

ANTEPROYECTO

TERMINAL DE GRANELES SÓLIDOS EN EL PUERTO

EXTERIOR DE A CORUÑA

Autor Título PFG

Raúl Espasandín Lacalle Terminal de Graneles Sólidos en el Puerto Exterior de A Coruña

Dry bulks terminal in outer port of A Coruña

Arturo Antón Casado

Tutor

Junio 2014

Fecha

ÍNDICE

ÍNDICE DE CONTENIDOS

DOCUMENTO I: MEMORIA

A. MEMORIA DESCRIPTIVA

B. MEMORIA JUSTIFICATIVA

ANEJO N°1 Objeto del Anteproyecto ANEJO N°2 Antecedentes ANEJO N°3 Situación Actual ANEJO N°4 Estudio de Alternativas ANEJO N°5 Topografía y Cartografía ANEJO N°6 Estructuras ANEJO N°7 Justificación de precios

DOCUMENTO II: PLANOS

- 1. SITUACIÓN
- 2. SITUACIÓN ACTUAL
- 3. ALZADOS
- 4. PLANTAS
- 5. SECCIONES
- 6. ESTRUCTURAS
- 7. CERRAMIENTOS
- 8. CUBIERTAS
- 9. INSTALACIONES
- **10. PAVIMENTACIONES**

DOCUMENTO III: PRESUPUESTO

DOCUMENTO I MEMORIA

DOCUMENTO I MEMORIA

A. MEMORIA DESCRIPTIVA

ÍNDICE

- 1.INTRODUCCIÓN
- 2. ANTECEDENTES Y SITUACIÓN ACTUAL
 - 2.1 EMPRESA
 - 2.2 PUERTO EXTERIOR
 - 2.3 TRÁFICO DE GRANELES
- 3. OBJETO DEL ANTEPROYECTO
- 4. SITUACIÓN
 - 4.1 LOCALIZACIÓN GEOGRÁFICA
 - 4.2 ACCESOS
- **5. ALTERNATIVAS PLANTEADAS**
- 6. DESCRIPCIÓN DE LAS OBRAS
 - **6.1 DIMENSIONES**
 - **6.2 INSTALACIONES**
 - **6.3 ESTRUCTURAS**
- 7. PLAZO DE EJECUCIÓN
- **8. RESUMEN DEL PRESUPUESTO**
- 9. RELACIÓN DE DOCUMENTOS DEL ANTEPROYECTO
- 10. CONCLUSIÓN

DOCUMENTO I MEMORIA DESCRIPTIVA

1.INTRODUCCIÓN

Este anteproyecto se presenta con la finalidad de terminar el Grado de Tecnologías de la Ingeniería Civil de la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de la *Universidade da Coruña*. Consta de 3 documentos, Memoria, Planos y Presupuesto, donde se desarrollan los aspectos y características esenciales de un anteproyecto.

A pesar de la formalidad del mismo, hay que destacar en este caso, que debido a su índole académica, el anteproyecto está sometido a limitaciones y simplificaciones que en un anteproyecto real no podrían admitirse como válidas.

A pesar de ello, el presente anteproyecto está redactando respetando los aspectos técnicos fundamentales en cuanto a seguridad, funcionalidad y eficiencia.

2. ANTECEDENTES Y SITUACIÓN ACTUAL

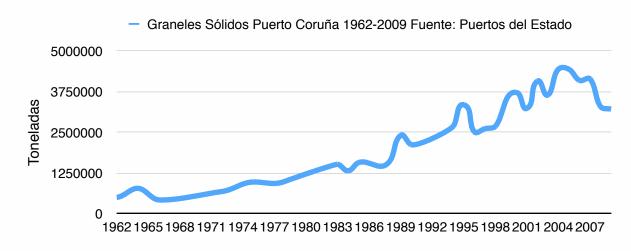
2.1 EMPRESA

En la década de 1980 se instala en el Puerto de A Coruña la empresa Ceferino Nogueira SA en el recién construido Muelle del Centenario. Se dedica principalmente a la descarga de graneles agroalimentarios y a la carga y descarga de mercancía general..

Actualmente esta empresa cuenta

con 18500 m² divididos en 2 naves sobre el propio Muelle del Centenario y 200 m de línea de atraque con sistema de transporte por cinta transportadora, además de una tolva ecológica y 2 grúas portuarias. A todo esto debe añadirse la posibilidad de carga directa a ferrocarril desde el cantil del muelle y paralela al área de almacenamiento.

2.2 PUERTO EXTERIOR



En el año 2012 concluyen las Fases I y II de las nuevas instalaciones portuarias en Punta Langosteira, habilitando 140 ha y 920 metros de muelle para la actividad portuaria. Este mismo año se inicia el paulatino traspaso de la actividad del puerto interior a la nueva ubicación. La cual avanza lentamente.

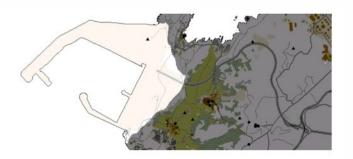
En el año 2013 se inician los trabajos de la fase III y del contradique del Puerto Exterior. Se llevan a cabo paralelamente los trabajos en el acceso por carretera, así como los canales de de evacuación de agua y los sistemas de trabajo con graneles líquidos. Distintas empresas inician el proceso de traslado de su actividad a estas nuevas instalaciones.

2.3 TRÁFICO DE GRANELES

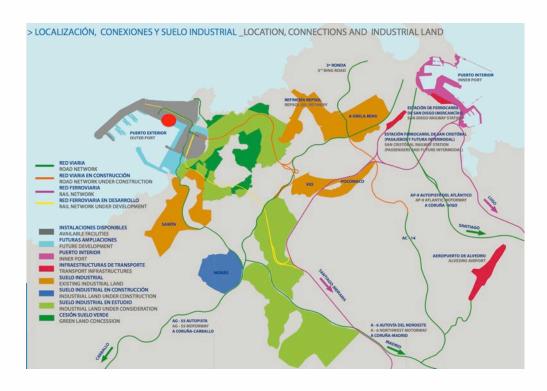
DOCUMENTO I MEMORIA DESCRIPTIVA

El trafico de graneles sólidos en el Puerto de A Coruña alcanzaba en el año 2005, según datos del Puertos de Estado, los 4 millones anuales de toneladas. Sufre una bajada da partir del año 2008 y que se mantiene bajista durante gran parte de la crisis económica. En el año 2012 vuelve a superar los 4 millones de toneladas anuales. Los pocos datos disponibles del 2014 dejan entrever un lento crecimiento sostenido.

3. OBJETO DEL ANTEPROYECTO


El objeto del presente anteproyecto es la definición de los principales elementos de una terminal de graneles sólidos agroalimentarios en las nuevas instalaciones portuarias de Punta Langosteira. Centrando esta definición en la tipología adoptada, disposición y organización de las partes de que se compone una infraestructura de este tipo, así como una estimación de su coste.

Se hará referencia al presente anteproyecto, de ahora en adelante, como «Anteproyecto Terminal de Graneles Sólidos en el Puerto Exterior de A Coruña».


4. SITUACIÓN

4.1 LOCALIZACIÓN GEOGRÁFICA

La parcela objeto de la actuación se encuentra en el muelle Norte de las nuevas instalaciones portuarias de Punta Langosteira en el municipio de Arteixo, provincia de A Coruña. La actuación se llevará a cabo en la terminal de agroalimentarios, que ha sido definida por la autoridad del puerto a tal fin

4.2 ACCESOS

Las nuevas instalaciones portuarias cuentan, en la actualidad, con 2 accesos terrestres por carretera, uno de ellos se encuentra en proceso de finalización. Este conecta la explanada portuaria con la AG-55.

En cuanto al ferrocarril, hay que mencionar que, aunque está planificada su construcción hasta la explanada del puerto mediante la conexión con el eje atlántico de alta velocidad, aún no ha comenzado el proceso de construcción del mismo.

5. ALTERNATIVAS PLANTEADAS

En el presente anteproyecto se han planteado hasta cuatro alternativas. Tres de ellas consistentes en la construcción de una nave, de diferentes tipologías y disposiciones, y una cuarta consistente en el acopio al aire del granel. De forma resumida se exponen en la siguiente tabla sus características principales.

Año	Ud	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
Disposición	1	1 nave paralela al muelle	1 nave perpendicular al muelle	2 naves perpendiculares al muelle	Almacenamiento al aire perpendicular al muelle
Fase I	m	12 060	11 200	15 000	25 912
Ampliación	m	8 040	11 200	15 000	25 912
Total Naves	m	20 100	22 400	30 000	25 912
Módulos	nº	5	4	4 + 4	-
Longitud	m	335	280	300 + 300	316
Ancho	m	60	80	50 + 50	82
Luz máxima	m	30	50	50	-

Como se exponen en el anejo 4 de la presente memoria, finalmente se dispone proyectar la alternativa número 3.

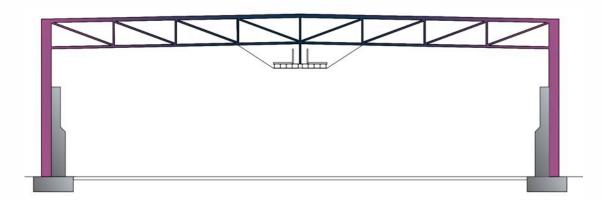
6. DESCRIPCIÓN DE LAS OBRAS

6.1 DIMENSIONES

La actuación se lleva a cabo en una parcela de 56745 m², de los que 35145 m² corresponden a la Fase I, que es la que se desarrolla en el presente anteproyecto. La superficie de la nave y del muelle se reparte de la siguiente manera:

Área	m
Nave FASE I	15 000.00
Zona Muelle y Accesos Fase I	20 145.00
TOTAL FASE I [m	35 145.00

La nave principal, que está compuesta por 4 módulos, mide 300 m de largo por 50 de ancho. La línea de atraque con cinta transportadora mide 280 m.

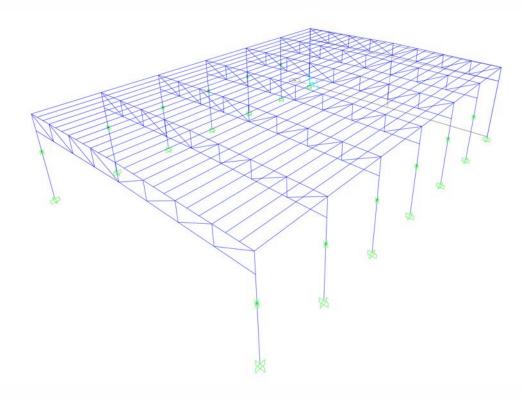

6.2 INSTALACIONES

Las instalaciones con las que debe contar la terminal para su correcto funcionamiento son: la nave de almacenamiento, la torre de distribución con su acceso para camiones, la cinta transportadora, la tolva ecológica, las grúas tipo cuchara para descarga y el sistema de carga para ferrocarril.

A todo esto debe añadirse el acceso desde el vial que cruza la explanada del puerto y la pavimentación de las áreas de trabajo durante la explotación de la instalación.

6.3 ESTRUCTURAS

Las principales estructuras que conforman la instalación son: la estructura metálica de la nave y el muro de contención del granel.


En el interior de la nave se disponen 2 muros de contención gemelos de 300 metros de longitud y 9 metros de altura, situados en los dos laterales de la misma. La mitad inferior del muro tiene un espesor de 1 m y la mitad superior de 0,5 m.

En cuanto a la estructura metálica hay que destacar que está formada por 4 módulos independientes de 75 metros de longitud cada uno. Cada módulo a su vez, está formado por 7 pórticos paralelos de 16 metros de altura y 50 metros de

luz. Del centro de luz cuelga todo el sistema de transporte longitudinal del granel mediante cinta transportadora.

7. PLAZO DE EJECUCIÓN

Se estima, de acuerdo a la naturaleza de los trabajos, la envergadura de las instalaciones y tipología de la mismas, un plazo de ejecución de NUEVE (9) meses.

8. RESUMEN DEL PRESUPUESTO

Se expone a continuación el resumen por capítulos del presupuesto estimado desarrollado en el documento III del presente anteproyecto.

CAPÍTULO	RESUMEN	EUR [€]	%
1	Trabajos Previos y Movimiento de Tierras	509 278.68 €	9.70%
2	Cimentaciones	741 312.00 €	14.13%
3	Estructuras	1 591 377.71 €	30.32%
4	Cerramientos	96 674.20 €	1.84%
5	Cubiertas	478 836.00 €	9.12%
6	Pavimentación	842 863.10 €	16.06%
7	Instalaciones	851 684.44 €	16.23%
8	Gestión de Residuos	33 228.17 €	0.63%
9	Seguridad y Salud	102 905.09 €	1.96%
	TOTAL EJECUCIÓN MATERIAL	5 248 159.38 €	100.00%

CONCEPTO	EUR [€]
13.00 % Gastos Generales	68 226.07 €
6.00 % Beneficio Industrial	314 889.56 €
SUMA DE GG y BI	383 115.63 €
TOTAL PRESUPUESTO SIN IVA	5 631 275.02 €

CONCEPTO	EUR [€]
21.00 %	IVA 1 182 567.75 €
TOTAL PRESUPUESTO C	ON 6 813 842.77 € IVA

TOTAL PRESUPUESTO GENERAL				
6 813 842.77 €				
6 813 842.77 €				

Asciende el total del presupuesto con IVA a la expresada cantidad de SEIS MILLONES OCHOCIENTOS TRECE MIL OCHOCIENTOS CUARENTA Y DOS EUROS CON SETENTA Y SIETE CÉNTIMOS

9. RELACIÓN DE DOCUMENTOS DEL ANTEPROYECTO

DOCUMENTO I: MEMORIA

A. MEMORIA DESCRIPTIVA

B. MEMORIA JUSTIFICATIVA

ANEJO Nº1 Objeto del Anteproyecto

ANEJO Nº2 Antecedentes

ANEJO Nº3 Situación Actual

ANEJO Nº4 Estudio de Alternativas

ANEJO Nº5 Topografía y Cartografía

ANEJO Nº6 Estructuras

ANEJO Nº7 Justificación de precios

DOCUMENTO II: PLANOS

- 1. SITUACIÓN
- 2. SITUACIÓN ACTUAL
- 3. ALZADOS
- 4. PLANTAS
- 5. SECCIONES
- 6. ESTRUCTURAS
- 7. CERRAMIENTOS
- 8. CUBIERTAS
- 9. INSTALACIONES
- 10. PAVIMENTACIONES

DOCUMENTO III: PRESUPUESTO

10. CONCLUSIÓN

El presente anteproyecto, «Terminal de graneles sólidos en el Puerto Exterior de A Coruña», ha sido redactado conforme a la legislación y normativa en vigor.

Con lo desarrollado en la presente memoria, junto con los anejos, los planos y el presupuesto, se considera suficientemente definida la actuación proyectada, de acuerdo al nivel de detalle exigido en un anteproyecto. Por lo que se eleva su aprobación al Tribunal de Proyecto Fin de Grado.

A Coruña, 28 de junio de 2014

El autor del anteproyecto

Radi Espasandín Lacalle

DOCUMENTO I MEMORIA JUSTIFICATIVA

B. MEMORIA JUSTIFICATIVA

DOCUMENTO I MEMORIA JUSTIFICATIVA

ÍNDICE

ANEJO Nº1 Objeto del Anteproyecto

ANEJO Nº2 Antecedentes

ANEJO Nº3 Situación Actual

ANEJO Nº4 Estudio de Alternativas

ANEJO Nº5 Topografía y Cartografía

ANEJO Nº6 Estructuras

ANEJO Nº7 Justificación de precios

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°1 OBJETO DEL ANTEPROYECTO

ANEJO Nº1 OBJETO DEL ANTEPROYECTO

- 1. INTRODUCCIÓN
- 2. OBJETO DEL ANTEPROYECTO
- 3. ENCARGO DEL ANTEPROYECTO

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°1 OBJETO DEL ANTEPROYECTO

1. INTRODUCCIÓN

Este anteproyecto se presenta dentro de la asignatura Proyecto Fin de Grado (PFG) del último año del Grado de Tecnologías de la Ingeniería Civil (Grado TECIC) con la finalidad de terminar el grado TECIC de la Escuela Técnica Superior de Caminos, Canales y Puertos de la *Universidade da Coruña*. Consta de 3 documentos, Memoria, Planos y Presupuesto, donde se desarrollan los aspectos y características esenciales de un anteproyecto.

A pesar de la formalidad del mismo, hay que destacar en este caso, que debido a su índole académica, el anteproyecto está sometido a limitaciones y simplificaciones que en un anteproyecto real no podrían admitirse como válidas.

A pesar de ello, el presente anteproyecto está redactando respetando los aspectos técnicos fundamentales en cuanto a seguridad, funcionalidad y eficiencia.

2. OBJETO DEL ANTEPROYECTO

El presente anteproyecto lleva por título «Anteproyecto Terminal de Graneles Sólidos en el Puerto Exterior de A Coruña» en el cual se desarrollan los elementos principales de una terminal de graneles agroalimentarios. Así mismo se lleva a cabo un estudio de las diferentes alternativas posibles para la ubicación de la infraestructura en la nueva localización, además de la definición de los elementos principales y una estimación e su coste económico.

Autor	Título del PFG	Fecha	Tutor
Raúl Espasandín Lacalle	Anteproyecto Terminal de Graneles Sólidos en el Puerto Exterior de A Coruña	Junio 2014	Arturo Antón Casado

3. ENCARGO DEL ANTEPROYECTO

A los efectos que sean preciso en este PFG, y dado las especiales características con las que cuenta, se hace preciso suponer que el presente anteproyecto se realiza por encargo de un agente.

En este caso se supone que el encargo de este anteproyecto y sus estudios son realizados por la empresa GALIGRAIN SA del grupo NOGAR. La cual se supone que desea trasladarse desde su ubicación actual en el muelle del centenario, a las nuevas instalaciones portuarias de Punta Langosteira.

ANEJO N°2 ANTECEDENTES

- 1. INTRODUCCIÓN
- 2. EVOLUCIÓN DE LAS INSTALACIONES
 - 2.1 PUERTO INTERIOR DE A CORUÑA
 - 2.2 INSTALACIONES DE LA EMPRESA
 - 2.3 PUERTO EXTERIOR DE A CORUÑA
- 3. ESTUDIO DE LA DEMANDA
 - **4.1 TRÁFICOS DEL PUERTO**
 - 2.3 EVOLUCIÓN DE LA DEMANDA
 - 2.3 DEMANDA POTENCIAL
- 4. JUSTIFICACIÓN DEL PROYECTO

1. INTRODUCCIÓN

En el presente Anejo se lleva a cabo una descripción de la evolución sufrida por las actual terminal de graneles sólidos en el Puerto Interior de A Coruña desde la década de los 80, así como el desarrollo de la nueva ubicación de las instalaciones portuarias en Punta Langosteira.

También se realiza un pequeño estudio de la demanda de tráficos en el Puerto de A Coruña, centrándose sobre todo en el tráfico de graneles, y dentro de estos, los graneles sólidos agroalimentarios. El objetivo de todo ello es justificar la necesidad y evolución potencial de la actuación. De forma que la justificación de la misma queda encuadrada dentro de los puntos del presente anejo y dentro de su apartado correspondiente.

2. EVOLUCIÓN DE LAS INSTALACIONES

Las instalaciones de interés para el desarrollo del presente anejo son, las actuales en los muelles interiores, y las nuevas instalaciones situadas en el Puerto Exterior, así como las actuales infraestructuras de la empresa.

2.1 PUERTO INTERIOR DE A CORUÑA

Un hito importante en la historia del Puerto de A Coruña se da principios de los años ochenta con la inauguración del Muelle del Centenario, que respondía a la necesidad de dotar a la urbe de infraestructuras preparadas para recibir grandes buques.

Posteriormente, este muelle recibiría sucesivas ampliaciones a lo largo de los 90 y también en el nuevo milenio, quedando instalados en el mismo la descarga de carbón en instalación especial y la descarga de alúmina, pero quedando la mayor parte ocupada por instalaciones especiales para la descarga, almacenamiento y distribución de granel sólido agroalimentario.

2.2 INSTALACIONES DE LA EMPRESA

En la década de 1980 se instala en el Puerto de A Coruña la empresa Ceferino Nogueira SA en el recién construido Muelle del Centenario. Se dedica principalmente a la descarga de graneles agroalimentarios.

En la actualidad esta empresa cuenta con 18500 m² divididos en 2 naves sobre el propio Muelle del

Centenario y 200 m de línea de atraque con sistema de transporte por cinta transportadora, además de una tolva ecológica y 2 grúas portuarias de descarga. A todo esto debe añadirse la posibilidad de carga directa a ferrocarril desde el cantil del muelle y paralela al área de almacenamiento.

2.3 PUERTO EXTERIOR DE A CORUÑA

En el año 2012 concluyen las Fases I y II de las nuevas instalaciones portuarias en Punta Langosteira, habilitando 140 ha y 920 metros de linea de atraque para la actividad portuaria. Este mismo año se inicia el paulatino traspaso de la actividad del puerto interior a la nueva ubicación.

En el año 2013 se inician los trabajos de la fase III y del contradique del Puerto Exterior. Se llevan a cabo paralelamente los trabajos en el acceso por carretera, así como los canales de de evacuación de agua y los sistemas de trabajo con graneles líquidos. Está asimismo pendiente la realización del acceso ferroviario, infraestructura necesaria para la completa operatividad del mismo

Distintas empresas inician el proceso de traslado de su actividad a estas nuevas instalaciones. Siendo el más importante el trasladado de la empresa Repsol de los muelles de San Diego a su nueva ubicación en el Puerto Exterior.

El área designada para el emplazamiento de las terminales de agroalimentarios ocupa (según la Memoria 2012 de la Autoridad Portuaria de A Coruña) un área de 12 ha en la parte central del muelle norte, cuyo relleno y remate se está ultimando en la actualidad.

3. ESTUDIO DE LA DEMANDA

4.1 TRÁFICOS DEL PUERTO

Cabe destacar, según los datos recogidos por Puertos del Estado, como principales tráficos en el Puerto de A Coruña los siguientes.

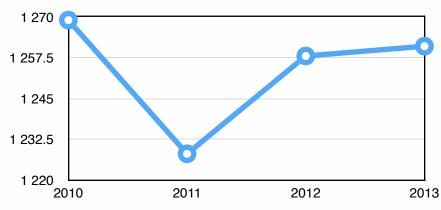
Tráficos principales Puerto de A Coruña 2010-2013 (Fuente: Puertos del Estado)

Tráfico	Ud	2013	
Graneles Líquidos	t	6560700	
Graneles sólidos	t 3688168		
Mercancía General	t 1158779		
Pesca	t	45480	
Contendedores	TEUS 5163		
Pasajeros	nº	156890	

Donde podemos ver la gran importancia que tiene el tráfico de graneles. Por un lado los graneles líquidos vinculados principalmente a la descarga de hidrocarburos y por otra parte los sólidos, vinculados especialmente a la descarga de carbón, alúmina, clinker y granel agroalimentario. Estos últimos objeto principal de estudio en este anteproyecto. Por ello se realiza un desarrollo más pormenorizado de este tipo de tráfico.

Así en las datos provisionales de 2013 de la Autoridad Portuaria de A Coruña, podemos observar los principales movimientos de granel agroalimentario:

Tráficos graneles agroalimentarios Puerto A Coruña 2013 (Fuente: Autoridad Portuaria de A Coruña)


Graneles	Ud	2013	
Harina de colza	t	169 416	
Harina de soja	t	280 176	
Abonos	t	82 392	
Maíz	t	331 392	
TOTAL	t	863 376	

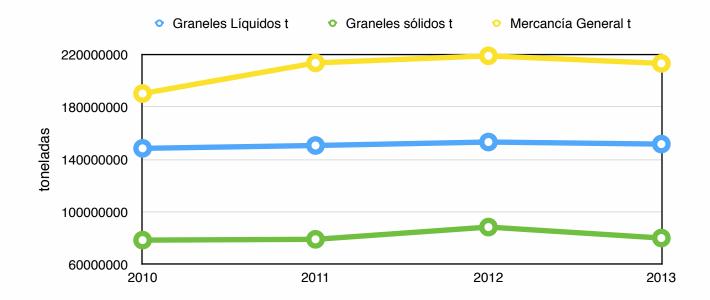
Así como puede verse, el principal tráfico es debido al maíz, seguido de la harina de soja y la harina de colza. De forma que los consignatarios de graneles sólidos agroalimentarios mueven cada año del orden de 800 000 toneladas de este tipo de graneles.

En cuanto al tráfico de buques mercantes, y según datos de Puertos del Estado, podemos destacar la siguiente evolución en los últimos años.

Buques Mercantes Puerto A Coruña (Fuente: Puertos del Estado)

Año	nº Buques			
2010	1 269			
2011	1 228			
2012	1 258			
2013	1 261			
TOTAL	5 016			
 nº Buques 				

Lo que sin duda refleja un crecimiento sostenido después de varios años de caídas acusadas en la llegada de buques al puerto.

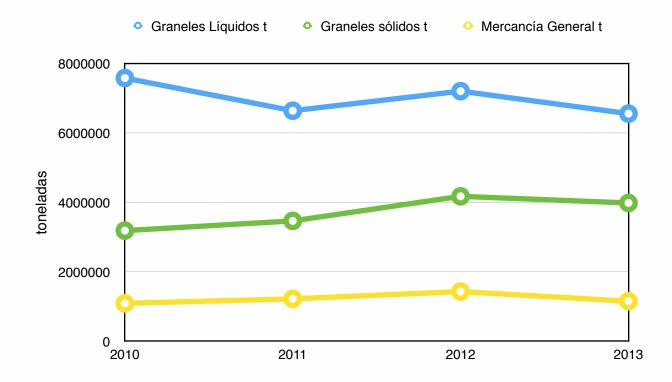

2.3 EVOLUCIÓN DE LA DEMANDA

A lo largo de estos últimos años se han producido cambios significativos en la evolución de los tráficos en el puerto. Marcada anteriormente por un claro sesgo alcista, para ahora afectar de manera desigual a cada tipología de tráfico.

A nivel nacional, y según reflejan los datos de Puertos del Estado, destacamos la evolución de los principales tráficos.

Evolución de los tráficos principales España 2010-2013 (Fuente: Puertos del Estado)

Tráfico	Ud	2010	2011	2012	2013
Graneles Líquidos	t	148 573 067	150 749 936	153 377 121	151 811 661
Graneles sólidos	t	78 644 046	79 250 195	88 583 662	80 229 484
Mercancía General	t	190 355 181	213 690 025	219 095 486	213 318 514
Contendedores	TEUS	12 504 639	13 920 161	14 084 753	13 892 230
Pesca	t	23 484	238 454	236 195	229 820
Pasajeros	nº	7 153 486	8 020 150	7 596 784	7 667 805



Así a nivel nacional, puede observarse un incremento importante para regresar a un descenso en el año 2013. Sin embargo los datos mensuales de los primeros meses de 2014 reflejan un consolidado lento crecimiento de los tráficos, especialmente, contenedores y graneles.

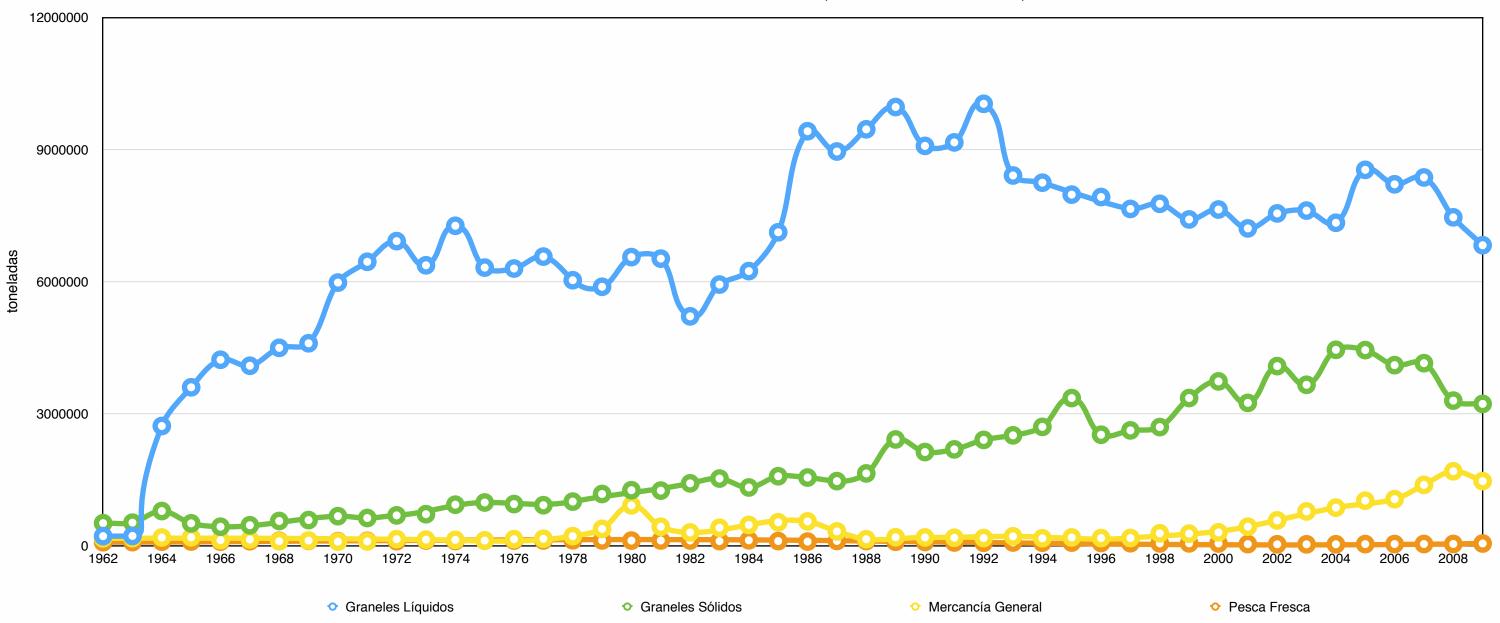
En cuanto a lo que se refiere al puerto de A Coruña, podemos realizar un análisis similar empleando de igual manera los datos de Puertos del estado.

Evolución de los tráficos principales Puerto de A Coruña 2010-2013 (Fuente: Puertos del Estado)

Tráfico	Ud	2010	2011	2012	2013
Graneles Líquidos	t	7 585 947	6 645 094	7 208 101	6 560 700
Graneles sólidos	t	3 191 581	3 472 050	4 179 771	3 988 168
Mercancía General	t	1 098 528	1 227 529	1 436 102	1 158 779
Contendedores	TEUS	5 538	5 394	4 760	5 163
Pesca	t	43 154	41 698	43 737	45 480
Pasajeros	n⁰	70 695	128 563	140 890	156 890

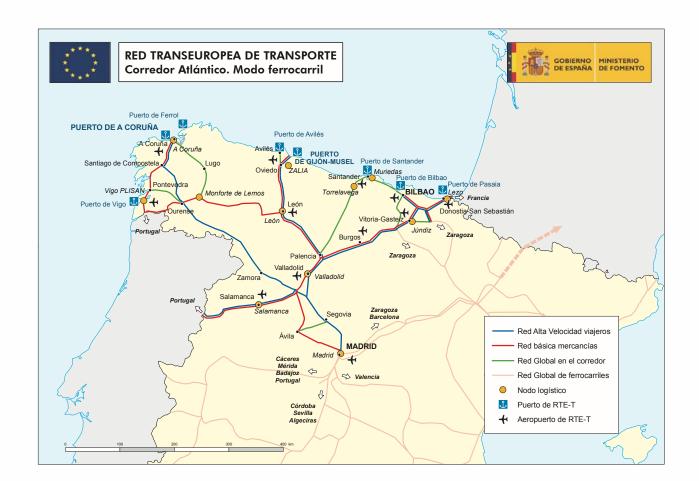
Se puede apreciar que en el Puerto de A Coruña, el tráfico con mayor importancia es del de granel líquido, seguido por el granel sólido y en tercer lugar la mercancía general. Esto contrasta con el tráfico a nivel nacional donde el mayor volumen es debido a la mercancía general.

También es destacable el dato en cuanto a los contenedores, que a pesar de ser el tráfico que mas crece en los últimos, se encuentra en niveles muy bajos.


Haciendo uso también de los datos históricos de Puerto del Estado es de interés observar la evolución desde el año 1962 de los diferentes tráficos. Que como se han mencionado han mantenido una tendencia alcista en la mayoría de los casos

Año	Graneles Líquidos	Graneles Sólidos	Mercancía General	TEUS	Buques
1990	9 077 910	2 121 260	180 638	193	2 339
1991	9 157 424	2 181 837	172 910	324	2 123
1992	10 034 433	2 397 144	166 556	0	1 742
1993	8 405 881	2 500 900	205 756	0	1 563
1994	8 242 019	2 692 893	160 940	0	1 039
1995	7 970 865	3 347 444	180 332	0	1 059
1996	7 916 386	2 514 549	166 138	459	1 057
1997	7 645 642	2 613 322	167 206	1 958	1 090
1998	7 762 420	2 688 004	273 849	98	1 262
1999	7 406 731	3 348 952	267 142	442	1 282
2000	7 632 430	3 726 790	295 934	2	1 298
2001	7 203 406	3 238 178	425 081	46	1 288
2002	7 543 733	4 074 019	567 727	0	1 344
2003	7 608 091	3 649 410	771 456	8	1 282
2004	7 331 053	4 444 103	857 310	0	1 335
2005	8 533 758	4 437 796	1 015 276	0	1 378
2006	8 205 047	4 095 639	1 050 589	1 355	1 267
2007	8 360 925	4 140 677	1 375 375	8 476	1 377
2008	7 454 675	3 289 608	1 684 461	7 918	1 303
2009	6 820 497	3 215 589	1 460 292	7 778	1 231
TOTAL	160 313 326	64 718 114	11 444 968	29 057	27 659

Tráficos Puerto A Coruña 1962-2009 (Fuente: Puertos del Estado)



2.3 DEMANDA POTENCIAL

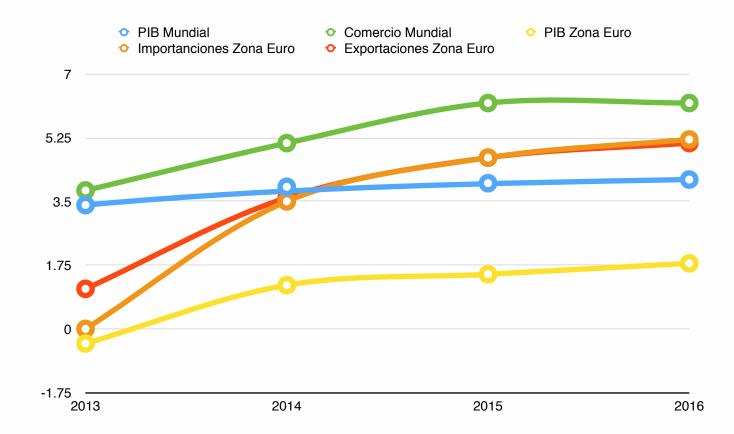
El Puerto de A Coruña presenta una importancia geoestratégica. Así se ha puesto de manifiesto en la red transeuropea de transporte, donde donde es puerto nodal en el norte peninsular. Es también zona de confluencia de varios medios de transporte de esta misma red, como puede apreciarse abajo en el esquema del corredor atlántico. Todo ello lo convierte en un punto singular

para la atracción de tráficos. Así como una apuesta sólida para la instalación de nuevas infraestructuras de gestión de mercancías, como la que es objeto de estudio en el presente anteproyecto.

También otro aspecto importante a destacar es el hecho de que actualmente se está construyendo la ampliación del canal de Panama, que permitirá el paso de barcos de mayor envergadura y calado, que actualmente se veían obligados a cubrir rutas más largas para navegar desde extremo oriente hasta Europa. Como es el caso de la ruta Hong Kong-Rotterdam.

Por lo cual será de gran importancia lograr atraer a los barcos que, con la ampliación del Canal de Panamá, pasarán a surcar el océano Atlántico en lugar de transitar por otras rutas marítimas. El crecimiento del tráfico que se derivará de la apertura de la nueva esclusa en esta infraestructura.

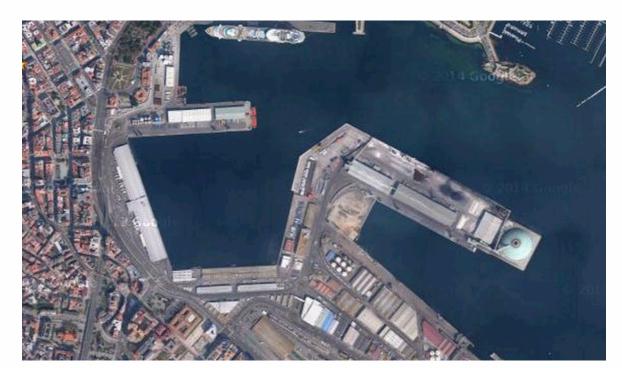
De manera que con esta ampliación abre oportunidades en dos aspectos, por un lado la posibilidad de barcos de mayor envergadura, para los cuales las nuevas instalaciones de Punta Langosteira está preparadas; y por otra parte, la posibilidad de atraer más trafico debido a la alteración de las rutas marítimas que previsiblemente se va a producir.



Por otra parte no hay que olvidar los aspectos macroeconómicos del entorno internacional y nacional, que especialmente en este último lustro han determinado de manera radical y dramática, en algunos casos, la actividad en el sector. Por tanto a continuación se exponen las previsiones del BCE para la economía mundial, europea y nacional para los años 2013, 2014, 2015 y 2016.

Previsiones del BCE para la economía mundial y europea (Marzo 2014)

Variación del Indicador %	2013	2014	2015	2016
PIB Mundial	3.4	3.9	4.0	4.1
Comercio Mundial	3.8	5.1	6.2	6.2
PIB Zona Euro	-0.4	1.2	1.5	1.8
Importanciones Zona Euro	0	3.5	4.7	5.2
Exportaciones Zona Euro	1.1	3.6	4.7	5.1


A la vista de las previsiones, puede intuirse una cierta recuperación de los dos indicadores de mayor importancia en el futuro del proyecto objeto de estudio en este anteproyecto. Que son el de importaciones y los de actividad económica.

Por todo ello se justifica la existencia de una demanda potencial y previsiblemente sólida en los años posteriores a la realización del proyecto. Así como una tendencia favorable para el crecimiento en el futuro y por tanto una ampliación de la misma.

4. JUSTIFICACIÓN DEL PROYECTO

En este apartado se exponen los elementos de juicio más importantes que justifican la realización del traspaso de las instalaciones del Puerto Interior al Puerto Exterior.

Apartar una parte importante del tráfico mercante del centro de la ciudad.
 Puesto que aunque el transporte se realiza por circuito cerrado, la descarga se realiza con las bodegas al aire y mediante el empleo de grúas que vuelcan el contenido sobre una tolva.

 Acceso a un mayor número y variedad de buques. Puesto que las actuales instalaciones tienen el calado limitado a 12 m y la eslora a 200 m. Este aspecto se ve muy mejorado en el Puerto Exterior, ya que el calado del muelle norte ronda los 20 m.

- Posibilidad de ampliación. En este aspecto las actuales instalaciones no tienen espacio hacia donde realizar una ampliación. El traslado a la nueva ubicación permitiría, mediante la adecuada planificación, la posibilidad de reservar espacio para futuras ampliaciones en función de la demanda.
- Criterios de eficiencia y funcionalidad. Referido sobre todo en el complicado acceso al puerto interior y a la dificultad de maniobra en el interior de la dársena. Hecho que no ocurre en las nuevas instalaciones, que al estar prácticamente en mar abierto tiene un acceso más fácil, además de contar para las maniobras con 230 ha de aguas abrigadas.

 Por último, destacar también las ventajas ambientales: No operar con buques que transportan productos potencialmente contaminares hacia el centro de una ciudad y la peligrosidad relativa que conlleva la maniobra con barcos de tales dimensiones en el interior de una ría con profundidades muy variables y instalaciones portuarias poco amplias.

Estos son los principales aspectos que se ponen en relevancia para justificar la realización del proyecto objeto del estudio en este anteproyecto.

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº3 SITUACIÓN ACTUAL

ANEJO Nº3 SITUACIÓN ACTUAL

- 1. INTRODUCCIÓN
- 2. INSTALACIONES EXISTENTES
- 3. INSTALACIONES PUERTO EXTERIOR



DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº3 SITUACIÓN ACTUAL

1. INTRODUCCIÓN

En el presente anejo se reflejan la situación actual de, por una parte, las instalaciones de la terminal actual en el Puerto Interior, y por otra parte la situación y las características principales de las nuevas instalaciones portuarias en Punta Langosteira.

2. INSTALACIONES EXISTENTES

Como se ha mencionado en los antecedentes, las instalaciones actuales se encuentran ocupando la mayor parte del muelle del centenario. Se compone de una línea de atraque de 200 m, 2 grúas, 1 tolva, sistema de transporte por cinta transportadora, así como 2 naves para almacenamiento. En cuanto a la distribución de áreas y longitudes, pueden resumirse de la siguiente forma.

Elemento	Ud	Medida
Longitud Muelle	m	205
Cinta transportadora	m 585	
Nave Oeste	m	7 500
Nave Este	m	11 100
Total Naves	m	18 600

Estos datos se toman de partida para la definición de los criterios básicos de diseño en el análisis de alternativas, puesto que la base del presente anteproyecto es la definición de una nueva terminal en el Puerto Exterior que se traslada desde esta ubicación.

3. INSTALACIONES PUERTO EXTERIOR

Actualmente los trabajos en las nuevas instalaciones portuarias de Punta Langosteira se encuentran la Fase III, que consiste en la ejecución del contradique y el relleno de 100 ha. Sumado a los más de 140 ha ya rellenados, supondrá la creación de una explanada de más de 240 ha.

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°3 SITUACIÓN ACTUAL

Así en cuanto al reparto de superficies, y según datos de la Autoridad Portuaria de A Coruña (Memoria 2012 del organismo), tenemos la siguiente distribución prevista.

Sup.	ha		
Carbon y Siderurgicos	11		
Graneles Líquidos	43		
Terminal Agroalimentarios	12		
Zona de Operaciones	3		
Otras Superficies	104		
TOTAL SUPERFICIE	173		

El área en el que se encuadrará el proyecto ,debido a su tipología, es la terminal de agroalimentarios, el muelle norte. Para más detalles pueden verse los planos de situación actual. También se detalla la sección tipo del muelle con el que se está completando los límites de la explanada.

Así pues, el presente anteproyecto se redacta paralelamente al avance de los trabajos en la Fase III del Puerto Exterior. Siendo de esta manera necesaria su finalización para poder ejecutarse el mismo.

ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

- 1. INTRODUCCIÓN
- 2. ANTECEDENTES
- 3. ANALISIS DEL PROBLEMA
- 4. CRITERIOS DE DISEÑO
 - 4.1 LEGISLACIÓN Y NORMATIVA APLICABLE
 - 4.2 UBICACIÓN Y DISPOSICIÓN
 - **4.3 ELEMENTOS NECESARIOS**
 - 4.4 TIPOLOGÍA ESTRUCTURAL
 - **4.5 OTROS CRITERIOS**
- 5. DESCRIPCIÓN Y JUSTIFICACIÓN DE LAS SOLUCIONES ADOPTADAS
 - **5.1 ALTERNATIVA 1**
 - **5.2 ALTERNATIVA 2**
 - **5.3 ALTERNATIVA 3**
 - **5.4 ALTERNATIVA 4**
 - **5.5 RESUMEN DE ALTERNATIVAS**
- 6. CRITERIOS DE EVALUACIÓN
 - 6.1 ECONÓMICOS
 - **6.2 FUNCIONALES**
 - **6.3 AMBIENTALES**
- 7. EVALUACIÓN DE LAS ALTERNATIVAS
- 8. SELECCIÓN DE LA ALTERNATIVA A PROYECTAR

APÉNDICE I PLANOS ALTERNATIVA 1 APÉNDICE III PLANOS ALTERNATIVA 2 APÉNDICE III PLANOS ALTERNATIVA 3 APÉNDICE III PLANOS ALTERNATIVA 4

1. INTRODUCCIÓN

El objeto del actual anejo es realizar un estudio de los criterios de diseño que engloban la solución del problema descrito y plantear una serie de alternativas que lo afronten mediante los criterios desarrollados. Para luego posteriormente definir los criterios de evaluación para valorar las mismas.

2. ANTECEDENTES

Como se se ha expuesto en el anejo correspondiente, las instalaciones que se pretenden trasladar a la nueva ubicación presentan las siguientes características.

Elemento	Ud	Medida
Longitud Muelle	m	205
Cinta transportadora	m	585
Nave Oeste	m	7 500
Nave Este	m	11 100
Total Naves	m	18 600
Gruas descarga	nº	2
Tolva	nº	1

Estos serán los datos que se tomen como base para la elaboración de las diferentes alternativas que se plantean en los puntos siguientes.

3. ANALISIS DEL PROBLEMA

Como ya se ha definido, el objeto de presente anteproyecto es el traslado de una terminal de graneles sólidos agroalimentarios a las nuevas instalaciones portuarias. Este nuevo proyecto debe cubrir las principales necesidades existentes, que se pueden englobar en los siguientes puntos.

- Capacidades elementales de descarga, transporte y almacenamiento del granel.
- Mantener por lo menos la mayor parte de la capacidad ya existente, de manera que no se pierda un volumen de almacenamiento significativo.
- Posibilidad de ampliación de acuerdo a la evolución de las necesidades futuras. Esta posibilidad de ampliación, debe ser posible de forma sencilla y sin que afecte a la operatividad de la terminal.
- Al igual que ahora, es necesario un sistema de distribución para camiones y ferrocarril, aunque este último sea, en las instalaciones actuales, muy limitado.
- Todo ello deberá llevarse a cabo de la forma más compacta posible, respetando en todo momento la eficiencia y operatividad con las que debe operar la terminal.

De esta forma se pueden desarrollar los criterios de diseño a partir de las limitaciones y necesidades expuestas en estos puntos.

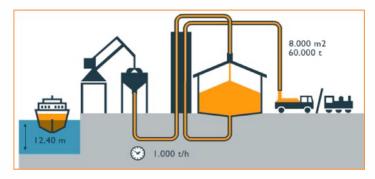
4. CRITERIOS DE DISEÑO

4.1 LEGISLACIÓN Y NORMATIVA APLICABLE

Aunque toda la legislación empleada en el desarrollo de un proyecto es muy amplia, existe una serie de legislación y normativa que afecta de manera muy determinare en la definición de los criterios de la terminal. Pueden destacarse los siguientes:

- Real decreto Legislativo 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante
- ROM 0.0-01 Procedimiento Gral. con Bases de Cálculo para el Proyecto en las Obras portuarias o/y Marítimas
- ROM 2.0-11 Recomendaciones para el proyecto y ejecución en las Obras de Atraque y Amarre
- ROM 0.5-05 Recomendación Geotécnica para las Obras Marítima y/o Portuaria
- Real Decreto 314/2006 por el que se aprueba el CTE
- DB SE Seguridad estructural
- DB SE-AE Acciones de la edificación
- DB SE-C Cimientos
- Instrucción de hormigón estructural (EHE-08)
- Instrucción de acero estructural (EAE)

4.2 UBICACIÓN Y DISPOSICIÓN


La ubicación se encuadra dentro del muelle norte del Puerto Exterior en la zona asignada para los agroalimentarios, como puede verse en el siguiente croquis.

Queda así defina la zona de ubicación del proyecto. En cuanto la disposición que debe presentar la terminal podemos disponer 2 tipologías diferentes, paralelas al cantil del muelle o paralelas al mismo.

4.3 ELEMENTOS NECESARIOS

El esquema general necesaria para una terminal de graneles sólidos, puede resumirse mediante el siguiente esquema:

Como puede verse en el esquema consta del sistema de descarga, el transporte, el almacenamiento y las diferentes formas de entrega.

Para la terminal, que es objeto de estudio en el presente anteproyecto, son necesarios los siguientes elementos:

- Linea de atraque suficiente
- Sistema de descarga, que en este caso estará formado por grúas portuarias con cazo tipo cuchara y tolva ecológica.
- Sistema de transporte desde el cantil del muelle, que dentro de las tipologías disponibles, se ha optado por el ya existente en la terminal actual, cinta transportadora.
- Torre de distribución, con sistema de pesado y volcado directo hacia camión
- Nave de almacenamiento, que para facilitar su construcción y posibilitar su ampliación se estructurará mediante módulos. En cuanto a las áreas necesarias, y como ya se ha desarrollado en puntos anteriores, se precisan de las siguientes.

Área	m²		
Terminal Inicial	12 000 - 18 000		
Ampliación	4 000 - 16 000		
TOTAL SUPERFICIE	20 000 – 30 000		

• Sistema de descarga para ferrocarril

4.4 TIPOLOGÍA ESTRUCTURAL

Las principales estructuras con las que contará la terminal son la estructura de la nave y el muro de contención del granel.

El muro se deberá ejecutar en hormigón armado, debido a la dificultad o coste de realizarlo en otro material

En cuanto al diseño de la estructura principal se perfilan como los más idóneos, el hormigón y el acero. El estudio de ambos y sus opciones estructurales, funcionales y económicas nos proporciona la solución más idónea. Otra posibilidad es una combinación de ambos dando lugar a la estructura mixta. Se presentan a continuación las ventajas e inconvenientes de ambos materiales.

VENTAJAS DEL HORMIGON

Menor coste.

Posibilidad de adaptación a formas variadas.

Excelente resistencia a compresión.

Solidez y mayor peso propio que facilitan la estabilidad estructural en cimentaciones o muros.

Estabilidad frente a ataques químicos.

Mayor oferta de constructores.

INCONVENIENTES DEL HORMIGON

Incapacidad de resistir tracciones.

Mayor peso y dimensiones.

Mal acabado superficial.

Dificultades y costo de demolición.

Prefabricados: está limitado a las piezas de catálogo

VENTAJAS DEL ACERO

Alta resistencia mecánica y reducido peso propio (elementos estructurales ligeros), lo que lo hace un material ideal para naves industriales.

Al ser sus piezas prefabricadas, y con medios de unión de gran flexibilidad, se acortan los plazos de obra significativamente.

Alta resistencia mecánica y reducido peso propio. Esto le confiere la posibilidad de lograr soluciones de gran envergadura, como cubrir grandes luces, cargas importantes.

Facilidad de montaje y transporte.

Rapidez de ejecución al prescindir del tiempo de fraguado y colocación de encofrados de hormigón.

Facilidad de refuerzos y/o reformas sobre la estructura ya construida. Edificios con probabilidad de crecimiento y cambios de función o de cargas.

Las estructuras metálicas ocupan menos espacio en planta estructuralmente que las de hormigón.

Valor residual alto como chatarra.

El acero es un material homogéneo y de calidad controlada

Posibilidad de pórticos de 50 metros.

Las ventajas de la estructura metálica es una construcción en seco con un tiempo de levantamiento de estructura bastante menor.

Puede proporcionar buena calidad estética y visual.

INCONVENIENTES DEL ACERO

Mayor coste que las de hormigón.

Sensibilidad ante la corrosión.

Sensibilidad ante el fuego.

Inestabilidad local sin haberse agotado la capacidad resistente.

Dificultad de adaptación a formas variadas.

Excesiva flexibilidad.

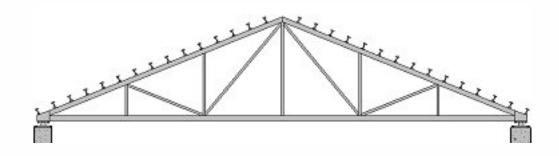
Respecto al precio, la estructura de acero es algo más cara que la tradicional

y necesita una mano de obra muy especializada. Aparte, las piezas las hacen a medida y es un proceso bastante costoso.

Debido principalmente a las luces elevadas que se van a proyectar se opta por una estructura integralmente en acero.

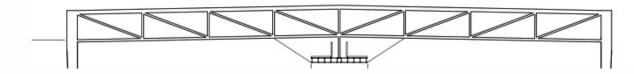
En cuanto a tipología de pórticos de estructura metálica podemos destacar los siguientes tipos

a) Pórtico metálico de alma llena


Es una tipología que presenta gran competitividad económica para luces medias, esto es, desde 10 m a 35 m, utilizando perfiles laminados, siendo estas luces las que requieren con más frecuencia en la mayoría de los procesos industriales. Suelen utilizarse para su ejecución perfiles laminados de las series IPE ó HE o bien SHR

Las uniones son principalmente por soldadura, dejando en algunos casos para el montaje en obra, uniones por tornillería.

b) Cercha metálica



Esta tipología a pesar de su ligereza y poco peso, requiere mucha mano de obra en su ejecución. Las uniones entre elementos resistentes se realizan por soldadura.

Cuando la inclinación del faldón es pequeña, los esfuerzos que se presentan en los cordones son muy elevados, a la vez que se complica notablemente la ejecución del nudo de apoyo, siendo preciso disponer cartelas muy grandes que encarecen la ejecución.

Los soportes pueden ser en general de perfilería laminada de alma llena, perfiles armados y también perfiles empresillados.

c) Jácena en celosía metálica

Este tipo estructural es similar al anterior pero en este caso consta de 2 cordones paralelos que son triangulados mediante perfilería metálica. Su ejecución es más compleja que las de alma llena pero también más versátil, ya que permite alcanzar cantos mayores y por tanto luces también mayores.

Estas tipologías que se tendrán en cuanta para la elaboración de las alternativas

4.5 OTROS CRITERIOS

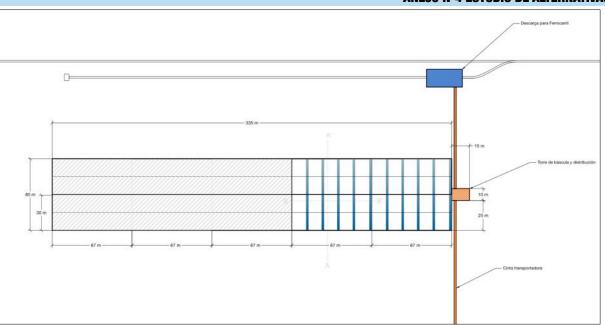
Otro de los aspectos principales que se debe tener en cuenta a la hora de plantear las alternativas en una terminal portuaria es el buque a considerar en el dimensionamiento de los sistemas a pie de muelle.

Bulkcarriers (fuente: Clarkson y Barry Rogliano)

Buque	Eslora [m]	Calado [m]	nº (2010)
Capesize	310	17,5	712
Panamax	240	13,5	1398
Handymax	190	12	1496
Handysize	180	11	2793
VLOC	340	21	nd
Postpanamax	366	15	nd

A la vista de los tipos de Bulkcarriers que existen, se opta por una linea de atraque con la cinta a pie de muelle de 280 m. Puesto que solo debe cubrir longitud de las bodegas del buque, es suficiente para permitir la descarga de la inmensa mayoría de estos tipos de barco.

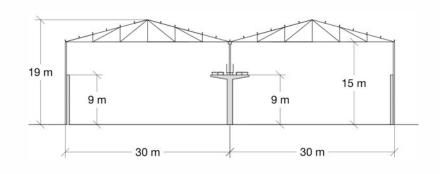
Por último destacar también que se deberán tener en cuenta otros criterios de eficiencia y ambientales, procurando que el granel que se descarga tenga que circular lo menos posible hasta la entrega, así como también el aprovechamiento de los espacios. Este último cobrará gran importancia en el análisis posterior.


5. DESCRIPCIÓN Y JUSTIFICACIÓN DE LAS SOLUCIONES ADOPTADAS

A continuación se exponen las características principales de las 4 alternativas planteadas. Pero existen dentro de las 4 características comunes que se exponen a continuación:

- 280 m de cinta en el borde del muelle y paralela a este.
- Sistema de descarga mediante grúas con cazo tipo cuchara y tolva ecológica
- Accesos por carretera y Ferrocarril ya existentes o actualmente proyectados

5.1 ALTERNATIVA 1


La alternativa 1 se compone, además de las características comunes arriba descritas, de una nave industrial de 60 metros de ancho y 335 m de largo, dispuesta en sentido paralelo al muelle. El espacio de la nave esta formado por 2 pórticos de 30 metros de luz apoyados en la parte central en una serie de vigas de hormigón con sendos voladizos donde descansa todo el sistema de movimiento del granel mediante cinta transportadora.

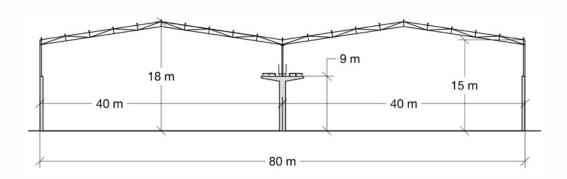
En cuanto a la cubierta se resuelve mediante 2 cerchas metálicas de 30 metros de luz cada una.

Las principales características pueden resumirse en la siguiente tabla:

Año	Ud	Alternativa 1
Fase I r		12 060
Ampliación m		8 040
Total Naves	m	20 100
Módulos	nº	5
Longitud	m	335
Ancho	m	60
Luz máxima	m	30

5.2 ALTERNATIVA 2

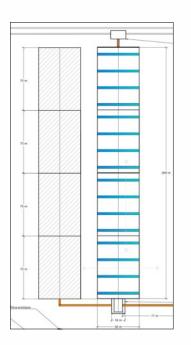
La alternativa 2, al igual que la alternativa 1, se compone de una única nave. Pero en este caso dispuesta en sentido perpendicular al muelle. Para poder acercar lo máximo posible el frente de la nave al muelle, y por tanto aprovechar más el


espacio, se opta por disponer inclinada la cinta transportadora que asciende hasta la torre de distribución. El interior de la nave esta formado por 2 filas de pórticos de 40 metros de luz apoyados en la parte central en una serie de vigas de hormigón, donde descansa tanto las columnas de los pórticos como el sistema de cintas transportadores longitudinales.

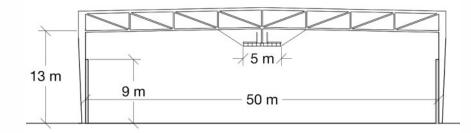
En la tabla siguiente puede verse un resumen de las características principales:

Año	Ud	Alternativa 2	
Fase I	m	11 200	
Ampliación	m	11 200	
Total Naves	m	22 400	
Módulos	nº	4	
Longitud	m	280	
Ancho	m	80	
Luz máxima	m	50	

En cuanto a la cubierta, en esta ocasión se ha optado por 2 celosías metálicas a dos aguas con cordones paralelos de 40 metros de luz cada una.



5.3 ALTERNATIVA 3


Para la alternativa 3 se ha optado por 2 naves paralelas de iguales dimensiones (aunque en la primera fase, tan solo se llevaría a cabo la primera) y dispuestas en disposición perpendicular al muelle. Para ganar el máximo espacio posible, y debido a el ángulo de ascenso de las cintas está limitado a 15º debido a las características del granel, se ha optado por disponer la cinta en 2 tramos, uno paralelo al muelle, el segundo perpendicular.

Se exponen las características principales de la nave:

Año	Ud	Alternativa 3	
Fase I	m	15 000	
Ampliación	m	15 000	
Total Naves m		30 000	
Módulos	nº	4 + 4	
Longitud	Longitud m		
Ancho	m	50 + 50	
Luz máxima m		50	

En el interior, en esta ocasión, se ha optado por un único pórtico, pero de mayor luz (50 m), que está formado por sendas vigas y una celosía metálica de cordones paralelos a dos aguas.

5.4 ALTERNATIVA 4

En esta cuarta alternativa se plantea la posibilidad de no realizar la instalación cubierta para el almacenamiento del granel. A pesar que presenta serios problemas desde el punto de vista medioambiental se incorpora de todas formas. Esta alternativa es muy flexible en cuanto al espacio que ocupa, no habiendo ninguna diferencia entre la primera fase y sucesivas. Las características principales se exponen en la siguiente tabla y en los planos del apéndice correspondiente.

Año	Ud	Alternativa 4	
Fase I	m	25 912	
Ampliación	m	20 912	
Total Naves	m	25 912	
Módulos	nº	-	
Longitud	m	316	
Ancho	m	82	
Luz máxima	m	-	

5.5 RESUMEN DE ALTERNATIVAS

Año	Ud	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
Disposición	1	1 nave paralela al muelle	1 nave perpendicular al muelle	2 naves perpendiculares al muelle	Almacenamiento al aire perpendicular al muelle
Fase I	m	12 060	11 200	15 000	25 912
Ampliación	m	8 040	11 200	15 000	23 912
Total Naves	m	20 100	22 400	30 000	25 912
Módulos	nº	5	4	4 + 4	-
Longitud	m	335	280	300 + 300	316
Ancho	m	60	80	50 + 50	82
Luz máxima	m	30	50	50	-

6. CRITERIOS DE EVALUACIÓN

En este apartado se exponen los criterios mediante los cuales se van a evaluar las alternativas planteadas.

6.1 ECONÓMICOS

a) Coste de la instalación:

En este subcriterio se valorará el coste relativo de la nave en función de las otras alternativas planteadas, así como la longitud de sistemas de transporte del granel y de los accesos a la nave.

b) Coste de operación:

Tiene en cuenta el coste de funcionamiento de la instalación durante la vida útil del mismo. Se valorará sobre todo el circuito que debe recorrer el granel y el coste estimado de llenado y vaciado de los módulos.

c) Coste de mano de obra:

En este punto se tiene en cuenta el menor o mayor coste de la instalación derivado de una mayor o menor dificultad de ejecución, montaje o operación

En cuanto al peso de los criterios económicos, en este caso, y al tratarse de una instalación industrial, se opta por que contribuya con la mitad de la valoración.

En cuanto a los subcriterios se le da mayor peso a los costes de instalación y operación, que sin duda tendrán mayor repercusión en la viabilidad económica de la infraestructura. A modo de síntesis, los pesos quedarían distribuidos de la siguiente forma:

Criterio	Peso	Subcriterio	Peso
Económicos		Coste Instalación	40%
	50%	Coste Operación	40%
		Coste Mano obra	20%

6.2 FUNCIONALES

a) Aprovechamiento del espacio:

La forma en la que se optimizan los espacios para el almacenamiento tiene gran importancia. Se tendrá en cuenta las alturas de granel alcanzables en cada zona y la existencia, o no, de zonas muertas o no utilizables para tal fin.

b) Capacidad de Ampliación:

Se valora la facilidad de la ampliación también la afección que esta ampliación produzca a las instalaciones ya existentes

c) Accesos:

La dificultad o facilidad de acceder a las instalaciones dependiente de la disposición adoptada. Especialmente se valorara que no se cree un efecto barrera para todo el tráfico que llega.

d) Capacidad máxima:

Máxima capacidad de almacenamiento de la nave

En cuanto a los pesos, se ha optado por la siguiente distribución:

Criterio	Peso	Subcriterio	Peso
Funcionales	40%	Aprovechamiento del espacio	25%
		Capacidad de ampliación	35%
		Accesos	20%
		Capacidad máxima	20%

6.3 AMBIENTALES

a) Peligrosidad:

En este subcriterio se tiene en cuenta de forma relativa entre las alternativas, la posibilidad de que un fallo en la instalación provoque una afección al medio marino o terrestre.

b) Contaminación atmosférica:

Valora la capacidad del granel de acabar siendo arrastrado por el viento mientras es descargado.

En cuanto a los pesos se ha optado por la siguiente distribución:

Criterio	Peso	Subcriterio	Peso
Ambientales	10%	Peligrosidad	40%
		Contaminación atmosférica	60%

7. EVALUACIÓN DE LAS ALTERNATIVAS

En este punto se va a llevar cabo una valoración de las alternativas planteadas mediante los criterios del punto anterior. La escala elegida para tal fin es de 1 a 5, siendo 5 el máximo cumplimiento del criterio y 1 el incumplimiento del criterio.

7.1 ECONÓMICOS

a) Coste de la instalación:

En este apartado no hay duda que las instalaciones de mayor coste son las alternativas 1 y 2, debido a que requieren, además de los muros de contención, de

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

todo un sistema de pilares de hormigón en la parte central, además de unas luces ya relativamente elevadas. La alternativa 3 tiene un coste relativo elevado también, debido, sobre todo, a su elevaba luz central de 50. Por contra la alternativa 4 es la más económica al no disponer de nave.

b) Coste de operación:

Las naves dispuestas en sentido perpendicular al muelle tienen un menor coste de operación, debido a que se realiza un menor movimiento del granel, además en el caso de la alternativa 3 es posible apilar el granel de manera más rápida y sencilla lo que también hace disminuir los costes de operación.

c) Coste de mano de obra:

En cuanto a la dificultad de la ejecución cabe destacar que la 4 sin duda es la más sencilla, seguido de la 2 y la 3 y por último la número 4, que es la alternativa que presenta más dificultades de ejecución.

Aplicando estos comentarios, las valoraciones resultan las siguientes:

Criterio	Peso	Subcriterio	Peso	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
		Coste Instalación	40%	2	3	2	5
Económicos	50%	Coste Operación	40%	2	3	4	1
		Coste Mano obra	20%	2	2	3	1

7.2 FUNCIONALES

a) Aprovechamiento del espacio:

La alternativa 3, es la que sin duda realiza un mejor aprovechamiento del espacio, debido a que no tiene en la parte central ningún impedimento para el

almacenamiento. Por contra la alternativa 4 al no disponer de muro hace que, debido a las pendientes de los acopios, no se aproveche bien el espacio

b) Capacidad de Ampliación:

La alternativa uno, debido a su disposición es la más difícil de ampliar. La alternativa 2 se puede ampliar, pero a parte de estar bastante limitada se afecta a la instalación ya existente, cosa que no ocurre en la alternativa 3, puesto que la ampliación se lleva a cabo con una nave paralela.

c) Accesos:

La alternativa 1 corta de manera muy marcada los accesos hacia el muelle, cosa que no sucede con las otras 3 alternativas

d) Capacidad máxima:

Se valora de acuerdo con las capacidades máximas expuesta en la descripción de las alternativas.

De esta forma la valoración resulta:

Criterio	Peso	Subcriterio	Peso	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
		Aprovechamiento del espacio	25%	1	4	5	2
Funcionales	40%	Capacidad de ampliación	35%	2	3	5	4
		Accesos	20%	1	4	4	4
		Capacidad máxima	20%	3	4	5	4

7.3 AMBIENTALES

a) Peligrosidad:

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

En este apartado se penaliza a las alternativas 1 y 4. La primera es la que tiene mayor longitud de cintas transportadores y la 4 tiene con diferencia mayor número de ramales y bifurcaciones.

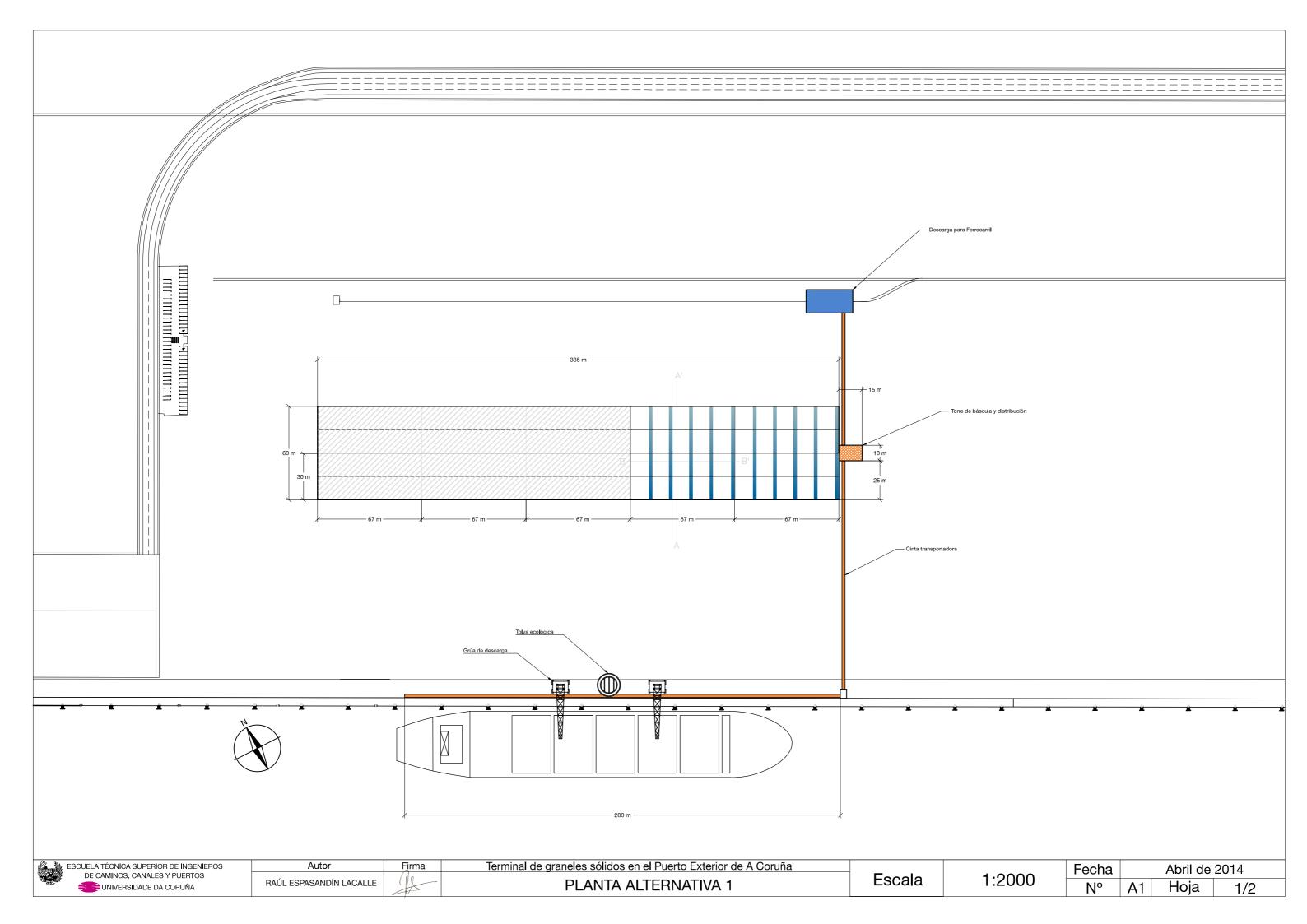
b) Contaminación atmosférica:

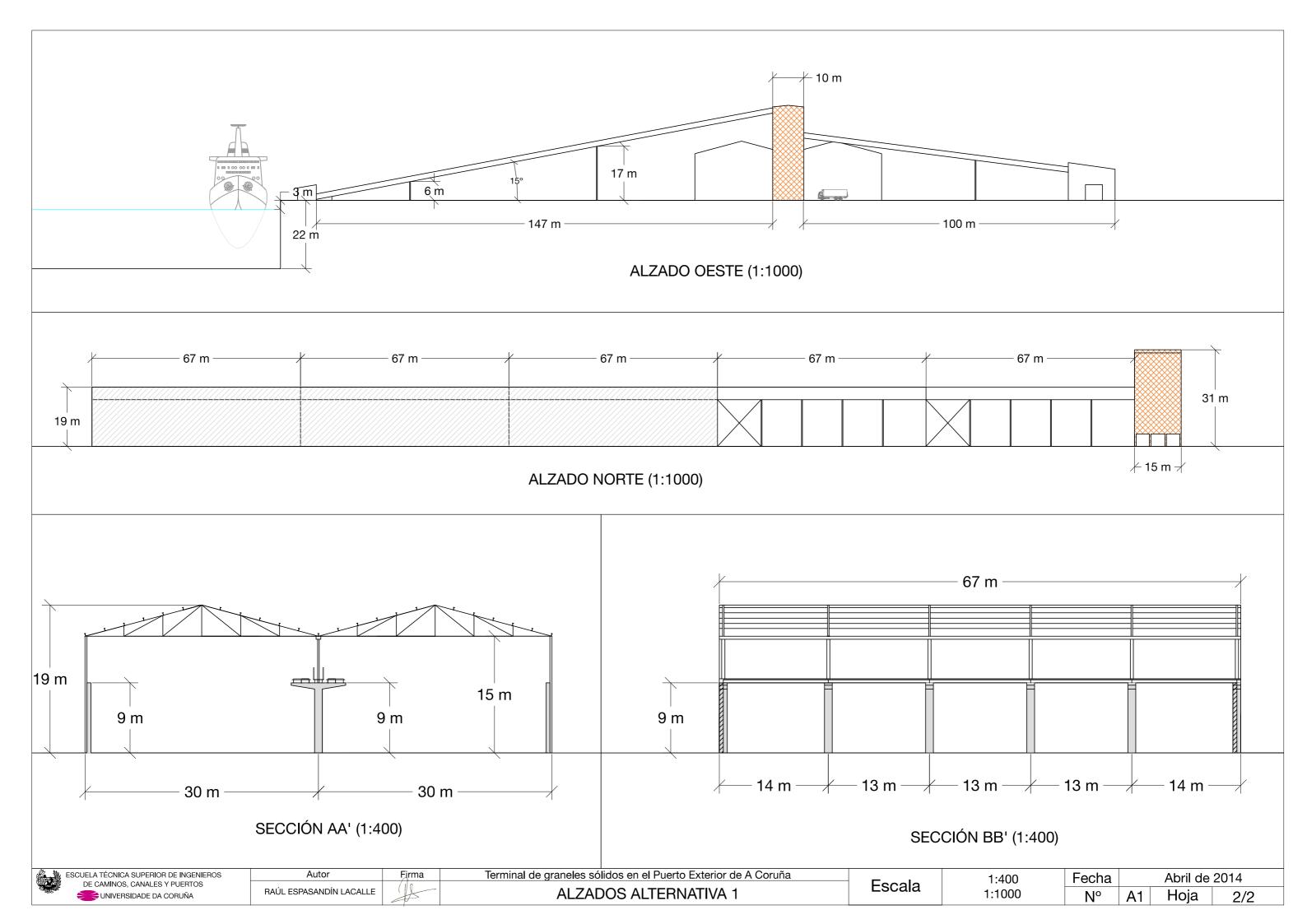
A pesar de que la terminal si puede tener afecciones significativas debido a la maquinaria y materiales empleados, sin duda la peor afección vendrá por parte de la alternativa 4, donde la distribución no se realiza por circuito cerrado.

Criterio	Peso	Subcriterio	Peso	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
Ambientales	10%	Peligrosidad	40%	3	4	4	1
Ambientales	1070	Contaminación atmosférica	60%	4	4	4	1

8. SELECCIÓN DE LA ALTERNATIVA A PROYECTAR

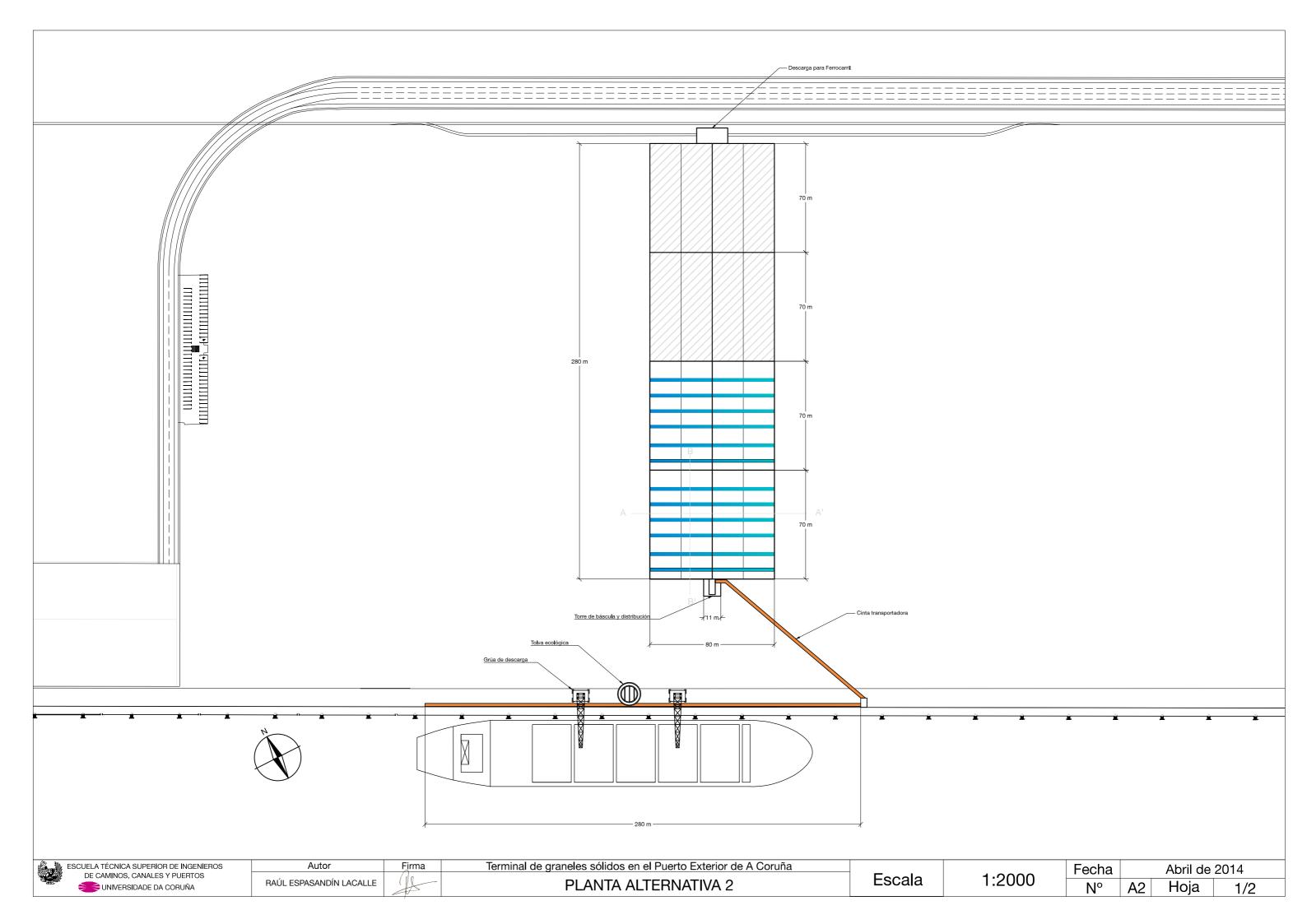
Si se aplican las valoraciones con los pesos correspondientes, se obtiene el siguiente resultado:

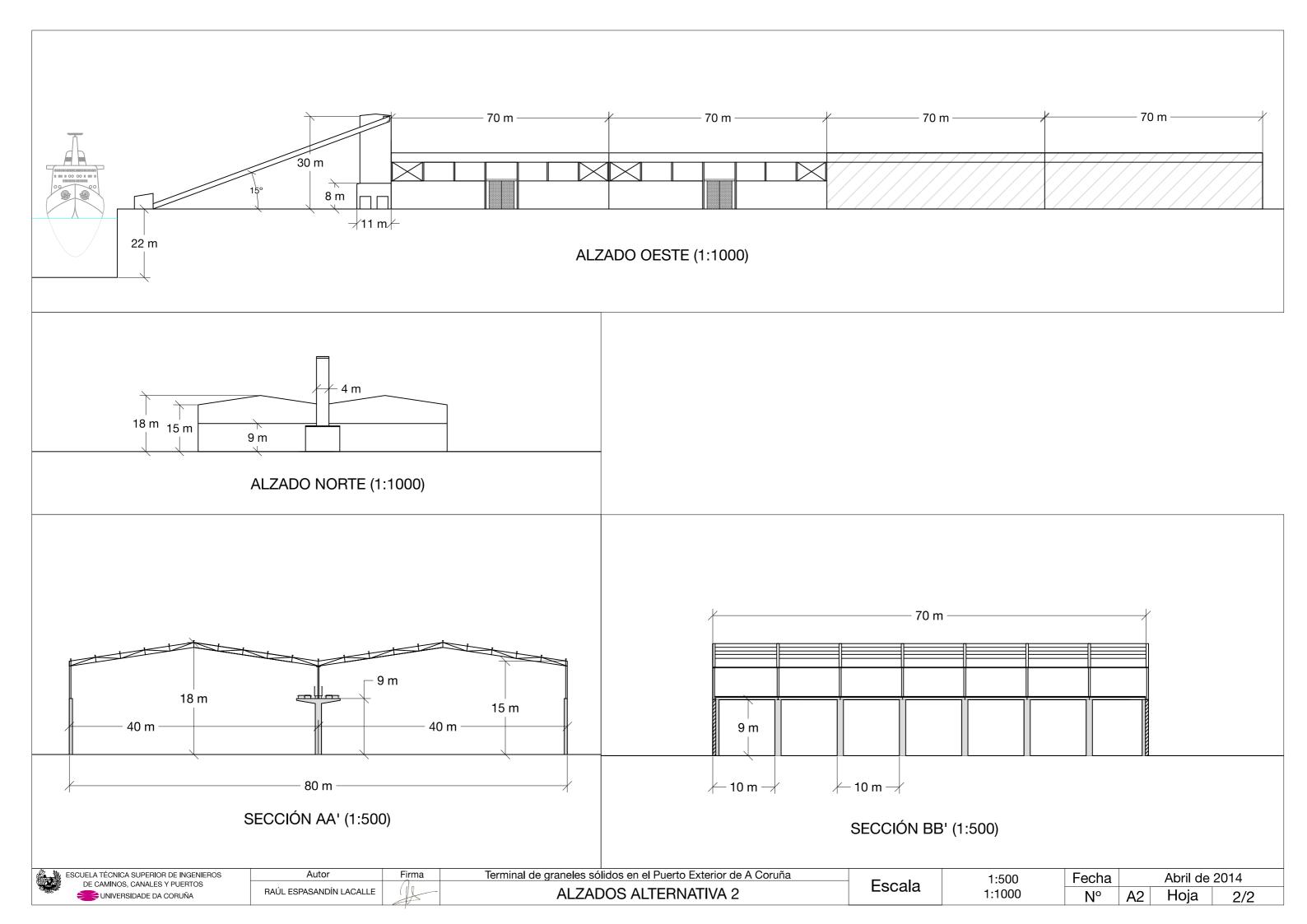

Criterio	Peso	Subcriterio	Peso	Alternativa 1	Alternativa 2	Alternativa 3	Alternativa 4
		Coste Instalación	40%	2	3	2	5
Económicos	50%	Coste Operación	40%	2	3	4	1
		Coste Mano obra	20%	2	2	3	1
		Aprovechamiento del espacio	25%	1	4	5	2
Funcionales	40%	Capacidad de ampliación	35%	2	3	5	4
			Accesos	20%	1	4	4
		Capacidad máxima	20%	3	4	5	4
		Peligrosidad	40%	3	4	4	1
Ambientales	10%	Contaminación atmosférica	60%	4	4	4	1
			TOTAL	2.06	3.26	3.82	2.8


Por tanto se opta por llevar a cabo la alternativa 3.

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

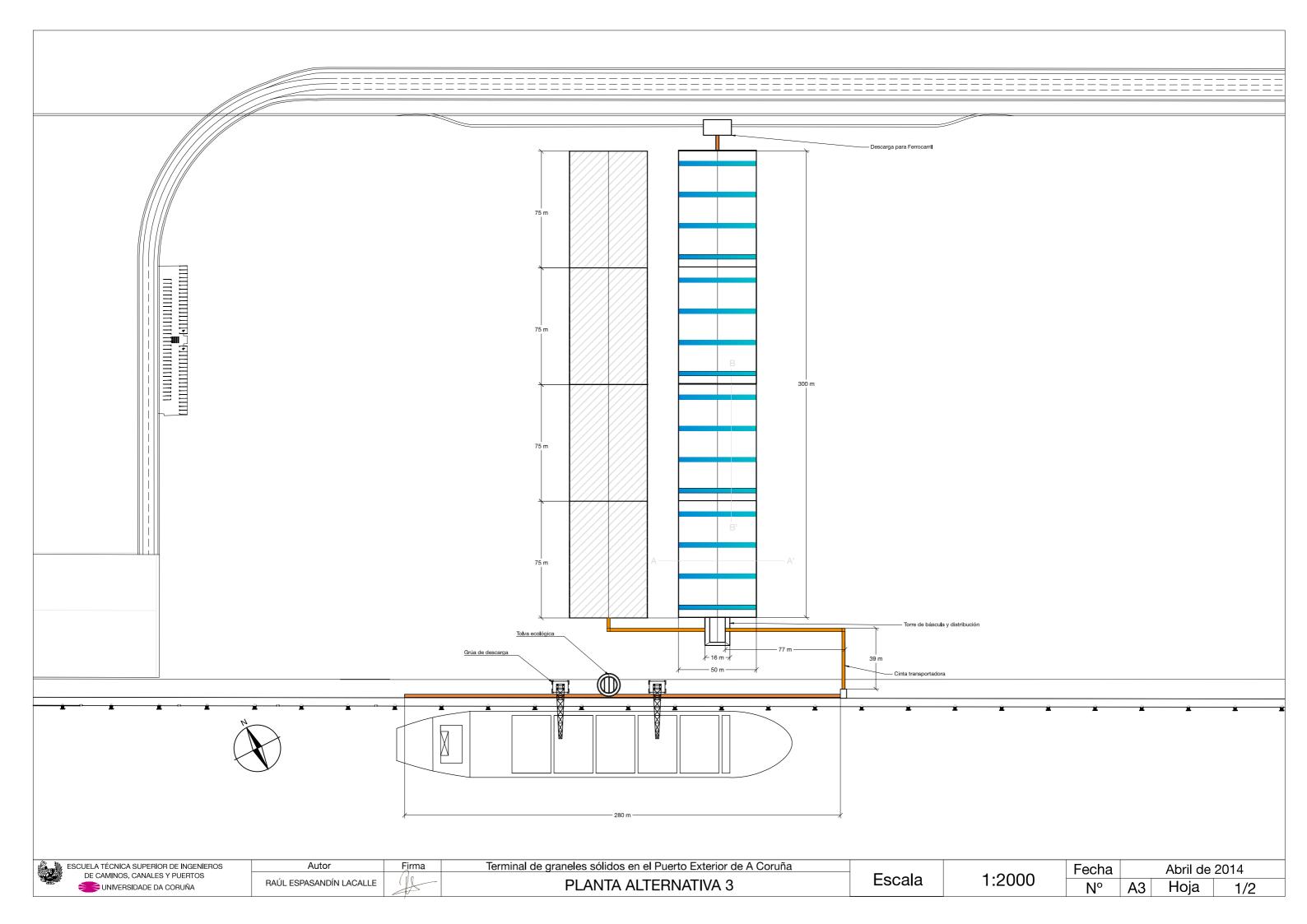
APÉNDICE I PLANOS ALTERNATIVA 1

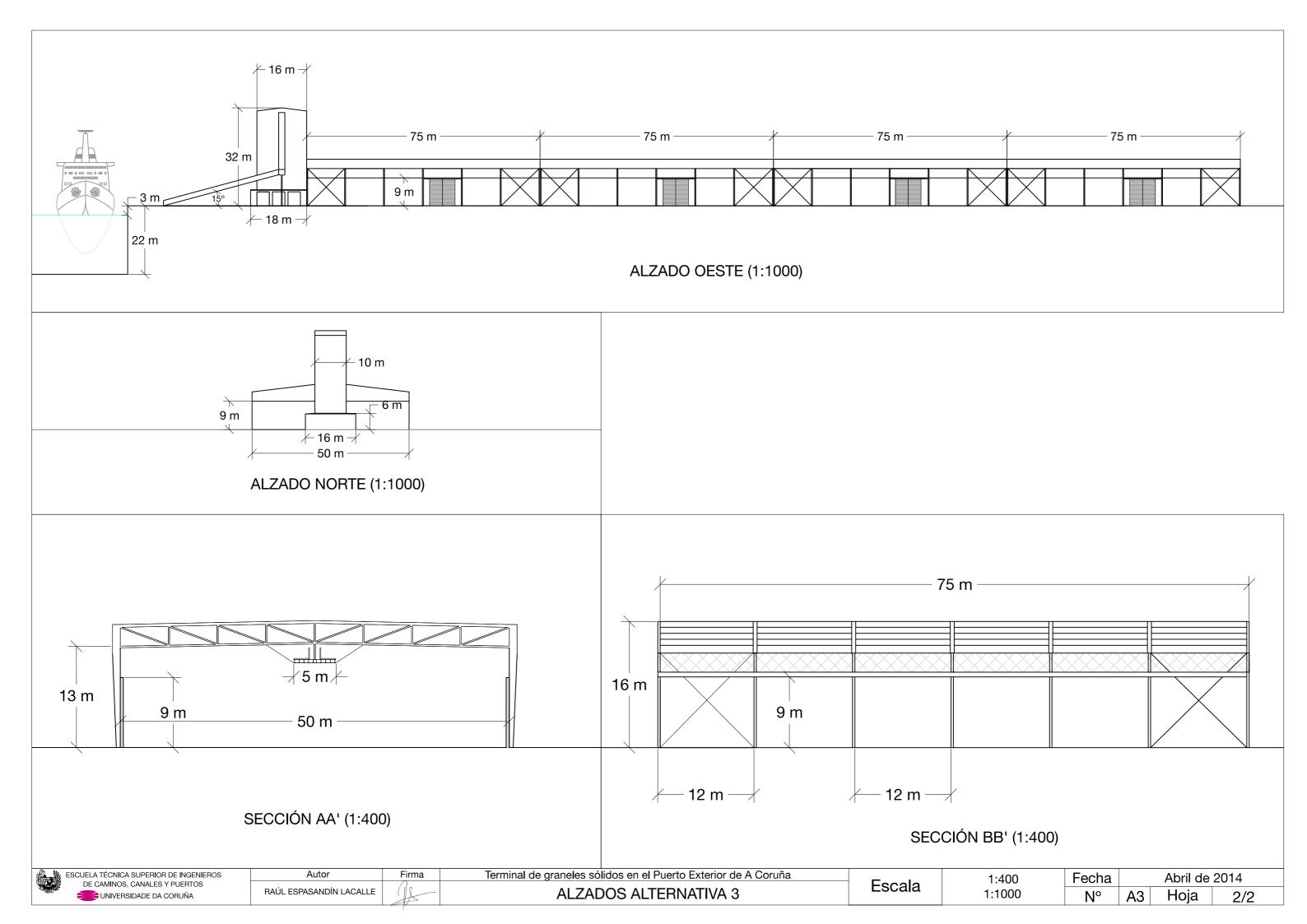




DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

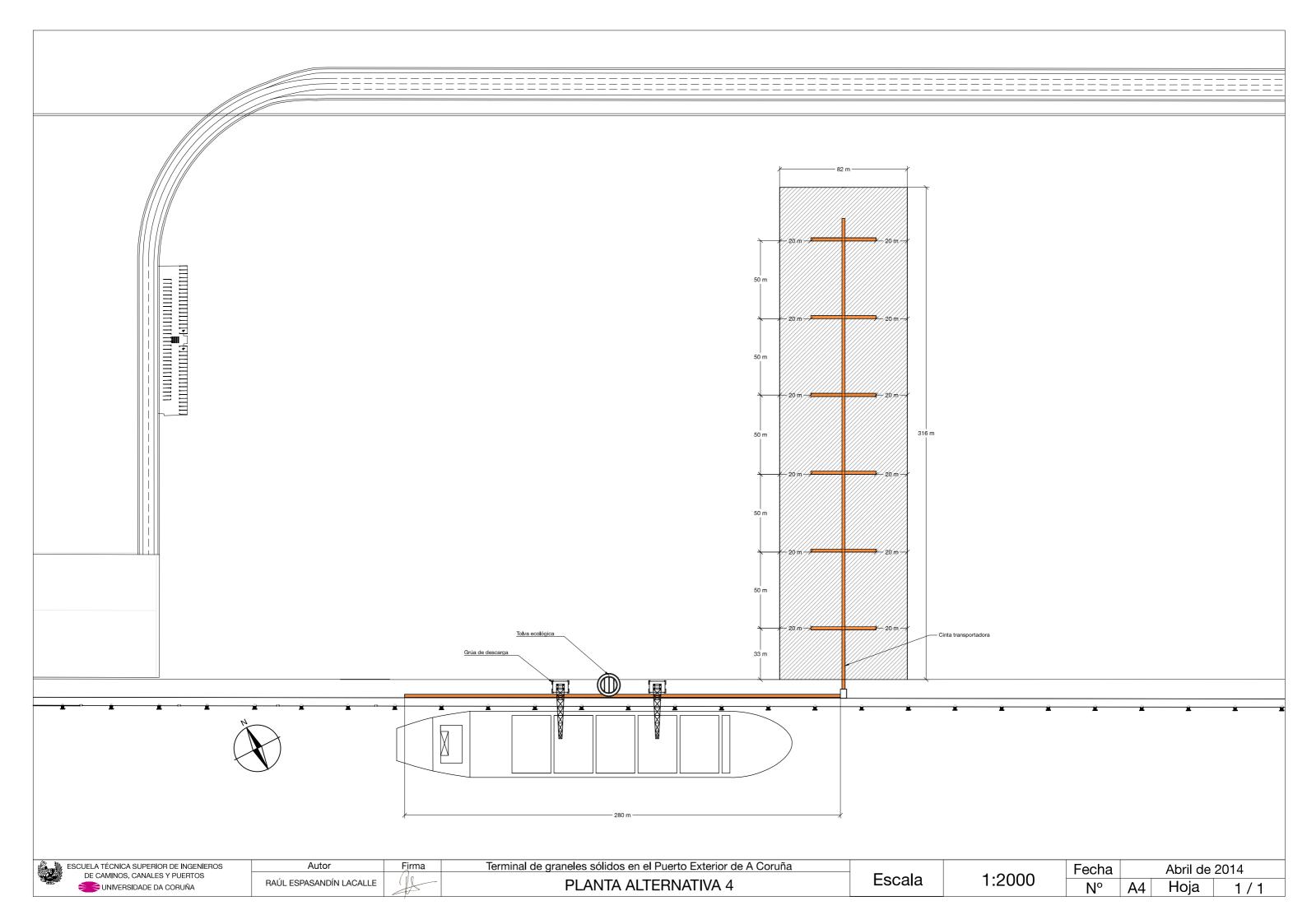
APÉNDICE II PLANOS ALTERNATIVA 2





DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

APÉNDICE III PLANOS ALTERNATIVA 3



DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº4 ESTUDIO DE ALTERNATIVAS

APÉNDICE IV PLANOS ALTERNATIVA 4

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº5 TOPOGRAFÍA Y CARTOGRAFÍA

ANEJO N°5 TOPOGRAFÍA Y CARTOGRAFÍA

- 1. INTRODUCCIÓN
- 2. CARTOGRAFÍA EMPLEADA
 - 2.1 Cartografía general
 - 2.2 Planos constructivos
 - 2.3 Ortofotos
- 3. LOCALIZACIÓN GEOGRÁFICA
- 4. TOPOGRAFÍA
 - 4.1 Características generales
 - 4.2 Características topográficas

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº5 TOPOGRAFÍA Y CARTOGRAFÍA

1. INTRODUCCIÓN

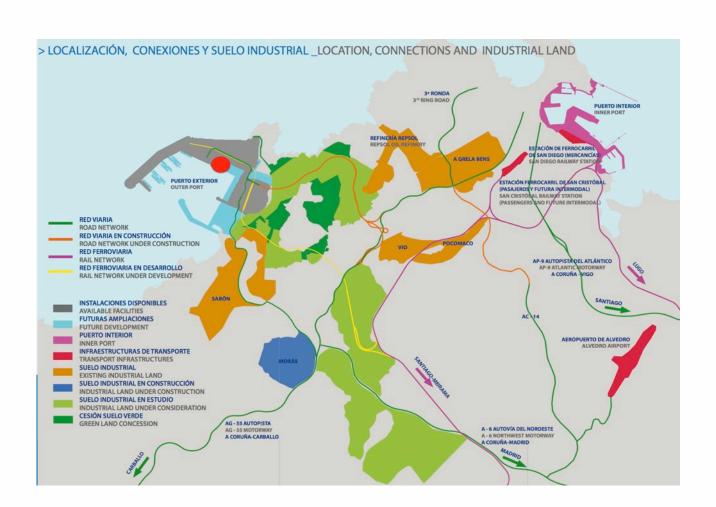
El objeto del anejo es exponer la relación de recursos cartográficos empleados, así como las características topográficas en el ámbito de la actuación del presente anteproyecto.

2. CARTOGRAFÍA EMPLEADA

2.1 Cartografía general

- a) Mapa general de España IGN (Escala 1:500 000)
- b) Mapa general de España IGN Cuadrícula MTN50 (Escala 1:1 000 000)
- c) Mapa Provincial A Coruña MTN200 IGN (Escala 1:200 000)
- d) MTN50 ráster IGN. Hojas 20, 21, 44 y 45 (Escala 1:50 000)
- e) Cartografía Dixital Xunta de Galicia (Escala 1:2 000)

2.2 Planos constructivos


- a) Planta general del Puerto Exterior (Escala 1:10 000)
- b) Sección transversal tipo del muelle «as built» (Escala 1:100)

2.3 Ortofotos

a) Ortofotos del PNOA (IGN). Hojas 20, 21, 44 y 45

3. LOCALIZACIÓN GEOGRÁFICA

La parcela objeto de la actuación se encuentra en el muelle Norte de las nuevas instalaciones portuarias de Punta Langosteira en el municipio de Arteixo, provincia de A Coruña.

De una manera más precisa el área de actuación queda delimitada por las siguientes coordenadas geográficas:

Dunto	UTM ED	50 Huso 29	ETRS89				
Punto	X	Υ	Latitud	Longitd			
1	538956.3	4800471.2	-8:31:15	43:21:15			
2	542333.0	4800491.4	-8:28:45	43:21:15			
3	542347.4	4798177.7	-8:28:45	43:20:00			
4	538969.6	4798157.5	-8:31:15	43:20:00			

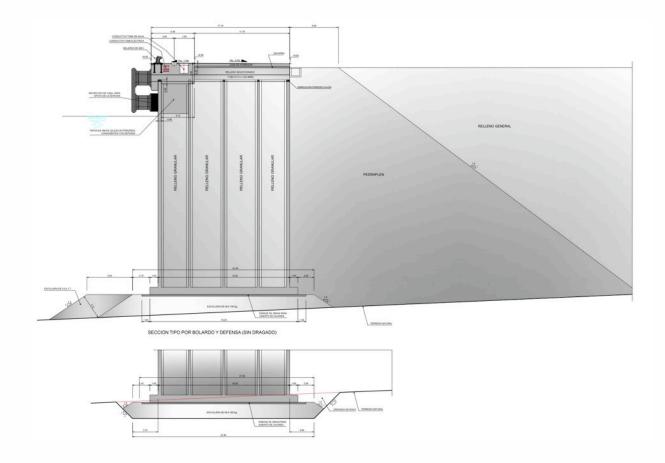
DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°5 TOPOGRAFÍA Y CARTOGRAFÍA

4. TOPOGRAFÍA

4.1 Características generales:

La parcela consta de 280 de linea de atraque y se adentra 340 metros desde esta hasta el vial de acceso y el ferrocarril. La superficie total de la misma es de 56745 m² repartidos de la siguiente forma:

Área	m
Nave FASE I	15 000.00
Nave FASE II	7 500.00
Nave FASE III	7 500.00
Zona Muelle y Accesos Fase I	20 145.00
Accesos Fase II	2 500.00
Accesos FASE III	4 100.00
Total PARCELA [m	56 745.00


Área	m
Nave FASE I	15 000.00
Zona Muelle y Accesos Fase I	20 145.00
TOTAL FASE I [m	35 145.00

4.2 Características topográficas

En cuanto a la topografía del mismo cabe destacar que es una zona completamente plana entorno a la cota +6 m. Forma parte del relleno general de la Fase III de construcción del Puerto Exterior.

Por otra parte, el cantil del muelle se encuentra a la cota +6.50 m y la cota del fondo se encuentra en -22 m. Por lo que el calado máximo de los buques es de

22 m. Para más detalles ver el plano de la sección transversal del muelle en el apartado 2 del Documento II.

ANEJO Nº6 ESTRUCTURAS

1. INTRODUCCIÓN

2. NORMATIVA APLICABLE

- 2.1 General
- 2.2 Estructura Metálica
- 2.3 Muro de Contención

3. PREDIMENSIONAMIENTO ESTRUCTURA METÁLICA

- 3.1 Descripción de la estructura
- 3.2 Materiales
- 3.3 Definición de Acciones
- 3.4 Combinación de Acciones
- 3.5 Cálculo

4. PREDIMENSIONAMIENTO MURO

- 4.1 Descripción de la estructura
- 4.2 Materiales
- 4.3 Definición de Acciones
- 4.4 Combinación de Acciones
- 4.5 Cálculo

APÉNDICE I RESULTADOS CÁLCULO

1. INTRODUCCIÓN

El objetivo de este anejo es realizar un cálculo inicial de las dos principales estructuras que condicionan el proyecto objeto de estudio en el presente anteproyecto. Por un lado la estructura metálica de la nave, y por otra el muro de contención del granel. Gracias a este cálculo se podrá realizar una mejor valoración de los costes, envergadura y definición del obra.

En ningún caso se pretende realizar un cálculo riguroso de los elementos, sino únicamente un predimensionamiento de los mismos.

2. NORMATIVA APLICABLE

2.1 General

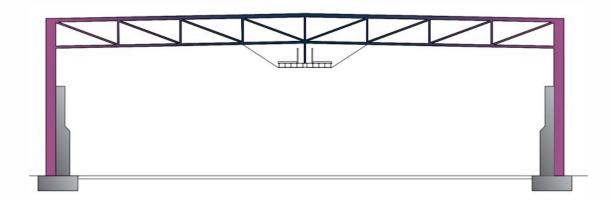
- a) Código Técnico (CTE)

 DB SE Seguridad estructural

 DB SE-AE Acciones de la edificación
- b) Eurocódigo 0 Bases de cálculo de estructuras (EC0)
- c) Eurocódigo 1 Acciones en estructuras (EC1)
- d) ROM 0.0-01 Bases de Cálculo para el Proyecto en las Obras portuarias
- e) ROM 2.0-11 Diseño y ejecución en Obras de Atraque y Amarre

2.2 Estructura Metálica

- a) Instrucción de acero estructural (EAE)
- b)Eurocódigo 3: Proyecto de estructuras de acero (EC3)


2.3 Muro de Contención

a) Instrucción de hormigón estructural (EHE)

3. PREDIMENSIONAMIENTO ESTRUCTURA METÁLICA

3.1 Descripción de la estructura

La estructura son 7 pórticos metálicos de de 50 metros de luz y 16 metros de altura. Están formados por 2 columnas y una celosía de cordones superior e inferior paralelos de 3 metros de altura por 50 metros de largo.

3.2 Materiales

Se opta para la estructura por acero laminado S355 que presenta las siguientes características

	Materiales Empleados								
Tipo	Tipo Denominación E (MPa) \vee G (MPa) f_y \propto (m/m°C) Υ (kN/m								
Acero Laminado	S 355	210000	0.3	81000	355	0.000012	78.5		

3.3 Definición de Acciones

a) Acciones permanentes:

En este apartado se engloba el peso propio (PP) de la estructura y el peso de los elementos permanentes.

El programa de cálculo ya tiene en cuenta el PP de los elementos definidos. Se le incorpora el peso de la cubierta (chapa grecada) y del sistema de transporte longitudinal del granel en la nave, formado por la cinta transportadora y su material auxiliar.

b) Sobrecarga de uso:

Según el DB SE-AE del CTE la sobrecarga de uso es el peso de todo lo que puede gravitar sobre la estructura por razón de su uso. La sobrecarga de uso debida a equipos pesados, o a la acumulación de materiales en bibliotecas, almacenes o industrias.

Cat	egoría de uso	Subc	ategorías de uso	Carga uniforme	Carga concentrada	
				[kN/m ²]	[kN]	
Α	Zonas residenciales	A1	Viviendas y zonas de habitaciones en, hospitales y hoteles	2	2	
		A2	Trasteros	3	2	
В	Zonas administrativas	0)		2	2	
		C1	Zonas con mesas y sillas	3	4	
		C2	Zonas con asientos fijos	4	4	
С	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las categorías A, B, y D)	СЗ	Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.		4	
		C4	Zonas destinadas a gimnasio u actividades físicas	5	7	
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4	
		D1	Locales comerciales	5	4	
D	Zonas comerciales	D2	Supermercados, hipermercados o grandes superficies	5	7	
Е	Zonas de tráfico y de ap	arcamie	nto para vehículos ligeros (peso total < 30 kN)	2	20 (1)	
F	Cubiertas transitables a	ccesibles	s sólo privadamente (2)	1	2	
	Cubiertas accesibles	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1(4)(6)	2	
G	únicamente para con-	Gi	Cubiertas ligeras sobre correas (sin forjado) (5)	0,4 ⁽⁴⁾	1	
	servación (3)	G2 Cubiertas con inclinación superior a 40°		0	2	

En este caso tenemos dos sobrecargas principales, por un lado la sobrecarga sobre la cubierta, y por otra la sobrecarga de uso de la cinta transportadora.

c) Viento:

Según el DB SE-AE del CTE la distribución y el valor de las presiones que ejerce el viento sobre un edificio y las fuerzas resultantes dependen de la forma y de las dimensiones de la construcción, de las características y de la permeabilidad de su superficie, así como de la dirección, de la intensidad y del racheo del viento.

En cuanto al cálculo de la acción de viento el DB SE-AE del CTE expone:

La acción de viento, en general una fuerza perpendicular a la superficie de cada punto expuesto, o presión estática, qe puede expresarse como:

$$q_e = q_b \cdot c_e \cdot c_p$$

Donde:

q_b: la presión dinámica del viento. De forma simplificada, como valor en cualquier punto del territorio español, puede adoptarse 0,5 kN/m2.

c_e: el coeficiente de exposición, variable con la altura del punto considerado, en función del grado de aspereza del entorno donde se encuentra ubicada la construcción.

	Tabla 3.4. Valores del coeficiente de e	xposi	ción	Ce					
	Conde de composer del coterno		Altura	del p	ounto	cons	idera	do (m))
	Grado de aspereza del entorno	3	6	9	12	15	18	24	30
1	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	2,4	2,7	3,0	3,1	3,3	3,4	3,5	3,7
II	Terreno rural Ilano sin obstáculos ni arbolado de importancia	2,1	2,5	2,7	2,9	3,0	3,1	3,3	3,5
III	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	1,6	2,0	2,3	2,5	2,6	2,7	2,9	3,1
IV	Zona urbana en general, industrial o forestal	1,3	1,4	1,7	1,9	2,1	2,2	2,4	2,6
v	Centro de negocio de grandes ciudades, con profusión de edificios en altura	1,2	1,2	1,2	1,4	1,5	1,6	1,9	2,0

c_p: el coeficiente eólico o de presión, dependiente de la forma y orientación de la superficie respecto al viento, y en su caso, de la situación del punto respecto a los bordes de esa superficie; un valor negativo indica succión.

Tabla 3.5. Coeficiente eólico en edificios de pisos

	Esbeltez en el plano paralelo al viento							
	< 0,25	0,50	0,75	1,00	1,25	≥ 5,00		
Coeficiente eólico de presión, cp	0,7	0,7	0,8	0,8	0,8	0,8		
Coeficiente eólico de succión, c _s	-0,3	-0,4	-0,4	-0,5	-0,6	-0,7		

d) Acciones térmicas

. Según el DB SE-AE del CTE los edificios y sus elementos están sometidos a deformaciones y cambios geométricos debidos a las variaciones de la temperatura ambiente exterior. La magnitud de las mismas depende de las condiciones climáticas del lugar, la orientación y de la exposición del edificio, las características de los materiales constructivos y de los acabados o revestimientos, y del régimen de calefacción y ventilación interior, así como del aislamiento térmico.

Las variaciones de la temperatura en el edificio conducen a deformaciones de todos los elementos constructivos, en particular, los estructurales, que, en los casos en los que estén impedidas, producen tensiones en los elementos afectados.

Los efectos globales de la acción térmica pueden obtenerse a partir de la variación de temperatura media de los elementos estructurales, en general, separadamente para los efectos de verano, dilatación, y de invierno, contracción, a partir de una temperatura de referencia, cuando se construyó el elemento y que puede tomarse cono la media anual del emplazamiento o 10°C.

Tabla 3.7 Incremento de temperatura debido a la radiación solar

Orientación de la superficie	Co	lor de la superfic	ie
Orientación de la superficie	Muy claro	Claro	Oscuro
Norte y Este	0 ℃	2 °C	4 °C
Sur y Oeste	18 °C	30 °C	42 °C

El valor característico de la temperatura máxima del aire, depende del clima del lugar y de la altitud. A falta de datos empíricos más precisos, se podrá tomar, independientemente de la altitud, igual al límite superior del intervalo reflejado en el mapa:

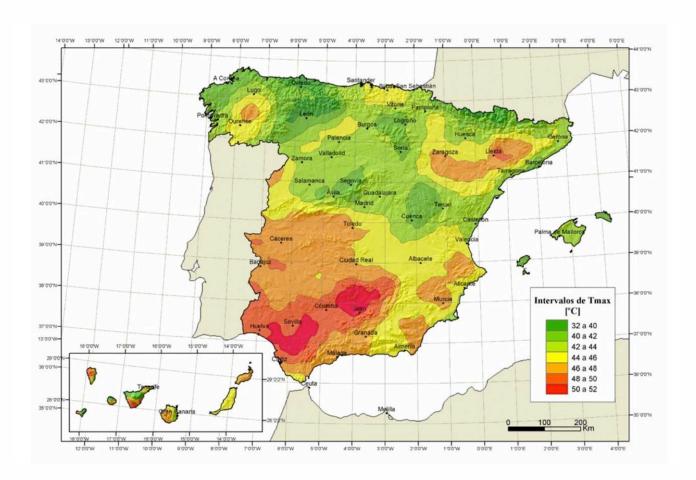


Tabla E.1 Temperatura mínima del aire exterior (°C)

Altitud (m)			Zona de clim	a invernal, (se	egún figura E.2	2)	
Altitud (m)	1	2	3	4	5	6	7
0	-7	-11	-11	-6	-5	-6	6
200	-10	-13	-12	-8	-8	-8	5
400	-12	-15	-14	-10	-11	-9	3
600	-15	-16	-15	-12	-14	-11	2
800	-18	-18	-17	-14	-17	-13	0
1.000	-20	-20	-19	-16	-20	-14	-2
1.200	-23	-21	-20	-18	-23	-16	-3
1.400	-26	-23	-22	-20	-26	-17	-5
1.600	-28	-25	-23	-22	-29	-19	-7
1.800	-31	-26	-25	-24	-32	-21	-8
2.000	-33	-28	-27	-26	-35	-22	-10

3.4 Combinación de Acciones

Se realiza según el EC3 y la EAE con los siguientes coeficientes para ELU:

F4	Situaciones persi	Situaciones accidentales		
Tipo de acción	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable
Permanente	$\gamma_G = 1,00$	$\gamma_G = 1,35$	$\gamma_G = 1,00$	$\gamma_G = 1,00$
Permanente de valor no constante	$\gamma_{G^*} = 1,00$	$\gamma_{G^*} = 1,50$	$\gamma_{G^*} = 1,00$	$\gamma_{G^*} = 1,00$
Variable	$\gamma_a = 0.00$	$\gamma_a = 1,50$	$\gamma_{a} = 0.00$	$\gamma_a = 1,00$
Accidental	_	<u> </u>	$\gamma_A = 1,00$	$\gamma_A = 1,00$

En cuanto a los coeficientes de simultaneidad:

Coeficientes de simultaneidad para la de uso en edificios	s sobr	ecarga	S
Uso del elemento	₩0	Ψı	₩2
Zonas residenciales y domésticas	0,7	0,5	0,3
Zonas de oficinas	0,7	0,5	0,3
Zonas de reunión	0,7	0,7	0,6
Zonas comerciales	0,7	0,7	0,6
Zonas de almacenamiento	1,0	0,9	0,8
Zonas de tráfico, peso del vehículo ≤ 30 kN	0,7	0,7	0,6
Zonas de tráfico, 30 kN < peso del vehículo ≤ 160 kN	0,7	0,5	0,3
Cubiertas no accesibles	0,0	0,0	0,0

Coeficientes de s	Tabla 11.c imultaneidad para la	acción del vien
₩0	V i	₩ 2
0,6	0,2	0,0
Coeficientes de	Tabla 11.d simultaneidad para la	a acción térmica
Coeficientes de		a acción térmica

Realizando las siguientes combinaciones

En situaciones persistentes o transitorias:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j}$$

En situaciones accidentales:

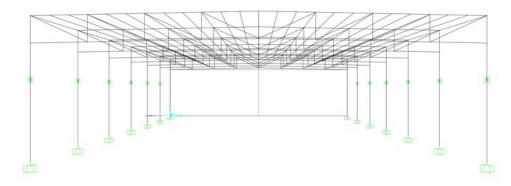
$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_A A_k + \gamma_{Q,1} \psi_{1,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

En situaciones en las que actúa la acción sísmica:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_A A_{E,k} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

donde:

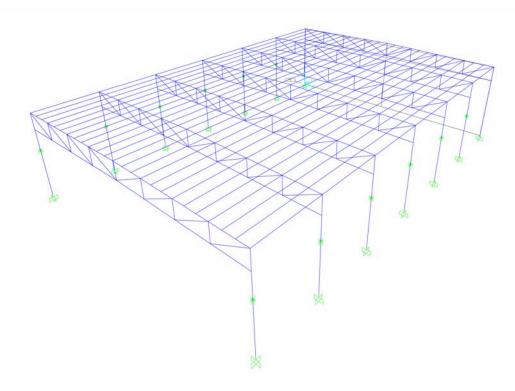
 $G_{k,j}$ Valor característico de las acciones permanentes Valor característico de las acciones permanentes de valor no constante


 $Q_{k,1}$ Valor característico de la acción variable determinante.

 $\psi_{o,i} Q_{k,i}$ Valor representativo de combinación de las acciones variables que actúan simultáneamente con la acción variable determinante.

 $\psi_{1,1} Q_{k,1}$ Valor representativo frecuente de la acción variable determinante.

3.5 Cálculo


Una vez definidos los elementos y optado por emplear las series comerciales de perfiles HEA y HEB para columnas y celosía y IPE para las correas se lleva a cabo se lleva a cabo el cálculo. Quedando definido el modelo:

Se dimensional mediante un análisis de primer orden y las comprobaciones correspondientes del EC3. En el apéndice 3 se incorporan los resultados del dimensionamiento y del cálculo.

4. PREDIMENSIONAMIENTO MURO

4.1 Descripción de la estructura

La estructura que se pretende dimensionar son 2 muros gemelos de hormigón armado dispuestos paralelamente. Sus dimensiones son 300 m de largo y 9 metros de altura. Están situados en los 2 laterales de la nave. La misión de los mismos es la de contener el granel almacenado y permitir, de esta manera, una mayor altura de acopios.

4.2 Materiales

Se opta por emplear como hormigón un HA-30 y para las barras de armado un acero B500SD.

4.3 Definición de Acciones

Se definen procediendo de igual forma que en el apartado 3 del presente anejo. Salvo para la sobrecarga debida a la acumulación de granel. Los valores del ángulo de rozamiento interno y densidad de los principales tipos de graneles agroalimentarios se obtienen de la ROM 2.0-11:

GRANELES	Yap (kN/m ³)	φ (°)	MERCANCÍAS APILADAS	Yap (kN/m
GRANELES SÓLI	DOS			(KIV/III
MATERIALES DE CONST	RUCCIÓN		PRODUCTOS ALIMENTICIOS	
Mármol labrado	13	35	Carne congelada (en sacos)	4,4
Piedra caliza (en rocas)	17	35	Carne en lata (en cajas)	6
Piedra partida	18	40	Cebada (en sacos)	6
Yeso y escayola	15	25	Centeno (en sacos)	6,3
PRODUCTOS DE DES			Cocos (en cajas)	4
Basuras de demolición	13	35	Cocos (en sacos)	5,3
Escombros urbanos	6	-	Cítricos (en cajas)	4
Estiércol apelmazado	18	45	Haba de soja (en sacos)	7,2
Estiércol suelto	12	45	Harinas (en barriles)	6,6
Chatarra pesada	16	35	Harinas (en sacos)	8,5
Chatarra ligera	12	30	Huesos (en sacos)	6
PRODUCTOS ALIMEN			Leche condensada (en barriles)	5
Azúcar	10	35	Leche condensada (en cajas)	5
Carne congelada	3,5	-	Leche en polvo (en sacos)	5,3
Cereales: Arroz	6	25	Maiz (en sacos)	6,5
Avena	5	30	Mantequilla (en barriles o cajas)	6
Cebada	6,5	25	Pescado fresco o congelado (en cajas)	5
Centeno	8	35	Plátanos (en cajas)	2,6
Maiz	7,5	25	Queso (en cajas)	7
Mijo	7	25	Sal (en cajas)	7
Trigo	7,5	25	Sal (en sacos)	9
Colza	7	25	Semillas de girasol (en cajas)	5
Forrajes	1,7	-	Semillas de girasol (en sacos)	4,8
Frutas y hortalizas	7,5	30	Tapioca (en sacos)	6,5
Haba de soja	8,5	60	Té (en fardos)	3,5
Harina de cereal o soja	6	45	Trigo (en sacos)	6,5
Harina de pescado	8	45	Tubérculos (en cajas)	4
Hielo (en bloques)	8,5	-	Tubérculos (en sacos)	6
Huesos	4	-	Uvas (en cajas)	2,5
Legumbres	8	30	Vegetales (en cajas)	6
Malta triturada	4	45 45	Vegetales (en sacos)	5
Piensos	5		PRODUCTOS ANIMALES Y VEGETA	_
Remolacha azucarera desecada y cortada	3	40	Algodón (en balas)	3,7
Sal común	12	40	Esparto (en balas)	2,5
Sal de roca	22	45	Heno (en pacas)	3
Semillas de girasol	5,5	30	Heno (en balas)	7
Sémola	5,5		Lana (en balas prensadas)	13
Tubérculos	7,5	30	Pieles húmedas (en balas)	5,5
PRODUCTOS VEGET		25	Pieles secas (en balas)	2
Lino	6	25	Pieles secas (en balas prensadas)	5.0
PRODUCTOS PETROL			Tabaco (en pacas) PRODUCTOS PETROLÍFEROS	5.0
Alquitrán PRODUCTOS PETROL	10-13		Productos petrolíferos (en barril)	5
Alquitran Betún	10-13		ACEITES	_ 3
Crudo de petróleo	7.5-10	1. -	De pescado (en barriles)	6
Crudo de petroleo Fueloil	8-10	-		7
Gasoil	8-10	-	Látex (en barriles) Melazas (en barriles)	5.5
Gasolina	7,5	-		5,5
Gasolina Gases licuados (gas natural, metano,)	5-7	-	Vegetales (en barriles) VEHÍCULOS	5,5
Gases ilcuados (gas natural, metano,) Keroseno	8.3	1.51	Vehículos a motor	2.5
Nei Oserio	0,3	_		10
			Vehículos a motor (chatarra en jaulas)	10

ANEJO Nº6 ESTRUCTURAS DOCUMENTO I MEMORIA JUSTIFICATIVA

Para realizar un cálculo único, y no uno para cada tipo de granel se opta por tomar un ángulo de rozamiento interno de 25° y una densidad aparente de 9 KN/m³ lo que cubre todos los posibles graneles con lo que podría trabajar la terminal.

4.4 Combinación de Acciones

La combinación de acciones se realiza de acuerdo a la EHE-08 utilizando los siguientes coeficientes de seguridad para ELU:

Too do cosión		persistente sitoria	Situación accidental		
Tipo de acción	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable	
Permanente	$\gamma_G = 1,00$	$\gamma_G = 1,35$	$\gamma_G = 1,00$	$\gamma_G = 1,00$	
Pretensado	$\gamma_P = 1,00$	$\gamma_P = 1,00$	$\gamma_P = 1,00$	$\gamma_P = 1,00$	
Permanente de valor no constante	$\gamma_{G^*} = 1,00$	$\gamma_{G^*} = 1,50$	$\gamma_{G^*} = 1,00$	$\gamma_{G^*} = 1,00$	
Variable	$\gamma_Q = 0.00$	$\gamma_{Q} = 1,50$	$\gamma_Q = 0.00$	$\gamma_a = 1,00$	
Accidental		_	$\gamma_A = 1,00$	$\gamma_A = 1,00$	

En situaciones persistentes o transitorias:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

En situaciones accidentales:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_A A_k + \gamma_{Q,1} \psi_{1,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

En situaciones en las que actúa la acción sísmica:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{j\geq 1} \gamma_{G^*,j} G_{k,j}^* + \gamma_A A_{E,k} + \sum_{j\geq 1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

donde:

Valor característico de las acciones permanentes

 $G_{k,j}$ $G_{k,j}^*$ Valor característico de las acciones permanentes de valor no constante

Valor característico de la acción variable determinante.

Valor representativo de combinación de las acciones variables que actúan simultáneamente con la acción variable determinante.

Valor representativo frecuente de la acción variable determinante.

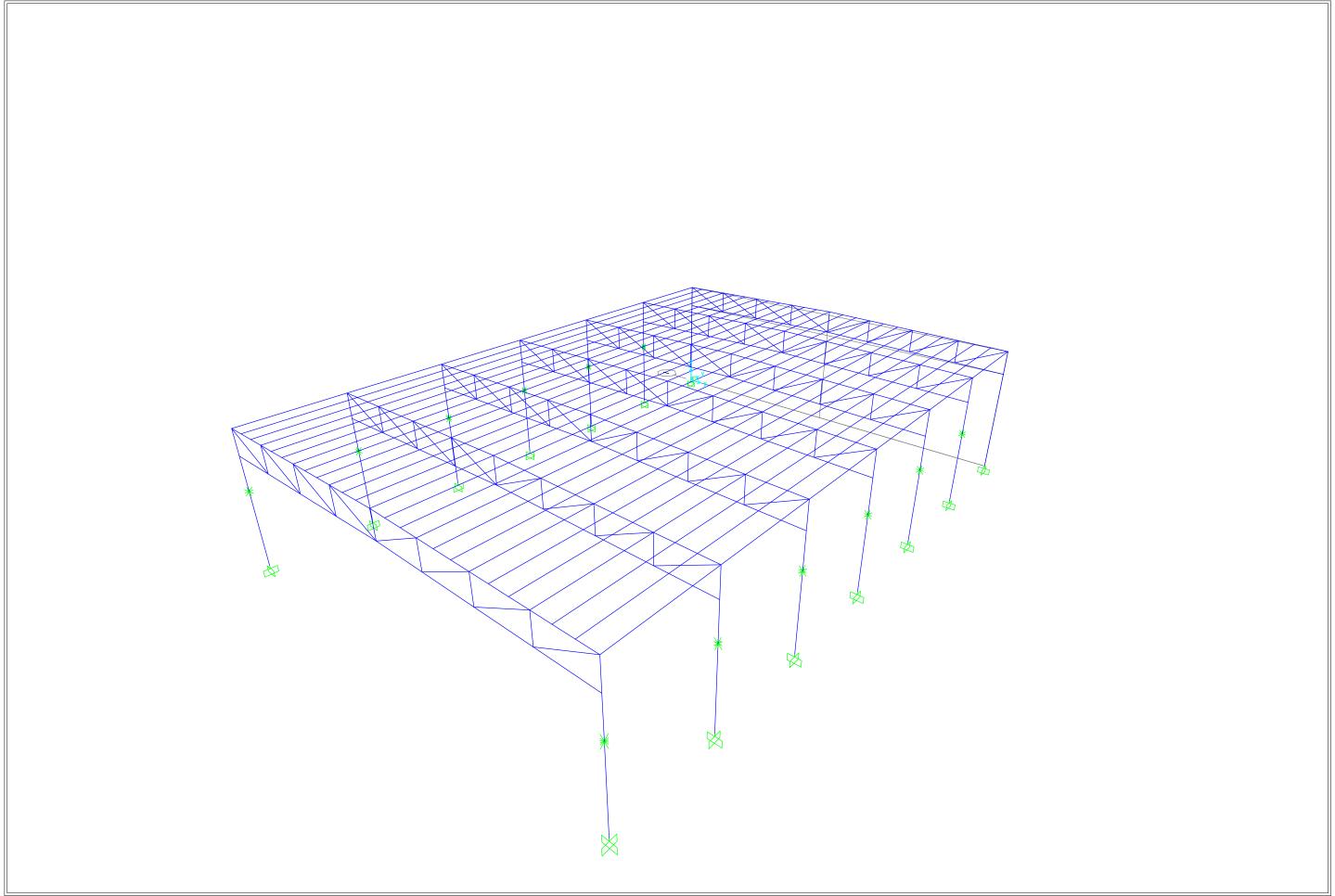
Valor representativo de combinación de las acciones variables $\Psi_{0i}Q_{ki}$ concomitantes.

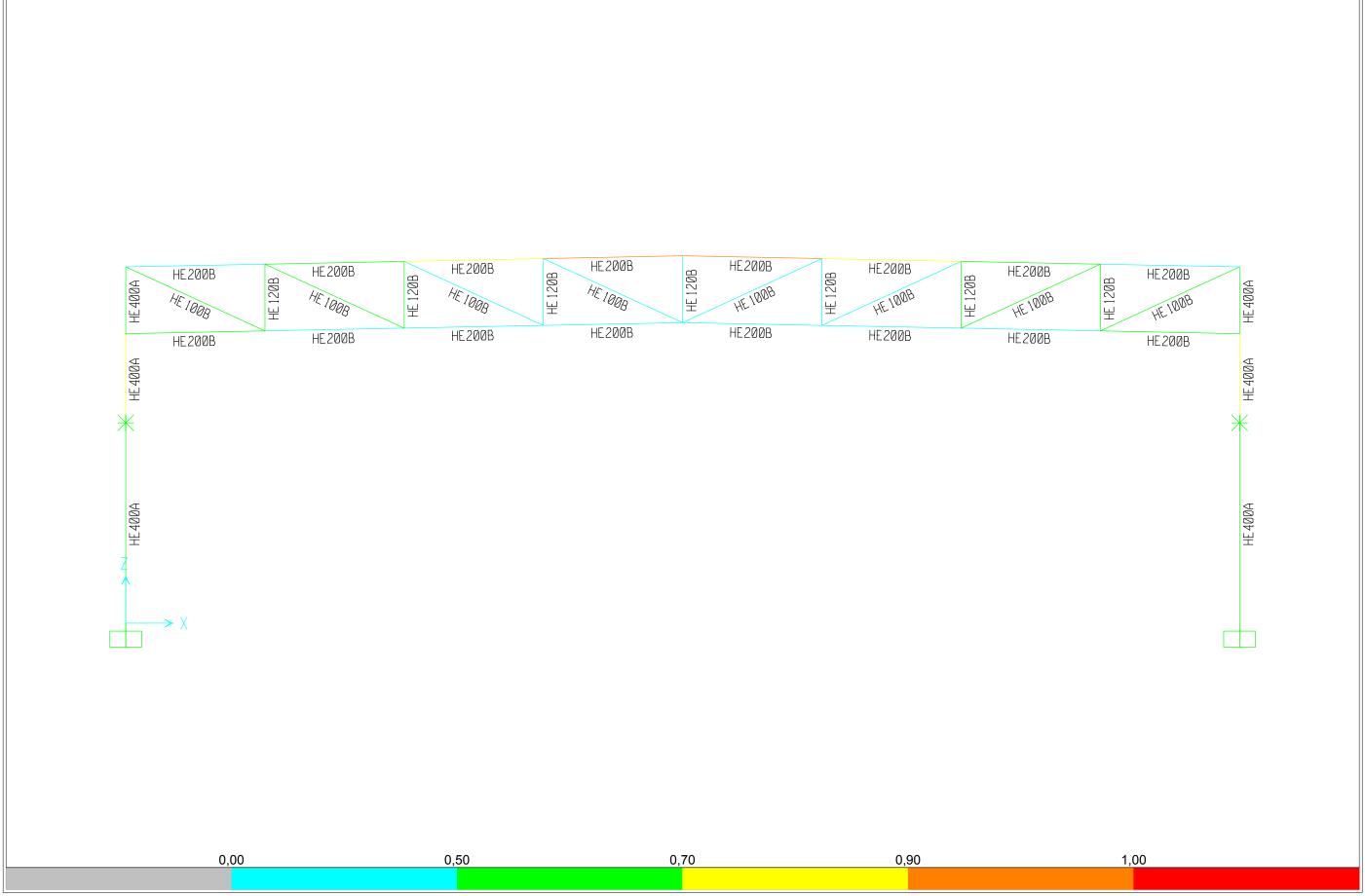
 $\Psi_{1,1} Q_{k,1}$ Valor representativo frecuente de la acción variable determinan-

 $\Psi_{2,i}Q_{k,i}$ Valores representativos cuasipermanentes de las acciones variables con la acción determinante o con la acción accidental

Valor característico de la acción accidental. Valor característico de la acción sísmica.

4.5 Cálculo


Finalmente, determinadas ya las acciones, se realiza el cálculo y dimensionamiento del muro. Para optimizar la solución se deciden utilizar 2 espesores diferentes para la parte alta y baja respectivamente, con una transición a 45° para evitar la acumulación de granel en este punto. Así se opta por un espesor inferior de 1 m y uno superior de 0,5 m.


El resultado final puede verse en el apartado número 6 de los planos, bajo la denominación «Predimensionamiento del Muro»

APÉNDICE I RESULTADOS DEL CÁLCULO

SAP2000 Steel Design

Project_Terminal de Graneles Sólidos Puerto Exterior de A Coruña

Job Numbe

Engineer Raúl Espasandín Lacalle

n/Ag=1,00 RLLF=1,000 PLLF=0,750 D/C Lim=0,950 eff=0,003 eNy=0,000 eNz=0,000 =0,003 Iyy=8,640E=06 iyy=0,050 Wel,yy=1,440E=04 Weff,yy=1,440E=04 t=0,000 Izz=3,180E=06 izz=0,031 Wel,z=5,300E=05 Weff,z=5,300E=05 w=0,000 Iyz=0,000 h=0,120 Wpl,yy=1,650E=04 Av,z=0,003 Efy=355000,000 fu=510000,000 Wpl,z=8,100E=05 Av,y=0,001 TRESS CHECK FORCES & MOMENTS Location Ned Med,yy Med,zz Ved,z Ved,y Ted 3,000 -224,135 -11,136 0,000 6,943 0,000 0,000 MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,609 = 0,469 + 0,140 + 0,000 < 0,950 ENED/Chi z NRK/GammaM1) + kzy (My,Ed+NEd eNy) / (Chi LT My,Rk/GammaM1 + kzz (Mz,Ed+NEd eNz) / (Mz,Rk/GammaM1) XXAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity Axial -224,135 1207,000 1207,000 Npl,Rd Nu,Rd Nu,Rd Nc,T Ncr,TF An/Ag 1207,000 1248,480 3855,091 3855,091 1,000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minor (z=2) c 0,490 732,325 1,284 1,590 0,396 477,637 Minor (z=2) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mn,Rd Mn,Rd Moment Moment Capacity Capacity Capacity Capacity Capacity Minor (z=2) 0,000 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mn,Rd Mn,Rd Moment Moment Capacity Capacity Capacity Capacity Capacity Major (y-y) -11,136 -11,136 58,575 58,575 53,700 54,705 Minor (z=2) 0,000 0,000 28,755 28,755 53,700 54,705 Minor (z=2) 0,000 0,000 28,755 28,755 53,700 54,705 Minor (z=2) 0,000 0,000 28,755 28,755 53,700 267,487 LTB a 0,210 0,468 0,638 0,934 2,700 267,487 Extends 0,458 0,994 0,667 1,657	rame: 92 ength: 3,000 oc: 3,000	X Mid: 6,250 Y Mid: 0,000 Z Mid: 14,625	Shape	: DSTL6 : HE120B : Class 1	Design Ty Frame Typ Rolled :	e: DCH-MR	
n/Ag=1,00 RLLF=1,000 PLLF=0,750 D/C Lim=0,950 eff=0,003 eNy=0,000 eNz=0,000 =0,003 Iy=8,640E-06 iyy=0,050 Wel,yy=1,440E-04 Weff,yy=1,440E-05 t=0,000 Izz=3,180E-06 izy=0,031 Wel,zz=5,300E-05 Weff,zz=5,300E-05 =210000000,0 fy=355000,000 fu=510000,000 Wpl,zz=8,100E-05 Av,y=0,003 =210000000,0 fy=355000,000 fu=510000,000 Wpl,zz=8,100E-05 Av,y=0,003 TRESS CHECK FORCES 6 MOMENTS Location Ned Med,yy Med,zz Ved,z Ved,y Ted 3,000 -224,135 -11,136 0,000 6,943 0,000 0,000 MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,609 = 0,469 + 0,140 + 0,000 < 0,950 ENEd/(Chi_z NRK/GammaMl) + kzy (My,Ed+NEd eNy) / (Chi_LT My,Rk/GammaMh + kzz (Mz,Ed+NEd eNz) / (Mz,Rk/GammaMl) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Ned Nc, Rd Nt, Rd Force Capacity Capacity Axial -224,135 1207,000 1207,000 Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 1207,000 1248,480 8855,091 3855,091 1,000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minors (z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med, Span Mc,Rd Mv,Rd Mv,Rd Mv,Rd Mn,Rd Mn,Rd Moment Moment Capacity Capac							-
=0,003					D/C Lim=0,950		
Location Ned Med,yy Med,zz Ved,z Ved,y Ted 3,000 -224,135 -11,136 0,000 6,943 0,000 0,000 0,000 MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,609 = 0,469 + 0,140 + 0,000 < 0,950 = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM. + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaM1) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Nt,Rd Force Capacity Capacity Axial -224,135 1207,000 1207,000 Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 1207,000 1248,480 3855,091 3855,091 1,000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minor (z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mv,Rd Mn,Rd Moment Moment Capacity Capacity Capacity Capacity Capacity Major (y-y) -11,136 -11,136 58,575 58,575 53,700 54,705 Minor (z-z) 0,000 0,000 28,755 28,755 Curve AlphaLT LambdaBarLT PhiLT ChiLT Ci Mcr LTB a 0,210 0,468 0,638 0,934 2,700 267,487 EVALUATE COLUMN AND CARRES OF TORSION NOT COLUMN AND CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION OF CARRES OF CARRES OF TORSION OF CARRES OF TORSION OF CARRES OF CARRES OF TORSION OF CARRES OF CA	=0,003 t=0,000 w=0,000	Iyy=8,640E-06 Izz=3,180E-06 Iyz=0,000	iyy=0 izz=0 h=0,1	,050 ,031 20	Wel, zz=5,300E-0 Wpl, yy=1,650E-0	5 Weff 4 Av,z	,zz=5,300E-05 =0,003
Location Ned Med,yy Med,zz Ved,z Ved,y Ted 3,000 -224,135 -11,136 0,000 6,943 0,000 0,000 0,000 MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,609 = 0,469 + 0,140 + 0,000 < 0,950 = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM. + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaM1) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Nt,Rd Force Capacity Capacity Axial -224,135 1207,000 1207,000 Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 1207,000 1248,480 3855,091 3855,091 1,000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minor (z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mv,Rd Mn,Rd Moment Moment Capacity Capacity Capacity Capacity Capacity Major (y-y) -11,136 -11,136 58,575 58,575 53,700 54,705 Minor (z-z) 0,000 0,000 28,755 28,755 Curve AlphaLT LambdaBarLT PhiLT ChiLT Ci Mcr LTB a 0,210 0,468 0,638 0,934 2,700 267,487 EVALUATE COLUMN AND CARRES OF TORSION NOT COLUMN AND CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION NOT CARRES OF TORSION OF CARRES OF CARRES OF TORSION OF CARRES OF TORSION OF CARRES OF CARRES OF TORSION OF CARRES OF CA	TRESS CHECK FOR	RCES & MOMENTS					
MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,609 = 0,469 + 0,140 + 0,000 < 0,950 = NEd/(Chi z NRk/GammaM1) + kzy (My, Ed+NEd eNy)/(Chi LT My, Rk/GammaM + kzz (Mz, Ed+NEd eNz)/(Mz, Rk/GammaM1) (EC3 6.3.3 (4)-6.62) XIAL FORCE DESIGN Ned Nc, Rd Nt, Rd Capacity Axial -224,135 1207,000 1207,000							
Ned	D/C Ratio:	0,609 = 0,469 = NEd/(C + kz	+ 0,140 + hi_z NRk/G	0,000 < ammaM1) + kz	0,950 y (My,Ed+NEd eNy)/(Chi_LT	
Np1,Rd	AIAL FORCE DESI	Ned					
Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 MajorB(y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minor (z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 MinorB(z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mn,Rd Mb,Rd Capacity Capacity Capacity Capacity Major (y-y) -11,136 -11,136 58,575 58,575 53,700 54,705 Minor (z-z) 0,000 0,000 28,755 28,755 28,755 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,468 0,638 0,934 2,700 267,487 HEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 0K 0,000 Minor (y) 0,000 566,302 0,000 0K 0,000 Vp1,Rd Eta LambdabarW	Axial		4				
Major (y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 MajorB(y-y) b 0,340 1989,712 0,779 0,902 0,737 890,047 Minor (z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 MinorB(z-z) c 0,490 732,325 1,284 1,590 0,396 477,637 Torsional TF c 0,490 3855,091 0,560 0,745 0,809 976,578 OMENT DESIGN Med Med, span Mc, Rd Mv, Rd Mn, Rd Mb, Rd Moment Moment Capacity Capacity Capacity Capacity Major (y-y) -11,136 -11,136 58,575 58,575 53,700 54,705 Minor (z-z) 0,000 0,000 28,755 28,755 28,755 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,468 0,638 0,934 2,700 267,487 Kyy kyz kzy kzz Factors 0,458 0,994 0,687 1,657 HEAR DESIGN Ved Vc, Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 0K 0,000 Minor (y) 0,000 566,302 0,000 0K 0,000 Vpl, Rd Eta LambdabarW			,				
Med Med Med Moment Capacity Capa	Major (y-y) MajorB(y-y) Minor (z-z)	b 0,340 b 0,340 c 0,490	1989,712 1989,712 732,325	0,779 0,779 1,284	0,902 0,902 1,590	0,737 0,737 0,396	890,047 890,047 477,637
Moment Moment Capacity Capacity Capacity Capacity Capacity Say, 575 Sa							
Major (y-y) -11,136 -11,136	OMENT DESIGN	Med	Med, span	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd
LTB a 0,210 0,468 0,638 0,934 2,700 267,487 kyy kyz kzy kzz Factors 0,458 0,994 0,687 1,657 HEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 OK 0,000 Minor (y) 0,000 566,302 0,000 OK 0,000 Vpl,Rd Eta LambdabarW		-11,136	-11,136	58 , 575	58,575	53,700	
Factors 0,458 0,994 0,687 1,657 HEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 OK 0,000 Minor (y) 0,000 566,302 0,000 OK 0,000 Vpl,Rd Eta LambdabarW							
Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 OK 0,000 Minor (y) 0,000 566,302 0,000 OK 0,000 Vpl,Rd Eta LambdabarW	Factors						
Force Capacity Ratio Check Torsion Major (z) 6,943 224,533 0,031 OK 0,000 Minor (y) 0,000 566,302 0,000 OK 0,000 Vpl,Rd Eta LambdabarW	HEAR DESIGN	77. 3	17. D.I	Q.b	Obstant	m - 1	
		Force 6,943	Capacity 224,533	Ratio 0,031	Check OK	Torsion 0,000	
	Reduction						

SAP2000 v16.0.0 - File:C:\Users\raul\Desktop\Anteproyecto_naveSAP\portico3

junio 25, 2014 2:06

SAP2000 Steel Design

Project_Terminal de Graneles Sólidos Puerto Exterior de A Coruña

Job Number

Engineer Raúl Espasandín Lacalle

Frame : 93 Length: 6,880	X Mid: 3,125 Y Mid: 0,000	Combo Shape	: DSTL6 : HE100B	Design Ty Frame Typ Rolled :	pe: Brace be: DCH-MR	F
Loc : 6,880	Z Mid: 14,56	3 Class	: Class 1	Rolled:	Yes	-
Country=CEN Defa Interaction=Meth			nation=Eq. 6 Response=Env	.10 elopes		ability=Class 2 lta Done? No
GammaM0=1,00 An/Ag=1,00			M2=1,25 0,750	D/C Lim=0,950		
Aeff=0,003 A=0,003 Et=0,000 Ew=0,000 E=210000000,0	eNy=0,000 Iyy=4,500E-0 Izz=1,670E-0 Iyz=0,000 fy=355000,00	eNz=0 6 iyy=0 6 izz=0 h=0,1 0 fu=51	,000 ,042 ,025 00 0000,000	Wel, yy=9,000E-0 Wel, zz=3,340E-0 Wpl, yy=1,040E-0 Wpl, zz=5,140E-0	05 Weff 05 Weff 04 Av,z 05 Av,y	, yy=9,000E-05 , zz=3,340E-05 =0,002 =9,000E-04
STRESS CHECK FOR						
Location 6,880	Ned 503,540	, , , ,	Med,zz 0,000	Ved,z 0,752	Ved,y 0,000	Ted 0,000
PMM DEMAND/CAPAC D/C Ratio:	0,546 = 0,546	<	puation EC3 6 0,950 (EC3 6.2.9.1	OK		
AXIAL FORCE DESI	Ned	Nc,Rd	Nt,Rd			
Axial	Force 503,540	Capacity	Capacity 923,000			
	Npl,Rd 923,000	Nu,Rd 954,720	Ncr,T 3237,933	Ncr,TF 3237,933	An/Ag 1,000	
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z)	b 0,340 b 0,340 c 0,490 c 0,490	Ncr 197,066 197,066 73,133 73,133	LambdaBar 2,164 2,164 3,553 3,553	Phi 3,176 3,176 7,632 7,632	0,070	64,159
Torsional TE	c 0,490	3237,933	0,534	7,632 0,724	0,824	760,402
MOMENT DESIGN	Med	Med, span	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd
Major (y-y) Minor (z-z)	Moment -0,883	Moment -1,519	Capacity 36,920	Capacity C 36,920	Capacity	Capacity 29,541
LTB	Curve AlphaLT L a 0,210			ChiLT 0,800	C1 2,482	Mcr 58,832
Factors	kyy 1,000	kyz 0,600	kzy 1,000	kzz 1,000		
SHEAR DESIGN	77. 1	77. D.1	01	Q b a b a a	m - 1	
Major (z) Minor (y)	Ved Force 0,752 0,000	Vc,Rd Capacity 184,463 434,514	Stress Ratio 0,004 0,000	Status Check OK OK	Ted Torsion 0,000 0,000	
Reduction	Vpl,Rd 184,463		LambdabarW 0,190			
BRACE MAXIMUM AX						
	P Comp					
Axial	N/C	503,540				

SAP2000 v16.0.0 - File:C:\Users\raul\Desktop\Anteproyecto_naveSAP\portico3

junio 25, 2014 2:06

SAP2000 Steel Design

Project_Terminal de Graneles Sólidos Puerto Exterior de A Coruña

Job Numbe

Engineer Raúl Espasandín Lacalle

				Design Frame ' Rolled	: Yes	
	(nation=Eq. 6 Response=Env	5.10 relopes		ability=Class 2
	GammaM1=1,00 RLLF=1,000		M2=1,25 0,750	D/C Lim=0,950	0	
A=0,008 Et=0,000	eNy=0,000 Iyy=5,696E-05 Izz=2,003E-05 Iyz=0,000 fy=355000,000	izz=0 h=0.2	,085 ,051 00	Wel, yy=5,6961 Wel, zz=2,0031 Wpl, yy=6,4301 Wpl,zz=3,0601	E-04 Weff E-04 Av.z	z=2,003E-04 =0,006
TRESS CHECK FORCE Location 1,250	Ned -1395,154	Med,yy 3,707		Ved, z -10,448		Ted 0,000
D/C Ratio: (0,922 = 0,807 = NEd/(C	+ 0,115 + hi_y NRk/G	0,000 < ammaM1) + ky	0,950	OK eNy)/(Chi_LT	' My,Rk/GammaM1) 3(4)-6.61)
AXIAL FORCE DESIGN	1					
Axial	Ned Force -1395,154	Capacity	Capacity			
	Npl,Rd 2772,550	Nu,Rd 2867,832		Ncr,TF 13190,122		
Cur Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	c 0,490 c 0,490	3021,032 3021,032 9561,120 9561,120	LambdaBar 0,958 0,958 0,538 0,538 0,458	1,088 1,088 0,728 0,728	0,624 0,821 0,821	1729,690 1729,690 2276,857 2276,857
MOMENT DESIGN						
Major (y-y) Minor (z-z)	Med Moment 3,707 0,000	Med, span Moment 17,221 0,000	Mc,Rd Capacity 228,265 108,630	Mv,Rd Capacity 228,265 108,630	Mn,Rd Capacity 128,264 95,068	Mb,Rd Capacity 215,713
	rve AlphaLT La a 0,210			ChiLT 0,945		Mcr 1240,811
Factors	kyy 1,444	kyz 0,775	kzy 0,949	kzz 1,292		
Major (z) Minor (y)	Ved Force 10,448 0,000	Vc,Rd Capacity 509,324 1287,144	Stress Ratio 0,021 0,000	Status Check OK OK	Ted Torsion 0,000 0,000	
Reduction	Vpl,Rd 509,324	Eta 1,200	LambdabarW 0,269			

SAP2000 v16.0.0 - File:C:\Users\raul\Desktop\Anteproyecto_naveSAP\portico3

junio 25, 2014 2:05

SAP2000 Steel Design

Project Terminal de Graneles Sólidos Puerto Exterior de A Coruña

Job Number

Engineer_Raúl Espasandín Lacalle

Frame : 3 Length: 6,251 Loc : 0,000	X Mid: 3,125 Y Mid: 0,000 Z Mid: 13,063			Design T Frame Typ Rolled :		≷ RF
Country=CEN Defa Interaction=Meth	ult od 2 (Annex B)	Combi Multi	nation=Eq. 6 Response=Env	o.10 relopes	Reli P-De	ability=Class 2 elta Done? No
GammaM0=1,00 An/Ag=1,00	GammaM1=1,00 RLLF=1,000		M2=1,25 0,750	D/C Lim=0,950		
Aeff=0,008 A=0,008 It=0,000 Iw=0,000 E=210000000,0	eNy=0,000 Iyy=5,696E-05 Izz=2,003E-05 Iyz=0,000 fy=355000,000	eNz=0 iyy=0 izz=0 h=0,2 fu=51	,000 ,085 ,051 00 0000,000	Wel, yy=5, 696E-0 Wel, zz=2,003E-0 Wpl, yy=6,430E-0 Wpl, zz=3,060E-0	04 Weff 04 Weff 04 Av,z 04 Av,y	F, yy=5, 696E-04 F, zz=2,003E-04 E-0,006 y=0,002
STRESS CHECK FOR Location 0,000		Med, yy -50,230	Med,zz 0,000	Ved, z -13,170	Ved,y 0,000	Ted 0,000
PMM DEMAND/CAPAC D/C Ratio:	0,509 = 0,306 = NEd/(C	+ 0,203 + hi_z NRk/G	0,000 < ammaM1) + kz			
AXIAL FORCE DESI	Ned		Capacity			
				Ncr,TF 5813,518	An/Ag 1,000	
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	b 0,340 b 0,340 c 0,490 c 0,490 c 0,490	Ncr 3021,032 3021,032 1062,347 1062,347 5813,518	LambdaBar 0,958 0,958 1,615 1,615 0,691	Phi 1,088 1,088 2,152 2,152 0,859	0,624	1729,690 1729,690 775,973 775,973
MOMENT DESIGN						
Major (y-y) Minor (z-z)	Med Moment -50,230 0,000	Med, span Moment -50,230 0,000	Capacity	Mv,Rd Capacity (228,265 108,630	Capacity	Mb,Rd Capacity 199,597
LTB	urve AlphaLT La a 0,210				C1 2,263	
Factors	kyy 0,450	kyz 0,857	kzy 0,806	kzz 1,428		
Major (z) Minor (y)	Ved Force 13,170 0,000	Vc,Rd Capacity 509,324 1287,144	Ratio	Status Check OK OK	Ted Torsion 0,000 0,000	
Reduction	Vpl,Rd 509,324		LambdabarW 0,269			
BRACE MAXIMUM AX	IAL LOADS	P				
Axial	Comp -237,259	Tens N/C				

SAP2000 Steel Design

Project Terminal de Graneles Sólidos Puerto Exterior de A Coruña

Job Numb

Engineer Raúl Espasandín Lacalle

### DEMAND/CAPACITY RATIO Governing Equation EC3 6.3.3(4)-6.62) #### DEMAND/CAPACITY RATIO Governing Equation EC3 6.3.3(4)-6.62) #### Axial Ned No. Rd No. Rd No. Rd No. Rd Force Capacity	nits : KN, m, (X Mid: 0.000	Combo	: DSTL6	Design	Type: Colum	ın
### A Process Company MultiResponse=Envelopes	ength: 4,000 oc : 2,000	Y Mid: 0,000 Z Mid: 11,00	Shape O Class	: HE400A : Class 1	Frame T Rolled	ype: DCH-MF : Yes	RF
### PAGE DO PLLF=0,750 D/C Lim=0,950			Combi Multi	nation=Eq. 6 Response=Env	0.10 relopes		
Location 2,000					D/C Lim=0,950		
MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,506 = 0,060 + 0,446 + 0,000 < 0,950 OK = NEd/(Chi_z NRk/GammaMI) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaMI) + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaMI) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Nor, Rd Force Capacity Capacity Axial -262,589 5644,500 5644,500 Npl,Rd Nu,Rd Nc,Rt Nc,T Nor,TF An/Ag 5644,500 5838,480 15937,975 15937,975 1,000 Curve Alpha Major (y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 MajorB(y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 Minor (z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 11933,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 15937,975 0,595 0,744 0,840 4738,593 DOMENT DESIGN Med Med, span Mc,Rd Mv,Rd Mn,Rd Mn,Rd Mb,Rd Moment Moment Capacity Capacity Capacity Major (y-y) 134,657 394,111 909,510 909,510 909,510 867,534 Minor (z-z) 0,000 0,000 309,915 309,915 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,396 0,599 0,954 2,375 5801,271 kyy kyz kzy kzy kzz Factors 0,476 0,630 0,981 1,050 HEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 0K 0,000 Vp1,Rd Eta LambdabarW	eff=0,016 =0,016 t=1,930E-06 w=2,947E-06 =210000000,0	eNy=0,000 Iyy=4,507E-0 Izz=8,564E-0 Iyz=0,000 fy=355000,00	eNz=0 4 iyy=0 5 izz=0 h=0,3 0 fu=51	,000 ,168 ,073 90 0000,000	Wel, yy=0,002 Wel, zz=5,709E Wpl, yy=0,003 Wpl, zz=8,730E	Weff -04 Weff Av,z -04 Av,y	F, yy=0,002 F, zz=5,709E-04 E=0,012 F=0,006
MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,506 = 0,060 + 0,446 + 0,000 < 0,950 OK = NEd/(Chi_z NRk/GammaMI) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaMI) + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaMI) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity Axial -262,589 5644,500 5644,500 Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 5644,500 5838,480 15937,975 15937,975 1,000 Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 Minor (z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 15937,975 0,595 0,744 0,840 4738,593 OMENT DESIGN Med Med,span Mc,Rd Mv,Rd Mv,Rd Mn,Rd Mb,Rd Moment Moment Capacity Capacity Capacity Capacity Major (y-y) 134,657 394,111 909,510 909,510 909,510 867,534 Minor (z-z) 0,000 0,000 309,915 309,915 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB A0,210 Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 0K 0,000 Wpl,Rd Eta LambdabarW							
MM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,506 = 0,060 + 0,446 + 0,000 < 0,950 OK = NEd/(Chi z NRk/GammaMI) + kzy (My,Ed+NEd eNy)/(Chi LT My,Rk/GammaMI) + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaMI) (EC3 6.3.3(4)-6.62) XIAL FORCE DESIGN Nor, Rd Axial -262,589 5644,500 5644,500 Npl,Rd Nu,Rd Nc,Rt S644,500 5838,480 15937,975 15937,975 1,000 Curve Alpha Major (y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 Minor (z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 15937,975 0,595 0,744 0,840 4738,593 DOMENT DESIGN Med Med, span Mc,Rd My,Rd My,Rd Mn,Rd Mb,Rd Moment Moment Capacity Capacity Capacity Capacity Minor (z-z) 0,000 0,000 0,000 0,991 1,050 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,396 0,599 0,954 2,375 5801,271 kyy kyz kzy kzy kzz Factors 0,476 0,630 0,981 1,050 WHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 0K 0,000 Vpl,Rd Eta LambdabarW		Ned -262,589	Med,yy 134,657	Med,zz 0,000	Ved,z -129,727	Ved,y 0,000	Ted 0,000
No.		= NEd/(0 + k	Chi_z NRk/G	ammaM1) + kz	y (My,Ed+NEd e	Ny)/(Chi_LT	
Curve Alpha Ncr LambdaBar Phi Chi Nb,Rd Major (y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 MajorB(y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 Minor (z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 MinorB(z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 15937,975 0,595 0,744 0,840 4738,593 **MOMENT DESIGN** Med Med,span Mc,Rd Mv,Rd Mn,Rd Mb,Rd Moment Moment Capacity Capacity Capacity Capacity Major (y-y) 134,657 394,111 909,510 909,510 909,510 867,534 Minor (z-z) 0,000 0,000 309,915 309,915 309,915 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,396 0,599 0,954 2,375 5801,271 **Exercise Region Notes Steeper Region Notes Ste	Axial	Force	Capacity	Capacity			
Major (y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 MajorB(y-y) a 0,210 58383,028 0,311 0,560 0,975 5502,960 Minor (z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 MinorB(z-z) b 0,340 11093,682 0,713 0,842 0,776 4380,938 Torsional TF b 0,340 15937,975 0,595 0,744 0,840 4738,593 **MOMENT DESIGN** Med		Npl,Rd 5644,500	Nu,Rd 5838,480	Ncr,T 15937,975	Ncr,TF 15937,975	An/Ag 1,000	
Med Med, span Mc, Rd Mv, Rd Mn, Rd Moment Capacity	Major (y-y)	a 0,210	58383,028 58383.028	0,311	0,560 0.560	0,975 0.975	5502,960 5502,960
Major (y-y) 134,657 394,111 909,510 909,510 909,510 867,534 Minor (z-z) 0,000 0,000 309,915 309,915 309,915 Curve AlphaLT LambdaBarLT PhiLT ChiLT C1 Mcr LTB a 0,210 0,396 0,599 0,954 2,375 5801,271 kyy kyz kzy kzz Factors 0,476 0,630 0,981 1,050 SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 OK 0,000 Minor (y) 0,000 2465,250 0,000 OK 0,000 Vpl,Rd Eta LambdabarW							
LTB a 0,210 0,396 0,599 0,954 2,375 5801,271 kyy kyz kzy kzz Factors 0,476 0,630 0,981 1,050 SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 OK 0,000 Minor (y) 0,000 2465,250 0,000 OK 0,000 Vpl,Rd Eta LambdabarW		Moment	Med, span Moment 394,111 0,000	Mc,Rd Capacity 909,510 309,915	Mv,Rd Capacity 909,510 309,915	Mn,Rd Capacity 909,510 309,915	Mb,Rd Capacity 867,534
Factors 0,476 0,630 0,981 1,050 SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 OK 0,000 Minor (y) 0,000 2465,250 0,000 OK 0,000 Vpl,Rd Eta LambdabarW		arve AlphaLT L	ambdaBarLT 0,396		ChiLT 0,954		
Ved Vc,Rd Stress Status Ted Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 OK 0,000 Minor (y) 0,000 2465,250 0,000 OK 0,000 Vpl,Rd Eta LambdabarW	Factors						
Force Capacity Ratio Check Torsion Major (z) 129,727 1175,441 0,110 OK 0,000 Minor (y) 0,000 2465,250 0,000 OK 0,000 Vpl,Rd Eta LambdabarW	HEAR DESIGN	Ved	Vc,Rd	Stress	Status	Ted	
	2	129,727	1175,441	0,110	OK	0,000	
	Reduction						

SAP2000 v16.0.0 - File:C:\Users\raul\Desktop\Anteproyecto_naveSAP\portico3

junio 25, 2014 2:04

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº7 JUSTIFICACIÓN DE PRECIOS

ANEJO N°7 JUSTIFICACIÓN DE PRECIOS

- 1. INTRODUCCIÓN
- 2. PRECIO UNIDADES DE OBRA PRINCIPALES

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº7 JUSTIFICACIÓN DE PRECIOS

1. INTRODUCCIÓN

En este anejo se exponen los precios de las unidades de obra más importantes que se utilizan en la estimación del presupuesto. El objetivo del mismo es justificar la elección de los precios utilizados en el Documento III, pero en ningún caso pretende una definición formal y exacta de los mismos.

2. PRECIO UNIDADES DE OBRA PRINCIPALES

ADE010	m³	Excavación de za	njas y pozos.			€			
Excavación en zanjas para cimentaciones en suelo de arcilla blanda, con medios mecánicos, retirada de los materiales excavados y carga a camión.									
Descom	puesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida			
mq01ret0 20b		h	Retrocargadora sobre neumáticos, de 70 kW.	0.298	32.14	9.58			
mo111		h	Peón ordinario construcción.	0.178	15.14	2.69			
		%	Medios auxiliares	2.000	12.27	0.25			
		%	Costes indirectos	3.000	12.52	0.38			
					Total:	12.90			

ADD010	m³	Desmonte.			€
Desmonte	en tierra,	con empleo de m	edios mecánicos	S .	
Descomp uesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mq01pan 010a	h	Pala cargadora sobre neumáticos de 120 kW/1,9 m³.	0.042	40.13	1.69
mo111	h	Peón ordinario construcción.	0.008	15.92	0.13
	%	Medios auxiliares	2.000	1.82	0.04
	%	Costes indirectos	3.000	1.86	0.06
				Total:	1.92

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°7 JUSTIFICACIÓN DE PRECIOS

ADP010	m³	Terraplenado.			€
erraplenado y compa náxima obtenida en e		miento de terraplén con material seleccionado , hasta alcan or Modificado.	nzar una densio	dad seca no inferior a	al 95% de la
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt01art030a	m³	Material seleccionado de aportación, para formación de terraplenes, según el art. 330.3.3.1 del PG-3.	1.150	9.68	11.13
mq01pan010a	h	Pala cargadora sobre neumáticos de 120 kW/1,9 m³.	0.030	40.13	1.20
mq04cab010b	h	Camión basculante de 10 t de carga, de 147 CV.	0.045	32.90	1.48
mq01mot010a	h	Motoniveladora de 141 kW.	0.010	67.62	0.68
mq02rov010i	h	Compactador monocilíndrico vibrante autopropulsado, de 129 kW, de 16,2 t, anchura de trabajo 213,4 cm.	0.037	62.20	2.30
mq02cia020j	h	Camión cisterna de 8 m³ de capacidad.	0.020	40.02	0.80
mo111	h	Peón ordinario construcción.	0.070	15.92	1.11
	%	Medios auxiliares	2.000	18.70	0.37
	%	Costes indirectos	3.000	19.07	0.57
				Total:	19.64

CSV010		m³	Zapata corrid	nigón armado.	€	
Zapata corrida de cimentación, de l	hormigón armado, realizada co	on hormigón HA-30/B/20/IIIb fabricado e	n central con cemento MR, y vertid	o con bomba, y acero UNE-EN 10	0080 B 500 SD, cuantía 87 kg/m³.	
Descompuesto	Ud	Descomposición		Rend.	Precio unitario	Precio partida
mt07aco020a	Ud	Separador homologad	lo para cimentaciones.	7.000	0.11	0.77
mt07aco010d	kg	Acero en barras corrugadas elaborado en taller indu		87.000	0.88	76.56
mt10haf010Cne	m³	Hormigón HA-30/B/20/IIIb cemen	o, fabricado en central, con to MR.	1.100	95.32	104.85
mq06bhe010	h	Camión bomba estacionad hormigón. Incluso p/	o en obra, para bombeo de o de desplazamiento.	0.039	156.40	6.10
mo041	h	Oficial 1ª es	structurista.	0.230	17.15	3.94
mo087	h	Ayudante e	structurista.	0.230	16.43	3.78
	%	Medios auxiliares		2.000	196.00	3.92
	%	Costes indirectos		3.000	199.92	6.00
		•			Total:	205.92

€

3.85

5.88

201.99

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO Nº7 JUSTIFICACIÓN DE PRECIOS

EHM010

m³

%

%

EAS010	kg	Acero en pilares.			€			
Acero S355JR en pilares, con piezas simples de perfiles laminados en caliente de las series IPN, IPE, UPN, HEA, HEB o HEM con uniones soldadas.								
Descompuest o	Ud	Descomposición	Rend.	Precio unitario	Precio partida			
mt07ala010o	kg	Acero laminado UNE-EN 10025 S355JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.	1.050	1.03	1.08			
mt27pfi010	I	Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.	0.050	4.80	0.24			
mq08sol020	h	Equipo y elementos auxiliares para soldadura eléctrica.	0.015	3.09	0.05			
mo046	h	Oficial 1ª montador de estructura metálica.	0.020	18.10	0.36			
mo092	h	Ayudante montador de estructura metálica.	0.020	16.94	0.34			
	%	Medios auxiliares	2.000	2.07	0.04			
	%	Costes indirectos	3.000	2.11	0.06			
				Total:	2.17			

central, y verti	do con l	ado 2C, espesor 100 cm, realizado con bomba, y acero UNE-EN 10080 B 500 netálico, con acabado tipo industrial	SD , 20 kg/l	m³; montaje y d	
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt07aco020d	Ud	Separador homologado para muros.	8.000	0.06	0.48
mt07aco010d	kg	Acero en barras corrugadas, UNE-EN 10080 B 500 SD, elaborado en taller industrial, diámetros varios.	20.000	1.02	20.40
mt08eme030d	m²	Sistema de encofrado a dos caras, para muros, formado por paneles metálicos modulares, hasta 6 m de altura, incluso p/p de elementos para paso de instalaciones.	3.040	18.00	54.72
mt10haf010Bn a	m³	Hormigón HA-30/B/20/Illa, fabricado en central.	1.050	85.05	89.30
mq06bhe010	h	Camión bomba estacionado en obra, para bombeo de hormigón. Incluso p/p de desplazamiento.	0.040	98.78	3.95
mo041	h	Oficial 1ª estructurista.	0.668	18.10	12.09
mo087	h	Ayudante estructurista.	0.668	16.94	11.32

Muro de hormigón.

Medios auxiliares

Costes indirectos

2.000

3.000

192.26

196.11

Total:

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°7 JUSTIFICACIÓN DE PRECIOS

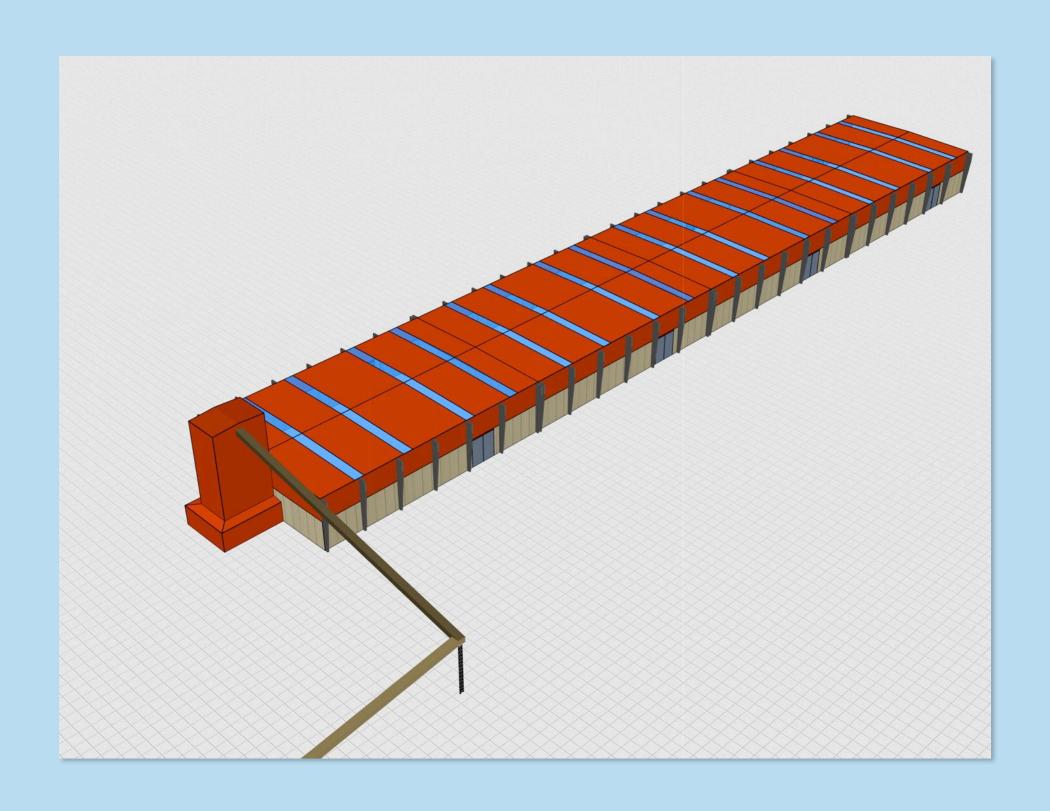
FLA010	m²	Fachada simple de panel de chapa perfilada de acero.			€
rramiento de fachada formado	por paneles de chapa	perfilada nervada de acero S320 GD galvanizado de 0,8 mm espesor y 30 mm altura	a de cresta.		,
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt13ccg100d	m²	Chapa perfilada nervada de acero UNE-EN 10346 S320 GD galvanizado de 0,8 mm espesor y 30 mm altura de cresta.	1.050	6.28	6.59
mt13ccg020e	m²	Remate lateral de acero galvanizado, espesor 0,8 mm, desarrollo 500 mm.	0.340	3.92	1.33
mt13ccg030d	Ud	Tornillo autorroscante de 6,5x70 mm de acero inoxidable, con arandela.	1.500	0.44	0.66
mt13ccg040	m	Junta de estanqueidad para chapas de acero.	0.420	0.79	0.33
mt13ccg030f	Ud	Tornillo autorroscante de 4,2x13 mm de acero inoxidable, con arandela.	2.050	0.04	0.08
mq08sol020	h	Equipo y elementos auxiliares para soldadura eléctrica.	0.095	2.80	0.27
mo050	h	Oficial 1ª montador de cerramientos industriales.	0.277	16.87	4.67
mo096	h	Ayudante montador de cerramientos industriales.	0.277	15.65	4.34
	%	Medios auxiliares	2.000	18.27	0.37
	%	Costes indirectos	3.000	18.64	0.56
				Total:	19.20

QLL010	m²	Lucernario de placas translúcidas.							
Lucernario a un agua con una luz máxima menor de 3 m revestido con placas alveolares de policarbonato celular incolora y 6 mm de espesor.									
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida				
mt21lpc010a	m²	Placa alveolar translúcida, de policarbonato celular, espesor 6 mm, incolora.	1.050	22.16	23.27				
mt21lpc020	m	Perfilería universal de aluminio, con gomas de neopreno, para cierres de juntas entre placas de policarbonato celular en lucernarios.	2.000	12.20	24.40				
mt21lpc030	Ud	Material auxiliar para montaje de placas de policarbonato celular en lucernarios.	1.500	1.35	2.03				
mo010	h	Oficial 1ª montador.	1.000	17.82	17.82				
mo078	h	Ayudante montador.	1.000	16.13	16.13				
	%	Medios auxiliares	2.000	225.08	4.50				
	%	Costes indirectos	3.000	229.58	6.89				
	-			Total:	95.04				

DOCUMENTO I MEMORIA JUSTIFICATIVA ANEJO N°7 JUSTIFICACIÓN DE PRECIOS

UFR010	m²	Firme rígido.			€
Firme rígido para	ráfico pe	esado T32 sobre explanada E2, compuesto de capa granular de 20 cm de espesor de zahorra artificial ZA25 y capa de 23 cn	n de espesor de l	HF-3,5.	
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt01zah020H	t	Zahorra artificial ZA25, coeficiente de Los Ángeles <35, adecuada para tráfico T32, según PG-3.	0.440	7.84	3.45
mt10hfc010c	m³	Hormigón HF-3,5, resistencia a flexotracción a veintiocho días (28 d) de 3,5 MPa, con cemento de clase resistente 32,5 N, dosificación de cemento >= 300 kg/m³ de hormigón fresco, relación ponderal de agua/cemento (a/c) <= 0,46, tamaño máximo del árido grueso < 40 mm, coeficiente de Los Ángeles del árido grueso < 35, fabricado en central, según PG-3.	0.230	92.72	21.33
mt47acp030a	kg	Barras de unión de acero B 500 S UNE 36068, de 12 mm de diámetro y 80 cm de longitud, para juntas longitudinales en pavimentos de hormigón.	0.211	0.91	0.19
mt47acp040a	m	Cordón sintético y masilla bicomponente de alquitrán, para sellado de juntas en pavimentos de hormigón.	0.397	3.32	1.32
mt15cph010a	kg	Pintura filmógena, para protección y curado del hormigón fresco.	0.250	3.38	0.85
mq04tkt010	t∙km	Transporte de áridos.	6.648	0.10	0.66
mq04cab010d	h	Camión basculante de 14 t de carga, de 184 CV.	0.004	39.06	0.16
mq01mot010b	h	Motoniveladora de 154 kW.	0.004	74.71	0.30
mq02rov010i	h	Compactador monocilíndrico vibrante autopropulsado, de 129 kW, de 16,2 t, anchura de trabajo 213,4 cm.	0.004	62.20	0.25
mq04tkt030	m³·km	Transporte de hormigón.	13.900	0.26	3.61
mq11phc010	h	Pavimentadora de encofrados deslizantes, con equipo de inserción de pasadores, barras de unión, tendido, vibrado, enrasado y fratasado de pavimentos de hormigón.	0.006	329.07	1.97
mq11phc020	h	Texturador/ranurador de pavimentos de hormigón.	0.002	20.97	0.04
mq11phc030	h	Pulverizador de producto filmógeno para curado de pavimentos de hormigón.	0.002	17.97	0.04
mq06cor020	h	Equipo para corte de juntas en soleras de hormigón.	0.398	9.48	3.77
mo040	h	Oficial 1ª construcción de obra civil.	0.020	17.24	0.34
mo085	h	Ayudante construcción de obra civil.	0.018	16.13	0.29
	%	Medios auxiliares	2.000	38.57	0.77
	%	Costes indirectos	3.000	39.34	1.18
	-			Total:	40.52

ANEJO N°7 JUSTIFICACIÓN DE PRECIOS


DOCUMENTO I MEMORIA JUSTIFICATIVA

IIX005	Ud	Luminaria adosada o empotrada.					
	Lumir	naria para empotrar en te	echo, de 220 mm de	diámetro	,		
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida		
mt34beg045a	Ud	Luminaria para empotrar en techo, de 220 mm de diámetro, para 1 lámpara fluorescente compacta triple	1.000	357.95	357.95		
mt34tuf020y	Ud	Lámpara fluorescente compacta	1.000	8.64	8.64		
mt34www011	Ud	Material auxiliar para instalación de aparatos de iluminación.	1.000	0.90	0.90		
mo002	h	Oficial 1ª electricista.	0.350	17.82	6.24		
mo100	h	Ayudante electricista.	0.350	16.10	5.64		
	%	Medios auxiliares	2.000	379.37	7.59		
	%	Costes indirectos	3.000	386.96	11.61		
•				Total:	398.57		

