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Abstract 

Lithiated metal oxides LiCo1−yNiyO2 were synthesized by a sol–gel method using 

succinic acid as chelating agent. Microcrystalline materials were formed by calcination 

in oxygen at 800°C. The physicochemical properties of the powders (crystallinity, lattice 

constants, size grain) has been investigated in the compositional range 0≤y≤1. 

Structural studies show that a layered single phase was obtained. The local cationic 

environment has been studied by Raman and FTIR spectroscopy. The changes in the 

vibrational spectra are well related to those observed by X-ray diffraction. It is shown 

that the lithium predominant layers are preserved in the entire range of substitution. 

Pelletized LiCo1−yNiyO2 powders (0.2≤y≤1.0) were tested in Li//LiCo1−yNiyO2 cells by 

galvanostatic titration. These cells have an initial capacity of 140 mAh/g in the voltage 

range 2.8–4.2 V and show attractive charge–discharge profiles upon cycling. 
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1. Introduction 

The cell chemistry of Li-ion batteries based on LiCoO2–graphitized carbon blend has 

been widely used in commercialized items, which operate in the high voltage range at 

∼4 V vs. Li/Li+[1]. Problems associated with electrolyte oxidation during 

electrochemical processes and the relatively high price of cobalt compounds limit 

LiCoO2 applications. A recent approach is to replace LiCoO2 to improve cycling 

stability. The amount of work done on such research has been huge. LiNiO2 is an 

attractive candidate: it is less oxidizing versus the electrolyte and is cheaper than the 

cobalt compound. However, it is very difficult to prepare it in a reproducible way 

because of its tendency to non-stoichiometry due to the presence of an excess of 

nickel. Searching for completely stable compounds and for better electrodes, the 

studies have been mostly directed on the base of substituted materials that are 

LiCo1−yNiyO2 phases, for example [2],[3], [4], [5], [6], [7], [8], [9] and [10]. These oxides 

alleviate the disadvantages for LiCoO2 and LiNiO2. 

There has been a great deal of interest in preparation of LiCo1−yNiyO2 materials using 

wet chemistry. Currently, complexing agents are used in synthetic routes such as sol–

gel, combustion, and precipitation methods [9], [10], [11] and [12]. Recently, Pereira-

Ramos has critically discussed the impact afforded by low-temperature (LT) techniques 

especially sol–gel synthesis and precipitation techniques on the electrochemical 

behavior of the as prepared oxide materials [13]. Solution preparative techniques allow 

a better mixing of the elements and thus a better reactivity of the mixture to obtain 

purer products. A lower reaction temperature and shorter reaction time makes it 

possible to obtain compounds of high homogeneity and high specific area. Moreover, 

these LT methods make use of lower calcination temperatures resulting in particles of 

smaller size and a highly strained lattice. 

The present work has focused on the synthesis of the LiCo1−yNiyO2 series of 

compounds by a wet-chemical procedure, namely the aqueous succinic-acid-assisted 

sol–gel method. Material characterization has been done by different techniques like 

thermal analysis, compositional analysis (ICP), X-ray diffraction (XRD) and scanning 

electron microscopy (SEM). Local structure and cationic environment have been 



probed using Raman and FTIR spectroscopy. The electrochemical properties of 

LiCo1−yNiyO2 have been studied by galvanostatic measurements for the determination 

of charge–discharge profiles in Li//LiCo1−yNiyO2 cells. 

 

2. Experimental 

Powders of LiCo1−yNiyO2 were synthesized by a sol–gel method, via inorganic 

polymerization reactions in acidic solution, using succinic acid as chelating agent. 

Metal acetates, M(C2H3O2)2·4H2O (M=Co, Ni), LiC2H3O2·2H2O (>99%) and succinic 

acid C4H6O4 were used as starting materials. 

Stoichiometric amounts of metal acetate salts were dissolved in distilled water and 

mixed with aqueous solutions of succinic acid using a metal:acid molar ratio of 1:1. 

Then, the acidic solutions were evaporated to dryness at 80°C for a few hours. The as 

obtained sols were decomposed by heating at 120°C to give brownish black powders, 

and then were heated at 400°C for a few hours to get fine grained materials of 

submicrometer size. The powders were slightly ground and then fired at 800°C for 2 h 

in air followed by a 2-h calcination in oxygen to improve the crystallinity of 

LiCo1−yNiyO2 final products. Powders were characterized by thermal (TG/DTA) 

analysis, ICP, powder XRD, SEM, Fourier transform infrared (FTIR) and Raman 

scattering (RS) spectroscopy. 

The thermal decomposition behavior of the gels was examined by means of 

thermogravimetry (TG/DTA) using a STD-2960 T.A. Instruments analyser. The 

composition of the final products was determined using an VG PlasmaQuad II-S option 

induced-coupled-plasma mass-spectrometer. Powder XRD patterns were obtained with 

a D-5000 Siemens X-ray diffractometer, using nickel-filtered CuKα radiation (λ=1.5406 

Å). The particle morphology of the materials were examined by SEM in a Jeol 6400 

instrument. FTIR spectra were recorded at room temperature using an IFS113v 

Brucker interferometer equipped with a 3.5-μm thick beamsplitter, a globar source, and 

a DTGS/PE far-infrared detector; samples were ground to fine powders painted onto 

pellets of polyethylene slabs; data were collected in transmission mode at a spectral 

resolution of 2 cm−1 after 256 scans in vacuum atmosphere. RS spectra of the samples 

were collected with a U1000 Jobin-Yvon double monochromator, using the 514.5 nm 

laser line from the Spectra-Physics 2020 Ar-ion laser. A backscattering geometry was 

employed and care was taken to use a low energy laser beam to prevent reduction of 



cathode materials by the laser during collection of Raman spectra. The laser power 

was kept below 25 mW. 

Electrochemical studies were carried out on the synthesized products in order to test 

their suitability as cathode-active materials in high voltage lithium-containing batteries. 

The laboratory-scale Li//LiCo1−yNiyO2cells were fabricated employing a non-aqueous 

electrolyte prepared by dissolving 1 M LiClO4 in propylene carbonate (PC). The typical 

composite cathodes consisted of the mixture of active LiCo1−yNiyO2 powders, 

acetylene black, and colloidal PTFE binder in the 90:5:5 weight ratio. The above 

mixture was pressed on to an expanded aluminum microgrid at a pressure of 500 MPa. 

This procedure yielded circular pellet electrodes of 10 mm diameter. The pellets were 

then dried at 120°C in air. Glass paper membrane was used as the separator between 

the cathode and the anode. Electrodes and separators were soaked in the electrolyte 

before being housed in a PTFE laboratory cell. Galvanostatic charge–discharge cycles 

were recorded using a Mac-Pile system at a slow scan mode (i.e. current pulse of 0.1 

mA/cm2 for 1 h followed by relaxation period of 0.5 h) in the potential range between 

2.2 and 4.2 V. 

 

3. Results and discussion 

3.1. Thermal and compositional analysis 

Fig. 1 shows two representative TG curves, for the gel precursors of the 

LiCo0.2Ni0.8O2 and LiCo0.6Ni0.4O2compounds, that were partially decomposed at 400°C 

before these TG measurements. In general, we observe an important weight loss 

at T<750°C, a plateau in the temperature range of ∼750–900°C, and another weight 

loss at T>900°C. The first step corresponds to the decomposition of the gel and the 

calcination of remaining organic species, that yields well-crystallized and pure 

LiCo1−yNiyO2 phases. DTA data for the gels display an exothermic peak recorded 

around 400°C due to the decomposition of the gel formed by the metallic acetates and 

the succinic acid. This exothermic reaction accelerates the formation of the 

intermediate well-crystallized powders. Even though the crystallisation of the 

LiCo1−yNiyO2 phase starts below 400°C, the pure products are obtained when calcined 

at 800°C. Weight loss at T>900°C is due to the departure of lithium oxide from the 

framework. It appears that an increasing Ni content in LiCo1−yNiyO2 makes the 

compound thermally less stable: while for LiCo0.6Ni0.4O2 a wide plateau exists in the 



temperature range 700–1100°C, it is much narrower region for the 

LiCo0.2Ni0.8O2 sample ( Fig. 1). 

 

Fig. 1.  

TG curves of the LiCo1−yNiyO2 (y=0.4 

and 0.8) gel precursors, prepared using 

succinic acid as chelating agent and 

partially decomposed at T<400°C 

before TG analyses. These 

measurements were carried out at a 

heating rate of 10°C/min with oxygen 

flow in the range 25–1250°C. 

 

Primary elemental analysis of the samples obtained after the thermal treatment at 

800°C in oxygen are summarized in Table 1. These results show that 

LiCo1−yNiyO2 oxides synthesized by succinic-acid-assisted method have a composition 

near the ideal one for all y studied values. 

Table 1. 

Results of the elemental analysis (ICP data) of these LiCo1−yNiyO2 samples 

Nominal Experimental 

composition Li Co Ni 

LiCoO2 0.99±0.02 1.00±0.03 – 

LiCo0.8Ni0.2O2 0.98±0.02 0.80±0.02 0.20±0.01 

LiCo0.6Ni0.4O2 1.01±0.02 0.63±0.01 0.41±0.01 

LiCo0.4Ni0.6O2 1.00±0.01 0.40±0.01 0.61±0.01 

LiCo0.2Ni0.8O2 1.00±0.01 0.20±0.01 0.83±0.02 

LiNiO2 1.02±0.05 – 1.03±0.05 

 

3.2. Structure and morphology 

Fig. 2 shows the XRD patterns of microcrystalline LiCo1−yNiyO2 (0.0≤y≤0.8) powders 

grown by the succinic-acid-assisted sol–gel method. Single-phase materials were 

obtained when the precursors were calcined up to 800°C in an oxygen atmosphere. It 

took at least 2 h to attain full crystallinity. Samples have a rock-salt-based structure, i.e. 

the layered α-NaFeO2-type structure (R3̄m space group), with two interpenetrating 

close-packed fcc sublattices: one sublattice consists of oxygen anions, and the second 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr1


consists of Li and (Co, Ni) cations on alternating (111) planes. Miller indexes are given 

assuming an hexagonal system, in which the lithium ions are in octahedral sites 

between (Co1−yNiyO2)n infinite slabs formed by edge-sharing (Co1−yNiy)O2 octahedra. 

By a least-squares refinement, hexagonal lattice parameters, a and c, were calculated 

and plotted against nickel content ( Fig. 3). For the end-member LiCoO2, they are 

calculated to be ahex=2.815 Å, chex=14.06 Å and c/a=4.995, in good agreement with 

values reported in the literature [14]. These cell parameters increased linearly with 

nickel content for y≤0.8 (this is a characteristic feature of a solid solution), while 

the ahex increases more significantly at y>0.8. LiCo1−yNiyO2 compounds (y≤0.8) 

obtained by this sol–gel method exhibit XRD patterns with well-defined (006)–(102) and 

(108)–(110) doublets. It is worth pointing that a high value of the c/a ratio (c/a>4.95) 

and a clear splitting of the (006)–(102) and (108)–(110) Bragg lines as well as the 

intensity ratio I(003)/I(104) have been acknowledged to be an indication, as far as XRD 

patterns are concerned, of an ordered distribution of lithium and transition-metal ions in 

the structure. XRD results confirm the single-phase formation of cobalt-rich cathode 

materials (y≤0.8), but the question of the local cationic order will be re-examined below 

by spectroscopic measurements. 

 

 

Fig. 2.  

X-ray diffraction patterns as a function of 

cobalt substitution in the 

LiCo1−yNiyO2 obtained powders. XRD 

peaks were indexed assuming 

the  symmetry (with hexagonal 

indexation). 

 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr2


 

Fig. 3.  

Evolution of the crystallographic parameters 

of the obtained LiCo1−yNiyO2 samples. 

 

 

Surface morphology and texture as well as particle size were observed by scanning 

electron microscopy. As an example, Fig. 4 presents the typical SEM micrograph of 

LiCo0.2Ni0.8O2 annealed at 800°C in oxygen. It can be seen that the individual grains 

are well formed and quite small, with the mean particle radius about 400 nm. These 

results confirm that the succinic-acid-assisted sol–gel method is well adapted for the 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr3


formation of submicron-sized particles with a narrow grain size distribution in 

LiCo1−yNiyO2 oxides. 

 

 

Fig. 4.  

SEM picture of the obtained LiCo0.2Ni0.8O2 

powders. 

 

3.3. Vibrational spectra 

The purpose of this study is to investigate the local environment of cations in a cubic 

close-packed oxygen array of the LiCo1−yNiyO2 lattice using FTIR and RS 

spectroscopy. IR and Raman modes correspond to vibrations involving primarily atomic 

motion of oxygen anions against their cationic neighbors [15] and [16]. Consequently, 

these modes are very sensitive to the cationic local environment in the host matrix. 

Fig. 5 shows the RS spectrum of LiCo1−yNiyO2. For LiCoO2, the RS spectrum is 

dominated by two strong bands located at 485 and 595 cm−1 which, from the group 

factor analysis of the D3d
5 spectroscopic symmetry, are attributed to 

the A1g and Eg species, respectively. The Raman-active modes include only the oxygen 

vibrations in the direction parallel (A1g) or perpendicular (Eg) to the c axis. The high-

frequency peak corresponds to the symmetric M–O stretching vibration of MO6 groups 

(M=Co, Ni). As Co is substituted for Ni, the band position is shifted to lower frequency 

and the peak intensity vanishes due to the increase of the electronic conductivity in Ni-

rich samples. 

 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr4


 

Fig. 5.  

Raman scattering spectra of the obtained 

LiCo1−yNiyO2 samples. 

 

Fig. 6 shows the FTIR absorption spectra of LiCo1−yNiyO2. The high-wavenumber 

region, at ∼400–600 cm−1, corresponds to the broad rock-salt band, which has broken 

into several distinct components. The bands located around 600 cm−1 are attributed to 

the asymmetric stretching modes of the MO6 group, whereas bands at ∼400–500 

cm−1 are assigned to the bending modes of the O–M–O bonds. The far-infrared region, 

in which an isolated strong band is centered at ∼240–260 cm−1, is attributed to the 

vibration of elongated LiO6 octahedral groups. Thus, FTIR measurements confirm XRD 

data showing the formation of pure LiCo1−yNiyO2 phase for y≤0.8. 

 

Fig. 6.  

FTIR absorption spectra of the obtained 

LiCo1−yNiyO2 samples. 

 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr5
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Because FTIR spectroscopy is capable of probing directly the surrounding environment 

of the cation, we have studied the effect of the Ni substitution on the frequency of the 

stretching modes in LiCo1−yNiyO2oxides (Fig. 7). The variation of the frequency modes 

against Ni content corresponds to features of a solid solution. In Fig. 7b, we observe a 

slight deviation from a linear behavior for high nickel content. This is attributed to the 

presence of Ni cations in the predominantly lithium layers (octahedral interstices), 

which disturbs the IR resonant frequency of the vibration of the O2− anions against their 

Li+ ion near neighbors. These results show that FTIR of LiCo1−yNiyO2 materials allows 

the accurate detection of short scale heterogeneity complementing the XRD results, 

which only provide information about the long-range structure. 

 

Fig. 7.  

Frequency position of the infrared stretching 

modes of the obtained LiCo1−yNiyO2 

samples as a function of the Ni substitution for 

Co. 

 

3.4. Electrochemical studies 

Fig. 8 shows the charge–discharge profiles of Li//LiCo1−yNiyO2 (0.0≤y≤0.6) cells using 

cathode materials prepared by this sol–gel method. The cells were charged and 

discharged at current densities of 0.1 mA/cm2, while the voltage was monitored 

between 2.2 and 4.2 V. These experiments have been carried out at low rates to 

emphasize the relationship between structure and electrochemistry. 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr7


 

Fig. 8.  Charge–discharge curves of Li//LiCo1−yNiyO2 (0.0≤y≤0.6) non-aqueous cells. 

 

In the potential domain 2.2–4.2 V, the charge–discharge curves correspond to the 

voltage profiles characteristic of the LixCo1−yNiyO2 cathode materials associated with 

lithium occupation of the octahedral sites, in agreement with previous 

works [6], [7] and [8]. 

The similarity in the electrochemical behavior of the charge and discharge curves 

shows a good reversibility of the intercalation–deintercalation process during the first 

cycle for all studied LixCo1−yNiyO2compounds. 

The fully intercalated phase is not recovered after the first discharge. The capacity 

retention could be probably assigned to a kinetic problem especially as the phase 

LixCo1−yNiyO2 is a poor electronic conductor. However, the polarization (difference in 

voltage between the charge and discharge curves) is very low and almost similar in all 

cells. 

The voltage profiles of the Li//LiCo1−yNiyO2 cells are slightly different than that of 

Li//LiCoO2. The curve obtained for LixCoO2 exhibits a voltage plateau corresponding to 

a biphasic domain at ∼3.7 V [18]. The plateau disappears for LixCo1−yNiyO2 and the 

monotonous variation of the potential curve reflects the existence of a 

LixCo1−yNiyO2 solid solution and the stabilization of the 2D framework. Reimers et 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr8


al. [17]and Saadoune et al. [18] evidenced than the occurrence of phase transitions in 

LixCoO2 and LixNiO2phases is very sensitive to the long-range Li+ ions ordering and 

the substitution of Ni for Co prevents any structural change during charge–discharge in 

these LiCo1−yNiyO2 solid solutions. 

In the case of the Li//LiCo0.8Ni0.2O2 cell (Fig. 8b), one can distinguish the presence of 

two regions during the lithium insertion–extraction process. The voltage profile displays 

two flat domains separated by an intermediate domain characterized by a potential 

jump from 3.5 to 3.8 V around the composition Li0.8Co0.8Ni0.2O2 during the first charge. 

The first stage (I), near 3.5 V, is assigned to oxidation of Ni3+ ions, the second stage 

(II), near 3.8 V, is attributed to oxidation of Co3+ ions. In fact, in all the cobalt-rich 

phases, the Ni3+ ions are preferentially oxidized to the tetravalent state in comparison 

with the Co3+ ions, as demonstrated by Saadoune et al. [18]. 

The small variation of the average potential with Ni substitution for Co is shown in Fig. 

9. This effect is primarily attributed to the change in the electronic structure of 

LiCo1−yNiyO2 compounds upon addition of Ni ions, and thus to a small variation in the 

Fermi level [18]. 

 

 

Fig. 9.  

Average potential of the Li//LiCo1−yNiyO2 

cells as a function of the Ni substitution for 

Co. 

 

These studies also demonstrate that these cathodes yield capacities around 130–140 

mAh/g close to the theoretical value of 164 mAh/g when discharged to a cut-off voltage 

of 2.5 V. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S146660490100040X#gr9


4. Conclusion 

This work has shown that LiCo1−yNiyO2 (0≤y≤1) single phase materials are obtained at 

low temperature using the aqueous sol–gel process, in which the succinic acid acts as 

a chelating agent. The use of a solution process allows molecular level mixing and 

leads to highly uniform materials. The low-temperature technique adopted for the 

synthesis LiCo1−yNiyO2 cathode materials has yielded particles with small grain size 

around 400 nm, which favors good electrochemical performance. The charge–

discharge voltage profiles of Li//LiCo1−yNiyO2 cells show good reversibility of the 

intercalation–deintercalation process during the first cycle and features which come 

from the prior oxidation of Ni3+ ions before the cobalt ions. These studies also 

demonstrated that the sol–gel synthesized-cathodes yield capacities in the range 130–

140 mAh/g, close to the theoretical value 164 mAh/g, when discharged to a cut-off 

voltage of 2.5 V. The electrochemical properties of LiCo1−yNiyO2 cathode materials are 

presently being studied in the context of long term cycling. 

This work shows the advantage of using wet-chemical synthetic methods for the 

preparation of LiCo1−yNiyO2, as materials with optimum properties can be obtained at a 

much-reduced cost than when using the conventional solid state method. 
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