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Resumo

O número de núcleos por procesador está crecendo, convertindo aos sistemas

multinúcleo en omnipresentes. Isto implica lidiar con múltiples niveis de memoria

en sistemas NUMA, accesibles a través de complexas xerarqúıas para procesar as

crecentes cantidades de datos. A clave para un movemento eficiente e escalable de

datos é o uso de operacións de comunicación colectivas que minimizen o impacto

dos colos de botella. Usar comunicacións unilaterais vólvese máis importante nestes

sistemas, para evitar sincronizacións entre pares de procesos en operacións colecti-

vas implementadas usando funcións punto a punto bilaterais. Esta tese propón unha

serie de algoritmos que proporcionan bo rendemento e escalabilidade en operacións

colectivas. Estes algoritmos usan árbores xerárquicas, solapamento de comunicacións

unilaterais, pipelining de mensaxes e afinidade NUMA. Desenvolveuse unha imple-

mentación para UPC, unha linguaxe PGAS cuxo rendemento tamén foi avaliado

nesta tese. Para comprobar o rendemento destes algoritmos unha nova ferramenta

de microbenchmarking foi deseñada e implementada. A avaliación dos algoritmos,

realizada en 6 sistemas representativos, con 5 arquitecturas de procesador e 5 redes

de interconexión diferentes, mostrou en xeral un bo rendemento e escalabilidade,

mellor que os algoritmos ĺıderes en MPI en moitos casos, o que confirma o potencial

dos algoritmos desenvoltos para arquitecturas multi- e manycore.
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Resumen

El número de núcleos por procesador está creciendo, convirtiendo a los sistemas

multinúcleo en omnipresentes. Esto implica lidiar con múltiples niveles de memo-

ria en sistemas NUMA, accesibles a través de complejas jerarqúıas para procesar

las crecientes cantidades de datos. La clave para un movimiento eficiente y escala-

ble de datos es el uso de operaciones de comunicación colectivas que minimizen el

impacto de los cuellos de botella. Usar comunicaciones unilaterales se vuelve más

importante en estos sistemas, para evitar sincronizaciones entre pares de procesos en

operaciones colectivas implementadas usando funciones punto a punto bilaterales.

Esta tesis propone una serie de algoritmos que proporcionan buen rendimiento y

escalabilidad en operaciones colectivas. Estos algoritmos usan árboles jerárquicos,

solapamento de comunicaciones unilaterais, pipelining de mensajes y afinidad NU-

MA. Se ha desarrollado una implementación para UPC, un lenguaje PGAS cuyo

rendimiento también ha sido evaluado en esta tesis. Para comprobar el rendimiento

de estos algoritmos una nueva herramienta de microbenchmarking fue diseñada e im-

plementada. La evaluación de los algoritmos, realizada en 6 sistemas representativos,

con 5 arquitecturas de procesador y 5 redes de interconexión diferentes, ha mostrado

en general un buen rendimiento y escalabilidad, mejor que los algoritmos ĺıderes en

MPI en muchos casos, lo que confirma el potencial de los algoritmos desarrollados

para arquitecturas multi- y manycore.
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Abstract

The increasing number of cores per processor is turning multicore-based systems

in pervasive. This involves dealing with multiple levels of memory in NUMA systems,

accessible via complex interconnects in order to dispatch the increasing amount of

data required. The key for efficient and scalable provision of data is the use of collec-

tive communication operations that minimize the impact of bottlenecks. Leveraging

one-sided communications becomes more important in these systems, to avoid syn-

chronization between pairs of processes in collective operations implemented using

two-sided point to point functions. This Thesis proposes a series of collective algo-

rithms that provide a good performance and scalability. They use hierarchical trees,

overlapping one-sided communications, message pipelining and NUMA binding. An

implementation has been developed for UPC, a PGAS language whose performance

has been also assessed in this Thesis. In order to assess the performance of these

algorithms a new microbenchmarking tool has been designed and implemented. The

performance evaluation of the algorithms, conducted on 6 representative systems,

with 5 different processor architectures and 5 different interconnect technologies,

has shown generally good performance and scalability, outperforming leading MPI

algorithms in many cases, which confirms the suitability of the developed algorithms

for multi- and manycore architectures.
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Resumo da Tese

Introdución

Nos últimos anos a mellora do rendemento dos procesadores tivo un cambio de

tendencia. Tradicionalmente, con cada xeración de microprocesadores as aplicacións

aumentaban o seu rendemento de forma totalmente transparente, debido ás mello-

ras na microarquitectura e ao aumento de frecuencia. Isto xa non é posible hoxe,

e os procesadores aumentan as súas prestacións doutro xeito. Nesta nova era os

procesadores incrementan o seu número de núcleos. Ca aparición de coprocesadores

manycore esta tendencia acentúase áında máis, xa que o rendemento de cada núcleo

individualmente non só non incrementa, senón que diminúe. Como efecto colateral

deste feito, a presión sobre o subsistema de memoria é máis grande, e prećısase

maior ancho de banda a memoria. A resposta é a inclusión de varios controladores

de memoria por nodo, o que causa que a maior parte dos sistemas de computación

de altas prestacións modernos sexan Non-Uniform Memory Access (NUMA). A si-

tuación máis habitual é que cada procesador teña o seu propio controlador, áında

que nalgúns casos un único chip pode conter varios controladores de memoria.

Como resultado as aplicacións teñen que adaptarse acordemente. Seguindo a

inercia inicial, o modelo de programación máis popular hoxe en d́ıa é un h́ıbrido que

usa paso de mensaxes (MPI) para comunicación entre procesos que non comparten

memoria, e un modelo de f́ıos con memoria compartida (OpenMP). Porén, ese mo-

delo dificulta a programación das aplicacións, e é proclive a erros. A comunidade de

computación de altas prestacións propuxo unha alternativa, denominada Partitio-

ned Global Address Space (PGAS). Neste modelo hai unha parte da memoria que

é lóxicamente compartida, áında que f́ısicamente non o sexa. Deste xeito ev́ıtanse
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os problemas e a complexidade que o modelo de paso de mensaxes trae consigo, e

permı́tense comunicacións unilaterais que non requiren sincronización. No entanto,

para obter bo rendemento cómpre ter unha boa localidade de datos, xa que acceder

á memoria remota constantemente resultaŕıa nun mal rendemento.

En todo modelo de programación que inclúa memoria distribúıda a algún nivel

é necesario ter primitivas eficientes de redistribución de datos. Estas primitivas son

operacións colectivas executadas por todos os procesos que participan na devandita

operación. A maioŕıa das aplicacións usan estas operacións colectivas nalgún punto

da súa execución. Por tanto, a escalabilidade e rendemento destas operacións xoga

un papel moi importante para permitir mellores tempos de execución en situacións

con decenas de miles de núcleos.

A confluencia de todos estes factores –novas arquitecturas de procesadores con

moitos máis núcleos que as tradicionais e xerarqúıas de memoria máis profundas,

novos modelos de programación, e a necesidade de operacións de redistribución de

datos eficientes e escalables– é a motivación desta tese de doutoramento, titulada

“Design of Scalable PGAS Collectives for NUMA and Manycore Systems”. O tra-

ballo focalizouse en Unified Parallel C (UPC), unha linguaxe PGAS baseada en C,

e unha das alternativas PGAS máis coñecidas. Co fin de probar o potencial de UPC

para a computación de altas prestacións nesta tese se realizou unha avaliación de

rendemento desta linguaxe, co compilador e runtime de UPC máis popular (Ber-

keley UPC). Adicionalmente, co obxetivo de avaliar o rendemento dos algoritmos

propostos, desenvolveuse unha ferramenta de medición de rendemento, que constitúe

a primera do seu xénero en UPC. O último paso foron avaliacións de rendemento

dos algoritmos en múltiples contornas, empregando 5 sistemas NUMA e 1 sistema

manycore.

Metodolox́ıa de Traballo

A metodolox́ıa de traballo desta tese consta dunha serie de tarefas para realizar.

Tales tareas deberán:

Ter en conta o estado da arte e os recursos cos que se contan.
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Ser organizadas en certa orde lóxica.

Ter unha duración determinada.

Formar bloques de traballo relacionados, de forma que cada bloque represente

unha etapa claramente distinguible.

Ter unha serie de metas por bloque que determinan o éxito da tese.

Ademais, dada a rápida evolución da computación de altas prestacións, novas

tarefas pódense levar a cabo se os recursos dispoñibles o permiten e os resultados

obtidos teñen un impacto significativo. Deste xeito, a listaxe de tarefas (Tn), agru-

padas en bloques (Bn), desenvolvidas na presente tese foron:

B1 Estudo do estado da arte en modelos de programación e algoritmos de opera-

cións colectivas.

T1.1 Estudo de alternativas actuais para programación paralela, inclúındo mo-

delos de programación para sistemas de memoria distribúıda e memoria

compartida.

T1.2 Familiarización coas linguaxes existentes que foron estendidas para so-

portar caracteŕısticas PGAS, linguaxes creadas especificamente, e outras

alternativas PGAS baseadas en bibliotecas.

T1.3 Estudo de caracteŕısticas relevantes da linguaxe UPC, con atención ás

caracteŕısticas útiles desde o punto de vista de deseño de operacións co-

lectivas.

T1.4 Estudo en profundidade de algoritmos para operacións colectivas na li-

teratura, con especial atención ao estado da arte á referencia en HPC,

MPI.

B2 Estudo de rendemento de UPC.

T2.1 Busca de ferramentas de avaliación de rendemento que permitan compa-

ración entre MPI –por ser a alternativa de programación paralela máis

popular– e UPC.
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T2.2 Avaliación de rendemento de UPC cos devanditos benchmarks, inclúındo

unha análise comparativa con MPI.

T2.3 Análise doutros traballos de avaliación de rendemento de UPC, con es-

pecial atención ás súas conclusións sobre o posible futuro de UPC.

B3 Deseño e implementación dunha ferramenta de medición de rendemento.

T3.1 Estudo de alternativas de microbenchmarking para MPI e OpenMP en

distintos eidos, en particular no tocante a comunicacións e operacións

colectivas.

T3.2 Deseño dunha ferramenta de microbenchmarking de comunicacións en

UPC, que resulte familiar a outros usuarios con experiencia en MPI e

que permita realizar estudos comparativos.

T3.3 Implementación da primera ferramenta de microbenchmarking de comu-

nicacións en UPC.

B4 Deseño e implementación de algoritmos para operacións colectivas para arqui-

tecturas NUMA e multicore.

T4.1 Deseño dun algoritmo xeral que sirva de base para varias operacións colec-

tivas, baseado nunha estructura de árbore, e que aproveite as operacións

unilaterais de UPC.

T4.2 Exploración do espazo de posibles optimizacións do algoritmo xeral, in-

clúındo solapamento de comunicacións, distintas formas de árbore, e

técnicas para obter escalabilidade con miles de núcleos.

T4.3 Refinamento e adaptación do algoritmo para as operacións que aśı o re-

quiran debido as súas particularidades, no tocante á distribución de datos

e operacións relacionadas.

T4.4 Implementación da familia de algoritmos na súa forma básica, para usar

como orixe das versións optimizadas.

T4.5 Implementación usando os algoritmos base das optimizacións deseñadas

de forma incremental.

T4.6 Estudo de optimizacións extra para funcións que non encaixen no algo-

ritmo xeral debido aos movementos de datos necesarios.
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T4.7 Implementación das optimizacións para ditas funcións.

B5 Análise de rendemento dos algoritmos implementados en arquitecturas NUMA.

T5.1 Avaliación de rendemento dos algoritmos baseados en árbores en múlti-

ples sistemas NUMA con diferentes caracteŕısticas –procesadores, inter-

conexión intranodo e interconexión internodo–.

T5.2 Análise comparativa con outras alternativas en UPC, en particular a im-

plementación de referencia e a implementación do runtime con máis ren-

demento dispoñible.

T5.3 Análise comparativa co estado do arte en MPI en experimentos a grande

escala con miles de núcleos.

T5.4 Análise da contribución de cada técnica de optimización ao rendemento

final de cada variación das operacións colectivas.

B6 Análise de rendemento dos algoritmos implementados en arquitecturas many-

core.

T6.1 Avaliación de rendemento dos algoritmos baseados en árbores en sistemas

manycore, escalando os experimentos ata a orde de decenas de miles de

núcleos.

T6.2 Análise comparativa co estado da arte en MPI en ditos sistemas, inclúındo

runtimes especialmente adaptados e optimizados para dita arquitectura.

T6.3 Análise comparativa do rendemento das colectivas en UPC e MPI en

procesadores manycore –Intel Xeon Phi– contra o rendemento obtido en

procesadores multicore.

B7 Extracción de conclusións.

T7.1 Resumo do traballo e extracción de conclusións.

T7.2 Análise de traballo futuro e liñas abertas.

T7.3 Escritura da memoria da tese de doutoramento.
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A presente memoria recolle o traballo feito en cada tarea. Cada caṕıtulo contén

exactamente un bloque dos anteriormente enumerados.

Cada bloque ten unha serie de metas que se queren alcanzar. A listaxe de metas

(Mn) asociadas con cada bloque (Bn) da tese de doutoramento foi:

B1 Estudo do estado da arte en modelos de programación e algoritmos de opera-

cións colectivas.

M1.1 Obtención de perspectiva en canto a opcións dispoñibles para programa-

ción paralela de hardware moderno.

M1.2 Obtención de ideas para o deseño e implementación de operacións colec-

tivas escalables ata miles de núcleos.

B2 Estudo de rendemento de UPC.

M2.1 Determinación da validez de UPC como alternativa para programación

de sistemas paralelos para aplicacións cient́ıficas.

B3 Deseño e implementación dunha ferramenta de medición de rendemento.

M3.1 Proporcionar á comunidade da primeira ferramenta de microbenchmar-

king de comunicacións para UPC.

B4 Deseño e implementación de algoritmos para operacións colectivas para arqui-

tecturas NUMA e multicore.

M4.1 Conxunto de rutinas de operacións colectivas en UPC altamente optimi-

zadas e escalables a sistemas con decenas de miles de núcleos e múltiples

rexións NUMA por nodo.

B5 Análise de rendemento dos algoritmos implementados en arquitecturas NUMA.

M5.1 Comprensión do rendemento e escalabilidade das operacións optimizadas

comparativamente co estado da arte actual en UPC, en sistemas NUMA.

M5.2 Comprensión do rendemento e escalabilidade das operacións optimizadas

comparativamente co estado da arte actual en MPI, en sistemas NUMA.
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M5.3 Comprensión do impacto no rendemento e escalabilidade das distintas

técnicas de optimización implementadas.

B6 Análise de rendemento dos algoritmos implementados en arquitecturas many-

core.

M6.1 Comprensión do rendemento e escalabilidade das operacións optimizadas

comparativamente co estado da arte actual en MPI, en sistemas many-

core.

M6.2 Comprensión do impacto de cambios profundos na arquitectura de pro-

cesadores no rendemento e escalabilidade de operacións colectivas.

B7 Extracción de conclusións.

M7.1 Memoria da tese de doutoramento, coa descrición dos pasos realizados e

as conclusións obtidas, aśı como as futuras liñas de traballo.

Os medios necesarios para realizar esta tese de doutoramento, seguindo a meto-

dolox́ıa de traballo anteriormente descrita, foron os seguintes:

Proxecto de investigación con financiamento privado e de ámbito internacional:

“Improving UPC Usability and Performance in Constellations Systems: Im-

plementation/Extension of UPC Libraries”. Financiado por Hewlett-Packard

S.L., en colaboración coa Universidade da Coruña, a Universidade de Santiago

de Compostela e o Centro de Supercomputación de Galicia.

Clústers utilizados durante o desenvolvemento e avaliación de rendemento dos

algoritmos desta tese:

• Supercomputador Finis Terrae (Centro de Supercomputación de Galicia,

2008-2011): 142 nodos con 8 procesadores Intel Itanium 2 dual core, a 1.6

GHz e 128 GB de RAM. A rede de interconexión deste supercomputador

é InfiniBand 4x DDR.

• Nodo Superdome (Centro de Supercomputación de Galicia, 2008-2011):

Nodo de cómputo con 64 procesadores Intel Itanium 2 dual core, a 1.6

GHz e 1 TB de RAM.
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• Supercomputador Virtual Galego 2011 (SVG 2011) (Centro de Super-

computación de Galicia, 2011): 46 nodos con 2 procesadores AMD Op-

teron, cada un con 12 cores, a 2.2 GHz e 64 GB de RAM. A rede de

interconexión é Gigabit Ethernet.

• JUDGE (Forschungzentrum Jülich, 2011-actualidade): 206 nodos con 2

procesadores Intel Xeon hexa core, a 2.66 GHz e 96 GB de RAM. A rede

de interconexión é InfiniBand 4x QDR.

• JuRoPA (Forschungzentrum Jülich, 2011-actualidade): 2208 nodos con 2

procesadores Intel Xeon quad core, a 2.93 GHz e 24 GB de RAM. A rede

de interconexión é InfiniBand 4x QDR.

• Stampede (Texas Advanced Computing Center, 2013-actualidade): 6400

nodos con 2 procesadores Intel Xeon octo core, a 2.7 GHz e 32 GB de

RAM. Cada nodo conta, ademais, con 1 coprocesador Intel Xeon Phi con

61 cores a 1.1 GHz e 8 GB de RAM. A rede de interconexión é InfiniBand

4x FDR.

Contrato con Forschungszentrum Jülich GmbH, que excede no momento de

escribir esta Tese os 3 anos. Dito contrato posibilitou a realización das tarefas

inclúıdas nos Bloques 5 e 6.

Conclusións

Esta tese de doutoramento, “Design of Scalable PGAS Collectives for NUMA and

Manycore Systems”, demostrou o potencial do modelo PGAS para a implementación

de operacións colectivas eficientes e altamente escalables, chegando en moitos casos

a render mellor que as actuais solucións neste eido, en moitos escenarios diferentes.

A programación de sistemas cada vez máis complexos, con memoria distribúıda e

compartida, con distintas latencias de acceso a memoria dependendo de que dirección

se esté accedendo, e cun hardware evolucionando a alta velocidade, é altamente

complicada. O modelo PGAS propón unha alternativa ao tradicional modelo de

paso de mensaxes, con algunhas caracteŕısticas que evitan en certa medida custosas

sincronizacións, e que se poden aplicar ao deseño de bibliotecas de comunicacións.
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Os programadores de aplicacións cient́ıficas usadas en sistemas de altas presta-

cións recorren con frecuencia a operacións colectivas inclúıdas nos runtimes corres-

pondentes. Como consecuencia, os enxeñeiros de computadores levan anos optimi-

zando e adaptando tales operacións a distintas arquitecturas, dando como resultado

unha extensa traxectoria de investigación e historial de algoritmos. A pesar desta

traxectoria, o traballo que explora a optimización das ditas operacións usando o

modelo PGAS é escaso.

Esta tese analizou o rendemento de UPC en benchmarks cient́ıficos, conclúındo

que é comparable ao rendemento doutras aplicacións baseadas en C e que usan paso

de mensaxes como método de comunicación. Porén, e a pesar da boa escalabilidade

nalgúns casos, tamén se achou que cómpre prestar atención á optimización do acceso

a rede, que nalgúns casos causa unha perda de rendemento usando multiples núcleos.

Isto sinala a importancia de optimizar as operacións de comunicacións. En particular,

as operacións colectivas teñen especial importancia, debido a súa popularidade e uso

frecuente.

No tocante ao deseño de colectivas, esta tese non pod́ıa efectuar un traballo

metódico e exhaustivo sen contar con ferramentas para medir o rendemento das ditas

operacións. Ante a ausencia de ferramentas axeitadas deseñouse e implementouse

a primeira ferramenta de microbenchmarking para UPC, usando o coñecemento e

experiencia obtidos durante anos por cient́ıficos, usando paso de mensaxes. Con esta

ferramenta fundamental implementada, a avaliación de rendemento en colectivas xa

é posible.

No núcleo desta tese está o deseño de algoritmos altamente escalables para opera-

cións colectivas en arquitecturas modernas de supercomputación. Tales algoritmos,

implementados en UPC, apoianse nas seguintas técnicas para obter un alto rende-

mento e escalabilidade:

Uso de operacións de comunicación unilaterais, empuxando ou tirando de datos

–é dicir, a orixe da operación está no proceso que ten ou necesita os datos,

respectivamente–, dependendo da natureza da operación.

Uso de árbores cunha estrutura computada na inicialización e reusada durante

todo o tempo de execución da aplicación.
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Árbores xerárquicas mapeadas eficientemente no hardware, minimizando o uso

dos camiños con latencia máis alta e anchos de banda máis pequenos.

Distinto tipo de árbores no nivel máis baixo, permitindo elixir a forma máis

axeitada en cada caso.

Binding de f́ıos a rexións NUMA, para asegurar o correcto mapeamento das

árbores.

Dúas técnicas de solapamento de comunicacións, usando tamaños fixos e dinámi-

cos.

As operacións optimizadas avaliáronse exahustivamente en 6 supercomputado-

res distintos (Stampede, JuRoPA, JUDGE, Finis Terrae, SVG e Superdome), con

5 arquitecturas de procesador distintas (Intel Xeon Phi Many Interconnected Core,

Intel Xeon Sandy Bridge, Intel Xeon Nehalem, Intel Itanium 2 e AMD Opteron

Magny-Cours), e 5 tecnolox́ıas de interconexión diferentes (InfiniBand 4x FDR, Infi-

niBand 4x QDR, InfiniBand 4x DDR, Gigabit Ethernet e Superdome Interconnect).

O rendemento e a escalabilidade dos algoritmos deseñados sobrepasa ao das mellores

colectivas avaliadas en UPC en case todos os escenarios. As colectivas presentes en

implementacións punteiras de runtimes MPI tamén se vén sobrepasadas con fre-

cuencia polos algoritmos desta tese, principalmente en escenarios cun alto número

de núcleos. Especialmente destacable é o bo rendemento e escalabilidade en sis-

temas manycore, usando máis de 15000 núcleos, a pesar de que o rendemento no

tocante a comunicacións nestos sistemas é xeralmente inferior ao obtido en sistemas

tradicionais multinúcleo.

Principais Contribucións

As principais achegas desta tese son:

Un estudo de rendemento das operacións colectivas en UPC, previamente aos

algoritmos presentados, e materializado en [100].
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Un estudo de rendemento de UPC en benchmarks cient́ıficos de gran relevancia,

e unha análise comparativa con outras opcións populares –MPI e OpenMP–,

publicada en [58] e [63].

A primera ferramenta de microbenchmarking para comunicacións en UPC,

dispoñible públicamente en [60] e que a d́ıa de hoxe acumula máis de 370

descargas. Tal ferramenta foi presentada en [59].

Unha biblioteca con operacións colectivas altamente optimizadas para arqui-

tecturas modernas usando diversas técnicas.

Un estudo da devandita biblioteca en 5 sistemas NUMA diferentes (JuRo-

PA, JUDGE, Finis Terrae, SVG e Superdome), no que se demostra un gran

rendemento, incluso comparado co equivalente ao estado do arte en MPI, e

publicado en [62].

Un estudo dos algoritmos deseñados en un dos sistema manycore máis po-

tentes do mundo neste momento (Stampede), no que os algoritmos desta tese

teñen un desempeño que sobrepasa en moitos escenarios ao de algoritmos im-

plementados en runtimes máis optimizados para dito sistema, traballo do que

se derivou unha publicación que está sendo considerada para a súa publicación

[61].





Contents

Preface 1

1. Background and State-of-the-art in Collective Operations 5

1.1. Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. PGAS Programming Model . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Introduction to UPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Collective Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Conclusions of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Characterization of UPC Performance 15

2.1. Representative Benchmarks for UPC Performance Characterization . 16

2.1.1. NAS Parallel Benchmarks (NPB) . . . . . . . . . . . . . . . . 17

2.1.2. Matrix Multiplication and Stencil Kernels Benchmarks . . . . 22

2.2. Other UPC Performance Studies . . . . . . . . . . . . . . . . . . . . 25

2.3. Conclusions of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. UPC Operations Microbenchmarking Suite: UOMS 29

3.1. Benchmarking Suites in HPC . . . . . . . . . . . . . . . . . . . . . . 30

3.2. Design of UPC Operations Microbenchmarking Suite . . . . . . . . . 32

xxxiii



xxxiv CONTENTS

3.3. UOMS Benchmarking Units . . . . . . . . . . . . . . . . . . . . . . . 33

3.4. UOMS Options and Compiling Parameters . . . . . . . . . . . . . . . 37

3.5. Conclusions of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. Design of Scalable PGAS Collective Algorithms 41

4.1. UPC Collective Operations . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1. Relocalization Operations . . . . . . . . . . . . . . . . . . . . 42

4.1.2. Computational Operations . . . . . . . . . . . . . . . . . . . . 45

4.1.3. Data Distribution Groups . . . . . . . . . . . . . . . . . . . . 47

4.2. Design of Scalable Collective Operations for PGAS Languages . . . . 48

4.2.1. Broadcast and Baseline Algorithm . . . . . . . . . . . . . . . . 49

4.2.2. Particularities of Scalable Scatter/Gather Operations . . . . . 57

4.2.3. Particularities of Scalable Reduce Operations . . . . . . . . . 62

4.2.4. Summary of the Implemented Algorithms . . . . . . . . . . . 66

4.2.5. Gather all, Exchange, Permute and Prefix Reduce Optimization 67

4.3. Conclusions of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Perf. Evaluation of PGAS Collectives on NUMA Systems 73

5.1. Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 73

5.2. Scalability and Performance of UPC Broadcast . . . . . . . . . . . . . 80

5.3. Scalability and Performance of UPC Reduce . . . . . . . . . . . . . . 85

5.4. Scalability and Performance of UPC Scatter . . . . . . . . . . . . . . 94

5.5. Scalability and Performance of UPC Gather . . . . . . . . . . . . . . 104

5.6. Comparative Perf. Analysis of NUMA Algorithms against MPI . . . . 104

5.7. Impact on Perf. of Different Optimizations at High Core-Counts . . . 116



CONTENTS xxxv

5.8. Conclusions of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 120

6. Perf. Evaluation of PGAS Collectives on Manycore Systems 123

6.1. Algorithms Implemented in Intel MPI and MVAPICH2 . . . . . . . . 124

6.2. Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 125

6.3. UPC Collective Performance Scalability on Xeon Phi . . . . . . . . . 128

6.4. MPI Collective Performance Scalability on Xeon Phi . . . . . . . . . 133

6.5. Collective Operations Performance on Xeon versus Xeon Phi . . . . . 138

6.6. UPC versus MPI Collective Operations Performance on Xeon Phi . . 146

6.7. Impact of Runtime Configuration (pthreads vs. processes) on Xeon

Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8. Conclusions of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 152

Conclusions and Future Work 153

References 159

Appendix: UOMS User Manual 177





List of Algorithms

1. Pseudocode of broadcast algorithm with pull approach and message

pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2. Pseudocode of scatter algorithm with pull approach and message pipelin-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3. Pseudocode of gather algorithm with push approach and message pipelin-

ing (1 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. Pseudocode of gather algorithm with push approach and message pipelin-

ing (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5. Pseudocode of scatter algorithm with pull approach on a ring . . . . . 63

6. Pseudocode of gather algorithm with push approach on a ring . . . . . 64

7. Pseudocode of reduce algorithm with push approach . . . . . . . . . . 65

xxxvii





List of Tables

4.1. Summary of the Optimized PGAS Collective Algorithms Implemented.

Scatter and gather collectives with tree-based algorithms use normal

binomial trees with binding. . . . . . . . . . . . . . . . . . . . . . . . 66

5.1. Bandwidth pull approach algorithm and the pull algorithm with static

fragmentation and flat trees, in Finis Terrae, Superdome, SVG, JUDGE

and JuRoPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xxxix





List of Figures

1.1. Distribution of arrays in shared memory in UPC . . . . . . . . . . . . 10

2.1. Performance of NPB kernels on hybrid shared/distributed memory . . 19

2.2. Performance of NPB kernels on shared memory . . . . . . . . . . . . 21

2.3. Performance of UPC, MPI and OpenMP matrix multiplication im-

plementations in Finis Terrae . . . . . . . . . . . . . . . . . . . . . . 23

2.4. Performance of UPC, MPI and OpenMP Sobel kernels implementa-

tions in Finis Terrae . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Output example of UOMS . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2. UPC broadcast latency on Finis Terrae (3D plot example) . . . . . . 37

4.1. Broadcast operation in UPC . . . . . . . . . . . . . . . . . . . . . . . 42

4.2. Scatter operation in UPC . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3. Gather operation in UPC . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4. Gather all operation in UPC . . . . . . . . . . . . . . . . . . . . . . . 44

4.5. Exchange operation in UPC . . . . . . . . . . . . . . . . . . . . . . . 45

4.6. Permute operation in UPC . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7. Reduce operation in UPC . . . . . . . . . . . . . . . . . . . . . . . . 46

xli



xlii LIST OF FIGURES

4.8. Prefix reduce operation in UPC . . . . . . . . . . . . . . . . . . . . . 47

4.9. Software stack of the developed PGAS collectives . . . . . . . . . . . 49

4.10. General overview of the scalable algorithm for collective operations

on NUMA clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11. Tree mapping with a power of 2 number of cores . . . . . . . . . . . . 54

4.12. Tree mapping with a non power of 2 number of cores . . . . . . . . . 55

4.13. Dissemination barrier algorithm for prefix reduce operation . . . . . . 70

5.1. Finis Terrae node architecture . . . . . . . . . . . . . . . . . . . . . . 74

5.2. Superdome node architecture . . . . . . . . . . . . . . . . . . . . . . 75

5.3. SVG 2011 node architecture . . . . . . . . . . . . . . . . . . . . . . . 76

5.4. JUDGE node architecture . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5. JuRoPA node architecture . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6. Broadcast performance and scalability on Finis Terrae . . . . . . . . . 81

5.7. Broadcast performance and scalability on Superdome . . . . . . . . . 83

5.8. Broadcast performance and scalability on SVG . . . . . . . . . . . . . 84

5.9. Broadcast performance and scalability on JUDGE . . . . . . . . . . . 86

5.10. Broadcast performance and scalability on JuRoPA . . . . . . . . . . . 87

5.11. Reduce performance and scalability on Finis Terrae . . . . . . . . . . 89

5.12. Reduce performance and scalability on Superdome . . . . . . . . . . . 90

5.13. Reduce performance and scalability on SVG . . . . . . . . . . . . . . 92

5.14. Reduce performance and scalability on JUDGE . . . . . . . . . . . . 93

5.15. Reduce performance and scalability on JuRoPA . . . . . . . . . . . . 95

5.16. Scatter performance and scalability on Finis Terrae . . . . . . . . . . 97

5.17. Scatter performance and scalability on Superdome . . . . . . . . . . . 99



LIST OF FIGURES xliii

5.18. Scatter performance and scalability on SVG . . . . . . . . . . . . . . 100

5.19. Scatter performance and scalability on JUDGE . . . . . . . . . . . . 102

5.20. Scatter performance and scalability on JuRoPA . . . . . . . . . . . . 103

5.21. Gather performance and scalability on Finis Terrae . . . . . . . . . . 105

5.22. Gather performance and scalability on Superdome . . . . . . . . . . . 106

5.23. Gather performance and scalability on SVG . . . . . . . . . . . . . . 107

5.24. Gather performance and scalability on JUDGE . . . . . . . . . . . . 108

5.25. Gather performance and scalability on JuRoPA . . . . . . . . . . . . 109

5.26. Comparison of broadcast scalability of NUMA-based algorithms against

MPI on JuRoPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27. Comparison of reduce scalability of NUMA-based algorithms against

MPI on JuRoPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.28. Comparison of scatter scalability of NUMA-based algorithms against

MPI on JuRoPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.29. Comparison of gather scalability of NUMA-based algorithms against

MPI on JuRoPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.30. Impact of message pipelining in broadcast performance . . . . . . . . 117

5.31. Impact of multilevel trees in broadcast performance . . . . . . . . . . 119

6.1. Stampede node architecture . . . . . . . . . . . . . . . . . . . . . . . 127

6.2. UPC broadcast performance and scalability on Xeon Phi . . . . . . . 130

6.3. UPC scatter performance and scalability on Xeon Phi . . . . . . . . . 131

6.4. UPC gather performance and scalability on Xeon Phi . . . . . . . . . 132

6.5. MPI broadcast performance and scalability on Xeon Phi . . . . . . . 135

6.6. MPI scatter performance and scalability on Xeon Phi . . . . . . . . . 136



xliv LIST OF FIGURES

6.7. MPI gather performance and scalability on Xeon Phi . . . . . . . . . 137

6.8. Performance comparison of UPC broadcast algorithms, for Xeon and

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.9. Performance comparison of UPC scatter algorithms, for Xeon and

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.10. Performance comparison of UPC gather algorithms, for Xeon and

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.11. Performance comparison of MPI broadcast algorithms, for Xeon, Xeon

Phi and hybrid Xeon + Xeon Phi . . . . . . . . . . . . . . . . . . . . 143

6.12. Performance comparison of MPI scatter algorithms, for Xeon, Xeon

Phi and hybrid Xeon + Xeon Phi . . . . . . . . . . . . . . . . . . . . 144

6.13. Performance comparison of MPI gather algorithms, for Xeon, Xeon

Phi and hybrid Xeon + Xeon Phi . . . . . . . . . . . . . . . . . . . . 145

6.14. Performance comparison of MPI and UPC broadcast algorithms, for

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.15. Performance comparison of MPI and UPC scatter algorithms, for

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.16. Performance comparison of MPI and UPC gather algorithms, for

Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.17. Impact of number of pthreads per process on UPC broadcast perfor-

mance and scalability on Xeon Phi . . . . . . . . . . . . . . . . . . . 151



Preface

Processor manufacturing hit the power wall nearly 10 years ago. As a result the

microprocessor industry was forced to embrace a new era where the performance for

new generation microprocessors came mainly from exposing more parallelism, rather

than increased frequency. This posed a major shift in the industry, whose conse-

quences are still difficult to deal with today. As a result current computer systems

are based on multicore chips, which are constantly increasing their number of cores.

This scenario, and particularly the new multicore processor architectures, heightens

the importance of memory performance and scalability. The inclusion of the memory

controller inside the processor’s chip helps to minimize the issues associated with the

access to shared memory from multicore chips. As a result, currently most systems,

both single socket and multi-socket, have Non Uniform Memory Access (NUMA)

architectures, as now processors package several memory controllers in a single chip.

NUMA architectures provide scalability through the replication of paths to main

memory, reducing the memory bus congestion as long as the accesses are evenly

distributed among all the memory modules. This scalability is key for applications

running on thousands of cores. The supercomputing community is now hitting a

new power wall, where the power budget for supercomputers cannot grow anymore.

As a result new creative ways are needed to circumvent this limitation. New ap-

proaches propose using small low-power processors like the ones used in cell phones

(ARM) [92], with promising results. However, nowadays solutions rely in power-

hungry manycore microarchitectures, such as Graphic Processing Units (GPUs) or

Many Integrated Core (MICs) coprocessors, but with a good MFLOPS/Watt ratio.

The emergence of these manycore devices has caused major changes in the HPC

community. It has introduced a new level of complexity that the application devel-

opers have to deal with, adapting their applications to the new hardware, the new

1
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levels of memory hierarchy present in the new processors, and the new APIs.

As a result of this ever increasing complexity, the HPC community has proposed

new ways to program current systems. In the last few years a new programming

model, Partitioned Global Address Space (PGAS), is becoming more popular. De-

spite not having the relevance of MPI, different important research groups are fo-

cusing on PGAS languages due to their potential [20]. One of their main features,

one-sided asynchronous memory copies, has been already adopted in MPI. This

feature can have an important role in the design of the ever important collective

operations in scenarios with thousands of cores, where synchronizations becomes

especially costly. Given this confluence of factors –complex hardware architectures

with deeper memory hierarchies, new programming models and the importance to

have efficient and scalable collective operations– this Thesis has designed, imple-

mented and evaluated a set of collective operations in Unified Parallel C (UPC) –a

PGAS language–.

Evaluation of performance is a central task in the development of HPC libraries

of any kind. However, focusing on collectives for UPC, there is a lack of tools to

assess methodically the performance of these libraries. As a prerequisite for the

design and implementation of highly scalable collective algorithms, such a tool has

been developed as part of this work, constituting one of the major contributions of

this Thesis, as it provides a reference tool, equivalent to the Intel MPI Benchmarks

for MPI runtimes.

The contents of this Ph.D. Thesis are organized as follows:

Chapter 1, Background and State-of-the-art in Collective Operations provides

the reader with an insightful explanation of the issues of programming modern

high performance computing hardware, and how this affects the programming

models used in this field. It continues with a description of the PGAS pro-

gramming model, and an introduction of UPC as a popular PGAS language.

Lastly, it provides a complete explanation of the state-of-the-art algorithms

for collective operations.

Chapter 2, Characterization of UPC Performance analyzes the performance

of UPC in popular benchmarks, assessing its suitability for high performance
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computing and postulating it as a candidate for the programming of current

and future systems.

Chapter 3, UPC Operations Microbenchmarking Suite: UOMS describes the

design and implementation of the first microbenchmarking suite for UPC, ex-

plaining all the benchmarks included in the suite and various options available.

Chapter 4, Design of Scalable PGAS Collective Algorithms details the design

of the proposed PGAS collectives, and all the optimizations implemented in

them. However, introductorily, it describes the existing collectives in UPC.

Given that not all the operations distribute data equally, implementation de-

tails are discussed, with particular emphasis on collectives that fit tree struc-

tures.

Chapter 5, Perf. Evaluation of PGAS Collectives on NUMA Systems analyzes

the performance of the proposed algorithms for broadcast, reduce, scatter and

gather in 5 different NUMA architectures. Comparisons with the reference

implementation, and with the state-of-the-art collective library in UPC have

been made. Additionally, the performance of a leading MPI implementation

is compared with the performance of the proposed algorithms, and the impact

of the different optimizations has been assessed and explained here.

Chapter 6, Perf. Evaluation of PGAS Collectives on Manycore Systems ana-

lyzes the performance of the proposed algorithms for broadcast, scatter and

gather in a manycore system, paying special attention to how they compare

with the best of class algorithms for MPI for this platform, including manycore-

optimized MPI runtimes.

Conclusions and Future Work closes this Thesis, summarizing the conclusions

and describing future lines of work.

Additionally, the user manual of the UPC Operations Microbenchmarking Suite

is included as an appendix.





Chapter 1

Background and State-of-the-art

in Collective Operations

The hardware used in current supercomputers has been following a trend since

it hit the power wall, where the increase in performance came from exposing more

parallelism –i.e. implementing multicore chips– instead of developing larger cores

with higher clock speeds [49]. This poses a significant change, since now applica-

tions do not get a performance boost just by simply replacing the processor. Now

parallelism at various levels becomes indispensable to achieve performance. In order

to help programmers to cope with this new challenge, different programming models

have been proposed. These new programming models open the opportunity to de-

velop algorithms in more expressive ways. Collective operations, traditionally a key

part of message-passing software, due to its convenience and optimized algorithms,

can benefit from some of the features proposed by these new programming models.

This Chapter briefly discusses the most relevant programming models for High

Performance Computing (HPC) in Section 1.1. Sections 1.2 and 1.3 complement

the previous Section providing an overview of the Parallel Global Address Space

(PGAS) programming model and its incarnations, as well as an introduction to

Unified Parallel C (UPC). Section 1.4 provides a deep explanation of current state-

of-the-art collective algorithms. Finally, Section 1.5 concludes the Chapter and

discusses how PGAS features bring new opportunities for optimization of collective

operations.

5
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1.1. Programming Models

In the current multipetascale era, the discussion about programming models

is becoming increasingly important. The complex modern hardware architectures

require the use of multiple levels of paralellization. For internode parallelization,

the message-passing is the most widely used parallel programming model as it is

portable, scalable and provides good performance for a wide variety of computing

platforms and codes. As the programmer has to manage explicitly data placement

through point-to-point or collective operations, the programming of message passing

software is difficult. MPI is the standard interface for message-passing libraries and

there is a wide range of MPI implementations, both from HPC vendors and the

free software community, optimized for high-speed networks, such as InfiniBand or

Myrinet. MPI, although is oriented towards distributed memory environments, faces

the raise of the number of cores per system with the development of efficient shared

memory transfers and providing thread safety support.

For the intranode parallelization OpenMP is the most widely used solution, as

it allows an easy development of parallel applications through compiler directives,

that mainly distribute the work to be done between a number of threads. More-

over, it is becoming more important as the number of cores per system increases.

However, as this model is limited to shared memory architectures, the performance

is bound to the computational power of a single system. To avoid this limitation,

hybrid systems, with both shared/distributed memory, such as multicore clusters,

can be programmed using MPI+OpenMP. However, this hybrid model can make

the parallelization more difficult and the performance gains could not compensate

for the effort [89, 90]. In the last incarnation of OpenMP [83] –4.0 heavily influenced

by OmpSs [17]– the concept of tasks becomes more important, as dependencies be-

tween tasks can be specified, allowing the runtime to create a graph that exposes

more parallelism and hence increase efficiency of multi- and manycore systems.

In the last years, modern HPC systems have incorporated accelerators to boost

computational power. This has introduced yet another level of complexity that re-

quires programmers to deal with another programming model. This way, CUDA [74]

(for NVIDIA accelerators) and OpenCL [99] (for NVIDIA and AMD accelerators)

implement programming models focused on the efficient exploitation of accelerators
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with massive amounts of concurrent threads. Intel has also released their MIC –

Many Integrated Core– architecture [41], based on x86 processors, that incorporates

up to 61 cores in a coprocessor with very wide vector units, whose target is to pro-

vide a significant performance boost without requiring a complete rewriting of the

applications.

The PGAS programming model combines some of the main features of the

message-passing and the shared memory programming models. In PGAS languages,

each thread has its own private memory space, as well as an associated shared mem-

ory region of the global address space that can be accessed by other threads, although

at a higher cost than a local access. Thus, PGAS languages allow shared memory-

like programming on distributed memory systems. Moreover, as in message-passing,

PGAS languages allow the exploitation of data locality as the shared memory is par-

titioned among the threads in regions, each one with affinity to the corresponding

thread.

1.2. PGAS Programming Model

The PGAS programming model has its origins in the appearance of the SHMEM

(Symmetric Hierarchical Memory) [3] and Global Arrays libraries [75, 76, 85], around

1994. SHMEM is a family of libraries initially developed by Cray for its T3D super-

computer, that provides a shared-memory-like API to access memory in distributed

memory systems. Likewise, Global Arrays is a toolkit developed by Pacific North-

west National Laboratory, that also provides a shared-memory-like API, and was

developed with portability and efficiency in mind.

Acknowledging the potential of these libraries, a series of extensions were pro-

posed to popular languages, in order to provide PGAS features to them. This way,

Co-Array Fortran (CAF) [79, 80] is based on Fortran 95, adding PGAS support to

it. CAF was included in the Fortran 2008 standard, becoming now an important

part of the Fortran language. Unified Parallel C (UPC) [114] is based in C99, and

adds support for declaring shared variables among UPC threads, as well as its dis-

tribution. It also provides a set of libraries. Titanium [121] is a PGAS extension to

Java, whose code normally is compiled to native code instead of the byte code that
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runs in Java Virtual Machines.

Besides these extensions, the Defense Advanced Research Projects Agency (DARPA)

of the United States of America developed the High Productivity Computing Sys-

tems (HPCS) programme, resulting in funding for the development of high produc-

tivity parallel languages. Each of these languages have been designed from scratch,

incorporate PGAS features, and has been developed by a different vendor. X10

[10, 36] is an object oriented language developed by IBM, with two levels of concur-

rency, one for shared memory environments and another one for distributed memory,

mapping accordingly to a cluster architecture. Chapel [7, 13] has been developed

by Cray, with data and task parallelization as the main focus. Fortress [84, 98] is

the Sun Microsystems (now Oracle) proposal for the HPCS, with implicit parallel

features and advanced mathematical notation.

In the last few years, the library approach to PGAS has been also materialized

basically in two libraries. OpenSHMEM [9] is the standard promoted after SHMEM,

to ensure portability and avoid vendor lock in. Global Address Space Programming

Interface (GASPI) [23] is another promising library, that allows to define different

memory segments and provides advanced PGAS features.

Despite their differences, all these PGAS languages and libraries provide the

programmer with the possibility of accessing remote memory directly, without in-

tervention of the process whose memory is being accessed.

1.3. Introduction to UPC

UPC is the PGAS extension to the ISO C99 language, and has been used in

this evaluation due to its important support by academia and industry. UPC pro-

vides PGAS features to C, allowing a more productive code development than other

alternatives like MPI [19, 105]. Due to its programmability and performance –as

well as being an extension of a popular programming language–, UPC has being in

the focus of the research community for some time. There are commercial –IBM,

Cray, HP– implementations, as well as more open initiatives –from the University of

California Berkeley, Michigan Technological University, Intrepid/GCC, Ohio State

University–, and optimized runtimes are available for all the major –and some minor,
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like the Tile64 processor [96]– platforms [35, 51, 56]. Recently, even GPU support

was proposed and implemented [11], underlying the importance of UPC. However,

as an emerging programming model, performance analysis are needed [6, 18, 22].

In the memory model defined by UPC, there are two very well differentiated

regions: private and shared. The private region of a UPC thread is the same as a

private region of a process. That is, belongs exclusively to that UPC thread, and no

other UPC thread can directly access it. The shared region is the memory part that

is readable and writeable by all the UPC threads in the job. However, this shared

memory is divided in blocks, each of which has affinity –hence faster access– to one

UPC thread.

The programmer can define any kind of variable to be either private –by default–

or shared, using the shared qualifier. In the case of defining shared arrays, the

programmer can specify the blocking factor. I.e.: How many contiguous elements of

the array belong to each thread. There are 4 ways to specify the blocking factor:

Avoiding the use of the blocking factor: shared int A[N]. Implies a distri-

bution with a block factor of 1.

Using an empty blocking factor: shared [] int A[N]. Implies that the array

is stored completely in the shared memory with affinity to the thread 0, i.e. a

blocking factor of N.

Using an explicit blocking factor: shared [2] int A[N]. Implies that the

block factor is 2, i.e.: any given thread will hold in its shared memory 2

consecutive elements of the array.

Using an automatic blocking factor: shared [*] int A[N]. In this case the

runtime will determine the blocking factor, trying to use a blocking factor as

big as possible, a fair distribution among threads but without allocating more

than one block per thread. I.e. a blocking factor of b(N + THREADS −
1)/THREADSc.

Figure 1.1 illustrates how the different blocking factors affect the distribution of

arrays in UPC.
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Thread 0 Thread 1 Thread 2 Thread N......

shared int A[N]

shared [] int B[3]

shared [2] int C[5]

shared [*] int D[(N*2)-1]

Figure 1.1: Distribution of arrays in shared memory in UPC

Memory, as in C, can be accessed with pointers. However, the addition of the

shared memory space creates 4 possible situations:

Private pointer to private memory. These are the regular C pointers.

Private pointer to shared memory. These pointers allow UPC threads to keep

references to shared memory in their private memory.

Shared pointer to private memory. These pointers should be avoided. The

pointers to private memory regions should not be allocated in the shared re-

gion, as it can lead to wrong memory accesses, due to potentially different

private memory addresses of each variable.

Shared pointer to shared memory. These pointers allow to share references to

shared memory regions among different UPC threads.

Access to shared memory can be done just by referencing the desired variable,

regardless of which threads owns that particular variable. However, there are a set

of memory operations provided in order to perform copies of multiple elements at

once. UPC initially provided upc memcpy, upc memget and upc memput. upc memcpy

copies data from one shared memory location to another shared memory location.

upc memget and upc memput operate similarly, but copying data from/to shared

memory into/from private memory. This allows implicit parallelism and overlapping

when distributing data, as multiple operations can be initiated simultaneously, one

from each thread. This is of upmost importance in the design of PGAS collective
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operations, as explained in Chapter 4, resulting in two variants: Pull and push,

depending on the nature of the collective.

In the last UPC specification, 1.3 [115, 116, 117], there are also the non-blocking

variants of these operations. The non-blocking variants have been proposed by the

University of California Berkeley, and have been implemented in Berkeley UPC [51]

before the last UPC specification.

The one-sided memory operations provided by UPC are a natural way of moving

data in this language. Due to its asynchronicity, were UPC threads involved –source

and destination– do not need to agree in establishing a communication, they are a

powerful foundation for the implementation of collective operations.

1.4. Collective Operations

The optimization of middleware for HPC is a complex task. It might involve all

the layers of the runtime, and it should evolve with new versions of the language and

library APIs [42, 122]. Within the runtime optimization, one of the most important

points is the optimization of the collective operations, as most applications rely on

them, both for programmability, as they implement popular operations, relieving

the programmer from its error prone implementation, and also for performance, as

they generally implement optimized and refined algorithms. Collective operations

are usually key to achieve a good scalability. There are basically two approaches for

the optimization of collective operations: the algorithmic and the system approach.

The algorithmic approach focuses on how the data is transferred and how the

processes are organized. Not all algorithms can be suitable or implemented for

all systems. Previous works on this field can be split between two main groups:

distributed memory algorithms and shared memory algorithms, which target the

main current architectures.

Kandalla et al. [46] developed and tested a topology-aware algorithm that builds

the interconnect tree on InfiniBand clusters taking into account the process place-

ment in relation to the switches, avoiding unnecessary switch hops. Similarly, Gong

et al. developed an algorithm for MPI collectives in the cloud [28]. Bibo Tu et al.
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[113] described a new broadcast algorithm for multicore clusters. In this algorithm

two sets of communicators were used. The first one for intranode communications,

where binding is used to improve locality within a node. The second one is for

internode communications. This way a broadcast is performed in two steps, inter-

and intranode transfer steps, avoiding the network interface congestion. Kumar et

al. [50] designed and evaluated an all-to-all algorithm for multicore clusters. This

algorithm is similar to the Bibo Tu’s broadcast algorithm, in the sense that is per-

formed in two steps. Chan et al. [8] proposed an algorithm that takes advantage of

architectures with multiple links, where messages can be sent simultaneously over

different links in systems with N -dimensional meshes/tori. Kandalla et al. [47] also

proposed a design for broadcast, reduce and allreduce operations on symmetric sce-

narios on Xeon Phi. Their design minimizes the use of the PCIe bus and always uses

a process on the main processor to communicate with remote nodes. This is the

only design specifically targeting Xeon Phi coprocessors. However, it is just valid

for hybrid scenarios, involving both Xeon Phi and main processors, and can not be

applied to native scenarios (Xeon Phi only), where there are not main processors

involved. To solve that Potluri et al. [86] proposed the use of an proxy service

running on the main processor, even if the main processor is not used in the job.

Intel followed a similar approach with their Coprocessor Communication Link proxy

(CCL-proxy) for Intel MPI.

Other works have focused on optimizations for shared memory. Nishtala et al.

[77] conducted a series of experiments in three shared memory systems, based on

multicore processors, using k-nomial trees for representing the virtual topology of the

processes. These experiments demonstrated that for each architecture and message

size the optimal radix of the k-nomial trees is different. Graham et al. [33] designed

and tested a series of algorithms for shared memory, each one appropriate for a set of

functions and message sizes. The described algorithms are basically fan-in or fan-out

trees of variable radix; reduce-scatter (each process reduces its data) followed by a

gather or all-gather; and a recursive doubling algorithm. Ramos et al. [94] modelled

collective communications for cache coherent systems, and proposed enhancements

for Xeon Phi taking into account the specific details of its cache implementation.

As expected, every algorithm is the best performer for some setups, whereas not

optimal for others.
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Additionally, there are some works that aimed to optimize both shared and dis-

tributed memory architectures, such as the work of Mamidala et al. [65], which

implements and evaluates similar algorithms to the previous works. A work closer

to the work done on this Thesis is the multi-leader algorithm proposed by Kandalla

et al. [45]. This proposal is similar to Bibo Tu’s broadcast algorithm, except for us-

ing more than one leader per node, initially considering only the allgather operation.

Nishtala et al. [78] leveraged shared memory and trees to optimize collectives and

explore their autotuning possibilities. Qian [88] followed a similar path to Kandalla

et al. and proposed a series of algorithms mainly focused on all-to-all and allgather,

targeting multicore systems with multiple connections per node, as well as optimiz-

ing the algorithms for cases where different processes arrive at the collective at a

different time.

The algorithms considered in the related work are usually independent of their

actual implementation in a particular language. However, they have been generally

developed using MPI or UPC. Usually there is no algorithm that always outperforms

the others. In fact, the performance of an algorithm depends on three factors: (1)

message size, (2) number of processes involved, and (3) the hardware, including the

network topology . Providing the best algorithm for each setup and message size

is the optimum approach, as demonstrated in [106]. However, selecting among the

algorithms entails a significant effort, as they are highly dependent on the system.

The solution typically relies on autotuning [118], generally based on an automatic

performance characterization of each algorithm for a wide range of setups.

Furthermore, it is possible to adapt the runtimes to the underlying hardware.

This typically rely on adding software features in order to achieve a better usage of

the hardware, or adapting hardware specific layers to a given architecture, e.g., the

network layer. Miao et al. [69] proposed a single copy method to take advantage of

shared memory architectures, avoiding the system buffer. The proposal of Trahay

et al. relies on a multithreaded communication engine to offload small messages

[112]. Brightwell et al. [4] propose the sharing of page tables between processes,

speeding up applications performance. Hoefler et al. [34] proposed the use of mul-

ticast in networks, resulting in highly scalable operations, but just valid for very

small messages. Velamati et al. [119] designed a set of algorithms for MPI collec-

tive operations for the heterogeneous Cell processor. More recently, Li et al. [53]
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have proposed a NUMA-aware multithreaded MPI runtime, where MPI ranks are

implemented as threads as opposed to processes, and they have implemented and

evaluated algorithms for allreduce in this runtime. Regarding experiences with Xeon

Phi and UPC, Luo et al. [57] performed the first general performance evaluation

of UPC and MPI on Xeon Phi, slightly covering point to point and collective com-

munication performance, and computational kernels. Potluri et al. [87] optimized

MVAPICH2 for Xeon Phi by leveraging the Symmetric Communications InterFace

(SCIF), a low level API that allows to control the DMA engines.

The work done up to now successfully adapted collectives to different archi-

tectures. However, it does not combine one-sided communications –so common in

PGAS languages–, pipelining/overlapping and hierarchical trees. New NUMA ar-

chitectures and manycore coprocessors with direct access to the network can benefit

from these features.

1.5. Conclusions of Chapter 1

The scientific community have seen a growing number of programming models

in the last years. Some of them address the complexity of process communication in

distributed memory systems, incorporating new features. PGAS, with its inherent

easiness for remote memory access, is the most promising alternative to traditional

message-passing.

Research on collective operations has been an ongoing topic for computer scien-

tist working on optimization of parallel runtimes for a number of years. Typically,

changes in the underlying hardware opened a door to new optimizations to better

utilize the system resources. Now, with the blooming potential of UPC, a new door

has been opened to develop new algorithms that efficiently exploit one-sided remote

memory accesses and that are aware of the substantial changes that are taking place

in processors architectures.

The next Chapter of this Thesis will characterize the performance of UPC, as a

representative PGAS language, to assess its suitability as a language for HPC, and

as an alternative to MPI. Most current systems are NUMA clusters, which motivates

this characterization to be focused in such architectures.



Chapter 2

Characterization of UPC

Performance

The PGAS paradigm has been proposed as a programming model with substan-

tial benefits over more traditional models such as message-passing. The distributed

shared memory and one-sided memory copies make it an attractive alternative for

scientific computing, where programmers typically are more focused on their field

of study than on explicitly managing low-level functions. However, without efficient

compilers and runtimes that can extract significant performance out of the hard-

ware they are running on, PGAS alternatives such as UPC cannot be considered as

a viable approach for future HPC. Nevertheless, the value of the PGAS approach

has been already validated. The PGAS extension to Fortran –Co-Array Fortran–,

equivalent to UPC for the C language, has been used successfully [72], reaching goals

that are not attainable by traditional message-passing and underlining the potential

of the PGAS approach. Given the focus on UPC of this Thesis, this Chapter ana-

lyzes the behavior of UPC, comparatively with MPI. For this, the most important

benchmarks have been used. Section 2.1 explains the benchmarks and analyzes the

benchmark results. Section 2.2 exposes additional UPC performance analyses, done

by other researchers. Section 2.3 summarizes the conclusions of the Chapter.

15
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2.1. Representative Benchmarks for UPC Perfor-

mance Characterization

The number of benchmarks available that support the direct comparison of UPC

and MPI is quite reduced. One of this benchmarks is the de-facto standard for bench-

marking HPC systems, the NAS Parallel Benchmarks [2, 73]. Due to its importance

and availability they have been used in a wide amount of performance comparisons

[1, 43, 64, 93, 95]. Additionally, the NPB implemented in UPC have been already

studied in the past, making comparisons between UPC, MPI and OpenMP. Jin et

al. [44] developed in UPC their own implementation of the 3 pseudo application

codes contained in the NPB –ST, BT and LU–, and compared then with a C imple-

mentation of the NPB, using MPI to communicate between processes. They have

used the B class –a medium problem size– in 2 different systems. Their findings

revealed a performance practically equivalent between the UPC and C+MPI imple-

mentations of the NPB. El-Ghazawi and Cantonnet [18] compared the performance

of NPB-MPI –implemented in Fortran– with NPB-UPC on a 16 processor Com-

paq AlphaServer SC cluster, using the class B workload. Cantonnet et al.[6] used

two SGI Origin NUMA machines, each one with 32 processors, using the class A

workload for 3 NPB kernels. El-Ghazawi et al. [21] compared MPI with UPC very

briefly using 2 NPB kernels and class B, in a Cray X1 machine. However, none

of these comparisons accounted for modern NUMA hardware using large workloads

–class C– as does Subsection 2.1.1. Besides the NPB, matrix multiplication and

stencil-like computations are two typical computational kernels widely extended in

many scientific applications. Therefore Subsection 2.1.2, assesses the scalability of

matrix multiplication kernels in distributed memory paradigms, and a Sobel edge

detector.

The testbed used in this analysis is the Finis Terrae supercomputer [107], com-

posed of 142 HP Integrity rx7640 nodes, each one with 8 Montvale Itanium 2 dual-

core processors (16 cores per node) at 1.6 GHz and 128 GB of memory, intercon-

nected via InfiniBand. The InfiniBand HCA is a dual 4X IB port (16 Gbps of the-

oretical effective bandwidth). For the evaluation of the hybrid shared/distributed

memory scenario, 8 nodes have been used (up to 128 cores). The number of cores

used per node in the performance evaluation is dn/8e, being n the total number of
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cores used in the execution, with consecutive distribution. An HP Integrity Super-

dome system with 64 Montvale Itanium 2 dual-core processors (total 128 cores) at

1.6 GHz and 1 TB of memory has also been used for the shared memory evaluation.

The nodes were used without other users processes running, and the process affinity

was handled by the operating system scheduler.

The MPI library is the recommended by the hardware vendor, HP MPI 2.2.5.1

using InfiniBand Verbs (IBV) for internode communication, and shared memory

transfers (HP MPI SHM driver) for intranode communication. The UPC compiler

is Berkeley UPC 2.8, which uses the IBV driver for distributed memory communica-

tion, and POSIX threads (from now on pthreads) within a node for shared memory

transfers. The backend for both and OpenMP compiler is the Intel 11.0.069.

2.1.1. NAS Parallel Benchmarks (NPB)

The NPB consist of a set of kernels and pseudo-applications, taken primarily

from Computational Fluid Dynamics (CFD) applications. These benchmarks re-

flect different kinds of computation and communication patterns that are important

across a wide range of applications, which makes them the de facto standard in par-

allel performance benchmarking. There are NPB implementations available for a

wide range of parallel programming languages and libraries, such as MPI (from now

on NPB-MPI), UPC (from now on NPB-UPC), OpenMP (from now on NPB-OMP),

a hybrid MPI+OpenMP implementation (not used in this comparative evaluation as

it implements benchmarks not available in NPB-UPC), HPF and Message-Passing

Java [64], among others. The most used subset of the NPB are the kernels Conju-

gate Gradient (CG), Embarrassingly Parallel (EP), Fourier Transform (FT), Integer

Sort (IS) and Multi Grid (MG). All these kernels use double precision, except IS,

that operates with integer data. Additionally, the original NPB specification also

contained three pseudo-applications: Block Tridiagonal solver (BT), Scalar Pen-

tadiagonal solver (SP) and Lower-Upper Gauss-Seidel solver (LU). For all these

benchmarks there are different sizes defined, ranging from class A –the smaller– to

class E.

The NPB selected for evaluation are: CG, EP, FT, IS and MG. The CG ker-

nel is an iterative solver that tests regular communications in sparse matrix-vector
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multiplications. The EP kernel is an embarrassingly parallel code that assesses

the floating point performance, without significant communication. The FT kernel

performs series of 1-D FFTs on a 3-D mesh that tests aggregated communication

performance. The IS kernel is a large integer sort that evaluates both integer com-

putation performance and the aggregated communication throughput. MG is a

simplified multigrid kernel that performs both short and long distance communica-

tions. Moreover, each kernel has several workloads to scale from small systems to

supercomputers. NPB-MPI and NPB-OMP are implemented using Fortran, except

for IS which is programmed in C. The fact that the NPB are programmed in For-

tran has been considered as cause of a poorer performance of NPB-UPC [18], due

to better backend compiler optimizations for Fortran than for C.

Most of the NPB-UPC kernels [27] have been manually optimized through tech-

niques that mature UPC compilers should handle in the future: privatization, which

casts local shared accesses to private memory accesses, avoiding the translation from

global shared address to actual address in local memory, and prefetching, which

copies non-local shared memory blocks into private memory.

Performance of NPB Kernels on Hybrid Memory

Figure 2.1 shows NPB-MPI and NPB-UPC performance on the hybrid configura-

tion, using both InfiniBand and shared memory communication in the Finis Terrae

supercomputer. The left graphs show the kernels performance in MOPS (Million

Operations Per Second), whereas the right graphs present their associated speedups.

Regarding the CG kernel, MPI performs slightly worse than UPC using up to 32

cores, due to the kernel implementation, whereas on 64, and especially on 128 cores

MPI outperforms UPC. Although UPC uses pthreads within a node, its communica-

tion operations, most of them point-to-point transfers with a regular communication

pattern, are less scalable than MPI primitives, due to the contention caused by many

pthreads trying to communicate using the same instance of the UPC runtime.

EP is an embarrassingly parallel kernel, and therefore shows almost linear scala-

bility for both MPI and UPC. The results in MOPS are approximately 6 times lower

for UPC than for MPI due to the poorer UPC compiler optimizations. EP is the

only NPB-UPC kernel that has not been optimized through prefetching and/or pri-
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Figure 2.1: Performance of NPB kernels on hybrid shared/distributed memory
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vatization, and the workload distribution is done through a upc forall construct,

preventing more aggressive optimizations. Besides this, most of the time the EP

kernel is generating random numbers, meaning that it is compute bound. In this

case, the backend language (Fortran as opposed to C), can play a major role, as

demonstrated in [12, 44].

The performance of FT depends on the efficiency of the exchange collective

operations. Although the UPC implementation is optimized through privatization,

it presents significantly lower performance than MPI. The UPC results, although

significantly lower than MPI in terms of MOPS, show higher speedups than MPI.

This is a communication-intensive code that benefits from UPC intranode shared

memory communication, which is maximized on 64 and 128 cores.

The IS kernel is a quite communication-intensive code. Thus, both MPI and UPC

obtain low speedups for this kernel (less than 25x on 128 cores). Although UPC IS

has been optimized using privatization, the lower performance of its communications

limits its scalability, which is slightly lower than MPI speedups.

Regarding MG, MPI outperforms UPC in terms of MOPS, whereas UPC shows

higher speedup. The reason is the poor performance of UPC MG on one core, which

allows it to obtain almost linear speedups on up to 16 cores.

Performance of NPB Kernels on Shared Memory

Figure 2.2 shows NPB performance on the Superdome system. As in the hybrid

memory figures, the left graphs show the kernels performance in MOPS and the

right graphs show the speedups. MPI requires copying data on shared memory, and

therefore could be considered less efficient than the direct access to shared memory

of UPC and OpenMP. The following results do not support this hypothesis.

Regarding CG, all options show similar performance using up to 32 cores. How-

ever, for 64 and 128 cores UPC scalability is poor, whereas MPI achieves the best

MOPS results. The poor performance of OpenMP on one core leads OpenMP to

present the highest speedups on up to 64 cores, being outperformed by MPI on 128

cores.

As EP is an embarrassingly parallel code, the scalability shown is almost linear for
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Figure 2.2: Performance of NPB kernels on shared memory
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MPI, UPC, and OpenMP, although MPI obtains slightly higher speedups, whereas

OpenMP presents the lowest scalability. These results are explained by the efficiency

in data locality exploitation of these three options. In terms of MOPS, UPC shows

quite low performance, as already discussed in subsection 2.1.1.

As FT is a communication-intensive code, its scalability depends on the perfor-

mance of the communication operations. Therefore, OpenMP and MPI achieve high

speedups, whereas UPC suffers from a less scalable exchange operation. The code

structure of the OpenMP implementation allows more efficient optimizations and

higher performance. Due to its good scalability OpenMP doubles MPI performance

(in terms of MOPS) on 128 cores. UPC obtains the poorest performance.

IS is a communication-intensive code that shows similar performance for MPI,

UPC and OpenMP on up to 32 cores, both in terms of MOPS and speedups, as the

results on one core are quite similar among them. This fact can be partly explained

by the fact that the IS kernels use the same backend compiler (icc). Regarding 64

and 128 cores results, OpenMP obtains the best performance and MPI the lowest,

as the communications are the performance bottleneck of this kernel.

Regarding MG, MPI achieves better performance in terms of MOPS than UPC

and OpenMP, whereas UPC obtains the highest speedups, due to the poor perfor-

mance of this kernel on one core. OpenMP shows the lowest results, both in terms

of MOPS and speedups.

2.1.2. Matrix Multiplication and Stencil Kernels Benchmarks

Matrix multiplications and Stencil kernels are widely extended in scientific com-

putation. Therefore, versions of these kernels were developed for UPC and MPI

[25]. The matrix multiplication kernel implements a simple matrix multiplication

algorithm with blocking. The Stencil kernel implements the Sobel edge detector

algorithm, widely used in image processing, and that computes the gradient of the

image intensity function, relying just in integer data types.

Figures 2.3 and 2.4 show the results for the matrix multiplication and the So-

bel kernel. The matrix multiplication uses matrices of 2400×2400 doubles, with a

blocking factor of 100 elements, and the experimental results include the data dis-
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tribution overhead. The Sobel kernel uses a 65536×65536 unsigned char matrix and

does not take into account the data distribution overhead. The graphs show the

speedups on the hybrid scenario (MPI and UPC) and in the shared memory system

(UPC and OpenMP). The plots at the left show run time, whereas the plots at the

right show scalability.

The three programming models (PGAS, MPI and OpenMP) obtain similar speed-

ups on up to 8 cores. MPI can take advantage of the use of up to 128 cores,

whereas UPC (hybrid memory) presents poor scalability. In shared memory, UPC

and OpenMP show similar speedups up to 32 cores. However, on 128 cores UPC

achieves the best performance, whereas OpenMP suffers an important performance

penalty due to the sharing of one of the matrices. However, in UPC, this matrix is

copied to private space, thus avoiding shared memory access contention. MPI shows

better performance than OpenMP for this reason.

In the Sobel kernel results, because the data distribution overhead is not consid-

ered, the speedups are almost linear, except for UPC on the hybrid scenario, where

several remote shared memory accesses limit seriously its scalability. Nevertheless,

UPC on shared memory achieves the highest speedups as these remote accesses are

intraprocess accesses (UPC uses pthreads in this scenario).

2.2. Other UPC Performance Studies

During the last years the number of published work about UPC performance has

increased. Different studies have been made available, showing the performance of

UPC on diverse mathematical operations and libraries. González et al. have studied

the performance of their UPC mathematical libraries. This way, in [29] they have

evaluated the performance of their Cholesky and LU solvers against the equivalent in

ScaLAPACK, concluding that the performance of their implementation when com-

pared to a similar ScaLAPACK implementation –relying in 1D decomposition– is

better, whereas for 2D, even though ScaLAPACK performs better, the performance

of the UPC solution is a good compromise between performance and programmabil-

ity. In [30] González et al. evaluated the performance of triangular solvers, reaching

similar conclusions.
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Jansson has developed JANPACK [39], an sparse matrix library developed in

UPC, and his studies have concluded that JANPACK is typically twice as fast as

PETSc for two different set of benchmarks.

Teijeiro et al. developed a MapReduce framework in UPC [103], and evaluated

it in shared and distributed memory systems, using four representative applications

typically used in MapReduce environments. Their conclusion is that their framework

achieved similar performance to leading MapReduce implementations, sometimes

obtaining even better performance than them. Teijeiro et al. also implemented a

Brownian dynamics application in UPC. Their evaluation of this application [101,

102], comparatively with the same application implemented in OpenMP and MPI,

have shown that UPC scales further than OpenMP, and its performance rivals with

MPI.

2.3. Conclusions of Chapter 2

The performance evaluation presented in this Chapter has shown that even

though MPI typically performs better, UPC can achieve competitive performance

and scalability, depending on the particular computational and communication

workload. Additionally, the performance differences cannot be completely justified

by the programming model. The EP (Embarrassingly Parallel) kernel for instance,

is not a communication intensive code, yet the MPI version performs better, which

can be just explained by single thread performance, meaning that the effectiveness

of the underlying compiler and language (C vs. Fortran) play an important role in

the performance and low level optimization. Similar experiments comparing another

PGAS implementation of the NPB [12], using Co-array Fortran, and comparisons

of C+MPI and UPC implementations of the NPB [44] supports this statement.

Moreover, recent works have shown promising performance in many contexts.

Even though message passing is likely to remain as the most widely used paradigm

for HPC, PGAS, and in particular UPC, has proved itself as a viable alternative,

particularly due to the possibilities that its integrated one-sided communications

and remote memory access bring.

In order to be widely accepted, the implementations of the PGAS model have
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to provide efficient collective operations. However, without specific ways to assess

the performance and improvement of different collective algorithms, the research on

this field lacks an important tool. The next Chapter presents the UPC Operations

MIcrobenchmarking Suite (UOMS), a tool developed as a prerequisite to evaluate

collective algorithms.





Chapter 3

UPC Operations

Microbenchmarking Suite: UOMS

The UPC community lacks so far of tools for assessing the performance of UPC

operations. There are tools for validating some APIs [24], implementations of the

NPB kernels [27] –a suite of problems widely extended in HPC, used for compar-

isons across systems and languages and used in the previous Chapter– and other sets

of benchmarks including matrix multiplication, Sobel edge detector, N-queens [25],

as well as an UPC version of the Scalable Synthetic Compact Application (SSCA)

benchmarks [26]. However, none of this tools allow to evaluate the performance of

discrete communication functions. Microbenchmarking is an important tool to char-

acterize in an isolated way the performance of different parts of a runtime or system.

Therefore, before developing new collective algorithms, it is mandatory to have a

microbenchmarking tool that allows to measure the performance of these algorithms

in a methodical and comparative way. This Chapter presents the design of UPC

Operations Microbenchmarking Suite (from now on UOMS), a suite developed to

cover this gap. A state-of-the-art section is next presented, where the most popular

microbenchmarking tools are presented and categorized. Section 3.2 provides then

an overview of the design of UOMS. Section 3.3 explains the different benchmarks

supported by UOMS. Section 3.4 shows the different tuning parameters available in

UOMS. Finally, Section 3.5 concludes the Chapter.

29
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3.1. Benchmarking Suites in HPC

Benchmarking of HPC systems is typically a complex task. All the different

components, both hardware and software, frequently interact with each other, and

understanding the performance characteristics of a given system is far from trivial.

Moreover, comparison of different supercomputers and architectures has to be done

in a fair manner, in order to obtain meaningful results.

To have a bottom-up comprehensive understanding of performance of high per-

formance computers, benchmarks that focus on particular aspects are frequently

used. The most commonly benchmarked parts of a supercomputer are:

Processor/floating point units

Memory subsystem

Communications

Input and output (to permanent storage)

To assess the processor performance DGEMM, a matrix-matrix multiplication

function of the BLAS level 3 library [16] is frequently used for its importance in

many HPC applications and its simplicity. Likewise, the FFT benchmark [66] is

used to assess the performance of FFTW implementations. The High Performance

LINPACK benchmark [15] is the most popular benchmark for HPC, in fact it is used

to rank supercomputers in the top 500 list [111], and focuses almost exclusively on

processor performance. It solves a dense system of linear equations, and therefore

its communication/computation ratio is close to 0.

The STREAM benchmark developed by McCalpin [67] is a popular benchmark

used to measure sustained memory bandwidth, accessing vectors in 4 different

ways: (1) copying vectors a[i] = b[i], (2) scaling vectors a[i] = q*b[i], (3)

adding vectors a[i] = b[i] + c[i], and (4) adding a vector and a scaled vector

a[i] = b[i] + q*c[i]. Its popularity resides in its simplicity, that allows to an-

alyze easily the behavior of the difference cache levels and main memory. It has

been implemented in a number of languages and programming models, being the

most populars the OpenMP and the MPI implementations. More recently Jalby
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et. al presented WBTK [38], that allows for benchmarking on a wider parame-

ter space, including different memory strides. The RandomAccess benchmark by

Koester and Lucas [14] covers some of the space not covered by other tools, and

assess the performance of random memory access.

Regarding communications for HPC the reference are the Intel MPI Benchmarks

[37] (from now on IMB), previously known as Pallas MPI benchmarks. This bench-

marks test a range of MPI functions, including point to point, collectives and bar-

riers, and has been widely used as the de-facto standard for MPI communications

for a long time. The Ohio State University (OSU) Microbenchmarks [54, 81] are a

set of benchmarks also focused on the performance of MPI functions, that includes

tests on multithreaded environments, CUDA/OpenACC environments, and that has

extended its scope to cover some basic UPC and OpenSHMEM functions recently.

Bull et. al also implemented their own multithreaded MPI microbenchmark [5].

Performance of I/O can be also tested with the Intel MPI benchmarks, when us-

ing the MPI-IO interface. The Effective I/O Bandwidth Benchmark by Rabenseifner

and Koniges [91] is also used to measure MPI-IO performance, in a more dedicated

and extended way. The IOR benchmark [52] is a more versatile and used benchmark

for parallel I/O, that supports different interfaces, such as POSIX, MPI-IO, HDF5

and PnetCDF.

The number and variety of benchmarking tools shows the importance of bench-

marking and microbenchmarking on HPC. However, the UPC community, due to

its relative short age, did not have a comprehensive and methodical benchmark that

allows to measure systematically and reliably its communications performance. This

lack of benchmarking tools is the main motivation of the development of the UPC

Operations Microbenchmarking Suite (from now on UOMS), as there were no other

UPC communications benchmarks available before its development.
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3.2. Design of UPC Operations Microbenchmark-

ing Suite

During the design of UOMS it was decided to follow a similar approach as IMB.

There are three reasons for this decision: (1) to make easier to understand the data

reported by the benchmark for users with previous knowledge of IMB, (2) because

IMB provides a comprehensible and complete set of results for a wide variety of

scenarios, and (3) to allow direct comparisons with leading MPI implementations.

This way, UOMS reports latency and bandwidth for different functions, using a

range of message sizes.

However, IMB and UOMS have small differences in how they measure perfor-

mance. IMB reports minimum, maximum and average latency. However, this data

is the average per message size per process. The formulas of the reported data are

described in Equation 3.1, where p is the number of processes and n is the number

of iterations for a given message size. UOMS also reports minimum, maximum and

average latencies. However, these latencies are considering iterations, not processes,

as UOMS by default considers one operation finished just when all the processes in-

volved are done, using UPC IN ALLSYNC|UPC OUT ALLSYNC as synchronization mode.

The formulas for the reported data in UOMS are described in Equation 3.2. In

order to allow comparisons as fair as possible the values used for IMB should the

maximum, i.e. the highest average time among processes, to guarantee a state where

all the processes have finished the operation. The comparable values for UOMS are

the average, i.e. the average time per iteration needed to guarantee that all the

processes have finished the operation. Both reflect the average time needed to allow

the operation to be completed by all the processes.
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The reasons why UOMS, by design, differs from IMB are three: (1) the users

might missinterprete the metrics, as intuitively the minimum, maximum and aver-

age are with respect to the number of iterations, not the individual process results,

(2) the most common scenario uses UPC IN ALLSYNC|UPC OUT ALLSYNC as synchro-

nization mode, and therefore the time will be very similar for all the threads, and (3)

when using UOMS to understand collective performance impact within an applica-

tion reporting data with respect to individual processes performance is troublesome,

as load imbalance between processes (very different time for minimum and maxi-

mum time with respect to processes) will overcomplicate the analysis, contrarily to

the nature of a microbenchmark.

Another difference that requires attention is that the root of each collective

in IMB changes every iteration, whereas UOMS keeps the root static. The vast

majority of collectives use rank/thread 0 as root, and therefore, UOMS does not

round robin the root on each iteration.

UOMS aims to be a reliable and easy to use suite of microbenchmarking. It

is designed to be easily extended, modified and maintained. To allow its users to

accomplish this target, it has been released under the GNU General Public License

(GPL).

3.3. UOMS Benchmarking Units

UOMS consist of different benchmarking “units”, which, according to their na-

ture can be grouped in four different sets:

Memory operations : This unit tests upc all alloc and upc free functions.

Memory allocation and freeing is an expensive operation in every system, es-

pecially in PGAS, due to the internal synchronization across processes/threads

required to maintain the global view of the memory. Some algorithms might

require efficient allocation and freeing schemes for temporal buffering, in or-

der to scale and have a good performance. Therefore, benchmarking these

operations is an important task. The results reported are the overhead of

allocating/freeing chunks of memory varying its size.
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Discrete accesses : This unit tests the latency to access discrete elements in a

shared array. The tests include, read, write and read+write operations. Be-

sides this, two different types of tests are performed: upc forall and for. The

first one distributes the workload across all the UPC threads. In the second

one the whole operation is performed by thread 0. This is useful for testing the

speed of remote accesses and optimization techniques such as coalescing. The

benchmarking of the read operation consists of a sum of a scalar variable in the

stack and the elements of an array, to prevent the compiler from dropping the

first N − 1 iterations. The operation performed in write is a straight forward

update of the elements of an array. The operation performed in read+write

is a sum of the current element and its position in the array. The data type

used is int.

Block accesses : This unit tests the performance of memory movement opera-

tions, namely upc memput, upc memget and upc memcpy. There are variations

of these tests. For each one of them, two tests are done: remote and lo-

cal access. In this case, when two threads are used, affinity tests are also

performed. This way the effects of data locality in NUMA systems can be

measured, whenever the two threads run in the same machine, although this

feature may be useful even if the two threads run in different machines. E.g.:

Machines with non-uniform access to the network interface, like quad-socket

Opteron/Nehalem-based machines, or cell-based machines like HP Integrity

servers. The non-blocking variants –both with explicit and implicit handler–

proposed by Berkeley UPC and included in the UPC specification version 1.3

are also tested. In order to provide a framework of reference for the overhead

introduced by the runtime, the performance of the system calls memcpy and

memmove is also examined.

Collective operations : This unit is used to measure the performance of all the

collective operations defined in the UPC specification –broadcast, scatter,

gather, gather all, permute, exchange, reduce and prefix reduce– including all

the different variants for reduce and prefix reduce operations. I.e. for the fol-

lowing data types: char, unsigned char, short, unsigned short, integer,

unsigned integer, long, unsigned long, float, double and long double.

Additionally, the upc barrier function is also tested.
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Figure 3.1 illustrates the output produced by UOMS, using the scatter func-

tion. The header indicates the benchmarked function and the number of processes

involved. The first column shows the message size (block size) used for each partic-

ular row. The second column is the number of repetitions performed for that par-

ticular message size. The following three columns are, respectively, the minimum,

maximum and average latencies. The last column shows the aggregated bandwidth

calculated using the minimum latencies. Therefore, the bandwidth reported is the

maximum bandwidth achieved in all the repetitions.

In point to point block memory copies the output shows the affinity mask (pin-

ning) of the communicating threads:

#---------------------------------------------------------

# using #cores = 0 and 1 (Number of cores per node: 16)

# CPU Mask: 1000000000000000 (core 0), 0100000000000000 (core 1)

#---------------------------------------------------------

This indicates that all the tests after these lines are performed using core 0

(thread 0) and core 1 (thread 1) until another affinity header is showed.

The output depicted in Figure 3.1 is common for most of the benchmarks. How-

ever, the output for the barrier benchmark does not contain the bandwidth and

the message size columns, since it is a dataless operation. Similarly, reduce and

prefix reduce benchmarks, contain the message size column, but not the bandwidth

column, as it is highly dependent on the algorithm and is not a reliable metric for

these functions.

Most of the operations show the bandwidth achieved, which is calculated taking

into account the particular function tested, as each data movement is different. As

a general rule, bandwidth is calculated as (factor∗message size) /time. Using this

formula, factor equals to THREADS for most of the functions. For exchange and

gather all factor is THREADS ∗THREADS, as they are all to all collectives. For

point to point functions factor is 1.

With the output produced by UOMS, the UPC research community has a pow-

erful and comprehensible tool to analyze the communications performance of any

given UPC runtime. UOMS supports correlation of data, and analysis of the impact
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#-----------------------------------------------------

# UPC Operations Microbenchmark Suite V1.1

#-----------------------------------------------------

# Date : Sun Oct 6 18:09:31 2013

# Machine : x86_64

# System : Linux

# Release : 2.6.32-358.el6.x86_64

# Cache invalidation : Disabled

# Warmup iteration : Enabled

# Problem sizes:

# 4

# 8

# 16

# 32

# 64

# 128

# 256

# 512

# 1024

# 2048

# 4096

# Synchronization mode : UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC

# Reduce Op : UPC_ADD

# List of Benchmarks to run:

# upc_all_scatter

#---------------------------------------------------

# Benchmarking upc_all_scatter

# #processes = 4096

#---------------------------------------------------

#bytes #repetitions t_min[nsec] t_max[nsec] t_avg[nsec] Bw_aggregated[MB/sec]

4 40 19870000 33914000 23665850.00 0.82

8 40 19870000 39533000 22379525.00 1.65

16 40 20171000 32459000 23616650.00 3.25

32 40 20171000 33051000 23285975.00 6.50

64 40 20460000 43224000 23833875.00 12.81

128 40 23283000 37407000 26042950.00 22.52

256 40 23578000 34185000 26179325.00 44.47

512 40 23951000 43695000 26645500.00 87.56

1024 40 25427000 39755000 27943625.00 164.95

2048 40 26450000 35300000 28769900.00 317.15

4096 40 27395000 37900000 29671125.00 612.42

Figure 3.1: Output example of UOMS
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of the usage of multiple threads and the message size on the performance of a par-

ticular operation. This way, plots such as the one in Figure 3.2 can be generated,

to analyze functions performance.

4 32
1K

32K
1M

16M

2
4

8
16

32
64

128
256

0.015625
0.0625

0.25
1
4

16
64

256

La
te

nc
y 

(in
 m

ill
is

ec
on

ds
)

Broadcast latency vs. number of threads and problem size

Problem size (in bytes)

Number of threads

La
te

nc
y 

(in
 m

ill
is

ec
on

ds
)

 0.125
 0.25
 0.5
 1
 2
 4
 8
 16
 32
 64
 128
 256

Figure 3.2: UPC broadcast latency on Finis Terrae (3D plot example)

3.4. UOMS Options and Compiling Parameters

UOMS aims to be a portable suite, and allows its users to tailor their tests to

their needs. Thus, some of the UOMS features can be adjusted at compile time. The

number of cores in the system is typically detected using the SC NPROCESSORS ONLN

option of the sysconf system call. However, since this particular option of sysconf

might not be available in every platform, this can be overridden at compilation time.

The UPC specification version 1.2 did not include non-blocking point to point

memory transfers. As a result, many implementations without full support for the

1.3 specification do not include these non-blocking operations. Therefore, support

for them in UOMS is optional.
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The default message size limits used by most benchmarks in UOMS are 4 bytes

(smallest message size limit) and 16 MB (largest message size limit). However, the

default limits can be easily changed at compile time.

Besides the compile-time options, UOMS also provides run-time options. This

way, UOMS users can specify if they want to communicate cached or uncached data.

Likewise, it is possible to include warm up iteration when initializing the benchmark

execution. This is useful for letting the first call to a library initialize all its data

structures without incurring into penalty in the measurements.

The reduce and prefix reduce operations can use different operators. The default

is UPC ADD. However, UPC MULT, UPC LOGAND, UPC LOGOR, UPC AND, UPC OR, UPC XOR,

UPC MIN and UPC MAX are operators that can be chosen at run-time.

In a similar fashion the synchronization mode for collective operations is also

user selectable. The default is to use a complete synchronization at both the

beginning and the end of the operation (UPC IN ALLSYNC|UPC OUT ALLSYNC). At

run-time more loose synchronization options are also available, allowing to specify

UPC {IN|OUT} MYSYNC options, where the collective might start to read or write data

just from threads that had already entered the collective, or return if no data from

the returning thread will be read or written again by the collective. Likewise, the

UPC {IN|OUT} NOSYNC options, that do not impose any synchronization restriction,

are also selectable.

The minimum and maximum message sizes set at compile-time can be overridden

at run-time. UOMS will calculate the intermediate range using increments of a power

of 2. In certain situations the UOMS user might want to specify particular message

sizes to be tested. This is possible providing an input file with the desired message

sizes. This overrides the automatic message sizes calculated using the minimum and

maximum limits given at compile-time or run-time.

The last options provided by UOMS allow users to specify which particular

benchmarks they want to run, using an input file, and the maximum amount of

time spent per message size.
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3.5. Conclusions of Chapter 3

UOMS covers an important gap in the benchmarking landscape for UPC. It is

the first microbenchmarking suite for UPC, covering a wide range of options, from

point to point to collectives, including NUMA and node awareness, work distribution

with upc_for_all and plain shared memory access in read, write and read+write

modes. With UOMS –available at [60]– research on run time and collective algorithm

improvements in UPC has now an essential tool.

Recently others microbenchmarking tools are including UPC operations in their

tests. The OSU benchmarking suite have included UPC memput and memget op-

erations in their suite in their version 3.8. Recently (24/03/2014), according to the

OSU changelog [82], they have also included a subset of the collectives, even though

in the source they are not present. Despite the fact that the OSU benchmarks have

started to look into the direction of UPC microbenchmarking, UOMS is a more ex-

tensive, complete and detailed suite, and aims therefore to be the de facto runtime

and collective benchmark suite for UPC.

Next Chapter presents the design and development of a set of PGAS collective

algorithms, using different optimization techniques. This performance optimization

has relied on UOMS to assess its effectiveness.





Chapter 4

Design of Scalable PGAS

Collective Algorithms

Current popular UPC collective libraries have limited scalability and perfor-

mance. This becomes evident when comparing with MPI collectives in NUMA clus-

ters. In [100] an early prototype of UOMS was used to evaluate the performance of

the Berkeley UPC collectives [51] and the Michigan Technological University refer-

ence implementation [70]. This way, it has been found that in this environment UPC

collectives are always significantly outperformed by MPI collectives, using just 32

cores distributed between 4 nodes. This lack of performance motivates the design of

new algorithms, able to perform and scale better than the existing implementations.

The design of scalable algorithms depends on two prerequisites: (1) Deep un-

derstanding of the operation being optimized, and (2) deep understanding of the

underlying hardware characteristics. Additionally, a desirable design principle is the

portability of the algorithm, the availability of running on different hardware. There-

fore, the design and development of the proposed collectives has been done based on

standard UPC constructs. In this Chapter, Section 4.1 provides an overview of the

functionality covered by the different collectives present in the UPC standard. Sec-

tion 4.2 describes the design of the proposed collective algorithms. Finally, Section

4.3 summarizes the conclusions.

41
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4.1. UPC Collective Operations

The UPC specification version 1.2 considers the collectives library an essential

(non-optional) part of every UPC implementation in order to conform with the

UPC specification. Previously it was not included in the specification, but rather

as an extra library. This promotion of the collective library is due to its central

importance for the application programmer. The collectives in UPC are divided in

two groups: relocalization operations and computational operations. The collectives

are described in the following subsections.

4.1.1. Relocalization Operations

The most common relocalization operation is broadcast. It has the following

interface: void upc all broadcast(shared void * restrict dst, shared const void

* restrict src, size t nbytes, upc flag t flags);. The broadcast function copies a

block of nbytes of a shared array with affinity to any thread to the corresponding

block in a destination shared array, for every thread. Its functionality is sketched in

Figure 4.1. At the end of this operation every thread have the same data, and the

source is a single thread.
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Figure 4.1: Broadcast operation in UPC

Scatter is another relocalization operation. The interface of scatter is as follows:
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void upc all scatter(shared void * restrict dst, shared const void * restrict src,

size t nbytes, upc flag t flags);. Scatter slices an array with affinity to a single

thread into blocks of size nbytes. Afterwards, this blocks are distributed in a round

robin fashion between all threads. At the end of the operation every thread has an

unique piece of data, copied from a single thread, as observed in Figure 4.2. This

means that typically the source arrays can not be too large in cases with a high

number of threads.
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Figure 4.2: Scatter operation in UPC

Gather is the inverse function of scatter. The interface is: void upc all gather

(shared void * restrict dst, shared const void * restrict src, size t nbytes,

upc flag t flags);. In gather, blocks of size nbytes and distributed among every

thread are collected in an array with affinity to a single thread, in an orderly fash-

ion. When the operation is done a single thread has the aggregated data, while the

others keep their own piece. This is depicted in Figure 4.3. As in scatter, this means

that the amount of data contributed by each thread can not be too large, as they

would not fit into the memory of the destination thread.

Gather all has the following interface: void upc all gather all(shared void *

restrict dst, shared const void * restrict src, size t nbytes, upc flag t flags);.

Gather all is the functional equivalent of a gather followed by a broadcast, as in the

end of the operation every thread has the same data, that is, the result of gathering

their individual data in an orderly fashion, as can be observed in Figure 4.4.
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Figure 4.3: Gather operation in UPC
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Figure 4.4: Gather all operation in UPC
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Exchange is a relocalization operation with this interface: void upc all exchange

(shared void * restrict dst, shared const void * restrict src, size t nbytes,

upc flag t flags);. The motivation behind the exchange operation is to compute

a transpose, similarly to what an alltoall function computes in MPI. This way,

the ith slice of the array with affinity to thread number j will be copied to the slice

number j of the ith thread, as depicted in Figure 4.5. Therefore, in this collective,

all the threads communicate with every other thread, and end up with an amount

of data of the same size of the data that they had at the beginning of the operation.
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Figure 4.5: Exchange operation in UPC

The last relocalization operation is permute. Its interface is: void upc all

permute(shared void * restrict dst, shared const void * restrict src, shared

const int * restrict perm, size t nbytes, upc flag t flags);. Permute is a very

irregular collective, whose communication pattern depends enterily on the array

perm. This way, the block of size nbytes with affinity to thread i will be copied

to the thread whose number is in ith position of the perm array. Each thread can

appear only once in the perm array. This operation is sketched in Figure 4.6.

4.1.2. Computational Operations

In UPC there are two computational collective operations, reduce and prefix

reduce. In reduce, the data contained in a shared array is reduced to a single
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Figure 4.6: Permute operation in UPC

value. Its interface is: void upc all reduce<<T>>(shared void * restrict dst,

shared const void * restrict src, upc op t op, size t nelems, size t blk size,

<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>), upc flag t flags);, where ele-

ments between << and >>, that is <<T>> and <<TYPE>>, denote primitive

numerical data types, op denotes an operation type and func is an optional user

defined operation, that can be commutative or non-commutative, depending on the

value of op. Figure 4.7 depicts an example of this operation.
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Figure 4.7: Reduce operation in UPC
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Prefix reduce is an operation similar to reduce, but their differences have pro-

found implications. Its interface is: void upc all reduce<<T>>(shared void *

restrict dst, shared const void * restrict src, upc op t op, size t nelems, size t

blk size, <<TYPE>>(*func)(<<TYPE>>, <<TYPE>>), upc flag t flags);.

What differentiates prefix reduce from prefix is that the result is accumulative,

rather than a single value. Therefore, the destination array has the same size and

distribution as the source array. For each position of the destination array, the value

there contained is the result of applying a reduction to all the previous elements in

the source array, as shown in Figure 4.8.
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Figure 4.8: Prefix reduce operation in UPC

4.1.3. Data Distribution Groups

Considering data distribution, there are a clear set of collectives groups:

One to all collectives, like broadcast and scatter.

All to one collectives, like gather and reduce.

All to all collectives, like gather all and exchange.

One to one collectives, namely permute.
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Accumulative collectives, namely prefix reduce.

One to all and all to one kind of collectives are the most used and important

set of collectives. These collectives can be implemented efficiently using trees for

communication. The other set of collectives are less important and with more limited

optimization possibilities, due to their data communication patterns. Therefore, the

focus of this Thesis is largely on collectives that can be implemented with trees.

4.2. Design of Scalable Collective Operations for

PGAS Languages

Scalability is a pervasive and complex problem in HPC. Sometimes an algorithm

presents easy development and good performance but it might not scale well with

hundreds or thousands of cores, hindering the use of today’s HPC systems at their

full power. The key issue is the use of highly scalable methods, even though they

might be more complex. This kind of methods should be the preferred choice to face

up large scale problems, as demonstrated in [71], whereas less complex algorithms

with good performance are acceptable for small or medium scale setups. This princi-

ple is valid both for applications and collective operations libraries. The algorithms

developed in this Thesis aims at scalable performance on hundreds or thousands

of cores on NUMA clusters rather than providing efficiency on small/medium scale

setups.

Often, high performance libraries are developed with a target architecture in

mind, using specific features of that architecture. However, in the development of

communication algorithms, it is highly desirable to provide portable libraries to be

used by different runtimes in different systems. Therefore, one major requirement

of this library was to work with as few as possible runtime specific features, and

rely mostly on standardized functions of the UPC language. As a consequence,

the library requires UPC standard operations and the optional libraries described

in the UPC specification, present in all the current implementations. It also re-

quires Berkeley semaphores. These semaphores allow point-to-point synchroniza-

tion, a must-have for scalable non-system-wide synchronization. Even though the
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semaphores interface is not part of the specification, the main implementation –i.e.

Berkeley UPC– supports them. Hewlett-Packard has provided semaphores for their

HP UPC implementation, even though they are not part of the official distribution.

Besides this, semaphores can be implemented as wrappers around some standard

UPC constructs. Keeping this in mind, the conclusion is that the software stack

depicted in Figure 4.9 is portable to every major UPC implementation.
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semaphores

Runtime

MPI

Multiple
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BlueGene/Q

AriesQAPI

CrayQAries
Interconnect

Verbs
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TCP/IP

Gigabit
Ethernet

POSIXQSHM

Shared
memory

Figure 4.9: Software stack of the developed PGAS collectives

Validation of results is a key aspect of high performance and scientific comput-

ing. In order to ensure the correctness of collective operations libraries, the George

Washington University has released a testing suite called GUTS (GWU Unified Test-

ing Suite) [24]. This suite has been used during the development of the algorithms

proposed in this Thesis.

4.2.1. Broadcast and Baseline Algorithm

Traditionally, the most efficient collective implementations use trees of processes

to distribute or gather the data, although generally regardless the processes place-

ment. Only some advanced solutions implement topology or multicore aware trees

[45, 46, 50, 113]. The algorithm presented in this Thesis extends these approaches

to NUMA clusters, taking into account the NUMA topology. Therefore, the trees

used will be decomposed in three levels of subtrees: (1) the cluster level, (2) the
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node level, and (3) the NUMA region level.

Figure 4.10 illustrates the proposed structure for the algorithm using an example

which consists of 8 nodes, each one of them with 24 cores distributed between 4

NUMA regions. The proposed algorithm will be able to distribute effectively and

efficiently the data transfers among processes, taking advantage of the increased

locality at the same time, as it minimizes the usage of the most costly links, using the

fastest data channels whenever is possible, taking the most out of runtimes’ shared

memory optimizations. In fact, even runtimes without shared memory optimizations

can get an extra benefit. For instance a UPC runtime without shared memory

optimizations but support for privatizability functions [120] can map page tables

from other processes into its own memory space, allowing the use of the much faster

memcpy system call.
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Figure 4.10: General overview of the scalable algorithm for collective operations on
NUMA clusters

One of the design principles for scalability is to avoid the use of dynamic struc-

tures whose size and build time overhead increases with the number of processes.

Thus, in the proposed algorithms the first call to a collective function creates a per-

sistent and fixed (invariable) process tree structure, which can be reused in a future

collective call. If the root of the collective operation and the root of the tree are

not the same, then a copy of the message into the tree root is required, in top-down

operations like scatter or broadcast, or the copying from the tree root to the oper-

ation root, in bottom-up operations like gather. This approach has as main benefit

the reuse of the tree structures through all the run time. However, for a reduced

number of processes it is still faster building a custom tree than reusing a structure,
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if the root of the collective operation is not the root of the precomputed tree.

In the cluster level the nodes are interconnected through a network. For each

node one process is selected as a node leader, in charge of communicating its node

with the other nodes. Under certain circumstances it would be desirable to have

multiple node leaders (for instance, in systems with more than one network interface

per node). However, most systems still have one high-speed network interface, such

as the one analyzed in this Thesis, so generally the number of node leaders would

be one. For efficiency and scalability purposes, a binomial tree of node leaders will

be built.

The node level comprises the NUMA regions available in a node. The consider-

ation of this level is one of the contributions of this Thesis. For each NUMA region

one process is selected as NUMA region leader, and a binomial tree of NUMA region

leaders will be built, with the node leader as root of its node tree. This level leader

will be responsible for the communication of its children and its parent, that could

be the node leader or another NUMA region leader in systems with multiple NUMA

regions. The tree used for this level is also a binomial tree.

The NUMA region level connects its elements through shared memory. In this

level a new tree will be built, with the NUMA region leader as root. Here processes

are attached to the NUMA region through binding, thus avoiding process migration

to another NUMA region. Using NUMA region binding rather core binding is advis-

able, as it allows the operating system to move processes within the NUMA region

if necessary. However, in some architectures the cache or bus sharing can have a

significant impact [55]. Therefore, in these architectures a per core binding could be

a better choice. In this level two types of trees have been implemented and tested:

binomial and flat trees. In the proposed algorithm there is no reason to avoid a

process from being leader at several levels. In fact, it is advisable. Therefore, the

node leader has been made also its NUMA region leader. Systems without NUMA

capabilities are treated as having a single NUMA region. Therefore, the node level

behaves like the NUMA region level, which does not exist in these cases. The Intel

Xeon Phi architecture is an example of such systems.

The reason for using binomial trees instead of binary trees is their reduced num-

ber of steps needed to traverse them in setups with large number of nodes. Bino-
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mial trees will complete a 1-to-N or N-to-1 operation (broadcast, gather, scatter

and reduce) in a dlog2(N)e number of steps, for an N number of nodes. That is

considering that the communication starts towards the deepest branch, and that

the communication is done with one connected node at a time (sibling nodes can

not communicate at the same time with their parent). Binary trees on the other

hand, will complete the operation in (dlog2(N)e − 1) ∗ 2− 1 number of steps in the

best case, or (dlog2(N)e − 1) ∗ 2 in the worst case, for N > 2. For 16 processes the

binomial tree will finish in 4 steps, whereas the binary tree will finish in 6. For 4096

nodes the difference is 12 vs. 22.

Therefore, binomial trees are a better choice for scalable communications. How-

ever, it shall be noted that binary trees can be also a valid option when commu-

nication between nodes in the tree can be non-blocking and/or one-sided. In these

cases/scenarios communications can be overlapped, making the time required to

communicate with all the children nodes in a lower level close to the time required

to communicate with just one node. In that case the operation will be completed in

a maximum of (dlog2(N)e−1) number of steps. This is true when both transfers can

be done simultaneously without mutual interference, which is usually not possible,

and is highly dependent on the bandwidth and the message rate that the network

adapter can handle. Moreover, if that scenario is possible, binomial trees will also

finish in a (dlog2(N)e − 1) number of steps, which makes considering binary trees

impractical in most situations.

Flat trees do not scale, as they saturate the sender or receiver (depending on the

operation) easily. However, for a small number of nodes in the tree, a flat tree avoids

intermediate steps, reducing the synchronization overhead. The library presented

in this Thesis also evaluates the use of flat trees in the NUMA region level. Figure

4.11 illustrates the mapping of tree nodes to computing nodes and NUMA regions,

using both binomial and flat trees.

In the case of computing nodes with a number of processes/threads that is power

of 2, a hierarchical tree based on binomial trees will look like exactly the same as

a non hierarchical tree. The mapping seen in Subfigure 4.11a would be essentially

the same. However, if the number of processes/threads is not a power of 2 then

the non-hierarchical tree would map differently into the hardware, having multiple

connections between nodes, in a way that the use of the slowest paths is not mini-
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mized. With hierarchical trees this situation, that is becoming more common with

new processors whose number of cores is not a power of 2, is avoided. Figure 4.12

illustrates this situation, using both binomial and flat trees at the NUMA region

level.

Another feature present in high speed network fabrics is the presence of separate

links for upload and download data. Bearing that in mind, it is possible to pipeline

communications, overlapping send and receive operations to reduce latency. The

proposed collective algorithms implement two fragmentation schemes for pipelining:

static and dynamic. In the static mode the message is fragmented into chunks of

a given size. This way, when one chunk is received, the destination process is able

(if necessary) to forward that data while receiving the next chunk. This operation

goes on until the complete message has been delivered. The dynamic mode is sim-

ilar to the static mode, except that it splits the message in two halves, instead of

dmessage size/chunk sizee messages. Thus the size of the chunks changes depend-

ing on the size of the message. The selected chunk size for the static mode is 32768

bytes. The dynamic mode will start fragmenting the messages when they are larger

than 8192 bytes. It should be noted at this point that MVAPICH2 implements

pipelining, but in a different way. In hierarchical algorithms, with differentiated

steps for intra- and internode communications, MVAPICH2 can slice up the mes-

sages and perform the intra- and internode steps for every slice, rather than the

whole message. However, this does not allow communication overlapping at every

branch, and is a simpler and less effective mechanism.

This library also takes advantage of one-sided memory copies, implementing

most functions in two approaches: push and pull. In the push approach the source

process puts the data in the destination process, whereas in the pull mode it is the

destination process the one which gets the data. This way it is possible to achieve a

higher degree of communication overlapping, since data is streamed to/from different

sources at the same time. However, it should be noted also that this library has been

implemented with support for non-blocking memory transfers, also allowing a high

degree of overlapping in cases where the thread that initiates the communication

has to communicate with multiple threads. If the non-blocking memory transfers

–“asynchronous” as denominated originally by the Berkeley UPC implementors– are

not available, the blocking variant is used.
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(a) Binomial trees at the NUMA region level

(b) Flat trees at the NUMA region level

Figure 4.11: Tree mapping with a power of 2 number of cores
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(a) Binomial trees at the NUMA region level

(b) Flat trees at the NUMA region level

Figure 4.12: Tree mapping with a non power of 2 number of cores
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The broadcast collective can be optimized using all the described methods. Al-

gorithm 1 shows the pseudocode of broadcast with all the optimizations. I.e.: Using

one-sided memory copies in a pull fashion, hierarchical trees and extensive message

pipelining.

Algorithm 1: Pseudocode of broadcast algorithm with pull approach and
message pipelining

if ¬initialized then collectives initialization()1

current chunk ← threshold2

number of iterations← dmessage size/thresholde3

if thread 6= 0 then semaphore wait(my thread, 1)4

if thread = 0 then5

if upc castable(source) then copy ← local get6

else copy ← remote get7

for i← 0 to number of iterations do8

copy(destination + offset, source + offset, current chunk)9

for j ← 0 to number of children do10

semaphore post(tree.children[j], 1)11

if i + 1 = iterations− 1 then12

current chunk ← message size− data already sent13

else14

if upc castable(destination[tree.parent]) then copy ← local get15

else copy ← remote get for i← 0 to number of iterations do16

copy(destination + offset, destination[tree.parent] +17

offset, current chunk)
for j ← 0 to number of children do18

semaphore post(tree.children[j], 1)19

if i + 1 = iterations− 1 then20

current chunk ← message size− data already sent21

if i + 1 < iterations then22

semaphore wait(my thread)23
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4.2.2. Particularities of Scalable Scatter/Gather Operations

Scatter and gather operations have a particularity. In these functions the source

or destination of the data, respectively, is a single process, while the other processes

receive or send, respectively, their specific chunk of data. Therefore, the data move-

ment can not be optimized in the same way as for broadcast, since each process

holds a different chunk of data. For this reason, the use of trees pose more dif-

ficulties for data distribution in these functions. However, a collective using trees

avoids the overhead of each process copying data separately, since less copies from/to

source/destination will be done. Such approach seem interesting in scenarios where

the data held by each process is not excessive. Besides this, having a scatter or

gather function that uses trees has an additional benefit. Since just a few pro-

cesses will communicate with the root of the operation, the memory footprint will

be smaller in some systems, leading to a higher scalability. In high-speed cluster

networks, such as InfiniBand, a small buffer is used for each peer connection. In

jobs with thousands of processes this becomes a big problem as it has been pointed

out before in several works [48, 97]. Mitigating this effect usually involves deep

changes in the communication layer of the runtime or the transport layer. Shared

Receive Queues (SRQ) and eXtended Reliable Connection (XRC) are recent Infini-

Band features that allow to minimize the memory overhead in large setups. The

UPC collectives library proposed in this Ph.D. Thesis and a runtime/driver with

support for on-demand connections, where buffers are allocated as needed instead

of at initialization, help to solve this problem for scatter and gather at a higher level

than runtime or transport layer modifications.

The aforementioned trees take advantage of the underlying hardware and mem-

ory hierarchy. In scatter and gather operations in order to move data efficiently

downward or upward the tree, the processes have to be contiguous within a given

branch. This cannot be guaranteed, as the user can choose a cyclic process distribu-

tion among nodes. One possible workaround is having each level root being aware

of all the processes (and their order) hanging in all their branches. However, this

workaround has two major issues. The first issue is that the tree root would need to

store too much information about the tree, increasing with the number of processes

and thus preventing scaling due to their increasing memory footprint. The second

and more important issue is that root processes would have to perform multiple
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out-of-order memory copies, instead of a single big memory copy. The overheads of

any of these two issues make this workaround impractical.

A trade-off solution is building a binomial tree with all the processes, ignoring

their distribution among nodes and NUMA regions. In an ideal case, with a block

distribution and a power of 2 number of processes in the nodes and in the NUMA re-

gions, the tree built this way would map perfectly into the hardware, as in Subfigure

4.11a, minimizing the use of the links with more latency.

Tree-based scatter and gather functions have also other particularities. They

use intermediate buffers to copy data. The buffer management code is performed

before the initial barriers (if UPC IN ALLSYNC or UPC IN MYSYNC are set) and the

ending barriers (if UPC OUT ALLSYNC or UPC OUT MYSYNC are set). The buffers are

not reallocated if the previously allocated buffers are big enough. However, if a

certain call needs a buffer size of more than a certain threshold (currently 16MB),

the buffer will be freed at the end of the function to avoid excessive memory usage.

Another particularity is that process 0’s buffers will be the source or the destina-

tion (in gather or scatter, respectively), if the process 0 is the root of the operation.

The last particularity is that, even though these functions do not take advantage

of the processes’ distribution and trees do not map onto the hardware, they are

bound to the corresponding NUMA region, since this step is performed when the

library is initialized, at the beginning of each runtime execution.

Algorithm 2 describes how the scatter collective has been implemented using bi-

nomial trees, one-sided memory copies with a pull approach and message pipelining.

So far the described particularities are for both scatter and gather. Gather has

an extra particularity. It does not have a dynamic fragmentation version. The

reason for this is that, since the data flows upwards, copying the first half do not

make sense in most situations. The parent process could not take advantage of it,

since its own first half will be larger than any of its children’s first half. Therefore,

data can not flow in halves because parent processes would have to wait for the

second half anyway before sending their first half. Algorithms 3 and 4 describe how

the gather collective has been implemented using binomial trees, one-sided memory

copies with a push approach and static message pipelining.
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Algorithm 2: Pseudocode of scatter algorithm with pull approach and mes-
sage pipelining

if ¬initialized then collectives initialization()1

nchunks← calculate number of threads down the tree(...)2

my size← nchunks ∗ nbytes3

current chunk ← calculate chunk size(...)4

number of iterations← dmy size/thresholde5

allocate buffer if needed(...)6

allocate and initialize extra data structures(...)7

sent data← 08

for i← 0 to number of iterations do9

if my thread 6= 0 then semaphore wait(my thread)10

if upc threadof(source) 6= my thread then11

if upc castable(source) then copy ← local get12

else copy ← remote get13

copy(destination + offset, source + offset, current chunk)14

sent data += current chunk15

if nchunks > 1 then16

copied chunks← calculate copied chunks(...)17

child id← 018

while copied chunks > 0 do19

if remaining chunks[child id] > 0 then20

semaphore post(tree.children[child id], 1)21

remaining chunks[child id]−−22

copied chunks−−23

else24

child id + +25

if child id ≥ tree.num children then break26

compute next chunk and offsets(...)27

semaphore post(tree.parent, 1)28

free extra data structures(...)29

if nchunks > 1 then30

copy data to own destination(...)31

if buffer size > max cacheable buffer then32

semaphore wait(my thread, tree.num children)33

free buffer(...)34
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Algorithm 3: Pseudocode of gather algorithm with push approach and mes-
sage pipelining (1 of 2)

if ¬initialized then collectives initialization()1

allocate buffer if needed(...)2

for j ← 0 to number of children do3

semaphore post(tree.children[j], 1)4

nchunks← calculate number of threads down the tree(...)5

my size← nchunks ∗ nbytes6

current chunk ← calculate chunk size(...)7

number of iterations← dmy size/thresholde8

allocate and initialize extra data structures(...)9

if my thread 6= 0 then semaphore wait(my thread)10

if leaf thread(my thread) = true then11

for i← 0 to number of iterations do12

if upc castable(destination) then copy ← local get13

else copy ← remote get14

copy(destination + offset, source + offset, current chunk)15

semaphore post(tree.parent[my child id], 1)16

compute next chunk and offsets(...)17

18
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Algorithm 4: Pseudocode of gather algorithm with push approach and mes-
sage pipelining (2 of 2)

else19

my iters← nbytes/threshold20

for i← 0 to my iters do21

if upc castable(destination) then copy ← local get22

else copy ← remote get23

copy(destination + offset, source + offset, threshold)24

semaphore post(tree.parent[my child id], 1)25

compute offsets(...)26

if nbytes%threshold 6= 0 then27

if upc castable(destination) then copy ← local get28

else copy ← remote get29

copy(destination + offset, source + offset, nbytes%threshold)30

compute offsets(...)31

current chunk ← calculate chunk size(...)32

current child← 033

if ¬(my thread = 0&&upc threadof(dst) = 0) then34

for i← my iters to number of iterations do35

if current child < number of children then36

calculate current child chunks(...)37

while acum < threshold do38

semaphore wait(my thread[current child])39

calculate acummulated and current child(...)40

if last chunk then break41

if upc castable(destination) then copy ← local get42

else copy ← remote get43

copy(destination + offset, source + offset, current chunk)44

semaphore post(tree.parent[my child id], 1)45

compute next chunk and offsets(...)46

if nchunks > 1 then47

if buffer size > max cacheable buffer then48

free buffer(...)49

free extra data structures(...)50
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Lastly, an additional algorithm has been implemented for scatter and gather.

The tree structure is not appropriate when the chunks of data are too big. A token-

passing algorithm has been developed for those cases. The token is passed to the

next process, in a ring fashion. The process with the token starts copying data.

This way the algorithm prevents that all process access at the same time, saturating

the network. The token is passed to the next process when one of the following

conditions are met: (1) the current process is in the same node as the source/des-

tination process, before start copying, to allow overlapping using the fast memory

subsystem; (2) the data to be copied is smaller than a given threshold, to avoid the

following processes wait unnecessarily; (3) when the remaining data to be transferred

is smaller than the previous threshold. When the data is bigger than this threshold

the copy is performed in two phases, the first one with a size N − Threshold and

the second one with a size Threshold. Since the bottleneck of scatter and gather

operations is the outbound link from the source thread, the presented implementa-

tion operates with a single token, assuming that a single thread can saturate the

network or, when this condition is not met, passing the token before initiating the

copy, to allow overlapping of copies to/from different threads. Operations with very

small messages and a large number of threads can benefit from the tree algorithm

or use a ring algorithm with multiple tokens. Nevertheless, it should be noted that

even though the ring algorithms fit the semantics of the scatter and gather opera-

tions, the fact that all the processes/threads have to communicate with a single root

can impose some scalability issues, in particular regarding memory footprint of the

communication buffers. Algorithms 5 and 6 describe the ring algorithms for scatter

and gather respectively.

4.2.3. Particularities of Scalable Reduce Operations

The semantics of the Reduce operation in UPC is different from the behavior of

the Reduce operation in MPI. In UPC, all the values of a shared array are reduced

to a single element, as opposed to MPI, where the result is an array, with reduced

values for every array position. Therefore, the developed algorithms do not conform

the definition of the reduce operation in MPI, and no comparison between the two

will be made.
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Algorithm 5: Pseudocode of scatter algorithm with pull approach on a ring

if ¬initialized then collectives initialization()1

if my thread = upc threadof(src) then2

if my thread 6= 0 then semaphore post(0, 1)3

else semaphore post(next thread, 1)4

memcpy(my dst,my src, nbytes)5

else6

semaphore wait(my thread, 1)7

if upc castable(src) then8

semaphore post(next thread, 1)9

memcpy(my dst,my src, nbytes)10

else11

first chunk ← calculate first chunk()12

second chunk ← calculate second chunk()13

if first chunk > 0 then upc memget(my dst,my src, first chunk)14

if next thread 6= upc threadof(src) then15

semaphore post(next thread, 1)16

else if next thread + 1 < THREADS then17

semaphore post(next thread + 1, 1)18

upc memget(my dst + first chunk,my src +19

first chunk, second chunk)
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Algorithm 6: Pseudocode of gather algorithm with push approach on a ring

if ¬initialized then collectives initialization()1

if my thread = upc threadof(dst) then2

if my thread 6= 0 then semaphore post(0, 1)3

else semaphore post(next thread, 1)4

memcpy(my dst,my src, nbytes)5

else6

semaphore wait(my thread, 1)7

if upc castable(src) then8

semaphore post(next thread, 1)9

memcpy(my dst,my src, nbytes)10

else11

first chunk ← calculate first chunk()12

second chunk ← calculate second chunk()13

if first chunk > 0 then upc memput(my dst,my src, first chunk)14

if next thread 6= upc threadof(src) then15

semaphore post(next thread, 1)16

else if next thread + 1 < THREADS then17

semaphore post(next thread + 1, 1)18

upc memput(my dst + first chunk,my src +19

first chunk, second chunk)
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The developed reduce function is based on several design principles looking for

scalability. The first one is that each process performs the reduction of its own

data. Therefore, the data communication is restricted to communicating a single

element of a primitive data type, that is to say, from a minimum size of char and

a maximum size of long double. Due to this, no fragmentation occurs.

Algorithm 7: Pseudocode of reduce algorithm with push approach

if ¬initialized then collectives initialization()1

calculate alignment and offsets(...)2

reduce(own data)3

semaphore wait(my thread, tree.number of children)4

reduce(own data and children data)5

if my thread 6= tree root then6

my destination = reduce buffer[tree.parent]7

else8

my destination← destination9

if upc castable(my destination) then10

local put(my local destination +11

offset, local reduce buffer[my thread], size of(reduction type))
else12

remote put(my destination +13

offset, local reduce buffer[my thread], size of(reduction type))

if my thread 6= tree root then14

semaphore post(tree.parent, 1)15

The second consideration is motivated by the fact that a process might not know

if its children participate in the reduction. To solve this issue, each process with a

passive participation will contribute to the operation with a neutral operand value

(e.g., 0 for add operations and 1 for multiplications). In case the user defines its

own operation then this value must be adapted.

The third reduce design principle is a consequence of the tree used. Thus, for

noncommutative operations (such as noncommutative operations defined by the

user, UPC NONCOMM FUNC), the operations must take the order into account, otherwise

they will provide an erroneous result.

The use of non-topology-aware binomial trees supports the two first design prin-

ciples. However, this would neglect the benefits of hierarchical trees. Algorithm 7
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illustrates the pseudocode of the reduce algorithm with one-sided communication

with push approach.

4.2.4. Summary of the Implemented Algorithms

The number of variations of the developed algorithms is a result of combin-

ing different orthogonal optimizations suited for the operations. Table 4.1 presents

an overview of the developed algorithms. It should be noted that, even though

these algorithms have been implemented in UPC, the underlying principle and op-

timizations are also valid for MPI. However, UPC, and more generally any PGAS

approach, allows to implement them in a more natural way, since one-sided commu-

nication is a key feature of the model. In MPI, put and get operations, and their

non-blocking counterparts, require explicit memory and window management, as

opposed to UPC.

Table 4.1: Summary of the Optimized PGAS Collective Algorithms Implemented.
Scatter and gather collectives with tree-based algorithms use normal binomial trees
with binding.

Operations
Broadcast Reduce Scatter Gather

Push

Ring X X

Hierarchical
binomial

Standard X X X X
Dynamic fragmentation X

Static fragmentation X X
Hierarchical

bino-
mial+flat

Standard X X
Dynamic fragmentation X

Static fragmentation X

Pull

Ring X X

Hierarchical
binomial

Standard X X X X
Dynamic fragmentation X X

Static fragmentation X X
Hierarchical

bino-
mial+flat

Standard X X
Dynamic fragmentation X

Static fragmentation X
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4.2.5. Gather all, Exchange, Permute and Prefix Reduce

Optimization

Gather all, exchange, permute and prefix reduce collectives do not naturally fit in

a tree structure. Gather all and exchange imply all-to-all communications. Permute

is a multiple point-to-point communication. Prefix reduce progressively accumulates

data in a sequential way that do not fit in a tree. Nevertheless, from a NUMA and

multi-core standpoint some optimizations could be accomplished.

Gather all

The gather all collective is basically a gather followed by a broadcast. However,

it has been implemented in such a way that no synchronization occurs between all

the threads. When a leaf thread finishes its gather phase it waits for its NUMA

node root to post its primary semaphore to pull the broadcast data, avoiding this

way barriers or other wide-scale synchronization mechanisms.

Exchange

For the exchange collective, with small data transfers, a simple algorithm was

implemented. Each thread operates independently. If the destination thread for

a given transfer is in the same node and the destination address is “castable” the

memcpy function is used to perform the transfer. Otherwise, an asynchronous transfer

is performed, using upc_memput_async (the precursor to the non-blocking variant

of upc_memput present in the UPC specification 1.3, and proposed by Berkeley), to

allow overlapping several communications. This algorithm is the more natural way

of implement this operation.

However, in order to exchange larger messages it is desirable to pack all the

outgoing communications to a given thread in just one transfer. This is possible

in the exchange operation because all the outgoing communications to a specific

thread will write data in a contiguous memory region. With this approach a large

message protocol was implemented. The threads that are leaders at the node level

try to allocate enough memory for the whole run-time of the collective, and free it
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when they finish iterating over all the threads. If this is not possible, because of the

high memory requirements, they will allocate memory for one iteration and recycle

it for the following iterations. Both approaches imply synchronization between local

threads. Once the buffer is ready to receive data, the node root thread posts its

local threads semaphores, so they can begin transferring their data to the interme-

diate buffer. After the copy, each non-node-root thread posts its node root thread

secondary semaphore, and wait until it post its primary semaphore to signal the be-

ginning of the next iteration. With the buffer filled with the current iteration data,

the node root thread performs an asynchronous transfer to overlap communications.

If the buffer has to be recycled the node root thread will wait for the handler to

complete before signaling the local threads the beginning of the next iteration.

Permute

Permute is an operation where one thread transfers data to a single different

thread in an exclusive manner. I.e., no other thread can transfer data to that thread.

Therefore this collective does not fit in a tree structure and the only available opti-

mization, besides using memcpy for “castable” addresses, is to pack communications.

But the destination thread is application-dependent, so there is no-pattern and pack-

aging will introduce an important synchronization and buffering overhead. For that

reason packaging would be desirable in very specific cases, being detrimental in most

of the other cases. Therefore packaging was not included in Permute.

Prefix reduce

Although the prefix reduce function might look like a variation of the reduce

function, from the parallelization standpoint it is not. Each step of the reduction

has to be stored. That prevents the use of a tree based structure. The developed

algorithm is divided in three steps. First, a node local reduction is performed.

Then a reduction including data from other nodes takes place. Finally, the last step

propagates the node-local result to all the threads in the node. The second step

is based on the dissemination barrier algorithm proposed by Mellor-Crummey and

Scott [68]. Berkeley UPC’s solution is also based on this algorithm, but without

dividing the operation in different steps.
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The first step consists in copying the source array to the destination array. This

is a local step where no communication is involved, and is therefore performed by

each thread with the memcpy function. After that, all threads will iterate over their

blocks.

The next step is the node local reduction. At this point two approaches have

been implemented. One for the reductions with small blocks and the other one for

reductions with large blocks.

In the first algorithm the NUMA leader threads will compute the local reductions

of all their children. This implies a synchronization at the beginning of the process,

to ensure that all threads have finished their copy operation. This synchronization

is achieved with the use of semaphores. After this initial synchronization stage the

NUMA leader threads reduce in order their data and their children data, posting

their parent semaphore afterwards. When all the NUMA leader threads finish their

reduction, the node leader threads post the semaphore of the first NUMA leader

in the node, so it can reduce the last element –and not the others, in order to

propagate locally the results as fast as possible–. After the propagation of the result

takes place, the NUMA leaders calculate their remaining elements. After that, each

NUMA leader thread posts the node leader semaphores.

The second algorithm is more simple. Each thread in a given node computes its

local reduction. Then, all the threads in that node, except the node root thread,

which is the thread with the lower id, wait until the previous thread posts its

semaphore. When the threads leave the wait status they compute the reduction

of their last element, post the next thread semaphore and perform the reduction of

their other elements.

At this point the nodes have their local reduction completed. Then an algo-

rithm similar to dissemination barrier is performed between the nodes. For N nodes

dlog2(N)e iterations take place. In every iteration each node root thread takes the

locally reduced data from just one node. The node root thread of node i has target

node i − 2j, being j the current iteration (possible values for the current iteration

range from 0 to dlog2(N)e − 1). In each iteration each node root thread reduces

its last element with the remote thread data, so in the next iteration it can provide

the other node the globally reduced data up to that moment. Synchronization is
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performed using semaphores. This algorithm is illustrated in Figure 4.13.

Figure 4.13: Dissemination barrier algorithm for prefix reduce operation

In the last step the remote reduced data is propagated to all the elements in the

node, and is performed by NUMA node root threads for small operations, or by each

thread for larger operations, in a similar way than the local reduce computation.

4.3. Conclusions of Chapter 4

This Chapter has presented the design of a PGAS collective library. The library

has been developed from scratch, with portability, scalability and modern NUMA

architectures in mind. The portability of the library has been ensured by relying

in high level functions provided by the UPC specification, and semaphores outside

of the specification but readily available in the main UPC implementations. The

proposed design addresses scalability, by taking advantage of one-sided communica-

tion, fixed and hierarchical NUMA-aware trees, process/thread binding and a strong

focus on message pipelining. Up to know no library has implemented collectives op-

erations using all these optimization techniques. The algorithms designed aims for

good scalability for current large scale systems, sacrificing performance in small se-

tups. Moreover, even though NUMA features are a central point in the design, the

algorithms can easily adapt to non-NUMA architectures, with the trees being built

with a single NUMA region per node.

Some operations cannot be implemented efficiently using trees. Optimization

of these functions is possible. However, the possible optimizations are not as so-

phisticated as the ones used for tree-based collectives. Besides this, the tree-based

collectives –broadcast, scatter, gather and reduce– are by far the most used collec-
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tives in HPC. Thus, the next two chapters present a performance evaluation of the

optimized algorithms, focused on the tree-based collectives. Chapter 5 analyzes the

performance of the developed algorithms in 5 different NUMA systems. Later on,

Chapter 6 explores the performance of these algorithms in a manycore environment.





Chapter 5

Performance Evaluation of PGAS

Collectives on NUMA Systems

The most significant collectives have been evaluated using UOMS and its perfor-

mance and their subsequent analysis is presented in this Chapter. The performance

of the proposed algorithms has been assessed in a wide variety of high performance

architectures, using five different NUMA systems, with various architectures, rang-

ing from departmental clusters to large scale supercomputers. The influence of

different optimizations has been also assessed, and the results have been compared

to MPI on the largest scale system. Section 5.1 explains the setup and architecture

of the different systems. Sections 5.2, 5.3, 5.4 and 5.5 analyze the results of the

broadcast, reduce, scatter and gather collectives, respectively. Section 5.6 compares

the results with those of a leading MPI implementation (ParaStationMPI, based on

MPICH2), using a large cluster. Section 5.7 analyzes the impact of the different

optimizations implemented in the algorithms. Section 5.8 summarizes the analysis

of the results.

5.1. Experimental Configuration

This performance evaluation has been carried out on five representative systems.

The first one is the Finis Terrae supercomputer [107], composed of 142 HP Integrity

73
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rx7640 nodes, each one with 8 Montvale Itanium 2 dual-core processors (16 cores per

node) at 1.6 GHz and 128 GB of memory. The processors are distributed between 2

cells, each one with 4 processors (8 cores) and its own I/O subsystem. Each cell is an

independent NUMA region. The interconnection network is InfiniBand 4X DDR (16

Gbps of theoretical effective bandwidth), with Mellanox InfiniHost III Ex HCAs and

a Voltaire Grid Director ISR 2012 switch. The HCAs are plugged in the cell 0. The

node architecture is depicted in Figure 5.1. The node root thread is bound to the

cell 0. The library has been tested with up to 1024 cores in this system. The number

of nodes used in the performance evaluation is dn/16e, being n the total number

of cores used. The UPC compiler and runtime is Berkeley UPC 2.12.1, relaying on

the effective the InfiniBand Verbs library for distributed memory communication.

The GASNet PSHM (GASNet inter-Process SHared Memory) optimization has been

enabled. The backend C compiler available in the system is the Intel 11.1.
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Figure 5.1: Finis Terrae node architecture

The second system is an HP Integrity Superdome at CESGA, with 64 Montvale

Itanium 2 dual-core processors (128 cores total) at 1.6 GHz and 1 TB of memory.

The processors are distributed between 16 NUMA regions, each one with 4 processors

(8 cores). Figure 5.2 shows its architecture. The library has been tested with up to

128 cores in this system. The UPC compiler and runtime is Berkeley UPC 2.12.1,

with the SMP conduit, which uses shared memory constructs for communications.

The backend C compiler is the Intel 11.1.
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Figure 5.2: Superdome node architecture

The third system is the SVG 2011 (Galician Virtual Supercomputer) at CESGA,

composed of 46 HP ProLiant SL 165z G7 nodes, each one with two 12-core AMD

Opteron 6174 Magny-Cours processors (hence 24 cores per node) at 2.2 GHz, and 32

or 64 GB of memory. Each processor has 2 memory controllers. Therefore each node

has 4 NUMA regions, connected through high-speed HyperTransport links. The

interconnection network is Gigabit Ethernet, with HP NC362i cards. There are two

interfaces bound together. A block diagram of the node architecture is presented in

Figure 5.3. The bonding mode is 0 (round-robin balancing). The Ethernet switches

are HP ProCurve 2910al. The library has been tested with up to 192 cores in

this system. The number of nodes used in the performance evaluation is dn/24e,
being n the total number of cores used. The UPC compiler and runtime is Berkeley

UPC 2.12.1, relying on the MPI conduit for distributed memory communication.

Therefore the remote memory operations are built on top of MPI. In this particular

testbed the implementation used is MPICH 1.3.2. The GASNet PSHM optimization

has been also enabled in this system. The backend C compiler available in the system

is the Open64 4.2.4.

The fourth system used in the evaluation is the JUDGE (Jülich Dedicated GPU

Environment) supercomputer [108], comprised of 206 IBM System x iDataPlex

dx360 M3 nodes, each one with two 6-core Intel Xeon X5650 Westmere proces-

sors (hence 12 cores per node) at 2.66 GHz, and 96 GB of memory. Each processor

has its own memory controller. Therefore each node has 2 NUMA regions, connected
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Figure 5.3: SVG 2011 node architecture

through a high-speed Intel QPI (Quick Path Interconnect) links. The interconnec-

tion network is InfiniBand 4X QDR (32 Gbps of theoretical effective bandwidth),

with Mellanox ConnectX HCAs. The node architecture is presented in Figure 5.4.

The InfiniBand switches are Voltaire Grid Director 4036. The library has been tested

with up to 648 cores in this system. The number of nodes used in the performance

evaluation is dn/12e, being n the total number of cores used. The UPC compiler

and runtime is Berkeley UPC 2.12.2, a minor release fixing some bugs on 2.12.1, and

the communication layer uses the InfiniBand Verbs library for distributed memory

communication. The GASNet PSHM optimization has been also enabled in this

system. The backend C compiler available in the system is the Intel 11.1.

The fifth and last system is the JuRoPA (Jülich Research on Petaflop Architec-

tures) supercomputer [109], comprised of 2208 Sun Blade 6048 nodes, each one with

2 quad-core Intel Xeon X5570 Nehalem-EP processors (hence 8 cores per node) at

2.93 GHz, and 24 GB of memory. Each processor has its own memory controller.

Therefore each node has 2 NUMA regions, connected through a high-speed Intel QPI

links. The interconnection network is InfiniBand 4X QDR (32 Gbps of theoretical

effective bandwidth), with Mellanox ConnectX HCAs and a Sun Data Center Switch

648. The node architecture is very similar to the node architecture of JUDGE, and

is depicted in Figure 5.5. The library has been tested with up to 4096 cores in this

system. The number of nodes used in the performance evaluation is dn/8e, being n
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Figure 5.4: JUDGE node architecture

the total number of cores used. The UPC compiler is Berkeley UPC 2.12.2, relying

on the InfiniBand Verbs library for distributed memory communication. The GAS-

Net PSHM optimization has been also enabled. The backend C compiler available

in the system is the Intel 11.1.
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Figure 5.5: JuRoPA node architecture

Berkeley UPC offers the possibility of implementing UPC threads as POSIX

threads (pthreads) or as processes. The experience gathered in Chapter 2 have

shown that in order to obtain the best network access performance, pthreads should
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be avoided, as multiple threads accessing the UPC runtime cause contention and

decrease the performance. Therefore, this evaluation has relied on UPC threads

implemented as processes, with PSHM optimization to speedup the communication

performance between processes in the same node.

The implementation of the proposed algorithms (from now on PGASCol) has

been tested against the Berkeley UPC collectives (from now on BerkeleyCol), based

on the high performance layer GASNet which implements an optimized binomial tree

scheme; and also against the Michigan Technological University (MTU) reference

implementation [70] of the collective operations (from now on MTUCol), based on

flat trees on top of upc_memcpy operations. The reference implementation has, like

PGASCol, two approaches: pull and push, where data is either pulled from the

destination thread or pushed from the source thread.

The software used for the performance evaluation is the UPC Operations Mi-

crobenchmarking Suite (UOMS) [60], version 1.1. For each particular test, given a

number of cores and message block sizes, it performs several iterations, from 1000

iterations to 20 iterations depending on the number of cores being used and the

message size, to ensure representativeness and significance of the measures. All the

tests have been performed in the same batch job, one after the other, to try to

guarantee fairness in the comparison. Finally, the metric shown is the best result

for each setup. By showing the minimum runtime the performance of the algorithms

is presented without the influence of external factors (e.g., network contention/con-

gestion), allowing to focus on the scalability of the operations that implement the

proposed algorithm.

The UPC threads distribution has been performed in a block fashion. That is,

consecutive thread ranks will be in the same node until the node is fully populated.

This benefits algorithms that use trees but are not topology aware.

The following sections presents the performance results of four representative

collectives, broadcast, reduce, scatter and gather through Figures 5.6 to 5.25. Their

results have been also analyzed comparatively against MPI collectives. All figures

present the performance of a representative medium-size message (16KB) on the

top and the performance of a representative large-size message on the bottom. The

size of the large message is 1MB for broadcast and reduce, and 64KB for scatter
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and gather, due to their higher memory requirements in the root process, which is

the result of multiplying the message size by the number of processes. The y axis

represents latency in microseconds in the graphs on the top (medium-size message

case), whereas the y axis represents bandwidth in GB/s in the graphs on the bottom

(large-size message case), except for broadcast on the SVG, which shows MB/s, and

the reduce operation, which always shows latencies.

Variations in the same basic algorithm can lead to some dramatic performance

differences, as shown in Table 5.1. Therefore, the graphs display only the most

relevant algorithms for each combination of system, function and message size.

Table 5.1: Bandwidth (in MB/s) obtained by the basic pull approach algorithm
(labelled Pull) and the pull algorithm with static fragmentation and flat trees at the
intra NUMA level of this library (labelled Pull-s-f). The data displayed has been
obtained with the maximum number of processes tested in each system. That is:
1024 cores in Finis Terrae, 128 cores in Superdome, 192 cores in SVG, 648 cores in
JUDGE and 4096 cores in JuRoPA.

Message Size
256B 4KB 64KB 1MB 16MB

FT
Pull 665.2 9706 63465 48409 48647
Pull-s-f 650.5 9865 84944 162280 167094

SD
Pull 172.2 2501 7284 7764 10750
Pull-s-f 172.6 2610 13003 26265 24031

SVG
Pull 11.86 188.0 1900 4094 4096
Pull-s-f 11.83 184.5 1824 3194 3322

JUDGE
Pull 1550 22493 124537 108300 83310
Pull-s-f 1521 22881 157871 248346 270849

JuRoPA
Pull 4369 68478 476794 320855 275361
Pull-s-f 4387 66841 582289 1155182 1222592
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5.2. Scalability and Performance of UPC Broad-

cast

Figure 5.6 shows the performance obtained for the different implementations

of the broadcast operation in the Finis Terrae supercomputer. The most relevant

algorithms for this system are the variations of the pull approach with static frag-

mentation, both with flat tree and binomial trees in the intra NUMA level, PGASCol

(pull, stat. frag., flat) and PGASCol (pull, stat. frag.), respectively. The proposed

algorithms present the highest benefit, both for 16KB and 1MB messages, on 16

cores, and also for 512 and 1024 cores. The efficient handling of intranode transfers

is key for achieving a good 16-core performance result, whereas the scalable design

on 512 and 1024 cores is key to outperform BerkeleyCol, which suffer performance

drops for the largest core counts. 16KB message performance (top graphs) is domi-

nated by start-up latency and synchronization whereas 1MB message performance is

dominated by the ability to overlap communications and harness data locality. Fur-

thermore, scalable algorithms do not show performance degradation as the number

of cores increases. In fact, the proposed PGASCol algorithms scale almost linearly,

whereas BerkeleyCol suffers from poor scalability. Thus, the bandwidth obtained by

PGASCol (pull, stat. frag., flat) is more than 61 times the bandwidth of BerkeleyCol

on 1024 cores.

Figure 5.7 presents the performance in the Superdome system. The best per-

former algorithms in this system are again variations of the pull approach using

flat trees in the intra NUMA level, both with static and dynamic fragmentation.

Here the OS scheduler has a major importance since it is a shared memory machine

with 16 NUMA regions. Different core mappings might yield significantly different

results. This is specially important in the medium message case, since it is latency

bound rather than bandwidth bound. In this scenario, there is an added effect.

UOMS implements a variability filter for small messages, that causes that the min-

imum reported time for a message size cannot be smaller than the minimum time

for the size immediately smaller. The result is that a poor process distribution in

the beginning of the benchmark causes the minimum reported time to be too high.

This is why the PGASCol algorithms present more stable results for 16 KB mes-

sages, since the processes are optimally distributed from the beginning. However,
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different runs can yield different results for BerkeleyCol, depending on the OS sched-

uler decisions, resulting in a non-predictable performance. This effect is not present

in other systems or collectives –besides reduce–, as they are much less sensible to

a bad process distribution, nor is it present in the averages reported. Regarding 1

MB communication scalability, PGASCol suffer when using 32 or 64 cores (2 or 4

processes per cell). However, its better scalability allows performance benefits of

around 30% over BerkeleyCol.

The results for the SVG system can be observed in Figure 5.8. The best PGASCol

performance results have been obtained with the pull version with flat trees in

the intra NUMA level, and the pull version with dynamic fragmentation. The

performance drops significantly for 16 KB messages when more than one node is in

use. Additionally, there is an increasing difference between the PGASCol algorithms

and BerkeleyCol when fully populating the first node. In systems using Magny-Cours

processors or similar architectures with many NUMA regions, the NUMA awareness

becomes more important. With more than one node the PGASCol algorithms are

heavily penalized. The network is Gigabit Ethernet, with high latency. Since the

PGASCol algorithms rely on semaphores for synchronizing, which are basically very

short messages, they will suffer in latency bound scenarios, like the one depicted

on the top plot. The bottom plot is bandwidth bound, and therefore the use of

semaphores does not hurt the performance as much as in latency bound scenarios.

The tree topology yields major gainings in this scenario. The pull approach with

dynamic fragmentation performs almost 18 times better than BerkeleyCol, with 192

processes. However, despite its good performance compared with BerkeleyCol, the

network prevents to achieve a good scaling. The bandwidth for 192 processes is just

28% higher than with 96 processes.

The performance numbers obtained in the JUDGE supercomputer are shown

in Figure 5.9. This system shares some common features with the Finis Terrae

supercomputer. Namely the network, even though JUDGE is equipped with a later

generation of the InfiniBand standard (InfiniBand QDR 32 Gbps vs InfiniBand

DDR 16 Gbps). The behavior of the different collective operations evaluated is also

similar. The major difference is the gap between BerkeleyCol and the PGASCol

algorithms in the medium message case, when a single node is in use. This gap is

the result of the good latency of the QPI bus and the tree topology mapped to the
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hardware, allowing the algorithm to achieve a good performance. The results for

the large message case show the same tendency than in the Finis Terrae system.

The BerkeleyCol collective does not scale beyond 192 processes, while the PGASCol

algorithms keep scaling. For 648 processes the performance of the pull approach

with static fragmentation is more than 420% of the performance of the BerkeleyCol

collective.

Lastly, the Figure 5.10 depicts the results for the JuRoPA supercomputer. This

supercomputer also shares some architectural features with JUDGE and Finis Ter-

rae, and the algorithms showed are the same as in these systems. The results are

also similar to the results observed in JUDGE. However, there is one remarkable

difference in the medium message case. Even though the performance of Berkeley-

Col is slightly better than the PGASCol algorithms’ performance in setups with a

few nodes, with 1024 processes this gap disappears, showing the superior scalability

of the PGASCol algorithms. In the large message case stands out the fact that

the PGASCol algorithms keep scaling without hesitation up to 4096 processes. The

PGASCol algorithm with pull approach and static fragmentation achieves almost

160 times the bandwidth obtained by BerkeleyCol, with 4096 processes.

The conclusions that can be extracted about this operation are: (1) the scalabil-

ity of the developed algorithms is outstanding, especially for large messages; (2) for

medium messages its performance is good within one node if the internal node buses

are latency optimized; and (3) for medium messages BerkeleyCol usually performs

better when more than one node is in use.

5.3. Scalability and Performance of UPC Reduce

There are no major differences between algorithms for the reduce operation.

Therefore, all graphs will show the same two algorithms: Push and pull with flat

trees in the intra NUMA level. The reduce operation is addition, and the data type

double. The data size is per process. Therefore 2048 elements per process for 16KB

message size, and 131072 for 1MB.

Figure 5.11 represents the performance for the reduce operation in the Finis

Terrae supercomputer. The medium message case shows that the algorithms scale
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steadily. This performance data is the most important one from the communication

scalability point of view, since the large message case will be computational power

bound. The data moved between processes will be the same, even though each

process will have to spend more time computing the reduction of its own data in

the large case. When using more than one node the performance is worse than

BerkeleyCol by a narrow margin. Since BerkeleyCol has its collectives implemented

in GASNet, rather than in UPC, its network access is slightly faster than directly

from the UPC layer, causing this performance difference. Despite its slightly better

performance, BerkeleyCol performs much worse for 512 processes or more. This fact

is also present in the other InfiniBand systems. The issue can be attributed to the

InfiniBand conduit or the reduce algorithm in BerkeleyCol. The large message case

is not large enough on this system to be computational power bound. Therefore,

when more than one node is in use the time to synchronize the processes is larger

than the time spent computing, and top and bottom graphs are quite similar.

The Figure 5.12 shows the performance obtained in the Superdome system. In

this shared memory system the results for the medium message case show that the

BerkeleyCol reduce performs better than the PGASCol algorithms just with 2 pro-

cesses. Up to 32 processes both algorithms performs at the same level. However, for

64 and, especially, 128 processes, the PGASCol algorithms keep scaling, while the

performance of BerkeleyCol degrades, due to a poor process placement at the begin-

ning of the benchmark and the variability filter of UOMS. This effect is observable

for data sizes from 8 bytes to 16KB, not being present in the large message case.

In the bottom graph the PGASCol algorithms outperform BerkeleyCol except for

4 processes. However, with the system fully populated the differences are not ap-

preciable, since the limit is imposed by the caches and memory buses performance,

and the operation is computational power bound.

The results for the SVG system are presented in Figure 5.13. In the medium

message case the PGASCol algorithms outperform BerkeleyCol when just one node

is in use (up to 24 cores). This is especially true when the node is fully populated

(using 24 cores), due to the NUMA awareness. However, and as seen before, when

more than one node is used, the PGASCol algorithms do not perform better than

the BerkeleyCol counterpart. The large message case shows a scenario very similar

to the medium message case when using more than one node, since the Gigabit
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Ethernet interconnect becomes a major bottleneck and the benefits reducing the

computational times are neglected by the high latency of the network (as it can

be seen for the medium message case, the top graph). When using a single node

BerkeleyCol and the PGASCol algorithms perform at the same level, except for the

case with 24 processes. The reduce computational task is not optimized on this

system, and therefore, as the data sets to be reduced get larger, the importance

of the computing time increases, and the benefits of the PGASCol algorithms are

neglected.

Figure 5.14 shows the results in JUDGE. The general shape of the plot in the

medium message case is similar to the results for the Finis Terrae system. However,

in JUDGE the PGASCol algorithms are able to better exploit the NUMA hard-

ware than in the Finis Terrae. This is due to the fact that in JUDGE the caches

are shared in the same NUMA region, since there is a single NUMA region per

socket. However, in Finis Terrae there are 4 different processors per NUMA region.

Therefore communication will be significantly faster in JUDGE between neighboring

processes. In the Finis Terrae the ratio between speed communicating processes in

different processors, but same NUMA region, and speed communicating processes

in different NUMA regions is much lower. However, as for the previously analyzed

systems, when more than a single node is being used, this advantage is lost due to

the high network latency overhead which hides the differences between algorithms in

the shared memory scenario. Regarding the 1MB performance results, BerkeleyCol

is generally the best performer. This is because of the better implementation of

the reduce computations in BerkeleyCol collective together with the fact that the

QDR InfiniBand interconnection network is fast enough to make this setup compu-

tational power bound. Therefore, PGASCol collectives are only able to outperform

BerkeleyCol when using 648 cores, as for more than 384 processes the performance

of BerkeleyCol degrades sharply.

Lastly, Figure 5.15 displays the performance obtained in JuRoPA, a system which

is similar to JUDGE in terms of architecture. The biggest difference, besides the size

of the system, is the type of processors, with different number of cores (JUDGE has

hexa-core Xeon Westmere processors whereas JuRoPA has quad-core Xeon Nehalem

processors). Thus, in JuRoPA when using more than 8 cores (more than a single

node), BerkeleyCol outperforms the PGASCol algorithms in both the medium and
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the large message scenarios, but only up to 256 cores, as for 512 cores BerkeleyCol’s

performance degrades, whereas the PGASCol algorithms keep scaling steadily.

The analysis of the performance of the reduce implementations have allowed to

draw the following conclusions: (1) the PGASCol algorithms can effectively outper-

form BerkeleyCol in modern NUMA hardware; (2) the performance of PGASCol

reduce algorithms is latency sensitive, due to the synchronization and copy of single

elements between processes, so therefore reducing network latency yields significant

improvements, as observed when comparing systems with low latency networks (Fi-

nis Terrae, JUDGE or JuRoPA) with systems with high latency networks (SVG);

and finally (3) BerkeleyCol presents a much more efficient implementation of the

arithmetic operations supported in the reduce operation, which means that PGAS-

Col reduce implementations have still room for improving its performance.

5.4. Scalability and Performance of UPC Scatter

The Michigan Tech University (MTU) reference implementation [70] of the scat-

ter operation, unlike the broadcast and the reduce reference implementations (whose

results were not shown for clarity purposes), presents a quite competitive perfor-

mance despite its simplicity (it implements a flat tree). In the scatter operation

the data from a root process has to be distributed (scattered) among all processes

participating in the collective operation. The bottlenecks are, therefore, the out-

bound bandwidth of the root process and the start-up network latency. The simple

algorithm implemented in the reference library is a good alternative due to that,

since the use of the bandwidth of the root process is maximized without additional

synchronization and copying overhead. As for previous collectives, for clarity pur-

poses only the two best performer PGASCol algorithms are shown. Additionally,

for scatter and gather the MTU reference library is considered and every graph will

show its best performer algorithm (either the pull or the push version). Finally, it

has to be noted that for scatter and gather the amount of data to be scattered/-

gathered increases with the number of cores. In this performance evaluation the

selected message sizes are 16 KB an 64 KB. Therefore, by selecting 64 KB messages

the root process will be handling 1 MB when communicating 16 cores (16 × 64 KB),

or handling 256 MB when communicating 4096 cores (4096 × 64 KB).
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Figure 5.16 displays the results obtained from the benchmarking of the scat-

ter operation in the Finis Terrae supercomputer. The relevant algorithms for this

supercomputer are the pull versions of the MTUCol library, of the PGASCol ring

algorithm and the PGASCol tree with dynamic fragmentation. In the 16KB case,

in the one hand the best performer is the reference implementation, for the whole

range of number of cores evaluated (2-1024). On the other hand, BerkeleyCol is the

worst performer in shared memory (up to 16 cores), whereas it performs slightly

better when using two or more nodes (from 32 cores), except when using 1024 cores

(64 nodes). Here the ring algorithm presents the opposite behavior, as it performs

well in shared memory (close to MTUCol performance), but it is the worst per-

former in the internode case. Finally, the pull version of the PGASCol tree with

dynamic fragmentation has balanced performance, between the best and the worst

case. The conclusions derived from the analysis of the performance results using 64

KB messages are different. Thus, BerkeleyCol is always the worst performer. Here

MTUCol is the best performer, but in this case closely followed by the PGASCol

ring algorithm. Once again the pull version of the PGASCol tree algorithm with

dynamic fragmentation is not able to take advantages of its features because here the

bottleneck is the outbound bandwidth of the root process. However, as for the 16

KB case, it presents performance results between MTUCol and the best performer

PGASCol algorithm. When using 1024 processes the performance gap between the

best performer and the worst performer is almost 1 GB/s, which in relative terms

means that the best performer, MTUCol, presents 3 times higher performance than

the worst performer, BerkeleyCol, which is not able to provide scalable bandwidth

as the number of cores increases.

In Figure 5.17 the results measured in the Superdome system are showed. The

best performer algorithms are the same as for the Finis Terrae, except for the PGAS-

Col tree algorithm, which presents its optimal performance with static fragmenta-

tion. Here the differences between algorithms are much higher than in the Finis

Terrae system, in both cases (16KB and 64KB). The reason is that the Superdome

is a large NUMA server with lower communication latency than an interconnection

network such as InfiniBand (the network in Finis Terrae). Moreover, in this shared

memory system it is possible to access directly to the source data, minimizing prob-

lems such as congestion/contention like in a networked environment. Therefore,

removing the interconnection network limitations (latency overhead, network con-
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Figure 5.16: Scatter performance and scalability on Finis Terrae
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gestion and contention) the differences between algorithms are more noticeable.

In fact, the performance gap between the best (MTUCol) and the worst performer

(BerkeleyCol) can be as high as 54 times, as for 64KB message size and 128 cores. As

before, the best performer is the reference implementation, whereas the performance

of BerkeleyCol falls behind all the other evaluated options, for 16KB and 64KB. The

ring algorithm shows performance results around 30% lower than MTUCol, but fol-

lowing the same trend line, as both algorithms show very similar scalability. Finally,

the PGASCol tree algorithm presents performance results quite close to the worst

performer, BerkeleyCol, since the multiple levels the data has to go through, plus

additional memory requirements and synchronizations, do not compensate. As can

be derived from observing Figures from 5.16 to 5.20, the scatter operation is only

able to scale on the Superdome, where BerkeleyCol is outperformed for 64KB mes-

sages on 128 cores by the PGASCol tree algorithm (2.75 times higher performance),

the PGASCol ring algorithm (37 times higher performance) and MTUCol (54 times

higher performance).

In the SVG the best performer algorithms are the same as for the Finis Terrae

supercomputer, namely the pull versions of MTUCol, PGASCol ring and PGASCol

tree with static fragmentation. The results can be seen in Figure 5.18. Here the

results in shared memory (intranode, up to 24 cores) are similar to the Superdome

system, although the MTUCol bandwidth is higher for 64 KB messages. However,

for internode results (from 48 cores) the network latency overhead is a major issue,

since the network available in this system –Gigabit Ethernet– presents a very high

start-up latency. Thus, algorithms such as PGASCol ring especially suffers this

high start-up overhead as it relies on semaphores, which are implemented using very

short messages. Therefore, its performance on internode setups (from 48 cores)

falls behind the remaining algorithms which are less sensitive to start-up network

latency. BerkeleyCol, MTUCol and the PGASCol tree algorithm are able to take

more advantage of the network, despite their limitations, avoiding synchronization

overhead.

The results measured in JUDGE can be seen in Figure 5.19, where the best

performer algorithms are the same as for the SVG and Finis Terrae. Moreover,

the performance of these algorithms is quite similar to previous results on shared

memory (intranode case, using up to 12 cores). However, when using multiple nodes
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–24 or more cores– the performance drops significantly, showing higher latency (top

graph) or lower bandwidth (bottom graph). Thus, in this case the MTUCol and

PGASCol ring algorithms show quite similar results, within 1% of performance gap

for the 648 core setup, for both 16KB and 64KB. However, the use of PGASCol ring

is recommended as communications are done one by one, coordinated by semaphores,

which presents lower risk than the MTUCol implementation where all cores com-

municate to the root process, which could be potentially an important bottleneck.

These two algorithms –the MTUCol and PGASCol ring– perform up to 60% better

than BerkeleyCol on 648 cores.

Finally, the last system, JuRoPA, has an architecture similar to JUDGE, so it

seems reasonable that the best performer algorithms are the same as for JUDGE,

and that their performance results present similar behavior (they can be seen in

Figure 5.20), so they share most of the analysis of the JUDGE results. Regard-

ing JuRoPA benchmarking, the most important contribution is the analysis of the

selected algorithms using up to 4096 cores. Thus, one of the conclusions of the

analysis of the results is that MTUCol (pull), which implements a flat tree, is able

to cope with up to 4096 simulatenous messages, even without degrading too much

the performance, thanks to the InfiniBand network. However, BerkeleyCol can not

avoid a significant performance drop for the 64KB test case using 4096 cores, falling

in this case below half of the performance of MTUCol and PGASCol ring.

The conclusions that can be derived from the analysis of the performance results

of the scatter operation are: (1) tree-based PGASCol algorithms, despite their scal-

ability, are never the best option, due to the extra data that has to be handled; (2)

the scatter operation is seriously limited by the outbound performance at the root

process, which explains why quite simple algorithms, such as the flat tree imple-

mented by MTUCol, are able to achieve the best performance although they might

be disregarding the scalability of the data transfers; and finally (3) the MTUCol

implementation has shown the best performance results and it has been able to deal

with up to 4096 simultaneous communications, without saturating the interconnec-

tion network (in the evaluated system an InfiniBand network) and without requiring

the implementation of any synchronization mechanism to support the scalability of

the operation.



102 Chapter 5. Perf. Evaluation of PGAS Collectives on NUMA Systems

1

4

16

64

256

1024

4096

16384

2 4 8 12 24 48 96 192 384 648

L
a

te
n

c
y
 (

in
 µ

s
)

Number of cores

Scatter scalability for 16KB (medium size case)

BerkeleyCol
MTUCol (pull)

PGASCol (pull, ring)
PGASCol (pull, dyn. frag.)

 1

 2

 4

 8

 16

 32

 64

 128

2 4 8 12 24 48 96 192 384 648

B
a

n
d

w
id

th
 (

in
 G

B
/s

)

Number of cores

Scatter scalability for 64KB (large size case)

BerkeleyCol
MTUCol (pull)

PGASCol (pull, ring)
PGASCol (pull, dyn. frag.)
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5.5. Scalability and Performance of UPC Gather

Figures from 5.21 to 5.25 present the performance results of the microbench-

marking of the gather operation on the 5 representative systems considered in this

work. As for scatter, MTUCol, implementing a quite simple flat tree algorithm, has

an outstanding performance. In this case the data is collected from all the processes

and has to be written in the root process, so it is the reverse operation of the scatter

and the analysis could be the same as for the scatter, just considering the reverse

operation. Thus, the bottleneck is the inbound bandwidth and latency. Apart from

the considerations about the direction of the communications, the gather operation

presents performance results very similar to those of the scatter collective for all the

systems and messages sizes. Thus, the analysis and conclusions for the scatter re-

sults are perfectly valid for gather. However, it shall be noted that whereas the best

performer algorithms for scatter are those which implement pull-based approaches,

for gather the best option is push. The reason behind that is that communications

are initiated by all the participants, rather than just one. Therefore, the cost of

setting up the communication is partly distributed, avoiding jitter and providing

better overlapping.

5.6. Comparative Performance Analysis of NUMA

Algorithms against MPI

This section presents a comparative evaluation of the proposed PGASCol al-

gorithms against state-of-the-art collective algorithms, such as those available for

MPI, which has been carried out in JuRoPA using the MPI implementation ParaS-

tationMPI 5.0.27, based on MPICH2 1.4.1p1. Even though ParaStationMPI is not

as widely spread as other MPICH2 derivatives, the fact that it is based on MPICH2

makes suitable for a reasonable comparison. Moreover, this is the MPI implemen-

tation installed and supported on JuRoPA, and therefore results with it are more

significant for users of this system.

In order to allow comparisons as fair as possible, and due to the differences in

how UOMS and IMB measure performance, described in Chapter 3, the reported
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values for IMB are the maximum, i.e. the highest average time among processes, to

guarantee a state where all the processes have finished the operation. The reported

values for UOMS are the average, i.e. the average time per iteration needed to

guarantee that all the processes have finished the operation. Both reflect the average

time needed to allow the operation to be completed by all the processes. UOMS

also reports the maximum bandwidth. Due to that, the reported bandwidth on this

subsection is not the one reported from the output of UOMS, but the one calculated

using the average latency.

MPICH2 implements three broadcast algorithms, selected at runtime depending

on message size. These message size thresholds are configurable, but this evaluation

uses the default thresholds. Thus, for messages up to 12KB the algorithm is based

on binomial trees. For sizes between 12KB and 512KB the algorithm performs

a scatter using a binomial tree and followed by an allgather implemented with a

recursive doubling algorithm. For messages larger than 512KB the algorithm is

similar to the previous one, except for the allgather phase, which is performed with

a ring algorithm.

Regarding the scatter and gather operations, MPICH2 implements these col-

lectives using an algorithm based on binomial trees, with intermediary buffers in

non-leaf processes, in a similar way as the NUMA implementation proposed in this

Thesis.

Finally, the reduce operation has been also included in this comparison. The

reduce operation in UPC and MPI have significant differences. In UPC this collective

is done on a shared array and produces a single value, whereas the outcome of the

MPI reduce is an array result of reducing elements per position, using private arrays

as source. However, when the number of elements per rank or UPC thread is 1,

both operations are comparable. MPICH2 implements reduce using two algorithms:

Rabenseifner’s algorithm, for messages larger than 2KB, and a binomial algorithm

for shorter messages. Since our comparison is limited to one element per rank,

Rabenseifner’s algorithm is not used.

Figure 5.26 presents the comparison of PGASCol with MPI for the broadcast us-

ing two representative message sizes, 16KB representative of medium size messages,

and 1 MB, representative of large messages. For short messages (<12KB) the consid-
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ered algorithms have similar scalability, whereas the performance is highly dependent

on the start-up latency achieved by MPI and UPC communications. Both graphs

show the generally better performance and scalability of the PGASCol algorithms,

although it is noticeable that MPI achieves the highest performance for 1MB from

64 up to 1024 cores. However, for 2048 and 4096 cores MPI performance is overcome

by the better scalability of the PGASCol algorithms. These results demonstrate the

significant benefits provided by the NUMA-based algorithms, which impact posi-

tively performance, in particular for medium messages and high core counts and

large messages.

In Figure 5.27 the results for reduce can be observed. Both plots contain the data

for 8 bytes (a double per MPI rank or UPC thread). The plot on the top represents

latency, whereas the plot on the bottom represents MFLOP/s. In this range, with

a message size of just 8 bytes, the best algorithms are both pulling algorithms.

However, despite their good scalability, their performance is worse than for MPI, and

in some cases worse than BerkeleyCol. With this setup, all the algorithms (except

PGASCol with flat tree at the NUMA level) are algorithms based on binomial trees.

The number of cores per node and per NUMA region is power of 2, and therefore

the shape of the trees and the cost of the operation is the same between them.

However, MPI outperforms all the UPC implementations, due to its lower start-up

latency, that is specially important in this case due to the fact that this operation

is largely dominated by the network latency. This fact is also the root cause for the

low number of MFLOP/s, due to the low computation/communication ratio.

Figures 5.28 and 5.29 show the comparative performance results for scatter and

gather, respectively, with a format similar to the layout previously presented. Thus,

the selected message size for evaluation are 16KB and 64KB. Regarding the perfor-

mance results, generally MPI is the worst performer and the PGASCol ring algo-

rithm the best performer (up to 3 times more performance than MPI), especially

for 64KB. MTUCol also outperforms MPI. Here the PGASCol tree algorithm is ba-

sically the same as the MPI algorithm. There are only two major differences: the

NUMA affinity support, not present in MPI, and the fragmentation of the messages.

These two differences explain the better performance of the PGASCol algorithms

in scatter. For gather the fragmentation does not add any benefit and the best al-

gorithm is the one that does not use fragmentation. Therefore, in this case the key
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aspect for achieving more performance in UPC operations is the efficiency achieved

in shared memory thanks to the NUMA binding and the overlapping of communi-

cations possible with the push approach. In gather, the data flows upwards, causing

the algorithm to be more sensitive to jitter and accumulating the penalty of ignoring

optimizations of the memory subsystem. In scatter this is less important, since the

data is transmitted to the root, and immediately pulled by other root processes from

other nodes, which minimizes the penalty of not optimizing the memory subsystem,

instead of adding additional overhead.

5.7. Impact on Performance of Different Optimiza-

tions at High Core-Counts

The basic algorithm has been optimized using different techniques. However, up

to now, the contribution of each optimization to the overall collective performance

has not been assessed. This section analyzes the influence of several optimizations

for broadcast, due to its importance in the context of this work. The analysis has

been focused on the impact of these techniques on scalability, using the minimum

latency and the maximum bandwidth. Therefore JuRoPA has been selected for this

analysis due to its higher number of available cores (it has been used up to 4096

cores).

Figure 5.30 shows the contribution of the message pipelining to the overall per-

formance, for a setup of 4096 cores. In short message communication, with messages

from 4 bytes to 8KB, the performance of the different variations of the algorithm

shows the same performance results. In fact, they are using the same algorithm since

the dynamic fragmentation algorithm processes messages larger than 8KB, and the

static fragmentation algorithm starts processing messages larger than 32KB. It is

from this point, messages larger than 32KB, that each algorithm presents a different

performance. Thus, the pull algorithm without fragmentation increases performance

slightly for 64KB and 128KB, achieving at this latter point its peak performance,

degrading performance from that point on. The pull algorithm with dynamic frag-

mentation performs twice as good as the pull algorithm. However, its performance

also degrades for messages larger than 256KB. The usage of the static fragmentation
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pull algorithm achieves even higher performance, reaching its maximum at 4MB. At

this point its performance is more than 4 times as good as the initially considered

pull algorithm, showing the importance of message pipelining.

Figure 5.31 presents the impact on performance of the usage of multilevel trees.

This experiment has been conducted with 3072 processes, with 512 nodes and 6

processes per node. A multilevel tree assigning 4096 processes, with 512 nodes and

8 processes per node, is equal to a standard binomial tree, due to the usage of a

number of processes per node that is a power of 2. However, nowadays is increasingly

common to find systems with a number of cores per node that is not a power of 2.

It is in these scenarios where the usage of multilevel trees become important and

where they are different from binomial trees. In scenarios where the short messages

latency dominates the overall performance, the importance of having a multilevel

tree is noticeable for messages larger than 16 bytes. The difference between both

approaches is small up to 1MB. At that point the benefits of using the most efficient

multilevel tree become more apparent as the message size increases, and for 16MB

the use of a multilevel tree performs 1.5 times better than using a binomial tree.

The benefits of NUMA affinity to control the mapping of processes to the un-

derlying hardware are negligible in setups with a high number of nodes where the

effects of network latency and bandwidth have much more impact on performance

than the small benefit obtained from NUMA binding control. Nevertheless NUMA

affinity has shown its importance in shared memory scenarios. Moreover, a few

facts suggest that NUMA affinity control has room for improving collective opera-

tions performance over the coming years: (1) the latest processor models are directly

connected to network interfaces, typically one per node. In this case the relevance

of having the node root process in the processor with direct connection to the net-

work increases. Moreover, (2) the increasing number of NUMA regions per socket

is forcing the consideration of new algorithms that are able to minimize jitter. The

NUMA aware algorithms have outperformed other approaches in single node setups,

with fully populated nodes. Finally, (3) as interconnection networks become faster,

supercomputers with a high number of nodes turn out to be more sensitive to jit-

ter. These facts suggest that NUMA affinity can have a major impact in collective

performance in future systems. Moreover, affinity should be carefully evaluated for

every application, as show in [40]. Correct affinity can have a significant impact on
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the performance of an application. The optimal affinity setup for any application

will not interfere with the performance of PGASCol, as long as the trees are set up

according to the process mapping.

5.8. Conclusions of Chapter 5

This Chapter has analysed the performance of the proposed PGAS algorithms

for representative collective operations, particularly broadcast, reduce, scatter and

gather, on 5 different systems (Finis Terrae, Superdome, SVG, JUDGE and Ju-

RoPA), 4 different processor architectures (Intel Itanium 2, AMD Opteron Magny-

Cours, Intel Xeon Westmere and Intel Xeon Nehalem) and 4 different intercon-

nects (InfiniBand 4x DDR, Superdome Interconnect, Gigabit Ethernet, InfiniBand

4x QDR). The algorithms have been compared with the performance of an MPI

implementation based on MPICH2.

The analysis of the implementation of the proposed algorithms has shown: (1) the

implementation of these algorithms is able to equal and even outperform an evolved

and more mature UPC library (BerkeleyCol); (2) PGASCol can outperform in some

scenarios the state-of-the-art implementation of their equivalent functions in MPI,

bringing another algorithm to the mix, allowing more possibilities for autotuning

and choosing the most appropriate algorithm in each situation; (3) major contribu-

tor factors to performance are a tree mapped to the underlying hardware considering

all levels, message pipelining, communications overlapping with adequate (pull vs.

push) one-sided point-to-point transfers; (4) it is hard to determine which is the

optimal tree shape for each level, as it depends on the architecture and message

size; (5) tree-based collectives are often outperformed by ring algorithms with com-

munication overlapping, in operations where data have to be scattered/gathered

from a single point; (6) Finally, NUMA binding does not improve significantly the

performance in nowadays clusters, as the main performance bottleneck is the net-

work overhead. However, due to its highly scalable design, it is expected that the

performance benefits of the developed library will be higher in future systems with

tens of NUMA regions.

New massively parallel architectures, such as Intel Many Integrated Core, are
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gaining importance in HPC. Therefore, next Chapter presents the adaptation of the

algorithms proposed in this Thesis to this architecture, and evaluates their suitability

for it.





Chapter 6

Performance Evaluation of PGAS

Collectives on Manycore Systems

In this Chapter the proposed algorithms are tested in one of the largest manycore

systems currently deployed (Stampede, ranked in position number 7 in the top 500

list of November 2013 [110]). Their performance is compared with the performance

of MPI collectives in two different optimized implementations, and an additional

comparison is made between manycore processors, in this case Xeon Phi, versus

standard multicore processors. This evaluation focuses on Broadcast, Scatter and

Gather. Reduce in UPC, as seen in Chapter 5 is largely limited by latency. Therefore

it has not been considered, as latency is typically higher in Xeon Phi than in stan-

dard processors, and due to that the impact of the algorithm optimizations will be

hidden by this extra latency. The use of manycore processors as Xeon Phi has some

implications in every algorithm. Therefore, the same collectives were evaluated on

two different MPI implementations (Intel MPI and MVAPICH2). Section 6.1 lists

the algorithms implemented in these two MPI runtimes. Section 6.2 explains the

experimental setup. Sections 6.3 and 6.4 analyze the results of the UPC and MPI

collectives, respectively. Section 6.5 compares the results using Xeon and Xeon Phi

processors. Section 6.6 compares the UPC and MPI results. Section 6.7 assesses

the impact of the contention caused by using POSIX threads (pthreads) instead of

processes to implement UPC threads on Xeon Phi. Finally, Section 6.8 summarizes

the analysis of the results.

123
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6.1. Algorithms Implemented in Intel MPI and

MVAPICH2

Intel MPI has a set of algorithms for its collective operations. Some of them

are common to different operations. There is no documentation that details the

implementation of the algorithms in Intel MPI. However, keeping in mind that Intel

MPI is based on MPICH2, it makes sense to speculate that some of its algorithms

are based on MPICH2 or its derived implementations (in particular MVAPICH2).

The first algorithm mentioned in the documentation of Intel MPI is the binomial

algorithm. This algorithm is present in MPICH2 and MVAPICH2, and consists

basically in a binomial tree of processes, where the data is propagated top-bottom

for broadcast and scatter, and bottom-up for gather.

There is a variation of the binomial algorithm in Intel MPI, called topology

aware binomial. There is no description of this algorithm in the documentation.

However, MVAPICH2 has an algorithm implemented as a k-nomial tree that builds

the tree taking into account the topology of the nodes and network participating in

the job. Therefore, seems reasonable to assume that the algorithm implemented in

MVAPICH2 is also the algorithm implemented in Intel MPI, with the difference of

the tree radix, that is 4 by default in MVAPICH2.

The next algorithm mentioned in the documentation of Intel MPI is the ring

algorithm. This algorithm is not present in scatter or gather operations. Whereas

it is possible to implement a broadcast operation using purely a ring, i.e. passing

the data to the next process in a ring fashion, this is highly inefficient. However,

again, MPICH2 and MVAPICH2 have an algorithm for broadcast where the data

is scattered across the processes, followed by an allgather function. This allgather

function can be implemented in a ring fashion, taking p− 1 steps.

There is also a topology aware version of this algorithm in Intel MPI, imple-

mented also in MVAPICH2 following the same principles as the topology aware

binomial.

The next algorithm in Intel MPI is the recursive doubling algorithm. The de-

scription for this algorithm is basically the same as for the ring algorithm, as it
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is also present in MPICH2 and MVAPICH2, with the difference that the allgather

phase is implemented using recursive doubling, which takes log2(p) steps.

As for the ring algorithm, the recursive doubling algorithm also has a topology

aware version in Intel MPI and MVAPICH2.

The last algorithm implemented in Intel MPI is the so called Shumilin’s algo-

rithm. However, no publicly available documentation exist about the details of

this algorithm, and there are no other MPI implementations with algorithms that

suggest any specific detail about it.

It should be noted that, even though an explanation of the algorithms in Intel

MPI is not public and admittedly the above paragraphs are an speculation about

their behavior, there is not reason to believe that the algorithms do not work as

described, due to: (1) self descriptive name in most of the algorithms, (2) similarity

to names of algorithms described in the literature, and (3) being largely based in

open source implementations that include such algorithms.

6.2. Experimental Configuration

This performance evaluation has been carried out on the Stampede supercom-

puter [110] at TACC (Texas Advanced Computing Center), using up to 15,360 Xeon

Phi cores (256 nodes). Stampede is the 7th more powerful supercomputer in the

world as of November 2013. Each node has 2 Xeon E5-2680 processors with 8 cores

each, clocked at 2.7 GHz, and 32GB of memory. It also has one Xeon Phi SE10P per

node, with 61 cores clocked at 1.1 GHz and 8GB of memory. The Manycore Plat-

form Software Stack (MPSS) version is 2.1.6720-21. Generally it is recommended

to rely on hybrid parallelization with few communicating threads or processes to

take full advantage of the Xeon Phi computing power in an application. In this

particular case 60 cores have been used per Xeon Phi in order to maximise its com-

putational power, taking the Xeon Phi to its limits. The interconnection network

is InfiniBand 4X FDR (54.54 Gbps of theoretical effective bandwidth). The node

architecture is sketched in Figure 6.1. In Xeon Phi the operating system running

on the accelerator is bound to core 61. The processes have been distributed in a

block fashion, with 60 processes per node, avoiding the core where the operating
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system runs. The backend compiler used is Intel icc 13.1.1. The MPI compilers and

runtimes are Intel MPI 4.1.1 and MVAPICH2-MIC (based on MVAPICH2 1.9). The

Intel MPI experiments used the CCL-Proxy optimization, that routes all the Xeon

Phi communication through a proxy service running in the host processor. The

experiments performed using MVAPICH2-MIC used the proxy optimization for up

to 1920 processes. It was not possible to succesfully run the experiments with that

optimization and more than 1920 processes. Moreover, MVAPICH2-MIC did not

run reliably on hybrid mode, failing on most setups, specially using messages larger

than 128 bytes. Therefore, its results are not reported. It should be noted that

MVAPICH2-MIC is not yet officially supported on Stampede. MVAPICH2 results

on Xeon have not been obtained, since its algorithms and runtime optimizations are

similar to those available on Intel MPI. The UPC compiler and runtime is Berkeley

UPC 2.16.2. As the Xeon Phi is not officially supported on this release of Berkeley

UPC, a few modifications had to be done. lfence, sfence and mfence memory

fences were removed, as the Xeon Phi memory model does not rely on those mem-

ory fences for ordering. Also, support for 128 bit atomics was disabled on GASNet,

as the cmpxchg16b instruction is not available on Xeon Phi. With those tweaks,

Berkeley UPC runs experimentally on Xeon Phi. Berkeley UPC offers the user the

possibility of running UPC threads as real operating system processes, or as POSIX

threads. In Stampede, using the Xeon Phi coprocessors, the use of POSIX threads

is the only way to run tests up to 15360 cores, as the use of the 2 or more operating

system processes crashed when running on 256 nodes. Therefore, the execution of

the tests used a single process per Xeon Phi, with 60 POSIX threads (pthreads in

Berkeley UPC runtime). This limitation, using a single process per node, impacts

performance negatively, as demonstrated in Section 6.7. Thus, using 1920 cores,

with 2 processes per node and 30 pthreads, shows almost twice the performance

than using a single process and 60 pthreads, using the broadcast pull based algo-

rithm with dynamic fragmentation and flat trees at the node level, with message size

of 1MB. This is due to the fact that the underlying GASNet layer has to be thread

safe, and therefore the overhead for locks increases with the number of pthreads

used. It is important to note that all threads participate actively on the collectives,

as the distinction between process and thread is abstracted by the Berkeley UPC

runtime, offering to the upper layers just the notion of UPC thread. A new version

of Berkeley UPC (2.18.0), with official support for Xeon Phi, has been released after
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conducting these experiments. In order to ensure the validity of the results of the

experiments some of them were repeated with the new runtime, choosing the most

sensible setup, i.e.: 15360 cores. No significant differences have been observed, and

it is still not possible to run more than one process per node –and less pthreads per

process– when using 256 nodes.
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Figure 6.1: Stampede node architecture

Since the comparison between the PGAS collectives and MPI collectives is an

important part of these subsections, the reported values for IMB are the maximum,

i.e. the highest average time among processes, to guarantee a state where all the

processes have finished the operation. The reported values for UOMS are the aver-

age, i.e. the average time per iteration needed to guarantee that all the processes

have finished the operation.

All the MPI implementations have a default algorithm. Which one depends on

the specific implementation, tuning and experiment, as the default algorithm can be

different for different message sizes and number of processes involved. The default

algorithm on Intel MPI will be evaluated to assess the suitability of the current

thresholds for a Xeon Phi environment. The default algorithm on MVAPICH2-

MIC will be evaluated to assess the performance of an implementation specifically

optimized and tuned for Xeon Phi.

Sections 6.4 and 6.3 present the performance results of three representative col-

lectives, broadcast, scatter and gather. Broadcast figures present the performance of
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a representative medium size message (16KB) on the top and the performance of a

representative large size message on the bottom (1MB). Scatter and gather reported

results have been obtained with shorter messages, 8 bytes and 1KB as representa-

tive sizes. With large number of cores the message size tends to be shorter, and

it is limited by the memory requirements in the root process, which is the result

of multiplying the message size by the number of processes. The y axis represents

latency in microseconds in the graphs on the top (medium size message case for

broadcast and small size message case for scatter and gather), whereas the y axis

represents bandwidth in GB/s or MB/s in the graphs on the bottom (GB/s for large

size message case for broadcast and MB/s for medium size message case for scatter

and gather). As described in Section 5.1 of Chapter 5, variations in the same basic

algorithm can lead to some dramatic performance differences. The graphs display

only the most relevant algorithms for each combination of function and message

size, giving more importance to the setups with high number of cores.

Additionally, Section 6.5 compares the performance of the PGAS collectives and

MPI collectives on Xeon, Xeon Phi, and hybrid setups (using Xeon and Xeon Phi

on the same experiment), comparing the results using fully populated nodes.

6.3. UPC Collective Performance Scalability on

Xeon Phi

Figure 6.2 shows the performance of different broadcast algorithms implemented

in UPC. In this case, the best algorithms are variations of the pull approach. In

particular the pull algorithm with flat trees at the node level and without pipelining,

the pull algorithm with dynamic fragmentation and binomial trees in the node level,

and the pull algorithm with dynamic fragmentation and flat trees in the node level.

In the medium size case stands out the behavior of the three selected algorithms,

that reach a plateau at around 960 cores, showing a very good scalability, as adding

more cores to the operation does not impact on the latency. This is due to the tree

built to connect different nodes. Going from node 1 to 2 (60 cores to 120) has a big

impact, as communications are going through the InfiniBand network, rather than

exclusively through shared memory. However, the latency increases slowly, as adding
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an extra level to the tree is not meaningful. Stands out also the better performance

of the pull approach with flat trees, which seems to be more adequate for medium

messages than the other algorithms. In the large message case the performance of

all the implemented algorithms is similar with 15380 cores. Nevertheless, the pull

algorithm with dynamic fragmentation and flat trees is slightly better, as in large

messages pipelining becomes more important.

Figure 6.3 presents the performance of the scatter operation. The best per-

forming algorithms are all pull based, with binomial trees at both levels. The 3

selected algorithms show similar scaling in the small message case. In fact, in this

scenario these algorithms are essentially the same for a number of cores smaller

than 3840 (for the dynamic fragmentation algorithm, 15360 for the static fragmen-

tation algorithm), since there is no message fragmentation for aggregated messages

smaller or equal to 8KB (32KB in the static fragmentation case). However, they

perform differently. This suggests that the small differences in the implementation

that calculates offsets, number of chunks to complete a message and their size have

an impact larger than expected, an effect that probably has been augmented by the

slow cores present in Xeon Phi. Here the best performer is the algorithm with static

fragmentation. However, in the large message case this algorithm is heavily penal-

ized when scaling to thousands of cores because of the extra steps to synchronize

the pipelining. All the algorithms have a drop in their aggregated bandwidth when

going from 60 cores (1 node) to 120 cores (2 nodes), due to the impact of the use of

the network, which is a major source of overhead in collective operations. In fact,

the performance keeps dropping until 240 cores (4 nodes). From then on, for the

pull algorithm and the pull algorithm with dynamic fragmentation the performance

increases, as the messages sent through InfiniBand become larger and the usage of

the network increases its efficiency.

Finally, Figure 6.4 shows the performance of the gather operation. Typically

top-down collectives like broadcast or scatter benefit from a pull approach, whereas

bottom-up operations like gather benefit from a push approach. However, one of the

best algorithms in these experiments follows a pull approach. This confirms the trend

seen in broadcast and scatter: the performance benefit of message pipelining seems

to do not compensate the extra overhead involved. The slow cores and high start-up

latency of small messages hinders the use of message pipelining. In the small message
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case the push approach scales worse than the other two algorithms, as expected. In

the medium message case the push and pull approaches scale beyond 1GB/s, whereas

the algorithm with static fragmentation stop scaling at 1920 cores (32 nodes), where

the performance degradation due to fragmentation overhead reduces the aggregated

bandwidth.

6.4. MPI Collective Performance Scalability on

Xeon Phi

Figure 6.5 shows the performance of the broadcast operation for different MPI

algorithms. In this case, the best algorithms are the binomial algorithm and the

topology aware versions of the binomial algorithm and recursive doubling. Even

though Shumilin’s algorithm has very good minimum run time, the maximum (the

value that determines at which point the collective is completed for all the pro-

cesses) is higher than the remaining algorithms, and therefore it is not displayed in

the plots. Stands out the poor performance of the default Intel MPI algorithm, that

is showed here just for awareness of how important is to choose the right algorithm.

In the medium size case the default MVAPICH2-MIC algorithm outperforms all the

others, showing that the optimizations and tuning of the runtime are very effective

on this scenario, even though the proxy support is not enabled for more than 1920

processes. Regarding Intel MPI the topology binomial algorithm is the one that

exhibits the best performance, with a very flat increase in latency when using more

than 8 nodes (480 cores). The binomial algorithm performs better than the topology

aware recursive doubling, showing the suitability of tree-based algorithms for setups

with small to medium sized messages and high core counts, where the recursive dou-

bling algorithm cannot outperform the binomial algorithm, due to the small size of

some of the transmitted fragments. In the large message size case, the observed re-

sults are different. MVAPICH2-MIC is not the best performer anymore, showing the

importance of using the correct algorithm, regardless the specific runtime optimiza-

tions. Intel MPI outperforms MVAPICH2-MIC when using the correct algorithm.

In this scenario the fragments transmitted by the recursive doubling algorithm are

not that small anymore, and it slightly outperforms the binomial algorithms when

using 15360 cores. It also stands out the change in the algorithm used by default
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by Intel MPI when using more than 16 nodes (960 cores), that leads to a significant

performance boost, but far away from the best algorithms.

Figure 6.6 corresponds to the scatter operation. Shumilin’s algorithm hangs for

setups with more than 4 nodes, so its results are not reported. Therefore, for Intel

MPI, besides the default algorithm, the relevant algorithms are the binomial and

the topology aware binomial algorithms. The first result to notice is that the default

MVAPICH2-MIC algorithm does not outperform the default Intel MPI algorithm

for less than 1920 processes, on the small size case. The Intel MPI default algorithm

behaves like the binomial for the whole range, which indicates that the default

algorithm does not change depending on the number of cores or message size. In

the small size case the binomial algorithm performs better than the topology aware

algorithm for almost the whole range. The overhead of performing the algorithm in

two phases outweighs the faster transfers, that are very fast due to the small size of

the message. The binomial algorithm has a drop in performance when going from

960 cores to 1920, but keeps outperforming the topology binomial algorithm at the

15360 cores mark. For the medium size case all the algorithms drop in performance

when going from 1 node to 2 (from 60 cores to 120 cores), as the network access

becomes the bottleneck. Nevertheless, the default MVAPICH2-MIC algorithm keeps

performing remarkably good for up to 1920 processes. With more processes the

proxy optimization has not been used, and performance degrades sharply, proving

its effectiveness in this case. The binomial algorithm on Intel MPI keeps improving

its performance when increasing the number of cores, from 120, whereas the topology

binomial algorithm keeps degrading its performance. In this scenario the topology

binomial could be able to slightly outperform the binomial algorithm. Nevertheless,

this is not the case. The measure of the experimental results has shown a very erratic

behavior for this algorithm, with extremely differences between the minimum and

the maximum for setups with more than 240 cores (being similar both values with

240 cores or less), and significant differences in performance between 64 and 128

bytes messages.

Figure 6.7 displays the gather operation. Gather is conceptually the inverse of

scatter, and the analysis and observation done for the later is also valid here, where

the algorithms are the same, and the observed behavior and performance are very

similar. The exception to this statement is the performance of MVAPICH2-MIC in
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the medium size case, with a very bad performance for 240 processes and no results

for 480 processes. However, for 960 and 1920 processes its performance is better

than any of the algorithms implemented on Intel MPI.

6.5. Collective Operations Performance on Xeon

versus Xeon Phi

This subsection compares the performance of collective operations in Xeon versus

Xeon Phi. The purpose is to assess the impact of the processor used in communi-

cations performance. Figures 6.8, 6.9 and 6.10 show the results for UPC with the

performance of the same algorithms on Xeon, using the same number of nodes, for

broadcast, scatter and gather, respectively. Figures 6.11, 6.12 and 6.13 compare the

performance of the most relevant Intel MPI algorithms on Xeon Phi. Results for

MVAPICH2-MIC on Xeon Phi have been also included. The comparison has been

made using the same number of nodes, which are fully populated, and therefore

the number of cores will be different for Xeon and Xeon Phi. Hence, the Xeon Phi

experiments use 60 cores per node, whereas the Xeon experiments use 16 cores per

node. All the experiments have been carried out on Stampede, using from 1 to 256

nodes. For each figure, there are two graphs. The top graphs within the figures are

focused on latency, whereas the bottom graphs are focused on bandwidth. The MPI

figures additionally have results with hybrid setups, using both Xeon and Xeon Phi

processors. These setups also use fully populated nodes, ranging from 76 to 19456

cores (1 to 256 nodes).

Figure 6.8 shows the performance of UPC broadcast. Regarding latency, the re-

sults confirm the observations made on previous experiments. The communication

latency is much higher on Xeon Phi. Besides that, UPC latencies are always higher

than MPI latencies. Again, Xeon Phi is more affected when using more than one

node, with latencies significantly higher. These results confirm that the reason for

the suboptimal performance of these algorithms on Xeon Phi is the high latency of

the access to the network, as these algorithms rely extensively on short synchroniza-

tion messages to coordinate the pipelining. However, the scalability is quite good,

with an almost constant latency on Xeon Phi, from 8 to 256 nodes, whereas on Xeon
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it increases accordingly with the number of cores. The bandwidth obtained in one

node is higher on Xeon Phi than on Xeon, thanks to the one-sided nature of the

operations. The performance benefit is up to 2.4 times for the pull algorithm with

flat trees and dynamic fragmentation. However, this advantage is lost when using

more than one node as the impact of the low performance of Xeon Phi accessing the

network is especially high. Thus, Xeon Phi performance results are less than half of

the Xeon performance when using 256 nodes.

In Figure 6.9 the results for UPC scatter are presented. As for the other setups

already discussed, the communication latency for Xeon is much lower than for Xeon

Phi. However, as the latency on Xeon Phi remains constant from 16 nodes on, the

latency on Xeon keeps increasing. Regarding bandwidth, the results for Xeon and

Xeon Phi for the pull binomial algorithm are similar when using a single node, but

the performance of Xeon Phi falls significantly when using multiple nodes because

of the network access overhead. Here Xeon is the best performer, but Xeon Phi

improves when using more nodes, as the bandwidth obtained increases at a better

pace than on Xeon, except for the pull algorithm with binomial trees and static

fragmentation. In this particular case there is a high number of messages, a scenario

which is especially penalised by high start-up latencies and therefore its performance

does not increase.

Finally, Figure 6.10 shows the results for UPC gather. It is remarkable the good

performance of Xeon Phi with more than 16 nodes, where it performs similarly to

Xeon, or even better. Gather is a bottom-top collective, where leaves of the tree

operate independently. In other words, more parallelism is exposed at the beginning

of the operation, and copies are done asynchronously towards the root, whereas for

scatter less parallelism is exposed at the beginning, and transfers downwards have

to wait for the data to arrive. This allows these gather algorithms to perform better

than their scatter counterparts. The same effect is noticeable for bandwidth.

Figure 6.11 shows the results for the MPI broadcast. As for UPC, for MPI the

latency is much higher on Xeon Phi than on Xeon. The higher number of cores

in Xeon Phi contributes to the higher latency, as more data has to be distributed.

However, it is remarkable that the Xeon with 256 nodes is faster than Xeon Phi in

a single node (except for the binomial algorithm), even though the number of cores

is much higher (4096 cores for Xeon vs. 60 cores for Xeon Phi). It is also highly
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Xeon vs. Xeon Phi bandwidth comparison for an UPC broadcast of 1MB

256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.8: Performance comparison of UPC broadcast algorithms, for Xeon and
Xeon Phi

remarkable the impact of the network, where Xeon Phi is heavily affected, espe-

cially on the default algorithm of Intel MPI, which performs poorly through all the

tests. The hybrid Xeon + Xeon Phi setup is limited by the Xeon Phi coprocessors,

and therefore its latency is almost equal to the Xeon Phi setup for all the cases.

Regarding bandwidth the trend showed by the default algorithm on Intel MPI on
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Xeon vs. Xeon Phi bandwidth comparison for an UPC scatter of 1KB

256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.9: Performance comparison of UPC scatter algorithms, for Xeon and Xeon
Phi

Xeon is to scale its performance with the availability of more resources, whereas

on Xeon Phi it slows down up to 32 nodes, point where the default algorithm im-

proves, showing that the default thresholds are not set properly on Xeon Phi. The

binomial algorithm with topology awareness increases its performance in both Xeon

and Xeon Phi, as well as the recursive doubling algorithm with topology awareness.
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Xeon vs. Xeon Phi bandwidth comparison for an UPC gather of 1KB

256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.10: Performance comparison of UPC gather algorithms, for Xeon and Xeon
Phi

The performance of the binomial algorithm is very similar to the performance of the

topology aware binomial. As a general conclusion, the Xeon results are significantly

better than the Xeon Phi performance numbers. The performance of hybrid setups

sits between the performance of Xeon and Xeon Phi.

Figure 6.12 presents the results for MPI scatter. Latency wise the trend is
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi latency comparison for an MPI broadcast of 16KB
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi bandwidth comparison for an MPI broadcast of 1MB

256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.11: Performance comparison of MPI broadcast algorithms, for Xeon, Xeon
Phi and hybrid Xeon + Xeon Phi

the same as for broadcast. The Xeon experiments have lower latency than the

experiments with Xeon Phi for every setup, especially in the binomial algorithm,

since the overhead of calculating the optimal tree has a big impact in setups with

small messages. Differently from the broadcast case, in scatter the hybrid setups

have better latency than pure Xeon Phi setups. Nevertheless, it is still significantly
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi latency comparison for an MPI scatter of 8 bytes
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi bandwidth comparison for an MPI scatter of 1KB

256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.12: Performance comparison of MPI scatter algorithms, for Xeon, Xeon
Phi and hybrid Xeon + Xeon Phi

higher compared to the results on Xeon, that performs more than 60 times better

than Xeon Phi, for the default algorithm on Intel MPI using 256 nodes. On the

bandwidth scenario Xeon is the best performer, with the hybrid setups between

Xeon and Xeon Phi. Interestingly the topology binomial algorithm performs equal

or better on Xeon than the binomial algorithm, for up to 8 nodes, whereas it is
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi latency comparison for an MPI gather of 8 bytes
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Xeon vs. Xeon Phi vs. Hybrid Xeon + Xeon Phi bandwidth comparison for an MPI gather of 1KB

  256 nodes128 nodes64 nodes32 nodes16 nodes8 nodes4 nodes2 nodes1 node

Figure 6.13: Performance comparison of MPI gather algorithms, for Xeon, Xeon Phi
and hybrid Xeon + Xeon Phi

easily outperformed by the binomial algorithm in setups with more than 16 nodes.

On Xeon the bandwidth reaches its peak already with 64 nodes, whereas on Xeon

Phi the bandwidth keeps increasing slowly through all the setups.

Figure 6.13 shows the results for MPI gather. Like the Xeon Phi analysis done

in Subsection 6.4, the analysis for gather is quite similar to the analysis for scatter,
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with Xeon latencies much lower than on Xeon Phi. The high start-up latencies of

Xeon Phi also limits the performance of the hybrid setups. Bandwidth is also much

better on Xeon, with the performance of the hybrid setups slightly better than the

performance of the Xeon Phi setups, except for the topology binomial algorithm,

where the hybrid setups perform up to 8 times better than Xeon Phi.

6.6. UPC versus MPI Collective Operations Per-

formance on Xeon Phi

This Section correlates the performance of the PGAS collectives with the per-

formance of the MPI collectives on Xeon Phi. In the previous Section results were

obtained also in Xeon processors. The comparison between UPC and MPI has not

been done in Xeon due to the similarities of Stampede with JuRoPA, were this

comparison was already made, even though with different MPI implementations.

Besides this, and more importantly, running Berkeley UPC with 60 POSIX threads

in a node –as done in Stampede– clearly harms the performance of the collectives,

as demonstrated in Section 6.7. Therefore, making a fair comparison is not pos-

sible. Such comparison has been made on Xeon Phi to be able to have an initial

estimation. However, in Xeon is not necessary due to the experiments carried out

in Subsection 5.6.

Figure 6.14 shows the performance comparison of the broadcast collective. In

this case, both MPI implementations outperform the PGAS collectives in the latency

bound scenario. In this particular case, the proxy optimization of MVAPICH2-MIC

does not have a clear benefit, as for more than 1920 cores it is not enabled, and yet

its performance keeps the same trend. For large messages the PGAS collectives are

remarkably better than MVAPICH2-MIC, even though both have a similar scaling

characteristics. The topology binomial algorithm of Intel MPI scales like the other

evaluated algorithms, but with a better performance.

Scatter is analyzed in Figure 6.15. In the small size case, the latencies of the

PGAS algorithms are higher than the MPI algorithms. However, when using a large

number of cores, latencies get much closer. For stands out the good performance of

the pull with dynamic fragmentation and pull implementations when compared to
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Figure 6.14: Performance comparison of MPI and UPC broadcast algorithms, for
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Intel MPI, as their bandwidth is up to 75% better with 15360 cores. No compari-

son can be done with MVAPICH2-MIC using 15360 cores, since MVAPICH2-MIC

did not successfully run with that number of cores. However, the performance of

MVAPICH2-MIC is better than any other algorithm when the proxy optimization

is enabled (≤ 1920 cores).

Figure 6.16 presents the results for gather. As with scatter, stands out the poor

performance of Intel MPI when compared with these algorithms, as Intel MPI has 17

times the latency and below 20% of the bandwidth in the most extreme cases. More

importantly, MVAPICH2-MIC, with its specific optimizations, could not outperform

these algorithms, showing the importance of the algorithms as opposed to focusing

exclusively on runtime optimizations.

6.7. Impact of Runtime Configuration (pthreads

vs. processes) on Xeon Phi

As mentioned before, the Berkeley UPC runtime can implement UPC threads as

POSIX threads or as processes. One common problem for communication runtimes

is dealing with multiple threads, were internal structures have to be protected by

locks. This increases the overhead, that becomes more apparent with a large number

of threads. The results obtained in JuRoPA, in Section 5.6, showed better perfor-

mance over MPI. In Xeon Phi, it looks like the PGAS collectives do not achieve

a good performance when compared with MPI in certain cases, like on broadcast.

In the experiments done in Stampede, just one process per node was used, with 60

threads per Xeon Phi. However, Figure 6.17 shows clearly that reducing the number

of threads per process –and increasing the number of processes per node by the same

factor– has a positive performance impact on performance. The performance of the

PGAS algorithms when using 15 POSIX threads per process –and 4 processes per

node– rivals the performance of the MPI algorithms. Avoiding the use of POSIX

threads altogether in the Berkeley UPC runtime is likely to produce even better

performance. Nevertheless, this is not possible on Xeon Phi when using a large

number of nodes, and using 60 POSIX threads per process is the only way to scale

to 15360 cores.
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6.8. Conclusions of Chapter 6

This Chapter has analyzed the performance of the proposed PGAS algorithms

for broadcast, scatter and gather, on a manycore system, using 2 different processor

architectures. The algorithms have been compared with algorithms in leading MPI

implementations, tailored specifically to the architecture. The results are favorable

to the developed algorithms, and the tests include the larger number of cores used

and published in UPC collective experiments.

The analysis of the implementation of the proposed algorithms has shown: (1)

as before, PGASCol can outperform in some scenarios the state-of-the-art imple-

mentation of their equivalent functions in MPI, bringing another algorithm to the

mix, allowing more possibilities for autotuning and choosing the most appropriate

algorithm in each situation; (2) in many cases the default MPI algorithm is not the

best for Xeon Phi, as the thresholds for switching algorithms seem to have been set

with main processors (e.g., Xeon) in mind; (3) the collectives operations overhead

is typically much higher on Xeon Phi than on Xeon processors. In some cases it

is up to two orders of magnitude higher for the same number of nodes; (4) specific

optimizations on the runtime result in measurable benefit, but choosing the correct

algorithm plays a major role; (5) better performance could be expected in upcoming

UPC Xeon Phi runtimes. It is particularly important the use of multiple processes

per node in setups with a large number of cores, minimizing the use of pthreads

and therefore minimizing serialization of the access to the communication layer, as

well as using specific optimizations for Xeon Phi as seen in MVAPICH2-MIC. Fi-

nally, (6) even without specific optimization the proposed algorithms implemented

in UPC can outperform the MPI algorithms on Intel MPI and MVAPICH2-MIC in

Xeon Phi. Some of the PGAS scatter algorithms outperform the MPI scatter algo-

rithms in bandwidth bound scenarios at large core counts, whereas for gather the

performance is better using the PGAS algorithms in both latency and bandwidth

bound scenarios.
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On the road to Exascale, programming systems with ever-increasing complexity

is becoming substantially harder. Managing different levels of the memory hierarchy

in shared memory, communication in distributed memory, heterogeneity and other

issues such as communication overlapping and vectorization, take most of the time

invested in programming scientific applications. Traditional programming models

such as message passing might not cope with all these issues and a number of alter-

natives have been proposed. Among them, PGAS is often profiled as an interesting

alternative, due to its programmability and expressiveness. Even though many mod-

ern languages focused on high performance computing incorporate PGAS features,

just a few of them are being considered by scientist. UPC is one of them, as it is

largely based on C, making it familiar and powerful. This Thesis, “Design of Scalable

PGAS Collectives for NUMA and Manycore Systems” has shown that the PGAS

features present in UPC can be effectively used to design and implement efficiently

highly scalable collectives that outperform state-of-the-art collective algorithms.

Collective operations are at the core of every communication framework used in

high performance computing. The research done on this topic has been extensive,

across several years, showing its importance in the supercomputing community. Be-

hind the apparently simple concepts of collective operations lie complex algorithms

designed to tackle particular challenges. Optimization of these operations for mod-

ern architectures spawns from work on the purely algorithmic level, to reimplement-

ing and adapting different layers of communications runtimes. Despite all the work

developed in this arena, there was still missing the combination of some important

optimizations, and the benefits of PGAS features on collective libraries on modern

hardware had not been sufficiently explored.
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The performance of UPC has been analyzed in this Thesis, comparing it to MPI

and OpenMP. The analysis of the results obtained in this Thesis has shown that,

comparing NPB implementations in a NUMA cluster, MPI is the best performer,

mostly due to the use of Fortran vs. C, as Fortran is typically optimized better by the

compiler. However, UPC speedups are better for some benchmarks. Moreover, in

some benchmarks the performance with 128 cores is not as high as expected, showing

that for some workloads the network contention using a high number of cores may be

a problem. This will be a bigger issue as the number of cores per node increases in the

next years, where a higher network scalability will be required in order to confront

this challenge, and highlights the need for topology-aware algorithms. Both MPI

and UPC obtain better speedups in shared memory than in the NUMA cluster setup

up to 64 cores. However, for 128 cores all the options suffer from remote memory

accesses. MPI usually achieves good performance on shared memory, although UPC

and OpenMP outperform it in some cases. UPC, due to its expressiveness and ease

of programming, is an alternative that has to be taken into account for productive

development of parallel applications.

One important contribution of this Thesis is the design and implementation

of a complete microbenchmarking suite, which allows, for the first time, assessing

communications in UPC. UPC Operations Microbenchmarking Suite (UOMS) is

the only microbenchmarking tool for UPC that covers point to point communica-

tions, collective communications, awareness of NUMA features, work distribution

with upc_for_all and read, write and read+write shared memory accesses, and

accumulates more than 370 downloads.

The core of this Thesis is the design of a PGAS collective library developed

with scalability on modern architectures and portability in mind. Developed from

scratch, this library implements a set of collective operations with the following

optimizations:

Appropriate one-sided communication functions, with a push or pull approach

depending on the nature of the operation.

Fixed trees precomputed at initialization time that minimizes the latency of

the operations avoiding to compute the tree every time.

Hierarchical trees carefully mapped to the underlying hardware, minimizing
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the use of the slower data paths, and paying particular attention to NUMA

architectures.

Different tree shape in the last level of the hierarchy (binomial and flat).

Thread binding to ensure proper mapping of the hierarchical trees.

Efficient pipelining with dynamic and static fragment size, to maximize the

bandwidth in medium and large message cases.

The evaluation of the developed library has been carried out in 6 different sys-

tems (Stampede, JuRoPA, JUDGE, Finis Terrae, SVG and Superdome), with 5

different processor architectures (Intel Xeon Phi Many Interconnected Core, Intel

Xeon Sandy Bridge, Intel Xeon Nehalem, Intel Itanium 2 and AMD Opteron Magny-

Cours), and 5 different interconnect technologies (InfiniBand 4x FDR, InfiniBand

4x QDR, InfiniBand 4x DDR, Gigabit Ethernet and Superdome Interconnect). The

benefits with regards to state-of-the-art UPC collectives are remarkable in all the

setups, as well as with regards to MPI collectives, in multiple scenarios. The anal-

ysis of the microbenchmark results of the proposed algorithms has shown that they

easily outperform the Berkeley UPC collectives in many cases, despite they being

implemented in a lower level (GASNet), and using the same runtime. Moreover,

in a large cluster the proposed algorithms always overcome an state-of-the-art MPI

implementation, in the scatter and gather operations, whereas it has shown bet-

ter scalability for the broadcast operation, where they have also outperformed the

MPI implementation using a large number of cores. The more important factors to

achieve this performance are a tree mapped to the underlying hardware considering

all levels, message pipelining and communications overlapping with adequate (pull

vs. push) one-sided point-to-point transfers. It should be noted that tree-based

collectives are often slightly outperformed by ring algorithms with communication

overlapping, in operations where data have to be scattered/gathered from a single

point. NUMA binding does not improve significantly the performance in experi-

ments with many nodes, as the network latency becomes dominant. However, with

the increasing number of NUMA regions, it is expected that the performance benefits

of the developed library will be higher in future systems.

These algorithms have also demonstrated their suitability for manycore systems.

Despite the lack of specific optimizations of the runtime for the Xeon Phi platform,
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their performance has been competitive against the best algorithms of Intel MPI and

MVAPICH2-MIC. Moreover, the impossibility of running the Berkeley UPC runtime

without relying on pthreads has hindered even further to achieve higher performance.

Nevertheless, for gather and scatter operations the proposed algorithms improve

their MPI counterparts. Regarding broadcast, even though the performance of the

algorithms developed in this Thesis has not improved the performance of the MPI

algorithms in Xeon Phi, it has been competitive, and able to scale up to more than

15000 cores, which is the largest evaluation of collectives in manycore architectures

up to now. Experiments reducing the number of pthreads as much as possible, and

increasing the number of processes accordingly, have also shown that the potential

for these algorithms in this platform is even greater than the observed.

The work developed as part of this Thesis has been presented in various confer-

ences and journals. The initial performance evaluations were presented in PGAS

[58], EuroPVM/MPI [63] and HPCC [100]. UOMS was presented in ISC [59] and

can be downloaded from its website [60]. The proposed algorithms and their evalu-

ation in NUMA systems have been published in the Journal of Cluster Computing

[62]. The adaptation of the algorithms to manycore architectures and their evalua-

tion have been submitted for its consideration in the Journal of Parallel Computing

[61]. Additionally, an UPC programmability study has been presented in [105], and

significant contributions were made to [31], [32] and [104].

Future work on UOMS will further expand its functionality by:

1 Implementing a more efficient and sophisticated mechanism for operating with

off-cache data.

2 Providing an option for discarding outliers to avoid their interference in the

statistics.

3 Providing an option for changing the root of the collectives in a round robin

fashion.

4 Displaying minimum and average bandwidths, in addition to the maximum.

5 Adopting the syntax of the UPC specification 1.3 for the non-blocking memory

transfers.
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The collective library can be further enhanced by:

1 Including an extra level in the construction of the hierarchical trees, taking

into account the switch topology.

2 Shortening initialization times.

3 Autotuning of thresholds for dynamic and static fragmentation/pipelining.

4 Optimizing the reduce local loop, improving its vectorization.

5 Optimizing further the scatter and gather algorithms with non-binomial trees,

using multilevel but contiguous trees, allowing the user to provide hints to

safely construct these trees.

6 Exploring extra optimizations in operations that do not fit a tree structure.
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1 Contact

You can contact us at:

Galicia Supercomputing Center (CESGA)
http://www.cesga.es

Santiago de Compostela, Spain
upc@cesga.es

PhD. Guillermo Lopez Taboada
Computer Architecture Group (CAG)
http://gac.des.udc.es/index_en.html

University of A Coruña, Spain
taboada@udc.es

2 Acknowledgments

This work was funded by Hewlett-Packard Spain and partially supported by the Ministry of Science
and Innovation of Spain under Project TIN2007-67537-C03-02 and by the Galician Government
(Xunta de Galicia, Spain) under the Consolidation Program of Competitive Research Groups (Ref.
3/2006 DOGA 12/13/2006). We gratefully thank Brian Wibecan for his comments and for share
with us his thoughts and knowledge. Also, we thank Jim Bovay for his support, and CESGA, for
providing access to the FinisTerrae supercomputer.

3 Files in this benchmarking suite

• doc/manual.pdf: This file. User’s manual.

• COPYING and COPYING.LESSER: Files containing the use and redistribution terms (license).

• changelog.txt: File with changes in each release.

• Makefile: Makefile to build the benchmarking suite. It relies on the src/Makefile file.

• src/affinity.upc: UPC code with affinity-related tests.

• src/config/make.def.template.*: Makefile templates for HP UPC and Berkeley UPC.

• src/config/parameters.h: Header with some customizable parameters.

• src/defines.h: Header with needed definitions.

• src/headers.h: Header with HUCB functions headers.

• src/mem manager.upc: Memory-related functions for allocation and freeing.
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• src/UOMS.upc: Main file. It contains the actual benchmarking code.

• src/init.upc: Code to initialize some structures and variables.

• src/Makefile: Makefile to build the benchmarking suite.

• src/timers/timers.c: Timing functions.

• src/timers/timers.h: Timing functions headers.

• src/utils/data print.upc: Functions to output the results.

• src/utils/utilities.c: Auxiliary functions.

4 Operations tested

• upc forall (read elements of a shared array)

• upc forall (write elements of a shared array)

• upc forall (read+write elements of a shared array)

• for (read elements of a shared array)

• for (write elements of a shared array)

• for (read+write elements of a shared array)

• upc barrier

• upc all broadcast

• upc all scatter

• upc all gather

• upc all gather all

• upc all permute

• upc all exchange

• upc all reduceC

• upc all prefix reduceC

• upc all reduceUC

• upc all prefix reduceUC

• upc all reduceS

• upc all prefix reduceS
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• upc all reduceUS

• upc all prefix reduceUS

• upc all reduceI

• upc all prefix reduceI

• upc all reduceUI

• upc all prefix reduceUI

• upc all reduceL

• upc all prefix reduceL

• upc all reduceUL

• upc all prefix reduceUL

• upc all reduceF

• upc all prefix reduceF

• upc all reduceD

• upc all prefix reduceD

• upc all reduceLD

• upc all prefix reduceLD

• upc memcpy (remote)

• upc memget (remote)

• upc memput (remote)

• upc memcpy (local)

• upc memget (local)

• upc memput (local)

• memcpy (local)

• memmove (local)

• upc memcpy async (remote)

• upc memget async (remote)

• upc memput async (remote)

• upc memcpy async (local)
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• upc memget async (local)

• upc memput async (local)

• upc memcpy asynci (remote)

• upc memget asynci (remote)

• upc memput asynci (remote)

• upc memcpy asynci (local)

• upc memget asynci (local)

• upc memput asynci (local)

• upc all alloc

• upc free

The upc forall and for benchmarks test the performance of accesses to a shared int array in
read, write and read+write operations. The upc forall benchmark distributes the whole workload
across threads, whereas in the for benchmark all the work is performed by thread 0. This is
useful for testing the speed of remote accesses and optimization techniques such as coalescing. The
operation performed in read is a sum of a variable in the stack and the current element in the
array, to prevent the compiler from dropping the first N − 1 iterations. The operation performed
in write is a simply update of the elements with its position in the array. The operation performed
in read+write is a sum of the current element and its position in the array.

In bulk memory transfer operations there are two modes: remote and local. Remote mode
will copy data from one thread to another, whereas local mode, will copy data from one thread to
another memory region with affinity to the same thread.

5 Customizable parameters

5.1 Compile time

In the src/config/parameters.h file you can customize some parameters at compile time. They
are:

• NUMCORES: If defined it will override the detection of the number of cores. If not defined the
number of cores is set through the sysconf( SC NPROCESSORS ONLN) system call.

• ASYNC MEM TEST: If defined asynchronous memory transfer tests will be built. Default is
defined.

• ASYNCI MEM TEST: If defined asynchronous memory transfer with implicit handlers tests will
be built. Default is defined.

• MINSIZE: The minimum message size to be used in the benchmarking. Default is 4 bytes.

• MAXSIZE: The maximum message size to be used in the benchmarking. Default is 16 megabytes.
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5.2 Run time

The following flags can be used at run time in the command line:

• -help: Print usage information and exits.

• -version: Print UOMS version and exits.

• -off cache: Enable cache invalidation. Be aware that the cache invalidation greatly increases
the memory consumption. Also, note that for block sizes smaller than the cache line size it
will not have any effect.

• -warmup: Enable a warmup iteration.

• -reduce op OP: Choose the reduce operation to be performed by upc all reduceD and upc all

prefix reduceD. Valid operations are:

– UPC ADD (default)

– UPC MULT

– UPC LOGAND

– UPC LOGOR

– UPC AND

– UPC OR

– UPC XOR

– UPC MIN

– UPC MAX

• -sync mode MODE: Choose the synchronization mode for the collective operations. Valid modes
are:

– UPC IN ALLSYNC|UPC OUT ALLSYNC (default)

– UPC IN ALLSYNC|UPC OUT MYSYNC

– UPC IN ALLSYNC|UPC OUT NOSYNC

– UPC IN MYSYNC|UPC OUT ALLSYNC

– UPC IN MYSYNC|UPC OUT MYSYNC

– UPC IN MYSYNC|UPC OUT NOSYNC

– UPC IN NOSYNC|UPC OUT ALLSYNC

– UPC IN NOSYNC|UPC OUT MYSYNC

– UPC IN NOSYNC|UPC OUT NOSYNC

• -msglen FILE: Read user defined problem sizes from FILE (in bytes). If specified it will
override -minsize and -maxsize

• -minsize SIZE: Specifies the minimum block size (in bytes). Sizes will increase by a factor
of 2
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• -maxsize SIZE: Specifies the maximum block size (in bytes)

• -time SECONDS: Specifies the maximum run time in seconds for each block size. Disabled by
default. Important: this setting will not interrupt an ongoing operation

• -input FILE: Read user defined list of benchmarks to run from FILE. Valid benchmark names
are:

– upc forall read

– upc forall write

– upc forall readwrite

– for read

– for write

– for readwrite

– upc barrier

– upc all broadcast

– upc all scatter

– upc all gather

– upc all gather all

– upc all exchange

– upc all permute

– upc memget

– upc memput

– upc memcpy

– local upc memget

– local upc memput

– local upc memcpy

– memcpy

– memmove

– upc all alloc

– upc free

– upc all reduceC

– upc all prefix reduceC

– upc all reduceUC

– upc all prefix reduceUC

– upc all reduceS

– upc all prefix reduceS

– upc all reduceUS
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– upc all prefix reduceUS

– upc all reduceI

– upc all prefix reduceI

– upc all reduceUI

– upc all prefix reduceUI

– upc all reduceL

– upc all prefix reduceL

– upc all reduceUL

– upc all prefix reduceUL

– upc all reduceF

– upc all prefix reduceF

– upc all reduceD

– upc all prefix reduceD

– upc all reduceLD

– upc all prefix reduceLD

– upc memget async

– upc memput async

– upc memcpy async

– local upc memget async

– local upc memput async

– local upc memcpy async

– upc memget asynci

– upc memput asynci

– upc memcpy asynci

– local upc memget asynci

– local upc memput asynci

– local upc memcpy asynci

6 Compilation

To compile the suite you have to setup a correct src/config/make.def file. Templates are provided
to this purpose. The needed parameters are:

• CC: Defines the C compiler used to compile the C code. Please note this has nothing to do
with the resulting C code generated from the UPC code if your UPC compiler is a source to
source compiler.
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• CFLAGS: Defines the C flags used to compile the C code. Please note this has nothing to do
with the resulting C code generated from the UPC code if your UPC compiler is a source to
source compiler

• UPCC: Defines the UPC compiler used to compile the suite

• UPCFLAGS: Defines the UPC compiler flags used to compile the suite. Please note you should
not specify the number of threads flag at this point

• UPCLINK: Defines the UPC linker used to link the suite

• UPCLINKFLAGS: Defines the UPC linker flags used to link the suite

• THREADS SWITCH: Defines the correct switch to set the desired number of threads. It is compiler
dependant, and also includes any blank space after the switch

Once you have set up your make.def file you can compile the suite.

For a static thread setup type:
make NTHREADS=NUMBER OF UPC THREADS

E.g., for 128 threads:
make NTHREADS=128

For a dynamic thread setup just type:
make

7 Timers used

This suite uses high-resolution timers in IA64 architecture. In particular it uses the Interval Timer
Counter (AR.ITC). For other architectures it uses the hpupc ticks now if you are using HP UPC, or
bupc ticks now if you are using Berkeley UPC, whose precision depends on the specific architecture.
If none of this requirements are met the suite uses the default gettimeofday function. However,
the granularity of this function only allows to measure microseconds, rather than nanoseconds.

8 Output explanation

This is an output example of the broadcast:

#---------------------------------------------------

# Benchmarking upc_all_broadcast

# #processes = 2

#---------------------------------------------------

#bytes #repetitions t_min[nsec] t_max[nsec] t_avg[nsec] BW_aggregated[MB/sec]

4 20 19942 48820275 2463315.85 0.00

8 20 19942 22922 21457.25 0.70

16 20 19942 22397 21420.10 1.43

32 20 19942 22235 21626.35 2.88

64 20 20277 33610 22886.00 3.81
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128 20 20285 22812 21676.60 11.22

256 20 20767 22845 22230.50 22.41

512 20 20767 23020 22314.85 44.48

1024 20 22777 29255 24169.85 70.01

2048 20 23705 25425 24603.85 161.10

4096 20 24562 27097 26437.60 302.32

8192 20 29885 33205 32174.35 493.42

16384 20 42492 44735 43919.35 732.49

32768 10 68317 70052 69490.00 935.53

65536 10 121610 123837 122635.00 1058.42

131072 10 227550 231515 229323.50 1132.30

262144 10 437645 444740 441354.00 1178.86

524288 10 861287 871700 867619.70 1202.91

1048576 5 1702722 1704420 1703642.40 1230.42

2097152 5 3417170 3435637 3429128.40 1220.82

4194304 5 6830267 6839535 6834224.40 1226.49

8388608 2 13434382 13469047 13451715.00 1245.61

16777216 2 27310152 27343357 27326755.00 1227.15

33554432 1 54294385 54294385 54294385.00 1236.02

The header indicates the benchmarked function and the number of processes involved. The first
column shows the block size used for each particular row. The second column is the number of repe-
titions performed for that particular message size. The following three columns are, respectively, the
minimum, maximum and average latencies. The last column shows the aggregated bandwidth calcu-
lated using the maximum latencies. Therefore, the bandwidth reported is the minimum bandwidth
achieved in all the repetitions.

Moreover, when 2 threads are used, affinity tests are performed. This way you can measure the
effects of data locality in NUMA systems, if the 2 threads run in the same machine. This feature
may be useful even when the 2 threads run in different machines. E.g.: Machines with non-uniform
access to the network interface, like quad-socket Opteron/Nehalem-based machines, or cell-based
machines like HP Integrity servers. The output of this tests is preceded with something like:

#---------------------------------------------------------

# using #cores = 0 and 1 (Number of cores per node: 16)

# CPU Mask: 1000000000000000 (core 0), 0100000000000000 (core 1)

#---------------------------------------------------------

All tests after these lines are performed using core 0 (thread 0) and core 1 (thread 1) until
another affinity header is showed.
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