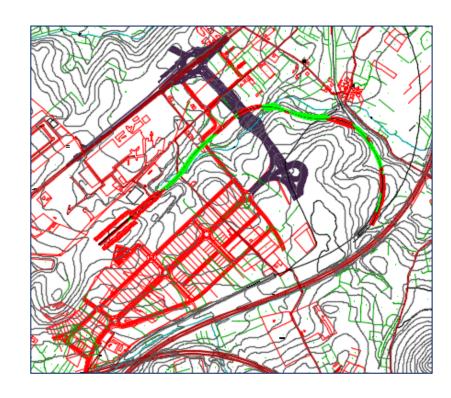


Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

ANTEPROYECTO


MEMORIA

Rebeca Seoane Barrán

Grado en Tecnología de la Ingeniería Civil

Proyecto de Fin de Grado

Febrero 2.015

ÍNDICE GENERAL

DOCUMENTO Nº1: MEMORIA

MEMORIA

ANEJOS

Anejo 1: Estudio ambiental

Anejo 2: Geológico-geotécnico

Anejo 3: Estudio de alternativas

Anejo 4. Fotográfico

DOCUMENTO Nº2: PLANOS

DOCUMENTO Nº3: PRESUPUESTO

MEMORIA

MEMORIA

MEMORIA

ÍNDICE

- 1. ANTECEDENTES Y SITUACIÓN ACTUAL
- 2. OBJETO DEL ANTEPROYECTO
- 3. TRÁFICO DE MERCANCÍAS
- 4. ANÁLISIS DEL PROBLEMA
- 5. CRITERIOS DE DISEÑO
- 6. SUPERESTRUCTURA DE LA VÍA
- 7. APARATOS DE VÍA
- 8. TERMINAL DE MERCANCÍAS
- 9. PROPUESTA DE ALTERNATIVAS
- 10. CRITERIOS DE EVALUACIÓN
- 11. EVALUACIÓN DE LAS ALTERNATIVAS
- 12. SELECCIÓN DE LA ALTERNATIVA A PROYECTAR
- 13. ALTERNATIVA SELECCIONADA
- 14. CONCLUSIÓN
- ANEJO 1: ESTUDIO AMBIENTAL
- ANEJO 2: GEOLÓGICO-GEOTÉCNICO
- ANEJO 3: ESTUDIO DE ALTERNATIVAS
- ANEJO 4: FOTOGRÁFICO

1. ANTECEDENTES Y SITUACIÓN ACTUAL

FINSA es la mayor maderera de España y una de las líderes europeas en este sector. Cuenta con una plantilla mundial de 2.933 trabajadores y cerró 2.013 con unas ventas de 735 millones de euros. Sin embargo, por no disponer de un sistema de transporte ferroviario, mantiene diariamente 450 camiones recorriendo las carreteras.

En Santiago de Compostela se encuentra la mayor fábrica de Finsa en cuanto a tamaño, a volumen de fabricación y a personas. Además, cuenta con la sede social del grupo. Esta factoría tiene 803 trabajadores, recibe cada día 2.500 toneladas de madera y es el origen de 150 millones de euros de ventas en 2.013.

2. OBJETO DEL ANTEPROYECTO

El presente anteproyecto lleva como título: "Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)". El objeto de este anteproyecto es crear, como su título indica, un nuevo ramal, que partiendo del eje actual de ferrocarril Santiago-A Coruña, dé acceso a las instalaciones de la maderera, dotando a la fábrica de una terminal ferroviaria de carga y descarga de mercancías. El alcance del anteproyecto sería definir el ramal ferroviario y la playa de vías de la terminal. Los accesos, instalaciones y resto de explanación necesarios serían objeto de un proyecto independiente.

El objetivo de este anteproyecto es superar la asignatura Proyecto de fin de grado de cuarto curso de la Escuela Técnica Superior de Caminos, Canales y Puertos de la Universidad de A Coruña, necesaria para obtener la titulación de Grado en Tecnología de la Ingeniería Civil.

Con este trabajo, se pretende potenciar el tráfico de mercancías por ferrocarril por las ventajas que este lleva consigo:

- Es posible transportar mayores cantidades de material en menos tiempo.
- El coste es menor que el del transporte por carretera.
- Es un medio de transporte más seguro.
- Menos contaminante para el medio ambiente.
- Facilita el comercio con destinos más lejanos.
- Aporta competitividad a las empresas.

Rebeca Seoane Barrán

3. TRÁFICO DE MERCANCÍAS

En este apartado se pretende dar una idea del volumen de material que se transportaría a través de este ramal y de los destinos de las mercancías.

La fábrica de Santiago de Compostela recibe al día en torno a 2.500 toneladas de madera y 130 toneladas de fuel. Por otra parte, diariamente salen de la fábrica 270 m³ de tablero desnudo y 560 m² de melamina. La fábrica trabaja 24 horas al día, 30 días al mes, los 12 meses del año, sin pausa. Por lo tanto, esto traduce nuestros datos a una entrada total de 75.000 toneladas de madera al mes y 3.900 toneladas de fuel. En cuanto a ventas, tendríamos 8.100 m³ de tablero desnudo y 16.800 m² de melamina.

La madera que llega a la fábrica proviene en mayor medida de los montes gallegos, más en concreto, de los más próximos a la capital compostelana. Además, se reciben maderas de las zonas de las regiones de León y Zamora.

La salida de mercancías desde Santiago se dirige fundamentalmente a la península: Cataluña, Valencia, zona centro, Andalucía, zona norte, Portugal y, por supuesto, Galicia.

Dentro de nuestra comunidad autónoma, las mercancías de la fábrica salen hacia los puertos de A Coruña, Vilagarcía de Arousa y Vigo. Solo hacia éstos son enviados 340 m³ de tablero al día, 10.200 m³ al mes. El 50% del transporte del puerto de Vilagarcía es de Finsa, desde allí entran materias primas para la fábrica y salen tableros. Las 130 toneladas de fuel que recibe la fábrica diariamente llegan desde este puerto. El tráfico de

material hacia el puerto de Vigo también es importante, desde donde se envían contenedores a Estados Unidos, Sudamérica, Egipto o Dubái.

Para el transporte que tiene como destino otros puntos de la península, este ramal ferroviario sería también de importante ayuda. La idea sería crear centros de distribución a donde se enviaría el volumen grueso, desde estos centros se utilizarían camiones para distribuir las mercancías a los diferentes destinos. La propuesta es factible ya que podrían enviarse allí mercancías procedentes de otras fábricas de la maderera.

Además, podríamos llegar hasta otros países europeos a donde también se transportan mercancías fabricadas en Santiago, como Italia, Francia, Alemania y Holanda. El ferrocarril haría de Finsa un grupo más capaz frente a sus competidores europeos.

Para terminar, se pretende estimar el número de trenes que serían necesarios para suplir las necesidades de la fábrica. De las mercancías que salen, el 100% podrían transportarse mediante ferrocarril. El fuel, que como hemos dicho proviene del puerto de Vilagarcía, llegaría también en tren. Por último, de la madera, se garantiza la llegada por ferrocarril de la proveniente de León y Zamora, que constituye aproximadamente un 15% de la total. La madera procedente de los montes gallegos la dejaremos fuera de estos cálculos porque se desconocen las cantidades que llegan de cada zona, por lo tanto, no se puede aportar un dato de cuántas aprovecharían este ramal.

Para realizar los cálculos sabemos que la densidad del tablero es de 750 kg/m³ y la de la melamina de 1.570 kg/m³: Considerando que cada vagón soporta 24 toneladas, estimamos que:

Rebeca Seoane Barrán

- Entrarían en la fábrica 16 vagones con madera al día y 6 vagones de fuel, 22 vagones diarios en total.
- Saldrían de la fábrica 9 vagones de tablero al día y menos de 1 de melamina, 10 en total.

Con estos datos y con trenes de 12 vagones, concluimos que entrarían 2 trenes a la fábrica cada día y saldría 1.

4. ANÁLISIS DEL PROBLEMA

El trazado de las alternativas está condicionado por diferentes factores. En el Plano 1 del Anejo 3: Estudio de Alternativas, se ubican estos factores en sus respectivos puntos de la zona de estudio. En el Anejo 4: Fotográfico, se muestran fotografías de los mismos. A continuación, se explican sus características:

• Eje atlántico y vía antigua

Las instalaciones de Finsa se encuentran a tan solo 1,2 quilómetros del eje Atlántico. Las tres alternativas que se proponen parten de este eje entre la salida del túnel y el cruce del ferrocarril con la N-550.

La vía antigua también se encuentra en la zona a estudiar. Disponía de otro túnel colindante al actual y continuaba con un radio más cerrado cruzando el pueblo de A Sionlla de Arriba. Esta línea se encuentra hoy en día totalmente desmantelada, aunque todavía se aprecia la estructura de asiento y los restos de balasto.

Parque empresarial de A Sionlla

Entre la empresa maderera y el eje atlántico se encuentra el reciente parque empresarial de A Sionlla, que cuenta con una extensión de 1,4 millones de metros cuadrados. Fue inaugurado en noviembre de 2.012 aunque aún está a la espera de inquilinos que lo ocupen.

Este condicionante es el que implica que el nuevo ramal se desarrolle tras la salida del túnel, para no atravesar suelo industrial.

- 1 Parque empresarial de A Sionlla
- 2 Futura terminal de transporte ferroviaria
- 3 Periférico

Rebeca Seoane Barrán

Futura terminal de transporte ferroviaria

De los 1,4 millones de metros cuadrados que posee el parque empresarial, 72.000 se encuentran reservados para la futura construcción de una terminal de transporte ferroviaria, aneja al eje atlántico a su cruce con la carretera de Lavacolla (A-54).

Éste ha sido otro importante condicionante porque ofrece la posibilidad de crear un ramal ferroviario de una sola vía, de forma que si un tren que saliese de la maderera quisiera ir en dirección a A Coruña, pararía en la terminal de transporte ferroviaria y la locomotora cambiaría de extremo.

Núcleos rurales

En nuestra zona de estudio se encuentran las aldeas de A Sionlla de Arriba y A Sionlla de Abaixo, con 91 y 97 habitantes respectivamente. A Sionlla de Arriba está atravesada por la antigua vía de tren.

Estos núcleos condicionan el paso de las alternativas intentando no afectar a ninguna vivienda, o a las menos posibles, así como respetando sus viales o reponiéndolos en caso de ser necesario.

Periférico

Bordeando el parque empresarial de A Sionlla y las instalaciones de Finsa, se está construyendo un tramo del futuro periférico, que se encuentra todavía inacabado. Este vial ha sido determinante para el trazado de las alternativas. Su cruce es inevitable y un paso superior no sería factible ya que exigiría una cota muy superior a la del resto del terreno. Se ha trabajado, por tanto, con un paso inferior hincado.

El paso inferior bajo el periférico ha condicionado el alzado de las alternativas tanto antes como después. La rasante se ha adecuado a partir del paso inferior hacia ambos lados y el resto de cruces con viales y la estación de mercancías han venido impuestos para poder respetar el periférico.

Río

El Rego da Sionlla discurre por la zona de estudio y las tres alternativas lo cruzan. Ha sido canalizado para el paso del periférico mediante un tubo de drenaje transversal y se actuará de la misma forma para este proyecto.

Relieve del terreno

El relieve del terreno es siempre un importante condicionante cuando se trata de obras lineales, en este caso ha sido un problema ya que por tratarse de un eje ferroviario de mercancías no se ha trabajado con pendientes superiores a las 15 milésimas, lo que no permite una terminal de mercancías a cota similar a la de la fábrica.

Medio Ambiente

Las características ambientales de una zona constituyen un factor esencial a la hora de proyectar cualquier obra. Para el trazado de este anteproyecto se ha estudiado el medio físico y biótico de nuestro ámbito y se describen detalladamente en el Anejo 1: Estudio ambiental.

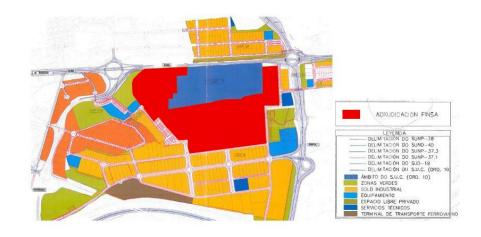
La vegetación más abundante son los bosques ribereños y los prados de siega, se encuentra también alguna pequeña carballeira que ha sido evitada en el paso del ferrocarril. Respecto a la fauna, en el Anejo 1 se

Rebeca Seoane Barrán

expone un inventario de las especies existentes en la zona. Cabe destacar que no se afecta a la Red Natura.

Características geológicas y geotécnicas

Las características de los materiales por los que discurre el trazado y el comportamiento mecánico de las rocas y suelos afectados, son también un condicionante relevante. En el Anejo 2: Geológico-geotécnico se describen estos aspectos.


En la zona destaca la presencia de la Formación de Órdenes al norte y el Macizo de Santiago al sur.

Expropiaciones

Dado el carácter meramente académico de este anteproyecto, no se ha realizado un estudio parcelario de la zona afectada, sino que se ha medido la superficie que es necesario expropiar, que conforma la franja de dominio público creada con la nueva infraestructura, atendiendo a lo dispuesto por la Ley 39/03,17 de Noviembre del Sector Ferroviario.

La superficie de expropiación comprende una franja de ocho metros de ancho situada a cada lado de la plataforma que ocupa el ferrocarril.

Hay que tener en cuenta los terrenos que en la actualidad ya pertenecen al Grupo Finsa. Se muestran en la próxima imagen en color rojo:

5. CRITERIOS DE DISEÑO

El trazado ha sido realizado con el programa informático CLIP. En el siguiente apartado se detallan los condicionantes técnicos que guiaron la ejecución del proyecto.

Para el diseño del trazado de la vía se han seguido las instrucciones dadas por la norma NRV 0-2-0.0 "Parámetros Geométricos", en su apartado de "nuevas líneas y desdoblamientos de actuales con modificaciones de trazado".

Se toman, como datos iniciales para el trazado de la nueva línea ferroviaria, los siguientes:

-Velocidad de proyecto: 80 km/h

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

-Pendiente máxima: 15 mm/m

-Peralte máximo: 160 mm

-Radio mínimo de las alineaciones circulares: 300 metros

-Radio de curvatura mínimo del acuerdo vertical: 1.300 m

-Longitud mínima de acuerdo vertical: 70 m

-Aceleración centrífuga sin compensar máxima: 0,65 m/s²

Trazado en planta

En el presente proyecto, para definir el trazado, se ha fijado una velocidad de 80km/h para los trenes más rápidos y de 30km/h para los trenes más lentos.

Respecto a la longitud de la curva de transición, para evitar problemas derivados de esfuerzos de torsión sobre el chasis de los vehículos, entre dos alineaciones circulares existe siempre una recta de longitud mínima de 60 metros.

Trazado en alzado

La longitud de la curva de transición, según recogen las NRV ha de ser superior a 70 metros. Por otra parte, la pendiente máxima será de 15 milésimas.

Sección tipo

La nueva línea de ferrocarril es de vía única con ancho RENFE (1668 mm), adaptable en un futuro a ancho internacional.

A continuación se resumen los parámetros geométricos adoptados:

-Ancho de vía: 1,668 m

-Ancho de plataforma: 8 m

-Ancho de hombro de balasto: 1 m

-Pendiente banqueta de balasto: 5H/4V

-Espesor balasto bajo traviesa en eje de carril: 0,20 m

-Espesor de subbalasto: 0,20 m

-Espesor de capa de forma: 0,40 m

-Pendiente transversal de capa de forma y subbalasto: 5%

-Talud exterior de plataforma en terraplén: 3H/2V

6. SUPERESTRUCTURA DE LA VÍA

Para el dimensionamiento y descripción de los elementos que componen el camino de rodadura se han seguido las prescripciones indicadas en las siguientes normas:

Rebeca Seoane Barrán

NRV 0-2-0.0. "Parámetros geométricos"

NRV 2-1-0.0. "Obras de tierra. Calidad de la Plataforma"

NRV 2-1-0.1. "Obras de tierra. Capas de asiento ferroviarias"

NRV 3-1-2.1. "Traviesas y sujeciones"

NRV 3-4-1.0. "Balasto. Dimensionamiento de la banqueta"

Vamos a suponer que la futura vía pertenece a la misma categoría que la línea Santiago-A Coruña de la cual parte. Ésta, según la NRV 3-4-1.0, pertenece a la categoría 2, con un tráfico ficticio (Tf) comprendido entre 14.000 y 7.000 toneladas.

Del proyecto de urbanización del parque empresarial de A Sionlla, hemos podido extraer que los terrenos que subyacen bajo el manto vegetal (que presenta un espesor medio de 50 cm), fue clasificado como tolerable o seleccionado, de acuerdo con la clasificación establecida en el PG-3. Así, se ha considerado que trabajamos con un suelo soporte QS2, por lo que, para adoptar una plataforma P3 será necesario extender una capa de forma de 40 cm. A partir de estos datos, se dimensiona la banqueta de balasto.

Por lo tanto, siendo QS2 la calidad del suelo soporte y P3 la capacidad portante de la plataforma, a partir de la figura 4.2. y 5.1.b de la NRV 3-4-1.0. se obtienen los siguientes espesores:

- Capa de balasto de 20 centímetros de espesor.
- Capa de subbalasto de 20 centímetros de espesor.

- Capa de forma de 40 centímetros de espesor.

El ancho del hombro de la banqueta será de 100 cm.

Se fija la relación invariable de 5H/4V, para el talud del balasto en la banqueta.

La pendiente transversal de la capa de forma es del 5%.

El balasto que se deberá utilizar para la construcción de la vía será el tipo A. Este es el tipo de balasto exigido por la norma de RENFE NRV 0-2-0.0 "Parámetros geométricos". La extracción se realizará de las canteras de balasto homologadas por RENFE.

Se dispone un carril UIC-54 de 54 kg/m y de traviesas polivalentes PR-90 (traviesa monobloque de hormigón). Las traviesas se colocarán a 60 cm entre ejes. La sujeción que se va a utilizar en este proyecto, es la sujeción elástica Vossloh para traviesa monobloque polivalente PR-90 y carril UIC-54.

7. APARATOS DE VÍA

Para la definición de los desvíos se ha seguido lo dispuesto en la normativa de RENFE NRV 3-6-0.0. "Desvíos. Descripción General" y NRV 3-6-0.1. "Desvíos. Características de los tipos y modelos".

Se escogen desvíos de tipo C que tiene la ventaja de permitir velocidades máximas por vía directa de 200 km/h, van montados sobre traviesas de

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

madera dura creosotada u hormigón. La sujeción es elástica y permiten el posible cambio en un futuro de carril UIC-54 a UIC-60.

Para la desviación de la primera alternativa se dispondrá del siguiente desvío:

DS-C-54-500-0.075-CR-I

Donde:

- DS: desvío sencillo.
- C: tipo C (calidad).
- 54: carril UIC-54.
- 500: radio de la vía desviada.
- 0.075: tangente del ángulo de cruzamiento.
- CR: corazón recto.
- I: desvío a la izquierda. (El sentido se determina situándose en el comienzo del cambio y mirando hacia el cruzamiento.)

Para la segunda y la tercera alternativa, como la velocidad de circulación ha de ser relativamente más baja, pues los trazados se desarrollan cruzando núcleos de población, no es necesario que sea muy amplio el radio de la vía desviada, reduciendo así la longitud de los aparatos de vía. Por tanto, para las alternativas dos y tres se eligen respectivamente los siguientes tipos:

- DS-C-54-318-0.09-CR-I
- DS-C-54-318-0.09-CR-D

Por último, el desvío escogido para el ramal Finsa-Santiago de la tercera alternativa, es similar a los anteriores:

DS-C-54-318-0.09-CR-I

8. TERMINAL DE MERCANCÍAS

El tramo final de las tres alternativas es una pequeña terminal de carga y descarga de mercancías. Ésta, ha estado totalmente condicionada por el obligado paso inferior bajo el periférico, tras el cual, se continúa con una pendiente máxima de 15 milésimas, pero aún así, la llegada a Finsa se produce con una cota 19 metros por debajo de la de la fábrica.

La terminal, que cuenta con una longitud de 273 metros, está formada por el eje principal y una segunda vía de apartadero. A ambos lados de éstas, se efectuaría una explanación de 20 metros. El resto de la explanación, ya formaría parte del futuro proyecto de expansión de Finsa. El alcance del presente anteproyecto es definir la playa de vías de la terminal. No se incluyen los accesos, instalaciones y resto de explanación necesaria, que serían objeto de un proyecto independiente.

Una posible solución, sería dejar la terminal enterrada y crear un pequeño vial que discurra entre la fábrica y la terminal, ya que se encuentran apenas a una distancia de unos 50 metros. Los acopios de material podrían efectuarse junto a la fábrica o en la propia terminal.

9. PROPUESTA DE ALTERNATIVAS

El objetivo de este apartado es definir de forma detallada las 3 alternativas que se han considerado para el proyecto.

Alternativa 1

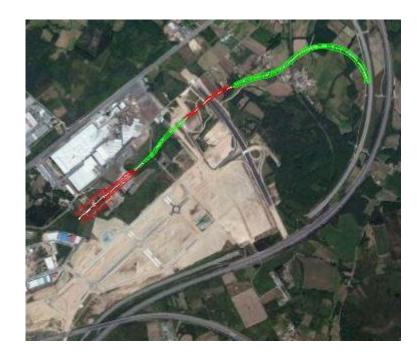
La alternativa 1 comienza a la salida del túnel ferroviario y continúa con una longitud de 2.574 metros. Esta alternativa pretende evitar el núcleo de población y realizar el menor número de obras posible. Es la alternativa que presenta unos movimientos de tierras más compensados con 124.736 m³ de desmonte y 96.291 m³ de terraplén. Además, es la única que presenta un balance positivo de los movimientos de tierra. La pendiente mínima es de 14,88 milésimas y el radio mínimo de 300 m.

Esta alternativa exige tres obras de paso. En primer lugar, en el PK 0+870 nos cruzamos con un camino que exigiría un paso inferior. En segundo lugar, en el PK 1+380 se plantea un paso inferior bajo el periférico, el cuál debe ser hincado. Por otra parte, aparece posteriormente en el PK 1+676 un vial de acceso al parque empresarial de A Sionlla, que implica la construcción de un paso superior sobre nuestro ramal. Además, la alternativa tiene que cruzar dos veces el río y en ambos casos éste sería canalizado mediante un tubo de drenaje transversal.

Posee una sola vía y un único desvío, por lo tanto, la salida de un tren desde las instalaciones de la maderera sólo podría ser en dirección a Santiago y no en dirección a A Coruña. Para resolver esta limitación, el tren pararía en la prevista terminal de transporte ferroviaria del parque empresarial de A Sionlla y la locomotora se cambiaría de extremo. Se procedería de la misma forma si el sentido del tren fuese de entrada en la

fábrica desde A Coruña se efectuaría una parada en la futura terminal para cambiar de lugar la locomotora, invirtiendo así el sentido de avance.

Como análisis inicial, cabe destacar que esta alternativa es la que plantea un menor número de cruces con otros viales y la que menos perjudica a la población cercana.


Alternativa 2

La segunda alternativa parte de un punto intermedio entre el comienzo de las otras dos, entre la salida del túnel y el cruce del eje atlántico con la N-550. Esta es la alternativa más corta con una longitud de 2.520 metros, sin embargo, es la que presenta el peor de los movimientos de tierras con 105.589 m³ de desmonte y 234.054 m³ de terraplén. La pendiente mínima es de 15 milésimas y el radio mínimo de 300 m.

La alternativa 2 plantea tres pasos inferiores, además de un paso inferior hincado y un paso superior. Los pasos inferiores se ejecutan para una carretera existente paralela al eje atlántico en el PK 0+116 y para las dos carreteras que dan acceso a la aldea de A Sionlla de Arriba en los PK 0+535 y PK 0+801. Igual que en la alternativa número uno, se exige un paso inferior hincado bajo el periférico, en este caso en el PK 1+314, y un paso superior para el vial de acceso al parque empresarial en el PK 1+611. Por otra parte, el río es cruzado una sola vez e igualmente sería canalizado mediante un tubo de drenaje transversal.

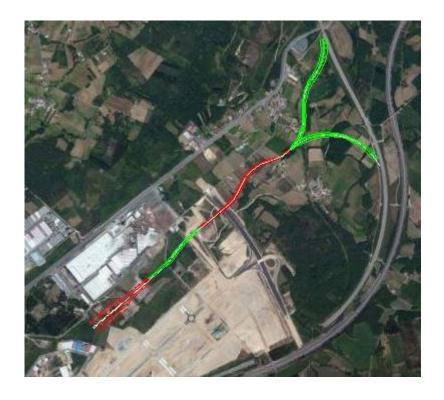
La alternativa, igual que la primera, posee una única vía y un solo desvío. Se plantea por tanto para ello una solución igual a la propuesta para la alternativa 1.

Esta alternativa aunque es menor que la anterior, supone un mayor número de obras de paso y afecta considerablemente al núcleo de población.

Alternativa 3

La alternativa número tres parte del eje atlántico un poco antes de su cruce con la nacional 550. Es la más larga de las tres con 3.346,50 metros de longitud. Los movimientos de tierras son de 153.901 m³ de desmonte y 249.915 m³ de terraplén. La pendiente mínima es de 15 milésimas y el radio mínimo de 300 m.

Rebeca Seoane Barrán


La tercera alternativa, es la que tiene una mayor afección sobre viviendas, viales y núcleos de población en general. Implicaría el movimiento de dos viviendas y el derribo de la antigua estación de ferrocarril. En cuanto a los núcleos de población, afecta a A Sionlla de Arriba y, en este caso, también a A Sionlla de Abaixo.

La alternativa 3, además del paso inferior hincado bajo el periférico en el PK 1+450 y el paso superior del vial de acceso sobre nuestro ramal en el PK 1+750, supone un paso inferior para una carretera interceptada en el PK 0+618 del ramal Finsa-Santiago. Esta alternativa, exige también la reposición de dos carreteras y sus respectivas obras de paso. Las carreteras tendrían que cambiar su curso porque no es posible en ambos casos mantener los trazados originales considerando la pendiente máxima y el gálibo mínimo en los puntos de cruce. Por una parte, en el eje principal, la carretera que cruzaba el ramal en el PK 0+972, pasará ahora por el PK 1+130 y será un paso superior a nuestra vía. Por otra parte, en el ramal Finsa-Santiago, la carretera que cruzaba en el PK 0+347, pasará ahora por el PK 0+270 y será un paso inferior a nuestra vía.

El río tiene que cruzarse en uno de los puntos y se canalizaría mediante un tubo de drenaje transversal.

Lo positivo de esta alternativa es que, aunque es de vía única, dispone de dos desvíos, por lo tanto, en este caso no sería necesario trasladar el tren hasta la terminal ferroviaria, sino que la entrada y salida serían en ambas direcciones.

A pesar de esta ventaja, se concluye que se trata de una alternativa con un mayor impacto social que las anteriores y consecuentemente menos viable.

10. CRITERIOS DE EVALUACIÓN

Para la realización del estudio de alternativas se han considerado los siguientes criterios:

- Trazado
- Ambiental y social

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

- Económico
- Funcional

Criterio de trazado

Se ha analizado tanto el trazado en planta como el trazado en alzado. En primer lugar, se tiene en cuenta la longitud de la alternativa. En lo que respecta a la planta, se ha querido tener en cuenta el porcentaje de longitud que se realiza en recta y en radio mínimo. Como el radio mínimo es de 300 metros para las tres alternativas, se ha decidido juzgarlo de esta manera. De la misma forma, se analiza el trazado en alzado donde se quieren valorar las pendientes máxima, e igualmente, como la pendiente máxima es de 15 milésimas en los tres casos, se ha tenido en cuenta el porcentaje de trayecto que se efectúa con esta pendiente.

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Longitud del trazado	2.574 m	2.520 m	3.346,5 m
Porcentaje de longitud recta	47%	50%	39%
Porcentaje de long. en radio mínimo	31%	34%	36%
Porcentaje de long. en pendiente máxima	24%	64%	37%

Criterio ambiental y social

Con este criterio, se quieren juzgar las consecuencias de los trazados de las distintas alternativas sobre el medio ambiente y los núcleos de población.

Se han tenido en cuenta los movimientos de tierras, ya que cuanto menores sean se minimizará el impacto ambiental. Hemos valorado también la afección a cauces fluviales. No menos importante, son el efecto barrera y el impacto paisajístico, el primero por una cuestión de movilidad de personas y animales y el segundo por la importancia de conservar los entornos rurales.

En lo que a los núcleos de población se refiere, hemos analizado la afección a viviendas y a suelos rurales.

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3	
Desmonte	124.736 m³	105.589 m³	153.901 m³	
Terraplén	96.381 m³	234.054 m³	249.915 m³	
Diagrama de masas	28.355 m³	(-) 128.465 m ³	(-) 96.014 m ³	
Longitud de cauce afectado 93,70 m		35 m	35 m	
Viviendas afectadas 0		0	2	
Afección a suelo rural	22.080 m²	21.024 m²	23.212 m ²	
Efecto barrera bajo		medio	alto	
Impacto paisajístico	bajo	medio	alto	

Criterio económico

Para poder efectuar una comparación del coste que supondría cada una de las alternativas, se ha seguido un método homogéneo de análisis. Se realizaron presupuestos de las partidas más importantes y a continuación se resumen por capítulos. El presupuesto completo puede consultarse en el Anejo 3: Estudio de alternativas. Mediante este criterio se juzga el subtotal obtenido para cada una de ellas.

ALTERNATIVA 1				
CAPÍTULO	COSTE €			
Movimiento de tierras	2.090.844,45			
Drenaje	635.310,00			
Estructuras	670.500,00			
Superestructura de la vía, capa de forma y subbalasto hasta terminal	1.188.039,48			
Terminal	606.401,38			
Impacto ambiental	231.660,00			
Instalaciones	575.250,00			
Varios	167.453,00			
SUBTOTAL = 6.165.458,31 €				

ALTERNATIVA 2				
CAPÍTULO	COSTE €			
Movimiento de tierras	2.222.948,00			
Drenaje	621.810,00			
Estructuras	807.000,00			
Superestructura de la vía, capa de forma y subbalasto hasta terminal	1.163.727,96			
Terminal	606.401,38			
Impacto ambiental	226.800,00			
Instalaciones	561.750,00			
Varios	119.091,00			
SUBTOTAL = 6.329.528,34 €				

ALTERNATIVA 3				
CAPÍTULO	COSTE€			
Movimiento de tierras	2.390.597,00			
Drenaje	828.435,00			
Estructuras	822.600,00			
Superestructura de la vía, capa de forma y subbalasto hasta terminal	1.665.193,40			
Terminal	606.401,38			
Impacto ambiental	301.185,00			
Instalaciones	768.375,00			
Varios	211.395,50			
SUBTOTAL = 7.594.182,28 €				

La alternativa 1 es que la que supone un gasto menor debido a que los terraplenes de ésta son menores y presenta menos estructuras de paso. Por el lado contrario, la tercera alternativa sería la que tendría un coste económico mayor principalmente por tener una mayor longitud.

Criterio funcional

Para terminar, hemos de analizar la funcionalidad de las alternativas. Por una parte, la alternativa número 3 es la única que ofrece un servicio de transporte bidireccional, tanto hacia A Coruña como hacia Santiago de Compostela, sin necesidad de hacer una parada en la futura terminal ferroviaria para cambiar de extremo la locomotora. Este aspecto supone una clara ventaja para la tercera alternativa, que resulta más rápida y eficaz.

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

Por otro lado, hemos de valorar la integración de la alternativa en la zona de estudio. En este sentido, la que merece una evaluación más positiva es la primera. Es la más cerrada de las tres y, obviando la contaminación acústica y visual, no afecta a los núcleos rurales ni a los terrenos que se encuentran entre ellos. Además, es la que implica un menor número de obras de paso. La segunda alternativa se desarrolla en torno a A Sionlla de Arriba y ocupa parte de los terrenos parcelados colindantes. Por último, en lo que respecta a integración, la alternativa número tres recibiría la peor puntuación. Ésta, es la más alargada, afecta en mayor medida a los suelos rurales de la zona, implica el movimiento de dos viviendas y de la antigua estación de tren, así como la reposición de dos viales secundarios que deberían modificar parte de su trazado.

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Comunicación	unidireccional	unidireccional	bidireccional
Integración	buena	regular	mala

11. EVALUACIÓN DE LAS ALTERNATIVAS

Para poder evaluar las alternativas de la forma más objetiva posible se llevará a cabo un proceso de homogeneización de las puntuaciones de las alternativas para cada subcriterio. Así pues, a la alternativa que presente el peor resultado se le asignará el valor 0, mientras que a la que presente el mejor le será asignado el valor 1. A la alternativa restante se le otorga un valor intermedio mediante interpolación lineal.

Para los casos en que las mediciones se valoren como buena, regular o mala se asignarán los valores 1, 0.5 y 0 respectivamente. En cuanto a los subcriterios de efecto barrera e impacto paisajístico, las valoraciones bajo,

medio y alto, se puntuarán también como 1, 0,5 y 0 respectivamente. Por último, en lo que respecta al subcriterio de comunicación, las alternativas unidireccionales obtendrán un 0 y la bidireccional un 1.

Haciendo la media de las puntuaciones de los subcriterios, se obtiene la puntuación asignada para cada criterio. Las puntuaciones resultantes de cada criterio para cada una de las alternativas y los pesos otorgados a los criterios forman la denominada Matriz Decisional.

Los pesos asignados son los siguientes:

Trazado 15 % Ambiental y social 35% Económico 20% Funcional 30%

A continuación se exponen las puntuaciones obtenidas y la Matriz Decisional consecuente.

Puntuaciones del criterio de trazado:

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Longitud del trazado	0,935	1	0
Porcentaje de longitud recta	0,72	1	0
Porcentaje de long. en radio mínimo	1	0,4	0
Porcentaje de long. en pendiente máxima	1	0	0,675
MEDIA	0,913	0,6	0,169

Rebeca Seoane Barrán

Puntuaciones del criterio ambiental y social:

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Desmonte	0,604	1	0
Terraplén	1	0,104	0
Diagrama de masas	1	0	0,2
Longitud de cauce afectado	0	1	1
Viviendas afectadas	1	1	0
Afección a suelo rural	0,52	1	0
Efecto barrera	1	0,5	0
Impacto paisajístico	1	0,5	0
MEDIA	0,7655	0,638	0,15

Puntuaciones del criterio económico:

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Coste	1	0,885	0
MEDIA	1	0,885	0

Puntuaciones del criterio funcional:

	ALTERNATIVA 1	ALTERNATIVA 2	ALTERNATIVA 3
Comunicación	0	0	1
Integración	1	0,5	0
MEDIA	0,5	0,25	0,5

Matriz Decisional:

	C1	C2	C3	C4
A1	0,913	0,765	1	0,5
A2	0,6	0,638	0,885	0,25
A3	0,169	0,15	0	0,5
Pesos	0,15	0,35	0,2	0,3

Donde:

A1: Alternativa 1

A2: Alternativa 2 A3: Alternativa 3

C1: Criterio de trazado

C2: Criterio ambiental y social

C3: Criterio económico C4: Criterio funcional

12. SELECCIÓN DE LA ALTERNATIVA A PROYECTAR

En el siguiente apartado se pretende llevar a cabo un proceso de selección mediante métodos multicriterio, utilizaremos tres: el de las medias ponderadas, el método PRESS y el método Electre.

12.1. Método de las medias ponderadas

El método de las medias ponderadas es el más sencillo de los tres que se van a realizar. El primer paso es homogeneizar la matriz decisional.

rias instalaciones de l'insa (Santiago de Composter

Rebeca Seoane Barrán

Matriz Decisional:

	C1	C2	C3	C4
A1	0,913	0,765	1	0,5
A2	0,6	0,638	0,885	0,25
A3	0,169	0,15	0	0,5
Pesos	0,15	0,35	0,2	0,3

Matriz homogeneizada:

	C1	C2	C3	C4
A1	1	1	1	1
A2	0,58	0,79	0,885	0
A3	0	0	0	1

El siguiente paso consiste en multiplicar los valores homogeneizados por los pesos correspondientes a cada criterio.

Matriz de valores ponderados:

	C1	C2	C3	C4
A1	0,15	0,35	0,2	0,3
A2	0,087	0,277	0,177	0
A3	0	0	0	0,3

Para finalizar, sumamos los valores ponderados de cada alternativa:

	TOTAL
A1	1
A2	0,541
АЗ	0,3

Por este método la alternativa seleccionada sería la ALTERNATIVA 1.

12.2. Método de Press

Este método trata de encontrar la alternativa más favorable comparando cada una de ellas y para todos los criterios, eligiendo como óptima aquella que sea mejor que las demás en el mayor número de criterios y a la vez menos débil.

De igual forma que para el método anterior, la matriz decisional se homogeniza y se multiplica por los pesos para conseguir la matriz de valores ponderados.

Matriz de valores ponderados:

	C1	C2	C3	C4
A1	0,15	0,35	0,2	0,3
A2	0,087	0,277	0,177	0
A3	0	0	0	0,3

stela) UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

A continuación, se calcula la matriz de dominación a partir de la siguiente expresión:

$$d_{ij} = \sum_{k=1}^{m} (vp_{ik} - vp_{jk}), \forall vp_{ik} > vp_{jk}, \quad i, j = 1,...,n$$

Matriz de dominación:

	A1	A2	A3
A1	0	0,466	0,7
A2	0	0	0,541
A3	0	0,3	0

A partir de esta matriz obtenemos dos valores claves que proporcionan el resultado de este método:

- D_i: es la suma de las filas y representa las ventajas de la alternativa i frente al resto.
- d_i: es la suma de las columnas y representa las ventajas del resto de las alternativas respecto a la alternativa i.

	A1	A2	A3	Di
A1	0	0,466	0,7	1,166
A2	0	0	0,541	0,541
A3	0	0,3	0	0,3
di	0	0,766	1,241	

Por último, dividimos D_i entre d_i. La solución óptima será la que proporcione el máximo de estos valores.

	D _i /d _i
A1	8
A2	0,706
A3	0,242

Por tanto, con este método la alternativa seleccionada también sería la ALTERNATIVA 1.

12.3. Método Electre

El método Electre es actualmente el método multicriterio discreto más conocido y utilizado.

Igual que los anteriores homogeniza la matriz decisional y multiplica por los pesos para llegar a la matriz de valores ponderados.

Matriz de valores ponderados:

	C1	C2	C3	C4
A1	0,15	0,35	0,2	0,3
A2	0,087	0,277	0,177	0
A3	0	0	0	0,3

A continuación, se calcula la matriz de índices de concordancia, como suma de los pesos de aquellos criterios para los cuales la alternativa ai es

igual o superior a la alternativa ak. En caso de empate se asigna la mitad del peso a cada alternativa.

Matriz de índices de concordancia:

	A1	A2	A3
A1		1	0,85
A2	0		0,7
A3	0,15	0,3	

Seguidamente, calculamos la matriz de índices de discordancia. Se obtiene como el cociente entre la mayor diferencia de los criterios para los que la alternativa a_i está dominada por la ak, dividiendo dicha cantidad por la mayor diferencia en valor absoluto entre los resultados alcanzados por la alternativa a_i y ak.

Matriz de índices de discordancia:

	A1	A2	A3
A1		0	0
A2	1		1
A3	1	0,923	

Se determina el umbral mínimo de concordancia a partir de los valores medios de los elementos de la matriz de índices de concordancia. Igualmente, calculamos el umbral máximo de discordancia como el valor medio de los elementos de la matriz de índices de discordancia en este caso.

Umbral mínimo de concordancia: c = 0,5

Umbral máximo de discordancia: d = 0,654

Se obtiene la matriz de dominancia concordante de tal forma que si un elemento de la matriz de índices de concordancia es mayor que c colocaremos un 1 en dicha posición, de ser menor o igual pondremos un 0

Matriz de dominancia concordante:

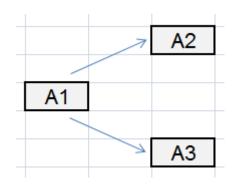
	A1	A2	A3
A1		1	1
A2	0		1
A3	0	0	

La matriz de dominancia discordante se consigue colocando un 1 cuando el elemento de la matriz de índices de discordancia es menor que d y un 0 si es mayor o igual que d.

Matriz de dominancia discordante:

	A1	A2	A3
A1		1	1
A2	0		0
A3	0	0	

A partir de las matrices de dominancia concordante y discordante se obtiene la matriz de dominancia agregada, cuyos elementos toman el valor 1 cuando elementos homólogos de las dos matrices son 1 y 0 en los demás casos.



Matriz de dominancia agregada:

	A1	A2	A3
A1		1	1
A2	0		0
A3	0	0	

Finalmente, se determina el grafo Electre.

Grafo Electre

Mediante este método, de nuevo, la alternativa seleccionada sería la ALTERNATIVA 1.

12.4. Conclusión

Tras este estudio y después de que todos los métodos coincidiesen en que la ALTERNATIVA 1 es la óptima, podemos concluir que esta es nuestra alternativa a proyectar.

13. ALTERNATIVA SELECCIONADA

En el presente apartado se recopilan los aspectos fundamentales que caracterizan a la alternativa seleccionada para dar una idea completa de la solución adoptada.

Este anteproyecto tiene por objeto conectar las instalaciones de la maderera Finsa mediante un nuevo ramal ferroviario con el Eje Atlántico. con motivo de superar la asignatura Trabajo de Fin de Grado de cuarto curso de la titulación de Grado en Tecnología de la Ingeniería Civil.

La alternativa 1 es la escogida para dar cabida a este proyecto. Parte del Eie Atlántico tras la salida del túnel mediante un desvío DS-C-54-500-0.075-CR-I. Se ha definido un ramal de vía única con un único desvío, pues el parque empresarial de A Sionlla, que se encuentra en la zona colindante, tiene prevista la apertura de una nueva terminal ferroviaria, dónde los trenes que saliesen desde Finsa en dirección a A Coruña, pararían para cambiar de extremo la locomotora...

El ramal tiene una longitud de 2.574 metros durante los cuales el espesor del firme es de 40 cm compuesto por dos capas: una capa de balasto de 20 cm y una de subbalasto de otros 20 cm, ambas con una pendiente transversal del 5% en su contacto con la capa de forma. La capa de forma es la capa de terminación de la plataforma y tendrá también un espesor de 40 cm.

Se dispondrá un carril UIC-54 de 54 kg/m y se tomarán traviesas polivalentes PR-90 (traviesas monobloque de hormigón). Las traviesas se colocarán a 60 cm entre ejes, por lo que el número de traviesas será de

Rebeca Seoane Barrán

1.667 unidades por quilómetro, tanto en tramos rectos como en tramos curvos.

La obra, se ejecutaría con unos movimientos de tierra de 124.736 m³ de desmonte y 96.291 m³ de terraplén hasta el comienzo de la terminal. Ésta supondría un desmonte de 455.003 m³ más. La pendiente máxima del ramal es de 15 milésimas y el radio mínimo de las alineaciones es de 300 metros.

La solución adoptada plantea tres obras de paso. La primera de ellas sería un paso inferior para un camino que interceptamos en el PK 0+870. En segundo lugar, en el PK 1+380 se exige un paso inferior hincado bajo el periférico, pues no podemos cortar el tráfico totalmente. La tercera y última consiste en un paso superior para un vial de acceso al parque empresarial de A Sionlla en el PK 1+676.

Además, el ramal cruza dos veces el Rego da Sionlla, en los PK 1+183 y PK 1+977, en ambos casos se canalizaría el río mediante un tubo de drenaje transversal.

En el PK 2+300 aparece la segunda vía de apartadero que constituye junto con el eje principal, la terminal de mercancías. Ésta tiene una longitud de 273 m y se expande 20 metros a cada lado de ambas vías. Para la terminal, se ha usado un desvío tipo A de tg 0.13. El alcance de este anteproyecto se limita a definir la playa de vías, no se incluyen los accesos, instalaciones y resto de explanación.

Por último, el presupuesto de la obra asciende a la cantidad de 9.660.240,21 €. Se presenta detallado en el Documento nº3: Presupuesto.

Se ha realizado un reportaje fotográfico que constituye el Anexo 4 dónde se pueden ver fotográfías de los aspectos condicionantes de la alternativa.

14. CONCLUSIÓN

Considerando que el presente anteproyecto está redactado de acuerdo con las normas vigentes sobre la materia y que contiene los documentos reglamentarios, se somete a su consideración por parte de la Escuela Técnica Superior de Caminos, Canales y Puertos de A Coruña (Universidade da Coruña).

A Coruña, a 4 de febrero de 2015

La autora del proyecto:

Rebeca Seoane Barrán

MEMORIA Página 24

UNIVERSIDADE DA CORUÑA

ANEJO 1: ESTUDIO AMBIENTAL

Página 25 **MEMORIA**

Página 26

Rebeca Seoane Barrán

ANEJO 1: ESTUDIO AMBIENTAL. ÍNDICE.

- 1. OBJETO DEL ANEJO
- 2. MEDIO FÍSICO
- 3. MEDIO BIÓTICO
- 4. MEDIDAS AMBIENTALES

Rebeca Seoane Barrán

1. OBJETO DEL ANEJO

El presente anejo tiene por objeto la descripción de la situación del medio en nuestra zona de estudio. El análisis del entorno es imprescindible para poder prever las alteraciones que causaría la ejecución de las obras. Para ello, se ha realizado un inventario ambiental donde se detallan diferentes aspectos del medio físico y biótico. Se concluye con algunas medidas preventivas que ayudarían a disminuir el impacto ambiental.

La consiguiente información ha sido proporcionada por el Concello de Santiago.

2. MEDIO FÍSICO

2.1. Geología

La geología de la zona ha sido tratada con detalle en el Anejo 2: Geológico-geotécnico. Se caracteriza por la presencia de la Formación de Órdenes al norte y el Macizo de Santiago en el sur de nuestro ámbito de estudio. Se destaca la presencia de rocas ultrabásicas, esquistos de Órdenes y gneises migmatíticos con sillimanita.

2.2. Hidrología

El único curso fluvial que discurre en el ámbito de estudio es el Rego da Sionlla. Este río se encuentra canalizado en su cruce con la antigua vía de tren y recientemente, durante la ejecución de las obras para el periférico, ha sido nuevamente canalizado, en este caso mediante un tubo de drenaje transversal. En el Anejo 4: Fotográfico se adjuntan fotografías de ambas canalizaciones.

2.3. Clima

Climatológicamente, esta zona constituye una de las más húmedas de España, dando el valor medio de la precipitación anual de 1.300 mm. Los meses más lluviosos corresponden a diciembre y enero con una precipitación mensual media de 160 a 170 mm, respectivamente; el mes más seco es, sin embargo, julio, con una precipitación mensual media de 30 mm. El número medio anual de días de lluvia es de 143 días. La temperatura media anual se puede estimar en unos 12º C. (Según datos del IGME).

3. MEDIO BIÓTICO

El estudio del medio biótico tiene como objetivo exponer las características más relevantes del medio natural vivo. Para ello, se estudian la vegetación y la fauna presentes en el área de estudio. Cabe mencionar que la Red Natura no se ve afectada por este proyecto.

3.1. Vegetación

Desde el punto de vista biogeográfico, el área de actuación se localiza íntegramente en la Región Eurosiberiana, subregión Atlántico Medioeuropea, superprovincia Atlántica, provincia Cántabro – Atlántica, sector Galaico – Portugués, subsector Compostelano, (Izco, 1987; Rivas et al., 1987).

A continuación, se detallan las principales formaciones vegetales del entorno:

Rebeca Seoane Barrán

Fraga, robledal o carballeira

Es el bosque autóctono pluriespecífico, aunque generalmente con dominancia de los robles o carballos. En la actualidad quedan representaciones de reducida extensión casi siempre en el fondo de los valles, vaguadas o regatos, en localidades que por su accidentada fisiografía, difícilmente pueden dar cabida a otros usos del suelo. En el Anejo 4: Fotográfico, se adjunta una fotografía de una de las carballeiras existentes en la zona de estudio.

Sotos de castaños

El castaño no suele formar de manera natural bosques no específicos, sino que aparece casi siempre en mezcla con otras especies constituyendo el bosque autóctono o fraga. Pero la enorme utilidad que este árbol ha tenido en el pasado para el campesino gallego, especialmente por sus frutos, hizo que se le favoreciese artificialmente en detrimento de las otras especies de la fraga e incluso que se hiciesen repoblaciones con castaños; éste fue el origen de los sotos de castaños que tan abundantes fueron en Galicia en el pasado.

Galerías arbóreas

Bosques ribereños que siguen los ríos y arroyos de cierta entidad. Están representadas las asociaciones Carici laevigatae - Alnetum y Carici pendulae - Alnetum de Alnion glutinosae. En el Anejo 4: Fotográfico se expone una fotografía que muestra los salgueiros y ameneiros que caracterizan el paso del Rego da Sionlla.

Prados de siega

Las condiciones climáticas y edáficas de este fragmento del país gallego son especialmente aptas para el natural desarrollo de las especies herbáceas, por lo que son frecuentes los prados de siega y otras formaciones de herbazales en mezcla o alternancia con comunidades de matorral. Son también los pastizales implantados artificialmente.

Matorrales sobre sustrato no encharcado

En general, se corresponden con una etapa de degradación bastante avanzada del bosque climácico. La formación típica es un tojo-brezal en su sentido más amplio.

Formaciones arboladas de especies foráneas

Los pinares de "pino bravo" o "pino del país" (Pinus pinaster) junto con los eucaliptales, son las formaciones arboladas que imprimen mayor carácter al paisaje vegetal de estas tierras. El Pinus pinaster aparece por gran parte del territorio objeto de estudio, pudiendo aparecer mezclado con Eucalyptus globulus, Pinus radiata, Quercus robur, Castanea sativa, etc.

3.2. Fauna

El interés de analizar las comunidades faunísticas radica, por un lado en la conveniencia de preservarlas como recurso y por otro, en ser un excelente indicador de las condiciones ambientales de un determinado territorio.

A continuación se recoge el inventario de las especies faunísticas que habitan en las zonas interceptadas por las alternativas propuestas:

Rebeca Seoane Barrán

Anfibios

- Sapo partero común (Alytes obstetricans)
- Sapo corredor (Bufo calamita)
- Salamandra rabilarga (Chioglossa lusitánica)
- Sapillo pintojo ibérico (Discoglossus galganoi)
- Ranita de San Antonio (Hyla arbórea)
- Rana patilarga (Rana ibérica)
- Rana común (Rana perezi)
- Rana bermeja (Rana temporaria)
- Tritón ibérico (Triturus boscai)
- Tritón palmeado (Triturus helveticus)
- Tritón jaspeado (Triturus marmoratus)

Aves

- Azor Común (accipiter gentilis)
- Gavilán Común (Accipiter nisus)
- Mito (Aegithalos caudatus)
- Martín Pescador (Alcedo atthis)
- Bisbita Arbóreo)
- Vencejo Común (Apus apus)
- Búho Chico (Asio otus)
- Mochuelo Europeo (Athene noctua)
- Busardo Ratonero (Buteo buteo)
- Chotacabras Gris (Caprimulgus europaeus)
- Agateador Común (Certhia brachydactyla)
- Ruiseñor Bastardo (Cettia cetti)
- Cigüeña blanca (Ciconia ciconia)
- Mirlo acuático (Cinclus cinclus)

- Aguilucho Cenizo (Circus pygargus)
- Buitrón (Cisticola juncidis)
- Cuco Común (Cuculus canorus)
- Avión Común (Delichon urbica)
- Pico Picapinos (Dendrocopos major)
- Escribano Montesino (Emberiza cia)
- Ecribano Soteño (Emberiza cirlus)
- Petirrojo (Erithacus rubecula)
- Halcón Peregrino (Falco peregrinus)
- Alcotán Europeo (Falco subbuteo)
- Cernícalo Vulgar (Falco tinnunculus)
- Cogujada Común (Galerida cristata)
- Zarcero común (Hippolais polglotta)
- Avión Roquero (Hirundo rupestris)
- Golondrina Común (Hirundo rústica)
- Alcaudón Dorsirrojo (Lanius collurio)
- Totovía (Lullula arbórea)
- Milano Negro (Milvus migrans)
- Lavandera blanca (Motacilla alba)
- Lavandera cascadeña (Motacilla cinérea)
- Oropéndola (Oriolus oriolus)
- Autillo Europeo (Otus scops)
- Carbonero Garrapinos (Parus ater)
- Herrerillo Común (Parus caeruleus)
- Herrerillo Capuchino (Parus cristatus)
- Carbonero Común (Parus major)
- Colirrojo Tizón (Phoenicurus ochruros)
- Mosquitero Común (Phylloscopus collybita)
- Pito Real (Picus viridis)

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

- Acentor Común (Prunella modularis)
- Camachuelo Común (Pyrruhula pyrrhula)
- Reyenzuelo Listado (Regulus ignicapillus)
- Avión Zapador (Riparia riparia)
- Tarabilla Común (Saxicola torquata)
- Trepador Azul (Sitta europea)
- Cárabo Común (Strix aluco)
- Curruca Capirotada (Sylvia atricapilla)
- Curruca Zarcera (Sylvia communis)
- Curruca Cabecinegra (Sylvia melanocephala)
- Zampullín Común (Tachybaptus ruficollis)
- Chochín (Troglodytes troglodytes)
- Lechuza Común (Tyto alba)
- Abubilla (Upupa epops)

Mamíferos

- Lobo (Canis lupus)
- Almizclera o Desmán ibérico (Galemys pyrenaicus)
- Nutria (Lutra lutra)
- Armiño (Mustela erminea)
- Murciélago de Geoffroy (Myotis emarginatus)
- Murciélago Ratonero Grande (Myotis myotis)
- Murciélago común (Pipistrelllus pipistrellus)
- Murciélago Grande de Herradura (Rhinolophus ferrumequinum)
- Murciélago Pequeño de Herradura (Rhinolophus hippossideros)

Peces

- Boga de río (Chondrostoma)

- Lamprea marina (Petromyzon marinus)
- Trucha común (Salmo trutta fario)

Reptiles

- Lución (Anguis fragilis)
- Culebra lisa europea (Coronella austriaca)
- Culebra lisa meridional (Coronella girondica)
- Culebra de escalera (Elaphe scalaris)
- Lagarto verdinegro (Lacerta schreiberi)
- Culebra viperina (Natrix maura)
- Culebra de collar (Natrix natrix)
- Lagartija ibérica (Podarcis hispanica)

4. MEDIDAS AMBIENTALES

A la hora de establecer medidas, se parte de la premisa de que siempre es mejor no producir alteraciones que establecer su medida correctora. Las medidas correctoras suponen un coste adicional que puede evitarse y en la mayoría de los casos solamente eliminan una parte de la alteración. Por estos motivos, se proponen una serie de medidas preventivas y normas de buenas prácticas que deben llevarse a cabo durante la ejecución de las obras, ayudando así a reducir el impacto ambiental:

- Implantación de una barrera vegetal.
- Reducción de emisión de polvo y partículas.
- Protección del sistema hidrológico.
- Limitaciones al movimiento de la maquinaria.
- Revegetación de desmontes y terraplenes.
- Mantenimiento de las características de suelo vegetal.

ANEJO 2: GEOLÓGICO-GEOTÉCNICO

MEMORIA Página 31

ANEJO 2: GEOLÓGICO-GEOTÉCNICO. ÍNDICE.

- 1. OBJETO DEL ANEJO
- 2. ESTRATIGRAFÍA
- 3. TECTOTECNIA
- 4. MAPA GEOLÓGICO
- 5. DESMONTES Y TERRAPLENES
- 6. CATEGORÍA DE LA EXPLANADA

Rebeca Seoane Barrán

1. OBJETO DEL ANEJO

El objetivo del consiguiente anejo es describir las características de los materiales por los que discurre el trazado y el comportamiento mecánico de las rocas y suelos afectados. Los mapas y planos que se recogen han sido obtenidos a partir de información del IGME publicada en el Mapa Geológico de España 1:50.000 – El Pino (95). En cuanto al análisis geotécnico, se han tomado los resultados obtenidos tras el estudio realizado recientemente en esta zona para la ejecución de las obras del parque empresarial de A Sionlla.

2. ESTRATIGRAFÍA

Casi la totalidad del citado mapa está ocupado por el dominio de la Serie de Órdenes, dentro de este, el sur de la Hoja se caracteriza por la presencia del Macizo de Santiago y el norte de la misma por la Formación de Órdenes. Nuestra zona de estudio se encuentra más en concreto en el extremo oeste en la parte centro, donde aparecen dentro del Macizo las rocas ultrabásicas y dentro de la Formación de Órdenes, los esquistos de Órdenes y los gneises migmatíticos con sillimanita.

El macizo de Santiago es el afloramiento más próximo a Santiago y el de mayor extensión, en él afloran las rocas ultrabásicas serpentinizadas. Son rocas más bien masivas, de color oscuro en corte fresco, y que suelen presentar una pátina de unos 5 mm de color ocre. La roca aparece intensamente diaclasada, originándose en dichas diaclasas minerales serpentínicos. Asociadas a éstas encontramos las anfibolitas, rocas compactas, generalmente bandeadas, de color verdoso y con presencia más o menos frecuente de fenocristales de anfíbol y/o granate. Son rocas que presentan una gran variedad litológica.

En cuanto a la Formación de Órdenes destacamos en nuestro ámbito de estudio esquistos micáceos y gneises migmátiticos con sillimanita. Los esquistos constituyen gran parte de los afloramientos existentes en el dominio de la Serie de Órdenes. Se trata de rocas grisáceas foliadas, de grano fino y compactas, que presentan una foliación muy desarrollada y que tienen como minerales principales cuarzo y micas (moscovita o biotita) como predominio local de uno u otro componente. De manera menos frecuente estos esquistos presentan granos de feldespatos que pueden reconocerse a simple vista, y que son componentes esenciales de la roca (esquistos feldespáticos). Lo mismo sucede con los granates que contrastan por sus colores rosados con el resto de la masa rocosa.

Respecto a los gneises migmátiticos, presentan un alto grado de metamorfismo y su formación se encuentra relacionada espacialmente con los esquistos en las áreas que éstos presentan una mayor intensidad de metamorfismo, diferenciados entre sí tan sólo por la mayor o menor intensidad del metamorfismo. La edad de este proceso anatéxico es probablemente Hercínica, alcanzándose el paroxismo térmico antes de la finalización de la actuación de dicha fase. La esquistosidad original se interrumpe por segregación de venas pegmatíticas y/o de material granitoide que están ligeramenre deformadas por la primera fase Hercínica.

3. TECTOTECNIA

Se analiza a continuación cada fase de deformación de los distintos materiales que afloran en la Hoja. Se observan varias fases de plegamiento, una al menos de cabalgamiento y varias de fracturación tardías, asociadas a fenómenos distensivos.

Rebeca Seoane Barrán

Fase I

No se ha podido observar en la Hoja ninguna estructura tanto a escala macro como mesoscópica asociada a esta etapa de deformación. A escala microscópica, dentro de los metasedimentos de Órdenes, la presencia de minerales claramente preesquistosos que debieron generarse durante esta fase I, permiten tener al menos una ligera idea de las características del metamorfismo de dicha fase que, debió ser intermedio de alta presión.

También a escala microscópica, se estima que las venillas de cuarzo, omnipresentes en los esquistos de Órdenes, debieron generarse durante esta fase. Se trataría, pues, de cuarzos de exudación asociados a la fase I.

Dentro de las rocas básicas del Macizo de Santiago, esta fase debió ser la causante del fuerte bandeado mineral que presentan actualmente las rocas, así como de la génesis de ciertos minerales, que son expresión de un metamorfismo intermedio de alta presión, en la misma línea que el encontrado en la Serie de Órdenes aunque alcanzando grados más altos.

Fase II

Es la fase que ha alcanzado mayor desarrollo visible en la zona estudiada, siendo, al menos en los esquistos de Órdenes, responsable de la esquistosidad de flujo regional.

Se manifiesta en forma de pliegues similares apretados, con una esquistosidad de plano axial. Debieron ser en principio horizontales, aunque actualmente aparecen más o menos verticalizados. La dirección de los ejes es prácticamente N-S, y la vergencia hacia el E.

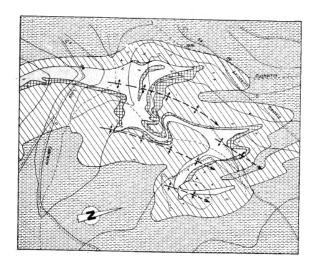
En la Serie de Órdenes aparece, en el borde NO de la Hoja, una zona de migmatitas, gneises migmatíticos, en íntima relación espacial con rocas portadoras de sillimanita. Parece que se trata de migmatitas anatéxicas que se debieron generar antes del paroxismo de la segunda fase de deformación.

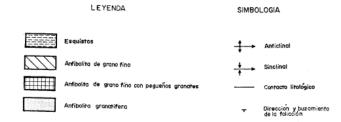
El comportamiento de esta fase en las rocas del Macizo de Santiago es diferente. Origina una esquistosidad menos desarrollada coincidente con la esquistosidad de fase I y solamente diferenciable en las zonas de charnela, donde traspone el bandeado de la fase I.

Fase III

Se caracteriza esta fase por pliegues de hábito similar, a veces cilíndrico, de dirección axial aproximada N 20 E, pero que pueden llegar a ser E-O debido a la actuación de las fases posteriores.

Se trata de pliegues más amplios que los generados durante la segunda fase, por tanto de carácter más superficial y con una esquistosidad de fractura poco desarrollada. Son observables en todo el recinto estudiado, ya que pliegan a la foliación creada durante la segunda fase y la crenulan en las zonas de charnela.


En las rocas del Macizo de Santiago se ha encontrado un gran número de estos pliegues, presentando a veces planos axiales subhorizontales y otras veces verticalizados. Por lo general son pliegues apretados y de hábito similar, muy parecidos a los originados en los metasedimentos de Órdenes.

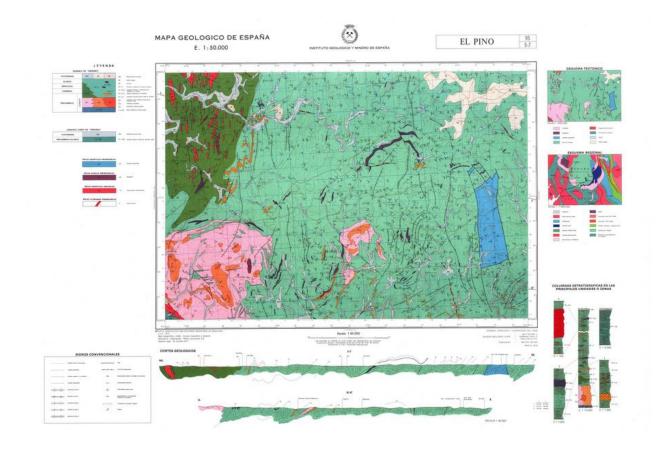

Fase IV

Es perfectamente visible en el campo y tiene una repercusión cartográfica a la escala del presente estudio, siendo responsable de algunas de las grandes megaestructuras visibles en la Hoja.

En la Serie de Órdenes esta fase se manifiesta por pliegues cilíndricos de amplio radio de curvatura, de dirección axial prácticamente N-S y planos axiales subverticales. La materialización de esta fase parece que es más patente en la mitad oriental de la Hoja. En el borde occidental podría ocurrir que los efectos de la tercera y cuarta fase se solapan al coincidir la dirección de aplastamiento de la fase II con el eje cinemático del plegamiento cilíndrico.

En el ámbito de las rocas ultrabásicas, los efectos de esta fase se amortiguan, dando lugar a pliegues cilíndricos muy laxos y de amplio radio de curvatura.

Rebeca Seoane Barrán


Fase de Cabalgamiento

Sólo se tiene evidencia de una sola fase de cabalgamiento. La relación temporal de esta fase con la primera fase hercínica es bastante clara, al poner en contacto materiales de distinto grado de metamorfismo. Su relación con la fase IV es también muy clara al aparecer los frentes de cabalgamiento trastocados por pliegues de dicha fase.

Fase de Distensión

Se estima que entre la primera y segunda fase de plegamiento tuvo lugar un amplio período de calma, acompañado de una fase de distensión. En la Hoja no se ha evidenciado la existencia de otra etapa distensiva hasta que termina de actuar la fase IV. Es entonces cuando debió iniciarse una importante fracturación de substrato, mediante una red subortogonal de fallas, bastante bien desarrollada en todo el ámbito estudiado. Se trata de grandes fallas normales, de dirección aproximada NE-SO y NNO-SSE, respectivamente, y con saltos que no superan los 150-200 m.

4. MAPA GEOLÓGICO

Página 37 **MEMORIA**

Rebeca Seoane Barrán

5. DESMONTES Y TERRAPLENES

Para determinar qué tipo de desmontes y terraplenes se considerarían en el presente proyecto, se han tenido en cuenta las características geológicas expuestas. Además, se han realizado una visita a obra para comprobar las pendientes de los taludes existentes en la zona.

En la reciente actuación del periférico llevada a cabo en el lugar, se han proyectado terraplenes 3H:2H. Siguiendo este esquema se han empleado en el diseño del trazado terraplenes semejantes.

Por otra parte, durante la excavación efectuada en la urbanización del parque empresarial de A Sionlla, se realizaron desmontes 1H:1V. En las obras lineales de la zona tales como el Eje Atlántico Santiago-A Coruña o la autopista AP-9 se aprecian taludes prácticamente verticales. Para el presente proyecto, en coherencia con el análisis geológico y quedándonos del lado de la seguridad se han considerado unos taludes en desmonte de 1H:1V.

En el Anejo 4: Fotográfico, se exponen fotografías tomadas en la zona que muestran estos taludes.

6. CATEGORÍA DE LA EXPLANADA

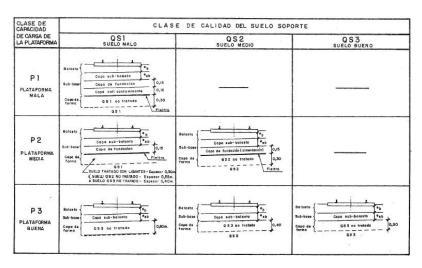
La clasificación de la explanada se hará atendiendo a lo dispuesto en la normativa de RENFE: NRV 2-1-0.0 y NRV 3-4-1.0.

La NRV 2-1-0.0 clasifica los suelos de acuerdo con la capacidad portante que alcanza cada uno de ellos de la siguiente forma:

- QS0: Suelos inadecuados para realizar correctamente una plataforma. Son suelos difícilmente mejorables.
- QS1: Suelos malos (aceptables si se dispone de un buen drenaje)
- QS2: Suelos medio
- QS3: Suelos buenos

Del proyecto de urbanización del parque empresarial de A Sionlla, hemos podido extraer que los terrenos que subyacen bajo el manto vegetal (que presenta un espesor medio de 50 cm), fueron clasificados como tolerables o seleccionados, de acuerdo con la clasificación establecida en el PG-3. Así, se ha considerado que trabajamos con un suelo soporte QS2, pudiendo llegar a QS3 con buenas condiciones hidrogeológicas. Aun así consideraremos el suelo en todas las zonas como QS2 por motivos de simplificación, y quedándonos así del lado de la seguridad debido a las limitaciones que se tienen al ser un anteproyecto académico.

La plataforma se caracteriza por su capacidad portante, la cual depende de:


- La calidad del suelo que constituye el terraplén o del depositado sobre la superficie de la explanación excavada que constituirá la infraestructura.
- La calidad y espesor de la capa de forma, en caso de existir.

Dependiendo de cuál sea su capacidad portante se encuentran los siguientes tipos de plataforma:

- P1: Plataforma de baja capacidad portante CBR≤5
- P2: Plataforma de capacidad portante media 5< CBR ≤ 20

- P3: Plataforma de alta capacidad portante 20< CBR

Para poder tener una P3 con un suelo considerado como QS2 se dispondrá de una capa de forma de 40 cm.

MEMORIA

UNIVERSIDADE DA CORUÑA

ANEJO 3: ESTUDIO DE ALTERNATIVAS

Página 40 **MEMORIA**

ANEJO 3: ESTUDIO DE ALTERNATIVAS. ÍNDICE.

- 1. LISTADOS DE LOS DATOS DE ENTRADA EN PLANTA DE LAS ALTERNATIVAS
- 2. LISTADOS DE LOS DATOS DE ENTRADA EN ALZADO DE LAS ALTERNATIVAS
- 3. LISTADOS DE LOS MOVIMIENTOS DE TIERRA DE LAS ALTERNATIVAS
- 4. PLANOS
- 5. PRESUPUESTOS

1. LISTADOS DE LOS DATOS DE ENTRADA EN PLANTA DE LAS ALTERNATIVAS

MEMORIA Página 42

Rebeca Seoane Barrán

ALTERNATIVA 1

DATOS DE ENTRADA

(eje principal)

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	<u>X1/Y</u>	<u>1 X2/</u>	<u>Y2</u>
1	Fijo	Infinito	542.356,82 4.750.951,72		
2	Acoplado a P1	-500,000	0,00 330,00	0	34
3	Acoplado a P2	-350,277	0,00 150,00	0	
4	Acoplado a P2	Infinito	0,00 60,00	0	
5	Acoplado a P2	-300,000	0,00 0,00 303,00	0	
6	Acoplado a P2	Infinito	0,00 60,00	0	
7	Acoplado a P2	300,000	0,00 0,00 95,00	0	
8	Acoplado a P2	Infinito	0,00 139,00	0	
9	Acoplado a P2	-300,000	0,00 315,00	0	
10	Acoplado a P2	Infinito	0,00 257,00	0	
11	Acoplado a P2	-400,000	0,00 100,00	0	
12	Acoplado a P2	Infinito	0,00 80,00	0	
13	Acoplado a P2	300,000	0,00 80,00	0	
14	Acoplado a P2	Infinito	0,00 605,00	0	
(termina	ıl)				
<u>Al.</u>	<u>Tipo</u>	Radio	Retranq.	<u>X1/Y1</u>	X2/Y2
1	Fijo	Infinito		540.900,715 4.751.005,824	540.817,430 4.750.950,474
2	Móvil	-300,000		7.701.000,024	7.700.000,474
3	Fijo	Infinito	5,000	541.151,221 4.751.223,702	540.694,726 4.750.826,666

PUNTOS SINGULARES

(eje principal)

<u>Estación</u>	Longitud	Coord. X	Coord. Y	<u>Acimut</u>	Radio	X Centro	Y Centro
0+000,000	0,000	542.356,829	4.750.951,725	33,6299	Infinito		
0+000,000	0,000	542.356,829	4.750.951,725	33,6299	Infinito		
0+330,000	330,000	542.420,652	4.751.269,420	391,6129	-500,000	541.924,985	4.751.203,739
0+480,000	150,000	542.370,189	4.751.409,462	364,3508	-350,277	542.073,411	4.751.223,407
0+540,000	60,000	542.338,319	4.751.460,298	364,3508	Infinito		
0+843,000	303,000	542.084,385	4.751.600,948	300,0522	-300,000	542.084,139	4.751.300,948
0+903,000	60,000	542.024,385	4.751.600,998	300,0522	Infinito		
0+998,000	95,000	541.930,977	4.751.615,991	320,2118	300,000	542.024,631	4.751.900,997
1+137,000	139,000	541.798,924	4.751.659,384	320,2118	Infinito		
1+452,000	315,000	541.504,648	4.751.597,426	253,3668	-300,000	541.705,270	4.751.374,377
1+709,000	257,000	541.313,569	4.751.425,559	253,3668	Infinito		
1+809,000	100,000	541.248,307	4.751.350,134	237,4513	-400,000	541.581,065	4.751.128,161
1+889,000	80,000	541.203,913	4.751.283,583	237,4513	Infinito		
1+969,000	80,000	541.151,221	4.751.223,702	254,4278	300,000	540.954,344	4.751.450,063
2+574,000	605,000	540.694,726	4.750.826,666	254,4278	Infinito		

(terminal)

ro Y Centro	X Centro	<u>Radio</u>	<u>Acimut</u>	Coord. Y	Coord. X	<u>Longitud</u>	<u>Estación</u>
		Infinito	262,6577	4.751.005,824	540.900,715	0,000 5	0+000,000
		Infinito	262,6577	4.750.995,105	540.884,585	19,367 5	0+019,367
384.750.745,25	641.050,6384	-300,000 5	254,4278	4.750.971,613	540.853,761	38,782 5	0+058,149
2		Infinito	254,4278	4.750.830,439	540.691,444	215,120 5	0+273,270

Rebeca Seoane Barrán

ALTERNATIVA 2

DATOS DE ENTRADA

(eje principal)

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	<u>X1/Y1</u>	<u>X2/Y2</u>
1	Fijo	Infinito	542.656,841	542.639,826
2	Acoplado a P1	-300,000	4.751.764,892 0,000	4.751.863,434
3	Acoplado a P2	Infinito	630,000 0,000	
4	Acoplado a P2	320,000	100,000 0,000	
5	Acoplado a P2	Infinito	160,000 0,000	
6	Acoplado a P2	-365,000	60,000 0,000	
7	Acoplado a P2	Infinito	80,000 0,000	
8	Acoplado a P2	-780,000	100,000 0,000	
9	Acoplado a P2	Infinito	225,000 0,000	
10	Acoplado a P2	-400,000	288,000 0,000	
11	Acoplado a P2	Infinito	100,000	
12	Acoplado a P2	300,000	80,000 0,000	
13	Acoplado a P2	Infinito	70,000 0,000 627,000	

(terminal)

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	Retranq.	<u>X1/Y1</u>	X2/Y2
1	Fijo	Infinito		540.889,566 4.751.000.001	540.806,763 4.750.943,932
2	Móvil	-300,000		4.731.000,001	4.730.943,932
3	Fijo	Infinito	5,000	541.154,654 4.751.234.616	540.685,133 4.750.819.069

PUNTOS SINGULARES

(eje principal)

<u>Estación</u>	Longitud	Coord. X	Coord. Y	<u>Acimut</u>	Radio	X Centro	Y Centro
0+000,000	0,000	542.656,841	4.751.764,892	389,1149	Infinito		
0+000,000	0,000	542.656,841	4.751.764,892	389,1149	Infinito		
0+630,000	630,000	542.167,908	4.751.943,263	255,4248	-300,000	542.361,215	4.751.713,847
0+730,000	100,000	542.091,435	4.751.878,827	255,4248	Infinito		
0+890,000	160,000	541.948,873	4.751.809,929	287,2558	320,000	541.885,240	4.752.123,539
0+950,000	60,000	541.890,071	4.751.797,998	287,2558	Infinito		
1+030,000	80,000	541.814,031	4.751.773,659	273,3025	365,000	541.962,652	4.751.440,287
1+130,000	100,000	541.722,696	4.751.732,941	273,3025	Infinito		
1+355,000	225,000	541.533,153	4.751.613,156	254,9384	780,000	542.040,296	4.751.020,530
1+643,000	288,000	541.314,338	4.751.425,903	254,9384	Infinito		
1+743,000	100,000	541.247,234	4.751.352,112	239,0229	400,000	541.574,411	4.751.121,992
1+823,000	80,000	541.201,210	4.751.286,677	239,0229	Infinito		
1+893,000	70,000	541.154,654	4.751.234,616	253,8774	300,000	540.955,827	4.751.459,267
2+520,000	627,000	540.685,133	4.750.819,069	253,8774	Infinito		

(terminal)

Estación Longitud		Coord. X	Coord. Y	<u>Acimut</u>	<u>Radio</u>	X Centro	Y Centro	
	0+000,000 0+019,367 0+058,149 0+273,270	38,782	540.873,529 540.842,909	4.751.000,001 4.750.989,142 4.750.965,385 4.750.822,813	262,1073 253,8774	Infinito	541.041,736	4.750.740,734

Rebeca Seoane Barrán

ALTERNATIVA 3

DATOS DE ENTRADA

		- 1
100	princi	กลเา
1010	PIIIO	Pui,

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	<u>X1/Y1</u>	<u>X2/Y2</u>
1	Fijo	Infinito	542.241,930	542.263,179
2	Acoplado a P1	300,000	4.752.806,355 0,000 240.000	4.752.708,639
3	Acoplado a P2	Infinito	0,000 65,000	
4	Acoplado a P2	-300,000	0,000 190,000	
5	Acoplado a P2	Infinito	0,000	
6	Acoplado a P2	300,000	0,000 380,000	
7	Acoplado a P2	Infinito	0,000 60,000	
8	Acoplado a P2	-300,000	0,000 230,000	
9	Acoplado a P2	Infinito	0,000 60,000	
10	Acoplado a P2	300,000	0,000 125,000	
11	Acoplado a P2	Infinito	0,000 345,000	
12	Acoplado a P2	-400,000	0,000	
13	Acoplado a P2	Infinito	100,000 0,000 80,000	
14	Acoplado a P2	300,000	0,000	
15	Acoplado a P2	Infinito	67,000 0,000 654,500	

(ramal Finsa-Santiago)

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	<u>X1/Y1</u>	<u>X2/Y2</u>
1	Fijo	Infinito	542.030,161 4.752.057,900	542.105,427 4.752.123,742
2	Acoplado a P1	390,000	0,000 710,000	

(terminal)

<u>Al.</u>	<u>Tipo</u>	<u>Radio</u>	Retranq.	<u>X1/Y1</u>	X2/Y2
1	Fijo	Infinito		540.887,535	540.804,944
2	Móvil	-300,000		4.750.998,682	4.750.942,301
3	Fijo	Infinito	5,000	541.172,261 4.751.252.598	540.683,786 4.750.816.981

PUNTOS SINGULARES

(ramal Finsa-Santiago) (eje principal)

<u>Estación</u>	<u>Longitud</u>	Coord. X	Coord. Y	<u>Acimut</u>	<u>Radio</u>	X Centro	Y Centro	<u>Estaciór</u>	Longitud	Coord. X	Coord. Y	<u>Acimut</u>	Radio	X Centro	Y Centro
0+000,000 0+000,000 0+240,000 0+305,000 0+495,000	0,000 240,000 65,000	542.241,930 542.198,751 542.162,811	4.752.806,355 4.752.806,355 4.752.576,728 4.752.522,568 4.752.342.457	186,3680 237,2976 237,2976	Infinito	•	4.752.742,605 4.752.356.691	0+000,000 0+000,000 0+710,000	0,000	542.030,161	4.752.057,900 4.752.057,900 4.751.940,641	54,2453	Infinito Infinito 390,000	542.286,944	4.751.764,365
0+555,000 0+935,000 0+995,000 1+225,000	60,000 380,000 60,000	542.115,965 541.919,621 541.863,291	4.752.282,525 4.751.986,643 4.751.965,980 4.751.815,507	196,9784 277,6169 277,6169	Infinito 300,000 Infinito	541.816,303	4.752.268,291	(terminal)	Longitud	Coord. X	Coord. Y	Acimut	Radio	X Centro	Y Centro
1+285,000 1+410,000 1+755,000 1+855,000	125,000 345,000	541.594,401 541.330,885	4.751.761,546 4.751.663,576 4.751.440,901 4.751.367.529	255,3352 255,3352	Infinito		4.751.892,720 4.751.135.375	0+000,000 0+019,367 0+058.149	0,000 19,367	540.887,535 540.871,539 540.841.009	4.750.998,682 4.750.987,763 4.750.963,890	261,8674	Infinito	541 040 681	4.750.739.990
1+935,000 2+002,000 2+656,500	80,000 67,000	541.216,892 541.172,261	4.751.302,382 4.751.252,598 4.750.816,981	239,4197 253,6375	Infinito	,	4.751.476,498	0+273,270	, -	540.680,458	4.750.820,712	,	,	011.010,001	00 00,000

2. LISTADOS DE LOS DATOS DE ENTRADA EN ALZADO DE LAS ALTERNATIVAS

Página 47

MEMORIA

ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

DE INGENIEROS DE CAMINOS,
CANALES Y PUERTOS

Rebeca Seoane Barrán

ALTER	RNATIVA 1						(terminal)						
		DE ENTRAD	DA				<u>Ver.</u>	<u>Estación</u>	<u>Cota</u>	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>
(eje princ <u>Ver.</u>	ipal) <u>Estación</u>	<u>Cota</u>	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>	1 2	0+000,000 0+273,270	314,000• 314,000•	0,0000			
1 2 3	0+000,000 0+855,000 1+379,970	298,000• 293,000• 300,500•	-0,5848 1,4287	100,672 80,000• -	5.000,000• 810.223,549	0,253 -0,001	<u>ALTERI</u>	NATIVA 3					
4 5 6	1+676,000 2+301,000 2+574,000	304,700• 314,000• 314,000•	1,4188 1,4880 0,0000	,	101.128,596 -5.000,000•	0,006 -0,138	(eje princij		DE ENTRAD	Α			
(terminal)						<u>Ver.</u>	<u>Estación</u>	<u>Cota</u>	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>
<u>Ver.</u> 1 2	Estación 0+000,000 0+273,270	Cota 314,000• 314,000•	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>	1 2 3 4 5	0+000,000 1+130,000 1+450,760 1+750,650 2+383,500	278,500• 295,190• 299,998 304,500• 314,000•	1,4770 1,4990• 1,5012 1,5011	,	318.056,924 717.246,255 -5.000,000• -6.661,579	0,002 0,000 0,000 -0,188
ALTER	RNATIVA 2						`	2+656,500 sa-Santiago)	314,000•	0,0000			
	DATOS	DE ENTRAD)A				<u>Ver.</u>	<u>Estación</u>	<u>Cota</u>	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>
(eje princ <u>Ver.</u>	ipal) <u>Estación</u>	<u>Cota</u>	<u>Pente.(%)</u>	Long.(L)	Radio(kv)	<u>Flecha</u>	1 2 3 4	0+000,000 0+270,000 0+618,024 0+690,000	290,420• 286,560• 281,500• 281,500•	-1,4296 -1,4539 0,0000	70,000• - 70,000•	288.225,858 4.814,564	-0,002 0,127
1 2 3 4 5 6 7 8	0+000,000 0+116,240 0+535,580 0+801,662 1+314,025 1+610,921 2+247,000 2+520,000	282,200• 282,200• 288,480• 292,472• 300,000• 304,450• 314,000•	0,0000 1,4976 1,5003 1,4693 1,4988 1,5014 0,0000	80,000• - 80,000• 70,000•2.	4.674,173 790.094,463 258.020,284 270.530,493 757.579,193 -5.000,000•	0,131 0,000 -0,003 0,003 0,000 -0,141	(terminal) Ver. 1 2	Estación 0+000,000 0+273,270	<u>Cota</u> 314,000• 314,000•	Pente.(%)	Long.(L)	Radio(kv)	<u>Flecha</u>

3. LISTADOS DE LOS MOVIMIENTOS DE TIERRA DE LAS ALTERNATIVAS

MEMORIA Página 49

ALTER	RNATIV	/A 1										Estación	As.Terr.	Sup.Ocup.	V.T.Veg.	V.Terra.	V.D.Tier.	V.D.Trán.	V.D.Roca	S.Terra.	S.D.Tie. S	S.D.Trán. S	S.D.Roca
		<u></u>										0+380		8.278	4.139		10.946	476	535	41,98	0,00	0,00	0,00
Áreas	corregida	as por cu	ırvatura	ı								0+400	377 3.175 419	377 8.655 419	189 4.328 210	1.023 3.694 1.316	0 10.946 0	0 476 0	0 535 0	60,34	0,00	0,00	0,00
(eje pri	ncipal)											0+420	3.594 404	9.075 404	4.537 202	5.010 1.212	-	476 0	535 0	71,25	0,00	0,00	0,00
Estación	As.Terr. S	up.Ocup.	V.T.Veg.	V.Terra.	V.D.Tier. V	.D.Trán. V.	D.Roca	S.Terra.	S.D.Tie. S	S.D.Trán. S	S.D.Roca	0+440	3.999	9.479 351	4.740 176	6.222	-	476 0	535 0	49,93	0,00	0,00	0,00
0+000	0	0 470	0 235	0	0 1.296	0 28	0 1	0,00	72,11	2,73	0,05	0+460	4.350 312	9.830 312	4.915 156	7.069 603	10.946 0	476 0	535 0	34,77	0,00	0,00	0,00
0+020	0	470 448	235 224	0	1.296 1.093	28 0	1 0	0,00	57,45	0,02	0,00	0+480	4.662 351	10.142 351	5.071 175	7.672 979	10.946 0	476 0	535 0	25,57	0,00	0,00	0,00
0+040	0	918 441	459 220	0	2.389 1.062	28 0	1	0,00	51,87	0,00	0,00	0+500	5.012 358	10.493 358	5.246 179	8.651 1.309	10.946 0	476 0	535 0	72,33	0,00	0,00	0,00
0+060	0 0	1.359 400	679 200	0 0	3.451 934	28 0	1 0	0,00	54,34	0,00	0,00	0+520	5.370 284	10.851 319	5.425 160	9.960 1.070	10.946 24	476 0	535 0	58,56	0,00	0,00	0,00
0+080	0 32	1.759 364	880 182	0 27	4.385 756	28 0	1 0	0,00	39,08	0,00	0,00	0+540	5.655 265	11.170 335	167	11.030 966	10.970	476 0	535 0	48,47	2,42	0,00	0,00
0+100	32 80	2.124 371	1.062 185	27 86	5.141 704	28 0	1 0	2,68	36,48	0,00	0,00	0+560	5.919	11.504 360	180	11.996	11.019	476 0	535 0	48,10	2,47	0,00	0,00
0+120	112 118	2.494	1.247	113 156	5.845 849	28 91	1 192	5,94	33,94	0,00	0,00	0+580	6.244 378	11.864 378	189	13.103	11.043	476 0	535 0	62,65	0,00	0,00	0,00
0+140	230 143	2.908 464	1.454	269 189	6.694 983	119 159	192 258		50,92	9,08	19,17	0+600	6.622 416	12.242 416	208	1.403	11.043	476 0 476	535 0 535	60,08	0,00	0,00	0,00
0+160	373 160	3.373 470	1.686	457 200	7.676 893	278 126	450 76	9,25	,	6,83	6,66	0+620	7.038 450 7.489	12.658 450 13.108	225	15.733 1.540	11.043 0 11.043	476 0 476	0 535	80,18 73,86	0,00	0,00	0,00
0+180	533 189	3.843 469	1.922	657 227 884	8.569 766	404 65	526 9	10,71	,	5,81	0,90	0+640 0+660	7.469 401 7.889	445 13.553	223	1.180 18.453	24 11.067	0 476	0 535	44,11	2,36	0,00	0,00
0+200 0+220	721 222 943	4.313 536 4.849	2.156 268 2.424	243 1.127	9.335 588 9.923	469 7 476	535 0 535	12,00 12,26	34,69	0,70	0,00	0+680	178 8.068	443 13.997	222	441 18.894	604 11.671	47 47 523	11 546	0,00	58,00	4,68	1,14
0+240	230 1.173	567 5.416	283 2.708	227 1.354	350 10.273	0 476	0 535	10,45	10,92	0,00	0,00	0+700	0 8.068	512 14.509	256	0 18.894	1.538	216 739	215 762	0,00	,	16,88	20,37
0+240	223 1.396	517 5.933	259 2.966	200	184 10.458	0 476	0 535	9,59	7,52	0,00	0,00	0+720	0 8.068	614 15.123	307	0 18.894	2.052 15.260	391 1.129	632 1.393		109,43	22,17	42,79
0+280	222 1.618	489 6.422	244 3.211	178 1.732	152 10.609	0 476	0 535	8,23	7,64	0,00	0,00	0+740	0 8.068	657 15.780	329 7.890	0 18.894	2.234 17.494	457 1.586	1.017 2.410	0,00	113,96	23,53	58,93
0+300	216 1.834	477 6.898	238 3.449	151 1.883	180 10.789	0 476	0 535	6,85	10,37	0,00	0,00	0+760	0 8.068	666 16.447	333 8.223	0 18.894	2.275 19.769	468 2.054	1.114 3.525	0,00	113,50	23,27	52,50
0+320	217 2.051	411 7.309	206 3.655	129 2.012	124 10.913	0 476	0 535	6,03	2,02	0,00	0,00	0+780	0 8.068	647 17.094	324 8.547	0 18.894	2.193 21.962	432 2.486	802 4.327	0,00	105,82	19,90	27,70
0+340	227 2.277	325 7.635	163 3.817	112 2.124	22 10.936	0 476	0 535	5,14	0,22	0,00	0,00	0+800	0 8.068	576 17.670		0 18.894	1.887 23.850	301 2.786	348 4.674	0,00	82,93	10,16	7,07
0+360	230 2.508	311 7.946 332	156 3.973	89 2.213 458	6 10.942 4	0 476	535 0	3,79	0,40	0,00	0,00	0+820	8.069 232	460 18.131 447		0 18.894 499	1.140 24.989 312	102 2.888 0	71 4.745 0	0,00	31,03	0,00	0,00
0+360	2.508	332	166	458	10.942	0	0	3,19	0,40	0,00	0,00	0+020	232	447	224	499	312			0,00	01,00	0,00	0,0

UNIVERSIDADE DA CORUÑA

Second Series Second Serie	Estación As Torr	Sun Ocup V T Veg V Terra V D Tier V	/ D Trán	V D Roca S Terra	S D Tie S	: D Trán S	D Poca	Estación As	Terr Sun Oci	n VIVed Viterra VI	Tier V D	Trán \	/ D Poca (S Terra	S D Tip 9	S D Trán S	D Poca
1-14-15-16-16-16-16-16-16-16-16-16-16-16-16-16-	LStacion As.Ten	Sup.ocup. V.I.veg. V.Ieila. V.D.Hei. V	.D.IIaii.	V.D.NOCA O.TEITA.	J.D. He. U	.D. Hall. O	J.D.Noca	Litation As.	oup.oct	p. v.i.veg. v.ieiia. v.i	J. Hell. V.D	a	v.b.itoca	J. Terra.	J.D. He.	J.D. ITAII. U	.D.Noca
1-80 1-80	0+840 8.301		2.888	4.745 49,90	0,14	0,00	0,00	1+300 19					4.745	0,00	48,50	0,00	0,00
Section Sect			•	•								-	•				
0.00 0.00					0,00	0,00	0,00	1+320 19						0,00	48,25	0,00	0,00
555 555 277 2105 0 0 0 0 0 0 0 0 0			•	•									•				
Part				4.745 115,46	0,00	0,00	0,00	1+340 19					4.745	0,00	38,20	0,00	0,00
Fig.			•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.00	0.00	1.200 10					1 746	0.00	74 44	2.02	0.00
0.00 0.00					0,00	0,00	0,00	1+360 19						0,00	74,11	3,03	0,08
612 612 306 2505 0			•	•	0.00	0.00	0.00	1_380_10						0.00	80 Q1	12 77	1 16
Column C				0	0,00	0,00	0,00							0,00	00,31	12,11	1,10
Fig.			•	4 745 124 85	0.00	0.00	0.00							2 53	0.59	0.00	0.00
Charles 1.793					0,00	0,00	0,00				7			2,00	0,00	0,00	0,00
0.00			2.888	4.745 116,07	0.00	0.00	0.00				2.106	3.204	4.770	5,79	0,15	0.00	0.00
1-000 1-00	591	591 295 2.370 0	0	0	,	,	,		247 2	34 142 152	2	0	0	•	•	,	•
1-100 12-95 12-55 13-25 37-37 25-302 28.88 4.745 16-24 0.00 0.00 0.00 0.00 1-460 20.08 36.53 16.26 67-501 32-108 32-04 4.770 12-20 0.00	0+980 12.384	22.679 11.340 35.007 25.302	2.888	4.745 120,91	0,00	0,00	0,00	1+440 19	.821 33.3	3 16.696 67.286 3	2.108	3.204	4.770	9,38	0,00	0,00	0,00
1-020 13-06 13-0	571	571 286 2.371 0	0	0					260 2	60 130 216	0	0	0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				4.745 116,24	0,00	0,00	0,00	1+460 20					4.770	12,20	0,00	0,00	0,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•									•	0				
1+040 13,960 24,255 12,128 41,187 25,302 2,888 4,745 6,171 0,00 0,00 0,00 0,00 1+500 20,211 34,310 17,155 67,623 32,525 3,204 4,770 0,00 3,37 0,00 0,00 0,00 1+060 14,350 24,645 12,323 42,266 25,302 2,888 4,745 46,77 0,00 0,00 0,00 1+500 20,212 34,657 17,329 67,623 32,714 3,204 4,770 0,00 15,53 0,00 0					0,00	0,00	0,00	1+480 20						0,00	19,20	0,00	0,00
1+060 14.355			-	•	0.00	0.00	0.00	4 500 00				-	•	0.00	0.07	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.888	4.745 61,11	0,00	0,00	0,00	1+500 20					4.770	0,00	3,37	0,00	0,00
1+080 14.679 24.998 12.499 42.892 25.305 2.888 4.745 15.88 0.28 0.00 0.00 0.00 1+540 20.212 35.018 17.509 67.623 33.006 3.204 4.770 0.00 13.64 0.00			2 2 2 2	0 4 745 46 77	0.00	0.00	0.00	1,520, 20				-	4 770	0.00	15 52	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0,00	0,00	0,00	1+320 20						0,00	15,55	0,00	0,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	•	0.28	0.00	0.00	1+540 20				•	•	0.00	13 64	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	0,20	0,00	0,00	11010 20						0,00	10,01	0,00	0,00
1+120 15.261 25.651 12.826 43.666 25.312 2.888 4.745 32.71 0.00			2.888	4.745 14.40	0.23	0.00	0.00	1+560 20				3.204	4.770	0.00	5.53	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				- , -	-,	-,	-,							-,	-,	-,	-,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+120 15.261	25.651 12.826 43.666 25.312	2.888	4.745 32,71	0,00	0,00	0,00	1+580 20	.326 35.6	88 17.844 67.661 3	3.257	3.204	4.770	3,77	0,44	0,00	0,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	375	375 188 979 0	0	0					247 2	37 144 211	4	0	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+140 15.637	26.027 13.013 44.645 25.312	2.888	4.745 65,17	0,00	0,00	0,00	1+600 20	.573 35.9	76 17.988 67.872 3	3.262	3.204	4.770	17,28	0,00	0,00	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	•							•	•	0				
1+180 16.959 27.349 13.674 52.568 25.312 2.888 4.745 334,38 0,00 0,00 0,00 0,00 1+640 21.184 36.586 18.293 69.036 33.262 3.204 4.770 37,03 0,00 0,00 0,00 0,00 0 <td></td> <td></td> <td></td> <td>4.745 196,39</td> <td>0,00</td> <td>0,00</td> <td>0,00</td> <td>1+620 20</td> <td></td> <td></td> <td>3.262</td> <td></td> <td>4.770</td> <td>31,05</td> <td>0,00</td> <td>0,00</td> <td>0,00</td>				4.745 196,39	0,00	0,00	0,00	1+620 20			3.262		4.770	31,05	0,00	0,00	0,00
816 816 408 6.466 0 0 0 0 0 0 0 0 0 0 0 0			•	0							0	•	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0,00	0,00	0,00	1+640 21					4.770	37,03	0,00	0,00	0,00
764 764 382 5.234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•		0.00	0.00	0.00	1.000 01			•	•	4 770	F2 60	0.00	0.00	0.00
1+220 18.539 28.929 14.464 64.268 25.312 2.888 4.745 211,26 0,00 0,00 0,00 0,00 1+680 21.936 37.338 18.669 71.109 33.262 3.204 4.770 62,91 0,00 </td <td></td> <td></td> <td></td> <td>4.745 312,17</td> <td>0,00</td> <td>0,00</td> <td>0,00</td> <td>1+660 21</td> <td></td> <td></td> <td>3.262</td> <td>3.204</td> <td>4.770</td> <td>53,69</td> <td>0,00</td> <td>0,00</td> <td>0,00</td>				4.745 312,17	0,00	0,00	0,00	1+660 21			3.262	3.204	4.770	53,69	0,00	0,00	0,00
513 513 256 2.435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•	4 745 211 26	0.00	0.00	0.00	1,690 21			3 262	3 204	4 770	62.01	0.00	0.00	0.00
1+240 19.052 29.442 14.721 66.703 25.312 2.888 4.745 32,21 0,00 0,00 0,00 0,00 1+700 22.337 37.739 18.869 72.369 33.262 3.204 4.770 63,12 0,00 <td></td> <td></td> <td></td> <td>,</td> <td>0,00</td> <td>0,00</td> <td>0,00</td> <td>17000 21</td> <td></td> <td></td> <td></td> <td></td> <td>4.770</td> <td>02,91</td> <td>0,00</td> <td>0,00</td> <td>0,00</td>				,	0,00	0,00	0,00	17000 21					4.770	02,91	0,00	0,00	0,00
170 340 170 322 121 0 0 0 273 406 203 794 62 0 0 1 1+260 19.222 29.782 14.891 67.025 25.433 2.888 4.745 0,03 12,09 0,00 0,00 1+720 22.610 38.145 19.072 73.163 33.324 3.204 4.770 16,29 6,23 0,00 0,00 8 383 191 0 491 0 0 298 431 215 916 62 0 0 1 1+280 19.231 30.164 15.082 67.026 25.924 2.888 4.745 0,00 36,98 0,00 0,00 1+740 22.908 38.576 19.288 74.079 33.386 3.204 4.770 75,29 0,00 0,00 0,00			•	•	0.00	0.00	0.00	1+700 22			•	•	4 770	63 12	0.00	0.00	0.00
1+260 19.222 29.782 14.891 67.025 25.433 2.888 4.745 0,03 12,09 0,00 0,00 0,00 1+720 22.610 38.145 19.072 73.163 33.324 3.204 4.770 16,29 6,23 0,00 0,00 1+280 19.231 30.164 15.082 67.026 25.924 2.888 4.745 0,00 36,98 0,00 0,00 1+740 22.908 38.576 19.288 74.079 33.386 3.204 4.770 75,29 0,00 0,00 0,00					0,00	0,00	0,00						0	30,.2	0,00	0,00	0,00
8 383 191 0 491 0 0 298 431 215 916 62 0 0 1+280 19.231 30.164 15.082 67.026 25.924 2.888 4.745 0,00 36,98 0,00 0,00 1+740 22.908 38.576 19.288 74.079 33.386 3.204 4.770 75,29 0,00 0,00 0,00			•	•	12,09	0.00	0.00					•	4.770	16,29	6,23	0.00	0.00
				,	,	-,	-,							-, -	-, -	-,	-,
0 422 211 0 855 0 0 451 451 225 1.544 0 0 0	1+280 19.231	30.164 15.082 67.026 25.924	2.888	4.745 0,00	36,98	0,00	0,00	1+740 22	.908 38.5	76 19.288 74.079 3	3.386	3.204	4.770	75,29	0,00	0,00	0,00
	(422 211 0 855	0	0					451 4	51 225 1.544	0	0	0				

ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela) DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS Rebeca Seoane Barrán

Estación As.Terr. S	Sup.Ocup. V.T.Veg. V.Terra. V.D.Tie	. V.D.Trán. V.	D.Roca S.Terra	S.D.Tie. S	D.Trán.	S.D.Roca	Estación As.Ter	r. Sur	o.Ocup. V.	T.Veg. V.Terr	a. V.D.Tier.	V.D.Trán.	V.D.Roca S.	Terra. S.D.Tie.	3.D.Trán.	S.D.Roca
1+760 23.359 461	39.026 19.513 75.623 33.386 461 231 1.660	3.204	4.770 79,08	0,00	0,00	0,00	2+220 29.81	4 5	50.840 2 825	5.420 96.29 412	1 51.166 0 2.901	6.958 626	23.154 3.438	0,00 142,83	30,70	162,74
1+780 23.820 475	39.487 19.744 77.283 33.386 475 238 1.814	3.204	4.770 86,90	0,00	0,00	0,00	2+240 29.81	-		5.832 96.29 412			26.592 3.437	0,00 147,30	31,89	181,08
1+800 24.295 491	39.962 19.981 79.096 33.386 491 245 1.941	3.204	4.770 94,48	0,00	0,00	0,00	2+260 29.81	-		6.244 96.29 449		8.209	30.029 4.852	0,00 142,74	30,68	162,64
1+820 24.786 501	40.453 20.227 81.038 33.386 501 251 1.990	3.204	4.770 99,66	0,00	0,00	0,00	2+280 29.81	4 5		6.694 96.29 530			34.881 7.998	0,00 177,45	39,52	322,52
1+840 25.287 498	40.955 20.477 83.027 33.386 498 249 1.883	3.204	4.770 99,31 0	0,00	0,00	0,00	2+300 29.81	-		7.224 96.29		9.778	42.879	0,00 208,08	47,16	477,30
1+860 25.785 514	41.453 20.726 84.911 33.386 514 257 2.045	3.204	4.770 89,02 0	0,00	0,00	0,00										
1+880 26.299 534	41.966 20.983 86.956 33.386 534 267 2.396		4.770 115,47 0	0,00	0,00	0,00	(terminal)									
1+900 26.833 494	42.501 21.250 89.352 33.386	3.204	4.770 124,16	0,00	0,00	0,00	EstaciónAs.T	err.Sı	up.Ocup.	V.T.Veg.	/.D.Tier. \	/.D.Trán.	V.D.Roca	S.D.Tie. S.D	.Trán. S	S.D.Roca
1+920 27.327 403	42.995 21.497 91.408 33.386 403 201 1.232		4.770 81,48 0	0,00	0,00	0,00	0+000	0	0 1.899	0 949	0 7.208	0 1.705	0 21.563	361,34	85,47	1.070,66
1+940 27.730 351	43.397 21.699 92.640 33.386 351 176 883		4.770 41,69	0,00	0,00	0,00	0+020	0	1.899 1.894	949 947	7.208 7.191	1.705 1.701	21.563 21.758	359,48	85,05	1.085,63
1+960 28.081 346	43.749 21.874 93.523 33.386 346 173 871		4.770 46,65	0,00	0,00	0,00	0+040	0	3.793 1.916	1.897 958	14.399 7.276	3.406 1.722	43.321 22.321	359,59	85,06	1.090,17
1+980 28.427 329	44.094 22.047 94.394 33.386 329 165 723		4.770 40,47 0	0,00	0,00	0,00	0+060	0	5.710 1.991	2.855 996	21.675 7.573	5.128 1.795	65.642 23.829	368,05	87,11	1.141,98
2+000 28.756 296	44.424 22.212 95.117 33.386 296 148 520		4.770 31,80	0,00	0,00	0,00	0+080	0	7.701 2.040	3.850 1.020	29.248 7.772	6.923 1.846	89.471 25.312	389,27	92,42	1.240,90
2+020 29.052 267	44.719 22.360 95.637 33.386 267 134 356	3.204	4.770 20,23	0,00	0,00	0,00	0+100	0	9.740 2.040	4.870 1.020	37.020 7.774	8.770 1.847	114.783 26.171	387,89	92,20	1.290,33
2+040 29.319 231	44.987 22.493 95.993 33.386 278 139 189		4.770 15,33 0	0,00	0,00	0,00	0+120	0	11.780 2.052	5.890 1.026	44.794 7.821	10.617 1.859	140.955 27.644	389,53	92,54	1.326,80
2+060 29.550 182	45.265 22.633 96.182 33.399 325 162 72 5	3.204	4.770 3,53 0	0,89	0,00	0,00	0+140	0	13.832 2.063	6.916 1.032	52.615 7.869	12.475 1.871	168.599 28.735	392,55	93,31	1.437,64
2+080 29.732 82	45.590 22.795 96.254 33.453 469 234 37 1.004	3.204	4.770 3,72 171	4,83	0,00	0,00	0+160	0	15.895 2.036	7.948 1.018	60.484 7.755	14.346 1.841	197.334 26.910	394,32	93,78	1.435,86
2+100 29.814	46.058 23.029 96.291 34.456 694 347 0 2.364	3.387		95,55	18,28	17,07	0+180	0	17.932 1.993	8.966 997	68.239 7.581	16.188 1.796	224.244	381,18	90,35	1.255,12
2+120 29.814 0	46.752 23.376 96.291 36.82 817 409 0 2.86	3.872		140,89	30,22	155,79	0+200	0	19.925 1.961	9.962 980	75.820 7.453	17.984 1.765	248.665	376,94	89,28	1.186,98
2+140 29.814 0	47.569 23.785 96.291 39.688 827 414 0 2.908	3 4.489		145,84	31,43	172,29	0+220	0	21.886 1.938	10.943 969	83.273 7.358	19.748 1.741	271.672 22.240	368,33	87,17	1.113,78
2+160 29.814 0	48.397 24.198 96.291 42.596 821 411 0 2.884	5.115		144,91	31,23	170,62	0+240	0	23.824	11.912 952	90.630 7.223	21.490	293.912 20.906	367,46	86,94	1.110,21
2+180 29.814 0	49.218 24.609 96.291 45.480 812 406 0 2.84	5.736		143,48	30,87	165,29	0+260	0	25.727 1.247	12.863 623	97.854 4.729	23.198	314.818 13.288	354,87	83,89	980,38
2+200 29.814 0	50.029 25.015 96.291 48.320 810 405 0 2.840	6.348		141,18	30,29	156,76	0+273,270	0	26.974	13.487	102.582	24.315	328.106	357,82	84,55	1.022,26

ALTERNATIVA 2	Estación As.Terr.Sup.Oc	cup. V.T.Veg. <u>V</u>	/.Terra. V.D.Tier.	V.D.Trán. V.D.Roca	S.Terra.	S.D.Tie. S.	D.Trán. S.	.D.Roca
ALTERNATIVA 2	0+380 14.295 14.2		90.422 0	0 0	154,47	0,00	0,00	0,00
Áreas corregidas por curvatura			2.766 0	0 0	100.15	0.00	0.00	0.00
			93.188 0 2.420 0	0 0	122,15	0,00	0,00	0,00
(eje principal)			95.609 0	0 0	119,88	0,00	0,00	0,00
			2.460 0	0 0	100.11	0.00	0.00	0.00
Estación As.Terr.Sup.Ocup. V.T.Veg. V.D.Terra. V.D.Trán. V.D.Roca S.Terra. S.D.Tie. S.D.Trán. S.D.Roca			98.068 0 2.617 0	0 0	126,11	0,00	0,00	0,00
0+000 0 0 0 0 0 0 0 292.47 0.00 0.00 0.00		550 8.275 10		0 0	135,63	0,00	0,00	0,00
824 824 412 5.716 0 0 0			2.812 0	0 0				
0+020 824 824 412 5.716 0 0 0 279,16 0,00 0,00 0,00	0+480 17.136 17.1			0 0	145,57	0,00	0,00	0,00
793 793 397 5.282 0 0 0		608 304 744 8.872 10	3.031 0 06.529 0	0 0	157,57	0,00	0,00	0,00
0+040 1.617 1.617 808 10.998 0 0 0 249,02 0,00 0,00 0,00 771 771 385 4.974 0 0 0			3.263 0	0 0	157,57	0,00	0,00	0,00
0+060 2.388 2.388 1.194 15.973 0 0 0 248,43 0,00 0,00 0,00		373 9.186 10		0 0	168,76	0,00	0,00	0,00
763 763 382 4.873 0 0 0			3.406 0	0 0	,.	-,	-,	-,
0+080 3.151 3.151 1.575 20.846 0 0 0 238,91 0,00 0,00 0,00	0+540 19.012 19.0	012 9.506 11	13.199 0	0 0	171,88	0,00	0,00	0,00
768 768 384 4.932 0 0 0			3.478 0	0 0				
0+100 3.918 3.918 1.959 25.778 0 0 0 254,33 0,00 0,00 0,00		659 9.829 11		0 0	175,89	0,00	0,00	0,00
790 790 395 5.235 0 0 0 0+120 4.708 4.708 2.354 31.014 0 0 0 269.20 0.00 0.00 0.00		662 331 321 10.160 12		0 0	182,53	0,00	0.00	0.00
0+120 4.708 4.708 2.354 31.014 0 0 0 269,20 0,00 0,00 0,00 798 798 399 5.353 0 0 0			3.689 0	0 0	102,33	0,00	0,00	0,00
0+140 5.506 5.506 2.753 36.367 0 0 0 266,10 0,00 0,00 0,00		993 10.496 12		0 0	186,36	0,00	0,00	0,00
794 794 397 5.296 0 0 0			3.773 0	0 0				
0+160 6.301 6.301 3.150 41.663 0 0 0 263,52 0,00 0,00 0,00		669 10.834 12		0 0	190,95	0,00	0,00	0,00
788 788 394 5.205 0 0 0			3.615 0 31.338 0	0 0	170.00	0.00	0.00	0.00
0+180 7.088 7.088 3.544 46.868 0 0 0 256,96 0,00 0,00 0,00 748 748 374 4.690 0 0 0		329 11.164 13 632 316	3.331 0	0 0	170,60	0,00	0,00	0,00
748 748 374 4.690 0 0 0 0+200 7.836 7.836 3.918 51.557 0 0 0 212,01 0,00 0,00 0,00		961 11.480 13		0 0	162,49	0,00	0.00	0.00
720 720 360 4.312 0 0 0			2.960 0	0 0		-,	-,	-,
0+220 8.556 8.556 4.278 55.870 0 0 0 219,23 0,00 0,00 0,00	0+680 23.558 23.5	558 11.779 13	37.629 0	0 0	133,51	0,00	0,00	0,00
731 731 365 4.451 0 0 0			2.565 0	0 0				
0+240 9.286 9.286 4.643 60.321 0 0 0 225,90 0,00 0,00 0,00		123 12.061 14		0 0	122,96	0,00	0,00	0,00
740 740 370 4.579 0 0 0			2.475 0 42.668 0	0 0	104 50	0.00	0.00	0.00
0+260 10.026 10.026 5.013 64.900 0 0 232,02 0,00 0,00 0,00 726 726 363 4.412 0 0 0		678 12.339 14 551 276	42.008 0 2.455 0	0 0	124,50	0,00	0,00	0,00
0+280 10.752 10.752 5.376 69.312 0 0 0 209,14 0,00 0,00 0,00		229 12.614 14		0 0	121,05	0,00	0.00	0,00
701 701 351 4.100 0 0 0			2.451 0	0 0	,	-,	-,	-,
0+300 11.453 11.453 5.727 73.412 0 0 0 200,83 0,00 0,00 0,00	0+760 25.779 25.7	779 12.890 14	47.575 0	0 0	124,05	0,00	0,00	0,00
687 687 344 3.932 0 0 0			2.593 0	0 0				
0+320 12.141 12.141 6.070 77.344 0 0 0 192,42 0,00 0,00 0,00		344 13.172 15		0 0	135,20	0,00	0,00	0,00
716 716 358 4.283 0 0 0		576 288 921 13.460 15	2.742 0 52.910 0	0 0	139,01	0,00	0,00	0,00
0+340 12.857 12.857 6.428 81.627 0 0 0 235,89 0,00 0,00 0,00 751 751 376 4.805 0 0 0			2.885 0	0 0	100,01	0,00	0,00	0,00
0+360 13.608 13.608 6.804 86.432 0 0 0 244,57 0,00 0,00 0,00		508 13.754 15		0 0	149,51	0,00	0,00	0,00
687 687 343 3.990 0 0 0	616 6	616 308	3.153 0	0 0	•	•	•	•

ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

DE INGENIEROS DE CAMINOS,
CANALES Y PUERTOS

Rebeca Seoane Barrán

UNIVERSIDADE DA CORUÑA

Estación As Torr S	up.Ocup. V.T.Veq. V.Terra.	V D Tier V I	D Trán V D Roc	a S Torra	S D Tip (S N Trán S	D Roca	Estación As Tarr Si	up.Ocup. V.T.Veg. V.Terra	V D Tier	V D Trán V	D Roca	S.Terra.	S D Tip S	S.D.Trán. S	D Poca
LStacion AS.Terr.o	up.ocup. v.r.veg. v.rema.	v.D.Hel. v.i	D. ITAII. V.D.KO	a O.Terra.	O.D. He.	J.D. ITali. O.	.D.Noca	Estacion As.Terr.or	up.ocup. v.i.veg. v.ieira	. V.D.IIGI.	v.D. man. v.	.D.Noca	O. Terra.	O.D. He.	J.D. ITali. O	.D.INOCA
0+840 28.124 647	28.124 14.062 158.948 647 324 3.439	0	-	0 165,75 0	0,00	0,00	0,00	1+300 37.093 0	41.152 20.576 205.40 514 257	7 11.158 0 1.678	1.074 297	270 94	0,00	84,50	14,80	5,16
0+860 28.771	28.771 14.386 162.387	0	0	0 178,20	0,00	0,00	0,00	1+320 37.093	41.666 20.833 205.40	7 12.836	1.371	364	0,00	83,27	14,90	4,27
668 0+880 29.440	668 334 3.655 29.440 14.720 166.042	0	0 0	0 0 187,26	0,00	0,00	0,00	0 1+340 37.093	422 211 42.089 21.044 205.40	0 871 7 13.707	149 1.520	43 407	0,00	3,85	0,00	0.00
680	680 340 3.786	Õ	Ö	0	0,00	0,00	0,00	108	328 164 1		0	0	0,00	0,00	0,00	0,00
0+900 30.119	30.119 15.060 169.828	0	0	0 191,35	0,00	0,00	0,00	1+360 37.202	42.416 21.208 205.42	2 13.753	1.520	407	1,47	0,78	0,00	0,00
676	676 338 3.774	0	0	0				224	316 158 6	3 10	0	0				
0+920 30.796	30.796 15.398 173.602	0	0	0 186,03	0,00	0,00	0,00	1+380 37.425	42.732 21.366 205.48		1.520	407	4,87	0,26	0,00	0,00
659	659 329 3.702	0	0	0				230	312 156 8		0	0				
0+940 31.454	31.454 15.727 177.303	0	0	0 184,15	0,00	0,00	0,00	1+400 37.655	43.044 21.522 205.568		1.520	407	3,38	0,46	0,00	0,00
654	654 327 3.715	0	0	0				114	345 173 3		0	0				
0+960 32.109	32.109 16.054 181.019	0	0	0 187,39	0,00	0,00	0,00	1+420 37.769	43.389 21.695 205.602		1.520	407	0,00	21,12	0,00	0,00
665	665 332 3.816	0	0	0 404.00	0.00	0.00	0.00	0	001 110	266	0	0	0.00	E 45	0.00	0.00
0+980 32.774 681	32.774 16.387 184.835 681 340 3.953	0	0	0 194,22	0,00	0,00	0,00	1+440 37.769 0	43.746 21.873 205.603 354 177	2 14.252 0 241	1.520 0	407 0	0,00	5,45	0,00	0,00
1+000 33.454	33.454 16.727 188.788	0	0	0 201,07	0,00	0,00	0.00	1+460 37.769	44.100 22.050 205.602		1.520	407	0.00	18,60	0.00	0.00
690	690 345 3.839	0	0	0 201,07	0,00	0,00	0,00	17400 37.709		322	1.320	0	0,00	10,00	0,00	0,00
1+020 34.144	34.144 17.072 192.627	0	0	0 182,87	0,00	0,00	0.00	1+480 37.769	44.464 22.232 205.602		1.520	407	0,00	13,55	0,00	0.00
680	680 340 3.604	0	0	0	0,00	0,00	0,00	0		198	0	0	0,00	10,00	0,00	0,00
1+040 34.824	34.824 17.412 196.231	0	0	0 177,49	0,00	0.00	0.00	1+500 37.769	44.812 22.406 205.602		1.520	407	0.00	6,28	0,00	0.00
636	636 318 3.214	0	0	0	-,	-,	-,	115	318 159 4		0	0	-,	-, -	- /	- /
1+060 35.460	35.460 17.730 199.445	0	0	0 143,91	0,00	0,00	0,00	1+520 37.885	45.130 22.565 205.648	3 15.079	1.520	407	4,64	0,34	0,00	0,00
567	567 284 2.624	0	0	0				246	279 139 22	5 3	0	0				
1+080 36.027	36.027 18.014 202.069	0	0	0 118,50	0,00	0,00	0,00	1+540 38.130	45.409 22.704 205.873	3 15.082	1.520	407	17,83	0,00	0,00	0,00
497	497 248 1.978	0	0	0				284	284 142 470		0	0				
1+100 36.524	36.524 18.262 204.046	0	0	0 79,27	0,00	0,00	0,00	1+560 38.414	45.693 22.846 206.34		1.520	407	29,78	0,00	0,00	0,00
400	400 200 1.077	0	0	0				318	318 159 659		0	0				
1+120 36.924	36.924 18.462 205.123	0	0	0 28,42	0,00	0,00	0,00	1+580 38.732	46.010 23.005 207.00		1.520	407	36,16	0,00	0,00	0,00
170	352 176 284	149	0	0	44.00	0.00	0.00	356	356 178 89		4.500	0	50.50	0.00	0.00	0.00
1+140 37.093 0	37.276 18.638 205.407 404 202 0	149 631	0	0 0,00	14,92	0,00	0,00	1+600 39.088 390	46.366 23.183 207.909 390 195 1.133		1.520 0	407 0	53,52	0,00	0,00	0,00
1+160 37.093	37.680 18.840 205.407	781	0	0.00	48,22	0,00	0,00	1+620 39.477	46.756 23.378 209.03		1.520	407	59,75	0.00	0,00	0.00
0	481 241 0	1.303		4	40,22	0,00	0,00	394	394 197 1.20		0	0	55,75	0,00	0,00	0,00
1+180 37.093	38.161 19.081 205.407	2.084		4 0.00	82,11	8,37	1,37	1+640 39.871	47.150 23.575 210.239		1.520	407	60,41	0,00	0,00	0,00
0	526 263 0	1.692		2	02,	0,0.	.,0.	407	407 204 1.26		0	0	00,	0,00	0,00	0,00
1+200 37.093	38.687 19.344 205.407	3.775		6 0.00	87,04	15,04	4,83	1+660 40.278	47.557 23.778 211.503	2 15.082	1.520	407	65,81	0,00	0,00	0.00
0	532 266 0	1.735		0	,	,	.,	427	427 214 1.35		0	0	,-	-,	-,	-,
1+220 37.093	39.219 19.610 205.407	5.511	614 16	5 0,00	86,49	14,62	4,15	1+680 40.706	47.984 23.992 212.853	3 15.082	1.520	407	69,34	0,00	0,00	0,00
0	519 260 0	1.679	225 4	7				434	434 217 1.41	7 0	0	0				
1+240 37.093	39.739 19.869 205.407	7.189	840 21		81,36	7,91	0,56	1+700 41.140	48.418 24.209 214.27		1.520	407	72,40	0,00	0,00	0,00
0	488 244 0	1.482		6				442	442 221 1.50		0	0				
1+260 37.093	40.227 20.113 205.407	8.671	922 21		66,80	0,36	0,00	1+720 41.582	48.860 24.430 215.77		1.520	407	78,25	0,00	0,00	0,00
0	451 225 0	1.155	•	0				455	455 227 1.629		0	0				
1+280 37.093	40.677 20.339 205.407	9.826	926 21	,	48,71	0,00	0,00	1+740 42.037	49.315 24.658 217.40		1.520	407	84,62	0,00	0,00	0,00
0	475 238 0	1.332	148 5	2				469	469 235 1.72	2 0	0	0				

UNIVERSIDADE DA CORUÑA

Estación As.Terr.S	up.Ocup. V.T.Veg. V.Terra.	V.D.Tier. V	/.D.Trán.	V.D.Roca	S.Terra.	S.D.Tie. S	S.D.Trán.	S.D.Roca	Estación As.Terr.S	Sup.Oc	up. <u>V.T.Veg</u>	. V.Terra	. V.D.Tier. V	<u>.D.Trán.</u> <u>V.</u> [D.Roca S.T	erra. S.D.Tie	S.D.Trán	. S.D.Roca
1+760 42.506 475	49.784 24.892 219.128 475 238 1.738	15.082 0	1.520 0	407 0	87,61	0,00	0,00	0,00	2+220 47.478 0	62.9 1.0	92 31.496 976 538				34.178 8.181	0,00 181,18	3 40,30	328,40
1+780 42.981 465	50.259 25.130 220.866 465 233 1.645	15.082 0	1.520	407 0	86,17	0,00	0,00	0,00	2+240 47.478 0	64.0)68 32.034 573 286	233.925	46.855	8.369 4		0,00 209,72	47,56	6 489,65
1+800 43.446	50.725 25.362 222.511	15.082	1.520	407	78,36	0,00	0,00	0,00	2+260 47.478		341 32.320					0,00 3,49	0,00	0,00
487 1+820 43.933	487 243 1.830 51.211 25.606 224.341	0 15.082	0 1.520	0 407	104,60	0,00	0,00	0,00										
513 1+840 44.446	513 256 2.177 51.724 25.862 226.517	0 15.082	0 1.520	0 407	113,07	0,00	0,00	0,00	<i>(</i> , , , ,)									
493	493 246 1.965	0	0	0					(terminal)									
1+860 44.939 442	52.217 26.109 228.482 442 221 1.446	15.082 0	1.520 0	407 0	83,40	0,00	0,00	0,00	Fotosián As T	C.	0 \	/ T \/o=	VDTion 1	/ D. T	V D Bass	entia e	D T-4-	C D Daga
1+880 45.381 390	52.659 26.329 229.929 390 195 1.134	15.082 0	1.520 0	407 0	61,25	0,00	0,00	0,00	Estación As.T	err.Su	ip.Ocup. v	7.1.veg.	v.D.Her.	7.D.Tran.	v.D.Roca	S.D.Tie. S.	D.Tran.	3.D.Roca
1+900 45.770	53.048 26.524 231.063	15.082	1.520	407	52,15	0,00	0,00	0,00	0+000	0	0 1.909	0 955	0 7.250	0 1.715	0 21.859	366,13	86,67	1.104,63
360 1+920 46.131	360 180 969 53.409 26.704 232.032	0 15.082	0 1.520	0 407	44,78	0,00	0,00	0,00	0+020	0	1.909 1.895	955 947	7.250 7.194	1.715 1.702	21.859 21.776	358,82	84,87	1.081,26
339 1+940 46.469	339 169 798 53.748 26.874 232.830	0 15.082	0 1.520	0 407	35,04	0,00	0,00	0,00	0+040	0	3.804	1.902	14.443	3.417	43.635	360,53	85,30	1.096,39
297	297 149 535	0	0	0					0+060	0	1.969 5.773	984 2.886	7.468 21.911	1.766 5.183	22.940 66.575	386,32	91.26	1.197,61
1+960 46.767 262	54.045 27.022 233.365 262 131 321	15.082 0	1.520 0	407 0	18,41	0,00	0,00	0,00		0	2.029	1.015	7.713	1.827	24.433	,		
1+980 47.029 223	54.307 27.154 233.686 287 143 163	15.082 12	1.520 0	407 0	13,71	0,00	0,00	0,00	0+080	0 0	7.802 2.033	3.901 1.016	29.625 7.748	7.010 1.841	91.009 25.496	385,02	91,49	1.245,71
2+000 47.251	54.594 27.297 233.849	15.094	1.520	407	2,58	1,16	0,00	0,00	0+100	0	9.835 2.048	4.917 1.024	37.373 7.806	8.851 1.855	116.504 27.072	389,79	92,64	1.303,88
160 2+020 47.411	343 171 51 54.937 27.468 233.900	93 15.187	0 1.520	0 407	2,51	8,11	0,00	0,00	0+120	0	11.883	5.941	45.179	10.707	143.577	390,86	92,88	1.403,32
66 2+040 47.478	519 259 25 55.455 27.728 233.925	1.210 16.397	232 1.752	642 1.048	0,00	112,87	23,17	64,18	0+140	0	2.057 13.940	1.029 6.970	7.844 53.023	1.865 12.571	28.435 172.012	393,54	93,58	1.440,18
0	736 368 0	2.541	535	2.210		,	•	,	0+160	0	2.066 16.006	1.033 8.003	7.877 60.900	1.872 14.443	28.131 200.143	394,11	93.60	1.372,92
2+060 47.478 0	56.191 28.096 233.925 817 409 0	18.937 2.869	2.286 617	3.258 3.303	0,00	141,18	30,29	156,81		0	2.035	1.017	7.744	1.837	26.002	,	,	,
2+080 47.478 0	57.009 28.504 233.925 828 414 0	21.806 2.913	2.903 628	6.561 3.466	0,00	145,74	31,42	173,45	0+180	0 0	18.041 1.974	9.020 987	68.644 7.499	16.280 1.775	226.145 23.479	380,34	90,09	1.227,29
2+100 47.478	57.837 28.919 233.925	24.719	3.532	10.027	0,00	145,58	31,39	173,16	0+200	0	20.015 1.942	10.007 971	76.143 7.373	18.055 1.745	249.624 22.289	369,53	87,45	1.120,62
0 2+120 47.478	823 412 0 58.661 29.330 233.925	2.893 27.612	623 4.155	3.392 13.419	0.00	143,68	30,92	166,02	0+220	0	21.956	10.978	83.516	19.800	271.913	367,73	87,01	1.108,30
0 2+140 47.478	813 406 0 59.473 29.737 233.925	2.851 30.463	613 4.767	3.238 16.657	0.00	141,46		157,78	0+240	0 0	1.904 23.860	952 11.930	7.225 90.741	1.709 21.509	21.044 292.957	354,82	83,85	996,13
0	820 410 0	2.881	621	3.398	,	,			0+260	0 0	1.879 25.740	940 12.870	7.127 97.868	1.684 23.193	20.179 313.136	357,90	84 57	1.021,73
2+160 47.478 0	60.293 30.146 233.925 838 419 0	33.344 2.957	5.388 640	20.055 3.712	0,00	146,65	31,73	182,06		0	1.255	628	4.762	1.126	13.745	,	,	,
2+180 47.478	61.131 30.565 233.925	36.301	6.029	23.767	0,00	149,02	32,30	189,14	0+273,270	0	26.995	13.498	102.630	24.318	326.881	359,75	85,06	1.049,90
2+200 47.478	890 445 0 62.021 31.010 233.925	3.162 39.463	691 6.720	4.509 28.276	0,00	167,17	36,78	261,78										
0	971 485 0	3.483	771	5.902														

Rebeca Seoane Barrán

ALTERNATIVE 3	A 1 T F F		11/4 2									Estación	As Terr S	un Ocun. \	/.T.Vea.	V.Terra.	V.D.Tier. V	D.Trán. V.D.	Roca	S.Terra.	S.D.Tie. S.	D.Trán. S.	D.Roca
Color Colo	ALIE	KNAI	IVA 3										7.01101110	пр.осир.		1110114	<u> </u>	<u> </u>	1000	<u> </u>	<u> </u>	<u></u> <u></u>	
(e)e principal	Á	:										0+380					-	-		135,61	0,00	0,00	0,00
	Areas co	rregiaa	as por cu	ırvatura	4							0+400	15.142	15.142	7.571	96.352			Ō	123,36	0,00	0,00	0,00
Character Support Character Support	(eie pri	incipa	I)									0±420					-	-	0	108.05	0.00	0.00	0.00
0+000 0 0 0 0 0 0 0 0 319,60 0,00 0,00 0,00 0,00 0+660 16.888 16.888 8.444 10.2483 0 0 0 85,41 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	(O)O P	о.ра	.,									0+420					-		-	100,00	0,00	0,00	0,00
O-100 O	Estación /	As.Terr.S	up.Ocup. \	/.T.Veg.	V.Terra.	V.D.Tier. V.D.T	rán. V.D.Roca	S.Terra.	S.D.Tie. S	.D.Trán. S.	D.Roca	0+440					-		0	94,16	0,00	0,00	0,00
0+020 880 8890 445 6.615 0 0 0 342,13 0.00		_	_	_	_							0.400					-	-	0	05.04	0.00	0.00	0.00
Charles Char	0+000				-			319,36	0,00	0,00	0,00	0+460					-		-	85,31	0,00	0,00	0,00
10	0.020						-	242.42	0.00	0.00	0.00	0+480					-	-	•	90.35	0.00	0.00	0.00
Check 1800 1800 1800 900 13.473 0	0+020							342,13	0,00	0,00	0,00	01400					-	-	0	50,55	0,00	0,00	0,00
0+060 2,677 2,677 1,673 1,984 0 0 0 2,98,39 0,00 0	0+040					-	•	343 68	0.00	0.00	0.00	0+500					0	Ō	Ō	97,02	0.00	0.00	0.00
Check Capta Capt	0.0.0							0 .0,00	0,00	0,00	0,00		504	504	252	2.020	0	0	0	,	,	,	,
Heat September September	0+060			1.338		0	0 0	289,39	0.00	0,00	0,00	0+520	18.400	18.400	9.200	108.133	0	0	0	104,93	0,00	0,00	0,00
845 845 422 5922 0 0 0 0 0 0,00 0,00 0,00 0,00 0,00 0		847	847	423	5.940	0	0 0						522	522	261	2.180	0		0				
0+100 4.868 4.368 2.164 11.666 0 0 0 287.57 0,00 0,00 0,00 0+560 19.440 19.440 9.720 112.460 0 0 0 101.64 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0+080	3.524	3.524	1.762	25.744	0	0 0	304,61	0,00	0,00	0,00	0+540					-		0	113,07	0,00	0,00	0,00
836 836 418 5.777 0 0 0 290,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00		845	845	422	5.922	0	0 0										-	-	•				
0+120 5.204 5.204 20 37.443 0 0 0 290.15 0.00 0.00 0.00 0+580 19.907 19.907 9.953 114.165 0 0 0 68.86 0.00 0.00 0.00 0.00 0.00 0.	0+100					-	-	287,57	0,00	0,00	0,00	0+560					-	-	•	101,64	0,00	0,00	0,00
SHO SHO						-	-										-		-				
0+140 6.044 8.024 43.279 0 0 0 293,42 0,00 0,00 0,00 0,00 0+600 20.343 20.343 10.77 115.600 0 0 74.62 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0+120					-	-	290,15	0,00	0,00	0,00	0+580					-		-	68,86	0,00	0,00	0,00
846 846 423 5,917 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0.600</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>74.60</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>							-					0.600					-		-	74.60	0.00	0.00	0.00
0+160 6.889 6.88 3.445 49.196 0 0 0 298,31 0,00 0,00 0,00 0+620 20.785 10.393 117.084 0 0 0 73,75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0+140					-	-	293,42	0,00	0,00	0,00	0+600					-	-	-	74,62	0,00	0,00	0,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.460					-	-	200.24	0.00	0.00	0.00	0+620							-	73 75	0.00	0.00	0.00
0+180 7.722 7.722 3.861 54.932 0 0 0 275,31 0,00 0,00 0,00 0,00 0+640 21.224 21.224 10.612 118.544 0 0 0 72,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0+160					•	•	296,31	0,00	0,00	0,00	0+020								13,13	0,00	0,00	0,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0±180					-	-	275 31	0.00	0.00	0.00	0+640					-		-	72 35	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0+100					-	-	275,51	0,00	0,00	0,00	0.0.0					-	-	-	,00	0,00	0,00	0,00
783 783 392 5.047 0 <th< td=""><td>0+200</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>258.52</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0+660</td><td>21.705</td><td>21.705</td><td>10.853</td><td>120.367</td><td>0</td><td>0</td><td>0</td><td>109,94</td><td>0,00</td><td>0,00</td><td>0,00</td></th<>	0+200					-	-	258.52	0.00	0.00	0.00	0+660	21.705	21.705	10.853	120.367	0	0	0	109,94	0,00	0,00	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**=**					Ö	0 0		-,	-,	-,		534	534	267	2.285	0	0	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0+220	9.310	9.310	4.655	65.317	0	0 0	246,14	0,00	0,00	0,00	0+680	22.239	22.239	11.119	122.652	0	-	0	118,52	0,00	0,00	0,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		753	753	376	4.651	0	0 0										-	-	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0+240					•		218,92	0,00	0,00	0,00	0+700					-			114,54	0,00	0,00	0,00
658 658 329 3.437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-	-					0.700					-		-	40400	0.00	0.00	0.00
0+280 11.415 11.415 5.707 77.349 0 0 0 168,25 0,00 0,00 0,00 0,00 0+740 23.790 23.790 11.895 129.048 0 0 0 83,81 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0+260					-	-	175,49	0,00	0,00	0,00	0+720					-	-	-	104,08	0,00	0,00	0,00
678 678 339 3.398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000						-	400.05	0.00	0.00	0.00	0.740					-	-	•	02 01	0.00	0.00	0.00
0+300 12.092 12.092 6.046 80.747 0 0 0 171,55 0,00 0,00 0,00 0+760 24.239 24.239 12.120 130.595 0 0 0 70,95 0,00 0,00 0,00 0,00 0,00 0,00 0,00	0+280					-	-	168,25	0,00	0,00	0,00	0+740					-	-	-	03,01	0,00	0,00	0,00
672 672 336 3.546 0 0 0 0 423 423 212 1.324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0+300					-	-	171 55	0.00	0.00	0.00	0+760					-	-	•	70.95	0.00	0.00	0.00
0+320 12.764	0+300							17 1,33	0,00	0,00	0,00	01700					-	-	-	10,55	0,00	0,00	0,00
634 634 317 3.501 0 0 0 375 375 188 1.012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0+320							183 01	0.00	0.00	0.00	0+780					ū		•	61.40	0.00	0.00	0.00
0+340 13.398 13.398 6.699 87.794 0 0 0 167,07 0,00 0,00 0,00 0+800 25.038 25.038 12.519 132.931 0 0 0 39,81 0,00 0,00 0,00 605 605 303 3.142 0 0 0 0 287 317 158 459 5 0 0	0.020					-	-		0,00	0,00	3,00						Ó	0	0	- , -	-,	-,	-,
605 605 303 3.142 0 0 0 0 287 317 158 459 5 0 0	0+340					-	-	167,07	0,00	0.00	0.00	0+800	25.038	25.038	12.519	132.931	0	0	0	39,81	0,00	0,00	0,00
0.360 44 003 44 003 7 003 00 035 0 0 0 447 40 0 00 0 00 0 0 0 0 1 870 25 325 25 354 12 677 133 390 5 0 0 6 0 0 51 0 00 0 00						0	0 0	- ,	-,	-,	-,						-	•	•				
0+360 14.003 14.003 7.002 90.935 0 0 0 147,10 0,00 0,00 0,00 0+820 25.325 25.354 12.677 133.390 5 0 0 6,09 0,51 0,00 0,00	0+360	14.003	14.003	7.002	90.935	0	0 0	147,10	0,00	0,00	0,00	0+820	25.325			133.390	5	0	0	6,09	0,51	0,00	0,00

575 288 2.827

ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

DE INGENIEROS DE CAMINOS,
CANALES Y PUERTOS

Rebeca Seoane Barrán

UNIVERSIDADE DA CORUÑA

Estación As.Terr.S	up.Ocup. V.T.Veg.	V.Terra.	V.D.Tier. V.	D.Trán. V.D	D.Roca	S.Terra.	S.D.Tie.	S.D.Trán. S	S.D.Roca	Estación As.Terr.S	up.Ocup. V.T.Veg.	V.Terra.	V.D.Tier. V	/.D.Trán. <u>V</u>	.D.Roca	S.Terra.	S.D.Tie. S	.D.Trán. S	.D.Roca
0+840 25.555 247	25.656 12.828 · 289 145	133.490 114	14 4	0	0	3,93	0,38	0,00	0,00	1+300 26.720 0	36.769 18.384 557 278	134.044	29.269 1.827	4.820 357	7.006 267	0,00	88,12	17,03	6,65
0+860 25.803 216	25.945 12.973 · 295 147		18 15	0	0	7,49	0,00	0,00	0,00	1+320 26.720 0	37.325 18.663 572 286	-	31.095 1.899	5.177 378	7.273 470	0,00	94,55	18,63	20,02
0+880 26.019 209	26.240 13.120 287 143		32 15	0	0	1,07	1,46	0,00	0,00	1+340 26.720	37.897 18.948 556 278	-	32.994 1.849	5.555 368	7.743 431	0,00	95,36	19,15	26,97
0+900 26.228 221	26.527 13.264 286 143		47 10	0	0	14,69	0,00	0,00	0,00	1+360 26.720 0	38.453 19.227 524 262	-		5.923 290	8.174 173	0,00	89,55	17,66	16,13
0+920 26.448 184	26.813 13.406 323 162		57 21	0	0	1,52	0,98	0,00	0,00	1+380 26.720 0	38.977 19.489 483 242	-	36.558 1.458	6.212 115	8.347 12	0,00	81,95	11,30	1,21
0+940 26.632 88	27.136 13.568 342 171		77 157	0	0	0,94	1,08	0,00	0,00	1+400 26.720 0	39.460 19.730 444 222	-	38.016 1.094	6.327	8.359	0,00	63,81	0,19	0,00
0+960 26.720	27.478 13.739 381 191	134.044	234 469	0	0	0,00	14,59	0,00	0,00	1+420 26.720 0	39.904 19.952 473 236	-	39.110 1.305	6.329 160	8.359 66	0,00	45,59	0,00	0,00
0+980 26.720	27.859 13.930 423 212	•	703 808	0	0	0,00	32,28	0,00	0,00	1+440 26.720 0	40.377 20.189 511 255	-		6.489 266	8.426 89	0,00	84,92	16,02	6,64
1+000 26.720	28.282 14.141 467 233	•	1.510 1.262	0 23	0	0,00	48,48	0,00	0,00	1+460 26.720 8	40.888 20.444 417 208	-		6.755 106	8.515 23	0,00	81,45	10,59	2,29
1+020 26.720	28.749 14.375 495 247	•	2.773 1.578	23 88	0	0,00	77,76	2,31	0,00	1+480 26.728 121	41.305 20.652 326 163	•		6.861	8.538 0	0,01	3,11	0,00	0,00
1+040 26.720	29.244 14.622 511 255	•	4.351 1.643	111 209	0	0,00	80,06	6,48	0,00	1+500 26.849 229	41.630 20.815 314 157			6.861	8.538	2,01	0,68	0,00	0,00
1+060 26.720	29.755 14.877 538 269	•	5.994 1.753	320 322	8 132	0,00	84,28	14,43	0,76	1+520 27.078 116	41.944 20.972 324 162		42.971 65	6.861 0	8.538 0	5,44	0,19	0,00	0,00
1+080 26.720	30.293 15.147 554 277	•	7.747 1.815	642 354	140 238	0,00	91,02	17,75	12,44	1+540 27.194 0	42.268 21.134 352 176		43.036 222	6.861	8.538	0,00	6,35	0,00	0,00
1+100 26.720	30.847 15.423 556 278	•	9.562 1.825	996 356	378 261	0,00	90,44	17,61	11,38	1+560 27.194 0	42.620 21.310 363 181	U		6.861	8.538	0,00	15,86	0,00	0,00
1+120 26.720	31.403 15.701 659 329	•	11.387	1.352	639 1.366	0,00	92,04	18,01	14,71	1+580 27.194	42.983 21.491 366 183	•	43.573 345	6.861	8.538	0,00	15,66	0,00	0,00
1+140 26.720	32.062 16.031 726 363	134.044	13.621	1.810	2.005 2.050	0,00	131,38	27,83	121,89	1+600 27.194 0	43.349 21.674 362 181	134.193	43.918 311	6.861	8.538	0,00	18,83	0,00	0,00
1+160 26.720	32.787 16.394 648 324	•	16.123 2.192	2.336	4.054 1.165	0,00	118,83	24,72	83,08	1+620 27.194	43.711 21.856 344 172	•	44.230 157	6.861	8.538	0,00	12,28	0,00	0,00
1+180 26.720	33.435 16.718 · 595 298	134.044	18.315 1.981		5.220	0,00	100,36	20,09	33,45	1+640 27.194 123	44.055 22.027 309 154	134.193 81	44.387 36	6.861	8.538 0	0,00	3,46	0,00	0,00
1+200 26.720	34.030 17.015 580 290	•	20.296		5.827 489	0,00	97,75	19,44	27,33	1+660 27.317 264	44.364 22.182 283 142		44.423 1	6.861	8.538	8,09	0,10	0,00	0,00
1+220 26.720	34.610 17.305 568 284	-	22.219		6.317	0,00	94,57	18,76	21,58	1+680 27.580 297	44.647 22.324 297 149		44.424 0	6.861 0	8.538	23,20	0,00	0,00	0,00
1+240 26.720 0	35.178 17.589 545 273	-	24.098 1.786		6.706 199	0,00	93,27	18,32	17,39	1+700 27.877 328	44.944 22.472 328 164		44.424 0	6.861 0	8.538 0	31,15	0,00	0,00	0,00
1+260 26.720 0	35.723 17.861 519 260	-	25.884 1.679		6.905	0,00	85,38	15,98	2,52	1+720 28.205 366	45.272 22.636 366 183		44.424 0	6.861 0	8.538 0	38,72	0,00	0,00	0,00
1+280 26.720 0	36.242 18.121 5 527 263	-	27.563 1.706		6.935 71	0,00	82,48	10,76	0,45	1+740 28.571 387	45.638 22.819 387 194		44.424 0	6.861 0	8.538 0	55,25	0,00	0,00	0,00
-		-		-									-	-	-				

361

293

261

210

361 180

2+060 35.677 52.744 26.372 161.570 44.424

336 168

2+080 36.013 53.080 26.540 162.342 44.424

293 146

2+100 36.306 53.373 26.686 162.841 44.424

261 130

2+120 36.566 53.633 26.817 163.137 44.424

288 144

2+140 36.777 53.921 26.961 163.280 44.440

2+160 36.858 54.288 27.144 163.296 44.746

2+180 36.858 54.868 27.434 163.296 46.319

2+200 36.858 55.651 27.826 163.296 49.045

0 580 290

0 783 392

0 828 414

367 183

966

772

499

296

143

15

0

0

0

16

306

0 1.574

0 2.726

0 2.913

0

0

0

0

8.538

8.538

8.538

8.538

8.538

8.538

1.067

9.605

2.746

3.467

0

0

0

0

44,15

33,07

16,81

12,78

1,54

0,00

0,00

0,00

0,00

0,00

1,63

28,95

0,00 128,42

0,00

0,00

0,00

0,00

0,00

0,00

0,00 144,18 31,04 167,89

26,94 106,68

0,00

0,00

0,00

0,00

0,00

0,00

6.861

6.861

6.861

6.861

6.861

6.861

7.131

269

580

7.710 12.350

ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

UNIVERSIDADE DA CORUÑA

Rebeca Seoane Barrán

Estación As Torr 6	Sup.Ocup. V.T.Veg.	V Torro	V D Tior \	/ D Trán	V D Boos	S.Terra.	S.D.Tie. S	S D Trán (S D Boos	Estación As.Terr.Sup.Ocup. V.T.Veg. V.Terra. V.D.Tier. V.D.Trán. V.D.Roca S.Terra. S.D.Tie. S.D.Trán. S.D.Roca
Estacion As. Terr.s	sup.Ocup. v.1.veg.	v.ieiia.	v.D.Hel.	I.D. II ali.	V.D.ROCA	S. Terra.	S.D.Tie.	S.D. II all.	b.D.Ruca	Estacion Astrentoup.ocup. v.n.veg. v.nena. v.b.nen. v.b.nan. v.b.noca 3.tena. 3.b.ne. 3.b.nal. 3.b.noca
1+760 28.958	46.025 23.012	137.903	44.424	6.861	8.538	58,22	0,00	0,00	0,00	2+220 36.858 56.480 28.240 163.296 51.958 8.339 15.817 0,00 147,08 31,77 178,82
387	387 194	1.162	0	0	0					0 831 416 0 2.925 631 3.513
1+780 29.345	46.412 23.206	139.066	44.424	6.861	8.538	58,00	0,00	0,00	0,00	2+240 36.858 57.311 28.655 163.296 54.883 8.970 19.330 0,00 145,40 31,35 172,49
410	410 205	1.267	0	0	0					0 821 411 0 2.886 621 3.365
1+800 29.755	46.822 23.411	140.333	44.424	6.861	8.538	68,71	0,00	0,00	0,00	2+260 36.858 58.132 29.066 163.296 57.768 9.591 22.696 0,00 143,15 30,79 164,05
437	437 218	1.425	0	0	0					0 811 406 0 2.844 611 3.211
1+820 30.192	47.259 23.629		44.424	6.861	8.538	73,81	0,00	0,00	0,00	2+280 36.858 58.943 29.472 163.296 60.613 10.202 25.907 0,00 141,27 30,31 157,08
451	451 225	1.563	0	0	0					0 827 413 0 2.907 627 3.451
1+840 30.642	47.709 23.855		44.424	6.861	8.538	82,45	0,00	0,00	0,00	2+300 36.858 59.770 29.885 163.296 63.519 10.829 29.358 0,00 149,40 32,35 188,04
468	468 234	1.740	0	0	0					0 837 419 0 2.949 637 3.610
1+860 31.110	48.177 24.088		44.424	6.861	8.538	91,53	0,00	0,00	0,00	2+320 36.858 60.607 30.304 163.296 66.468 11.466 32.968 0,00 145,48 31,37 172,94
482	482 241	1.877	0	0	0					0 898 449 0 3.199 701 4.709
1+880 31.592	48.659 24.329		44.424	6.861	8.538	96,18	0,00	0,00	0,00	2+340 36.858 61.506 30.753 163.296 69.667 12.167 37.677 0,00 174,40 38,73 297,99
490	490 245	1.920	0	0	0					0 1.039 519 0 3.759 841 7.304
1+900 32.082	49.149 24.574		44.424	6.861	8.538	95,85	0,00	0,00	0,00	2+360 36.858 62.544 31.272 163.296 73.426 13.008 44.981 0,00 201,49 45,35 432,36
484	484 242	1.817	0	0	0					0 1.129 565 0 4.121 931 9.308
1+920 32.566	49.633 24.816		44.424	6.861	8.538	85,84	0,00	0,00	0,00	2+380 36.858 63.674 31.837 163.296 77.547 13.939 54.289 0,00 210,65 47,79 498,41
489	489 244	1.774	0	0	0					
1+940 33.054		152.448	44.424	6.861	8.538	91,55	0,00	0,00	0,00	
509	509 255	1.956	0	0	0					
1+960 33.564	50.631 25.315		44.424	6.861	8.538	104,07	0,00	0,00	0,00	(ramal Finsa-Santiago)
506	506 253	2.158	0	0	0 500	444.70	0.00	0.00	0.00	(ramar mod Garmago)
1+980 34.070		156.563	44.424	6.861	8.538	111,72	0,00	0,00	0,00	
453	453 226	1.725	0	0	0.500	00.70	0.00	0.00	0.00	EstaciónAs.Terr.Sup.Ocup.V.T.Veq.V.Terra.S.Terra.
2+000 34.523	51.590 25.795		44.424	6.861	8.538	60,76	0,00	0,00	0,00	
406	406 203	1.200	0	0	0.500	F0 00	0.00	0.00	0.00	0+000 0 0 0 32.90
2+020 34.929	51.996 25.998		44.424	6.861	8.538	59,26	0,00	0,00	0,00	346 346 135 779
387	387 194	1.117	0	0 004	0.500	EO 40	0.00	0.00	0.00	0+020 346 346 135 779 45,01
2+040 35.316	52.383 26.192	160.604	44.424	6.861	8.538	52,42	0,00	0,00	0,00	400 450 4474

Estación A	s.Terr.S	up.Ocup.V.	T.Veg.\	/.Terra.S	S.Terra.
0+000	0	0	0	0	32,90
	346	346	135	779	
0+020	346	346	135	779	45,01
	403	403	159	1.171	
0+040	749	749	295	1.950	72,12
	480	480	190	1.765	
0+060	1.228	1.228	485	3.716	104,42
	550	550	218	2.405	
0+080	1.778	1.778	703	6.120	136,04
	600	600	239	2.905	
0+100	2.378	2.378	942	9.026	154,51
	635	635	252	3.298	
0+120	3.013	3.013	1.194	12.324	175,30
	650	650	259	3.469	
0+140	3.663	3.663	1.453	15.793	171,62
	639	639	257	3.328	
0+160	4.302	4.302	1.709	19.121	161,18
	619	619	249	3.130	
0+180	4.921	4.921	1.959	22.252	151,86
	618	618	249	3.093	
0+200	5.539	5.539	2.207	25.344	157,44

Estación As. Terr. Sup. Ocup. V. T. Veg. V. Terra. S. Terra.

600

587

596

565

7.887

518

8.404

8.890

9.344

9.767

10.188

10.628

11.077

11.503

11.953

12.463

13.003

13.573

14.164

14.778

15.409

16.064

16.741

17.420

486

454

423

421

439

449

426

449

511

540

570

590

614

631

655

678

679

679

6.139

243 2.895

239 2.748

242 2.832

228 2.500

209 2.068

195 1.811

183 1.541

170 1.303

169 1.299

176 1.436

181 1.513

171 1.338

1.536

4.997 52.199 106,00

5.212 54.478 121,88

5.441 57.030 133.40

5.680 59.818 145,39

5.928 62.869 159.73

6.183 66.093 162,65

6.447 69.581 186,13

6.722 73.323 188,03

6.996 77.077 187,41

3.916 43.042

4.085 44.342

4.261 45.778

4.442 47.291

4.613 48.629

4.792 50.165

205 2.033

216 2.279

229 2.553

238 2.788

248 3.051

255 3.224

265 3.488

274 3.742

275 3.754

275 3.757

18.099 7.272 80.834 188,25

180

3.368 38.386

3.563 40.197

3.746 41.739

6.726 2.689 30.987 142,71

7.322 2.931 33.819 140,46

2.450 28.239 132,05

3.159 36.318 109,49

97,27

83,86

70,27

60,07

69,87

73,73

77,59

56,26

97,34

600

587

596

565

518

486

454

423

421

439

449 0+420 11.077

426

449

511

540

570

590

614

631

655

678

679

679

6.726

7.322

7.887

8.404

8.890

9.344

9.767

0+220 6.139

0+240

0+260

0+280

0+300

0+320

0+340

0+360

0+380 10.188

0+400 10.628

0+440 11.503

0+460 11.953

0+480 12.463

0+500 13.003

0+520 13.573

0+540 14.164

0+560 14.778

0+580 15.409

0+600 16.064

0+620 16.741

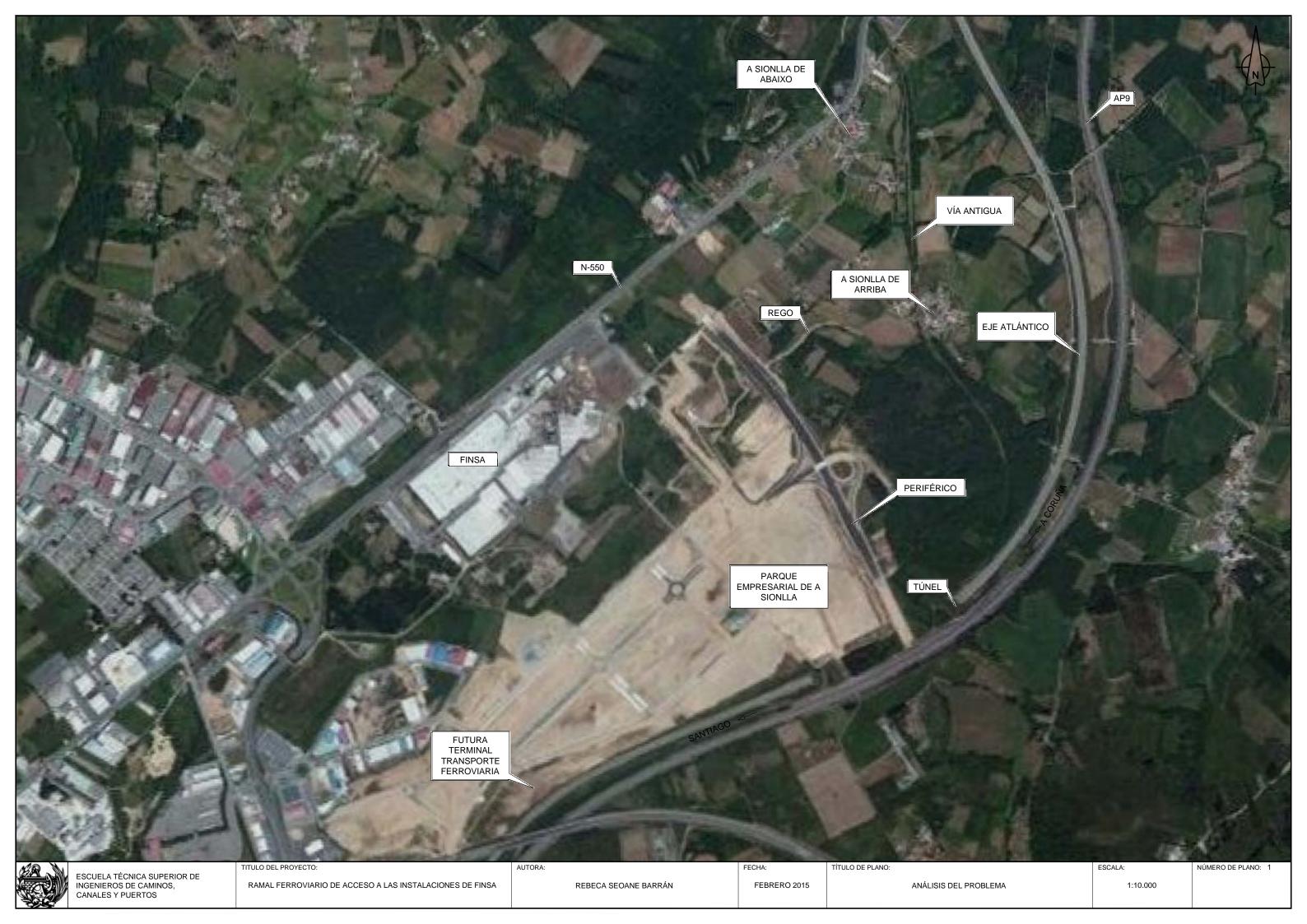
0+640 17.420

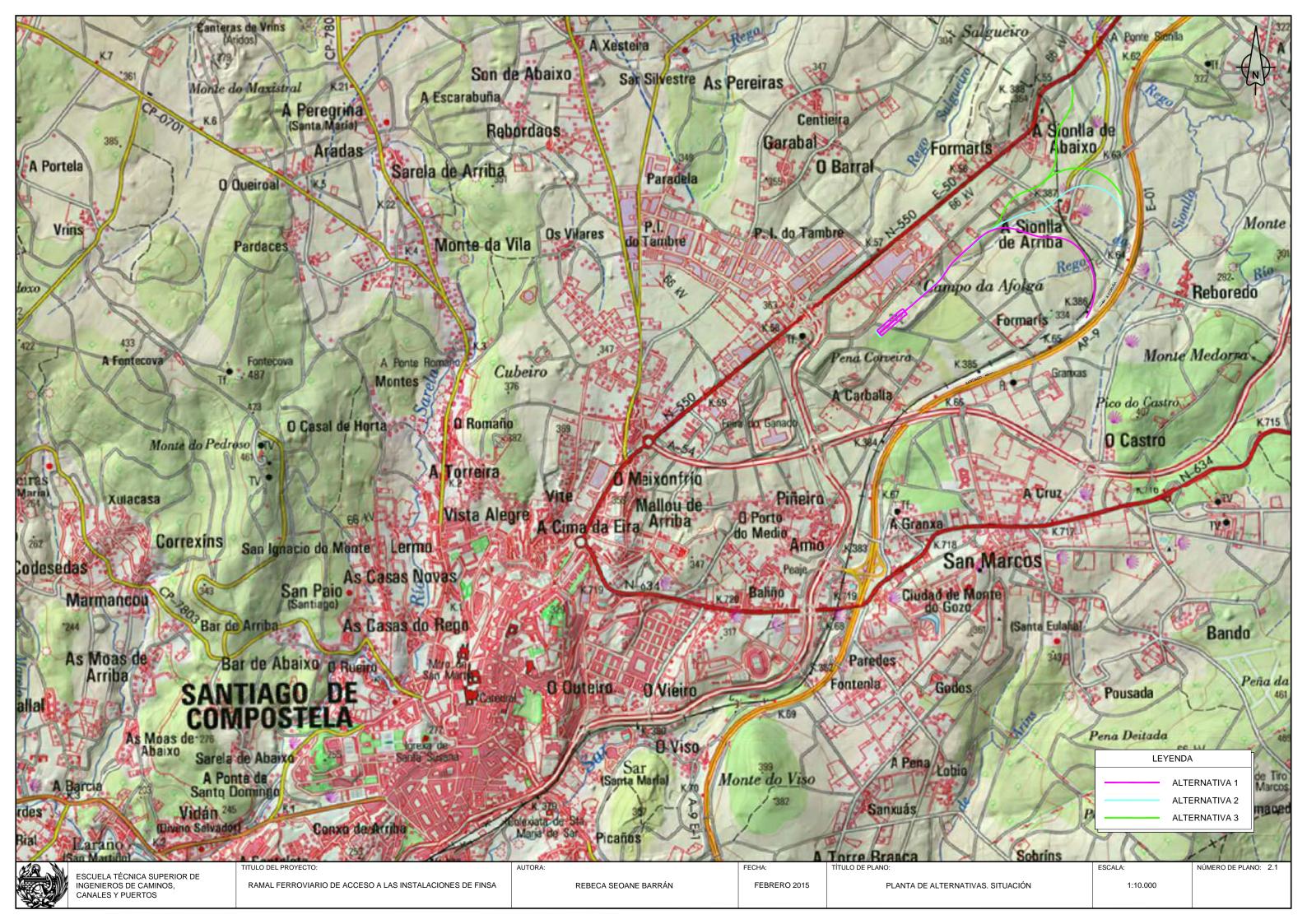
0+660 18.099

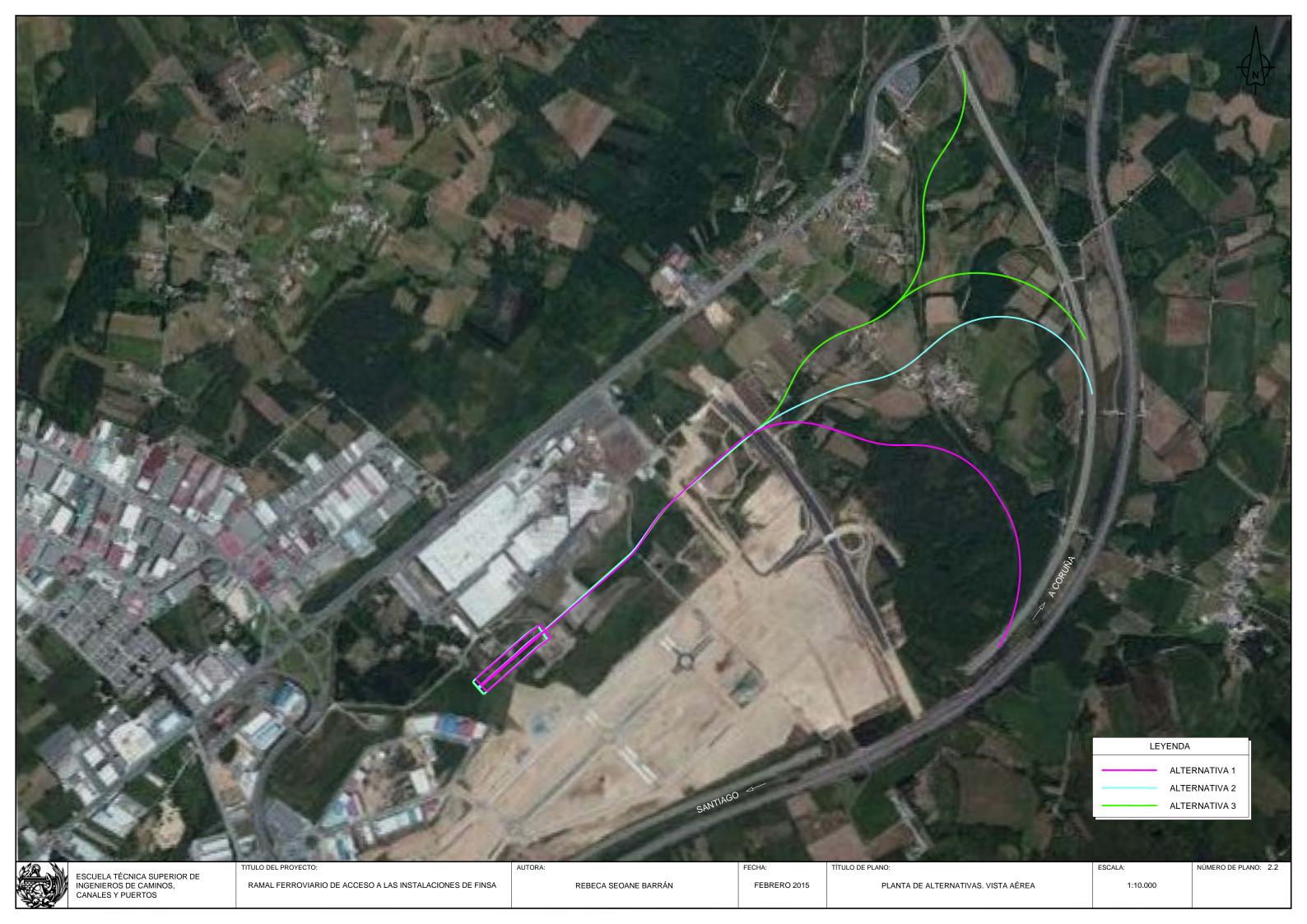
ESCUELA TECNICA SUPERIOR Ramal ferroviario de acceso a las instalaciones de Finsa (Santiago de Compostela)

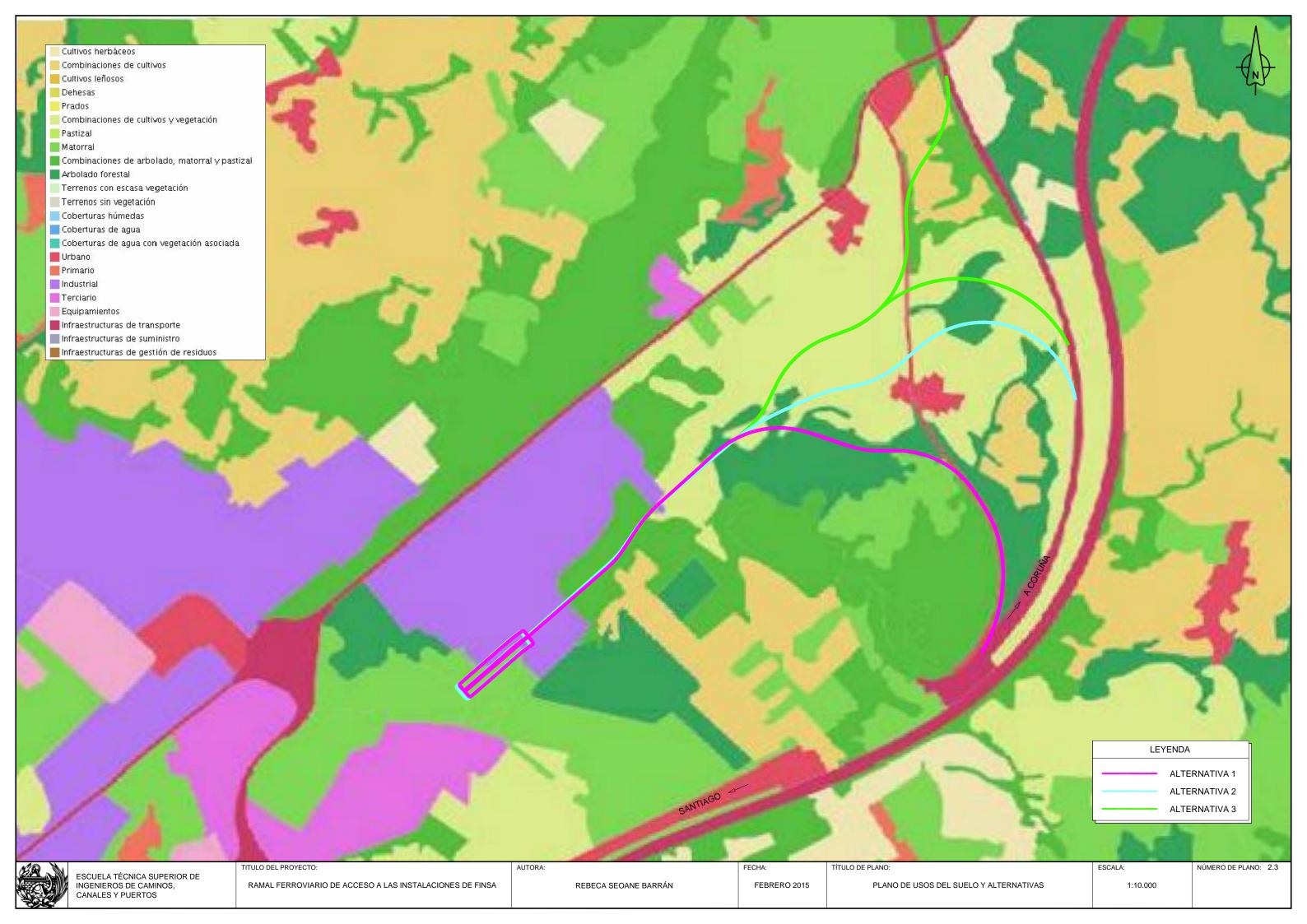
Rebeca Seoane Barrán

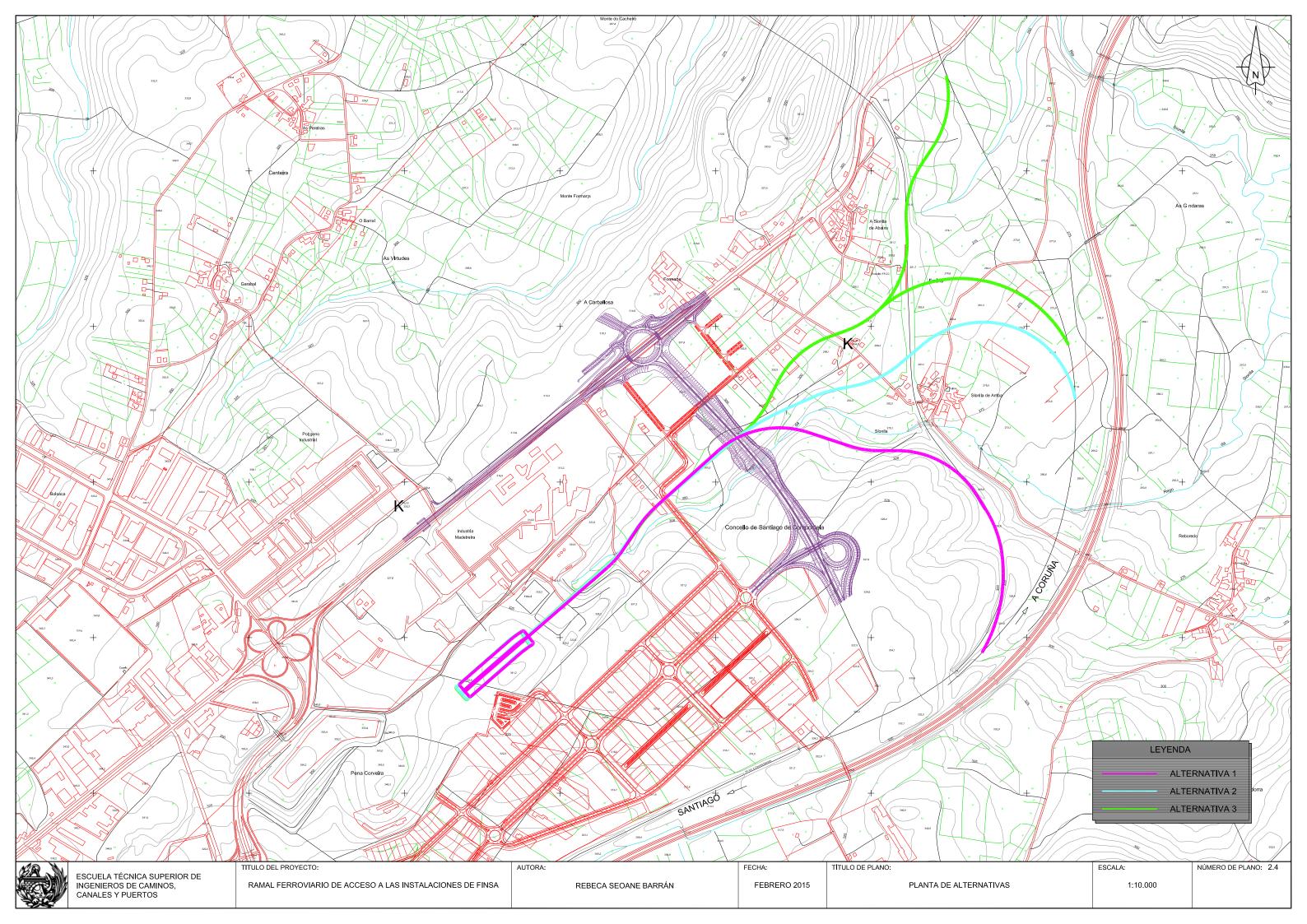
EstaciónAs.Terr.Sup.Ocup.V.T.Veg.V.Terra.S.Terra.

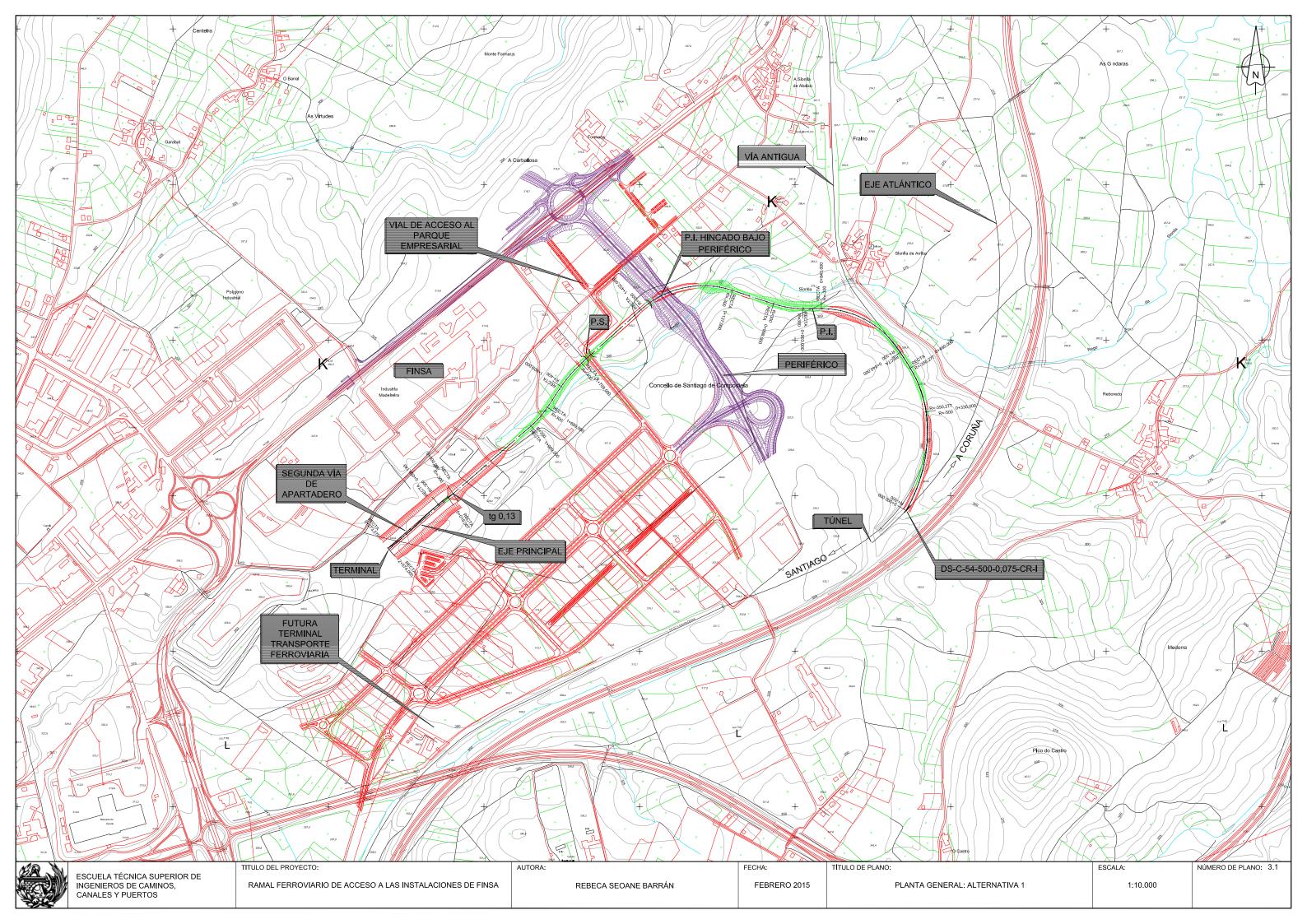

	694	694	282	3.963	
0+680	18.793	18.793	7.553	84.797	208,09
	359	359	145	2.124	
0+690	19.152	19.152	7.699	86.921	216,74

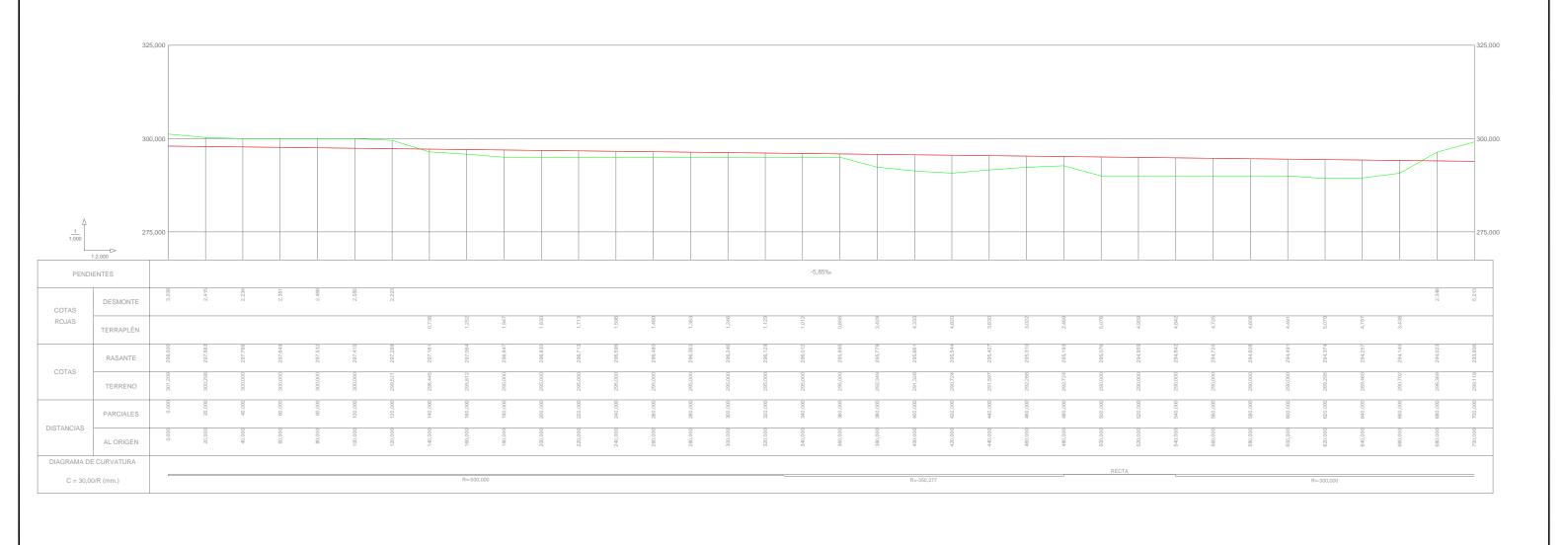

(terminal)

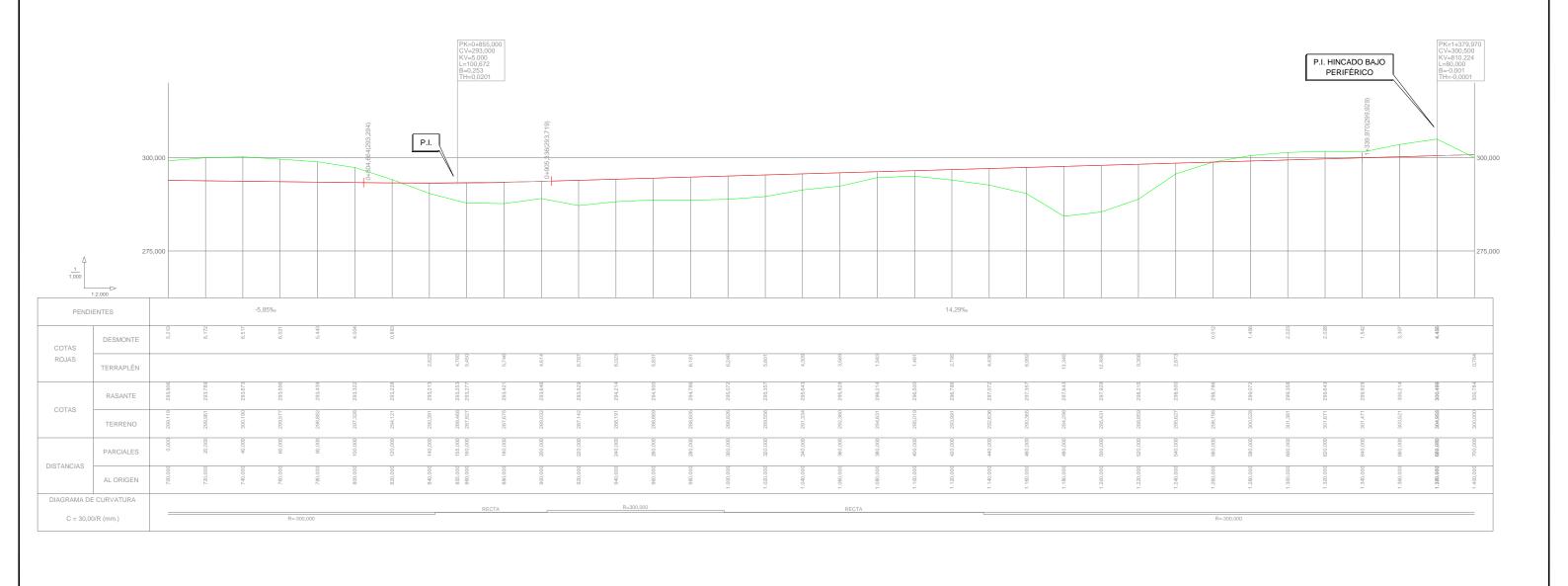

<u>Estación</u>	As.Terr.S	Sup.Ocup.	V.T.Veg.	V.D.Tier.	<u>V.D.Trán.</u>	V.D.Roca	S.D.Tie.	S.D.Trán.	S.D.Roca
0+000	0	0	0	0	0	0	367,37	87,00	1.110,97
	0	1.913	956	7.264	1.719	21.945			
0+020	0	1.913	956	7.264	1.719	21.945	359,07	84,93	1.083,53
	0	1.897	948	7.201	1.704	21.845			
0+040	0	3.810	1.905	14.465	3.423	43.790	361,00	85,43	1.101,02
	0	1.970	985	7.486	1.770	23.050			
0+060	0	5.780	2.890	21.951	5.193	66.840	387,64	91,59	1.203,96
	0	2.031	1.015	7.731	1.832	24.571			
0+080	0	7.811	3.905	29.682	7.025	91.411	385,43	91,59	1.253,10
	0	2.034	1.017	7.754	1.843	25.608			
0+100	0	9.845	4.923	37.436	8.868	117.019	389,97	92,68	1.307,67
	0	2.050	1.025	7.813	1.857	27.213			
0+120	0	11.895	5.947	45.249	10.724	144.232	391,31	93,00	1.413,63
	0	2.059	1.029	7.850	1.866	28.527			
0+140	0	13.954	6.977	53.099	12.591	172.758	393,72	93,63	1.439,05
	0	2.034	1.017	7.746	1.839	26.959			
0+160	0	15.988	7.994	60.845	14.430	199.717	380,86	90,29	1.256,82
	0	2.000	1.000	7.604	1.802	24.727			
0+180	0	17.988	8.994	68.449	16.231	224.444	379,51	89,88	1.215,86
	0	1.971	985	7.485	1.772	23.331			
0+200	0	19.958	9.979	75.934	18.003	247.774	369,01	87,32	1.117,19
	0	1.940	970	7.367	1.743	22.269			
0+220	0	21.899	10.949	83.301	19.747	270.044	367,67	87,00	1.109,72
	0	1.904	952	7.224	1.708	21.007			
0+240	0	23.802	11.901	90.525	21.455	291.050	354,74	83,84	990,96
	0	1.879	940	7.128	1.685	20.168			
0+260	0	25.682	12.841	97.653	23.140	311.219	358,06	84,62	1.025,87
	0	1.256	628	4.766	1.127	13.788			
0+273,270	0	26.938	13.469	102.419	24.266	325.007	360,24	85,18	1.052,22


4. PLANOS


Página 60





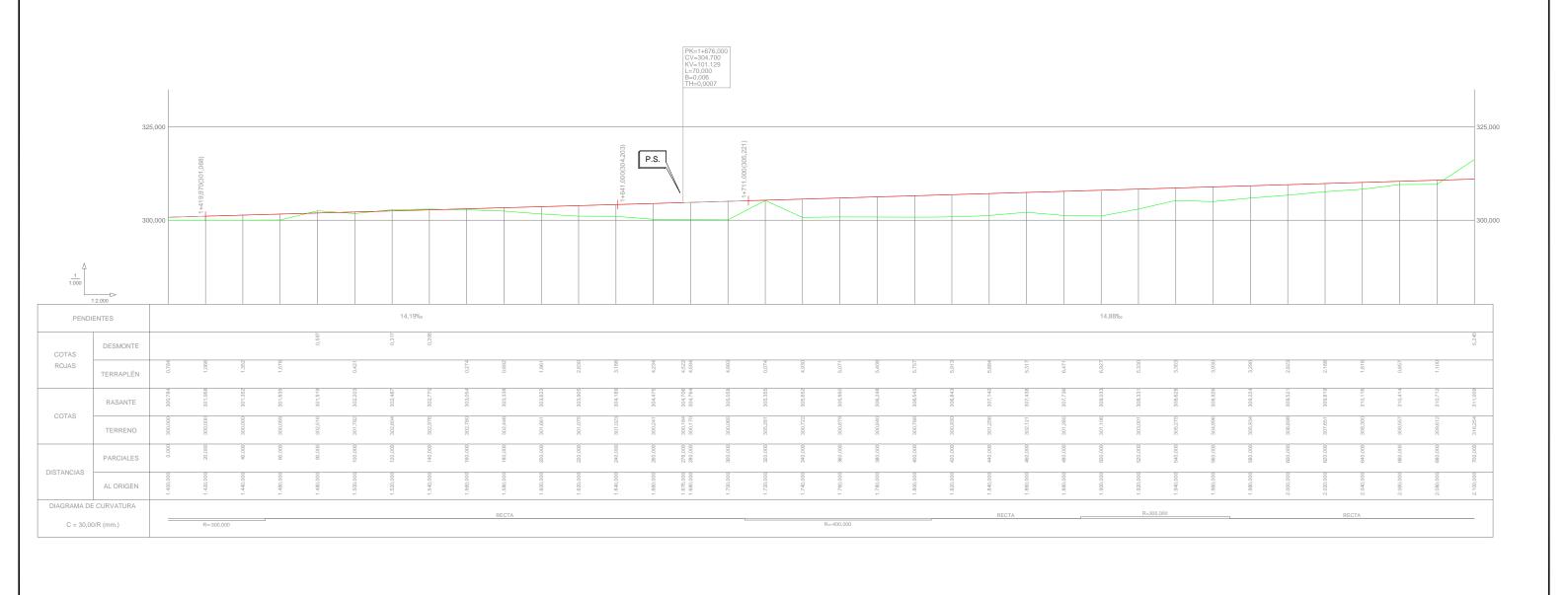

TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA

AUTORA:

TÍTULO DE PLANO:

ESCALA: NÚMERO DE PLANO: 3.2 E.H. =1:2.000 E.V. =1:1.000 HOJA 1 DE 4

FECHA:


RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA
TO WINE I ENTROVING DE NOCESO N'ENO INCINE NOTAL OTONEO DE 1 INCIN

TITULO DEL PROYECTO:

AUTORA:

TÍTULO DE PLANO:

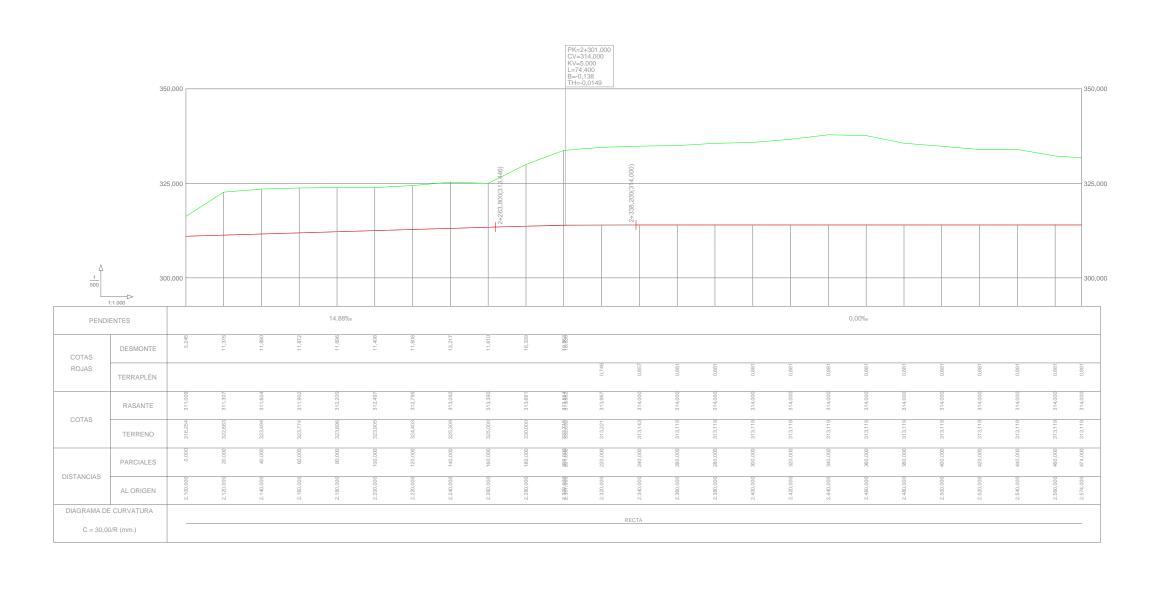
FECHA:

RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA	

TITULO DEL PROYECTO:

AUTORA:

TÍTULO DE PLANO:

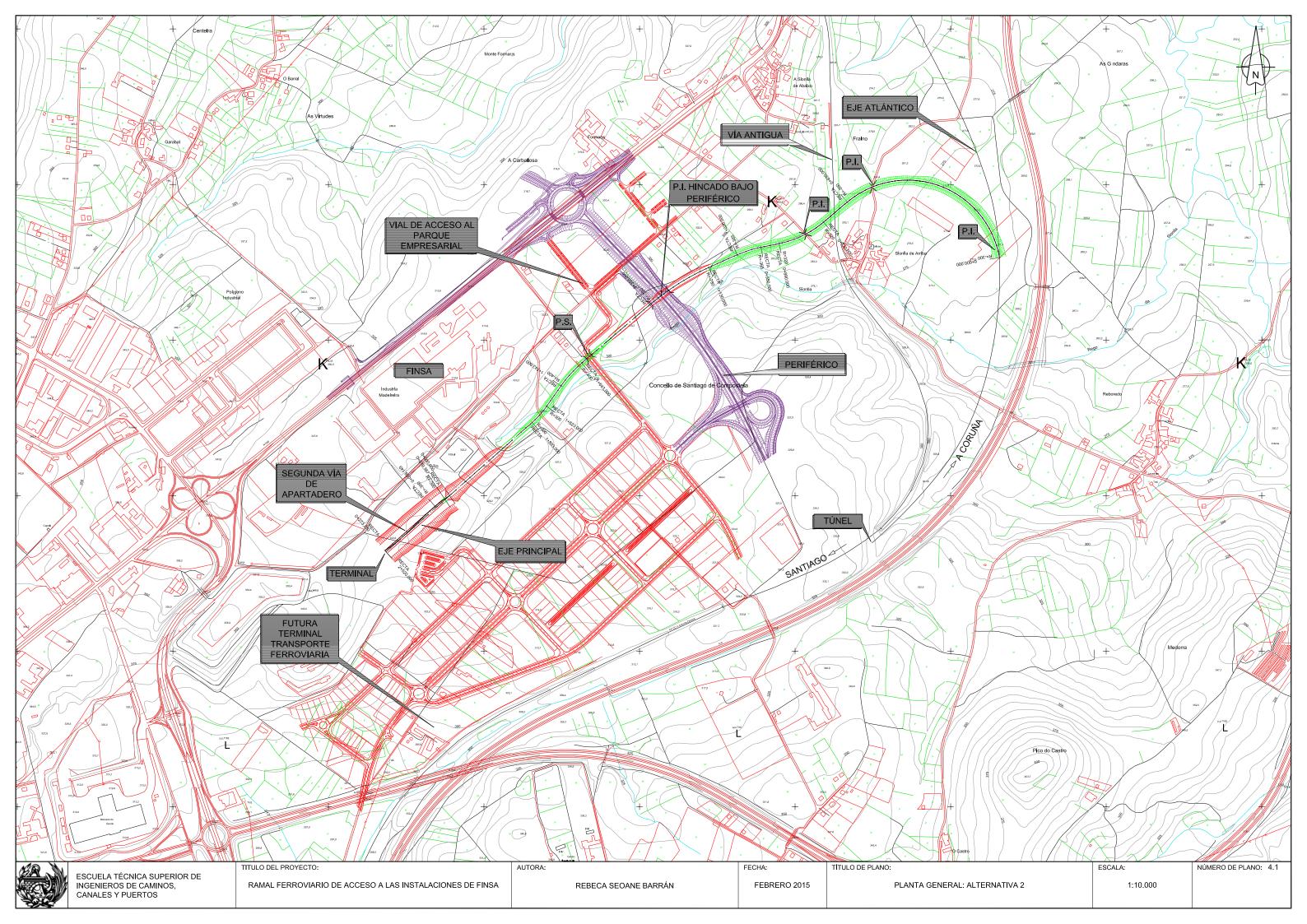

FECHA:

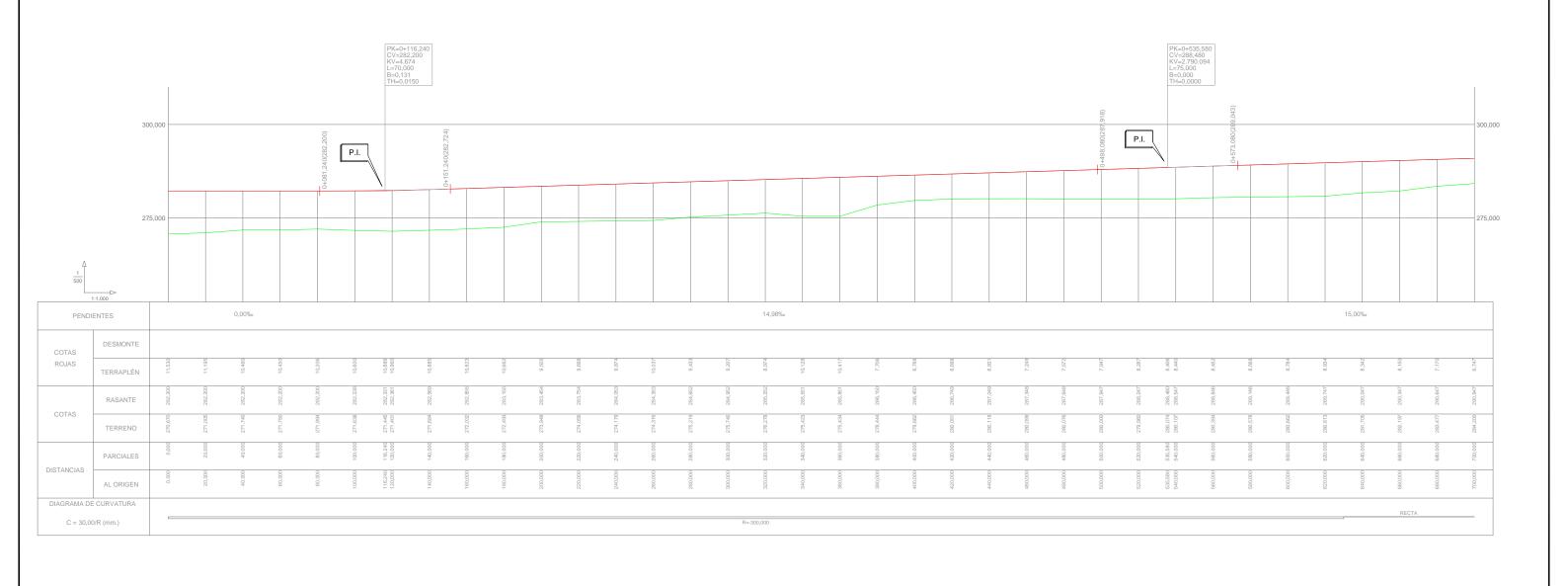
E.H. =1:2.000 E.V. =1:1.000

ESCALA:

HOJA 3 DE 4

NÚMERO DE PLANO: 3.2




TITULO DEL PROYECTO:	
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA	

TÍTULO DE PLANO:

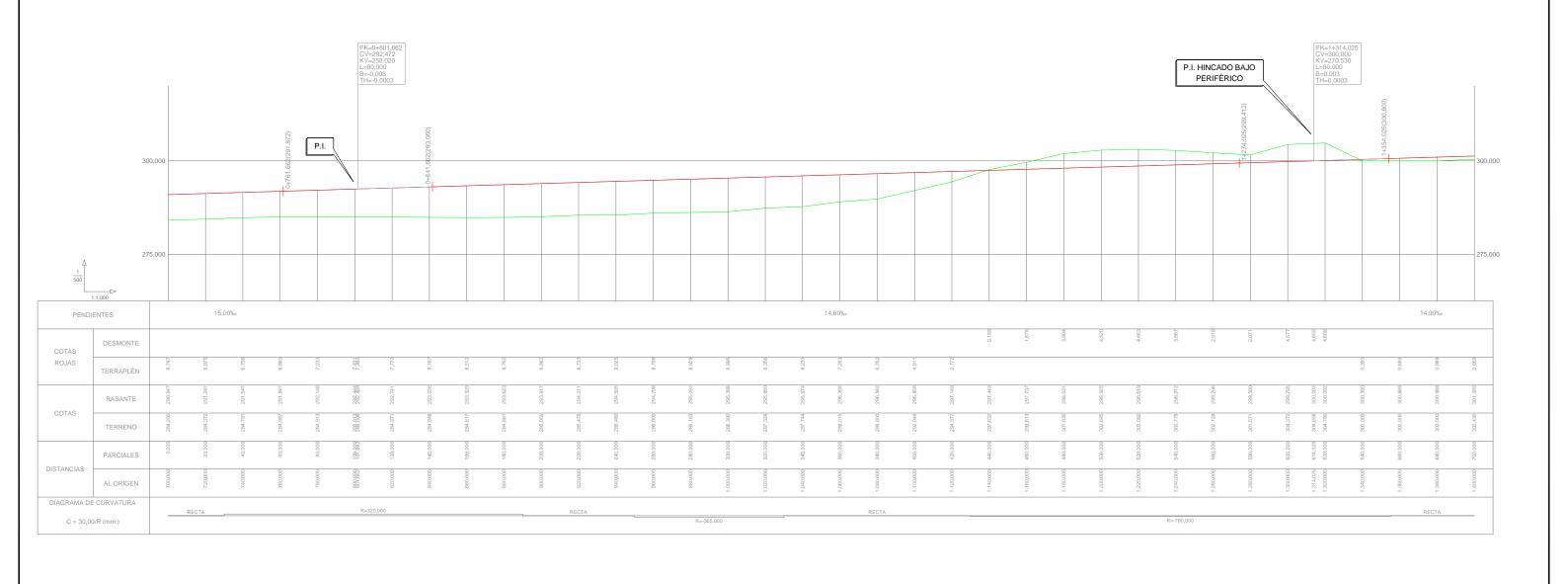
FECHA:

HOJA 4 DE 4

RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA	

TITULO DEL PROYECTO:

AUTORA:

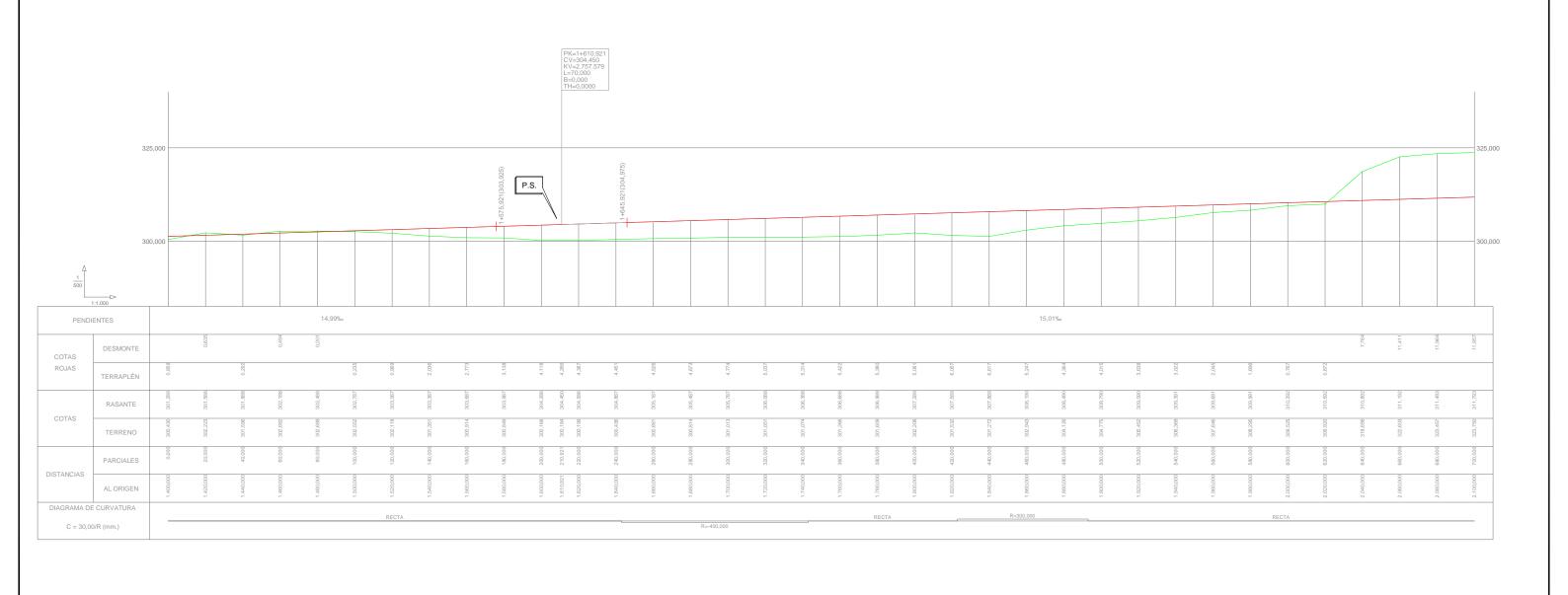

TÍTULO DE PLANO:

FECHA:

NÚMERO DE PLANO: 4.2 E.H. =1:2.000 E.V. =1:1.000

ESCALA:

HOJA 1 DE 4


TITULO DEL PROYECTO:	_
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA	


TÍTULO DE PLANO:

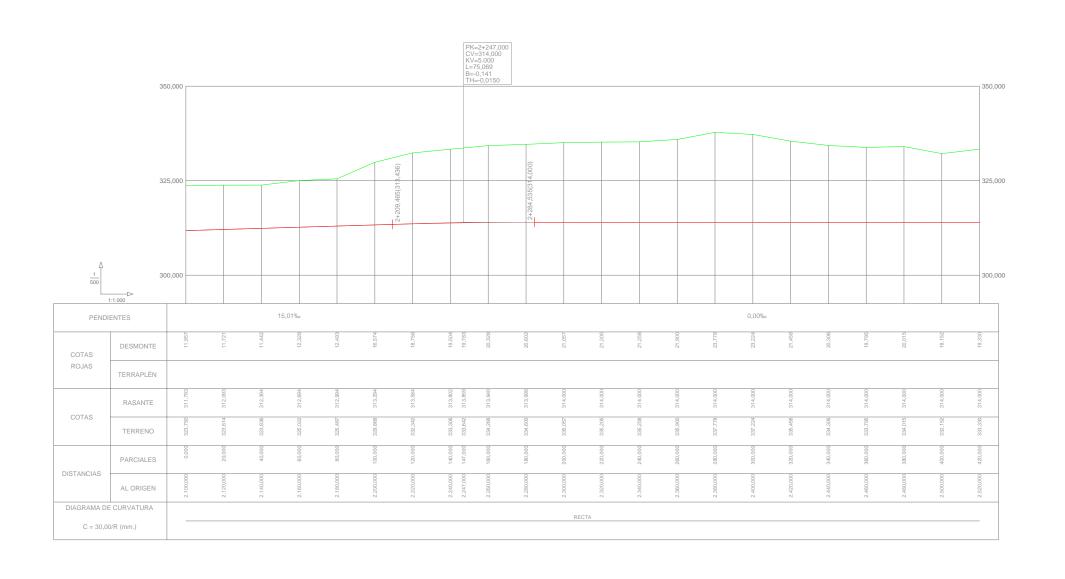
FECHA:

ESCALA: NÚMERO DE PLANO: 4.2 E.H. =1:2.000 E.V. =1:1.000

HOJA 2 DE 4

TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA

TÍTULO DE PLANO:

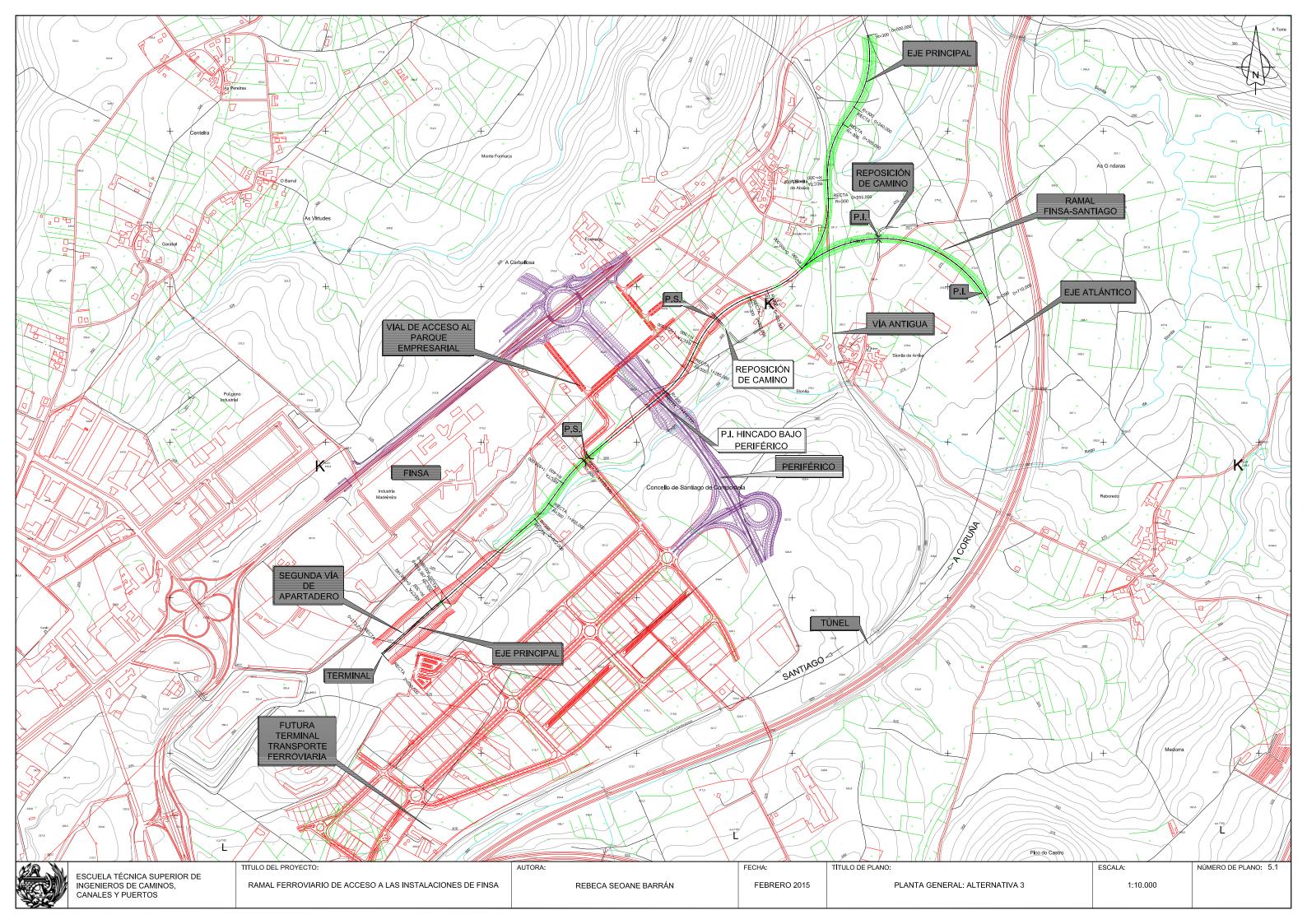

FECHA:

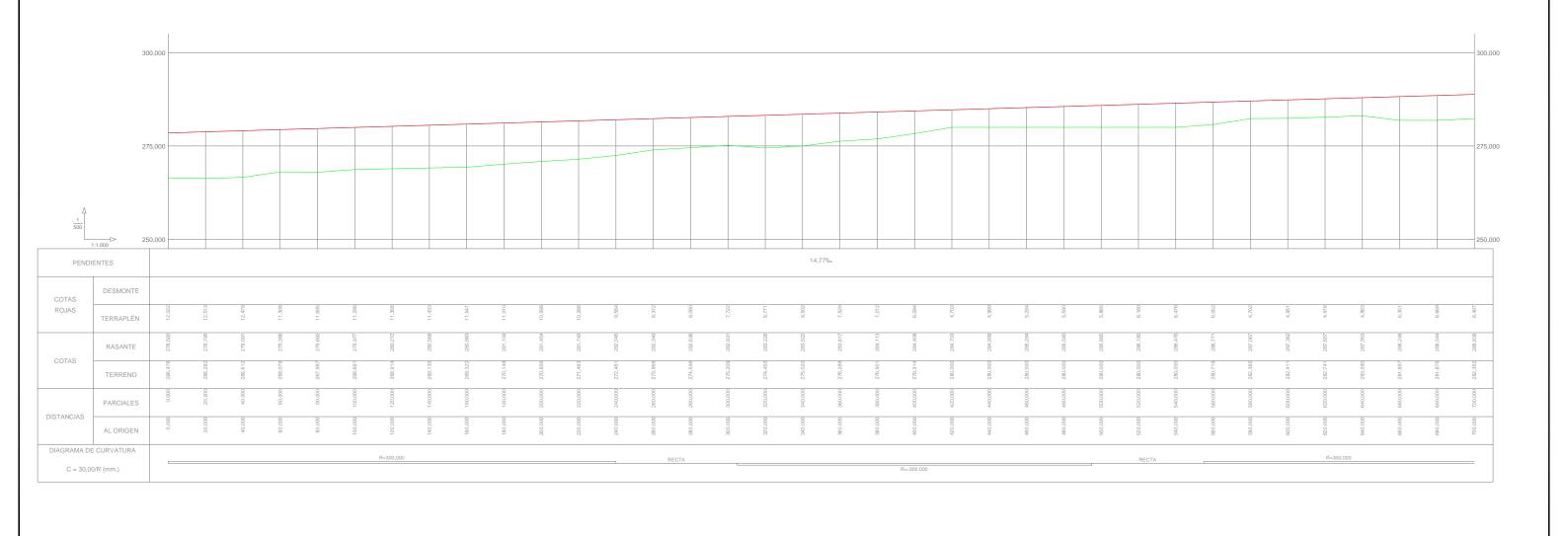
PERFILES LONGITUDINALES: ALTERNATIVA 2

E.H. =1:2.000 E.V. =1:1.000

ESCALA:

NÚMERO DE PLANO: 4.2
HOJA 3 DE 4




TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA

TÍTULO DE PLANO:

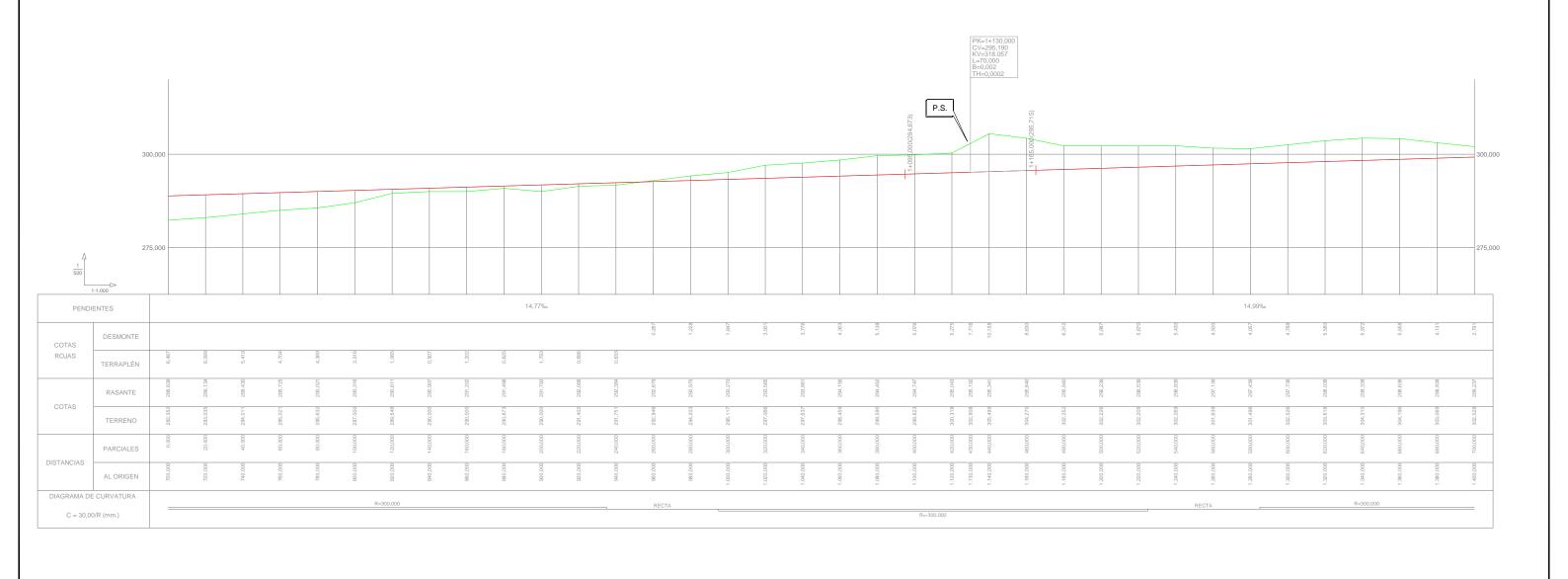
FECHA:

HOJA 4 DE 4

RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES D	E FINSA

TITULO DEL PROYECTO:

AUTORA:


E.H.	=1:2.000
E.V.	=1:1.000

ESCALA:

HOJA 1 DE 5

NÚMERO DE PLANO: 5.2

FECHA:	TÍTULO DE PLANO:

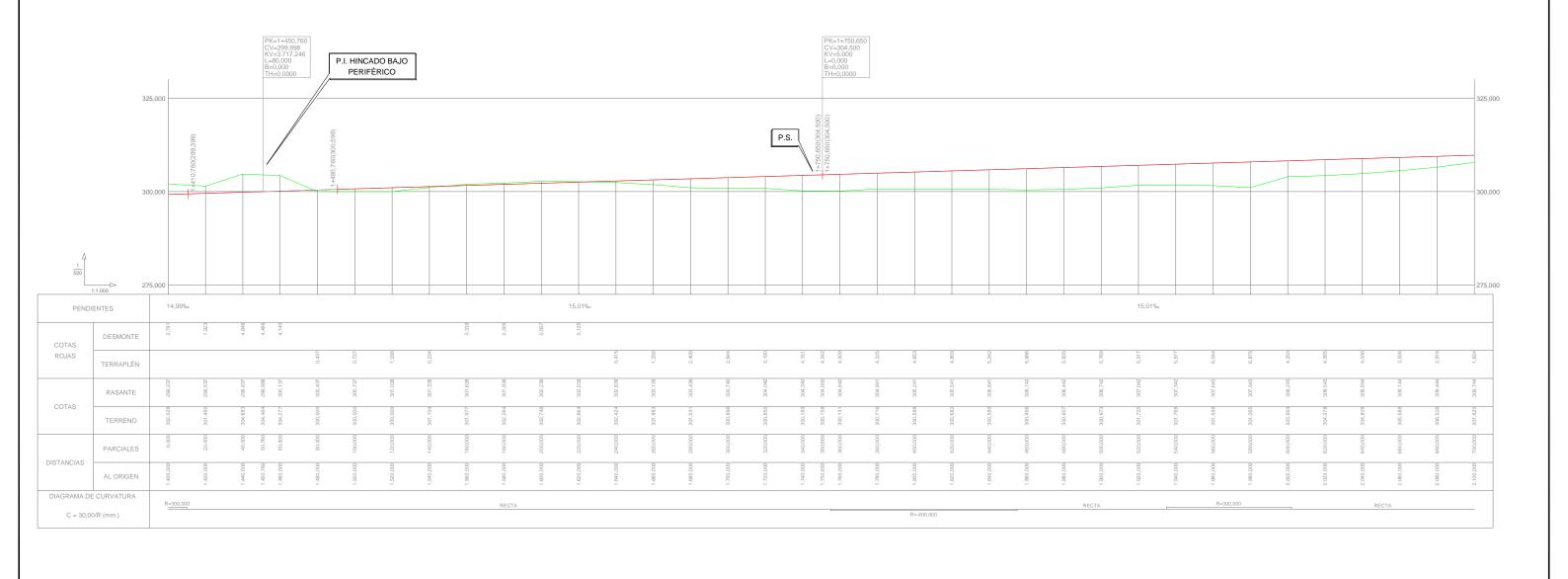
AMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FIN	SA

TITULO DEL PROYECTO:

AUTORA:

FEBRERO 2015

TÍTULO DE PLANO:


FECHA:

PERFILES LONGITUDINALES: ALTERNATIVA 3

E.H. =1:2.000 E.V. =1:1.000

ESCALA:

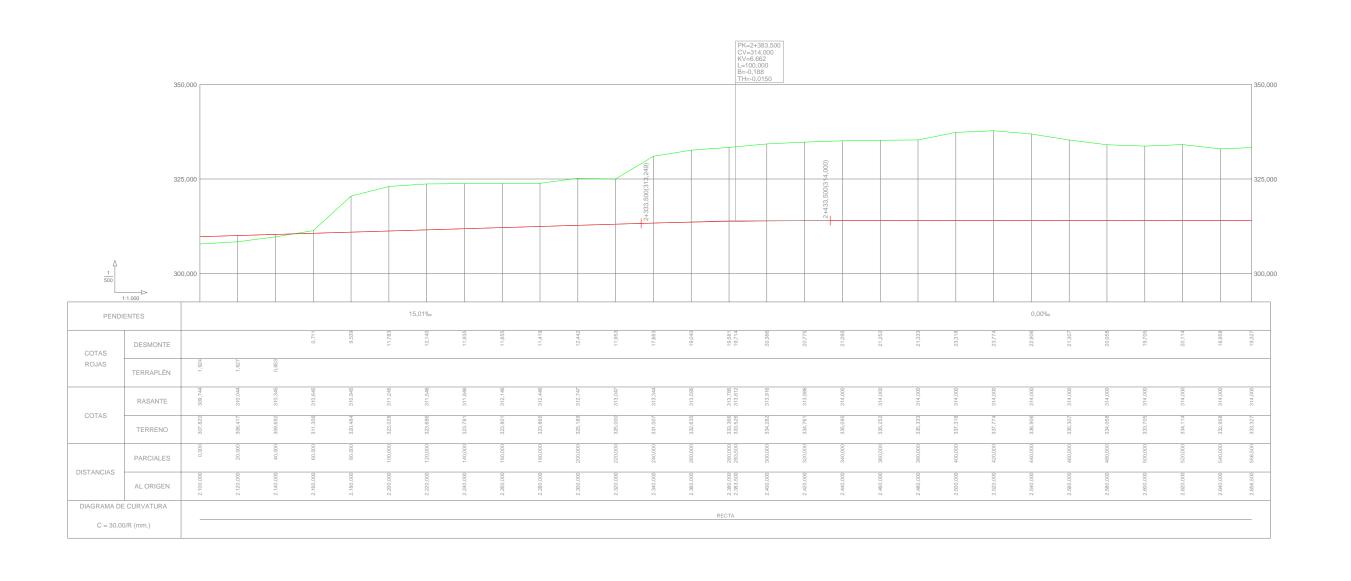
NÚMERO DE PLANO: 5.2 HOJA 2 DE 5

TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA

FEBRERO 2015

TÍTULO DE PLANO:

FECHA:

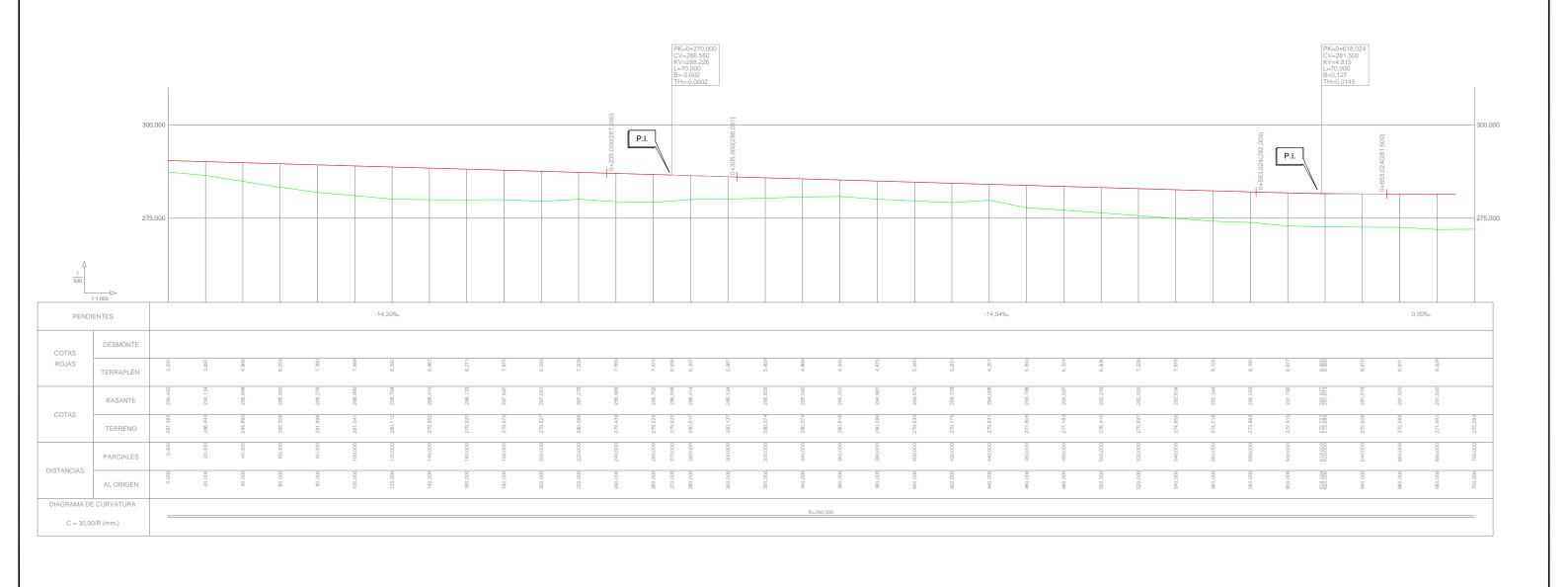

PERFILES LONGITUDINALES: ALTERNATIVA 3

E.H. =1:2.000 E.V. =1:1.000

ESCALA:

NÚMERO DE PLANO: 5.2

HOJA 3 DE 5



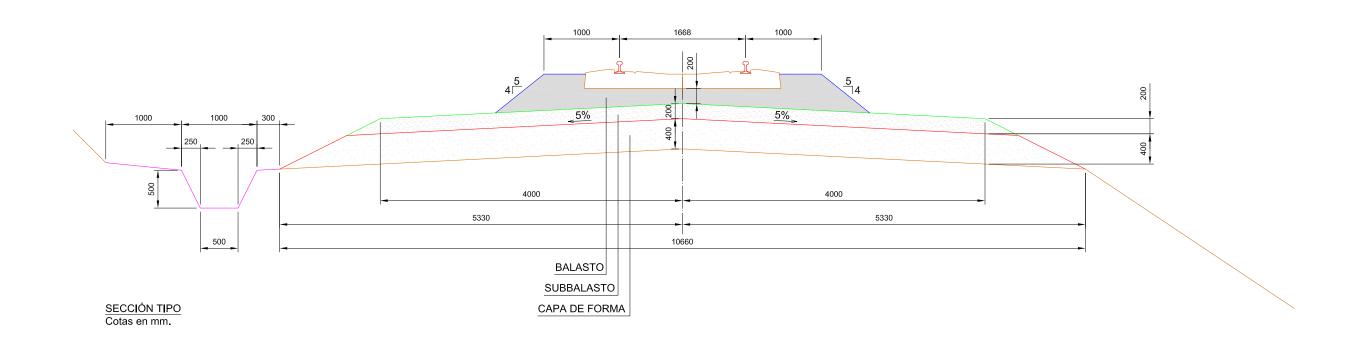
TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA

TÍTULO DE PLANO:

FECHA:

ESCALA:

TITULO DEL PROYECTO:
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA


ESCALA:

NÚMERO DE PLANO: 5.2

TÍTULO DE PLANO: FECHA: PERFILES LONGITUDINALES: ALTERNATIVA 3 (RAMAL FINSA-SANTIAGO) FEBRERO 2015

HOJA 5 DE 5

TITULO DEL PROYECTO:	AUTORA:	FECHA:	TÍTULO DE PLANO:	ESCALA:	NÚMERO DE PLANO: 6
RAMAL FERROVIARIO DE ACCESO A LAS INSTALACIONES DE FINSA	REBECA SEOANE BARRÁN	FEBRERO 2015	SECCIÓN TIPO. ZONA VÍA	E.H. =1:50 F V =1:50	

5. PRESUPUESTOS

MEMORIA Página 83

PRESUPUESTO ALTERNATIVA 1

		_	_	
UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €
CAPÍTUL	O 1: MOVIMIENTO DE TIERRAS			
m²	Despeje y desbroce	0,55	81.423,00	44.782,65
m³	Excavación de tierra vegetal	1,90	40.711,00	77.350,90
m³	Excavación de todo tipo de terreno	3,25	571.685,00	1.857.976,25
m³	Terraplén con materiales procedentes de excavación	1,15	96.291,00	110.734,65
m³	Terraplén con materiales procedentes de préstamo	4,54	0,00	0,00
		TOTAL CA	PÍTULO	2.090.844,45
CAPÍTUL	O 2: DRENAJE			
km	Drenaje longitudinal	130.000	2,301	299.130,00
km	Drenaje transversal (a cielo abierto)	120.000	2,301	276.120,00
km	Drenaje longitudinal (terminal)	125.000	0,273	34.125,00
km	Drenaje transversal (a cielo abierto) (terminal)	95.000	0,273	25.935,00
	TOTAL CAPÍTULO		635.310,00	
CAPÍTUL	O 3: ESTRUCTURAS			
m²	Estructura en paso superior	600,00	285,00	171.000,00
m²	Estructura en paso inferior	700	165,00	115.500,00
m²	Estructura en paso inferior hincado	1.200	320,00	384.000,00
		TOTAL CA	PÍTULO	670.500,00
CAPÍTUL	O 4: SUPERESTRUSCTURA DE LA VIA, CAPA DE FORMA Y S	UBBALASTC	HASTA TERM	INAL
m³	Capa de forma	10,50	10.075,78	105.795,69
m³	Subbalasto	20,20	4.346,97	87.808,79
	Montaje de vía única, incluyendo vía, balasto,			
km	traviesas, carriles UIC-54, sujeciones, soldaduras,	375.000	2,301	862.875,00
LID	tendido de la vía, etc.	120.000	1	120,000,00
UD	Desvío	130.000 30	1	130.000,00
m	Levante y desguace de vía con corte permanente			1.560,00
TOTAL CAPÍTULO 5: TERMINAL		1.188.039,48		
CAPITUL	Suministro y montaje de vía con traviesas, sujeciones,			
m	etc.	700	546,00	382.200,00

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €
m³	Hormigón HA-25 para placa base y placa principal	76,68	1.228,50	94.201,38
UD	Desvíos	130.000	1	130.000,00
		TOTAL CAP	ÍTULO	606.401,38
CAPÍTUL	O 6: IMPACTO AMBIENTAL			
km	Medidas correctoras de impacto ambiental	70.000	2,574	180.180,00
km	Programa de vigilancia ambiental	20.000	2,574	51.480,00
		TOTAL CAP	ÍTULO	231.660,00
CAPÍTUL	O 7: INSTALACIONES			
m	Instalaciones de seguridad y comunicación	250	2.301	575.250,00
		TOTAL CAP	ÍTULO	575.250,00
CAPÍTUL	O 8: VARIOS			
km	Cerramientos	26.500	4,60	121.953,00
m	Reposición de carreteras secundarias (sin estructura)	180	0,00	0,00
m	Caminos de servicio	70	650,00	45.500,00
		TOTAL CAP	ÍTULO	167.453,00
	SUBTOTAL			6.165.458,31

PRESUPUESTO DE EJECUCIÓN MATERIAL INICIAL			6.165.458,31€
Imprevistos (4% P.E.M. inicial)	4%		246.618,33€
Seguridad y salud (1,5% P.E.M. inicial)	1,5%		92.481,87€
PRESUPUESTO DE EJECUCIÓN MATERIAL			6.504.558,52€
Gastos generales (13% P.E.M.)	13%		845.592,61€
Beneficio industrial (6% P.E.M.)	6%		390.273,51€
PRESUPUESTO BASE DE LICITACIÓN			7.740.424,64 €
IVA (21% P.B.L.)	21%		1.625.489,17€
PRESUPUESTO BASE DE LICITACIÓN MÁS IVA			9.365.913,81€
Expropiaciones (m²)	8 €/m²	36.790,80	294.326,40€
PRESUPUESTO DE INVERSIÓN			9.660.240,21€

PRESUPUESTO ALTERNATIVA 2

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €	
CAPÍTULO 1: MOVIMIENTO DE TIERRAS					
m²	Despeje y desbroce	0,55	91.636,00	50.399,80	
m³	Excavación de tierra vegetal	1,90	45.818,00	87.054,20	
m³	Excavación de todo tipo de terreno	3,25	558.917,00	1.816.480,25	
m³	Terraplén con materiales procedentes de excavación	1,15	233.925,00	269.013,75	
m³	Terraplén con materiales procedentes de préstamo	4,54	0,00	0,00	
		TOTAL CA	PÍTULO	2.222.948,00	
CAPÍTUL	O 2: DRENAJE				
km	Drenaje longitudinal	130.000	2,247	292.110,00	
km	Drenaje transversal (a cielo abierto)	120.000	2,247	269.640,00	
km	Drenaje longitudinal (terminal)	125.000	0,273	34.125,00	
km	Drenaje transversal (a cielo abierto) (terminal)	95.000	0,273	25.935,00	
		TOTAL CA	PÍTULO	621.810,00	
CAPÍTUL	O 3: ESTRUCTURAS				
m²	Estructura en paso superior	600	285,00	171.000,00	
m²	Estructura en paso inferior	700	360,00	252.000,00	
m²	Estructura en paso inferior hincado	1.200	320,00	384.000,00	
		TOTAL CAPÍTULO		807.000,00	
CAPÍTUL	O 4: SUPERESTRUSCTURA DE LA VIA, CAPA DE FORMA Y SUE	BALASTO F	IASTA TERMII	NAL	
m³	Capa de forma	10,50	9.864,40	103.576,20	
m³	Subbalasto	20,20	4.255,78	85.966,76	
km	Montaje de vía única, incluyendo vía, balasto, traviesas, carriles UIC-54, sujeciones, soldaduras, tendido de la vía, etc.	375.000	2,247	842.625,00	
UD	Desvío	130.000	1	130.000,00	
m	Levante y desguace de vía con corte permanente	30	52,00	1.560,00	
		TOTAL CAPÍTULO		1.163.727,96	
CAPÍTULO 5: TERMINAL					
m	Suministro y montaje de vía con traviesas, sujeciones, etc.	700	546,00	382.200,00	
m³	Hormigón HA-25 para placa base y placa principal	76,68	1.228,50	94.201,38	

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €
UD	Desvíos	130.000	1	130.000,00
		TOTAL CA	PÍTULO	606.401,38
CAPÍTUI	LO 6: IMPACTO AMBIENTAL			
km	Medidas correctoras de impacto ambiental	70.000	2,52	176.400,00
km	Programa de vigilancia ambiental	20.000	2,52	50.400,00
		TOTAL CA	PÍTULO	226.800,00
CAPÍTUI	LO 7: INSTALACIONES			
m	Instalaciones de seguridad y comunicación	250	2.247	561.750,00
		TOTAL CA	PÍTULO	561.750,00
CAPÍTUI	LO 8: VARIOS			
km	Cerramientos	26.500	4,49	119.091,00
m	Reposición de carreteras secundarias (sin estructura)	180	0,00	0,00
m	Caminos de servicio	70	0,00	0,00
		TOTAL CAPÍTULO		119.091,00
	SUBTOTAL			6.329.528,34

PRESUPUESTO DE EJECUCIÓN MATERIAL INICIAL			6.329.528,34€
Imprevistos (4% P.E.M. inicial)	4%		253.181,13€
Seguridad y salud (1,5% P.E.M. inicial)	1,5%		94.942,93€
PRESUPUESTO DE EJECUCIÓN MATERIAL			6.677.652,39€
Gastos generales (13% P.E.M.)	13%		868.094,81€
Beneficio industrial (6% P.E.M.)	6%		400.659,14€
PRESUPUESTO BASE DE LICITACIÓN			7.946.406,35€
IVA (21% P.B.L.)	21%		1.668.745,33€
PRESUPUESTO BASE DE LICITACIÓN MÁS IVA			9.615.151,68€
Expropiaciones (m²)	8 €/m²	35.031,91	280.255,25€
PRESUPUESTO DE INVERSIÓN			9.895.406,93 €

PRESUPUESTO ALTERNATIVA 3

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €
CAPÍTULO 1: MOVIMIENTO DE TIERRAS				
m²	Despeje y desbroce	0,55	109.764	60.370,20
m³	Excavación de tierra vegetal	1,90	53.005	100.709,50
m³	Excavación de todo tipo de terreno	3,25	597.467	1.941.767,75
m³	Terraplén con materiales procedentes de excavación	1,15	250.217	287.749,55
m³	Terraplén con materiales procedentes de préstamo	4,54	0	0,00
		TOTAL CAPI	TULO	2.390.597,00
CAPÍTULO	2: DRENAJE			
km	Drenaje longitudinal	130.000	3,0735	399.555,00
km	Drenaje transversal (a cielo abierto)	120.000	3,0735	368.820,00
km	Drenaje longitudinal (terminal)	125.000	0,273	34.125,00
km	Drenaje transversal (a cielo abierto) (terminal)	95.000	0,273	25.935,00
		TOTAL CAPI	TULO	828.435,00
CAPÍTULO	3: ESTRUCTURAS			
m²	Estructura en paso superior	600	465	279.000,00
m²	Estructura en paso inferior	700	228	159.600,00
m²	Estructura en paso inferior hincado	1.200	320	384.000,00
		TOTAL CAPI	TULO	822.600,00
CAPÍTULO	4: SUPERESTRUSCTURA DE LA VIA, CAPA DE FORMA Y S	UBBALASTO	HASTA TERM	INAL
m³	Capa de forma	10,50	13.067,00	137.203,50
m³	Subbalasto	20,20	5.637,00	113.867,40
km	Montaje de vía única, incluyendo vía, balasto, traviesas, carriles UIC-54, sujeciones, soldaduras,	375.000	3,0735	1.152.562,50
UD	tendido de la vía, etc. Desvío	130.000	2	260.000,00
m	Levante y desguace de vía con corte permanente	30	52	1.560,00
1111	Levante y desguace de via con corte permanente	TOTAL CAPI		1.665.193,40
CAPÍTULO 5: TERMINAL				
CAFITOLO	Suministro y montaje de vía con traviesas,			
m	sujeciones, etc.	700	546	382.200,00
m³	Hormigón HA-25 para placa base y placa principal	76,68	1.228,50	94.201,38

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO	MEDICIÓN	COSTE €
UD	Desvíos	130.000	1	130.000,00
		TOTAL CAPÍ	TULO	606.401,38
CAPÍTULO	6: IMPACTO AMBIENTAL			
km	Medidas correctoras de impacto ambiental	70.000	3,3465	234.255,00
km	Programa de vigilancia ambiental	20.000	3,3465	66.930,00
		TOTAL CAPÍ	TULO	301.185,00
CAPÍTULO	7: INSTALACIONES			
m	Instalaciones de seguridad y comunicación	250	3.073,50	768.375,00
		TOTAL CAPÍ	TULO	768.375,00
CAPÍTULO	8: VARIOS			
km	Cerramientos	26.500	6,147	162.895,50
m	Reposición de carreteras secundarias (sin estructura)	180	215	38.700,00
m	Caminos de servicio	70	140	9.800,00
		TOTAL CAPÍ	TULO	211.395,50
	SUBTOTAL			7.594.182,28

		7.594.182,28€
4%		303.767,29€
1,5%		113.912,73€
		8.011.862,31€
13%		1.041.542,10€
6%		480.711,74€
		9.534.116,14€
21%		2.002.164,39€
		11.536.280,53€
8 €/m²	56.006,26	448.050,09€
200.000	2	400.000,00€
		12.384.330,62€
	1,5% 13% 6% 21% 8 €/m²	1,5% 13% 6% 21% 8 €/m² 56.006,26

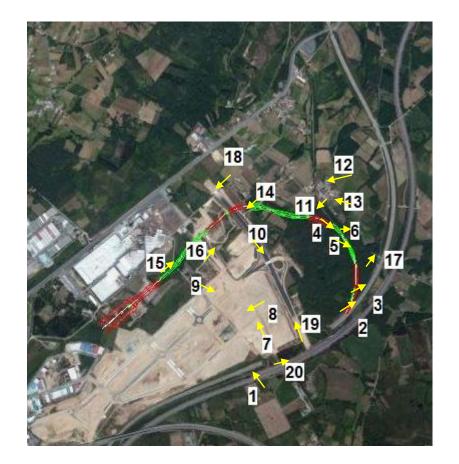
Ia) UNIVERSIDADE DA CORUÑA

ANEJO 4: FOTOGRÁFICO

MEMORIA Página 87

ANEJO 4: FOTOGRÁFICO. ÍNDICE.

- 1. INTRODUCCIÓN
- 2. REPORTAJE FOTOGRÁFICO



1. INTRODUCCIÓN

Durante la ejecución del presente anteproyecto se han realizado varias visitas a la zona de estudio para conocer de primera mano el estado de las infraestructuras, los núcleos de rurales, los cauces fluviales, el tipo de vegetación y los taludes existes. En las visitas se han tomado algunas fotografías, este anejo expone las más significativas.

2. REPORTAJE FOTOGRÁFICA

Se presentan veinte fotografías tomadas desde los puntos de mayor relevancia. A continuación, se adjunta una planta donde aparecen señalados los lugares exactos desde los cuales fueron sacadas.

En primer lugar, se muestran fotografías del Eje Atlántico, la primera tomada justo antes del túnel y las dos siguientes a la salida del mismo.

Por otra parte, la vía antigua se encuentra totalmente desmantelada, se exponen tres fotografías de la misma antes de A Sionlla de Arriba.

Página 91 **MEMORIA**

Se pueden observar las traviesas amontonadas a ambos lados de la antigua vía y, en el lugar, todavía se aprecian los restos de balasto.

El parque empresarial de A Sionlla se encuentra urbanizado pero sus parcelas aún no han sido ocupadas. En las próximas tres fotografías se muestran diferentes zonas de éste.

Bordeando el parque empresarial y dando acceso al mismo, se encuentra el nuevo tramo del periférico.

Página 94 **MEMORIA**

Para continuar, se muestran dos fotos tomadas en el núcleo de A Sionlla de Arriba, una pequeña aldea de 91 habitantes atravesada por la vía antigua.

El Rego da Sionlla es el único cauce fluvial que se ve afectado por el presente proyecto. Éste ya había sido canalizado en su cruce con la antigua vía de ferrocarril.

En las recientes obras ejecutadas para el paso del periférico, se ha tenido que canalizar nuevamente el río y se ha procedido en este caso mediante un tubo de drenaje transversal.

En las dos próximas fotografías se aprecian los salgueiros y ameneiros que caracterizan el curso del Rego da Sionlla.

En la zona de estudio se encuentran también pequeñas carballeiras.

En la obra del periférico se han adoptado taludes de terraplén de 1H:1V.

Página 98 **MEMORIA**

En la excavación realizada para el parque empresarial, se han elegido desmontes 3H:2V.

Por otra parte, los desmontes de la AP-9 a su paso por la zona son muy verticales.

Página 99 **MEMORIA**