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Abstract 

We measured susceptibility, electron-spin resonance, magnetization and electrical 

conductivity of LiCo1−yNiyO2 powders synthesized by wet-chemistry method using 

succinic acid as chelating agent. We found unusual properties in the nickel-rich 

LiCo0.2Ni0.8O2, which shows several resonance lines as a function of the temperature in 

the range 3.5–300 K. The signal at low magnetic field is attributed to the magnetic 

domains in the nanostructured sample. The two other lines correspond to the typical 

ferromagnetic signal observed in powdered compounds. In the temperature range 120–



300 K, the unique ESR line centered at 315 mT is the paramagnetic signal with a 

gyromagnetic factor g=2.12, which is in good agreement with the presence of a high 

concentration of Ni3+ (3d7) ions. In the nickel-rich oxide, LiNi0.8Co0.2O2, the magnetic 

data are qualitatively well-described by the model proposed by Drillon and Panissod for 

a 3D ferromagnetic order. 
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1. Introduction 

With the successful development of several lithium insertion compounds, the 

commercialization of rechargeable Li–ion batteries was realized with lithiated transition-

metal oxides (LTMOs) including either LiCoO2 or LiMn2O4 cathode materials [1]. 

However, it has been shown that the use of LiCo1−yNiyO2 solid solution allowed 

subsequent electrochemical improvement due to the structural stabilization of the 

layered structure [2]. 

The crystal structure of LiCo1−yNiyO2 oxides is called the α-NaFeO2 type, which has a 

rhombohedral R3̄m symmetry. This is a modified NaCl structure in which closely 

packed triangular lattices of each kind of atom are stacked in layer order (Co1−yNiy), O, 

Li, O, and (Co1−yNiy) with ABC stacking [3]. In this structure, lithium ions occupy the 

octahedral sites between (Co1−yNiyO2)n infinite slabs formed by edge-sharing 

(Co1−yNiy)O2 octahedra as shown by the schematic representation in Fig. 1. 

 

Fig. 1.  

Schematic representation of the layered 

structure of LiCo1−yNiyO2 compound. 

 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr1


The layered structure of LiCo1−yNiyO2 oxides has raised a considerable interest 

concerning their physicochemical properties, but there is confusion regarding the main 

results published in the literature along with the various interpretations of the magnetic 

properties. As for the electronic state of the Ni ion, several models have been proposed 

to explain some particular experimental results [4], [5] and [6]. However, there is a 

general agreement to consider that the Ni3+ ions are in low-spin state with an S=1/2. 

Recently, Barra et al. [6] have shown that magnetic properties of Li1−zNi1+zO2 are 

driven by the zparameter. The compounds with high value of z are described as 

ferromagnetic Ni–O layers bridged by clusters possessing a net ferromagnetic moment. 

In this work, we report on the electronic (electrical conductivity and EPR) and magnetic 

properties of nickel-rich LiCo1−yNiyO2 (y=0.8) powders synthesized by wet-chemistry 

method using succinic acid as chelating agent [7] and [8]. To characterise the samples, 

structural properties at subsequent stages of Ni substitution in LiCo1−yNiyO2 were done 

by X-ray diffraction and by FTIR spectroscopy. We obtained a good agreement 

between magnetic and resonance data (Fig. 2). 

 

 

Fig. 2.  

XRD diagram of LiCo0.2Ni0.8O2 grown by wet-

chemistry synthesis using succinic acid. 

 

 

2. Experimental 

Single-phase LiCo1−yNiyO2 compounds were obtained by wet-chemical method. The 

sol–gel process for preparation of LiCo1−yNiyO2 oxides was similar to that described 

elsewhere [7]. Analytical pure metal acetates and carboxylic acid, namely succinic 

C4H6O4, were mixed and dissolved in distilled water to form a sol. Optimal synthetic 

conditions and the effect of molar ratio (M/A) of total metal ions (M=Li+Co+Ni) to 

carboxylic acid (A) on the physicochemical properties of LiCo1−yNiyO2 powders were 

investigated. Well-structured compounds were grown for the metal/acid ratio M/A=1:1. 
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The sol was evaporated to dryness at 80 °C to form the gel. During this process, the 

mass precursor darkened progressively as a result of oxidation of divalent cations (Ni2+, 

Co2+) to trivalent cations (Ni3+, Co3+). The so-obtained ashes were heated at 400 °C 

during 2 h, yielding brownish-black materials of submicrometer size. The powder mass 

was slightly ground and then fired at 800 °C for 2 h in air followed by a calcination in 

oxygen for 2 h to improve the crystallinity of LiCo1−yNiyO2 final products. 

X-ray powder diffraction (XRPD) patterns were obtained with a D-5000 Siemens X-ray 

diffractometer, using nickel-filtered CuKα radiation (λ=1.5406 Å). FTIR spectra were 

recorded at room temperature using an IFS113v Bruker interferometer equipped with a 

3.5-μm-thick beamsplitter, a globar source, and a DTGS/PE far-infrared detector. 

Composition of the final products was determined using a VG Plasma Quad II-S option 

induced-coupled-plasma mass-spectrometer. Elemental analysis data are summarized 

inTable 1. These results clearly indicate that LiCo1−yNiyO2 oxides synthesized by the 

succinic acid method have a composition near the nominal stoichiometry. Similar 

results were obtained by Rietveld refinement of XRPD data. 

Table 1. 

Results of the elemental analysis (ICP data) of LiCo1−yNiyO2 samples 

Nominal composition 

Experimental (succinic samples) 

 

Li Co Ni 

LiCoO2 0.99±0.02 1.00±0.03 – 

LiCo0.80Ni0.20O2 0.98±0.02 0.80±0.02 0.20±0.01 

LiCo0.60Ni0.40O2 1.01±0.02 0.63±0.01 0.41±0.01 

LiCo0.40Ni0.60O2 1.00±0.01 0.40±0.01 0.61±0.01 

LiCo0.20Ni0.80O2 1.00±0.01 0.20±0.01 0.83±0.02 

LiNiO2 1.02±0.05 – 1.03±0.05 

 

ESR measurements were performed at X-band frequencies (≈9.25 GHz) using a 

Varian ESR spectrometer and a TE102 rectangular microwave cavity, in which an ESR9 

Oxford Instrument continuous flow cryostat is inserted. This cryostat allowed 

measurements between 3.5 K and room temperature. Our powder samples were 

placed in a quartz tube which was purged with helium gas. 

 



3. Results and discussion 

3.1. Structural properties 

X-ray powder diffraction was used to identify the crystalline phase of the materials 

when powders were calcined at 800 °C (2 h in air and 2 h in oxygen). For 0≤y≤0.8 

Bragg peaks are indexed in the hexagonal crystallographic system (R3̄m space group) 

showing materials with a α-NaFeO2-type structure [2] and [3]. The hexagonal lattice 

parameters, a and c, were calculated by a least-squares refinement. The compositional 

dependence of the crystallographic parameters of LiCo1−yNiyO2 powders synthesized 

by sol–gel method using succinic acid are in good agreement with values reported in 

the literature [9] and [10]and they are characteristic features of the LiCo1−yNiyO2 solid 

solution. It is worth pointing that a high value of the c/a ratio (c/a>4.95) and a clear 

splitting of the (006)–(102) and (108)–(110) Bragg lines as well as the intensity 

ratio I(003)/I(104)>1 have been acknowledged to be an indication, as far as XRD patterns 

are concerned, of an ordered distribution of lithium and transition-metal ions in the 

structure. 

FTIR measurements were made to investigate the local environment of cations in a 

cubic close-packed oxygen array of the LiCo1−yNiyO2 lattice. Infrared modes 

correspond to vibrations involving primarily atomic motion of oxygen anions against 

their cationic neighbors [11]. Consequently, these modes are very sensitive to the 

cationic local environment in the host matrix. The FTIR absorption spectra of 

LiCo1−yNiyO2of samples synthesized via succinic acid display the high wave number 

region, at ca. 400–600 cm−1, corresponding to the broad rock-salt band, which has 

broken into several distinct components. The bands located around 600 cm−1 are 

attributed to the asymmetric stretching modes of the MO6 group, whereas bands at ca. 

400–500 cm−1 are assigned to the bending modes of the O M O bonds. The far-

infrared region, in which an isolated strong band is centered at ca. 240–260 cm−1, is 

attributed to the vibration of elongated LiO6 octahedral groups. For succinic samples, 

as Co is substituted for Ni, the peak position shift toward the low wave number side 

and the peak intensity slightly decreases due to the increase of the electronic 

conductivity in Ni-rich samples. The shift of the band position to lower frequency 

against Ni content corresponds to features of a solid solution. However, the FTIR 

spectrum does not display the presence of Ni ions in Li predominant slabs of 

LiCo0.2Ni0.8O2 samples. 

 



3.2. Magnetic properties 

The magnetization of the sample LiCo1−yNiyO2 for 0.2≤y≤0.8 was measured at room 

temperature with a vibrating sample magnetometer (VSM) and superconducting 

quantum interference device (SQUID) magnetometer. Results clearly exhibit a 

paramagnetic behavior. Fig. 3(a–b) shows the thermal variation of the magnetization 

profile of LiCo1−yNiyO2 samples synthesized by wet-chemistry using the succinic acid 

(1:1) as chelating agent for y=0.80 and y=0.75, respectively. For LiCo0.2Ni0.8O2 (Fig. 

3(a)), we clearly observed a change around 80 K in its magnetic behavior from 

ferromagnetic (or ferrimagnetic) to paramagnetic corresponding to the trivalent nickel 

ions in a low-spin configuration. In the low temperature range (4≤T≤100 K), the 

magnetization of the LiCo1−yNiyO2 samples for 0.2≤y≤0.75 still exhibits a paramagnetic 

behavior, while the sample for y=0.8 clearly exhibits a ferromagnetic behavior with 

hysteresis loop as shown in Fig. 3(a). The Curie temperature is estimated to be in the 

range 90≤Tc≤100 K. Saturating values of magnetization MS decrease with increasing 

temperature as presented in Table 2. 

 

Fig. 3.  

Temperature dependence of the 

magnetization profiles of (a) 

LiCo0.2Ni0.8O2 and (b) 

LiCo0.25Ni0.75O2 synthesized by wet-

chemistry method using succinic acid. 
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Table 2. 

Results of the saturation magnetization, Ms, for LiCo0.20Ni0.80O2 sample 

Temperature (K) Ms (emu/g) 

4 11.76 

40 11.33 

60 7.29 

100 1.06 

 

The magnetic susceptibility χm was also measured in LiCo1−yNiyO2 as a function of the 

temperature (Fig. 4). In the composition range 0.2≤y≤0.75, the linearity of the reciprocal 

susceptibility 1/χm versus temperature is typical of a Curie–Weiss paramagnetism. This 

behavior means that the magnetic moments are localized in the samples for this range 

of nickel concentration. A drastic change is observed when the degree of nickel 

substitution for Co increases in LiCo1−yNiyO2. Results show that a threshold value 

appears at y=0.8. For LiCo0.2Ni0.8O2 samples, the magnetic susceptibility diverges in 

the range 90≤T≤100 K as shown in Fig. 4(c). This behavior is characteristic of a long-

range magnetic order. The extrapolation of the linear part of the 1/χm curve gives the 

Curie temperature of Tc=95 K. This property seems to be typical for samples prepared 

by wet-chemical synthesis, since it has not been observed on similar phases obtained 

by solid-state reaction of NiO, CoO3 and Li2CoO3 followed by several thermal 

treatments [2] and [10]. 



 

Fig. 4.  

The reciprocal susceptibility 1/χm as a 

function of the temperature in 

LiCo1−yNiyO2 powders synthesized by wet-

chemistry for (a)y=0.60, (b) y=0.75, and 

(c) y=0.80. Measurements were made at 

magnetic field of 50 Oe. 

 

 

3.3. Magnetic resonance properties 

To investigate further the magnetic properties of LiCo1−yNiyO2, we have also performed 

magnetic resonance experiments. Several magnetic resonance spectra have been 

reported on LiCo1−yNiyO2; the observed signals have been attributed to 

Ni3+ paramagnetic ions [5]. However, the authors investigated electron spin resonance 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr4


(ESR) spectra in a narrow temperature range on materials elaborated by different 

synthesis methods. 

Fig. 5 shows the electron-spin resonance spectra recorded at room temperature, for 

LiCo1−yNiyO2 samples (with 0.2≤y≤0.8) synthesized by wet-chemistry using succinic 

acid (1:1) as the chelating agent. Spectra exhibit only one broad resonance line at 

about 320 mT. We remark that the line width increases with the degree of nickel 

substitution in LiCo1−yNiyO2 from ΔB=90 mT for y=0.2 to ΔB=226 mT for y=0.8. In 

LiCo1−yNiyO2 oxides, Ni3+ (3d7) ions located in octahedral crystallographic sites, with a 

low-spin state, have a spin 1/2. So, we observe the corresponding paramagnetic 

resonance transition due to these localized magnetic moments with a gyromagnetic 

factor g=2.12. 

 

 

Fig. 5.  

EPR spectra recorded at 300 K as a function 

of the composition y(Ni) in 

LiCo1−yNiyO2 synthesized by wet-chemistry. 

 

 

At low temperatures, in the range 3.5≤T≤100 K, we observe a large change in the 

ferromagnetic resonance (FMR) spectra when the amount of nickel ions increases in 

the LiCo1−yNiyO2 framework (Fig. 6). A single paramagnetic line is observed for 

0.20≤y≤0.75, while the powders are ferromagnetic for LiCo0.2Ni0.8O2, as indicated by 

magnetization and susceptibility measurements Fig. 3 and Fig. 4. Thus, the 

value y=0.8 seems to be a compositional threshold. Fig. 7(a–b) presents the FMR 

detailed data for LiCo0.2Ni0.8O2. We observe three correlated lines at T=40 K for this 

composition as shown in Fig. 7(a). The first line (I) located at very low magnetic field is 

typical of a process of magnetization by rotation along the hard magnetic axis of the 

particles [12]. This result brings an additional information on the ferromagnetic behavior 

of our sample (y=0.8). The second line (II) and the third (III) band are typical FMR 

signals associated with a ferromagnetic resonance phenomenon in powder 

samples [13] and [14]. The line (II) located between 100 and 160 mT is interpreted 

qualitatively as the resonance of particles having their easy magnetic axis aligned 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr5


along the applied magnetic field. The third (III) observed at high magnetic field is 

attributed to the resonance associated with particles having their hard axis parallel to 

the applied field. The difference between the position of these two lines depends on the 

anisotropy field and the magnetization. So, this difference decreases with the 

increasing temperature from 1650 mT at 3.5 K to 1000 mT at 40 K and vanishes at Tc. 

 

 

Fig. 6.  

FMR spectra of LiCo0.2Ni0.8O2 powders as a 

function of the temperature in the range 

3.5≤T≤260 K. 

 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr6


 

Fig. 7.  

FMR spectra of LiCo0.2Ni0.8O2 powders 

showing the resonance details for (a) 40 K 

and (b) 3.5. K. 

 

 

The long-range magnetic order observed in LiNi0.8Co0.2O2 can be discussed on the 

basis of crystallographic data and qualitatively well-described by the model proposed 

by Drillon and Panissod [15]for a ferromagnetic 3D order observed in hybrid 

compounds. In this model, the nature of the in-plane coupling of magnetic ions 

determines the existence of long-range magnetic ordering (Fig. 8). In the case where 

2D ferromagnetic in-plane correlations dominate, and for a large interlayer spacing 

(more than 10 Å), these compounds exhibit a spontaneous magnetization, a 

characteristic ferromagnetic hysteresis loop and an ordering temperature around 20 K. 

Such a large 3D ordering temperature cannot be explained by superexchange 

interaction but rather by dipolar through-space interaction between slabs. 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr7


 

Fig. 8.  

Model of the spin arrangement in 

ferromagnetic layers at non-zero temperature 

used for the calculation of the dipolar 

interaction. The side length x of squares is the 

in-plane correlation length (after Ref. [15]). 

 

 

 

For a 2D ferromagnet, the spins become only correlated on a finite length ξ related to 

the exchange constant J/kB and the spin value S by the relationship 

 

and the corresponding magnetic susceptibility is given by 

 

The dipolar field created at a distance d in the c-axis direction by the assembly of 

correlated spins is vanishingly small for ξ≪d, but can reach a significant strength at low 

temperature as ξ diverges. Correlatively, the magnetic susceptibility diverges as well. 

So, dipole interaction between moments located in different layers stacked along c-axis 

leads to 3D ordering, as soon as the in-plane correlation length reaches a threshold 

value related to the interlayer spacing and the in-plane spin density. The minimisation 

of the dipole and anisotropy energies requires that the order between slabs is 

ferromagnetic if c-axis is the local magneto-crystalline easy axis. 

Crystallographic properties of our samples LiNi0.8Co0.2O2 are consistent with this model. 

Nickel and cobalt ions occupy the (NiyCo1−yO2)n slabs. For y=0.8, the in-plane metal–

metal distance has been measured:a=2.88 Å and the interlayer spacing c′=5 Å 

with c/a=4.93. So, the nickel concentration y=0.8 corresponds to a threshold. For this 

degree of Co substitution, the in-plane exchange leads to a significant correlation 

length. The threshold value is the amount of Ni3+ ions which induces dipole interaction 

between moments located in the successive layers stacked along c-axis leading to a 

3D magnetic ordering. 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr8


3.4. Electronic properties 

The Arrhenius plot of the electrical conductivity shows that the conduction in 

LiCo0.2Ni0.8O2 is thermally activated owing to the semiconducting character of this oxide 

as shown in Fig. 9. The electrical conductivity varies from 4×10−4 to 0.25 S/cm in the 

temperature range 120–580 K. All observed phenomena for the electronic transport 

can be ascribed to small-polaron conduction. This mechanism is clearly supported by 

the appearance of the Arrhenius σT plot curvature, the small value of the activation 

energy, ca. 0.07 eV, and the typical behavior of the ac measurements. It is assumed 

that the hopping process takes place between the highest oxygen valence band and 

the acceptor M3+/M2+ level [16]. The relatively low conductivity values of our 

LiCo1−yNiyO2 compounds are in agreement with the assumption of the absence of 

extra-ions in predominantly Li layers. 

 

Fig. 9.  

Arrhenius plots of the electrical conductivity of 

LiCo1−yNiyO2 (0.0≤y≤0.8) synthesized by wet-

chemistry using succinic acid. 

 

 

4. Conclusion 

ESR technique is advantageous in exploring the electronic structure in 

LiCo1−yNiyO2 (0.0<y<1.0). For LiCo0.2Ni0.8O2, we observed several resonance lines as 

a function of the temperature in the range 3.5–300 K. Three lines have been recorded 

at low temperature (3.5≤T≤100 K). The signal at low magnetic field is attributed to the 

magnetization of magnetic domains in the nanostructured sample. The two other lines 

correspond to the typical ferromagnetic resonance signal observed in powdered 

compounds. In the temperature range 120–300 K, a unique ESR line centered at 315 

mT is observed. As expected, its half-width increases linearly with temperature. This 

line is the paramagnetic signal with a gyromagnetic factorg=2.12, which is in good 

http://www.sciencedirect.com/science/article/pii/S0167273802001984#gr9


agreement with the presence of a high concentration of Ni3+ (3d7) ions. The magnetic 

properties observed in LiNi0.8Co0.2O2 are discussed on the basis of crystallographic 

data and qualitatively well-described by the model proposed by Drillon and 

Panissod [15] for a 3D ferromagnetic order. 
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