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Abstract

Steel heat treating is very important for many industrial purposes. In this paper,
we describe a mathematical model for the heating-cooling process of a steel workpiece
leading to the desired hardness. The resulting model consists of a strongly coupled
nonlinear system of PDEs/ODEs. A simpler version of this model is used for the
numerical simulation of the hardening process of a car steering rack.

1 INTRODUCTION

Steel is an alloy of iron and carbon. Steel used for industrial purposes, has a carbon content
up to about 2 wt%. Other alloying elements may be present, such as Cr and V in tools
steels, or Si, Mn, Ni and Cr in stainless steels. Most structural components in mechanical
engineering are made of steel. Certain of these components, such as toothed wheels, bevel
gears, pinions and so on, engaged each others in order to transmit some kind of (rotational
or longitudinal) movement. As a result the contact surfaces of these components are

particularly stressed. The goal of heat treating of steel is to attain a satisfactory hardness.
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Prior to heat treating, steel is a soft and ductile material. Without a hardening treatment,
and due to the surface stresses, the gear teeth will soon get damaged and they will no
longer engage correctly.

In this work we are interested in the mathematical description and the numerical sim-
ulation of the hardening procedure of a car steering rack (see Figure 1). This particular
situation is one of the major concerns in the automotive industry. In this case, the goal is
to increase the hardness of the steel along the tooth line and at the same time maintain

the rest of the workpiece soft and ductile in order to reduce fatigue.

Figure 1: Car steering rack.

Solid steel may be present at different phases, namely austenite, martensite, bainite,
pearlite and ferrite. The phase diagram of steel is shown in Figure 2. For a given wt%
of carbon content up to 2.11, all steel phases are transformed into austenite provided the
temperature has been raised up to a certain range. The minimum austenization tempera-
ture (727°) is attained for a carbon content of 0.77 wt% (eutectoid steel). Upon cooling,
the austenite is transformed back into the other phases (see Figure 3), but its distribution
depends strongly on the cooling strategy ([4, 12]).

Martensite is the hardest constituent in steel, but at the same time is the most brittle,
whereas pearlite is the softest and more ductile phase. Martensite derives from austenite
and can be obtained only if the cooling rate is high enough. Otherwise, the rest of the steel
phases will appear. Figure 4 shows a time-temperature transformation diagram (TTT) of
a given steel. Solid black curves indicate the beginning and the end of a transformation
to another phase. Depending on the temperature history of P; to Py, different phases are

obtained.
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The hardness of the martensite phase is due to a strong supersaturation of carbon atoms
in the iron lattice and to a high density of crystal defects. From the industrial standpoint,
heat treating of steel has a collateral problem: hardening is usually accompanied by dis-
tortions of the workpiece. The main reasons of these distortions are due to (1) thermal
strains, since steel phases undergo different volumetric changes during the heating and
cooling processes, and (2) experiments with steel workpieces under applied loading show
an irreversible deformation even when the equivalent stress corresponding to the load is in

the elastic range. This effect is called transformation induced plasticity.
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Figure 2: Phase diagram of steel. Austenite constituent is stable at a high temperature
range.

The heating stage is accomplished by an induction-conduction procedure. This tech-
nique has been successfully used in industry since the last century. During a time interval,
a high frequency current passes through a coil generating an alternating magnetic field
which induces eddy currents in the workpiece, which is placed close to the coil. The eddy

currents dissipate energy in the workpiece producing the necessary heating.
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Figure 3: Microconstituents of steel. Upon heating, all phases are transformed into austen-
ite, which is transformed back to the other phases during the cooling process. The dis-
tribution of the new phases depends strongly on the cooling strategy. A high cooling
rate transforms austenite into martensite. A slow cooling rate transforms austenite into
pearlite.

2 MATHEMATICAL MODELING

We consider the setting corresponding to Figure 5. The domain ¢ represents the inductor
(made of copper) whereas 2° stands for the steel workpiece to be hardened. Here, the coil

is the domain Q = Q° U Q°U S. In this way, the workpiece itself takes part of the coil.

In order to describe the heating-cooling process, we will distinguish two subintervals
forming a partition of [0, 7], namely [0,7] = [0,7}) U [T, T¢), Tc > T, > 0. The first one
[0,71) corresponds to the heating process. All along this time interval, a high frequency
electric current is supplied through the conductor which in its turn induces a magnetic
field. The combined effect of both conduction and induction gives rise to a production
term in the energy balance equation (2.14), namely b(0)|A; + V¢|?. This is Joule’s heating
which is the principal term in heat production. In our model, we will only consider three
steel phase fractions, namely austenite (a), martensite (m), and the rest of phases (7). In
this way, we have a + m+r =1 and 0 < a,m,r < 1in Q° x [0, 7]. At the initial time we
have r(0) = 1 in Q5. Upon heating only austenite can be obtained. In particular m = 0
in ° x [0,7}] and the transformation to austenite is derived at the expense of the other

phase fractions (r).

At the instant ¢ = T}, the current is switched off and during the time interval [T}, T,

the workpiece is severely cooled down by means of aqua-quenching.
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Figure 4: Temperature-Time transformation diagram (TTT). This isothermal transfor-
mation diagram (solid black lines) shows what happens when an austenized steel is held
at a constant temperature. Continuous-cooling transformation diagram (CCT) is a non-
isothermal transformation diagram describing the decomposition of austenite according to
the corresponding temperature history curves (solid green curves). Generally, the CCT
diagram (which is not represented here) have the same shape that the corresponding TTT
diagram, but the transformation curves are shifted to right.

The cooling rate of P, is high enough so that it will be transformed into martensite. The
cooling rate of P, is still high, but not enough. P, will transform into a mixture of marten-
site and nodular pearlite. P; will transform into fine pearlite. The point P, cools down
very slowly and will transform into pearlite.

A = 727°C is the temperature at which austenite begins to form during the heating stage. The sub-
script ¢ comes from the French chauffant.

A3 is the temperature at which transformation of ferrite to austenite is completed during heating (for
a hypoeutectoid steel, this value corresponds to the lower boundary of the austenite region in the phase
diagram (Figure 2).

M; is the temperature at which transformation of austenite to martensite starts during the cooling stage.

My is the temperature at which transformation of austenite to martensite finishes during cooling.
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So o

Figure 5: Domains D, Q = 2° U Q° U Sy and the interface I' C Q°. The inductor Q¢ is
made of copper. The workpiece contains a toothed part to be hardened by means of the
heating-cooling process described below. It is made of a hypoeutectoid steel.

The heating model

The current passing through the set of conductors = Q°U Q% U S, is modeled with the
aid of an auxiliary smooth surface I' C Q° cutting the inductor Q° into two parts, each one
of them having a surface contact over the boundary of the workpiece Q° (see Figure 5).
The heating model involves the following unknowns: the electric potential, ¢; the magnetic
vector potential, A = (A, Ay, A;3); the stress tensor, o = (07j)1<ij<3, 0ij = 0j; for all
1 < 4,7 < 3; the displacement field v = (ug,us, u3); the austenite phase fraction, a; and
the temperature, 6. Among them, only A is defined in the domain D containing the set of
conductors €2. On the other hand, since the inductor and the workpiece are in close contact,
both ¢ and @ are defined in €. Since phase transitions only occur in the workpiece, we may
neglect deformations in Q°. This implies that o, u and a are only defined in the workpiece

®. The heating model reads as follows ([3, 9, 10, 7]):

V- (b(O)Ve) =0 in Qg =Qx(0,T), (2.1)
32:0 on 9Q x (0,T3), (2.2)
hm%]:ﬁ on T x (0,T}), (2.3)
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bo(0)A; + ¥ x Gv x A) _SV(V-A) = ()Y in Dx (0,Th),  (2.4)
A=0 ondDx (0,T), (2.5)

A0)= Ay inQ, (2.6)

Voo=F in®x(0,T), (2.7)

=K <6(u) ~ Ay(a,m,6) — /Ot'y(a,m, a1, 6)8 dT) , (2.8)

w=0 onTyx (0,T}), (2.9)

on=0 onT)x(0,T), (2.10)

0 = %@(aeq(e) CaH(O—A) i x (0,T3), (2.11)

a(0) =0 in Q5 (2.12)

a(0,a,m, )0, — V- (k(0)V0) + 3kq(a, m)0 (V - uy — 3Az(ar, my, 0)) =

=b(0)|A; + Vo> — pLaas + Ay(as, my, 0) tr o + v(a, m, a;, ms, 0)|S]* in Qp, (2.13)

90
5, =0 ond2x(0.T;), (2.14)

6(0) =6, inQ. (2.15)

Here, b(0) is the electrical conductivity (by b(6) we mean the function (z,t) — b(z,0(z,
t)), and also for k(0), etc.); [ - |r stands for the jump across the inner surface I'; jg represents
the external source current density. The domain D containing the set of conductors is taken
big enough so that the magnetic vector potential A vanishes on its boundary dD. Since
both o and a are only defined in £2°, when they appear in a term referred in €2, we mean that
this term vanishes outside ®* (for instance, —pL,a, appearing in (2.13)); bo(z, s) = b(x, s)
if 2 € Q, by(x,s) = 0 elsewhere; p = p(x) is the magnetic permeability; § > 0 is a small
constant; I is a given external force (usually F' = 0); K = K, 1 <1, k,1 < 3 is the

stiffness tensor. Steel can be considered as an isotropic and homogenous material so that
Kijir = A0y + (00 + 6485c), for all i, j, k1 € {1,2,3}

where A > 0 and i > 0 are the Lamé coefficients of steel; (u) = £(Vu+ Vu”) is the strain

tensor; Aj(a,m,0)I models the thermal strain, I being the 3 X 3 unity matrix, whereas
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Ai(a,m,0) is defined as
Ai(a,m,0) = qua(0 — 04) + gmum(0 — 0,) + ¢ (1 —a —m)(0 —0,.),

and in its turn ¢,, ¢, and ¢, are the thermal expansion coefficients of the phase fractions a,
m and r, respectively, and 6,, 0,, and 0,. are reference temperatures (notice that during the
heating stage is m = 0); f(f ~(a,m,a;,my, 8)S dr gives the model, through the function -,
of the transformation induced plasticity strain tensor, where S = o'—% tr ol is the deviator
of o, that is the trace free part of the stress tensor; I'g and I'y is a partition of 9Q°, both
surfaces being smooth enough; n is the unit outer normal vector to the boundary I'y; the
functions 7,(6), aeq(f) are given from experimental data fitting the corresponding CCT
diagram (see Figure 4), and H is the Heaviside function; x(#) is the thermal conductivity;

the functions in (2.13) are given as follows
a(0,a,m, o) = pc. — Ikq(a,m)*0 — q(a,m) tro,

where p and ¢, are the steel density and the specific heat capacity at constant strain,

respectively, & = £(3X 4 2f1) is the bulk modulus, and g(a,m) is defined as
q(a,m) = qaa + gnm + (1 — a — m)gy;

AQ(at-, my, 9) = Qaat(e - aa) + qmmt(e - am) - QT(at + mt)(e - gr)

Finally, L, > 0 is the latent heat related to the austenite phase fraction. Notice that, in a
more general case p, ¢ and L, may depend on a, m and/or 0.

Equations (2.1) and (2.4) derive from Maxwell’s equations. In [9], it is assumed the
Coulomb gauge condition for the magnetic vector potential, namely, V - A = 0. Here, we
do not impose this condition since this makes appear an undesired pressure gradient in
the equation for A. In its turn, we include a penalty term in this equation of the form
—0V(V - A). In doing so, both the theoretical analysis and the numerical simulations are
simplified.

Equation (2.7) is a quasistatic balance law of momentum and (2.7) is Hooke’s law. The
transformation to austenite from the initial phase 7(0) = 1 is described in (2.11).

Finally, equation (2.13) derives from the balance law of internal energy. As it has

been pointed out above, Joule’s heating is the main responsible in heat production. Since
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v(a, m,az,ms,0)|S|> > 0, the contribution of the transformation induced plasticity to the
energy balance is also a production term. On the other hand, during the heating stage we
have a; > 0 so that —pL,a; < 0. This means that the transformation to austenite absorbs

energy, which is released during the cooling stage.

The cooling model

The heating process ends, the high frequency current passing through the coil is switched-
off and aqua-quenching begins. The quenching is just modeled via the Robin boundary
condition given in (2.25).

We put az, = a(Th), that is, ag, is the austenite phase fraction distribution at the final
heating instant 7}, obtained from (2.11). In the same way, we define 05, = 6(7}). Obviously,
these functions will be taken as the initial phase fraction distribution and temperature,
respectively, in the cooling model. Here we use the Koistinen-Marburger model ([11, 13])
for the description of the transformation to martensite from austenite.

The cooling model reads as follows:

—V.-o=F inQx(L,T.), (2.16)

o—K <€(u) ~ Av(a,m, )T — /Oty(m . ag,my,0)S dT) 7 (2.17)
W=0 onTyx (TyTo), (2.18)

on—0 onlix(ThTh), (2.19)

0 — %@(aeq(e) CQH(O— A in 9 x (T T, (2.20)
o(Th) = ag, in O, (2.21)

i — em(1— mYH(—0)H(M, — ) in O x (Th, T.), (2.2)
m(Th) =0 in () (2.23)

Oé(@, a,m, O')@t - V : (K(e)ve) + 3Rq(a7 m)@ (V s U — 3A2(ata My, 6)) =

= _pLaat +meTnt +A2(at7mt79) tro’—i_’Y(av m, athntve)l‘S"Q in 2 x (Tthc)v (224)
0

% — B(z,)(0—0.) on 90 x (T, T)), (2.25)
n

O(Ty) = 07, in Q. (2.26)
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In (2.22) ¢,, > 0 is a constant value. Also, in (2.24), L,, > 0 is the latent heat related
to the martensite phase fraction. The function §(x,¢) in (2.25) is a heat transfer coefficient

and is given by
0 on 992 N 0N°,
Blat) = { By(t) on 09N O

where 3,(t) > 0 (usually taken to be constant). Finally, 6. is the temperature of the
quenchant.

The mathematical analysis of a system similar to (2.16)-(2.26) can be seen in [3]. In
this reference, an existence result is shown assuming that the data are smooth enough and

T, — Ty, is sufficiently small.

3 THE HARMONIC REGIME

We focus our attention on the heating induction-conduction process. Electromagnetic
fields generated by high frequency currents are sinusoidal in time. Consequently, both the
electric potential, ¢, and the magnetic potential field, A, take the form ([1, 2, 14, 15])
M(z,t) = Re[e™'M(z)], where M is a complex-valued function or vector field, and w =
2r f is the angular frequency, f being the electric current frequency. In general, M also
depends on t, but at a time scale much greater than 1/w. In this way, we may introduce

the complex-valued fields ¢, A and j as
¢ = Re[e“'p(x,1)], A=Re[e“ A(x,1)], js=Rele™j(x)]. (3.1)

As far as the numerical simulation of a system like (2.1)-(2.15) is concerned, the introduc-
tion of the new variables ¢ and A is quite convenient since the time scale describing the
evolution of both ¢ and A is much smaller than that of the temperature 6. In the case of
steel heat treating, f is about 80 KHz.

Rewriting the original system (2.1)-(2.15) in terms of the new complex-valued variables,
¢ and A, neglecting the term A;, we obtain the so-called harmonic regime. Furthermore,
in the energy equation, the expression |A;+V¢|? is substituted by its mean value measured

over a time period [t,t + w]:

1 t+w 1
;/t | A, + Vo|* ~ SliwA + Vol (3.2)
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In this way, the effective Joule’s heating takes the form 1b(6)|iwA + V|2 Notice that if
both A and ¢ are time independent, then the expression (3.2) is in fact an equality and

the right hand side does not depend on the integration interval [t,¢ + w].

The equations in the harmonic regime are the following:

V- (b(0)Ve) =0 in Q= Q x (0,T3), (3.3)
?Ti =0 ondQ x (0,Ty), (3.4)

{b(&)?ﬂr —j onTx(0,T), (35)

bo(6)iwA + V x Gv v A> _V(V-A) = —b(6)Ve n Dx (0,Ty),  (3.6)
A=0 ondDx(0,T), (3.7)

Voo =F in®x(0,T) (3.8)

o—K <z—:(u) — Av(a,m, )T — /Oty(m m, g, my, )8 dr) , (3.9)

w=0 onTyx(0,T}), (3.10)

on=0 onT;x(0,Ty), (3.11)

0 = %@(aeq(()) MO — Ay in O x (0,Th), (3.12)

a(O) =0 in (3.13)

a(ea a,m, U)Ht - v ! (ﬁ(a)ve) + 3RQ(a7 m)e (v C U — 3A2(at7 My, 6.)) =

1
= §b(9)|ZwA + V(p‘Q - pLaat + A?(a’ta me, 6) tro+ ’Y(aa 1, g, Mg 0)|S|2 in QT},a (314)

o0
Fe 0 on 9Q x(0,T}), (3.15)

(0) =6, in . (3.16)

An existence result for a simpler version of the system (3.3)-(3.16), without taking into

account mechanical effects, (that is, & = 0 and v = 0) has been announced in [6].
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4 NUMERICAL SIMULATION

Using the Freefem++ package ([8]), we have performed some numerical simulations for
the approximation of the solution to the systems (3.3)-(3.16) and (2.16)-(2.26). In these
simulations we do not consider mechanical effects (o = 0, v = 0) and we are interested in
the evolution of the temperature, the austenization process and the martensite transforma-
tion ([5]). We want to describe the hardening treatment of a car steering rack during the
heating-cooling process. The goal is to produce martensite along the tooth line together

with a thin layer in its neighborhood inside the steel workpiece.
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Figure 6: Domain triangulation. The mesh contains 61790 triangles and 30946 vertices.

Figure 5 shows the open sets D, Q = Q°UQ°U .S and the inferface I" which intervene
in the setting of the problem. The workpiece contains a toothed part to be hardened by
means of the heating-cooling process described above. It is made of a hypoeutectoid steel.
The open set D\ Q is air. The magnetic permeability x in (3.6) is then given by

o ifreD\Q,
pu(x) =< 0.999954, if z € Q°,
2.24 x 103y, if z € O,
where j1y = 47 x 1077 (N/A?) is the magnetic constant (vacuum permeability).
The martensite phase can only derive from the austenite phase. Thus we need to

transform first the critical part to be hardened (the tooth line) into austenite. For our
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Figure 8: Temperature evolution at instants ¢ = 1, ¢ = 3, ¢t = 5.5 (end of the heating
stage, aqua-quenching begins), t = 6 and ¢ = 7 seconds, respectively. At ¢t = 5.5 s the

temperature along the tooth part has reached the austenization level in this part of the

rack. The temperature is measured in Kelvin degrees.

hypoeutectoid steel, austenite only exists in a temperature range close to the interval

[1050, 1670] (in °K). During the first stage, the workpiece is heated up by conduction and
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induction (Joule’s heating) which renders the tooth line to the desired temperature. In
order to transform the austenite into martensite, we must cool it down at a very high rate.
This second stage is accomplished by spraying water over the workpiece.

In this simulation, the final time of the heating process is T}, = 5.5 seconds and the

cooling process extends also for 5.5 seconds, that is T, = 11.

We have used the finite elements method for the space approximation and a Crank-
Nicolson scheme for the time discretization. Figures 6 and 7 show the triangulation of D
in our numerical simulations. We have used P»-Lagrange approximation for ¢, A and 6
and P, for a and m.

In Figure 8 we can see the temperature distribution of the rack along the tooth line
at different instants of the the heating-cooling process. The initial temperature is 6y =
300°K. At t = 5.5 the heating process ends and the computed temperature shows that the
temperature along the rack tooth line lies in the interval [1050, 1670] (°K).

Figure 10 shows the austenization along the tooth line at the end of the heating process
T = 5.5 seconds.

Figure 11 shows the final distribution of martensite from austenite along the rack tooth
line through the cooling stage ¢ = 11 seconds. We have good agreement versus the experi-

mental results obtained in the industrial process.
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AAA

Austenite: ¢ = 5.5s (left), 5s (center) and ¢ = Ts (right)

Martensite: ¢ = 5.5s (left), t = 6.5s (center) and ¢ = 7s (right)

Austenite: ¢ = 8s (left), 9s (center) and ¢ = 11s (right)

Martensite: t = 8s (left), t = 9s (center) and ¢ = 11s (right)

Figure 9: Transformation of the martensite phase fraction from austenite during the aqua-
quenching at time instants t=>5.5, 6.5, 7, 8, 9, and 11 seconds, respectively. Blue corre-
sponds to 0% while red is 100%. We observe that martensite starts to appear, approxi-
matively, one second after the beginning of the cooling stage. At the final instant, all the
amount of austenite has been transformed into martensite.

Figure 11: Cooling process. Martensite transformation at the final stage of the cooling
process t = 11 seconds.
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