides

by β2
k , we get

β2
k E

[
K∑

i=1

|fH
k H

H
k pi|2| v

]

+ β2
k E
[
fH
k Cηk

fk| v
]
= E

[
K∑

i=1

β2
i

∣
∣pHkHifi

∣
∣
2 | v
]

+ ‖pk‖22.

(5.29)

We now equate the average MSEs in the BC and the MAC for the K users, and rewrite

them in matrix form as

Ωb = τ , (5.30)

where b = [β2
1 , . . . , β

2
K ]

T
contains the scalar factors for the conversion, and τ =

[
‖p1‖22 , . . . , ‖pK‖

2
2

]T
includes the transmit power for all the users. Thus, the entries

ofΩ are given by

[Ω]k,j =







∑

i 6=k E
[∣
∣fH

k H
H
k pi
∣
∣2 | v

]

+ E
[
fH
k Cηk

fk| v
]

j = k,

−E
[∣
∣fH

j H
H
j pk

∣
∣
2 | v
]

j 6= k.
(5.31)

Note that, just like Γ for the MAC to BC conversion, Ω is non-singular since it

is diagonally dominant. Additionally, it has positive diagonal and non-positive off-

diagonal entries. Thus, Ω−1 has non-negative entries and the resulting {β2
k}Kk=1 from

b = Ω−1τ are non-negative. In other words, we can always find βk ∈ R+ such that

MSE
BC

k = MSE
MAC

k , ∀k.

From the average MSE BC/MAC duality result, we conclude that the BC average

MMSE in the optimization problem of (5.19) can be achieved in the dual MAC by

exploiting the relationship of (5.27) for MIMO systems. Moreover, it has been shown

that the total transmit power employed in both domains remains unchanged. Therefore,

we formulate the optimization problem in the dual MAC as follows

min
{gk ,tk}

K
k=1

PMAC
T =

K∑

k=1

E
[
‖tk‖22 | v

]
subject to MMSE

MAC

k ≤ 2−ρk , ∀k, (5.32)
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where the minimum total power required to fulfill the QoS restrictions PMAC
T is the same

as PT in (5.19).

Recall that the BC precoders pk are coupled. To avoid this difficulty, we can

equivalently compute the optimal MSE receive filters in the dual MAC such that gk are

individually calculated as the MMSE filters, gMMSE
k , i.e.

∂ tr
(

MSE
MAC

k

)

∂g∗k
= −E

[
HkC

−H/2
ηk

tk| v
]

+

(
K∑

i=1

E
[
HiC

−H/2
ηi

tit
H
i C

−1/2
ηi

HH
i | v

]
+ IN

)

gk. (5.33)

Note that to compute the derivative we take into account the linear property of the

expectation E[·] and the equality tr(MSE
MAC

k ) = MSE
MAC

k . Then, it is possible to employ

the results shown in Section C.6 of Appendix C. After equating the last expression to

zero, we obtain the optimal MSE MAC receive filters

gMMSE
k =

(
K∑

i=1

E
[
HiC

−H/2
ηi

tit
H
i C

−1/2
ηi

HH
i | v

]
+ IN

)−1

E
[
HkC

−H/2
ηk

tk| v
]
. (5.34)

Both problem formulations, the corresponding to the BC in (5.19) and the one to the

MAC in (5.32), allow for a simple computation of the optimal receivers although the

precoders fulfilling the QoS constraints are difficult to find. Therefore, we propose an AO

where the BC receivers are found via (5.9) for given precoders pk, and the BC precoders

(including the power allocation) are computed in the dual MAC for given fk, as we will

demonstrate in the ensuing section.

5.1.3. Power Allocation via Interference Functions

In the previous section we have proposed a method to optimally design the transmit

and receive MSE filters by means of AO. Both filters are individually optimized for every

user, since the BC/MAC MSE duality allows us to update the transmit and receive filters

for a certain user, without any changing of the MSE of the other users. Observe that the

optimization problem (5.32) aims at minimizing the total transmit power subject to certain

average MMSE constraints for all the users. To achieve those targets, finding the optimal

filters as before is not enough and an adaptation of the transmit power is necessary. Such

powers are referred to as power allocation. Finding the minimum total power is a difficult

task, since increasing the power for one the users is translated into larger interference for

the other ones. Thus, we resort to the framework proposed in [38] to find the minimum

total power required to achieve the QoS restrictions.
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The power allocation requires the computation of the expectations in (5.22) and (5.34).

Note that since the users perfectly know their channel Hk, the optimal MAC transmit

filters tk depend on Hk, whereas the receive filters depend on the imperfect CSI v. We

propose to approximate the expectations performing Monte Carlo numerical integration

employing M realizations of the random variable given by the imperfect CSI v, i.e. the

pdfs fHk|v(Hk|v). Assuming the channel ergodicity, this approximation collapses to the

real expectation when M →∞.

Recall the error model from (5.3). For given CSI v we know the channel expectations

and the error covariance matrices for all the users, i.e. {H̄k,Ck}Kk=1. Therefore, the

channel realizations are generated as

Ĥ
(m)
k = H̄k + H̃

(m)
k , (5.35)

where H̃
(m)
k ∼ NC(0,CH̃k

).

Let us define the matrix Θk = [H
(1)
k C

−H/2
ηk

, . . . ,H
(M)
k C

−H/2
ηk

] ∈ CN×RM containing

the M channel realizations corresponding to the user k. We split up the MAC precoders

t
(m)
k for every channel realization into the average transmit power ξk and the normalized

transmit filters τ
(m)
k , such that

√
ξkτ

(m)
k = t

(m)
k , with

∑M
m=1 ||τ

(m)
k ||22 = M and

ξk = 1
M

∑M
m=1 ||t

(m)
k ||22. For the matrix form computation, we introduce an additional

matrix Tk ∈ C
RM×R, that is

Tk = 1/
√

ξk blockdiag
(

t
(1)
k , . . . , t

(M)
k

)

. (5.36)

Employing the new notation, and taking into account that Tk1 = [τ
(1),T
k , . . . , τ

(M),T
k ]T we

approximate the average MAC MSE from (5.22) as

MSE
MAC

k = 1− 2

M
ℜ
{

gHkΘkTk1

√

ξk

}

+ ‖gk‖22 +
1

M
gHk

K∑

i=1

ξiΘiTiT
H
i Θ

H
i gk. (5.37)

Consequently, we obtain an approximation of the MAC receive filters using the previous

matrices as follows

gMMSE
k =

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i + IN

)−1

1

M

√

ξkΘkTk1. (5.38)

Thus, the average MMSE in the dual MAC is also approximated by substituting (5.38)

into (5.37), which leads to

MMSE
MAC

k = 1− 1

M2
ξk1

TTH
k Θ

H
k

(

1

M

K∑

i=1

ξiΘiTiT
H
i Θ

H
i + IN

)−1

ΘkTk1. (5.39)
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Observe that the formulation of the MIMO MAC average MMSE is very close to that

for the MISO MAC average MMSE in (4.57) (Section 4.2.3 of Chapter 4). However, the

dimension of the matrices Tk and Θk is different from that of (4.57), and the vector 1

did not appeared in (4.57). Hence, the developments to be directly applied from MISO to

MIMO scenarios will not be repeated again but referenced instead in the following.

As we previously mentioned, to design the power allocation we employ the so-called

standard interference functions presented in [38]. A description of this framework can be

found in Appendix B.

First, consider that the MAC receive filters gk resulting from the updating as MMSE

filters are kept fixed. To allow for an adaptation of such filters, when the power allocation

is updated, additional scalar receive filters, denoted as rk, are introduced. Replacing gk
by rkg̃k in (5.37) leads to

MSE
MAC

k = 1− 2

M
ℜ
{

r∗kg̃
H
kΘkTk1

√

ξk

}

+
1

M
|rk|2

K∑

i=1

ξig̃
H
kΘiTiT

H
i Θ

H
i g̃k+|rk|2 ‖g̃k‖22 .

(5.40)

The corresponding optimal scalar receivers, which minimize (5.40), are given by (see the

derivation in Section 4.2.3)

rMMSE
k =

1
M
g̃HkΘkTk1

√
ξk

1
M

∑K
i=1 ξig̃

H
kΘiTiT

H
i Θ

H
i g̃k + ‖g̃k‖22

. (5.41)

Substituting rMMSE
k in (5.40) gives the MMSE

MAC

k,scalar. With the definition of

zk(ξ) =
1

M

K∑

i=1

ξig̃
H
kΘiTiT

H
i Θ

H
i g̃k −

ξk
M2

∣
∣g̃HkΘkTk1

∣
∣
2
+ ‖g̃k‖22,

the minimum MSE reads as

MMSE
MAC

k,scalar =
1

ξk

1
1
ξk

+ 1
M2

1
zk(ξ)
|g̃HkΘkTk1|2

. (5.42)

Note that this expression is equivalent to that of (5.39) when the MMSE MAC receive

filters (5.38) are used, as previously shown for the MISO scenario in the previous chapter

(see Section 4.2.3).

In summary, we presented the optimal receive filter gMMSE
k and then introduced the

normalization variable rk for power updating in the AO. With this new notation, a new

MMSE expression is obtained for given normalized MAC precoders Tk, i.e., for given

normalized BC receivers. We now introduce the interference function Jk(ξ) depending

on g̃k and rk, for given Tk, ∀k, as follows

Jk(ξ) =

(
1

ξk
+

1

M2

∣
∣g̃HkΘkTk1

∣
∣
2
z−1
k (ξ)

)−1

. (5.43)



5.1 Power Minimization in the MIMO BC with Imperfect CSIT 87

Note that by using this function the optimal normalization variables rMMSE
k are implicitly

used.

We propose to incorporate the functions Jk(ξ) to find the optimal g̃k and rk for given

MAC precoders Tk, taking advantage of the properties of standard interference functions.

Consequently, we need to check if the required conditions for the function Jk(ξ) to be

standard are satisfied. The proof is analogous to that from Section 4.2.3 and we can

conclude that Jk(ξ) satisfies positivity, scalability, and monotonicity.

For the MISO scenario we had defined an additional interference function Ik(ξ),

which only depended on gk and Tk since the scalar normalization factor rk was not

included. The two interference functions, Ik(ξ) and Jk(ξ), provided the same result if

the receive filters were properly updated in the fixed point iteration of Jk(ξ). However,

the function Ik(ξ) required additional computational complexity, and for that reason will

not be considered for the MIMO scenario.

Consider now the problem formulation in the dual MAC obtained in (5.32). The QoS

average rate constraints are lower bounded by the new average MMSE ones. Recall that

(5.42) is equivalent to (5.39) when the MMSE MAC receive filters are used, as in (5.38).

Moreover, the interference function J(ξ) is given by J(ξ) = ξkMMSE
MAC

k,scalar. Combining

these facts, we get the following reformulation of the optimization problem for given

MAC precoders

min
ξ,{g̃k}

K
k=1

K∑

i=1

ξi subject to Jk (ξ) /ξk ≤ 2−ρk , ∀k. (5.44)

Due to the properties of Jk(ξ), J(ξ) = [J1(ξ), . . . , JK(ξ)] is a standard interference

function. Therefore, it is possible to take advantage of the useful characteristics presented

in [38] and its extension in [70]. This way the QoS average rate requirements are

approximated by the inequality ξ ≥ Q−1J(ξ), with Q = diag(2−ρ1, . . . , 2−ρK ). Then,

the fixed point iteration ξ(ℓ) = Q−1J(ξ(ℓ−1)) converges to the global optimum of (5.44).

The proof for the joint convergence in ξ and g̃k was shown in Section 4.2.3.

Taking into account the characteristics of the standard interference functions, the

power allocation converges to an unique solution, ξopt. On the contrary, the MAC receive

filters convergence is not unique. For example, another optimal receive filter is given by

the product of g
opt

k by ejφ.

So far the optimal MAC receivers including the power allocation i.e., the BC

precoders, are found. To complete the AO, the BC receivers fk are computed in the BC

via (5.9). Therefore, the AO process is complete and leads us to the algorithm proposed

in the following section.
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5.1.4. Algorithmic Solution

In this section, the algorithm referred to as Algorithm 5.1: PM.MIMO is presented.

Such an algorithm implements the methods proposed to perform the AO that solves

the optimization problems (5.32) and (5.19). The two formulations were shown to be

equivalent by the BC/MAC MSE duality, and the solution obtained via (5.44). The

AO provides an upper bound for the total transmit power needed to fulfill the original

restrictions from the power minimization based on the average rate constraints (5.5).

Algorithm 5.1: PM.MIMO. Power Minimization by AO in the MIMO BC

1: ℓ← 0, initialize p
(0)
i , ∀i

2: repeat

3: ℓ← ℓ+ 1
4: for m = 1 to M do

5: f
(ℓ−1,m)
k ← update BC receiver using (5.9), ∀k

6: end for

7: t
(ℓ−1,m)
k , g̃

(ℓ−1)
k , ∀k, ∀m← BC-to-MAC conversion (see Section 5.1.2)

8: ξ
(ℓ−1)
k ← 1

M

∑M
m=1 ||t

(ℓ−1,m)
k ||22, ∀k

9: τ
(ℓ−1,m)
k → 1/

√

ξ
(ℓ−1)
k t

(ℓ−1,m)
k , ∀k

10: T
(ℓ)
k ← blockdiag(τ

(ℓ−1,1)
k , . . . , τ

(ℓ−1,M)
k ), ∀k

11: J(ξ(ℓ−1))← update interference function (5.43)

12: ξ
(ℓ)
k ← 2ρk Jk(ξ

(ℓ−1)), ∀k
13: g̃

(ℓ)
k ← update MAC receiver (5.38), ∀k

14: for m = 1 to M do

15: t
(ℓ,m)
k ←

√

ξ
(ℓ)
k [T

(ℓ)
k ](m−1)R+1:mR,m update MAC precoder, ∀k

16: end for

17: p
(ℓ)
k , f

(ℓ,m)
k , ∀k, ∀m←MAC-to-BC conversion (see Section 5.1.2)

18: until ||ξ(ℓ) − ξ(ℓ−1)||1 ≤ δ

Algorithm 5.1: PM.MIMO is the extension to the MIMO BC of the Algorithm 4.3:

PM.MISO.ICSI.2 presented in the previous chapter for the MISO BC. Fortunately, we

have shown that the same procedures can be applied for the MIMO and the MISO problem

formulations. The main difference lies in the dimension of the BC receivers that slightly

changes the pseudocode. Note that, since equivalent properties can be demonstrated for

the more general MIMO case, we do not include a MIMO version of Algorithm 4.2:

PM.MISO.ICSI.1 because of the convergence issues discussed in Section 4.2.4 of Chapter

4.

The precoders are randomly initialized in the line 1. Note that the initialization does
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not affect to the final solution since the minimum total transmit power has been proven

to be unique. Next, the BC receive filters are updated to the MMSE filters for every

channel realization (recall that there exists perfect CSIR). After that, we switch to the

MAC by using the relationships in (5.23) for given BC transmit and receive filters (line 7).

Then, the total average power is computed in the line 8, allowing to obtain the normalized

MAC precoders in the line 9. The line 10 computes the matrix collecting the normalized

precoders for every channel realization.

In the line 11 the new value for the interference function is calculated and used

afterwards in the line 12 to find the new power allocation. The MAC receive filters have to

be updated accordingly in the line 13 to preserve the equivalence between the conventional

MMSE and the version including the normalization factor used to define the interference

function J(ξ). This new power allocation is included in the MAC precoders in the line 15,

and then, the updated versions of the corresponding BC filters are computed in the line 17

via the relationships (5.27). We compare the difference between the total power obtained

in the current iteration and that achieved in the previous one with a certain threshold,

which depends on the desired accuracy, to decide whether we have reached convergence

or not (see the line 18).

Just like Algorithm 4.3: PM.MISO.ICSI.2 from Section 4.2.4 of Chapter 4, Algorithm

5.1: PM.MIMO converges to the optimum of (5.19). Note that the filters update reduce

the MMSE of every iteration. Moreover, the power allocation adaptation reduces the

total transmit power required to achieve the MMSE constraints. Since both the MMSE

and the total transmit power are lower bounded by zero, it is straightforward to see that

the proposed algorithm converges. However, as previously mentioned, the solution is

an upper bound of the required total transmit power necessary to fulfill the average rate

constraints, since the average MMSE restrictions are more stringent.

5.1.5. Simulation Results

In this section we present some numerical results to illustrate the performance of

the proposed algorithm. The simulation setup consists on a BS with N = 4 transmit

antennas and K = 4 users equipped with R = 2 antennas each. The noise is considered

to be equally distributed for all the users, ηk ∼ NC(0,Cηk
), with Cηk

= IR, ∀k. The

MIMO channel realizations are generated taking into account the model given by (5.3).

Accordingly,H
(m)
k = H̄k + H̃

(m)
k , with m = {1, . . . ,M}, M = 1000, and H̃k being the

imperfect CSI error modeled as H̃k ∼ NC(0, IN).

Considering this scenario, we impose the average rate restrictions ρ1 = 0.5146, ρ2 =

0.737, ρ3 = 1, and ρ4 = 0.2345 bits per channel use, respectively. The corresponding

lower bounds for the average MMSE are εk = 2−ρk , ∀k, i.e., ε1 = 0.7, ε2 = 0.6, ε3 = 0.5,

and ε4 = 0.85. The gap between the total powers achieved at a given iteration and at
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the previous one is compared to the threshold, denoted by δ, which is set to 10−4. Initial

precoders are randomly generated as previously discussed.

Figure 5.3 depicts the evolution of the average rates during the execution of Algorithm

5.1: PM.MIMO. Note that the QoS are not strictly fulfilled but a little gap arising from

the average MMSE approximation of the targets has appeared. On the other hand, Fig.

5.4 shows the average MMSEs corresponding to the previous average rates. Observe how

the restrictions are now fulfilled with the equality, since the aim is to minimize the total

transmit power. Then, the average MMSE targets ε1 = 0.7, ε2 = 0.6, ε3 = 0.5, and

ε4 = 0.85 match the exact values. Finally, the evolution of the total power is given in Fig.

5.5. The total power starts over 9 dB for random initial precoders and reduces gradually

to about 0 dB after 25 iterations.
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5.2. Feasibility Region

In this section we analyze the feasibility region of the power minimization problem

given by (5.32). The feasibility of the average MMSE targets {2−ρk}Kk=1 guarantees the

feasibility of the QoS given as average rate targets since the average MMSE restrictions

are more stringent than the original average rate ones. The proposed test is fundamental to

determine the convergence of the power minimization algorithms presented in Chapters

4 and 5 when imperfect CSIT is assumed, and is an extension to a more general scenario

of the test presented in [40] where a MISO BC with perfect CSI at both ends of the

communication link was considered.

5.2.1. Feasibility Region in the SIMO MAC

In this section we revise the feasibility region studied in [40]. Consider the Single-

Input Multiple-Output (SIMO) MAC presented in Fig. 2.3 of Chapter 2. In such a

setup the users equipped with one transmit antenna send K independent data signals

to the N-antenna BS. The data signals are precoded with the linear filter tk ∈ C and

filtered by gk ∈ CN at the BC. The SIMO channel and the noise are hk ∈ CN , and

η ∼ CN (0, σ2
IN), respectively, with σ2 being the noise variance.

As shown in Section 4.1.2 of Chapter 4, employing the optimal MMSE receiver gMMSE
k

leads to the corresponding MMSE as follows

MMSEk = 1− |tk|2 hH
k

(
K∑

i=1

hi |ti|2 hH
i + σ2

IN

)−1

hk. (5.45)

We now define the matrices T ∈ CK×K , and H ∈ CN×K as

T = diag (t1, . . . , tK) , (5.46)

H = [h1, . . . ,hK ] . (5.47)

Given that notation, the MMSE for the user k is expressed as

MMSEk = 1− |tk|2 hH
k

(
HTTHHH + σ2

IN

)−1
hk (5.48)

=
[

IK − THHH
(
HTTHHH + σ2

IN

)−1
HT

]

k,k
. (5.49)

And the sum of the MMSEs for all the users can be easily obtained using the trace operator

as follows

K∑

k=1

MMSEk = tr
(

IK − THHH
(
HTTHHH + σ2

IN

)−1
HT

)

(5.50)

= K − tr
(

THHH
(
HTTHHH + σ2

IN

)−1
HT

)

. (5.51)
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Now, by applying the trace operator properties (see Section C.3 of Appendix C), we get

K∑

k=1

MMSEk = K − tr
(

HTTHHH
(
HTTHHH + σ2

IN

)−1
)

(5.52)

= K −N + tr
(

IN −HTTHHH
(
HTTHHH + σ2

IN

)−1
)

(5.53)

= K −N + tr
(
IN + σ−2HTTHHH

)−1
. (5.54)

Since the matrix inversion in (5.54) is positive definite (see Section C.5 of Appendix C),

its trace is lower bounded by N − rank(H), and then

K∑

k=1

MMSEk ≥ K − rank (H) , (5.55)

where the equality is asymptotically achieved when the total transmit power tends to

infinity. It is reasonable to assume that the vector channels are not linearly dependent

and then rank(H) = min{N,K}.
Note from (5.55) that, if the number of antennas at the BS is large enough, i.e. N ≥ K,

the MMSEs can be made arbitrarily small simultaneously for all the users when the total

transmit power tends to infinity. Observe also that, due to the duality presented in Section

3.3.1 of Chapter 3, the results shown in this section can be applied to the sum MMSE in

the BC.

5.2.2. Feasibility Region for the MIMO MAC under Imperfect CSIR

We now extend the previous study to the more general case where MIMO channels

and imperfect MAC CSIR are considered. In such scenario, the interferences cannot be

completely removed even when the number of transmit antennas is larger than the number

of users, i.e. N ≥ K. Consequently, increasing the transmit power does not necessarily

lead to a reduction of the MMSEs for all the users because, although it increases its

received power, it also increases the power of the intra-user interference. In certain

scenarios, the QoS constraints may require that some users achieve low MMSE values

that may be unfeasible even though the transmit power is increased unlimitedly. That is in

accordance with the following fact: when imperfect MAC CSIR is considered, the MMSE

for all the users cannot be reduced arbitrarily in a simultaneous way, contrarily to the case

where there exist perfect CSI on both the transmitters and the receiver in the MAC.

In the following we present a feasibility test to determine whether it is possible or not

to accomplish the QoS constraints MMSE
MAC

k = 2−ρk .
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Let us start substituting gMMSE
k , given by (5.34), into the MSE

MAC

k expression given by

(5.22) to determine the average MMSE in the MAC

MMSE
MAC

k = 1− E
[
tHkC

−1/2
ηk

HH
k | v

]

(

σ2IN +

K∑

i=1

E[HiC
−H/2
ηi

tit
H
i C

−1/2
ηi

HH
i | v]

)−1

E
[
HkC

−H/2
ηk

tk| v
]
, (5.56)

where we introduced the noise covariance in the dual MAC, i.e. Cη = σ2
IN . We now

introduce the matrix

Υ = [H1C
−H/2
η1

, . . . ,HKC
−H/2
ηK

] blockdiag(t1, . . . , tK), (5.57)

and rewrite (5.56) as follows

MMSE
MAC

k = 1−
[

E[Υ H|v]
(
E[ΥΥ H|v] + σ2

IN

)−1
E[Υ |v]

]

k,k
. (5.58)

Hence, the sum average MMSE is rewritten using the trace operator as

K∑

i=1

MMSE
MAC

i = K − tr
(

E[Υ H|v]
(
E[ΥΥ H|v] + σ2

IN

)−1
E[Υ |v]

)

. (5.59)

When K ≥ N and the channel knowledge is perfect at both sides of the link, the

expectations in (5.59) are removed and the sum average MMSE can be made arbitrarily

small [40]. However, due to the imperfect CSI at the MAC receiver, we cannot reduce the

average MMSE as much as desired for all the users at the same time.

Expression (5.59) allows to determine the region where the feasible average MMSEs

lie. Indeed, setting the MAC thermal noise variance to zero (i.e., σ2 = 0) we obtain a

lower bound for the sum average MMSE for any finite total average power allocation, i.e.

K∑

i=1

MMSE
MAC

i > K − tr{X}, (5.60)

where X = E[Υ H|v](E[ΥΥ H|v])−1 E[Υ |v]. The bound is asymptotically achieved when

the powers for all the users reach infinity. Therefore, we formulate a necessary condition

for the feasibility of QoS targets: any power allocation with finite sum power achieves an

MMSE tuple {MMSE
MAC

i }Ki=1 inside the polytope

P =

{

{MMSE
MAC

i }Ki=1 |
K∑

i=1

MMSE
MAC

i ≥ K − tr {X}
}

. (5.61)
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Figure 5.6: Example of Feasibility Region in a 2-User Scenario.

An example of the feasibility region considering the sum-MMSE lower bounded

by 0.3 is shown in Fig. 5.6. The boundary is reached when the total transmit power

asymptotically reaches infinite and separates the feasible and unfeasible regions.

So far we have found a necessary condition for the feasibility of the QoS targets, i.e.,

any power allocation with finite sum power achieves an MMSE tuple {MMSE
MAC

i }Ki=1

inside the polytope P . In order to prove that P is the feasible set of solutions to the

power minimization problem, we must prove the converse, i.e., that there exists a power

allocation for any tuple inside the polytope P . The mapping from {MMSE
MAC

i }Ki=1 to

the power allocation results from equating MMSE
MAC

k with the target εk. The resulting

fixed point is unique due to the properties of the interference functions [38]. Then, if the

fixed point exists, the aforementioned mapping is bijective. Let f (x; c) be a multivariate

function that depends on a vector of independent variables x and a vector of parameters

c. Such function has a fixed point x = f (x; c) if it satisfies the following set of sufficient
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conditions [72]

f (0; c) ≥ 0, (5.62)

∃a > 0 such that f (a; c) > a, (5.63)

∃ b > a such that f (b; c) < b. (5.64)

We now define εk = 2−ρk as the average MMSE targets, that is, the lower bounds of

the original average rate based on QoS constraints (see 5.17), and ε = [ε1, . . . , εK ]
T as

the vector that collects all such targets. We also introduce the following definitions

ϕk =
1√
ξk

E
[
HkC

−H/2
ηk

tk| v
]
, (5.65)

Φk =
1

ξk
E
[(
HkC

−H/2
ηk

tk − E
[
HkC

−H/2
ηk

tk| v
])

(
HkC

−H/2
ηk

tk − E
[
HkC

−H/2
ηk

tk| v
])H | v

]

, and (5.66)

Ak =
K∑

i=1

ξiΦi +
∑

j 6=k

ξjϕjϕ
H
j + σ2

IN , (5.67)

which allows us to rewrite the MMSE (5.56) as

MMSE
MAC

k = 1− ϕH
k

(
Ak + ξkϕkϕ

H
k

)−1
ϕk. (5.68)

Applying the matrix inversion lemma to the last expression (see Appendix Section C.4 of

C), enables us to eventually get

MMSE
MAC

k =
(
1 + ξkϕ

H
kA

−1
k ϕk

)−1
. (5.69)

We now define the function fk(ξ; ε) from (5.69) equating MMSE
MAC

k = εk at some fixed

point ξ

fk(ξ; ε) :=
(
ε−1
k − 1

) (
ϕH

kA
−1
k ϕk

)−1 ∀k. (5.70)

We next show that the fixed points ξk = fk(ξ; ε) correspond to the optimal power

allocation vectors ξopt for which MMSE
MAC

k = εk, ∀k. To do so, we show in the following

that the function f (ξ; ε) = [f1(ξ; ε), . . . , fK(ξ; ε)]
T satisfies the fixed point conditions

(5.62), (5.63), and (5.64).

The first requirement given in (5.62) is easy to show since if the transmit power is

ξ = 0, the inter-user interference drops out and the matrixAk reduces to σ2
IN . Then,

fk(0; ε) =
1− εk
εk

σ2

‖ϕk‖22
. (5.71)
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Note that fk(0; ε) ≥ 0 as long as 0 < εk ≤ 1. Moreover, (5.71) also provides a lower

bound for fk(ξ; ε), i.e.

fk(ξ; ε) ≥
1− εk
εk

σ2

‖ϕk‖22
, (5.72)

for any ξ ≥ 0.

The second condition given in (5.63) is also easy to prove. Indeed, let ā be the

minimum element of f (0; ε). Hence, f (ξ; ε) ≥ ā1, for any ξ ≥ 0. Note from (5.72) that

ā > 0 as long as εk < 1. Observe now that the power allocation ξ = a1, with a < ā,

gives

f (a1; ε) ≥ ā1 > a1, (5.73)

thus satisfying (5.63).

The proof for the condition (5.64) is more involved so we will divide the problem into

two cases depending on the number of users and transmit antennas.

A) N ≥ K. This is the case where the number of transmit antennas is greater than

or equal to the number of users. We start searching for an upper bound for fk(ξ; ε), or

equivalently, a lower bound for the inverse term in (5.70). To do so, we introduce the

following matrices

Bk̄ = [ϕi1 , . . . ,ϕiK−1
]ij 6=k,∀j, (5.74)

Ξk̄ = diag(ξi)i 6=k, (5.75)

which allow us to rewrite the second summand inAk from (5.67) as

∑

i 6=k

ξiϕiϕ
H
i = Bk̄Ξk̄B

H
k̄ . (5.76)

Additionally, we define the matrix Φ ∈ C
N×N as follows

Φ =
K∑

i=1

ξiΦi + σ2
IN , (5.77)

which allows us to rewrite the matrixAk as

Ak = Φ+Bk̄Ξk̄B
H
k̄ . (5.78)

Applying now the matrix inversion lemma of Appendix C it is possible to obtain the

inverse ofAk in the way

A−1
k = Φ−1

[

IN −Bk̄

(
Ξ−1

k̄
+BH

k̄ Φ
−1Bk̄

)−1
BH

k̄ Φ
−1
]

. (5.79)
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Thus, defining ψk = Φ−1/2ϕk ∈ CN and Dk̄ = Φ−1/2Bk̄ ∈ CN×K−1, and letting the

total power grow without restriction leads us, eventually, to the lower bound

ϕH
kA

−1
k ϕk ≥ ψH

k

(

IN −Dk̄

(
DH

k̄Dk̄

)−1
DH

k̄

)

ψk, (5.80)

and the corresponding upper bound

fk(ξ; ε) ≤
1− εk
εk

(

ψH
k

(

IN −Dk̄

(
DH

k̄Dk̄

)−1
DH

k̄

)

ψk

)−1

. (5.81)

Notice that the matrixDH
k̄
Dk̄ in (5.80) and (5.81) is non-singular when N ≥ K. Observe

that the equality in the last expression holds for ξk → ∞, ∀k. Since f (ξ; ε) ≥ ā1 > a1,

for any ξ ≥ 0, sets a lower bound as stated in (5.73) to fulfill the second requirement

given by (5.63), we only have to find b such that

bk >

(
1

εk
− 1

)(

ψH
k (I−Dk̄

(
DH

k̄Dk̄

)−1
DH

k̄ )ψk

)−1

, (5.82)

to complete the proof for the third requirement of (5.64) when N ≥ K, i.e. bk >

fk(a1, ε) > a, as required.

B) N < K. We now focus on the case when the number of transmit antennas is smaller

than the number of users. The power allocation is set to b = αb0, where b0 belongs to the

simplex

S = {x|
∑

k

xk = 1 and xk ≥ 0 ∀k}. (5.83)

For α→∞ (or σ2 → 0) and b0 > 0, we can rewrite (5.70) as

f∞
k (b0; ε) :=

1
εk−1

ϕH
k

(
∑

i

b0,iΦi +
∑

j 6=k

b0,jϕjϕ
H
j

)−1

ϕk

.

The average MMSE targets collected in ε have to satisfy the equality (5.60) for α →∞,

i.e., a tuple ε that lies in the region separating feasible from unfeasible targets, i.e.

B = {ε|1Tε = K − tr(X)}. Note that b0 = f∞(b0; ε) is a fixed point of f∞ but

we need to verify the bijective mapping in order to complete the proof, that is, for any

average MMSE target tuple ε ∈ B there exists a unique power allocation b = αb0, with

α→∞.

First, we define the Signal to Interference-plus-Noise Ratio (SINR) as SINR =

1/MMSE
MAC

k − 1. In the limit case when the power allocation tends to infinity, α →∞,

we obtain the following expression for the Signal to Interference Ratio (SIR) as

SIRk = b0,kϕ
H
k

( K∑

i=1

b0,iΦi +
∑

j 6=k

b0,jϕjϕ
H
j

)−1

ϕk,
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from which we rewrite SIRk = b0,k(Qk(b0))
−1. Thus, we can use the properties of the

function Qk(b0), (see [39]), to guarantee the existence and uniqueness of the optimal

power allocation for the following balancing problem

max
r,b0

r subject to
b0,k
Qk (b0)

= r SIR0,k ∀k ∈ {1, . . . , K}. (5.84)

Since we established a relationship between the SIR and the MMSE
MAC

when we let the

power grow without restriction, i.e. α →∞, we use the bound for 1ε to find the optimal

balancing level r of (5.84) using

K∑

i=1

1

1 + r SIR0,i

= K − tr{X}. (5.85)

The previous equation only has a single solution since the functions (1 + r SIR0,k)
−1

are monotonically decreasing with r > 0, ∀k. For example, if we obtain the SIR targets

from the MMSE targets lying in the region of interest B, (5.85) is fulfilled with r = 1.

So far we have shown that a unique power allocation b = αb0, with b0 ∈ S and

α → ∞, always exists for any MMSE tuple in the region separating feasible from

unfeasible targets ε′ ∈ B, such that f (b; ε′) = b. Note that f (b; ε) is decreasing in

ε and we can prove that the third requirement of (5.64) is also fulfilled for N < K due to

the fact that for any target ε > ε′ we have

f (b; ε) < b. (5.86)

In summary, the power minimization problem of (4.44) has a solution, i.e., the MMSE

QoS targets ε = [2−ρ1 , . . . , 2−ρK ]T are feasible, if and only if ε ∈ P , with P defined in

(5.61).

Recall that our result is a generalization of Theorem III.1 in [40], where the feasibility

was studied for the case of perfect CSIT. In particular, the conditioned expectations inX

from (5.60) are removed for error-free CSI, i.e., X = Υ H(ΥΥ H)−1Υ = IN . Then,

the bound on the sum average MMSE reads as
∑K

i=1 MMSE
MAC

i > K − tr{X} =

K − N . From practical results, our observation is that tr{X} ≈ R ∀k, considering

hk ∼ NC(0,Chk
), with Chk

= E[hkh
H
k |v] = σ2

hk
IRN , where R is the number of

per-user antennas and hk = vec(Hk). Taking that into account, we can infer that the

feasible region for single-antenna receivers equals that of SISO systems for this particular

imperfect CSI. Note also that, contrary to the perfect CSI case, tr{X} needs not be an

integer number.
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5.2.3. Simulation Results

In this section, we show the results of some numerical simulations carried out to

validate the results obtained previously. We consider a MIMO BC with N = 4 antennas

at the BS that sends data signals to K = 4 users equipped with R = 2 antennas. The

imperfect CSI is translated into M = 1000 channel realizations Hk ∼ NC(0, RIN), ∀k.

Therefore, hk = vec(Hk) ∼ NC(0,Chk
). Recall our observation from the previous

section, i.e.,
∑K

i=1 MMSE
MAC

i > K − R. Then,
∑K

i=1 MMSE
MAC

i > 2 for this setup.

Bearing that in mind, we run the Algorithm 5.1: PM.MIMO from Section 5.1.4 with the

unfeasible average rate targets ρ1 = 1.3219, ρ2 = 0.7370, ρ3 = 1.737, and ρ4 = 1 bits

per channel use, and the corresponding average MMSE lower bounds ε1 = 0.4, ε2 = 0.6,

ε3 = 0.3, and ε4 = 0.5, such that
∑4

k=1 εk = 1.8 < 2. The number of iterations is limited

to 50 since the algorithm shall not converge for unfeasible targets.

Figure 5.7 depicts the gradual reduction of the average MMSEs for all the users.

However, the desired values cannot be simultaneously reached for all of them. On the

other hand, Fig. 5.8 shows the behavior of the total transmit power during the algorithm

execution. Observe that the power increases over 36 dB when trying to get the average

MMSE targets. However, as we previously discussed, the QoS constraints are not feasible.

5.3. Sum-MSE Lower Bound

This section focuses on the bound already presented in the previous section. In

particular, we will focus on expression (5.60) to compute the lower bound of the

summation of the average MMSEs for all the users. Note, however, that this expression

depends on the MAC precoders (or the dual BC receive filters). Such an equation

also provides critical information about the feasibility of the approximated average rate

targets. Therefore, we will develop a method to find the filters that minimize (5.60) in the

following in order to obtain a better understanding of the bound (5.60). Let us consider

the MSE expression in the MAC when we let the transmit power to increase unlimitedly.

In other words, we neglect the noise and obtain

MSEMAC
k = 1− 2ℜ

{
gHkHktk

}
+

K∑

i=1

gHkHitit
H
i H

H
i gk. (5.87)

The sum-MSE in such a case is computed summing up the MSE for all the users to get

K∑

k=1

MSEMAC
k = K − 2ℜ

{
K∑

k=1

gHkHktk

}

+
K∑

k=1

K∑

i=1

gHkHitit
H
i H

H
i gk. (5.88)

We now find the optimal MAC precoders, that is, the filters tk minimizing the sum of the

MSEs for all the users. Observe that, when we try to find the MMSE filters, the MAC
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Figure 5.7: Example of Power Minimization Algorithm Execution for Unfeasible Targets:

MMSE vs. Number of Iterations.
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transmit filters are computed in the BC due to the dependence of the MSE of the user

k with the transmit filter tj , for j 6= k. Nevertheless, for the sum-MSE such a problem

does not hold. Hence, in order to find the MAC transmit filters that minimize (5.88), we

calculate the derivative of
∑K

k=1 tr
(
MSEMAC

k

)
=
∑K

k=1 MSEMAC
k with respect to tk using

the results presented in Section C.6 of Appendix C, i.e.

∂
∑K

k=1 tr
(
MSEMAC

k

)

∂t∗k
= −HH

k gk +H
H
k

K∑

i=1

gig
H
i Hktk. (5.89)

Hence, the MAC transmit filters read as

tk =

(

HH
k

K∑

i=1

gig
H
i Hk

)−1

HH
k gk, (5.90)

and substituting into (5.88) we get

K∑

k=1

MSEMAC
k = K −

K∑

k=1

gHkHktk = K −
K∑

k=1

gHkHk

(

HH
k

K∑

i=1

gig
H
i Hk

)−1

HH
k gk.

(5.91)

Remember now that along this work we have considered perfect CSIT and imperfect CSIR

in the MAC. Thus, (5.90) holds and the average of (5.91) conditioned to the imperfect

CSI information available at the BS, v, has to be considered. Additionally, we define the

matrix that collects the receive filters for all the users as G = [g1, . . . , gK ], such that
∑K

i=1 gig
H
i = GGH, and gk = Gek, with ek being the canonical vector. The average

sum-MSE is then

E

[
K∑

k=1

MSEMAC
k | v

]

= K −
K∑

k=1

eTk E
[

GHHk

(
HH

k GG
HHk

)−1
HH

k G| v
]

ek. (5.92)

To find the receive filters that minimize the sum-MSE,Gopt, the trace is again introduced

into the average sum-MSE, that is

E

[
K∑

k=1

MSEMAC
k | v

]

= K −
K∑

k=1

tr
(

eTk E
[

GHHk

(
HH

k GG
HHk

)−1
HH

k G| v
]

ek

)

= K −
K∑

k=1

tr
(

E
[(
HH

k GG
HHk

)−1
HH

k Geke
T
kG

HHk| v
])

.

(5.93)
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Accordingly, in order to simplify the computation of the derivative of (5.92) with respect

toG we first determine the following derivative

∂

∂G∗

K∑

k=1

tr
(

E
[

GHHk

(
HH

k GG
HHk

)−1
HH

k G| v
]

eke
T
k

)

=

K∑

k=1

E
[

Hk

(
HH

k GG
HHk

)−1
HH

k G| v
]

eke
T
k , (5.94)

where we have considered (HH
k GG

HHk)
−1 as a constant. On the other hand, we have

∂

∂[G∗]i,j

K∑

k=1

tr
(

E
[(
HH

k GG
HHk

)−1
Ak| v

])

= −
K∑

k=1

tr
(

E
[(
HH

k GG
HHk

)−1
Ak

(
HH

k GG
HHk

)−1
HH

k Geje
T
i Hk| v

])

= −
K∑

k=1

eTi E
[

Hk

(
HH

k GG
HHk

)−1
Ak

(
HH

k GG
HHk

)−1
HH

k G| v
]

ej,

(5.95)

with Ak = HH
k Geke

T
kG

HHk. Finally, adding up (5.94) with the matrix resulting from

the components of (5.95), we obtain the following gradient for the user m

∂ E
[
∑K

k=1 MSEMAC
k | v

]

∂G∗
em = −E

[

Hm

(
HH

mGG
HHm

)−1
HH

mG| v
]

em

+

K∑

k=1

E
[

Hk

(
HH

k GG
HHk

)−1
Ak

(
HH

k GG
HHk

)−1
HH

k G| v
]

em. (5.96)

Since finding a close-form solution to Gopt is a difficult task, we propose to employ a

steepest descent algorithm. Moreover, due to the fact that minimizing the sum-MSE (5.92)

with respect to G is an unconstrained convex problem (see Section F.1 of Appendix F),

the algorithm converges to the optimum filters Gopt.

5.3.1. Algorithmic Solution

The algorithm referred to as Algorithm 5.2: Opt.Rx finds the MAC receive filters gk
that minimize the average sum-MSE lower bound presented in (5.93). All the precoders

are randomly initialized in the line 1. Inside the outer loop, the current version of the

matrices employed to compute the gradient of (5.96) are calculated (line 4). Next, the
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Algorithm 5.2: Opt.Rx Optimum Receive Filter for Sum-MSE Lower Bound

1: ℓ← 0, randomly initializeG(0)

2: repeat

3: ℓ← ℓ+ 1
4: Φ(ℓ),Θ(ℓ) ← compute the matrices from (5.96)

5: s← 1, set the step size to starting value

6: repeat

7: g
(ℓ)
k ← g

(ℓ−1)
k − s(−Φ(ℓ)ek +Θ

(ℓ)ek), ∀k (see (5.96))

8: s← s
2

9: until
∑K

i=1 E[MSEk(G
ℓ)| v]−∑K

i=1 E[MSEk(G
ℓ−1)| v] < 0

10: until |∑K
i=1 E[MSEk(G

ℓ)| v]−∑K
i=1 E[MSEk(G

ℓ−1)| v]| < δ

step size is initialized to 1 (line 5). The line 7 inside the inner loop computes the new

MAC receive filters for all the users using the gradient and the step size s. The step size

is reduced in the subsequent iterations of the inner loop when the condition in the line 9

is not fulfilled. In other words, if the average sum-MSE lower bound is larger than the

one from the previous iteration, the step size is reduced (line 8). The line 10 decides if the

convergence has been reached or not, depending on the performance measure reduction

obtained in two consecutive iterations.

5.3.2. Simulation Results

We now consider the MIMO MAC from Fig. 5.2 to evaluate the impact of the

imperfect CSI quality on the average sum-MSE lower bound presented in Section 5.3.

To that end, we use a simple model for channel estimation, that is, a training sequence is

sent over the channel and is also affected by the thermal noise. At the BS, the channel is

estimated depending on the received signal.

Let hk ∈ CNR be the channel vector for the user k such that hk = vec(Hk), with N

and R being the number of antennas at the BS and the users, respectively. In the following,

we drop the subindex k for the shake of notation brevity. We assume that the channel

vector and the thermal noise η ∈ CNR are zero-mean circularly symmetric complex

Gaussian and independent, i.e. h ∼ NC(0,Ch) and η ∼ NC(0,Cη), respectively.

We now introduce the training sequence S ∈ CNR×NR such that S =
√
pΣ, with

||Σ||2F = NR, and SHS = pINR. Thus, the received signal at the BS is

y = Sh+ η. (5.97)

We stack the channel and the noise to obtain a new circularly symmetric complex

Gaussian random vector [ηThT]T. Taking into account that the property holds for any
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linear combination [73], this leads us to

(
INR S

0 INR

)[
η

h

]

=

[
y

h

]

∼ NC

(

0,

(
Cy Cy,h

Ch,y Ch

))

, (5.98)

where the covariance matrices read as

Cy = E
[
yyH

]
= SChS

H +Cη, (5.99)

Cy,h = E
[
yhH

]
= SCh = CH

h,y, (5.100)

and y ∼ NC(0,SChS
H +Cη).

To obtain the pdf of the channel h given the observation y, fh|y(h|y), we employ the

Bayes’ rule fh|y(h|y) = fh,y(h,y)/fy(y) to get (see Section E.1 of Appendix E)

fh|y(h|y) =
1

πNR det
(
Ch −Ch,yC−1

y Cy,h

) e−Q(h,y), (5.101)

where

Q (h,y) =
(
h−Ch,yC

−1
y y

)H (
Ch −Ch,yC

−1
y Cy,h

)−1 (
h−Ch,yC

−1
y y

)
. (5.102)

The first and second order moments are then

E [h|y] = Ch,yC
−1
y y = ChS

H
(
SChS

H +Cη

)−1
y, (5.103)

Ch|y = Ch −Ch,yC
−1
y Cy,h = Ch −ChS

H
(
SChS

H +Cη

)−1
SCh. (5.104)

We consider a MIMO scenario with N = 4 antennas at the BC, and K = 4 users equipped

with R = 2 antennas each. The CSI quality in this setup comes from the Signal-to-Noise

Ratio (SNR) of the received signal. In our case, we define the SNR as the ratio between

the transmit and the noise powers, i.e.

SNR =
‖S‖2F
tr (Cη)

=
p

σ2
, (5.105)

where we consider Cη = σ2
INR, with σ2 = 1 in the numerical experiments. Therefore,

the transmit power p is modified so we can get SNRs from 0 to 40 dB. With hk ∼
NC(0, INR) for all the users, we generate a realization of yk, ∀k. Then, we generate

M = 2000 realizations of the random variable h|y, which is described by its mean of

(5.103) and covariance matrix of (5.104), as we have previously shown. The generated

random variables are then introduced as the channel realizations for Algorithm 5.2:

Opt.Rx.

On the one hand, Fig. 5.9 shows the average sum-MSE lower bound reached for

different SNRs, that is, the best performance that can be theoretically reached when we
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Figure 5.9: Average sum-MSE Lower Bound vs. SNR.
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increase the power without limit. Note that the impact of the CSI quality is critical and

the lower bound drastically reduces for large SNR values. On the other hand, Fig. 5.10

depicts the evolution of the average sum-MSE lower bound with the filters computed with

Algorithm 5.2: Opt.Rx. Here, the convergence of the steepest descent algorithm can be

seen for an execution example.

5.4. Rate Balancing Problem

So far we have considered the design of the precoders and the receivers in a MIMO BC

to minimize the transmit power fulfilling certain QoS constraints. However, when the QoS

constraints are rather stringent, the minimum transmit power may be unacceptably high

for the system or, as explained in the previous section, the problem may be unfeasible. To

avoid such harmful situations, we face the problem of designing the MIMO BC using a

different perspective. On the one hand, we relax the constraint that all the users experience

a set of average rates given by {ρk}Kk=1 and, on the other, we limit the transmit power to

a given value PT . More specifically, we propose that the per-user average rate targets be

scaled by the same scale factor ς ∈ R+ and that such factor be optimized, together with

the precoders and the receivers, for given transmit power PT . When the optimum ςopt is

obtained, the user k enjoys an average rate ρopt

k = ςoptρk and, correspondingly, a certain

QoS. The scaling of all the user rates by the same factor in a multiuser communication

system is referred to as rate balancing in the literature.

Other examples of balancing problems can be found for the SINR [12], or MMSE [34]

for perfect CSIR and CSIT. Moreover, the imperfect CSIT in the BC is studied in [31] for

average MMSE.

Recall the optimization problem proposed in (5.5). We now describe the converse

problem where the transmit power equal toPT is one of the constraints to be fulfilled. The

aim is to get the best QoS constraints as possible taking into account a given relationship

between the per-user average rates, that is

max
{ς,pk}Kk=1

ς subject to E[Rk|v] ≥ ςρk, ∀k, and

K∑

i=1

‖pi‖22 ≤ PT . (5.106)

Notice from the previous problem formulation that the design of the precoders pk has to

be jointly optimized with the balancing factor ς . One remarkable difference with respect

to the power minimization problem of (5.5) is that the optimization problem in (5.106) is

always feasible. In other words, we can relax the problem restrictions as much as needed,

via reducing ς until the QoS constraints are achieved using a total transmit power smaller

or equal to PT .
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We now follow the same procedure as in Section 5.1.1, where the constraints were

lower bounded (see (5.17)) using the average MMSE to transform the problem into a

more tractable one. Then, we obtain the new restrictions

MMSE
BC

k ≤ 2−ςρk . (5.107)

Taking that into account, the MIMO BC balancing problem proposed to be solved in this

section is expressed as follows

max
{ς,pk,fk}Kk=1

ς subject to MMSE
BC

k ≤ 2−ςρk , ∀k, and

K∑

i=1

‖pi‖22 ≤ PT . (5.108)

Note now that this maximization depends on the receive filters fk for the average MMSE

lower bound. Thus, following an argumentation similar to that presented in Section

5.1.2, the optimization problem (5.108) can be equivalently rewritten in the dual MAC to

allow for an individual adaptation of the BC precoders. Analogously to the development

carried out for the power minimization problem in Section 5.1.3, we propose to use the

standard interference functions to obtain a new reformulation of the problem for given

MAC transmit filters tk, ∀k, that reads as

max
{ς,ξk,gk}

K
k=1

ς subject to
Jk (ξ)

ξk
≤ 2−ςρk , and

K∑

i=1

ξi ≤ PT , (5.109)

where ξ = [ξ1, . . . , ξK ]
T is the power allocation vector, gk are the dual MAC receivers,

and Jk (ξ) are the interference functions as given by (5.43).

Note that the Algorithm 5.1: PM.MIMO presented in Section 5.1.4 can be used to

determine ξopt and g
opt

k for given value ς . This algorithm by itself is not valid in this

section because ξopt may not satisfy the power constraint, i.e.,
∑K

i=1 ξ
opt
i may be larger

than PT . However, it can be combined with a bisection method to solve (5.109).

The bisection method is commonly used to find roots of a continuous function f(x)

in a certain interval [a, b], such that sgn(f(a)) = − sgn(f(b)). The process is very simple

and consists on selecting subintervals where the root lies until certain accuracy is reached.

Although there exist quicker methods, the bisection search is robust and suitable for our

off-line optimization problem. Figure 5.11 shows three iterations of the bisection search

for an hypothetical relationship between the balance level and the total power. Note that

the search can be performed since the function is monotonically increasing with the total

transmit power ξ, as we will discuss in the following. We will also show how the search

interval is reduced at every iteration.

Indeed, let us start setting two feasible rate balancing values ςL and ςH, such that the

optimum, ςopt, lies in between, i.e. ςL ≤ ςopt ≤ ςH. Let ξL and ξH be the optimum
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power allocation vectors corresponding to ςL and ςH, respectively. Such optimal power

allocation vectors satisfy on the one hand

Ik(ξ
L)

ξL
k

= 2−ςLρk and
Ik(ξ

H)

ξH
k

= 2−ςHρk , (5.110)

and on the other one
K∑

i=1

ξL
i ≤

K∑

i=1

ξopt
i ≤

K∑

i=1

ξH
i , (5.111)

as we will show in the following.

We now introduce the average MMSE balancing factors

ǫk =
2−ςρk

2−ρk
= 2−ρk(ς−1). (5.112)

Note that increasing the balance level ς produces smaller scaling factors ǫk, ∀k.

Analogously, reducing the balance level translates into larger MMSE scaling factors.

Let ǫL
k and ǫH

k be the MMSE scaling factors corresponding to ςL and ςH, respectively.

Accordingly, ǫL
k ≥ ǫopt

k ≥ ǫH
k .

With the goal of proving that a bisection search can be performed, we consider

ǫL
k = aǫopt

k , with a > 1. The constraints in (5.109) are fulfilled with equality when

ǫk = ǫopt

k and ξ = ξopt. Hence

aǫopt

k 2−ρk = a
Jk(ξ

opt)

ξopt

k

, (5.113)

which means that increasing the MMSE targets leads to smaller transmit power (i.e. ξk =

a−1ξopt

k , ∀k) when we keep the interference as constant. Moreover, notice that keeping

this fact sets an upper bound for the interference with the reduced transmit powers,

Jk(a
−1ξopt) < Jk(ξ

opt), due to the scalability property of the standard interference

functions. Therefore, the power needed to fulfill the constraint with equality is lower

than a−1ξopt, and 1
TξL < a−1

1
Tξopt < PT holds.

We now prove the relationship in the reverse direction, that is, a power reduction

translates into larger scaling factors ǫk, ∀k. Let us consider the power reduction Aξopt,

with A = diag(a1, · · · , aK) < IK , that leads to certain average MMSE scaling factor ǫ̃k
for some user k, i.e.

ǫ̃k2
−ρk =

1

akξ
opt

k

Ik(Aξ
opt). (5.114)

Since no assumption about the user k has been made, we focus on the user with the largest

power reduction, that is k′, such that ak′ ≤ ak, ∀k. Consequently,

ǫ̃k′2
−ρk′ =

Ik′ (Aξ
opt)

ak′ξ
opt

k′

≥ Ik′ (ak′ξ
opt)

ak′ξ
opt

k′

>
Ik′ (ξ

opt)

ξopt

k′

= ǫopt

k′ 2
−ρk′ , (5.115)
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where again we take advantage of the scalability property. Therefore, ǫ̃k′ > ǫopt

k′ for

ξopt > Aξopt. Remember from (5.112) that a larger ǫ̃k′ comes from a smaller ς . Then, the

inequality also holds for the rest of the users and we get

ǫ̃k > ǫopt

k , ∀k for ξopt > Aξopt. (5.116)

We have previously shown that relaxing the balancing level ǫopt

k implies a power

reduction with respect to ξopt. Hence, we conclude that a power reduction entails a lower

balancing level ς , and vice-versa, when the precoders, the receive filters, and the power

allocation vectors are optimum for every balancing level.

Finally, we conclude that it is possible to reduce the gap between ςL and ςH via

bisection search explained before. That way, the optimum balancing level ςopt for the

total average transmit power
∑K

k=1 ξ
opt

k = PT can be found.

5.4.1. Rate Balancing Algorithm

Algorithm 5.3: Rate.Balancing. Rate Balancing in the MIMO BC

1: ℓ← 0, initialize ςL,(0), ςH,(0)

2: find ξH,(0) ≤ ξL,(0) via power minimization Algorithm 5.1: PM.MIMO

3: repeat

4: ℓ← ℓ+ 1
5: ς(ℓ) ←

√
ςL,(ℓ−1)ςH,(ℓ−1) new balancing candidate

6: find ξ(ℓ) for ς(ℓ) via power minimization Algorithm 5.1: PM.MIMO

7: if
∑K

i=1 ξ
(ℓ)
i < PT then

8: ςH,(ℓ) ← ς(ℓ), ςL,(ℓ) ← ςL,(ℓ−1) update balance candidates

9: else

10: ςL,(ℓ) ← ς(ℓ), ςH,(ℓ) ← ςH,(ℓ−1) update balance candidates

11: end if

12: until |∑K
i=1 ξ

(ℓ)
i − PT | < δ

Algorithm 5.3: Rate.Balancing presents the steps to solve the optimization problem

(5.109). The algorithm is initialized with two balancing levels ςL,(0) and ςH,(0) (line 1).

Next, their corresponding vector power allocation vectors, ξH,(0) and ξL,(0), are computed

via the power minimization of Algorithm 5.1: PM.MIMO (line 2). Observe that the

power constraint PT lies between these two powers. Next, the algorithm enters a loop

that first computes a new balancing level as the geometric mean of the balancing levels

obtained in the previous iteration (line 5). Then, the power allocation vector for this new

balancing level is computed using the Algorithm 5.1: PM.MIMO (line 6). Next, we check
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whether the power obtained is lower than the power constraint or not (line 7) and update

the balancing levels accordingly (lines 8 and 10). Finally, we test if the current power has

the desired accuracy to finish the iteration loop (line 12).

The proof for the convergence of the Algorithm 5.3: Rate.Balancing depends on

the feasibility of the power minimization problem with the average MMSE targets

2−ςH,(0)ρk , ∀k. Indeed, recall that the feasibility region is described in Section 5.2 as a

bounded polytope and that the initial balancing levels ςL,(0) and ςH,(0) are chosen such

as ςL,(0) ≤ ςopt ≤ ςH,(0). Hence, if 2−ςH,(0)ρk , ∀k, lies inside the polytope so does

2−aςH,(0)ρk , ∀k, for any 0 ≤ a < 1. Taking into account that the average MMSE given

by 1

ξ
(ℓ)
k

Jk(ξ
(ℓ)) is monotonically decreasing with ξ(ℓ), the bisection procedure reduces the

gaps ςH,(ℓ)−ςL,(ℓ) and |1Tξ(ℓ)−PT | at every iteration until a desired accuracy δ is achieved.

5.4.2. Simulation Results

This section focuses on the performance of Algorithm 5.3: Rate.Balancing.

This algorithm solves the optimization problem (5.108) by means of Algorithm 5.1:

PM.MIMO and a bisection process for which it is necessary to decide two starting

points, ςL,(0) and ςH,(0), such that the optimum balancing level lies in between, i.e.,

ςL,(0) ≤ ςopt ≤ ςH,(0).

To evaluate the proposed method, we consider the same setup as in Section 4.2.5 of

Chapter 4, that is, the BS equipped with N = 4 transmit antennas sends information to

K = 4 single-antenna users. A number of M = 1000 channel realizations generated

by the model ĥ
(m)
k = h̄k + h̃

(m)
k , for k = {1, . . . , K} and m = {1, . . . ,M}, with

h̃
(m)
k ∼ NC(0,Ch̃k

), are used. The thermal noise is considered to be equal for all the

users, i.e. σ2
ηk

= 1, ∀k. The rate targets are ρ1 = 0.5146, ρ2 = 0.737, ρ3 = 1, and

ρ4 = 0.2345 bits per channel use, respectively, as considered in Section 4.2.5. We scale

them with different balancing candidates to obtain the rate targets for such a candidate.

The threshold to check if convergence has been reached or not is set to δ = 10−2.

Taking into account the numerical results obtained in Section 4.2.5, we set the

available total average transmit power to PT = 3 dB leading to an expected balancing

level of approximately one, i.e. ςopt = 1. Therefore, we pick ςL,(0) = 0.6 and

ςH,(0) = 1.3, from which ςopt ∈ [0.6, 1.3]. Figure 5.12 plots the average power versus

the balancing level for the different iterations of the bisection algorithm. The two initial

values correspond to the points located at left and right vertical axis in the figure. Note

that the search interval reduces as the algorithm progresses until it converges after five

iterations to the point ςopt = 0.99659 and PT = 3.0072 dB. This is in accordance with the

experimental results obtained in Section 4.2.5 for the same power constraint leading to 1,

the optimum balancing level, as it must be.
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Figure 5.12: MMSE Balancing: Balance Level Candidates vs. Total Average Power in

dB.

We also performed a computer experiment to compare our approach to that presented

in [31], where a duality was proposed to solve several optimization problems considering

a scenario where the users estimate their instantaneous channels and share the information

with the BS through an error-free link. More specifically (see Section V of [31]) the

following robust weighted MSE Min-Max problem was addressed

min
{pk,fk}

K
k=1

max
i

MMSE
BC

i

wi
subject to

K∑

j=1

‖pj‖22 ≤ PT , (5.117)

where wi is the weight for the ith user. The robust precoders and the filters are designed

via an AO process where the direction of the filters is computed exploiting the BC/MAC

duality, and the power allocation is calculated solving an eigensystem [34]. The optimum

solution to (5.117) fulfills
∑K

i=1 ‖pi‖22 = PT and MMSE
BC

k /wk = wopt, ∀k, and it is

reached after a few iterations with an error precision for the min max ratio wopt of 10−4,

as can be seen in Fig. 5.13.

This min max problem can be seen as a balancing problem with wk = 2−ρk . Thus, we



114 Chapter 5 Transmit Power Minimization and QoS Feasibility in MIMO BC

1 2 3 4 5 6 7 8
0.9

1

1.1

1.2

1.3

1.4

1.5

Number of iterations

B
al

an
ci

n
g
 l

ev
el

 

 
Optimum of Alg. 5.3 
Robust precoders

Figure 5.13: Robust Transceiver: Balance Level vs. Number of Iterations.
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represent in Fig. 5.14 the comparison between the solutions employing robust transceivers

and the one proposed in this work. As it can be seen from the figure, the proposed

Algorithm 5.3: Rate.Balancing performs better, that is, ςopt = 0.99659 is closer than

wopt = 1.1442 to 1. However, the algorithm presented in [31] could manage the scenario

with imperfect CSI at both the transmitter and the receivers. In addition, it is more efficient

since the Algorithm 5.3: Rate.Balancing has to solve the power minimization problem for

every balancing candidate.

5.5. Conclusions

In this chapter the minimization of the transmit power subject to QoS constraints under

imperfect CSIT in the MIMO BC is addressed. The solution proposed is the extension

to that developed in the previous chapter for the MISO BC. Simulation results show the

performance of the adapted algorithm.

The optimization problem solved in this chapter is meaningless if the QoS constraints,

given as average rate restrictions, are unfeasible. Since we employ a MMSE-based lower

bound instead of the original average rate targets, a study of the average MMSE region for

the MIMO MAC has been realized. Previous works had considered the MMSE feasibility

region for perfect CSIT and MISO BC. Our study, however, is more general and allows to

tackle the imperfect CSIT scenario. Moreover, for the particular case of Rayleigh channel

realizations, we observed certain behavior that was shown in computer experiments also

presented here.

Since the feasibility bound depends on the precoders employed for the partial CSIT

scenario, we investigated a method to achieve the sum-MSE lower bound. Specifically,

such method consists on employing a steepest descent algorithm to find the optimal

MMSE transmit and receive filters, taking into account that the power can be increased

unlimitedly. Using such algorithmic solution, we studied the impact of the CSI quality in

the aforementioned sum-MSE lower bound. Numerical results were presented to exhibit

the drawback caused by low precision CSIT.

A different problem formulation was also considered in this chapter: the average rate

balancing. Contrary to the power minimization, the balancing problem was shown to

be always feasible since the constraints can be relaxed while keeping some equilibrium

between the user rates. Our proposal uses a bisection search, for which the rate targets

increase and decrease monotonically with the total transmit power. This way, the optimal

average rate targets can be found after few iterations. The proposed algorithm was

compared to similar ones. Although our algorithmic solution is computationally costly, it

outperforms the previous methods.
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Chapter 6

Transmit Power Minimization in

Broadcast Channels: Multiple Streams,

OFDM, and Feedback Design

In this chapter we consider some additional issues to the power minimization in the

Broadcast Channel (BC). Note that the Base Station (BS) has usually more degrees of

freedom than the receivers. Therefore, it is appropriate trying to mitigate the interference

between the users by applying precoding at transmission. In this chapter, the design of

linear precoders is considered in several practical scenarios.

The first scenario considers the minimization of the transmit power in a BC where the

BS is able to allocate several streams for each user. This is an extension to the model

considered in Chapter 5, where the Multiple-Input Multiple-Output (MIMO) BC was

considered with only one stream per user. Such a scenario is interesting if the objective

of the MIMO feature is to increase reliability, since the probability of being affected

by fading in all the independent paths at the same time is low. Compare this situation

with that of multiplexing several streams for every user, hence taking advantage of the

MIMO spatial multiplexing to increase the speed of the communication link. Considering

multiple streams means an important change in the system model, since the dimension

of both the transmit and receive filters have to be adapted accordingly. Therefore, this

extension has a big impact on the problem formulation taking into account that we can

choose different per-stream target rates without changing the per-user target rate. Thus,

we end up with a nested optimization problem where we do not only have to find the

optimal precoders but also the optimal per-stream rate constraints.

The second scenario considers Orthogonal Frequency Division Multiplexing (OFDM)

modulation, a technique widely employed in current communication standards such as

Long-Term Evolution (LTE) or digital television (DVB-T, DVB-H). OFDM is helpful

in high speed communication systems where the frequency bandwidth is large, due to

117
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its ability of transforming wideband frequency-selective fading channels into multiple

flat fading narrowband channels. The combination of OFDM with MIMO allows high

communication rates, e.g. as happened for the Worldwide Interoperability for Microwave

Access (WiMAX) standard, and it implies a practical extension for the BC previously

studied. It also adds more complexity to the system model due to the role of the frequency

dimension. Therefore, we provide a problem formulation suitable for the MIMO-OFDM

BC and propose an algorithm that minimizes the total transmit power subject to per-user

average rate constraints.

The design of the linear transmit filters requires that the BS acquires the Channel State

Information (CSI) of the different receivers. In case of Frequency-Division Duplex (FDD)

systems that knowledge is obtained via a feedback link, which is usually band-limited.

In this scenario, we consider every user estimates their channel response and then, the

information is combined prior to be sent back to the BS as an entry of a codebook. Once

the CSI is received by the BS, it is employed to decide the precoders that will be used,

according to the information provided by all the users.

In this chapter we propose to perform an unique and joint optimization that includes

the design of the transmit filters and the codebook. This joint optimization has been

considered in several previous works. For example, for OFDM underwater acoustic

channels [74], the Lloyd’s algorithm [75] is employed to design the feedback. Additional

examples can be found for the single-user Multiple-Input Single-Output (MISO) [76] and

multiuser MISO [77–81] scenarios.

Different applications of the Lloyd’s algorithm have also been studied. For example,

in [82] the single antenna system model capacity is studied under certain assumptions,

whereas the distortion outage probability in a sensor network with limited feedback is

addressed in [83]. The MIMO BC scenario is considered in [84], where the zero-forcing

precoders are designed together with the channel quantizer.

6.1. Power Minimization in the Multiple Stream MIMO

BC

In this section, we focus on the application of the methods proposed in previous

chapters when the BS allocates several streams for every user. The additional spatial

dimension is possible due to the use of multiple antennas at both the BS and the users,

i.e. MIMO BC. We consider that there is imperfect Channel State Information at the

Transmitter (CSIT) whereas the users perfectly know their corresponding channels [85].

The multiple stream MIMO BC depicted in Fig. 6.1 is an extension of the system

model shown in Fig. 5.1 of Chapter 5. Again, K users, with R antennas each,

receive the information sent from a centralized transmitter with N antennas. The data
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Figure 6.1: Multiple Stream MIMO BC System Model.

symbols are now vectors sk ∈ C
dk comprising the dk data streams sent to for the kth

user, k ∈ {1, . . . , K}. Such data vectors are zero-mean Gaussian with the covariance

E[sks
H
k ] = Idk , sk ∼ NC(0, Idk). Moreover, the signals corresponding to different users

are independent, i.e. E[sks
H
l ] = 0 when l 6= k. Prior to be transmitted, the data vector is

precoded by the matrixPk ∈ CN×dk to produce the signal that propagates over the MIMO

channel Hk ∈ CN×R. The signal received is then filtered with a linear filter Fk ∈ CR×dk

to produce the following estimates of the transmitted data

ŝk = F
H
k H

H
k

∑K

i=1
Pisi + F

H
k ηk, (6.1)

where ηk ∼ NC(0,Cηk
) is the kth user’s Additive White Gaussian Noise (AWGN) which

is independent of the transmitted symbols. For the multiple stream MIMO BC, the rate in

(3.13) is particularized as

Rk = log2 det



IR +HH
k PkP

H
k Hk

(

Cηk
+HH

k

∑

i 6=k

PiP
H
i Hk

)−1


 . (6.2)

Note that the total transmit power for this scenario can be obtained as PT =
∑K

k=1 ||Pk||2F.

Similarly to the scenarios presented in Chapters 4 and 5, we assume that perfect CSI

is available at the receivers. The transmitter, however, only has a partial knowledge of the

CSI modeled by v and the conditional probability density function (pdf)s fHk|v (Hk|v).
No additional assumptions regarding fHk|v(Hk|v) are made. Since the error model is

identical to that of Section 5.1 of Chapter 5, the details will not be repeated here. Hence,

Hk = H̄k + H̃k, (6.3)

where H̄k is the mean conditioned to v, and H̃k is the error due to the imperfect CSIT

(see (5.3) for further information).
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Partial CSI v has a direct impact on the design of the transmit filters {Pk}Kk=1.

Moreover, the expression (6.2) is no longer valid due to the imperfect CSIT, and the

ergodic rate will be used instead as the performance measure of interest (see Section 3.1.1

of Chapter 3). According to (3.16), due to Bayes’ rule, the average rate is conditioned to

the imperfect CSIT leading to

E[Rk| v] = E



log2 det



IR +HH
k PkP

H
k Hk

(

Cηk
+HH

k

∑

i 6=k

PiP
H
i Hk

)−1


 | v



 .

(6.4)

Our goal is to minimize the total transmit power PT while ensuring the kth user’s

average BC information rate is larger than a given value ρk, i.e.

min{Pk}
K
k=1

PT =
K∑

k=1

‖Pk‖2F subject to E [Rk| v] ≥ ρk ∀k, (6.5)

where Pk depends on v. Note that E[Rk| v] ≥ ρk implies that E[Rk] ≥ ρk, i.e., an ergodic

rate of ρk is ensured with precoders adapted to different v.

Solving the optimization problem (6.5) is very difficult due to the expectation in

the constraints. However, we can exploit the relationship between rate and Minimum

Mean Square Error (MMSE) to rewrite the constraints of (6.5) in a more manageable

way that ensures the original average rate requirements are fulfilled. The approximation

successfully employed in Section 5.1.1 of Chapter 5 is not applicable here, as we will

see in the following. Also notice that no restriction on the rate of every stream has been

made. Therefore, there exists freedom to distribute the per-user rate among the streams.

Although we can take advantage of such flexibility, it leads to additional complexity for

the optimization problem.

6.1.1. Problem Formulation

First, we extend the definition of the BC Mean Square Error (MSE) shown in Section

3.2 of Chapter 3 for the case of vector data signal, i.e.

MSEBC
k = E

[
‖sk − ŝk‖22

]
= E

[

tr
(

(sk − ŝk) (sk − ŝk)H
)]

. (6.6)

Elaborating (6.6), we obtain

MSEBC
k = tr

(

Idk − 2ℜ
{
F H

k H
H
k Pk

}
+ F H

k H
H
k

K∑

i=1

PiP
H
i HkFk + F

H
k Cηk

Fk

)

.

(6.7)
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Taking into account the imperfect CSIT, the appropriate MSE measure is the conditioned

average MSE (see Section 3.2).

MSEBC
k = E

[

tr

(

Idk − 2ℜ
{
F H

k H
H
k Pk

}
+ F H

k H
H
k

K∑

i=1

PiP
H
i HkFk + F

H
k Cηk

Fk

)

| v
]

.

(6.8)

This is in accordance with the rate proposed in (6.4).

Note that the optimal receive filters that minimize (6.7) are also the minimizers of

(6.8) since there exists perfect Channel State Information at the Receiver (CSIR). Such

filters are calculated following the same process as in Section 5.1.1 of Chapter 5 for the

single stream MIMO case

FMMSE
k = argminFk

E
[
‖sk − ŝk‖22

∣
∣Hk

]

=

(

HH
k

K∑

i=1

PiP
H
i Hk +Cηk

)−1

HH
k Pk, (6.9)

where the last equality is obtained taking the derivative of the MSEBC
k in (6.7) with respect

to F ∗
k , accordingly to the results presented in Appendix C (see Section C.6), and equating

such derivative to zero.

We next obtain the average MMSE for user k plugging FMMSE
k from (6.9) into the

average MSE expression (6.8) as follows

MMSEBC
k = E



tr



Idk −P H
k Hk

(

HH
k

K∑

i=1

PiP
H
i Hk +Cηk

)−1

HH
k Pk



 | v





= E



tr



Idk + P
H
k Hk

(

HH
k

∑

i 6=k

PiP
H
i Hk +Cηk

)−1

HH
k Pk





−1

| v





(6.10)

= E [tr (Σk) | v] , (6.11)

where (6.10) is obtained exploiting the matrix inversion lemma (see Section C.4 of

Appendix C).

Observe now that, applying the Sylvester’s theorem (see Section C.2 of Appendix C)

to (6.10), the determinant equality leads to

E [Rk| v] = E
[
log2

(
det
(
Σ−1

k

))
| v
]
. (6.12)

Notice that, contrary to the single stream MIMO BC case, where the relationship between

the rate and the MMSE can be reduced to a scalar equality after getting rid of the
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determinant via Sylvester’s theorem (see (5.16)), we will have to use a different method

for the case of multiple stream MIMO approach.

We take advantage in the following of the properties of positive definite matrices (see

Section C.5 of Appendix C). Let us consider the matrix

P H
k Hk

(

HH
k

∑

i 6=k

PiP
H
i Hk +Cηk

)−1

HH
k Pk. (6.13)

Due to the results presented in Section C.5 of Appendix C for the Gram of a matrix,

the product BHAB with A being positive semidefinite, the inverse, and the linearity,

we conclude that the matrix of (6.13) is positive semidefinite. Therefore, Σk and also

E [Σk| v] are positive semidefinite matrices.

Let us introduce the eigenvalue decomposition (see Section C.1 of Appendix C)

E[Σk| v] = UkΛkU
H
k , (6.14)

with the unitary matrixUk and the diagonal matrixΛk = diag(λk,1, . . . , λk,dk) containing

the eigenvalues with λk,i ≥ 0, ∀k, i. The basis Uk allows us to find the spatial

decorrelation precoders

P ′
k = PkUk. (6.15)

Such precoders remove the off-diagonal elements of E[Σk| v] for all k, since employing

P ′
k results in the following diagonal matrix

E







Idk +U
H
k P

H
k Hk

(

HH
k

∑

i 6=k

PiP
H
i Hk +Cηk

)−1

HH
k PkUk





−1

| v



 . (6.16)

Observe that the use of the precoders P ′
k does not change the total transmit power

K∑

k=1

‖P ′
k‖2F =

K∑

k=1

tr
(
PkUkU

H
k P

H
k

)
=

K∑

k=1

tr
(
PkP

H
k

)
, (6.17)

nor the expressions of the average rate of (6.4) and the average MMSE of (6.10).

Henceforth, we consider that the spatial decorrelation precoders P ′
k can be incorporated

without loss of generality.

Recall now the eigenvalue decomposition in (6.14). Thus, the per-user average MMSE

in the BC is

MMSEBC
k = tr (E [Σk|v]) =

dk∑

i=1

λk,i. (6.18)
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Notice that λk,i can be interpreted as the kth user’s ith stream average MMSE, i.e.

MMSEBC
k,i = λk,i, (6.19)

and, as a consequence, the average MMSE for some user is the sum of the average

MMSEs of the streams allocated for such user.

Accordingly, since f(A) = − log(det(A)), with A positive semidefinite, is convex

(see Section F.2 of Appendix F), applying Jensen’s inequality to E[Rk| v] yields

E[Rk| v] ≥ − log2 det (E [Σk| v]) = −
dk∑

i=1

log2(λk,i). (6.20)

Remember that our goal is to minimize the total transmit power while ensuring certain

Quality-of-Service (QoS) for all the users. Let us now define the per-stream target rate

for the user k and the stream i, i.e. ̺k,i. Consequently, to ensure E[RBC
k ] ≥ ρk with

ρk =
∑dk

i=1 ̺k,i, we use

MMSEBC
k,i = λk,i ≤ 2−̺k,i. (6.21)

In other words, splitting the target rate ρk into per-stream target rates ̺k,i enables us

to rewrite (6.5) in terms of average MMSE constraints rather than rate constraints. As

long as there is not restriction over the per-stream average rates, we can choose the

targets ̺k,i in a smart way that allows to achieve lower values for the total transmit

power. Furthermore, note that when this new per-stream constraints are included, the

optimization is more stringent than the original one. Thus, the per-user rate constraints

are guaranteed. However, the decision about the distribution among the streams of the per-

user rates constitutes an additional level of complexity that has to be taken into account

for the minimization problem. For this reason, we propose a nested optimization.

The outer optimization tackles the way of sharing the original average targets between

the streams of a certain user, and reads as

min
{̺k}

K
k=1

PT (̺) subject to 1
T̺k = ρk, and ̺k ≥ 0 ∀k, (6.22)

with ̺ = [̺T
1 , . . . ,̺

T
K ]

T, and ̺k = [̺k,1, . . . , ̺k,dk ]
T. The inner optimization deals with

the minimization of the total transmit power for given per-stream average target rates, and

uses the per-stream average MMSE restrictions from (6.21), i.e.

PT (̺) = min
{Pk,Fk}

K
k=1

K∑

k=1

‖Pk‖2F subject to MMSEBC
k,i ≤ 2−̺k,i ∀k, i. (6.23)

In the ensuing section, we apply the same method of Section 5.1 of Chapter 5 to solve the

minimization problem (6.23). Additionally, the solution of (6.23) becomes the starting

point for the study of the outer problem (6.22).
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6.1.2. Per-Stream MMSE Filters

The advantage of using the spatial decorrelation precoders P ′
k = PkUk is that the

intra-user interference is removed for the average MMSE, as seen in (6.18). Therefore,

each of the streams for every user can be treated as virtual users. Consequently, we

introduce sk,i = e
T
i sk, fk,i = Fkei, and pk,i = Pkei as the data, the receive filter, and the

precoder for the kth user’s ith stream, respectively.

As previously shown in (6.9), it is straightforward to find the optimal MMSE receive

filters, fMMSE
k,i = Fk,MMSEei for given channels and precoders. On the other hand, finding

the optimal BC precoders according to (6.23) turns out to be a more difficult problem (see

Section 5.1.2 of Chapter 5). Nevertheless, we have obtained a solution based on the BC/

Multiple Access Channel (MAC) MSE duality. According to that duality, the optimal BC

precoders pk,i can be found as the optimal receive filters gk,i ∈ CN that minimize the dual

MAC MSE

MSEMAC
k,i = 1− 2ℜ

{
gHk,i E

[
HkC

−H/2
ηk

tk,i| v
]}

+ gHk,i

K∑

l=1

E
[
HlC

−H/2
ηl

TlT
H
l C

−1/2
ηl

HH
l | v

]
gk,i + ‖gk,i‖22 . (6.24)

The MAC precoders for the kth user’s ith stream are denoted as tk,i = Tkei ∈ CR.

We now solve the power minimization problem (6.23) using the method proposed in

Section 5.1.3 of Chapter 5 for the MIMO scenario. To that end, the following matrices

collecting M realizations of the Monte Carlo numerical integration are defined

Θk =
[

H
(1)
k C

−H/2
ηk

, . . . ,H
(M)
k C−H/2

ηk

]

, (6.25)

Φk,i = blockdiag
(

τ
(1)
k,i , . . . , τ

(M)
k,i

)

, (6.26)

where t
(n)
k,i =

√
ξk,iτ

(n)
k,i , with ξk,i =

1
M

∑M
n=1 ‖t

(n)
k,i ‖22. Note that ξk,i can be interpreted as

the power allocated to the kth user’s ith stream. Based on these definitions, the dual MAC

MSE can be approximated as

MSEMAC
k,i = 1− 2

M
ℜ
{

gHk,iΘkΦk,i1
√

ξk,i

}

+ yk,i, (6.27)

with

yk,i =
1

M

K∑

l=1

dl∑

j=1

ξl,j
∥
∥gHk,iΘlΦl,j

∥
∥
2

2
+ ‖gk,i‖22 . (6.28)

The optimal MAC receive filters are the MMSE filters gMMSE
k,i . Additionally, due to

normalization reasons, we introduce the scalar receiver rk,i so that gMMSE
k,i = rk,ig̃k,i.
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The optimal scalar receive filter is denoted as rMMSE
k,i . Therefore

gMMSE
k,i =

(
K∑

l=1

dl∑

j=1

ξl,j
M
ΘlΦl,jΦ

H
l,jΘ

H
l +

1

M

√

ξk,iIN

)−1

ΘkΦk,i1, (6.29)

rMMSE
k,i =

1
M
g̃Hk,iΘkΦk,i1

√
ξk,i

1
M
g̃Hk,i

∑K
l=1

∑dl
j=1 ξl,jΘlΦl,jΦ

H
l,jΘ

H
l g̃k,i + ‖g̃k,i‖22

. (6.30)

Substituting the optimal MMSE scalar filters for given MAC transmit and receive filters,

rMMSE
k,i , into (6.27) gives the following expression for the kth user ith stream scalar MMSE

MMSEMAC
k,i,scalar = 1− ξk,i

M2

∣
∣g̃Hk,iΘkΦk,i1

∣
∣
2
y−1
k,i , (6.31)

where gk,i must be replaced by g̃k,i in the expression for yk,i. For further details involving

the development above described, see the discussion in Section 5.1.3. Note that the

equations of this section are equal to those presented in Section 5.1.3 if we consider

single stream MIMO virtual users by means of the mapping {k, i} 7→ z =
∑k−1

j=1 dj + i.

That is,

g̃z = g̃k,i,

Hz =Hk,

Φz = Φk,i,

ξz = ξk,i,

are the single stream MIMO MMSE parameters for the virtual user z, replacing those for

the multiple stream MIMO MMSE in (6.31).

6.1.3. Optimization of Per-Stream Target Rates

The BC/MAC duality applied in the previous section, together with the new

parameters introduced, enables us to rewrite the inner optimization problem of (6.23)

as

PT (̺) = min
{Φk,i,g̃k,i,ξk,i}K,dk

k,i

K∑

m=1

dm∑

n=1

ξm,n subject to MMSEMAC
k,i,scalar ≤ 2−̺k,i∀k, ∀i,

(6.32)

where ̺k,i is the kth user’s ith stream target rate. For given ̺k,i (collected in ̺), this

optimization problem can be solved similarly to the single stream case based on the

interference function framework and the Alternate Optimization (AO) (see Section 5.1.3).
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An important property of (6.32) is that the constraints are fulfilled with equality in the

optimum. Otherwise, the average MMSE for some users could be increased leading to a

smaller value of the total transmit power. Note that the algorithmic solution proposed in

Section 5.1.4 of Chapter 5 also exhibits this property, i.e., MMSEMAC
k,i,scalar = 2−̺k,i .

In the multi-stream case considered in this section, the additional outer optimization

(6.22) is necessary to optimally distribute the per-user target rate ρk over the data

streams of user k such that ρk =
∑dk

i=1 ̺k,i. In the following, we propose to solve the

problem optimization (6.22) by means of a gradient-projection algorithm. It consists on

minimizing the transmit power following the direction of the gradient. However, the result

of the gradient step has to be projected to the set of feasible values fulfilling the original

per-user restrictions.

First, we describe the update rule of the per-stream target rates ̺k,i according to the

following iteration

̺′k,i = ̺k,i − s
∂PT (̺)

∂̺k,i
, (6.33)

with the step size s > 0. Notice that the explicit relationship between the total transmit

power PT and the per-stream targets rates ̺k,i is not known. Therefore, we exploit the

laws of partial differentiation to compute the gradient in (6.33), as we will show in the

following.

Let us calculate the derivative of MMSEMAC
k,i,scalar in (6.31) with respect to the power

allocation ξm,n, i.e.

∂MMSEMAC
k,i,scalar

∂ξm,n

. (6.34)

In order to do that, we distinguish two cases:

1. For m = k, n = i:

∂MMSEMAC
k,i,scalar

∂ξk,i
= −

1
M2

∣
∣g̃Hk,iΘkΦk,i1

∣
∣
2
(

yk,i − ξk,i
M

∥
∥g̃Hk,iΘkΦk,i

∥
∥
2

2

)

y2k,i
, (6.35)

with yk,i given by (6.28).

2. Otherwise:

∂MMSEMAC
k,i,scalar

∂ξm,n
=

ξk,i
M3

∣
∣g̃Hk,iΘkΦk,i1

∣
∣2
∥
∥g̃Hk,iΘmΦm,n

∥
∥2

2

y2k,i
. (6.36)

Recall that the transmit power PT (̺) =
∑K

k=1

∑dk
i=1 ξk,i depends on the per-stream

targets ̺k,i, ∀k, i. Additionally, taking into account that the equality MMSEMAC
k,i,scalar =
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2−̺k,i holds in the solution of (6.32), the gradient

∂MMSEMAC
k,i,scalar

∂̺l,j
=

K∑

m=1

dm∑

n=1

∂MMSEMAC
k,i,scalar

∂ξm,n

∂ξm,n

∂̺l,j
, (6.37)

is equal to − ln(2)2−̺k,i , when k = l and i = j, and 0 otherwise. Let us now define the

Jacobian matrix Jf (ξ) of the function

f (ξ) =
[
MMSEMAC

1,1,scalar, . . . ,MMSEMAC
1,d1,scalar, . . . ,MMSEMAC

K,dK ,scalar

]T
, (6.38)

as follows

[Jf (ξ)]a,b =
∂MMSEMAC

k,i,scalar

∂ξl,j
, (6.39)

where dk is the number of streams for the user k, a =
∑k−1

m=1 dm+i, and b =
∑l−1

m=1 dm+j

(see Section C.7 of Appendix C for a discussion about Jacobian matrices). Similarly, the

matrix comprising the partial derivatives of the total average power with respect to the

per-stream target rates is defined as

Jξ(̺) =
∂ξ

∂̺T
. (6.40)

By employing the previously defined Jacobian matrices, we can equivalently write the

partial derivatives of (6.37) as a matrix product. Moreover, since the constraints are

fulfilled with equality at the optimum of (6.32), we get

∂MMSEMAC
k,i

∂̺l,j
= [Jf (ξ)Jξ (̺)]a,b = − ln(2) [W ]a,b , (6.41)

withW being the matrix collecting the inverse of the average MMSE targets, i.e.

W = diag (2̺1,1 , . . . , 2̺1,d1 , . . . , 2̺K,dK ) . (6.42)

The Jacobian matrix Jξ(̺) is now obtained by left multiplying times the inverse of Jf (ξ)

in (6.41) as follows

Jξ(̺) = − ln(2)Jf(ξ)
−1W . (6.43)

Hence, we obtained the partial derivatives of the total transmit power with respect to the

per-stream target rates by using the properties of partial differentiation, even though no

explicit relationship has been found. As a consequence, note that Jξ(̺) contains the

partial derivatives necessary for the gradient step in (6.33). Therefore,

∂PT (̺)

∂̺k,i
= − ln(2)1TJf(ξ)

−1We∑k−1
m=1 dm+i, (6.44)
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where 1 and ei are the all ones and the canonical vectors, respectively.

We now prove that the matrix −Jf (ξ) is a Z-matrix, i.e., the diagonal is positive and

the off-diagonal ones are negative. We start defining a diagonal matrix containing the

power allocation D = diag(ξ). Now, for the matrix −Jf (ξ)D, we compare the sum

of the absolute values for the off-diagonal elements with the diagonal element at the row

a =
∑k−1

j=1 dj + i, corresponding to the stream i of user j, i.e.

∑

b6=a

∣
∣
∣[−Jf (ξ)D]a,b

∣
∣
∣

=

ξk,i
M2

∣
∣gHk,iΘkΦk,i1

∣
∣
2 1
M
gHk,i
∑K

l=1

∑dl
j=1

l,j 6=k,i

ξl,jΘlΦl,jΦ
H
l,jΘ

H
l gk,i

y2k,i

<

ξk,i
M2

∣
∣gHk,iΘkΦk,i1

∣
∣
2

(

1
M
gHk,i
∑K

l=1

∑dl
j=1

l,j 6=k,i

ξl,jΘlΦl,jΦ
H
l,jΘ

H
l gk,i + ‖gk,i‖22

)

y2k,i

= [−Jf (ξ)D]a,a . (6.45)

Since the inequality holds for all a, Jf (ξ)D is strictly diagonally dominant and −Jf (ξ)

is a non-singular M-matrix with positive inverse [65]. This result meets the intuition that

a lower target rate ̺l,j also leads to lower transmit power PT (̺).

It is important to note that by means of the target updating (6.33), i.e., ̺′k,i =

̺k,i − s∂PT (̺)
∂̺k,i

, the per-stream targets are reduced. Since no additional restrictions are

imposed, the reduction is individually performed for each of the streams. This way, the

updated per-stream target rates do not fulfill the constraints
∑dk

i=1 ̺
′
k,i = ρk anymore.

Therefore, a projection to the set of the kth user’s feasible target rates can be performed to

force the updated targets satisfying the given per-user restrictions. We propose to perform

such a projection by minimizing the following Euclidean distance

min
̺k

dk∑

i=1

(̺k,i − ̺′k,i)
2 subject to

dk∑

i=1

̺k,i = ρk, ̺k,i ≥ 0, ∀i. (6.46)

This minimization problem can be solved using the Lagrangian function

L (̺k,λk, µk) =

dk∑

i=1

(
̺k,i − ̺′k,i

)2 − λk,i̺k,i + µk

(
dk∑

i=1

̺k,i − ρk

)

, (6.47)

with the Lagrange multipliers λk,i and µk. Note that (6.47) includes the constraints.

Hence, the minimization can be perform by computing the derivative with respect to the

targets, i.e.
∂L (̺k,λk, µ)

∂̺k,i
= 2

(
̺k,i − ̺′k,i

)
− λk,i + µk. (6.48)
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Observe that µk is common to all the partial derivatives. It is the factor that takes into

account the per-user rate constraints. The Karush-Kuhn-Tucker (KKT) conditions are

then as follows (see Appendix D)

2
(
̺k,i − ̺′k,i

)
− λk,i + µk = 0, (6.49)

λk,i ≥ 0, (6.50)

µk ≥ 0, (6.51)

dk∑

i=1

̺k,i = ρk. (6.52)

The KKT conditions are sufficient for the optimum of (6.46) as shown in Section F.3 of

Appendix F. Accordingly, we find the projection

̺k,i = max
{
̺′k,i − µk, 0

}
,

µk =
1

dk

(
dk∑

i=1

̺′k,i − ρk

)

. (6.53)

Note that after the projection (6.53) only some of the per-stream targets of the user k, but

never all of them, could be switched off (i.e. ̺k,i = 0). This way, we obtain the closest

per-stream targets to the ones resulting from the gradient step fulfilling the per-user rate

restrictions.

6.1.4. Algorithmic Solution

The algorithm referred to as Algorithm 6.1: PM.Pr.Gradient implements the method

proposed in this section to solve the power minimization in the multiple stream MIMO

BC. In the line 1 both the precoders and the per-stream target rates are randomly

initialized. Furthermore, the corresponding spatial decorrelation precoders are computed.

Note that considering such spatial decorrelation precoders the transmit power, the average

rates, and the MMSEs remain unchanged. Hence, the power minimization (6.23) can be

solved by exploiting the Algorithm 5.1: PM.MIMO since every stream is treated as a

virtual user (see the line 2).

The algorithm performs an steepest descent method, where we move towards the

direction of negative gradients. That way, every iteration reduces the total transmit power

or remains unchanged by employing two nested loops. In the outer loop, the gradient is

computed in the line 5. Also, the step size is initialized prior to entering into the inner

loop. The line 7 updates the per-stream target rates ̺k,i according to (6.33). Observe that

the given per-user constraints are no longer fulfilled after that updating. As a consequence,
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Algorithm 6.1: PM.Pr.Gradient. Power Minimization via Projected-Gradient

1: ℓ← 0, random initialization: Pk and ̺
(0)
k,i , Pk ← P ′

k, ∀k
2: find the optimum t

(0)
k,i , g

(0)
k,i , and ξ

(0)
k,i ∀k, i. Solve (6.23) via Algorithm 5.1

3: repeat

4: ℓ← ℓ+ 1
5:

∂PT (̺(ℓ))

∂̺
(ℓ)
k,i

← compute the gradient of (6.44), bexit ← 0, s← s0

6: repeat

7: ̺′k,i ← ̺
(ℓ−1)
k,i − s∂PT (̺(ℓ))

∂̺
(ℓ)
k,i

, ∀k, i. Perform the gradient step (6.33)

8: ̺
(ℓ)
k,i ← max

{

̺′k,i − µ
(ℓ)
k , 0

}

∀k, i. Projection to the feasible targets set

(6.53)

9: find the optimum t
(ℓ)
k,i, g

(ℓ)
k,i , and ξ

(ℓ)
k,i , ∀k, i. Solve (6.23) via Algorithm 5.1

10: if P
(ℓ−1)
T − P

(ℓ)
T > 0 then

11: bexit ← 1
12: else

13: s← s
2
. Step size update

14: end if

15: until bexit = 1
16: until

∑K
k=1

∑dk
i=1 ξ

(ℓ−1)
k,i −∑K

k=1

∑dk
i=1 ξ

(ℓ)
k,i ≤ δ
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the projection to the set of feasible solutions is implemented in the line 8 (see the proposed

solution for (6.46)).

Next, the power minimization of (6.23) is updated (see the line 9). Then, if the BC

total power is smaller than that achieved in the previous iteration, the per-stream target

rates and the corresponding transmit and receive filters are updated. If not, the step size s

is reduced in the line 13 and the inner loop is repeated until more appropriate per-stream

targets are found. If the initial QoS constraints are feasible (see Section 5.2 of Chapter

5), the convergence to a local minimum is guaranteed since in every iteration the power

decreases or remains unchanged. Consider the boundary (5.59) and the interpretation of

every stream as a virtual user. Then, if the initial constraints are feasible any update of

the per-stream targets satisfying the per-user targets will also be feasible. Finally, we set

the threshold δ (line 16) to check whether we have reached convergence or not. With the

resulting filters for the virtual users in the MAC t
(l)
k,i, g

(l)
k,i, and ξ

(l)
k,i, ∀k, i, the reconstruction

of the BC transmit and receive filters Pk, Fk, ∀k, is done via the BC/MAC duality.

6.1.5. Simulation Results

In this section we have carried out a computer experiment to illustrate the performance

of Algorithm 6.1: PM.Pr.Gradient. We have considered a multiple stream MIMO BC

with K = 2 users, R = 8 antennas per user, and N = 8 transmit antennas. The

number of streams allocated per user is d1 = d2 = 4. The AWGN is zero mean with

Cη = IR, and the per-user target rates are set to ρ1 = 14 and ρ2 = 11 bits per channel

use. The initial step size is s0 = 1 and the stop threshold is fixed to δ = 10−4. The

partial CSIT v contains information regarding the channel first and second order moments

according to [E[Hk|v]]1:N,r = uk,r, for each r ∈ {1, . . . , R} with uk,r,n = ej(n−1)ϕk and

ϕk ∼ U(0, 2π), and CHk|v = RIN , ∀k, respectively. That is, a Vandermonde matrix for

each of the users. We consider M = 1000 channel realizations generated according to the

channel statistics above mentioned.

Figure 6.4 depicts the initial per-stream target rates for the execution example

of Algorithm 6.1: PM.Pr.Gradient. Note that the initial values satisfy the per-user

constraints. The evolution of such targets can be observed in Fig. 6.2, which shows

the obtained results after executing the algorithm for the previous scenario. Observe that

at every iteration the sum of all the per-stream targets for user k is kept constant and equal

to ρk. The total power needed to achieve those targets is shown in Fig. 6.3. In such a

figure, it can be seen how the power is gradually reduced by modifying the targets using

the projected-gradient method until reaching the convergence at a local minimum. The

target rates after 28 iterations are depicted in Fig. 6.5.

Although the projected-gradient convergence is slow, notice that it is reached for both

the power and the per-streams targets.
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Figure 6.2: Per Stream Rate Targets vs. Number of Iterations.
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Figure 6.4: Initial Per Stream Average Rate Targets.
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Figure 6.6: Per-Subcarrier Discrete-Time Equivalent Model of a MIMO-OFDM BC.

6.2. Power Minimization in the MIMO-OFDM BC

The optimization of the MIMO-OFDM BC according to some performance metric

has been previously considered in the literature. For example, weighted sum-rate

maximization algorithms have been proposed in [86, 87]. On the other hand, optimal

precoders and receivers minimizing the sum-MSE have also been studied in [88, 89].

The power minimization with QoS constraints has been also considered in [86, 90, 91].

However, the case of imperfect CSIT has never been considered before in these works.

The imperfect CSI assumption is considered in some works on MIMO-OFDM. The

design of linear precoders for single-user MIMO-OFDM assuming a certain channel

estimation error model was studied in [92]. Also a different error model is used in [93],

where data are transmitted only to the best user for each subcarrier.

In this section, we study the power minimization of the MIMO-OFDM BC. To do

that, the methods proposed in Chapter 5 for the MIMO BC are adapted to such a scenario.

We observe that the algorithmic solution obtained in Section 6.1 is appropriate also for

OFDM-MIMO when certain particularities are taken into account [94].

In Section 2.20 of Chapter 2 we described the system model when the OFDM

modulation is applied. As we have discussed, the Inverse Discrete Fourier Transform

(IDFT) and the Discrete Fourier Transform (DFT) are performed at the transmitter and

the receiver to modulate and demodulate the OFDM symbol, respectively. Moreover, a

cyclic prefix is added to remove the Inter-Symbol Interference (ISI). Due to these facts,

the equivalent channel matrix in the MIMO-OFDM can be obtained as a block diagonal

matrix (cf. Section 2.3.2 of Chapter 2).

Accordingly, Fig. 6.6 plots the discrete-time equivalent model corresponding to the

lth subcarrier of a MIMO-OFDM BC. We assume that a centralized transmitter sends the

data signal sk,l to the user k ∈ {1, . . . , K} over the subcarrier l ∈ {1, . . . , L}, where

L is the number of subcarriers. Data signals corresponding to different users and/or

subcarriers are mutually independent and zero-mean Gaussian normalized to unit power
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(i.e. E[|sk,l|2] = 1). We also assume that the transmitter is equipped with N antennas,

while all the receivers are equipped with the same number R of receive antennas. Hence,

each data signal sk,l is precoded with pk,l ∈ C
N and propagates over the MIMO channel

Hk,l ∈ CN×R. The received signal is perturbed by the AWGN ηk,l ∼ NC(0,Cηk,l
) and

filtered with the linear receiver fk,l ∈ C
R.

Along this section we will assume perfect CSIR and imperfect CSIT modeled by v.

Additionally, the conditional pdfs fHk,l|v(Hk,l|v) associated to each v are known at the

transmitter. That is, the assumption of the statistical error model considered in this work,

i.e.

Hk,l = H̄k,l + H̃k,l, (6.54)

with H̄k,l = E[Hk,l| v] and H̃k,l being the imperfect CSI error, with H̃k,l ∼
NC(0,CH̃k,l

). Moreover, we assume that the cyclic prefix of the OFDM modulation

is large enough to avoid ISI.

Let us now collect the L symbols transmitted during one OFDM symbol to the user k

into sk = [sk,1, . . . , sk,N ]
T. We next define the following matrices to represent the MIMO-

OFDM precoder, channel, receive filter, and channel noise, respectively, corresponding to

the user k

Pk = blockdiag (pk,1, . . . ,pk,L) ,

Hk = blockdiag (Hk,1, . . . ,Hk,L) ,

Fk = blockdiag (fk,1, . . . , fk,L) ,

ηk = blockdiag (ηk,1, . . . ,ηk,L) . (6.55)

Accordingly, the output of the kth user receive filter (i.e. the kth user estimated symbols)

is as follows

ŝk = F
H
k H

H
k

K∑

i=1

Pisi + F
H
k ηk. (6.56)

Note that the former expression matches that obtained for the multiple stream MIMO

scenario (6.1). However, for the OFDM system model all the matrices are block diagonal.

In this section, we address the joint optimization of the linear precoders {Pk}Kk=1 and

equalizers {Fk}Kk=1 to minimize the sum transmit power
∑K

i=1 ‖Pi‖2F ensuring certain

QoS restrictions for all the users. Such constraints are given as average rates and we can

equivalently focus on the conditional average rates instead, as discussed in Section 6.1

(see also (3.16) of Chapter 3)

E[Rk| v] = E



log2 det



IL + P H
k Hk

(

Cηk
+HH

k

∑

i 6=k

PiP
H
i Hk

)−1


HH
k Pk| v



 .

(6.57)
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Observe that the matrix inside (6.57), denoted as Σ−1
k in the following, is diagonal.

Therefore, the k-th user rate can be expressed as the sum of the per-subcarrier rates

E[Rk| v] =
L∑

l=1

E[Rk,l| v] =
L∑

l=1

E
[

log2 det
([
Σ−1

k

]

l,l

)

| v
]

. (6.58)

Hence, the per-user rate constraints can be satisfied by imposing a set of more stringent

per-subcarrier rate constraints ̺k = [̺k,1, . . . , ̺k,L]
T such that

∑L
l=1 ̺k,l = ρk. Note that

the determinant of the diagonal matrix turns into L− 1 scalar products.

Now, we avoid the complexity of the optimization with average rate constraints

following similar steps to that from (6.1.1). Substituting FMMSE
k into the average MSE

expression, and applying the matrix inversion lemma (see Section C.4 of Appendix C),

we get

MMSE
BC

k = E



tr



IL + P H
k Hk

(

Cηk
+HH

k

∑

i 6=k

PiP
H
i Hk

)−1

HH
k Pk





−1

| v



 ,

(6.59)

which is easily related to the average rate using the matricesΣk. Notice that the previous

MMSE is computed as the trace of a diagonal matrix. Hence, the MMSE of the user k is

computed as the sum of the MMSEs for each subcarrier, that is

MMSE
BC

k = E [tr (Σk) | v] = E

[
L∑

l=1

[Σ]l,l | v
]

. (6.60)

Recall that in the multiple stream MIMO BC we force the matrix E[Σk| v] to be

diagonal by means of spatial decorrelation precoders (cf. Section 6.1.1). Nevertheless, for

the MIMO-OFDM BC the matricesΣk are diagonal for all the users due to the properties

of the OFDM modulation. Accordingly, we arrive at identical problem formulations using

the per-subcarrier MMSE based constraints

min
{Pk ,Fk}

K
k=1

K∑

i=1

‖Pi‖2F subject to MMSE
BC

k,l ≤ 2−̺k,l, ∀k, l. (6.61)

The former problem is rather difficult since the per-subcarrier targets allowing to get lower

values of the total transmit power are not known beforehand. Following similar steps to

those proposed in Section 6.1.3, (6.61) is split up into a nested optimization problem.

On the one hand, the per-subcarrier targets allowing to minimize the total transmit power

have to be found as

min
{̺k}

K
k=1

PT (̺) subject to 1
T̺k = ρk, and ̺k ≥ 0, ∀k, (6.62)
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with ̺ = [̺T
1 , . . . ,̺

T
K ]

T, and ̺k = [̺k,1, . . . , ̺k,L]
T. On the other hand, we address the

minimization of the total transmit power for given per-subcarrier average target rates

PT (̺) = min
{Pk ,Fk}

K
k=1

K∑

k=1

‖Pk‖2F subject to MMSEBC
k,l ≤ 2−̺k,l, ∀k, l. (6.63)

The Algorithm 6.1: PM.Pr.Gradient proposed in Section 6.1.4 for the multiple stream

MIMO is also suitable for the MIMO-OFDM BC. We should remark, however, some

differences with respect to the derivative obtained in (6.34). Remember that we have

distinguished two cases for the multiple stream MIMO system model, i.e. (m = k, n = i)

and (m 6= k orn 6= i), corresponding to the expressions (6.35) and (6.36), respectively.

For the MIMO-OFDM scenario, the derivative (6.35) holds for (m = k, n = i).

Nevertheless, we split the case (m 6= k orn 6= i) into (m 6= k, n = i), where (6.36)

applies, and n 6= i, for every value of m and k, which results in zero due to the

orthogonality between the different subcarriers.

Having in mind the previous consideration for the derivative, the per-subcarrier target

rates are treated as the per-stream target rates in the Algorithm 6.1: PM.Pr.Gradient. In the

following section we will evaluate the performance of such an algorithm for the scenario

considered in this section.

6.2.1. Simulation Results

In this section we present the results of simulation experiments carried out to evaluate

the performance of the proposed power minimization algorithm. Simulations consider

the Intelligent Multi-Element Transmit and Receive Antennas (I-METRA) case D channel

model for the point-to-point links in the BC [95]. Assuming proper cyclic insertion [96],

the I-METRA MIMO-OFDM channel model is given by

Hl =

T∑

t=1

R1/2H(t)T 1/2 exp

(−j2πlt
L

)

, l ∈ {1, . . . , L} , (6.64)

where H(t), t ∈ {1, . . . , T} is a sequence of spatially uncorrelated time-domain N × R

MIMO channel matrices, and T and R represent the transmit and receive spatial-

correlation matrices, respectively. The I-METRA model assumes Rayleigh fading, i.e.

the entries toH(t) are complex valued zero-mean circularly-symmetric Gaussian random

variables. In I-METRA case D, the power delay profile is that of the International

Telecommunication Union (ITU) Pedestrian B channel model, whereas the matrices T and

R for N = R = 4 are specified (see [95] for further details). Finally, the noise covariance

matrix is Cηk,l
= I, ∀k, l. We have considered that K = 2 independent MIMO-OFDM

channels were generated using the above described channel modelHk,l, ∀k, l.
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The CSI available at the transmitter is obtained by estimating the MIMO-OFDM

channel responses,Hk,l, i.e.

Ĥ
(m)
k,l =Hk,l + H̃

(m)
k,l , (6.65)

where H̃
(m)
k,l is the channel estimation error and Ĥ

(m)
k,l is the channel estimate for the

realization m. We assume that H̃
(m)
k,l ∼ NC(0, 0.1I) and m = 1, . . . ,M . The gradient

initial step is set to s0 = 1 and the threshold δ is fixed to 10−4.

Figures 6.7 and 6.8 depict the evolution of the algorithm for a given BC channel

realizationHk,l, with M = 500, K = 2 users, and L = 4 subcarriers. The per-user target

rates were set to ρ1 = 5 × L, and ρ2 = 3 × L. In particular, Fig. 6.8 shows how the

total sum power diminishes with the number of iterations. Moreover, the evolution of the

per-subcarrier target rates with the number of iterations is displayed in Fig. 6.7. Observe

that both the per-subcarrier and the total transmit power converge to a locally optimum

value. Note also that the sum of all the per-subcarrier target rates gives the per-user target

rates ρ1 and ρ2 at all the iterations.

Figure 6.9 represents the per-subcarrier transmit power after convergence by averaging

over 100 channel realizations of Hk,l and M = 100 estimates for each realization.

Average transmit power per-subcarrier, PT/L, is logarithmically expressed in dB for

N = 8, 16, 32, and 64 subcarriers. The results presented in Fig. 6.9 are obtained

considering the per-user target rates ρ1 = 5 × L, and ρ2 = 3 × L bits per channel use.

Note that the per-user target rates increase proportionally with the number of subcarriers

in order to keep constant the system spectral efficiency.

It is apparent from Fig. 6.9 that the proposed power minimization algorithm produces

similar results irrespective of the number of subcarriers. Since including new subcarriers

does not increase the interference experienced by the other subcarriers, this indicates that

the algorithm splits the rates among the subcarriers in a smart way independently of the

problem size.

6.3. Feedback and Filter Design in the MISO BC

So far, we have considered the minimization of the total transmit power subject to

average rate constraints. Thanks to the Bayes’ rule, we have been able to show that we

can equivalently focus on the average rates conditioned to the partial CSIT. In this section

we address the challenge of designing such an imperfect CSIT. Our proposal is to employ

the Lloyd’s algorithm to jointly design the filters and the feedback [97].

In this section, we consider a MISO BC where the CSI of the users is jointly quantized

into L = 2b regions. Here, b denotes the overall number of bits available to represent

the CSI and L the number of quantizer levels. The CSI quantizer is defined by the
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Figure 6.7: Execution Example of Algorithm 6.1 in a MIMO-OFDM Scenario: Per-

Subcarrier Target Rate vs. Number of Iterations.
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Figure 6.8: Execution Example of Algorithm 6.1 in a MIMO-OFDM Scenario: Total

Per-Subcarrier Transmit Power vs. Number of Iterations.
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quantizer regions and the corresponding representatives, i.e., the precoders in our case.

The addressed problem is the joint optimization of the linear precoders and the quantizer

regions. The optimization criterion is the minimization of the transmit power under rate

constraints.

Consequently, we develop a Lloyd’s algorithm [75] to find both optimal quantizer

and codebook by means of the methods proposed in Section 4.2 of Chapter 4. That is,

the Algorithm 4.3: PM.MISO.ICSI.2 based on the duality between MAC and BC with

respect to the average MSE, and the properties of standard interference functions.

Recall the MISO BC system model presented in Section 4.2, where the BS sends a

Gaussian data signal sk ∼ NC(0, 1), with k ∈ {1, . . . , K}, to the K single-antenna users.

Each of the mutually independent data signals sk, i.e. E[sksj ] = 0 for k 6= j, is linearly

precoded by pk ∈ C
N . Then, it propagates over the vector channel hk ∈ C

N , and is

perturbed by the AWGN ηk ∼ NC(0, σ
2
ηk
) which is independent of sk. Filtering with the

scalar receive filter fk leads to the data signal estimate

ŝk = fkh
H
k

K∑

i=1

pisi + fkηk. (6.66)

Recall that perfect CSIR is assumed but the CSIT is only partial. In particular, we assume

that the receivers cooperate to decide what information is fed back to the transmitter. That

way, the CSIT is represented by certain quantizer regionRi.

With the matrixH collecting the channel vectors for all the users, i.e.

H = [h1, . . . ,hK ] , (6.67)

the quantizer can be written as

Q(H) =

L∑

i=1

Pi Si(H), (6.68)

where L = 2b is the number of quantizer regions,Ri, i ∈ {1, . . . , L}, and b is the number

of bits fed back to the transmitter. Likewise, we define the total precoder

Pi = [pi,1, . . . ,pi,K ] , (6.69)

as the ith codebook entry which contains the precoders for all the users. Additionally, let

us introduce the set of selection functions Si(H), with i ∈ {1, . . . , L}, defined as follows

Si(H) =

{

1 ifH ∈ Ri,

0 otherwise.
(6.70)
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Note that (6.68) implies that the channels h1, . . . ,hK are jointly quantized because no

structural properties forRi are assumed.

Let us introduce the distortion measurement d. Such a metric indicates the quality

of the quantizer and the codebook, and it is defined as the mean of the average power

required to fulfill the rate constraints for each quantizer regionRi, i.e.

d =

L∑

i=1

PT (Ri) pi, (6.71)

where i is the index of the region where the channel H lies with a probability pi =

Pr{H ∈ Ri} = E[Si(H)], and

PT (Ri) =

K∑

k=1

E
[
‖pi,ksk‖22

]
= ‖Pi‖2F. (6.72)

Note that Pi is the codebook entry corresponding to the channel realizations belonging

to the ith region, i.e. H ∈ Ri (cf. (6.68)), that is, the set of precoders to be employed

when the CSIT is i. In the following, the problem of jointly designing the L regions,

Bits Region Codebook

00 R1 P1

01 R2 P2

10 R3 P3

11 R4 P4

Table 6.2: Example of Partition Cells and Codebook for b = 2 bits.

Ri, ∀i ∈ {1, . . . , L}, and the corresponding precoders Pi for each region is addressed.

To this end, the Lloyd’s algorithm [75] is used to alternatively optimize the partition

cells and the corresponding centroids using the distance measurement induced by the

distortion metric (e.g., [98]). Every iteration of the AO can be split up into two steps, viz.,

the computation of Pi for every region Ri (centroid condition) and the update of all the

regions Ri (nearest neighbor condition). These two steps are repeated until convergence

is reached when that distance measurement falls below a preset threshold.

6.3.1. Centroid Condition

The centroid condition consists on finding the representatives of each region. In our

particular case, such representatives are not elements of the region but a set of precoders

that are suitable for all of them. Therefore, the entries of the codebook are the above

mentioned linear precoders.
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For the precoder design, we consider the criterion assumed throughout this work, that

is, for given partition cells, minimizing the total transmit power, while ensuring minimum

average rates for all the users ρk, ∀k. The ergodic rates come from the partial CSIT i, the

index of the region which is fed back from the users. That is

E[Rk|H ∈ Ri] = E



log2



1 +
∣
∣hH

k pi,k
∣
∣
2

(
∑

j 6=k

∣
∣hH

k pi,j
∣
∣
2
+ σ2

ηk

)−1


 |H ∈ Ri



 .

(6.73)

Observe that we can indistinctly use the conditioned expectation due to the Bayes’ rule,

as shown in Section 3.1.1 of Chapter 3. Moreover, (6.73) is obtained from (3.13) when

we consider the MISO system model previously presented. Therefore, the optimization

problem for the centroid condition is given as

Pi = argminP ‖P ‖2F subject to E [Rk|H ∈ Ri] ≥ ρk, ∀k. (6.74)

However, the optimization of the average rates is difficult. Hence, thanks to the concavity

of the logarithm function in (6.73), and by using the Jensen’s inequality, we find an

approximation to (6.74). Let us first introduce the average MMSE, i.e., the result of

plugging the optimal receive filters, fMMSE
k , into the average MSE expression. Recall that

we consider perfect CSIR. Hence, the average MMSE reads as

MMSE
BC

k = E



1− pHi,khk

(

hH
k

K∑

j=1

pi,jp
H
i,jhk + σ2

ηk

)−1

hH
k pi,k|H ∈ Ri



 . (6.75)

Further details regarding the MSE and the optimal filters fMMSE
k can be found in Section

4.2.1 of Chapter 4.

Instead of the average rate constraints of (6.74), we now propose to use conservative

average MMSE based restrictions (see Section 4.2.1). In other words, when ensuring an

average MMSE, a minimum average rate is guaranteed, i.e. E[Rk|H ∈ Ri] ≥ ρk =

− log2

(

MMSE
BC

k

)

follows from MMSEBC
k ≤ 2−ρk . With these conservative bounds,

we minimize the total transmit power under QoS constraints expressed as the maximum

average MMSEs. Therefore, the problem formulation of (6.74) is rewritten as follows

Pi = argminP ‖P ‖2F subject to min
{gk,fk}

K
k=1

MMSEBC
k ≤ 2−ρk , ∀k. (6.76)

Note that the previous problem is similar to that of Section 4.2 of Chapter 4, (4.44).

Then, it is possible to solve the optimization (6.76) with the methods already explained in

Section 4.2. In particular, we propose to use again the algorithm referred to as Algorithm

4.3: PM.MISO.ICSI.2.
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Although the details of the solution to (6.76) shall not be repeated here, we want

to highlight some considerations from Section 4.2.3. Notice that we have to calculate

the expectation in (6.75). Therefore, we propose to perform Monte Carlo numerical

integration to approximate such expectation as in Section 4.2.3. This approximation is

suitable when the channel ergodicity holds and the number of realizations M is large

enough. To generate the channel realizations, the conditional pdfs fhk|H∈Ri
(hk|H ∈ Ri)

available at the transmitter are used for all the regions Ri. Accordingly, every possible

channel stateH is contained in one of the quantizer regions

H ∈
L⋃

i=1

Ri, ∀H , (6.77)

or equivalently
L∑

i=1

pi =

L∑

i=1

Pr {H ∈ Ri} = 1. (6.78)

This assumption allows to numerically compute the expectations of (6.75). Additionally,

it is important to establish the nearest neighbor condition, as will made in the following

section.

6.3.2. Nearest Neighbor Condition

After considering the design of the codebook entries Pi, we now focus on the update

of the quantizer regions Ri (see (6.68)). For given precoders Pi, the nearest neighbor

condition reallocates the M Monte Carlo channel realizations to the best fitting region.

That is to say, the precoder Pi is selected to minimize the maximum ratio between the

instantaneous and the target MMSE for all the users. Hence, the joint quantization of

H(m) = [h
(m)
1 , . . . ,h

(m)
K ] reads as

inearest-neighbor(H
(m)) = min

{i}L1

max
{k}K1

2ρkMMSEBC
k

(
Pi,H

(m)
)
, (6.79)

where MMSEBC
k (Pi,H

(m)) is the instantaneous MMSE for the channel realizationH(m)

using the precoders collected in Pi, i.e.

MMSEBC
k (Pi,H

(m)) = 1− pHi,kh(m)
k

(

h
(m),H
k

K∑

j=1

pi,jp
H
i,jh

(m)
k + σ2

ηk

)−1

h
(m),H
k pi,k.

(6.80)

Based on (6.79), each Monte Carlo channel realization is assigned to its new region

Rinearest-neighbor
. This way, the second step of the iteration of the Lloyd’s algorithm is

established.
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6.3.3. Algorithmic Solution

Algorithm 6.3: PM.Lloyds. Power Minimization: Lloyd’s Algorithm

1: ℓ← 0, initialize: d(0) =∞,Ri, ∀i
2: repeat

3: ℓ← ℓ+ 1
4: for l = 1 to L do

5: P
(ℓ)
l ← find optimum precoders with Algorithm 4.3 (See Section 6.3.1)

6: end for

7: for m = 1 to M do

8: find inearest-neighbor(H
(m)) via (6.79) using P

(ℓ)
l , ∀l (See Section 6.3.2)

9: moveH(m) to regionRinearest-neighbor

10: end for

11: d(ℓ) ← compute distortion with (6.71)

12: until |d(ℓ) − d(ℓ−1)| ≤ δ

The algorithm referred to as Algorithm 6.3: PM.Lloyds summarizes the discussion in

previous sections. In the proposed Lloyd’s algorithm, the line 1 initializes the distortion

measurement and the regions. That is, the channel realizations are distributed between

the regions following some criterion, e.g. an uniform distribution.

On the one hand, the lines 4-6 implement the centroid condition (see Section 6.3.1)

using the Algorithm 4.3: PM.MISO.ICSI.2. On the other hand, the lines 8-11 perform

the nearest neighbor condition (see Section 6.3.2), where M denotes the total number of

Monte Carlo channel realizations. The performance of the quantizer and the codebook

is evaluated based on the distortion measurement (6.71), i.e., the average transmit power

(see the line 11). Note that the considered QoS problem of (6.76) only has a solution if

the QoS constraints are feasible which can be tested with the method presented in Section

5.2 of Chapter 5. To check the algorithm convergence, a difference measurement based

on the distortion of consecutive iterations is compared with a threshold, δ, in the line 12.

6.3.4. Simulation Results

We carried out some computer simulations to evaluate Algorithm 6.3: PM.Lloyds.

We have considered a MISO BC with K = 3 single antenna users and N = 3 transmit

antennas. The target rates are set to ρ1 = 0.62, ρ2 = 0.42, and ρ3 = 0.52 bits per channel

use, respectively. The noise is additive white and Gaussian, with σ2
ηk

= 1, ∀k, and the stop

threshold is set to δ = 10−3. We generated 2000 realizations of a Rayleigh fading channel

with zero mean and covariance matrix Chk
= IN , ∀k, i.e. h

(m)
k ∼ NC(0,Chk

) for
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m = {1, . . . ,M}. For the initialization ofRi, we have distributed the channel realizations

uniformly among the different regions.

Figure 6.10 shows an example of the evolution of the distortion measurement (6.71)

throughout the execution of Algorithm 6.3: PM.Lloyds for the proposed scenario.

Observe that the distortion quickly decreases for the first iterations, whereas the

improvement is marginal in the latter ones. This is in accordance to the initialization

performed where any criterion for the assignment of the channels to a certain region is

applied.

Figure 6.11 depicts a comparative of the total average power after convergence. We

consider scenarios without feedback (0 bits), and scenarios including quantized feedback

of b = 1, 2, 3, and 4 bits. Recall that, for all cases, the QoS constraints given by

the average target rates ρk are fulfilled . As it can be appreciated from the figure, the

quantized feedback dramatically reduces the necessary total average power. Additionally,

the amount of power employed decreases with higher feedback bits, as expected.

6.4. Conclusions

In this chapter the algorithmic solution presented in prior chapters was applied to sole

some additional issues to the power minimization in the BCs. Some difficulties arose

from the more sophisticated system models, but were circumvented allowing to adapt the

previously proposed methods to the new scenarios.

We first considered the total transmit power minimization in the MIMO BC with

multiple streams to be allocated for each user. QoS constraints expressed as per-

user average rates, due to the imperfect CSIT, have to be fulfilled. With spatial

decorrelation precoders the matrices included in the average rate and MMSE expressions

were diagonalized. Taking advantage of this fact, and thanks to the Jensen’s inequality,

it was possible to split up the per-user average target rates into more stringent per-stream

average MMSE constraints. That way, we defined a nested optimization problem. On

the one hand, the inner problem was solved via the algorithmic solution proposed in the

previous chapter, considering each of the streams as virtual single stream MIMO users.

On the other hand, the per-stream MMSE targets minimizing the total transmit power were

studied. Our proposal used a projected-gradient algorithm with two basic steps. The first

one consisted on updating the per-stream average MMSE targets in the gradient direction.

The second one, denoted as projection, found the per-stream targets closest to the updated

ones satisfying the original per-user rate constraints minimizing the Euclidean distance.

The convergence to a local minimum was guaranteed when the initial per-user constraints

were feasible. Some simulation experiments carried out to exhibit the good performance

of the algorithmic solution were also presented in this chapter.
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The OFDM MIMO BC has been also considered in this chapter. Our goal was to

minimize the total transmit power subject to per-user average rate constraints. Again,

imperfect CSIT was considered in the system model. Also, the assumption of proper

length cyclic prefix was made. Therefore, thanks to the properties of the OFDM

modulation, we have been able to show that the equivalent channel model results in a

block diagonal matrix. Correspondingly, the signal model was rewritten so that both

the transmit and the receive filters, and also the noise, were diagonal. Such a system

model leaded us to diagonal matrices for the expressions of MMSE and rate performance

metrics, allowing us to employ the same solution as for the multiple stream MIMO

scenario. In the computer experiments we have considered realistic channel models, in

particular, the I-METRA case D with the ITU Pedestrian B power delay profile.

The design of the information fed back from the users to the BS in the MISO BC has

been also considered. In particular, we have proposed to jointly optimize the precoders

and the available partial CSIT. That way, the possible states of the channel are quantized

into a scalar depending on a partition cell. Such information is used in the BS as the

entries of the codebook that contain the optimal precoders for every quantization region.

To perform the joint optimization we have used the Lloyd’s algorithm. Such algorithm

consists on two basic steps. The first one addresses the optimization of the codebook

for given partition cells, whereas the second one establishes the regions depending on

the current codebook. In such a way, the algorithm finally converges to a solution. We

have presented a numerical comparison of the total transmit power needed depending on

the number of bits that are fed back to the transmitter using the realistic channel model

aforementioned. It was shown that better the information fed back to the transmitter is,

the larger the system performance improvement is.



Chapter 7

Conclusions and Future Work

In this chapter we present the concluding remarks of this dissertation and some future

work lines.

7.1. Conclusions

This work focused on the design of linear precoders and receivers to minimize the

transmit power in the Multiple-Input Multiple-Output (MIMO) Broadcast Channel (BC)

fulfilling a set of per-user Quality-of-Service (QoS) constraints expressed in terms of per-

user average rate requirements. Taking advantage of the Jensen’s inequality, we have

explained that the QoS constraints can be substituted by more manageable average

Minimum Mean Square Error (MMSE) restrictions. We have next exploited the Mean

Square Error (MSE) BC/Multiple Access Channel (MAC) duality to jointly determine

the optimum transmit and receive filters by means of an Alternate Optimization (AO)

algorithm. Such duality has been shown to be appropriate for both perfect and imperfect

Channel State Information at the Transmitter (CSIT) in the BC. Additionally, the

optimum transmit power allocation was found using the so-called standard Interference

Function (IF) framework. We proposed an algorithmic solution that provides the optimal

filters and power allocation if the problem constraints are feasible. Two possible

implementations of the proposed algorithm are evaluated. The first one is discarded

because convergence problems arise for some iterations of the algorithm even when the

QoS constraints are feasible. However, with the second proposed implementation, the

convergence to the minimum total transmit power is guaranteed.

Contrarily to certain works in the literature, where assumptions about the bounded

uncertainty models such as rectangular, ellipsoidal, or spherical are made, we have only

considered a statistical error model. Moreover, we do not approximate the ergodic rate,

which means that the true rates are not known in advance. This second approach has been

149
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commonly used, as discussed previously. Therefore, our system model is suitable for a

large number of scenarios. Furthermore, we have carried out computer experiments with

the purpose of comparing the results obtained with the Jensen’s inequality based on the

lower bound, with those resulting from the ergodic rate approximation above mentioned.

The comparison demonstrates that using the lower bound the original QoS constraints are

fulfilled. On the contrary, the QoS restrictions can be violated when the approximation is

used. Moreover, such experiments also show that the gap between the lower bound and

the true average rate is small.

We have also analyzed the problem feasibility to ensure convergence of the proposed

power minimization algorithm. To do that, we have extended the existing studies of

the sum-MSE feasibility region, where only Multiple-Input Single-Output (MISO) BC

considering perfect CSIT and Channel State Information at the Receiver (CSIR) was

analyzed. As a result, we obtained an expression dependent on the transmit filters.

Moreover, for the particular case of Rayleigh channel realizations, we have observed a

particular behavior of the feasibility region that was shown from computer experiments

also presented here. Since the transmit filters are not known beforehand, a gradient

step algorithm has been developed to find the optimal sum-MMSE filters and establish

a lower bound. By using such algorithm, the impact of the partial CSIT quality has been

evaluated, showing that it has a major influence on the feasibility of QoS restrictions.

The feasibility of the power minimization problem subject to QoS constraints is

usually not known in advance. For such reason, a different formulation where the goal is

to provide the best possible service for a given power arises. This optimization problem

is known as rate balancing. In such a formulation, the average rates were manipulated

in a way that preserved the equilibrium between the rates corresponding to every user,

while the total transmit power had to be limited to a given value. We have shown that

this problem can also be addressed using the algorithm employed to solve the power

minimization. However, contrarily to the power minimization problem, the rate balancing

optimization is always feasible, since the system designer is able to relax the restrictions

until the desired total power is used. This adaptation of the rate targets leaded us to

the bisection search. That way, we proved that convergence to a solution holds true.

Additionally, we carried out simulation experiments to show the good performance of the

proposed algorithm and compare it to other existing methods in the literature.

Finally, we have applied the proposed methods considering additional issues such as

more complex system models or feedback design.

More specifically, we have investigated the minimization of the transmit power in

a multiple stream MIMO BC with imperfect CSIT to accomplish certain user rate

constraints. We developed a gradient-projection iterative algorithm to determine the

optimal distribution of each user target rate among the different per-stream target rates.

This way the multiple stream MIMO BC is interpreted as a single-stream MIMO BC
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with virtual users. Two nested optimization problems arise from this interpretation. In the

inner one, the goal is to minimize the total transmit power for given QoS restrictions. This

optimization problem has been already solved with the algorithm previously proposed.

For the outer one, a projected-gradient was proposed. It consisted of performing an update

in the gradient direction and, afterwards, the new targets were mapped to the closest ones

laying in the feasibility region in the projection procedure. The convergence to a local

minimum was discussed using the projected-gradient algorithm.

The projected-gradient algorithm was shown to be also appropriate to minimize the

transmit power in a MIMO Orthogonal Frequency Division Multiplexing (OFDM) BC

fulfilling a given set of target user rates. The algorithm distributed each user target rate

between the different subcarriers and, jointly, the linear transmit and receive filters were

calculated.

In order to provide a more complete approach of a practical system, the design of the

feedback together with the linear transmit and receive filters was studied for the MISO

BC. This joint design meant that the quantizer that divides the channel states into partition

cells and the codebook have to be implemented. Additionally, the transmit and receive

filters had to be found as in prior scenarios. For such purpose, we have used a version

of the Lloyd’s algorithm. Two basic steps were computed in such an algorithm. The

centroid condition was shown to be the step which finds the centroids for each region,

i.e., the precoders that become part of the codebook. To do that, the power minimization

algorithm was employed. Finally, the second proposed step distributed the channel states

to the best fitting region according to the current codebook.

7.2. Future Work

The advantages of employing multiple antennas at transmission and reception

make MIMO technologies fundamental for the high speed wireless communications

demanded nowadays. Accordingly, this translates to the introduction of MIMO into

modern wireless communication standards, e.g. IEEE 802.11n, IEEE 802.11ac (WiFi)

[44], 4G, Third Generation Partnership Project (3GPP) Long-Term Evolution (LTE),

Worldwide Interoperability for Microwave Access (WiMAX), or High-Speed Packet

Access (HSPA)+. Downlink system models and beamforming techniques are usual in

recent standards, e.g. IEEE 802.11ac. Therefore, in current wireless communication

systems a common scenario is to have a transmitter that sends data to several independent

users simultaneously. Due to the benefits of considering the spatial dimension, such

transmissions are possible. As we have previously mentioned, the design of the precoders

is of major relevance in all this kind of systems since it makes possible to separate the

data signals at the user end with low complexity terminals.
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The cellular systems constitute another example where the system model considered

in this work can be applied. Such systems have to deal with the problem of the interference

which does not even exist in point-to-point communications. Moreover, interference is a

factor which limits the throughput in wireless communication networks. A traditional

solution to achieve better throughput is to increase the transmit power. However, in

systems with interference that translates into stronger interference levels at reception.

Although such interference can be mitigated using precoding techniques, the efficient use

of the power has become a key feature in the system design. Therefore, the optimization

problem studied throughout this work that minimizes the transmit power guaranteeing a

certain QoS fits current practical necessities.

Additionally, perfect CSIT is a rather unrealistic assumption. Then, the study of

models considering such uncertainty is fundamental in the design of future standards in

the field of wireless communications.

In the ensuing sections we describe some future work lines to continue the research

contained in this dissertation.

7.2.1. Jensen’s Inequality Lower Bound

The approximation of the average rate by means of the average MMSE is a common

tool. Due to the combination of the logarithm and the expectation in the average rate

expression, the relationship with the average MMSE is established by using the Jensen’s

inequality. Therefore, the average MMSE becomes a lower bound for the average rate.

The gap between the two measurements has been shown to be small in our simulation

results. Although the analytical expression for the gap is provided in Appendix A for

the Single-Input Single-Output (SISO) scenario, the extension to the general case is still

unknown. Thus, a possible future work could address the characterization of the gap

between the average rate and the average MMSE in a more general scenario.

7.2.2. Feasibility Region

The feasibility region has been characterized in Section 5.2 of Chapter 5. This

study provides an insightful view of the optimization problem, allowing to determine

if the desired QoS rates are reachable or not. In order to do that, we resort again

to the relationship between the MMSE and the average rate. Thus, the average sum-

MMSE feasibility region was found. Such a region has been shown to be a polytope

where the bounds are reached when the transmit power is increased without restriction.

Nevertheless, the expression obtained for the aforementioned bounds depends on the

channel and the MAC precoders (or corresponding BC receivers). This fact constitutes

an inconvenience since the MAC precoders are not known in advance. Therefore, we
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propose to acquire a better comprehension of the bounds corresponding to the feasible

region as a possible future work.

7.2.3. Interference Channel

s1
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s2

s2

sd1

sdK

HH
1,1
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1,K
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K,K

ŝ1

ŝ1

ŝ2

ŝ2
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ŝd1

ŝdK

Figure 7.1: MIMO Interference Channel.

In cellular systems the designers have to deal with the problem of intercell

interference, different from the intracell interference considered in this work. That

behavior shows up when exist several transmitter-receiver pairs. Moreover, as we

have demonstrated during this work, the interference has been identified as the major

impairment limiting the throughput in wireless communication networks. Indeed, lots

of recent standards include some sort of interference coordination to mitigate such a

disadvantage. One example of an scenario where the intracell interference plays a role in

the system performance comes from the MIMO Interference Channel (IFC). In a K user

MIMO-IFC system model, there exist K transmitter-receiver pairs where each transmitter

communicates to its respective receiver, as it can be seen in Fig. 7.1. Consequently,
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each transmitter generates interference at all other receivers. Typical solutions for this

scenario are given by the interference alignment signaling technique, where the channels

are assumed to be perfectly known [99, 100].

Considering such communication scheme, a proposal for future work is to apply the

methods studied in this work to this network.

7.2.4. Power Constraints

Different power restrictions can be applied in som scenarios depending on the network

characteristics. For example, power restrictions for a set of users, for a certain user, for

an antenna array or for a single antenna. In this work, the aim was minimizing the total

transmit power. However, this could lead to situations where a large amount of power is

allocated to one or several antennas. In practical systems, a limitation over the maximum

power per antenna is a reasonable system restriction. Due to that, an interesting future

work consists on studying the power minimization fulfilling QoS constraints in a system

where there exists per antenna power limitations.

7.2.5. Non-Linear Precoding

In this work linear transmit and receive filters are used to mitigate the interferences

produced in the BC when different data are transmitted to several users at the same time.

The use of non-linear filters has been shown to improve the channel capacity, e.g. using

Dirty Paper Coding (DPC) schemes in the BC. Moreover, the use of non-linear filters

combined with the realistic assumption of imperfect CSIT has been considered in previous

works, e.g. [81]. Therefore, a extension to the methods here proposed could be the use

of non-linear precoders if we want to preserve the computational simplicity of the receive

filters in the BC.



Appendix A

Jensen’s Inequality

In this appendix, we briefly introduce the Jensen’s inequality [36]. It is an important

result employed in many fields, e.g. information theory, and also useful in our derivations.

Considering the probability density function (pdf) fX and the convex function g (see

Appendix F), the Jensen’s inequality applied to probabilistic theory states

g

(∫

CM×N

XfX (X) dX

)

≤
∫

CM×N

g (X) fX (X) dX,

g (E [X]) ≤ E [g (X)] , (A.1)

where g is a convex function. Note that if the function h is concave, i.e. −h is convex,

the Jensen’s inequality can be applied changing the direction of the inequality as follows

h (E [X]) ≥ E [h (X)] . (A.2)

In this work, we are interested in determining the gap between the average rate and the

average MMSE lower bound. Here, the SISO system model is studied. In the mentioned

system, the transmit power is given by p, the noise variance is σ2, and the Rayleigh

distributed channel is h ∼ NC(0, 1). The MMSE, computed as MMSE = 1 − fMMSEhp,

reads as

MMSE = 1− |hp|2
|hp|2 + σ2

=
σ2

|hp|2 + σ2
. (A.3)

The conditional expectation of the MMSE is computed by

E[MMSE| v] = E

[
σ2

|hp|2 + σ2

∣
∣
∣
∣
v

]

. (A.4)

To calculate such a gap, we consider a noise variance of σ2 = 10 and a power |p|2 = 1.

In that way, the Cumulative Distribution Function (CDF) of the MMSE, Fh|v(MMSE),
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Figure A.1: MMSE Cumulative Distribution vs. Beta Cumulative Distribution.
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can be approximated using the CDF of the beta distribution, with α = 6.54162, and

β = 1.12133. This approximation is accurate, as it can be observed in Fig. A.1.

We introduce the pdf fh|v(MMSE), and the auxiliary variable x = MMSE for

notational brevity. Now, the expectation of the logarithm is computed as

E[ln(x)| v] =
∫ 1

0

fh|v(x) ln(x)dx. (A.5)

Employing the approximated beta CDF, we get

E[ln(x)| v] = Fh|v(x) ln(x)
]1

0
−
∫ 1

0

1

x
Fh|v(x)dx (A.6)

=
✘
✘
✘

✘
✘
✘
✘
✘✘✿0

Fh|v(x) ln(x)
]1

0
−
∫ 1

0

1

x
Fh|v(x)dx (A.7)

= −
α+β−1
∑

j=α

(
α + β − 1

j

)∫ 1

0

xj−1(1− x)α+β−j−1dx (A.8)

= −
α+β−1
∑

j=α

(
α + β − 1

j

)

B(j, α + β − j)

∫ 1

0

fh|v(x)dx (A.9)

= −
α+β−1
∑

j=α

(α + β − 1)!

j!(α + β − 1− j)!

(j − 1)!(α + β − j − 1)!

(α + β − 1)!
(A.10)

= −
α+β−1
∑

j=α

1

j
. (A.11)

Then, the average MMSE lower bound is the following

−E[log2(x)] =
1

ln(2)

α+β−1
∑

j=α

1

j
=

1

ln(2)
[Hα+β−1 −Hα−1] (A.12)

≈ 1

ln(2)
[ln(α + β − 1)− ln(α− 1)] =

1

ln(2)
ln

(

1 +
β

α− 1

)

, (A.13)

where Hn is the nth harmonic number.

Considering the expectation of the beta distribution, E[x| v] = α
α+β

, the average

MMSE lower bound is− log2(E[x]) =
1

ln(2)
ln(1+ β

α
). Thus, the gap between the average
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rate E[R| v] and the lower bound is as follows

E [R| v]− [− log2 (E [MMSE| v])] = (A.14)

=
1

ln(2)

α+β−1
∑

j=α

1

j
− 1

ln(2)
ln

(

1 +
β

α

)

(A.15)

≈ 1

ln(2)

[

ln

(

1 +
β

α− 1

)

− ln

(

1 +
β

α

)]

(A.16)

=
1

ln(2)
ln

(
α

α− 1

(

1− 1

α + β

))

(A.17)

≈ log2

((

1 +
1

α

)(

1− 1

α + β

))

= log2

(

1 +
β − 1

α (α + β)

)

. (A.18)

For the previous example, where the MMSE pdf for |p|2 = 1 and σ2 = 10 is

approximated by a beta distribution, with α = 6.54162 and β = 1.12133, the gap value is

log2(1 + 0.0024) = 0.0035.



Appendix B

Standard Interference Function

Framework

The standard IF framework characterizes a family of functions and provides a solution

to distribute the available power between a set of users, which interfere each other. It was

proposed by Yates in [38] to solve the power control algorithm

ξ(n+ 1) = I (ξ (n)) , (B.1)

where ξ = [ξ1, . . . , ξK ]
T contains the powers for the K users, and I(ξ) =

[I1(ξ), . . . , IK(ξ)]
T is the vector containing the interferences seen at each of the users.

In the following, some of the lemmas proposed in [38] that we find useful for our

optimization problem will be explained in more detail.

An IF I(ξ) is feasible when a feasible solution ξ exists, i.e,

ξ ≥ I(ξ). (B.2)

In other words, if I(ξ) is feasible, a solution for the problem can be found. Another

important procedure to solve the power control problem is the observation of whether IF

is standard or not. An IF I(ξ) is said to be standard when the following properties are

satisfied for ξ ≥ 0

positivity, I(ξ) > ;

monotonicity, I(ξ′) ≥ I(ξ), for ξ′ ≥ ξ; and

scalability, aI(ξ) > I(aξ), for a > 1.

When an IF is standard and feasible, the power control algorithm of (B.1) converges

to the optimal solution of (B.2). The optimum would be reached when the power is
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minimum and satisfies (B.2), that is, (B.2) would be fulfilled with equality in the optimum

ξopt = I(ξopt). Moreover, the optimum ξopt is unique, as we will show in the following.

Let us consider a feasible solution of I(ξ), ξ. Then ξ(1) = I(ξ(0)) ≤ ξ(0) = ξ,

and I(ξ(0)) ≥ I(ξ(1)) due to the monotonicity property. Thus, for every iteration

ξ(n + 1) = I(ξ(n)) ≤ ξ(n) holds. Since ξ(n) is lower bounded by 0, the decreasing

sequence converges to the optimum ξopt. Note that no assumption but feasibility is made

for ξ(0).

Regarding optimum uniqueness, suppose that there exists an additional optimum

ξ′ = I(ξ′) such that ξopt = Γξ′, for Γ = diag(γ1, . . . , γK) > 0. We consider that

for some user k, γk ≥ γj , ∀j, and γk > 1, without loss of generality. Hence, γkξ
′ ≥ ξopt,

and due to the monotonicity and the scalability properties above explained, we get the

following contradiction

ξopt

k = Ik (ξ
opt) ≤ Ik (γkξ

′) < γkIk (ξ
′) = γkξ

′
k. (B.3)

Consider now an IF that not only depends on the power ξ but also on a matrix X ,

i.e., IX(ξ,X). It is not surprising that the selection over all the matricesX preserves the

properties of the standard IFs if the optimum choice for X is the one that minimizes the

IF. That is to say, I(ξ) = minX IX(ξ,X) is a standard IF.

The standard IF framework is a powerful tool that has been successfully used in

previous related works (e.g. [34, 70]).



Appendix C

Matrix Properties

In this appendix, we present some algebraic properties of the matrices exploited in the

developments presented throughout this work.

C.1. Eigenvalue Decomposition

Consider the square matrix A ∈ Cn×n. A vector x ∈ Cn is an eigenvector of A, and

λ its corresponding eigenvalue, if

Ax = λx. (C.1)

We can equivalently rewrite the previous equation to get

(A− Inλ)x = 0, (C.2)

which allows us to define the characteristic polynomial of A. That is, the polynomial of

degree n resulting from

det (A− Inλ) = 0. (C.3)

Note that Mx = 0 for the non-zero vector x only if M is singular. As a consequence,

every eigenvalue of the matrixA is a root of the characteristic polynomial.

The eigenvalue decomposition ofA comes from the equality [101]

A
[
u1 u2 . . . un

]
=
[
u1 u2 . . . un

]








λ1 0 . . . 0
0 λ2 . . . 0

0 0
. . . 0

0 . . . 0 λn








, (C.4)

and it is given by the factorization

Λ = U−1AU , (C.5)
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with Λ = diag(λ1, λ2, . . . , λn). From the previous expression it is straightforward to see

that not all the square matrices have an eigenvalue decomposition. A matrixA ∈ Cn×n is

called defective if the number of linearly independent eigenvectors is less than n. In such

a case, the eigenvalue decomposition can not be performed.

C.2. Determinant Properties

The determinant of a 2× 2 matrixA is defined as [A]1,1[A]2,2− [A]1,2[A]2,1. For the

more general case where A ∈ Cn×n, it can be defined as a recursive function as follows

det(A) =

n∑

j=1

(−1)i+j[A]i,jMi,j , (C.6)

for any row i ∈ [1, . . . , n], and where Mi,j is the determinant of the matrix resulting from

removing the ith row and jth column ofA.

The determinant operator satisfies the following properties:

1. The determinant is commutative with respect to the matrix product. Given the

matrices A ∈ Cn×n andB ∈ Cn×n, it means that

det (AB) = det (A) det (B) = det (BA) . (C.7)

2. The determinant of a scalar a times a matrixA ∈ Cn×n is

det (aA) = an det (A) . (C.8)

3. The inverse of the determinant of a matrixA ∈ C
n×n is equal to the determinant of

its inverse, i.e.,
1

det (A)
= det

(
A−1

)
. (C.9)

4. The determinant of an square matrixA ∈ Cn×n, with an eigenvalue decomposition

A = UΛU−1, where U is the basis and the diagonal matrix Λ contains the

eigenvalues, is

det(A) = det
(
UΛU−1

)
= det

(
U−1UΛ

)
= det (Λ) =

n∏

i=1

[Λ]i,i, (C.10)

i.e., the determinant ofA is equivalent to the product of its eigenvalues.
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5. Suppose the matricesA ∈ Cn×m,B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m. Then,

the determinant of a block matrix is

det

(
A 0

C D

)

= det

(
A B

0 D

)

= det(A) det(D). (C.11)

Furthermore, whenA is invertible,

det

(
A B

C D

)

= det

(
A 0

C Im

)

det

(
In A−1B

0 D −CA−1B

)

= det(A) det(D −CA−1B). (C.12)

6. ConsideringA ∈ Cn×m, and B ∈ Cm×n, the Sylvester’s theorem states that

det (In +AB) = det (Im +BA) . (C.13)

This equality can be shown using two different block decompositions of the same

matrix, and applying the previous statement, i.e.

det

(
In −A
B Im

)

= det

(
In 0

B Im

)

det

(
In −A
0 Im +BA

)

= det (Im +BA) ,

det

(
In −A
B Im

)

= det

(
In +AB −A

0 Im

)

det

(
In 0

B Im

)

= det (In +AB) .

C.3. Trace Properties

The trace operator satisfies the following properties:

1. In linear algebra, the trace of an n× n square matrixA is defined as the sum of the

elements on the main diagonal, which gives

tr (A) =

n∑

i=1

[A]i,i =

n∑

i=1

[AT]i,i = tr
(
AT
)
. (C.14)

2. The trace is a linear operator, and then it satisfies

tr (aA+ bB) = tr (aA) + tr (bB) = a tr (A) + b tr (B) . (C.15)

3. The trace of a product of matrices verifies

tr (AB) =
n∑

i=1

[AB]i,i =
n∑

i=1

[BA]i,i = tr (BA) . (C.16)
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4. The trace of an square matrix A ∈ Cn×n, with an eigenvalue decomposition

A = UΛU−1, where U is the basis and the diagonal matrix Λ contains the

eigenvalues, is

tr
(
UΛU−1

)
= tr

(
U−1UΛ

)
= tr (Λ) =

n∑

i=1

[Λ]i,i, (C.17)

i.e., the trace ofA is equal to the sum of its eigenvalues.

C.4. Matrix Inversion Lemma

The matrix inversion lemma for squared matrices,A,B, C, andD, states that

(A−BD−1C)−1 = A−1 +A−1B(D −CA−1B)CA−1, (C.18)

assuming thatA andD are invertible. The direct proof is as follows,

(A −BD−1C
) [

A−1 +A−1B
(
D −CA−1B

)−1
CA−1

]

= I−BD−1CA−1 +B
(
D −CA−1B

)−1
CA−1

−BD−1CA−1B
(
D −CA−1B

)−1
CA−1

= I−BD−1CA−1 +
(
I−BD−1CA−1

)
B
(
D −CA−1B

)−1
CA−1

= I−BD−1CA−1 +
(
B −BD−1CA−1B

) (
D −CA−1B

)−1
CA−1

= I−BD−1CA−1 +
(
BD−1D −BD−1CA−1B

) (
D −CA−1B

)−1
CA−1

= I−BD−1CA−1 +BD−1
(
D −CA−1B

) (
D −CA−1B

)−1
CA−1

= I−BD−1CA−1 +BD−1CA−1

= I.

Another insightful proof is provided employing block matrices

M =

(
A B

C D

)

,

where it is assumed that M is invertible. The matrixM can be decomposed as follows

M =XY =

(
A 0

C I

)(
I A−1B

0 D −CA−1B

)

.

Now, to compute the inverse ofM we can calculate the product Y −1X−1. Thanks to the

structure of the matricesX and Y including the blocks 0 and I, the inverses can be easily
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obtained, i.e.

X−1 =

(
A−1

0

−CA−1
I

)

,

Y −1 =

(
I −A−1B (D −CA−1B)

−1

0 (D −CA−1B)
−1

)

.

And the inverse of the matrixM is the product of both of them, that is

M−1 = Y −1X−1

=

(
I −A−1B (D −CA−1B)

−1

0 (D −CA−1B)
−1

)(
A−1

0

−CA−1
I

)

=

(
A−1 +A−1B (D −CA−1B)

−1
CA−1 −A−1B (D −CA−1B)

−1

− (D −CA−1B)
−1
CA−1 (D −CA−1B)

−1

)

.

(C.19)

Consider now an alternative decomposition for the matrix M , where the blocks 0 and I

are placed in rows instead of columns as follows

M = ZW =

(
A−BD−1C BD−1

0 I

)(
I 0

C D

)

.

Exploiting again the structure of Z andW , the respective inverses are computed via

Z−1 =

(

(A−BD−1C)
−1 − (A−BD−1C)

−1
BD−1

0 I

)

,

W−1 =

(
I 0

−D−1C D−1

)

.

That way, we obtain a different expression for the inverse ofM asW−1Z−1, which leads

to

M−1 =

(
(A−BD−1C)

−1 − (A−BD−1C)
−1
BD−1

−D−1C (A−BD−1C)
−1

D−1 +D−1C (A−BD−1C)
−1
BD−1

)

.

(C.20)

By comparing the upper left elements of (C.19) and (C.20) we find the desired equality

[102] (cf. (C.18)).

C.5. Positive Definite Matrices

Consider the Hermitian matrix A ∈ Cn×n, such that AH = A. The matrix A is

positive definite if

zHAz > 0, (C.21)
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for any z ∈ Cn 6= 0 [103]. In the particular case of real symmetric matrices, the property

holds if zTAz > 0. When the inequality is weakened to ≥, the matrices fulfilling such

an inequality are called positive semidefinite. Of course, any positive definite matrix is

also positive semidefinite.

Some useful properties of the positive (semi)definite matrices are:

1. Consider the positive (semi)definite matrices A ∈ Cn×n, and B ∈ Cn×n, and the

scalars a ≥ 0, and b ≥ 0. Then, the linear combination of the two matrices results

into a positive semidefinite matrixC ∈ Cn×n = aA+ bB

zHCz = zH (aA+ bB) z = azHAz + bzHBz ≥ 0. (C.22)

Note that if A and B are positive definite and the scalars satisfy a > 0, and b > 0,

the inequality is strict, andC is also positive definite.

2. If a matrixA ∈ Cn×n is positive (semi)definite, u is an eigenvector ofA, and λ its

corresponding eigenvalue, then

uHAu = uHλu = λ ‖u‖22 . (C.23)

Therefore, λ = uHAu/||u||22. Since A is positive (semi)definite, the product in

the numerator is greater (or equal) to 0, and then λ > 0 for positive definite A and

λ ≥ 0 for positive semidefiniteA.

3. The inverse of a positive (semi)definite matrix A, A−1, is also positive

(semi)definite. To prove that, let us introduce the vector x such that Az = x.

That way, we obtain the product

xHA−1x = zHAA−1Az = zHAz. (C.24)

Since A is positive (semi)definite, zHAz is greater than (or equal to) 0.

4. The Cholesky decomposition is a factorization of a Hermitian positive definite

matrixA of the form

A = LLH, (C.25)

where L is a lower triangular matrix with real diagonal entries. Moreover, for every

Hermitian positive definiteA the decomposition is unique [101].

5. The Gram of a matrixA ∈ Cn×m,AHA, is a positive semidefinite matrix. Consider

some vector z ∈ Cm. Then

zHAHAz = wHw = ‖w‖22 ≥ 0. (C.26)
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Using a similar reasoning, for a positive definite matrixA ∈ Cn×n and some matrix

B ∈ Cn×m, the product BHAB is positive semidefinite. Thus, for any vector

z ∈ C
m

zHBHABz = wHAw ≥ 0. (C.27)

Note that (C.26) can be seen as a particular case of (C.27) ifA = In.

C.6. Complex Derivatives

Let us first introduce the derivative of the function f(X), whose argument is a real

matrixX ∈ R
m×n, f : Rm×n → R, as

∂f(X)

∂X
=







∂f(X)
∂[X]1,1

. . . ∂f(X)
∂[X]1,n

...
. . .

...
∂f(X)
∂[X]m,1

. . . ∂f(X)
∂[X]m,n






∈ R

m×n. (C.28)

Given a matrixX ∈ Cm×n, and f : Cm×n → C, it has to be satisfied [104, 105]

∂f(X)

∂ℑ{X} = j
∂f(X)

∂ℜ{X} .

Since the last equality is not fulfilled in general, a generalized definition of complex

derivatives is used instead [104, 105] in this way

∂f(X)

∂X
=

1

2







∂f(X)
∂ℜ{[X]1,1}

. . . ∂f(X)
∂ℜ{[X]1,n}

...
. . .

...
∂f(X)

∂ℜ{[X]m,1}
. . . ∂f(X)

∂ℜ{[X]m,n}






− j

2







∂f(X)
∂ℑ{[X]1,1}

. . . ∂f(X)
∂ℑ{[X]1,n}

...
. . .

...
∂f(X)

∂ℑ{[X]m,1}
. . . ∂f(X)

∂ℑ{[X]m,n}







,

and the complex conjugate derivative is

∂f(X)

∂X∗
=

1

2







∂f(X)
∂ℜ{[X]1,1}

. . . ∂f(X)
∂ℜ{[X]1,n}

...
. . .

...
∂f(X)

∂ℜ{[X]m,1}
. . . ∂f(X)

∂ℜ{[X]m,n}







+
j

2







∂f(X)
∂ℑ{[X]1,1}

. . . ∂f(X)
∂ℑ{[X]1,n}

...
. . .

...
∂f(X)

∂ℑ{[X]m,1}
. . . ∂f(X)

∂ℑ{[X]m,n}







.

Taking into account the complex derivatives above described, the following results are

used throughout this work

∂ tr(AX)
∂X∗ = 0,

∂ tr(AXH)
∂X∗ = A,
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∂(tr(XHAX))
∂X∗ = AX ,

∂(tr(ℜ{XHA}))
∂X∗ = 1

2
∂(tr(XHA))

∂X∗ + 1
2
∂(tr(XTA∗))

∂X∗ = 1
2
A,

∂ tr(AX−1)
∂XT = −X−1AX−1,

∂f(X)
∂[X]i,j

=
∑

k,l
∂f(X)
∂Xk,l

∂Xk,l

∂Xi,j
= tr

((
∂f(X)
∂X

)T
∂X

∂Xi,j

)

, where f(X) is a scalar

function,

∂ det(A)
∂x

= det (A) tr
(
A−1 ∂A

∂x

)
.

C.7. Jacobian Matrix

Consider a function f (x) : Rn 7→ Rm, which is given by m real valued component

functions such that fi(x) : Rn 7→ R, for i ∈ {1, . . . , m}. The partial derivatives of the

functions fi(x) with respect to the vector of variables x can be collected into the m × n

Jacobian Matrix

Jf(x) =
∂f (x)

∂xT
. (C.29)

The former expression lead us to

Jf (x) =






∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn




 . (C.30)

The Jacobian matrix generalizes the derivative of a scalar valued function of a single

variable. Moreover, similarly to the Taylor series for a scalar function of a single variable,

the Jacobian matrix evaluated at the point x0 is the best linear approximation of f (x) in

the neighborhood of x0, that is

f (x) ≈ f (x0) + Jf (x0) (x− x0) . (C.31)



Appendix D

Karush-Kuhn-Tucker Conditions

The optimization problems can be described in general by a function to minimize and

several side restrictions, leading to the following problem statement [14, 106–109]

Xopt = argminX f(X) subject to gi(X) ≤ 0, ∀i ∈ {1, . . . , l}
hj(X) = 0, ∀j ∈ {1, . . . , m}, (D.1)

where X and Xopt ∈ Cm×n. The functions f(X), gi(X), i = 1, . . . , l, and hj(X),

j = 1, . . . , m, are real-valued with complex-valued arguments, i.e.

f : Cm×n → R,

gi : C
m×n → R, i = 1, . . . , l

hj : C
m×n → R, j = 1, . . . , m.

The function to be minimized is f(X), whereas gi(X) and hj(X) are the constraints.

This problem optimization (D.1) can be solved via Lagrangian functions in most cases

[14, 108]

L (X,λ, v) = f(X) +

l∑

i=1

λigi(X) +

m∑

j=1

vjhj(X),

with λi ∈ R0,+, for i = 1, . . . , l, and vj ∈ R, for j = 1, . . . , m. This allows to rewrite the

problem formulation (D.1) as a new optimization problem without constraints

Xopt = max
λ,v

argminX L (X,λ, v) . (D.2)

A solution to (D.2) is also a solution of (D.1).

The Karush-Kuhn-Tucker (KKT) have to be fulfilled for any solution of the problem

statement (D.1) [106, 107]. We can equivalently focus on (D.2) instead of (D.1) to get
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such conditions as the following first order derivative

∂L (X,λ, v)

∂X
= 0,

gi(X) ≤ 0 i = 1, . . . , l,

λigi(X) = 0 i = 1, . . . , l,

λi ≥ 0 i = 1, . . . , l,

vj(X) = 0 j = 1, . . . , m, (D.3)

which are also necessary to get the optimum of (D.1).

Since the conditions in (D.3) are not sufficient in general, and there is a dependence

on the functions f(X), hj(X), and gi(X), we are able to conclude the optimality of

the KKT conditions. If the functions f(X) and gi(X), ∀i, are convex, and hj(X), ∀j,

are affine [14], the KKT conditions are necessary and sufficient for global optimality.

However, if the mentioned functions are locally convex or affine, the KKT conditions

only guarantee local optimality.
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Multivariate Normal Distribution

The multivariate Normal distribution, also called multivariate Gaussian distribution,

arises as the generalization of the one dimension Normal distribution. Its importance

derives from several reasons, e.g. from the multivariate Central Limit Theorem. Let us

define the vector x = [x1, . . . , xn]
T ∈ Cn. The mean value of x is then

µx = E[x] = [µ1, . . . , µn]
T ∈ C

n, (E.1)

where µi = E[xi]. Consequently, the components of the vector µx are means themselves.

Similarly, the covariance matrix of x, Cx ∈ Cn×n, is given by

Cx = E[(x− µx)(x− µx)
H]. (E.2)

Note that the entries of Cx are the covariances of the components of x, that is [Cx]i,j =

E[(xi−µi)(xj−µj)
∗]. Therefore, the matrixCx can be considered Hermitian and positive

definite for the regular cases, where Cx is full rank.

Considering the mean and the covariance previously introduced, the random vector x

is said to be zero-mean circularly symmetric complex Gaussian if its pdf is given by [73]

f (x) =
1

πn det (Cx)
e(−(x−µx)

HC−1
x (x−µx)), (E.3)

with µx = 0.

E.1. Joint Probability of two Gaussian

Let us define the circularly symmetric complex Gaussian random vectors x ∈ Cn and

y ∈ Cm. Consider now that x and y are jointly circularly symmetric complex Gaussian

distributed, i.e. [
x

y

]

∼ NC

(

E

[
x

y

]

,C

)

, (E.4)
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with the covariance and the mean as follows

C =

(
Cx Cx,y

Cy,x Cy

)

, E

[
x

y

]

=

[
E [x]
E [y]

]

, (E.5)

where Cx and Cy are the covariances of x and y, respectively, and Cx,y = E[(x −
E[x])(y − E[y])H]. Then, the pdf of the Gaussian random vector [xTyT]T reads

p (x,y) =
1

πn+m det (C)
e
−





x− E [x]
y − E [y]





H

C−1





x− E [x]
y − E [y]





. (E.6)

The conditional pdf can be obtained via Bayes’ rule

p (y|x) = p (x,y)

p (x)
, (E.7)

and accordingly

p (x,y)

p (x)
=

1
πn+m det(C)

e
−





x̃

ỹ





H

C−1





x̃

ỹ





1
πn det(Cx)

e−x̃HC−1
x x̃

, (E.8)

where we have defined x̃ = x− E [x] and ỹ = y − E [y].

To simplify the previous expression, we first decompose the covariance matrix C as

follows

C =

(
Cx 0

Cyx I

)(
I C−1

x Cxy

0 Cy −CyxC
−1
x Cxy

)

. (E.9)

That way, the determinant of the covariance matrix can be easily computed as

det (C) = det (Cx) det (B) , (E.10)

withB the Schur complement of C

B = Cy −Cy,xC
−1
x Cx,y. (E.11)

Now, we rewrite the inverse of the covariance matrix as follows

C−1 =

(
C−1

x +C−1
x Cx,yB

−1Cy,xC
−1
x −C−1

x Cx,yB
−1

−B−1Cy,xC
−1
x B−1

)

(E.12)

=

(
I −C−1

x Cx,y

0 I

)(
C−1

x 0

0 B−1

)(
I 0

−Cy,xC
−1
x I

)

. (E.13)
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Note that we have applied the matrix inversion lemma (see (C.19)) in (E.12), and

decomposed the resulting matrix to obtain the expression of (E.13) (see Section C.4 of

Appendix C). Employing (E.13), the exponent of the joint pdf (E.6) reads as

−
[

x̃

ỹ −Cy,xC
−1
x x̃

]H(
C−1

x 0

0 B−1

)[
x̃

ỹ −Cy,xC
−1
x x̃

]

. (E.14)

Computing the matrix product, we get

−
(

x̃HC−1
x x̃+

(
ỹ −Cy,xC

−1
x x̃

)H
B−1

(
ỹ −Cy,xC

−1
x x̃

))

. (E.15)

Correspondingly, from (E.15) and (E.10) is easy to see that (E.8) can be calculated as

follows

p (y|x) = 1

πm det (B)
e
−
[

ỹ −Cy,xC
−1
x x̃

]H
B−1

[

ỹ −Cy,xC
−1
x x̃

]

. (E.16)

Then, we conclude from the previous expression that for y conditioned to x, the mean

and the covariance matrix are as follows

E [y|x] = E[y] +Cy,xC
−1
x (x− E [x]) , (E.17)

Cy|x = Cy −Cy,xC
−1
x Cx,y. (E.18)
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Appendix F

Convexity Proofs

Consider the function g(X) : CM×N → R. The function g is said to be convex if

∀X1,X2 ∈ CM×N , ∀t ∈ [0, 1], satisfies

g(tX1 + (1− t)X2) ≤ tg(X1) + (1− t)g(X2). (F.1)

F.1. Sum-MSE Lower Bound

Let us consider the MAC MSE expression when we let the power of all the users

increase unlimitedly. In other words, we neglect the noise to obtain

MSEMAC
k = 1− 2ℜ

{
gHkHktk

}
+

K∑

i=1

gHkHitit
H
i H

H
i gk. (F.2)

In particular, we are interested in showing that is a convex function with respect to the

receive filter gk. Now, taking into account that the function h(gk) = 1−2ℜ
{
gHkHktk

}
is

affine, we focus on
∑K

i=1 g
H
kHitit

H
i H

H
i gk. Using the property of convex functions ci(x)

which states that
∑

i λici(x) is convex for λi ≥ 0, we only have to show that

f(gk) = g
H
k

K∑

i=1

Hitit
H
i H

H
i gk = gHkMgk, (F.3)

is convex. We will drop the subindex k for the shake of notational brevity in the following.

Notice that the matrixM is positive semidefinite.

A function is convex if and only if it is convex when restricted to any line that

intersects its domain [14]. Therefore, we introduce the function h(t) = f(tg1+(1− t)g2)
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with t ∈ [0, 1], and study the convexity of h(t) instead

∂h(t)

∂t
=

∂ (tg1 + (1− t)g2)
H
M (tg1 + (1− t)g2)

∂t

= (g1 − g2)HM (tg1 + (1− t)g2) + (tg1 + (1− t)g2)
H
M (g1 − g2) , (F.4)

∂2h(t)

∂t
= 2 (g1 − g2)HM (g1 − g2) . (F.5)

The last expression is greater than or equal to zero since M is positive semidefinite.

Hence, MSEMAC
k and also the sum-MSE are convex. Moreover, when partial Channel

State Information (CSI) is considered the conditioned expectation does not change the

convexity due to the positive-weighted summation of the expectation operator.

F.2. Logarithm of Determinant Function

Let us define the function f(X) = log(det(X)), and the positive semidefinite

matricesX and Y . Thus, to check the concavity of f , we introduce an additional function

g(t) = f(tX+(1− t)Y ) with the scalar t ∈ [0, 1]. Recall that the concavity of a function

can be checked when restricted to any line that intersects its domain [14]. First, we

compute the derivative of g(t) with respect to t

∂g (t)

∂t
=

∂

∂t
log (det (tX + (1− t)Y ))

=
1

det (tX + (1− t)Y )
det (tX + (1− t)Y ) tr

(
(tX + (1− t)Y )−1 (X − Y )

)

= tr
(
(tX + (1− t)Y )−1 (X − Y )

)
. (F.6)

Now, we compute the second derivative as

∂ tr
(
(tX + (1− t)Y )−1 (X − Y )

)

∂t
=

− tr
(
(X − Y ) (tX + (1− t)Y )−1 (X − Y ) (tX + (1− t)Y )−1)

= − tr
(
(X − Y )C (X − Y )LHL

)

= − tr
(

L (X − Y )C (X − Y )HLH
)

, (F.7)

where we introduced the matrices C and L such that

C = LHL = (tX + (1− t)Y )−1 . (F.8)

Since the matrixC is positive semidefinite, we can perform the Cholesky decomposition

to obtain L (see Section C.5 of Appendix C). Note, moreover, that the matrix inside the
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trace in (F.7) can be written in the form BCBH. Therefore, due to the fact that the trace

of a positive semidefinite matrix satisfies − tr
(
BCBH

)
≤ 0, we conclude that g(t) is

concave.

F.3. Euclidean Distance

Consider the problem formulation of the Euclidean distance minimization subject to

certain constraints

min
̺k

dk∑

i=1

(̺k,i − ̺′k,i)
2 subject to

dk∑

i=1

̺k,i − ρk, ̺k,i ≥ 0, ∀i. (F.9)

Observe that the constraints are affine. Thus, the convexity of the problem depends on the

Euclidean distance ‖̺ − ̺′‖22. Let us define the vector a = ̺ − ̺′ ∈ Rdk . Therefore,

we have to show that f(a) = aTa is convex. To that end, we introduce the vectors a1,

a2 ∈ Rdk and the scalar λ ∈ [0, 1]. In such a way, we show that f(a) satisfies F.1

λf(a1) + (1− λ)f(a2) ≥ f (λa1 + (1− λ)a2)

λaT
1 a1 + (1− λ)aT

2 a2 ≥
(
λaT

1 + (1− λ)aT
2

)
(λa1 + (1− λ)a2)

λaT
1 a1 + (1− λ)aT

2 a2 ≥ λ2aT
1 a1 + λ (1− λ)

(
aT
1 a2 + a

T
2 a1

)

+ (1− λ)2aT
2 a2

(λ− λ2)aT
1 a1 +

(
1− λ−

(
1− λ2

))
aT
2 a2 ≥ λ (1− λ)

(
aT
1 a2 + a

T
2 a1

)

λ (1− λ)
(
aT
1 a1 + a

T
2 a2

)
≥ λ (1− λ)

(
aT
1 a2 + a

T
2 a1

)

aT
1 a1 + a

T
2 a2 ≥ aT

1 a2 + a
T
2 a1. (F.10)

Consequently, the Euclidean distance is convex and the minimization problem is also

convex. Therefore, the KKT conditions D are sufficient for optimality.
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Appendix G

List of Acronyms

AWGN Additive White Gaussian Noise

AO Alternate Optimization

BC Broadcast Channel

bps bits per second

BS Base Station

CDF Cumulative Distribution Function

CSI Channel State Information

CSIR Channel State Information at the Receiver

CSIT Channel State Information at the Transmitter

dB deciBels

DA Deterministic Annealing

DPC Dirty Paper Coding

DFT Discrete Fourier Transform

FDD Frequency-Division Duplex

FDMA Frequency-Division Multiple Access

3GPP Third Generation Partnership Project

GP Geometric Programing
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HSPA High-Speed Packet Access

Hz Hertz

IDFT Inverse Discrete Fourier Transform

IF Interference Function

IFC Interference Channel

I-METRA Intelligent Multi-Element Transmit and Receive Antennas

ISI Inter-Symbol Interference

ITU International Telecommunication Union

KKT Karush-Kuhn-Tucker

LTE Long-Term Evolution

LTI Linear Time-Invariant

MAC Multiple Access Channel

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MU-MIMO Multiple-User Multiple-Input Multiple-Output

MU-MISO Multiple-User Multiple-Input Single-Output

MMSE Minimum Mean Square Error

MSE Mean Square Error

MU Multi-User

NLOS Non Line-of-Sight

OFDM Orthogonal Frequency Division Multiplexing

pdf probability density function

QoS Quality-of-Service

SAA Sample Averaging Approximation
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SINR Signal to Interference-plus-Noise Ratio

SIR Signal to Interference Ratio

SISO Single-Input Single-Output

SIMO Single-Input Multiple-Output

SDP SemiDefinite Program

SNR Signal-to-Noise Ratio

SU-MIMO Single-User Multiple-Input Multiple-Output

TDD Time-Division Duplex

TDMA Time-Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access
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