
FACULTY OF INFORMATICS

Department of Computer Science

Ph.D. Thesis

Novel feature selection methods for high
dimensional data

Author: Verónica Bolón Canedo

Advisors: Amparo Alonso Betanzos

Noelia Sánchez Maroño

A Coruña, March 2014





March 12, 2014
UNIVERSITY OF A CORUÑA

FACULTY OF INFORMATICS
Campus de Elviña s/n
15071 - A Coruña (Spain)

Copyright notice:
No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or other-
wise without the prior permission of the authors.





Stay hungry. Stay foolish.





Acknowledgements

The path to becoming a doctor has been long. It started back in the kindergarten, when

I was curious about everything and the necessity of investigating arose. From primary

to high school, I was taught how to read, how to write, how to add and subtract. It

was in University when I learned how to fall seven times and stand up eight. After

graduating, I started my PhD, without knowing exactly what it meant. Now that I

have spent all my life learning, and this stage is about to finish, I know that the term

philosophy in PhD has another meaning: love of wisdom. It was this love of wisdom

which encouraged me to start this journey and to stay intellectually hungry, and I hope

that it will never leave me.

As I have said, the path to becoming a doctor is long and hard, but also full of

people to acknowledge. First of all, I would like to thank my parents. They raised me,

taught me, supported me, encouraged me, loved me and provided me with everything

I needed. For all these reasons, to them I dedicate this thesis.

Most of all, I would like to thank my thesis advisors, Amparo and Noelia. All these

years they have trained me to be a student, a researcher, a doctor. There has always

been an answer to my questions, a solution to the troubles I have encountered. Without

their patient guidance I would not have been made it to this point.

I would like to express my gratitude to my lab mates. Not only did they help me

with everything I needed, but they also became good friends. The coffee break was the

best moment of the working day. Not only for the coffee –nor for the break–, but for

the nice company. Thanks for that.

In this journey, I had also the opportunity to travel. I would like to acknowledge Dr.

Principe for welcoming me to sunny Florida. A special thanks goes to all the friends I

made in the CNEL Lab. They were my little family during those warm months, filling

me with experiences I will never forget. See you later, alligators.

i
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Resumo

A selección de caracteŕısticas def́ınese como o proceso de detectar as caracteŕısticas

relevantes e descartar as irrelevantes, co obxectivo de obter un subconxunto de carac-

teŕısticas máis pequeno que describa axeitadamente o problema dado cunha degradación

mı́nima ou incluso cunha mellora do rendemento. Coa chegada dos conxuntos de alta

dimensión –tanto en mostras como en caracteŕısticas–, volveuse indispensable a iden-

tificación axeitada das caracteŕısticas relevantes en escenarios do mundo real. Neste

contexto, os diferentes métodos dispoñibles atópanse cun novo reto en canto a aplica-

bilidade e escalabilidade. Ademais, é necesario desenvolver novos métodos que teñan en

conta estas particularidades da alta dimensión. Esta tese está adicada á investigación

en selección de caracteŕısticas e á súa aplicación a datos reais de alta dimensión.

A primeira parte deste traballo trata da análise dos métodos de selección de ca-

racteŕısticas existentes, para comprobar a súa idoneidade fronte a diferentes retos e

para poder proporcionar novos resultados aos investigadores de selección de caracteŕıs-

ticas. Para isto, aplicáronse as técnicas máis populares a problemas reais, co obxectivo

de obter non só melloras no rendemento senón tamén para permitir a súa aplicación

en tempo real. Ademais da eficiencia, a escalabilidade tamén é un aspecto cŕıtico nas

aplicacións de grande escala. A eficacia dos métodos de selección de caracteŕısticas pode

verse significativamente degradada, se non totalmente inaplicable, cando o tamaño dos

datos medra continuamente. Por este motivo, a escalabilidade dos métodos de selección

de caracteŕısticas tamén debe ser analizada.

Despois de levar a cabo unha análise en profundidade dos métodos de selección de

caracteŕısticas existentes, a segunda parte desta tese céntrase no desenvolvemento de

novas técnicas. Debido a que a maooŕıa dos métodos de selección existentes precisan que

os datos sexan discretos, a primeira aproximación proposta consiste na combinación dun

discretizador, un filtro e un clasificador, obtendo resultados prometedores en escenarios

diferentes. Nun intento de introducir diversidade, a segunda proposta trata de empregar

un conxunto de filtros en lugar dun só, co obxectivo de liberar ao usuario de ter que

decidir que técnica é a máis axeitada para un problema dado. A terceira técnica

proposta nesta tese non só considera a relevancia das caracteŕısticas senón tamén o
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seu custo asociado –económico ou canto a tempo de execución–, polo que se presenta

unha metodoloxa xeral para selección de caracteŕısticas baseada en custo. Por último,

propóñense varias estratexias para distribuir e paralelizar a selección de caracteŕısticas,

xa que transformar un problema de grande escala en varios problemas de pequena escala

pode levar a melloras no tempo de procesado e, nalgunhas ocasións, na precisión de

clasificación.
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Resumen

La selección de caracteŕısticas se define como el proceso de detectar las caracteŕısticas

relevantes y descartar las irrelevantes, con el objetivo de obtener un subconjunto de

caracteŕısticas más pequeño que describa adecuadamente el problema dado con una

degradación mı́nima o incluso con una mejora del rendimiento. Con la llegada de los

conjuntos de alta dimensión –tanto en muestras como en caracteŕısticas–, se ha vuelto

indispensable la identificación adecuada de las caracteŕısticas relevantes en escenarios

del mundo real. En este contexto, los diferentes métodos disponibles se encuentran

con un nuevo reto en cuanto a aplicabilidad y escalabilidad. Además, es necesario

desarrollar nuevos métodos que tengan en cuenta estas particularidades de la alta di-

mensión. Esta tesis está dedicada a la investigación en selección de caracteŕısticas y a

su aplicación a datos reales de alta dimensión.

La primera parte de este trabajo trata del análisis de los métodos de selección de

caracteŕısticas existentes, para comprobar su idoneidad frente a diferentes retos y para

poder proporcionar nuevos resultados a los investigadores de selección de caracteŕıs-

ticas. Para esto, se han aplicado las técnicas más populares a problemas reales, con

el objetivo de obtener no sólo mejoras en rendimiento sino también para permitir su

aplicación en tiempo real. Además de la eficiencia, la escalabilidad también es un as-

pecto cŕıtico en aplicaciones de gran escala. La eficacia de los métodos de selección

de caracteŕısticas puede verse significativamente degradada, si no totalmente inaplica-

ble, cuando el tamaño de los datos se incrementa continuamente. Por este motivo, la

escalabilidad de los métodos de selección de caracteŕısticas también debe ser analizada.

Tras llevar a cabo un análisis en profundidad de los métodos de selección de carac-

teŕısticas existentes, la segunda parte de esta tesis se centra en el desarrollo de nuevas

técnicas. Debido a que la mayoŕıa de métodos de selección existentes necesitan que los

datos sean discretos, la primera aproximación propuesta consiste en la combinación de

un discretizador, un filtro y un clasificador, obteniendo resultados prometedores en es-

cenarios diferentes. En un intento de introducir diversidad, la segunda propuesta trata

de usar un conjunto de filtros en lugar de uno sólo, con el objetivo de liberar al usuario

de tener que decidir qué técnica es la más adecuada para un problema dado. La tercera
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técnica propuesta en esta tesis no sólo considera la relevancia de las caracteŕısticas sino

también su coste asociado –económico o en cuanto a tiempo de ejecución–, por lo que

se presenta una metodologa general para selección de caracteŕısticas basada en coste.

Por último, se proponen varias estrategias para distribuir y paralelizar la selección de

caracteŕısticas, ya que transformar un problema de gran escala en varios problemas

de pequeña escala puede llevar a mejoras en el tiempo de procesado y, en algunas

ocasiones, en precisión de clasificación.
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Abstract

Feature selection can be defined as the process of detecting the relevant features and

discarding the irrelevant ones, with the goal of obtaining a small subset of features that

describes properly a given problem with a minimum degradation or even improvement

in performance. With the advent of high dimensionality –both in samples and features–,

the adequate identification of the relevant features of the data has become indispensable

in real world scenarios. In this context, the different methods available encounter a

new challenge regarding application and scalability. Also, new methods that take into

account the peculiarities of high dimension need to be developed. This thesis is devoted

to feature selection research and its application to real high dimensional data.

The first part of this work deals with the analysis of existing feature selection meth-

ods, to check their adequacy toward different challenges and to be able to provide new

findings for feature selection researchers. To this end, the most popular techniques

are applied to real-life problems, in an attempt to obtain not only improvements in

performance but also to allow a real-time application of the techniques. Apart from ef-

ficiency, scalability is also a critical issue in large-scale applications. The effectiveness of

feature selection methods may be significantly downgraded, if not totally inapplicable,

when the data size increases steadily. For this reason, scalability in feature selection is

analyzed as well.

After carrying out an in-depth analysis of existing feature selection methods, the

second part of this thesis is focused on proposing novel techniques aimed at solving

some of the problems detected in the field. Since most of the existing feature selection

methods need data to be discrete, the first proposed approach consists of a combination

of a discretizer, a filter method and a classifier, obtaining promising results in different

scenarios. In an attempt to introduce diversity, the second proposal lies on employing

an ensemble of filters instead of a single one, with the aim of releasing the user from

the decision of which technique is the most appropriate for a given problem. The third

technique proposed in this thesis considers not only the relevance of the features but also

their related cost –economic or in terms of processing time–, so that a framework for

cost-based feature selection is described. Finally, several approaches for distributed and
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parallel feature selection are also proposed, since transforming the large-scale problem

into several small-scale problems can lead to improvements in processing time and,

sometimes, in classification accuracy.
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CHAPTER 1
Introduction

The advent of high dimensional data has brought unprecedented challenges to machine

learning researchers, making the learning task more complex and computationally de-

manding. The term high dimensionality is applied to a database that presents one of

the following characteristics: (a) the number of samples is very high; (b) the number

of features is very high; or (c) both the number of samples and features are very high.

There exists in the literature some controversy about the term high-dimensionality,

since some authors claim that it only refers to the feature space whereas others use

it indistinctly for both features and samples. In this thesis the latter alternative will

be adopted and a dataset will be considered of very high dimensionality when having

more than 10000 data (where data means features x samples) according to Z. A. Zhao

and Liu (2011).

When dealing with high-dimensional data, learning algorithms can degenerate their

performance due to overfitting, learned models decrease their interpretability as they are

more complex, and finally speed and efficiency of the algorithms decline in accordance

with size. Machine learning can take advantage of feature selection methods to be

able to reduce the dimensionality of a given problem. Feature selection is the process

of detecting the relevant features and discarding the irrelevant and redundant ones,

with the goal of obtaining a small subset of features that describes properly the given

problem with a minimum degradation or even improvement in performance (Guyon,

2006). Feature selection, as it is an important activity in data preprocessing, has been

an active research area in the last decade, finding success in many different real world

applications, especially those related with classification problems.

This thesis is devoted to feature selection research and its application to high di-

mensional data. The work presented herein flows from general principles to proposing

novel methods. First, a critical analysis of existing feature selection methods is per-

formed, to check their adequacy toward different challenges and to be able to provide

some recommendations to the users. Bearing this analysis in mind, the most adequate
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techniques are applied to several real-life problems, obtaining a notable improvement

in performance. Apart from efficiency, another critical issue in large-scale applications

is scalability. The effectiveness of feature selection methods may be significantly down-

graded, if not totally inapplicable, when the data size increases steadily. For this reason,

scalability in feature selection is analyzed.

Then, new techniques for large-scale feature selection are proposed. In the first

place, as most of the existing feature selection techniques need data to be discrete,

a new approach is proposed that consists of a combination of a discretizer, a filter

method and a very simple classical classifier, obtaining promising results. Another

proposal is to employ a ensemble of filters instead of a single one, releasing the user

from the decision of which technique is the most appropriate for a given problem. An

interesting topic is also to consider the cost related with the different features (economic,

or associated with memory or time requirements), therefore a framework for cost-based

feature selection is proposed, demonstrating its adequacy in a real-life scenario. Finally,

it is well-known that a manner of handling large-scale data is to transform the large-

scale problem into several small-scale problems, by distributing the data. With this

aim, several approaches for distributed and parallel feature selection are proposed.

Before diving into the specific aspects of each topic, in this introduction a summary

of the main goals of the present thesis in each part is given.

1.1 Analysis of feature selection

Feature selection methods usually come in three flavors: filter, wrapper, and embed-

ded methods (Guyon, 2006). The filter model relies on the general characteristics of

training data and carries out the feature selection process as a pre-processing step with

independence of the induction algorithm. On the contrary, wrappers involve optimizing

a predictor as a part of the selection process. Halfway these two models one can find

embedded methods, which perform feature selection in the process of training and are

usually specific to given learning machines.

There exists a vast body of feature selection methods in the literature, including

filters based on distinct metrics (e.g. entropy, probability distributions or information

theory) and embedded and wrappers methods using different induction algorithms. The

proliferation of feature selection algorithms, however, has not brought about a general
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methodology that allows for intelligent selection from existing algorithms. In order

to make a correct choice, a user not only needs to know the domain well, but also is

expected to understand technical details of available algorithms. On top of this, most

algorithms were developed when dataset sizes were much smaller, but nowadays distinct

compromises are required for the case of small-scale and large-scale (big data) learn-

ing problems. Small-scale learning problems are subject to the usual approximation-

estimation trade-off. In the case of large-scale learning problems, the trade-off is more

complex because it involves not only the accuracy of the selection but also other as-

pects, such as stability (i.e. the sensitivity of the results to training set variations) or

scalability.

The first part of this thesis is devoted to analyzing the state of the art feature

selection methods and demonstrating their adequacy on real applications. The main

goals of this block of the thesis are the following:

• Critical review of the most popular feature selection methods in the literature by

checking their performance in an artificial controlled experimental scenario. In

this manner, the ability of the algorithms to select the relevant features and to

discard the irrelevant ones without permitting noise or redundancy to obstruct

this process is evaluated.

• Analysis of the behavior of feature selection in a very challenging field: DNA

microarray classification. DNA microarray data is a hard challenge for machine

learning researchers due to the high number of features (around 10 000) but small

sample size (typically one hundred or less). For this purpose, it is necessary to

review the most up-to-date algorithms developed ad-hoc for this type of data, as

well as studying their particularities.

• Application of classic feature selection to real problems in order to check their

adequacy. Specifically, testing the effectiveness of feature selection in two prob-

lems from the medical domain: tear film lipid layer classification and K-complex

identification in sleep apnea.

• Analysis of the issue of scalability in feature selection. With the advent of high

dimensionality, machine learning researchers are not focused only in accuracy, but

also in the scalability of the solution. Therefore, this issue must be addressed.

First, the influence of feature selection to scaling up machine learning algorithms

is tested. Then, a study in detail of the scalability of feature selection methods

is also necessary.
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1.2 Novel feature selection methods

The second part of the thesis is devoted to developing novel feature selection capable

of being applied to high dimensional datasets. Although the benefits of the feature

selection process have been extensively proved, most researchers agree that there is not

a so-called “best method” and their efforts are focused on finding a good method for a

specific problem setting. For this reason, new feature selection methods are constantly

emerging using different strategies. In fact, the current tendency in feature selection is

not toward developing new algorithmic measures, but toward favoring the combination

or modification of existing algorithms. Therefore, the objective of this part of the thesis

is focused in exploring different strategies to deal with the new problematics which have

emerged derived from the big data explosion.

Our first proposal is related with preprocessing techniques, so a discretization stage

was introduced prior to feature selection trying to improve the performance of the

induction methods. Another interesting and popular line of research in classification

is ensemble learning, based on the assumption that a set of experts is better than a

single expert, so inspired on this idea an ensemble of filters and classifiers is proposed.

It is also interesting to consider cases in which features have their own risk or cost,

since this factor must be taken into account as well as the accuracy. For this reason,

feature selection methods which tackle cost are also proposed. Finally, a recent topic

of interest has arisen which consists of distributing the feature selection process, trying

to improve accuracy whilst reducing the training time. Some proposals are presented

in this thesis aiming at covering this issue.

To sum up, the main goals of the second part of this thesis are the following:

• Development of a new framework which consists of combining discretization and

filter methods. This framework is successfully applied to intrusion detection and

microarray data classification.

• Development of a novel method for dealing with high-dimensional data: an en-

semble of filters and classifiers. The idea of this ensemble is to apply several filters

based on different metrics and then joining the results obtained after training a

classifier with the selected subset of features. In this manner, the user is released

from the task of choosing an adequate filter for each dataset.
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• Proposal for a new framework for cost-based feature selection. In this manner,

the scope of feature selection is broaden by taking into consideration not only the

relevance of the features but also their associated costs. The proposed framework

consists of adding a new term to the evaluation function of a filter method so

that the cost is taken into account.

• Distributed and parallel feature selection. There are two common types of data

distribution: (a) horizontal distribution wherein data are distributed in subsets of

instances; and (b) vertical distribution wherein data are distributed in subsets of

attributes. Both approaches are tested, employing for this sake filter and wrapper

methods. Since in some cases the partitioning of the datasets can introduce some

redundancy among features, new partitioning schemes are being investigated, for

example by dividing the features according to some goodness measure.

1.3 Overview of this thesis

This chapter has introduced the main topics to be presented in this work. Figure 1.1

depicts the organization of the thesis. Part I is covered by chapters 2 - 6. Chapter

2 presents the foundations of feature selection, as well as a description of the feature

selection methods which will be employed in this thesis. Then, Chapter 3 reviews the

most popular methods in the literature and checks their performance in an artificial

controlled scenario, proposing some guidelines about their appropriateness in different

domains. Chapter 4 analyzes the up-to-date contributions of feature selection research

applied to the field of DNA microarray classification, whereas Chapter 5 is devoted to

proving the benefits of feature selection in other real applications such as classification

of the tear film lipid layer and K-complex classification. Chapter 6 closes Part I by

studying the scalability of existing feature selection methods.

Part II is covered by chapters 7 - 10. Chapter 7 presents a method which consists

of a combination of discretizers, filters and classifiers. The proposed method is applied

over an intrusion detection benchmark dataset, as well as other challenging scenarios

such as DNA microarray data. Chapter 8 introduces an ensemble of filters to be

applied to different scenarios. The idea builds on the assumption that an ensemble

of filters is better than a single method, since it is possible to take advantage of their

individual strengths and overcome their weak points at the same time. Chapter 9

proposes a new framework for cost-based feature selection. The objective is to solve
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Figure 1.1: Organization of the thesis

problems in which it is interesting not only to minimize the classification error, but

also to reduce costs that may be associated to input features. Chapter 10 presents

some approaches for distributed and parallel feature selection, splitting the data both

vertically and horizontally. Finally, Chapter 11 summarizes the main conclusions and

contributions of this thesis. Notice that Appendix I presents the materials and methods

used throughout this thesis and Appendix II reports the author’s key publications and

mentions.
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Analysis of feature selection
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CHAPTER 2
Foundations of feature selection

In the last years, several datasets with high dimensionality have become publicly avail-

able on the Internet. This fact has brought an interesting challenge to the research

community, since for the machine learning methods it is difficult to deal with a high

number of input features. To confront the problem of the high number of input fea-

tures, dimensionality reduction techniques can be applied to reduce the dimensionality

of the original data and improve learning performance. These dimensionality reduction

techniques usually come in two flavors: feature selection and feature extraction.

Feature selection and feature extraction each have their own merits (Z. A. Zhao

& Liu, 2011). On the one hand, feature extraction techniques achieve dimensionality

reduction by combining the original features. In this manner, they are able to generate a

set of new features, which is usually more compact and of stronger discriminating power.

It is preferable in applications such as image analysis, signal processing, and information

retrieval, where model accuracy is more important than model interpretability. On

the other hand, feature selection achieves dimensionality reduction by removing the

irrelevant and redundant features. It is widely used in data mining applications, such as

text mining, genetics analysis, and sensor data processing. Due to the fact that feature

selection maintains the original features, it is especially useful for applications where

the original features are important for model interpreting and knowledge extraction.

This chapter will present the foundations of feature selection, as well as a description

of the feature selection methods which will be employed in this thesis.

2.1 Feature selection

Feature selection can be defined as the process of detecting the relevant features and

discarding the irrelevant and redundant ones with the goal of obtaining a subset of
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features that describes properly the given problem with a minimum degradation of

performance. It has several advantages (Guyon, 2006), such as:

• Improving the performance of the machine learning algorithms.

• Data understanding, gaining knowledge about the process and perhaps helping

to visualize it.

• General data reduction, limiting storage requirements and perhaps helping in

reducing costs.

• Feature set reduction, saving resources in the next round of data collection or

during utilization.

• Simplicity, possibility of using simpler models and gaining speed.

2.1.1 Feature relevance

Intuitively, it can be determined that a feature is relevant if it contains some information

about the target. More formally, Kohavi & John classified features into three disjoint

categories, namely, strongly relevant, weakly relevant, and irrelevant features (Kohavi

& John, 1997). In their approach, the relevance of a feature X is defined in terms of

an ideal Bayes classifier. A feature X is considered to be strongly relevant when the

removal of X results in a deterioration of the prediction accuracy of the ideal Bayes

classifier. A feature X is said to be weakly relevant if it is not strongly relevant and

there exists a subset of features S, such that the performance of the ideal Bayes classifier

on S is worse than the performance on S ∪ {X}. A feature is defined as irrelevant if it

is neither strongly nor weakly relevant.

2.1.2 Feature redundancy

A feature is usually considered as redundant in terms of feature correlation (Yu &

Liu, 2004a). It is widely accepted that two features are redundant to each other if

their values are completely correlated, but it might not be so easy to determine feature

redundancy when a feature is correlated with a set of features. According to Yu and Liu

(2004a), a feature is redundant and hence should be removed if it is weakly relevant and
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has a Markov blanket (Koller & Sahami, 1995) within the current set of features. Since

irrelevant features should be removed anyway, they are excluded from this definition of

redundant features.

Figure 2.1: Overview of feature relevance and redundancy

Figure 2.1 visualizes an overview of the relationship between feature relevance and

redundancy. The entire feature set can be conceptually divided into four basic disjoint

parts: irrelevant features (I), weakly relevant and redundant features (II), weakly rel-

evant but non-redundant features (III) and strongly relevant features (IV) (Yu & Liu,

2004a). Notice that the optimal subset would cointain all the features in parts III and

IV.

2.2 Feature selection methods

Feature selection methods can be divided according to two approaches: individual

evaluation and subset evaluation (Yu & Liu, 2004a). Individual evaluation is also known

as feature ranking and assesses individual features by assigning them weights according

to their degrees of relevance. On the other hand, subset evaluation produces candidate

feature subsets based on a certain search strategy. Each candidate subset is evaluated

by a certain evaluation measure and compared with the previous best one with respect

to this measure. While the individual evaluation is incapable of removing redundant

features because redundant features are likely to have similar rankings, the subset

evaluation approach can handle feature redundancy with feature relevance. However,

methods in this framework can suffer from an inevitable problem caused by searching

through all feature subsets required in the subset generation step, and thus, both

approaches are worth it to be studied.
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Aside from this classification, three major approaches can be distinguished based

upon the relationship between a feature selection algorithm and the inductive learning

method used to infer a model (Guyon, 2006):

• Filters, which rely on the general characteristics of training data and carry out

the feature selection process as a pre-processing step with independence of the

induction algorithm. This model is advantageous for its low computational cost

and good generalization ability.

• Wrappers, which involve a learning algorithm as a black box and consists of using

its prediction performance to assess the relative usefulness of subsets of variables.

In other words, the feature selection algorithm uses the learning method as a

subroutine with the computational burden that comes from calling the learning

algorithm to evaluate each subset of features. However, this iteration with the

classifier tends to give better performance results than filters.

• Embedded methods, which perform feature selection in the process of training

and are usually specific to given learning machines. Therefore, the search for

an optimal subset of features is built into the classifier construction and can be

seen as a search in the combined space of feature subsets and hypotheses. This

approach is able to capture dependencies at a lower computational cost than

wrappers.

Table 2.1 provides a summary of the characteristics of the three feature selection

methods, indicating the most prominent advantages and disadvantages.

Considering that there exist several algorithms for each one of the previously com-

mented approaches, there is a vast body of feature selection methods. Most researchers

agree that “the best method” simply does not exist and their efforts are focused on

finding an good method for a specific problem setting. In that sense, different methods

have been developed to deal with large scale datasets where the importance of feature

selection is beyond doubt, since it is essential to minimize training time and allocated

memory while maintaining accuracy. Nevertheless, it is important to bear in mind that

most feature selection methods use the performance of the learned model as part of

the selection process. In fact, from the three categories shown above (filters, wrappers

and embedded), only filters are algorithm-independent. This property makes filters

computationally simple and fast, being able to handle extremely large-scale datasets.

However, most filters are univariate, i.e. they consider each feature independently of

12
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Table 2.1: Feature selection techniques.

Method Advantages Disadvantages

Filter

Independence of the classifier No interaction with the classifier

Lower computational cost than

wrappers

Fast

Good generalization ability

Embedded

Interaction with the classifier Classifier-dependent selection

Lower computational cost than

wrappers

Captures feature dependencies

Wrapper

Interaction with the classifier Computationally expensive

Captures feature dependencies Risk of overfitting

Classifier-dependent selection

other features, a drawback that can be overcome by multivariate techniques which

usually demand more computational resources.

2.2.1 Filter methods

Filter methods are based on performance evaluation metric calculated directly from

the data, without direct feedback from predictors that will finally be used on data with

reduced number of features (Guyon, 2006). As mentioned above, these algorithms are

usually computationally less expensive than wrappers or embedded methods. In this

subsection, the most popular filters are described, which will be used throughout this

thesis.
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2.2.1.1 Chi-squared

This is an univariate filter based on the χ2 statistic (Liu & Setiono, 1995) and which

evaluates each feature independently with respect to the classes. The higher the value

of chi-squared, the more relevant is the feature with respect to the class.

2.2.1.2 Information Gain

The Information Gain filter (Quinlan, 1986) is one of the most common univariate

methods of evaluation attributes. This filter evaluates the features according to their

information gain and considers a single feature at a time. It provides an orderly classi-

fication of all the features, and then a threshold is required to select a certain number

of them according to the order obtained.

2.2.1.3 Correlation-based Feature Selection, CFS

This is a simple multivariate filter algorithm that ranks feature subsets according to

a correlation based heuristic evaluation function (M. A. Hall, 1999).The bias of the

evaluation function is toward subsets that contain features that are highly correlated

with the class and uncorrelated with each other. Irrelevant features should be ignored

because they will have low correlation with the class. Redundant features should be

screened out as they will be highly correlated with one or more of the remaining features.

The acceptance of a feature will depend on the extent to which it predicts classes in

areas of the instance space not already predicted by other features.

2.2.1.4 Consistency-based Filter

The filter based on consistency (Dash & Liu, 2003) evaluates the worth of a subset

of features by the level of consistency in the class values when the training instances

are projected onto the subset of attributes. From the space of features, the algorithm

generates a random subset S in each iteration. If S contains fewer features than the

current best subset, the inconsistency index of the data described by S is compared

with the index of inconsistency in the best subset. If S is as consistent or more than

14



2.2 Feature selection methods

the best subset, S becomes the best subset. The criterion of inconsistency, which is the

key to success of this algorithm, specify how large can be the reduction of dimension in

the data. If the rate of consistency of the data described by selected characteristics is

smaller than a set threshold, it means that the reduction in size is acceptable. Notice

that this method is multivariate.

2.2.1.5 Fast Correlation-Based Filter, FCBF

The fast correlated-based filter method (Yu & Liu, 2003) is a multivariate algorithm

that measures feature-class and feature-feature correlation. FCBF starts by selecting a

set of features that is highly correlated with the class based on symmetrical uncertainty

(SU), which is defined as the ratio between the information gain and the entropy of

two features. Then, it applies three heuristics that remove the redundant features and

keep the features that are more relevant to the class. FCBF was designed for high-

dimensionality data and has been shown to be effective in removing both irrelevant

and redundant features. However, it fails to take into consideration the interaction

between features.

2.2.1.6 INTERACT

The INTERACT algorithm (Z. Zhao & Liu, 2007) uses the same goodness measure

as FCBF filter, i.e. SU, but it also includes the consistency contribution, which is an

indicator about how significantly the elimination of a feature will affect consistency.

The algorithm consists of two major parts. In the first part, the features are ranked in

descending order based on their SU values. In the second part, features are evaluated

one by one starting from the end of the ranked feature list. If the consistency contribu-

tion of a feature is less than an established threshold, the feature is removed, otherwise

it is selected. The authors stated that this method can handle feature interaction, and

efficiently selects relevant features.

2.2.1.7 ReliefF

The filter ReliefF (Kononenko, 1994) is an extension of the original Relief algorithm

(Kira & Rendell, 1992). The original Relief works by randomly sampling an instance

15



Chapter 2. Foundations of feature selection

from the data and then locating its nearest neighbor from the same and opposite class.

The values of the attributes of the nearest neighbors are compared to the sampled

instance and used to update relevance scores for each attribute. The rationale is that a

useful attribute should differentiate between instances from different classes and have

the same value for instances from the same class. ReliefF adds the ability of dealing

with multiclass problems and is also more robust and capable of dealing with incomplete

and noisy data. This method may be applied in all situations, has low bias, includes

interaction among features and may capture local dependencies which other methods

miss.

2.2.1.8 minimum Redundancy Maximum Relevance, mRMR

The mRMR method (H. Peng, Long, & Ding, 2005) selects features that have the high-

est relevance with the target class and are also minimally redundant, i.e., selects features

that are maximally dissimilar to each other. Both optimization criteria (Maximum-

Relevance and Minimum-Redundancy) are based on mutual information.

2.2.1.9 Md

TheMd filter (Seth & Principe, 2010) is an extension of mRMR which uses a measure

of monotone dependence (instead of mutual information) to assess relevance and irrel-

evance. One of its contributions is the inclusion of a free parameter (λ) that controls

the relative emphasis given on relevance and redundancy. In this thesis, two values of

lambda will be tested: 0 and 1. When λ is equal to zero, the effect of the redundancy

disappears and the measure is based only on maximizing the relevance. On the other

hand, when λ is equal to one, it is more important to minimize the redundancy among

variables. These two values of λ were chosen in this thesis because we are interested in

checking the performance of the method when the effect of the redundancy disappears.

Also, Seth and Principe (2010) stated that λ = 1 performs better than other λ values.

Table 2.2 reports the main characteristics of the filters employed in this thesis.

With regard to the computational cost, it can be noticed that some of the proposed

filter techniques are univariate. This means that each feature is considered separately,

thereby ignoring feature dependencies, which may lead to worse classification perfor-

mance when compared to other types of feature selection techniques. However, they
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have the advantage, in theory, of being scalable. Multivariate filter techniques were

introduced, aiming to incorporate feature dependencies to some degree, but at the cost

of reducing their scalability.

Table 2.2: Summary of filters

Uni/Multivariate Ranker/Subset

Chi-Squared Univariate Ranker

Information Gain Univariate Ranker

ReliefF Multivariate Ranker

mRMR Multivariate Ranker

Md Multivariate Ranker

CFS Multivariate Subset

FCBF Multivariate Subset

INTERACT Multivariate Subset

Consistency Multivariate Subset

2.2.2 Embedded methods

In contrast to filter and wrapper approaches, embedded methods do not separate the

learning from the feature selection part. Embedded methods include algorithms, which

optimize a regularized risk function with respect to two sets of parameters: the param-

eters of the learning machine and the parameters indicating which features are selected.

The embedded methods used in this thesis are subsequently described.

2.2.2.1 Recursive Feature Elimination for Support Vector Machines, SVM-

RFE

This embedded method was introduced by Guyon in (Guyon, Weston, Barnhill, &

Vapnik, 2002). It performs feature selection by iteratively training a SVM classifier

with the current set of features and removing the least important feature indicated by

the weights in the SVM solution.
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2.2.2.2 Feature Selection - Perceptron, FS-P

FS-P (Mej́ıa-Lavalle, Sucar, & Arroyo, 2006) is an embedded method based on a per-

ceptron. A perceptron is a type of artificial neural network that can be seen as the

simplest kind of feedforward neural network: a linear classifier. The basic idea of this

method consists on training a perceptron in the context of supervised learning. The

interconnection weights are used as indicators of which features could be the most

relevant and provide a ranking.

2.2.3 Wrapper methods

The idea of the wrapper approach is to select a feature subset using a learning algorithm

as part of the evaluation function. Instead of using subset sufficiency, entropy or another

explicitly defined evaluation function, a kind of “black box” function is used to guide the

search. The evaluation function for each candidate feature subset returns an estimate

of the quality of the model that is induced by the learning algorithm. This can be

rather time consuming, since, for each candidate feature subset evaluated during the

search, the target learning algorithm is usually applied several times (e.g. in the case

of 10-fold cross validation being used to estimate model quality). In this thesis it will

be used the wrapper following described, which can be combined with any learning

algorithm.

Weka (M. Hall et al., 2009) provides the WrapperSubsetEval method, which

evaluates attribute sets by using a learning scheme. Cross validation is used to estimate

the accuracy of the learning scheme for a set of attributes. The algorithm starts with

the empty set of attributes and searches forward, adding attributes until performance

does not improve further.

2.2.4 Other approaches

There exist numerous papers and books proving the benefits of the feature selection

process (Guyon, 2006; Z. A. Zhao & Liu, 2011; Kohavi & John, 1997). However, most

researchers agree that there is not a so-called “best method” and their efforts are fo-

cused on finding a good method for a specific problem setting. Therefore, new feature
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selection methods are constantly appearing using different strategies: a) combining

several feature selection methods, which could be done by using algorithms from the

same approach, such as two filters (Y. Zhang, Ding, & Li, 2008), or coordinating al-

gorithms from two different approaches, usually filters and wrappers (Y. Peng, Wu,

& Jiang, 2010; El Akadi, Amine, El Ouardighi, & Aboutajdine, 2011); b) combining

feature selection approaches with other techniques, such as feature extraction (Vainer,

Kraus, Kaminka, & Slovin, 2011) or tree ensembles (Tuv, Borisov, Runger, & Torkkola,

2009); c) reinterpreting existing algorithms (Sun & Li, 2006), sometimes to adapt them

to specific problems (Sun, Todorovic, & Goodison, 2008a); d) creating new methods

to deal with still unresolved situations (Chidlovskii & Lecerf, 2008; Loscalzo, Yu, &

Ding, 2009) and e) using an ensemble of feature selection techniques to ensure a bet-

ter behavior (Saeys, Abeel, & Van de Peer, 2008; Bolón-Canedo, Sánchez-Maroño, &

Alonso-Betanzos, 2012).

2.3 Summary

To confront the problem of the high dimensionality of data, feature selection algorithms

have become indispensable components of the learning process. Hence, a correct se-

lection of the features can lead to an improvement of the inductive learner, either in

terms of learning speed, generalization capacity or simplicity of the induced model.

Feature selection methods may roughly be divided into three types: filters, wrappers

and embedded methods. This chapter has summarized the advantages and disadvan-

tages of each approach, as well as described the algorithms that will be used throughout

this thesis.
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CHAPTER 3
A critical review of feature selection methods

In the past few years, feature selection algorithms have become indispensable com-

ponents of the learning process to get rid of irrelevant and redundant features. As

mentioned in the previous chapter, there exist two major approaches in feature selec-

tion: individual evaluation and subset evaluation. Individual evaluation is also known

as feature ranking (Guyon & Elisseeff, 2003) and assesses individual features by assign-

ing them weights according to their degrees of relevance. On the other hand, subset

evaluation produces candidate feature subsets based on a certain search strategy. Be-

sides this classification, feature selection methods can also be divided into three models:

filters, wrappers and embedded methods (Guyon, 2006). With such a vast body of fea-

ture selection methods, the need arises to find out some criteria that enable users to

adequately decide which algorithm to use (or not) in certain situations.

There are several situations that can hinder the process of feature selection, such

as the presence of irrelevant and redundant features, noise in the data or interaction

between attributes. In the presence of hundreds or thousands of features, such as DNA

microarray analysis, researchers notice (Y. Yang & Pedersen, 1997; Yu & Liu, 2004a)

that commonly a large number of features is not informative because they are either

irrelevant or redundant with respect to the class concept. Moreover, when the number

of features is high but the number of samples is small, machine learning gets particularly

difficult, since the search space will be sparsely populated and the model will not be

able to distinguish correctly the relevant data and the noise (Provost, 2000).

This chapter reviews the most popular feature selection methods in the literature

and checks their performance in an artificial controlled experimental scenario. In this

manner, it is contrasted the ability of the algorithms to select the relevant features

and to discard the irrelevant ones without permitting noise or redundancy to obstruct

this process. A scoring measure will be introduced to compute the degree of matching

between the output given by the algorithm and the known optimal solution, as well as

the classification accuracy.
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3.1 Existing reviews of feature selection methods

Feature selection, since it is an important activity in data preprocessing, has been widely

studied in the past years by the machine learning researchers. This technique has found

success in many different real world applications like DNA microarray analysis (Yu &

Liu, 2004b), intrusion detection (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos,

2011; W. Lee, Stolfo, & Mok, 2000), text categorization (Forman, 2003; Gomez, Boiy, &

Moens, 2012) or information retrieval (Egozi, Gabrilovich, & Markovitch, 2008), includ-

ing image retrieval (Dy, Brodley, Kak, Broderick, & Aisen, 2003) or music information

retrieval (Saari, Eerola, & Lartillot, 2011).

Bearing in mind the large amount of feature selection methods available, it is easy

to note that carrying out a comparative study is an arduous task. Another problem is

to test the effectiveness of these feature selection methods when real data sets are em-

ployed, usually without knowing the relevant features. In these cases the performance

of the feature selection methods clearly rely on the performance of the learning method

used afterwards and it can vary notably from one method to another. Moreover, per-

formance can be measured using many different metrics such as computer resources

(memory and time), accuracy, ratio of features selected, etc. Besides, datasets may

include a great number of challenges: multiple class output, noisy data, huge number

of irrelevant features, redundant or repeated features, ratio number of samples/number

of features very close to zero and so on. It can be noticed that a comparative study

tackling all these considerations could be unapproachable and therefore, most of the in-

teresting comparative studies are focused on the problem to be solved. So, for example,

Forman (2003) presented an empirical comparison of twelve feature selection methods

evaluated on a benchmark of 229 text classification problem instances; another com-

parative study (Sun, Babbs, & Delp, 2006) is used for the detection of breast cancers

in mammograms. Other works are devoted to a specific approach (Liu, Liu, & Zhang,

2008), in which an experimental study of eight typical filter mutual information based

feature selection algorithms on thirty-three datasets is presented; or an evaluation of

the capability of the survival ReliefF algorithm (sReliefF) and of a tuned sReliefF ap-

proach to properly select the causative pair of attributes (Beretta & Santaniello, 2011).

Similarly, there are works examining different feature selection methods to obtain good

performance results using a specific classifier (naive Bayes in (M.-L. Zhang, Peña, &

Robles, 2009), C4.5 in (Perner & Apte, 2000) or the theoretical review for support

vector machines (SVMs) in (Victo Sudha & Raj, 2011)). Related to dataset challenges,

there are several works trying to face the problem of high dimensionality, in both di-
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mensions (samples and features) or in one of them, i.e. a high number of features

versus low number of samples; most of these studies also tackle with the multiple class

problems (Chidlovskii & Lecerf, 2008; Li, Zhang, & Ogihara, 2004; Hua, Tembe, &

Dougherty, 2009; Bontempi & Meyer, 2010; Aliferis, Statnikov, Tsamardinos, Mani,

& Koutsoukos, 2010). Also, the majority of current real datasets (microarray, text re-

trieval, etc.) also present noisy data, however no specific feature selection comparative

studies dealing with this complex problem were found in the literature, although some

interesting works have been proposed, see for example (Y. Zhang et al., 2008; Byeon &

Rasheed, 2008; S.-H. Yang & Hu, 2008). Focusing on non-linear methods is worth men-

tioning the study of Guyon and col. (Guyon, Bitter, Ahmed, Brown, & Heller, 2005).

Finally, from a theoretical perspective, Liu and Yu (2005) presented a survey of feature

selection methods, providing some guidelines in selecting feature selection algorithms,

paving the way to build an integrated system for intelligent feature selection.

More experimental work on feature selection algorithms for comparative purposes

can be found (Molina, Belanche, & Nebot, 2002; Doak, 1992; Jain & Zongker, 1997;

Kudo & Sklansky, 1997; Liu & Setiono, 1998), some of which were performed over

artificially generated data, like the widely-used Parity, Led or Monks problems (Thrun

et al., 1991). Several authors choose to use artificial data since the desired output is

known, therefore a feature selection algorithm can be evaluated with independence of

the classifier used. Although the final goal of a feature selection method is to test its

effectiveness over a real dataset, the first step should be on synthetic data. The reason

for this is two-fold (Belanche & González, 2011):

1. Controlled experiments can be developed by systematically varying chosen ex-

perimental conditions, like adding more irrelevant features or noise in the input.

This fact facilitates to draw more useful conclusions and to test the strengths and

weaknesses of the existing algorithms.

2. The main advantage of artificial scenarios is the knowledge of the set of opti-

mal features that must be selected, thus the degree of closeness to any of these

solutions can be assessed in a confident way.
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3.2 Experimental settings

As was stated in Section 3.1, the first step to test the effectiveness of a feature selection

method should be on synthetic data, since the knowledge of the optimal features and

the chance to modify the experimental conditions allows to draw more useful conclu-

sions. The datasets chosen for this study try to cover different problems: increasing

number of irrelevant features, redundancy, noise in the output, alteration of the in-

puts, non-linearity of the data, etc. These factors complicate the task of the feature

selection methods, which are very affected by them as it will be shown afterwards. Be-

sides, some of the datasets have a significantly higher number of features than samples,

which implies an added difficulty for the correct selection of the relevant features. The

characteristics of the eleven synthetic datasets employed (Corral, Corral-100, XOR-100,

Parity3+3, Led-25, Led-100, Monk3, SD1, SD2, SD3 and Madelon) can be consulted

in Appendix I, Table I.1.

Twelve different feature selection methods are tested and compared in order to

draw useful conclusions. The chosen methods are CFS, consistency-based, INTERACT,

Information Gain, ReliefF, mRMR, Md, SVM-RFE, FS-P and the wrapper combined

with SVM and C4.5; a description of all of them can be found in Chapter 2. In the case

of Md, two different values of λ will be tested: 0 and 1. As for SVM-RFE, two kernels

will be considered: a linear kernel, which is the kernel used by default, and a Gaussian

kernel in an attempt to solve more complex problems (Rakotomamonjy, 2003), which

will be referred in this chapter as SVM-RFE-G.

As was mentioned in Chapter 2, there exist two major approaches in feature selec-

tion: individual evaluation, that provides an ordered ranking of the features; and subset

evaluation, that produces a candidate feature subset. When a ranking of the features is

returned, it is necessary to establish a threshold in order to discard those less relevant for

the algorithm. Unfortunately, where to establish the threshold is not an easy-to-solve

question. Belanche and González (2011) opted for discarding those weights associated

to the ranking which were further than two variances from the mean. On the other

hand, Mej́ıa-Lavalle et al. (2006) use a threshold defined by the largest gap between two

consecutive ranked attributes, and other authors (Sánchez-Maroño, Alonso-Betanzos,

& Tombilla-Sanromán, 2007) just studied the whole ranking paying more attention to

the first ranked features. However, in this experimental study it is impossible to use

a threshold related to the weights associated to the ranking, since some of the ranker

methods (SVM-RFE, mRMR and Md) eliminate chunks of features at a time and do
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not provide weights. To solve this problem and for the sake of fairness, in these ex-

periments we heuristically set the following rules to decide the number of features that

ranker methods should return, according to the number of total features (N):

• if N < 10, select 75% of features

• if 10 < N < 75, select 40% of features

• if 75 < N < 100, select 10% of features

• if N > 100, select 3% of features

At this point it has to be clarified that the datasets SD (see Appendix I), due to

their particularities, will be analyzed in a different manner which will be explained later.

According to the rules showed above, the number of features that will be returned by

ranker methods is 5 for the datasets Corral, Parity3+3 and Monk3, 10 for the datasets

Corral-100, XOR-100 and both versions of Led, and 15 for Madelon.

A scoring measure was defined in order to fairly compare the effectiveness showed

by the different feature selection methods. The measure presented is a index of success

suc., see (3.1), which attempts to reward the selection of relevant features and to

penalize the inclusion of irrelevant ones, in two situations:

• The solution is incomplete: there are relevant features lacking.

• The solution is incorrect : there are some irrelevant features.

suc. =

[
Rs

Rt
− αIs

It

]
× 100, (3.1)

where Rs is the number of relevant features selected, Rt is the total number of relevant

features, Is is the number of irrelevant features selected and It is the total number of

irrelevant features. The term α was introduced to ponder that choosing an irrelevant

feature is better than missing a relevant one (i.e. we prefer an incorrect solution rather

than an incomplete one). The parameter α is defined as α = min{1
2 ,

Rt
It
}. Note that

the higher the success, the better the method, and 100 is the maximum.
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In the case of ranker methods and in order to be fair, if all the optimal features are

selected before any irrelevant feature, the index of success will be 100, due to the fact

that the number of features that ranker methods are forced to select is always larger

than the number of relevant features.

As was explained above, the evaluation of the feature selection methods is done by

counting the number of correct/wrong features. However, it is also interesting and a

common practice in the literature (Mamitsuka, 2006) to see the classification accuracy

obtained in a 10-fold cross-validation, in order to check if the true model (that is, the

one with an index of success of 100) is also unique (that is, if is the only one that can

achive the best percentage of classification success). For this purpose, four well-known

classifiers, based on different models, were chosen: C4.5, naive Bayes (NB), k-NN and

SVM (see Appendix I). Experimental evidence has shown that decision trees, such

as C4.5, exhibit a degradation in the performance when faced with many irrelevant

features. Similarly, instance-based learners, such as k-NN, are also very susceptible to

irrelevant features. It has been shown that the number of training instances needed

to produce a predetermined level of performance for instance-based learning increases

exponentially with the number of irrelevant features present (Langley & Iba, 1993). On

the other hand, algorithms such as naive Bayes are robust with respect to irrelevant

features, degrading their performance very slowly when more irrelevant features are

added. However, the performance of such algorithms deteriorate quickly by adding

redundant features, even if they are relevant to the concept. Finally, SVM can indeed

suffer in high dimensional spaces where many features are irrelevant (Weston et al.,

2000).

3.3 Experimental results

In all tables of this section, the best index of success and the best accuracy for each

classifier are highlighted in bold face. Columns “Rel.” (relevant), “Irr.” (irrelevant) and

“suc.” (success, see equation (3.1)) refer to the evaluation via counting the number of

correct features selected, whilst the remaining columns show the classification accuracy

obtained by four different classifiers. It has to be noted that for the calculation of the

index of success, the redundant attributes selected have the same penalization as the

irrelevant features.
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3.3.1 Dealing with correlation and redundancy: CorrAL

Two versions of this well-known datasets were used: CorrAL (the classic dataset) and

CorrAL-100, formed by adding 93 irrelevant binary features (see Appendix I, Section

I.2.1.1). The desired behavior of a feature selection method is to select the 4 relevant

features and to discard the irrelevant ones, as well as detecting the correlated feature

and not selecting it.

Table 3.1: Results for CorrAL. “C” indicates if the correlated feature is selected (X)

or not (7).

Method Rel. C Irr. suc.
Accuracy (%)

C4.5 NB k-NN SVM

CFS – X 0 -25 75.00 75.00 59.38 75.00

Consistency – X 0 -25 75.00 75.00 59.38 75.00

INTERACT – X 0 -25 75.00 75.00 59.38 75.00

InfoGain – X 0 -25 75.00 75.00 59.38 75.00

ReliefF 1-4 X 0 75 62.50 81.25 96.88 87.50

mRMR 1-4 X 0 75 62.50 81.25 96.88 87.50

Md(λ = 0) 1-4 X 0 75 62.50 81.25 96.88 87.50

Md(λ = 1) 1-4 X 0 75 62.50 81.25 96.88 87.50

SVM-RFE 1-4 X 0 75 62.50 81.25 96.88 87.50

SVM-RFE-G 1-4 7 1 75 81.25 78.13 81.25 71.86

FS-P 1-4 7 0 100 81.25 78.13 100.00 81.25

Wrapper SVM – X 0 -25 75.00 75.00 59.38 75.00

Wrapper C4.5 – X 0 -25 75.00 75.00 59.38 75.00

Tables 3.1 and 3.2 show the results obtained over the datasets Corral and Corral-

100, respectively. Over Corral, FS-P was able to select the desired set of features, which

led to 100% classification accuracy obtained by k-NN classifier. Regarding Corral-100,

it is curious that the best classification accuracy was obtained by SVM-RFE, which

has an index of success of 25, but this fact can be explained because in this dataset

there are some irrelevant features that are informative to the classifiers. This fact will

be further analyzed in Section 3.5.
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Table 3.2: Results for CorrAL-100. “C” indicates if the correlated feature is selected

(X) or not (7).

Method Rel. C Irr. suc.
Accuracy (%)

C4.5 NB k-NN SVM

CFS – X 0 -2 75.00 75.00 59.38 75.00

Consistency – X 0 -2 75.00 75.00 59.38 75.00

INTERACT – X 0 -2 75.00 75.00 59.38 75.00

InfoGain – X 0 -2 75.00 75.00 59.38 75.00

ReliefF 1-3 X 6 75 53.13 84.38 87.50 81.25

mRMR 1-4 X 5 99 53.13 81.25 90.63 90.63

Md(λ = 0) 1-4 X 5 99 65.63 81.25 87.50 81.25

Md(λ = 1) 1-4 X 5 99 59.38 84.38 81.25 87.50

SVM-RFE 4 X 8 25 62.50 87.50 68.75 96.88

SVM-RFE-G – X 9 -44 68.75 68.75 62.50 75.00

FS-P 1,3,4 X 6 75 53.13 87.50 84.38 87.50

Wrapper SVM – X 0 -2 75.00 75.00 59.38 75.00

Wrapper C4.5 – X 2 -13 84.38 75.00 75.00 75.00

3.3.2 Dealing with non-linearity: XOR and Parity

In this subsection, the ability of feature selection methods to deal with relevance, irrel-

evance and redundancy will be checked over two non-linear scenarios, XOR and Parity

(see Appendix I, Sections I.2.1.2 and I.2.1.3). XOR-100 contains 2 relevant features

and 97 irrelevant features whilst Parity3+3 has 3 relevant, 3 redundant and 6 irrelevant

features. In the case of XOR-100, there exists the added handicap of a small ratio be-

tween number of samples and number of features. For the sake of completeness, SVM

and naive Bayes will be applied over these two datasets. However, bear in mind that

those methods cannot solve non-linear problems (SVM uses a linear kernel) and thus

good results are not expected, so they will not be the focus of the analysis.

Tables 3.3 and 3.4 show that the methods CFS, Consistency, INTERACT and

InfoGain do not appear because they were not able to solve these non-linear problems,

returning an empty subset of features. On the other hand, the filter ReliefF and the

embedded method SVM-RFE-G detected the relevant features both in XOR-100 and

in Parity3+3, achieving the best indices of success and leading to high classification

accuracies.
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Table 3.3: Results for XOR-100.

Method Rel. Irr. suc.
Accuracy (%)

C4.5 NB k-NN SVM

ReliefF 1,2 0 100 100.00 64.00 100.00 70.00

mRMR 1 9 50 52.00 74.00 64.00 72.00

Md(λ = 0) 1 9 50 54.00 74.00 58.00 70.00

Md(λ = 1) 1 9 50 58.00 70.00 62.00 62.00

SVM-RFE – 10 -21 48.00 68.00 56.00 78.00

SVM-RFE-G 1,2 0 100 100.00 64.00 100.00 70.00

FS-P 1 9 50 62.00 76.00 62.00 74.00

Wrapper SVM – 1 -2 66.00 66.00 60.00 66.00

Wrapper C4.5 1,2 2 99 100.00 70.00 96.00 50.00

Table 3.4: Results for Parity3+3

Method Rel. Red. Irr. suc.
Accuracy (%)

C4.5 NB k-NN SVM

ReliefF 1,2,3 2 0 93 90.63 29.69 100.00 37.50

mRMR 2,3 0 3 56 60.94 59.38 59.38 59.38

Md(λ = 0) – 0 5 -19 53.13 57.81 50.00 59.38

Md(λ = 1) – 0 5 -19 54.69 54.69 54.69 57.81

SVM-RFE 3 0 4 19 54.69 59.38 46.88 57.81

SVM-RFE-G 1,2,3 0 0 100 90.63 31.25 100.00 25.00

FS-P – 0 5 -19 51.56 57.81 56.25 57.81

Wrapper SVM – 0 1 -4 64.06 64.06 57.81 64.06

Wrapper C4.5 – 0 1 -4 64.06 64.06 57.81 64.06
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3.3.3 Dealing with noise in the inputs: Led

The Led dataset (see Appendix I, Section I.2.1.4) consists of correctly identifying seven

leds that represent numbers between 0 and 9. Some irrelevant features were added

forming the Led-25 dataset (17 irrelevant features) and the Led-100 dataset (92 irrele-

vant attributes). In order to make these datasets more complex, different levels of noise

in the inputs (2%, 6%, 10%, 15% and 20%) were added. It has to be noted that, as the

attributes take binary values, adding noise means assigning to the relevant features an

incorrect value.

In Tables 3.5 and 3.6 one can see detailed results of these experiments. It is inter-

esting to note that subset filters (CFS, Consistency and INTERACT) and the ranker

filter Information Gain (which has a behavior similar to subset filters) do not select any

of the irrelevant features in any case, at the expense of discarding some of the relevant

ones, especially with high levels of noise. With regard to the classification accuracy, it

decreases as the level of noise increases, as expected.

Table 3.5: Results for Led-25 dataset with different levels of noise (N) in inputs.

N(%) Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

0

CFS 1-5,7 0 86 92.00 100.00 100.00 96.00

Consistency 1-5 0 71 92.00 100.00 100.00 96.00

INTERACT 1-5,7 0 86 92.00 100.00 100.00 96.00

InfoGain 1-7 0 100 92.00 100.00 100.00 96.00

ReliefF 1-7 3 93 92.00 96.00 84.00 96.00

mRMR 1-7 3 93 92.00 98.00 90.00 98.00

Md(λ = 0) 1-5,7 4 76 90.00 92.00 82.00 98.00

Md(λ = 1) 1-5,7 4 76 90.00 92.00 82.00 96.00

SVM-RFE 1-7 3 93 92.00 98.00 80.00 96.00

SVM-RFE n-l 1-7 0 100 92.00 100.00 100.00 96.00

FS-P 1-7 0 100 92.00 100.00 100.00 96.00

Wrapper SVM 1-5 2 67 92.00 90.00 82.00 100.00

Wrapper C4.5 1-5 0 71 92.00 90.00 82.00 96.00

Continued on next page
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Table 3.5 – continued from previous page

N(%) Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

2

CFS 1-5 0 71 90.00 98.00 96.00 94.00

Consistency 1-5 0 71 90.00 98.00 96.00 94.00

INTERACT 1-5 0 71 90.00 98.00 96.00 94.00

InfoGain 1-7 0 100 90.00 96.00 94.00 94.00

ReliefF 1-7 3 93 86.00 88.00 82.00 88.00

mRMR 1-7 3 93 84.00 88.00 82.00 88.00

Md(λ = 0) 1-5,7 4 76 84.00 84.00 76.00 94.00

Md(λ = 1) 1-5,7 4 76 84.00 84.00 78.00 88.00

SVM-RFE 1-7 3 93 86.00 88.00 86.00 94.00

SVM-RFE n-l 1-7 3 93 88.00 92.00 80.00 86.00

FS-P 1-7 0 100 90.00 96.00 94.00 94.00

Wrapper SVM 1-5 2 67 90.00 88.00 80.00 96.00

Wrapper C4.5 1-5 0 71 90.00 98.00 96.00 94.00

6

CFS 1,2,4,5,7 0 71 70.00 76.00 66.00 68.00

Consistency 1,2,4,5,7 0 71 70.00 76.00 66.00 68.00

INTERACT 1,2,4,5,7 0 71 70.00 76.00 66.00 68.00

InfoGain 1,2,4,5,7 0 71 70.00 76.00 66.00 68.00

ReliefF 1-7 3 93 64.00 62.00 66.00 64.00

mRMR 1-7 3 93 64.00 62.00 66.00 64.00

Md(λ = 0) 1-5,7 4 76 62.00 62.00 60.00 68.00

Md(λ = 1) 1-5,7 4 76 62.00 64.00 60.00 66.00

SVM-RFE 1-4,7 5 59 62.00 62.00 58.00 68.00

SVM-RFE-G 1-5 5 59 60.00 62.00 58.00 64.00

FS-P 1-6 4 76 64.00 56.00 56.00 62.00

Wrapper SVM 1,2,4,5 3 50 68.00 66.00 58.00 70.00

Wrapper C4.5 1,2,4-6 1 69 72.00 68.00 58.00 66.00

10

CFS 1,2,4,7 0 57 60.00 50.00 58.00 46.00

Consistency 1,2,4,7 0 57 60.00 50.00 58.00 46.00

INTERACT 1,2,4,7 0 57 60.00 50.00 58.00 46.00

InfoGain 1,2,4,7 0 57 60.00 50.00 58.00 46.00

ReliefF 1-5,7 4 76 56.00 50.00 52.00 54.00

mRMR 1-5,7 4 76 56.00 50.00 52.00 54.00

Md(λ = 0) 1-5,7 4 76 58.00 52.00 52.00 60.00

Md(λ = 1) 1-5,7 4 76 56.00 50.00 52.00 54.00

SVM-RFE 2,4,7 7 26 44.00 40.00 42.00 50.00

SVM-RFE n-l 1-5 5 59 58.00 48.00 46.00 56.00

FS-P 1-7 3 93 60.00 48.00 58.00 52.00

Wrapper SVM 1,2,4-6 2 67 66.00 54.00 52.00 68.00

Wrapper C4.5 1-4 0 57 68.00 64.00 58.00 62.00

Continued on next page
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Table 3.5 – continued from previous page

N(%) Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

15

CFS 1,7 0 29 28.00 28.00 32.00 36.00

Consistency 1,7 0 29 28.00 28.00 32.00 36.00

INTERACT 1,7 0 29 28.00 28.00 32.00 36.00

InfoGain 1,7 0 29 28.00 28.00 32.00 36.00

ReliefF 1-7 3 93 48.00 38.00 46.00 52.00

mRMR 1-7 3 93 48.00 38.00 46.00 52.00

Md(λ = 0) 1-5,7 4 76 48.00 42.00 44.00 52.00

Md(λ = 1) 1-5,7 4 76 44.00 36.00 46.00 48.00

SVM-RFE 2,7 8 9 26.00 34.00 28.00 36.00

SVM-RFE n-l 1,3,4,7 6 43 34.00 30.00 26.00 38.00

FS-P 1-7 3 93 48.00 40.00 48.00 54.00

Wrapper SVM 1,2 3 21 52.00 48.00 40.00 56.00

Wrapper C4.5 1,2,5,7 0 57 58.00 44.00 40.00 54.00

20

CFS 1 0 14 28.00 20.00 28.00 28.00

Consistency 1 0 14 28.00 20.00 28.00 28.00

INTERACT 1 0 14 28.00 20.00 28.00 28.00

InfoGain 1 0 14 28.00 20.00 28.00 28.00

ReliefF 1-7 3 93 24.00 30.00 40.00 42.00

mRMR 1-7 3 93 24.00 30.00 40.00 42.00

Md(λ = 0) 1-5,7 4 76 36.00 36.00 34.00 44.00

Md(λ = 1) 1-5,7 4 76 36.00 32.00 38.00 44.00

SVM-RFE 5,6 8 9 16.00 24.00 18.00 20.00

SVM-RFE n-l 1,2,4,5 6 43 38.00 36.00 20.00 34.00

FS-P 1-7 3 93 34.00 34.00 36.00 40.00

Wrapper SVM 1,2,5,7 3 50 44.00 38.00 38.00 56.00

Wrapper C4.5 1,2,5 3 36 48.00 40.00 34.00 42.00
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Table 3.6: Results for Led-100 dataset with different levels of noise (N) in inputs.

N(%) Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

0

CFS 1-5,7 0 86 92.00 100.00 100.00 96.00

Consistency 1-5 0 71 92.00 100.00 100.00 96.00

INTERACT 1-5,7 0 86 92.00 100.00 100.00 96.00

InfoGain 1-7 0 100 92.00 100.00 100.00 96.00

ReliefF 1-7 3 99 92.00 94.00 96.00 100.00

mRMR 1-5,7 4 85 92.00 94.00 88.00 96.00

Md(λ = 0) 1-5,7 4 85 86.00 92.00 76.00 92.00

Md(λ = 1) 1-5,7 4 85 86.00 92.00 90.00 96.00

SVM-RFE 3-7 5 71 46.00 54.00 48.00 48.00

SVM-RFE-G 1-6 4 85 92.00 92.00 80.00 94.00

FS-P 1-7 3 99 92.00 92.00 86.00 96.00

Wrapper SVM 1-5 2 71 92.00 90.00 82.00 100.00

Wrapper C4.5 1-5 0 71 92.00 100.00 100.00 96.00

2

CFS 1-5 0 71 90.00 98.00 96.00 94.00

Consistency 1-5 0 71 90.00 98.00 96.00 94.00

INTERACT 1-5 0 71 90.00 98.00 96.00 94.00

InfoGain 1-7 0 100 90.00 96.00 94.00 94.00

ReliefF 1-7 3 99 90.00 90.00 84.00 92.00

mRMR 1-5,7 4 85 88.00 86.00 80.00 86.00

Md(λ = 0) 1-5,7 4 85 84.00 86.00 76.00 84.00

Md(λ = 1) 1-5,7 4 85 84.00 86.00 76.00 84.00

SVM-RFE 3-7 5 71 68.00 70.00 54.00 70.00

SVM-RFE-G 1-6 4 85 90.00 90.00 74.00 88.00

FS-P 1-7 3 99 90.00 86.00 82.00 90.00

Wrapper SVM 1-5 2 71 90.00 88.00 80.00 96.00

Wrapper C4.5 1-5 0 71 90.00 98.00 96.00 94.00

6

CFS 1,2,4,5,7 0 71 72.00 78.00 72.00 70.00

Consistency 1,2,4,5,7 0 71 72.00 78.00 72.00 70.00

INTERACT 1,2,4,5,7 0 71 72.00 78.00 72.00 70.00

InfoGain 1,2,4,5,7 0 71 72.00 78.00 72.00 70.00

ReliefF 1-5,7 4 85 60.00 66.00 68.00 72.00

mRMR 1-5,7 4 85 60.00 66.00 68.00 72.00

Md(λ = 0) 1,2,4,5,7 5 71 58.00 56.00 56.00 62.00

Md(λ = 1) 1-5,7 4 85 58.00 64.00 66.00 64.00

SVM-RFE 2,3,5 7 42 52.00 50.00 34.00 52.00

SVM-RFE-G 1-6 4 85 70.00 72.00 50.00 72.00

FS-P 1-6 4 85 72.00 56.00 62.00 70.00

Wrapper SVM 1-7 15 99 56.00 54.00 58.00 84.00

Wrapper C4.5 1,2,4,5 2 57 76.00 72.00 66.00 72.00

Continued on next page
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Table 3.6 – continued from previous page

N(%) Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

10

CFS 1,2,4,7 0 57 60.00 50.00 58.00 46.00

Consistency 1,2,4,7 0 57 60.00 50.00 58.00 46.00

INTERACT 1,2,4,7 0 57 60.00 50.00 58.00 46.00

InfoGain 1,2,4,7 0 57 60.00 50.00 58.00 46.00

ReliefF 1,2,4,5,7 5 71 74.00 54.00 66.00 64.00

mRMR 1,2,4,5,7 5 71 66.00 60.00 66.00 66.00

Md(λ = 0) 1,2,4,5,7 5 71 68.00 58.00 72.00 60.00

Md(λ = 1) 1,2,4,5,7 5 71 74.00 56.00 62.00 66.00

SVM-RFE 2,3,5,7 6 57 44.00 36.00 38.00 42.00

SVM-RFE-G 1,3,5 7 42 26.00 34.00 30.00 40.00

FS-P 1-6 4 85 60.00 46.00 48.00 58.00

Wrapper SVM 1,2,4 9 42 72.00 56.00 56.00 78.00

Wrapper C4.5 1,2,4 3 43 76.00 58.00 56.00 66.00

15

CFS 1,7 0 29 28.00 28.00 32.00 36.00

Consistency 1,7 0 29 28.00 28.00 32.00 36.00

INTERACT 1,7 0 29 28.00 28.00 32.00 36.00

InfoGain 1,7 0 29 28.00 28.00 32.00 36.00

ReliefF 1,2,4,5,7 5 71 54.00 50.00 54.00 64.00

mRMR 1,2,4,5,7 5 71 54.00 50.00 54.00 64.00

Md(λ = 0) 1,2,4,5,7 5 71 54.00 50.00 54.00 64.00

Md(λ = 1) 1,2,4,5,7 5 71 58.00 50.00 52.00 56.00

SVM-RFE 3,5,7 7 42 30.00 20.00 16.00 26.00

SVM-RFE-G 1,5 8 28 16.00 24.00 12.00 16.00

FS-P 1,3,5,6,7 5 71 30.00 28.00 22.00 26.00

Wrapper SVM 1,2,6 5 42 50.00 50.00 42.00 64.00

Wrapper C4.5 1,2,5,7 2 57 58.00 50.00 46.00 52.00

20

CFS 1 0 14 28.00 20.00 28.00 28.00

Consistency 1 0 14 28.00 20.00 28.00 28.00

INTERACT 1 0 14 28.00 20.00 28.00 28.00

InfoGain 1 0 14 28.00 20.00 28.00 28.00

ReliefF 1,2,5,7 6 57 30.00 38.00 44.00 44.00

mRMR 1,2,5,7 6 57 34.00 38.00 42.00 48.00

Md(λ = 0) 1,2,5,7 6 57 32.00 38.00 38.00 32.00

Md(λ = 1) 1,2,5,7 6 57 38.00 32.00 28.00 34.00

SVM-RFE – 10 -1 8.00 26.00 20.00 20.00

SVM-RFE-G 1,2,3,5 6 57 32.00 32.00 14.00 26.00

FS-P 1-3,5,6 5 71 18.00 24.00 24.00 20.00

Wrapper SVM 1 3 14 36.00 38.00 28.00 44.00

Wrapper C4.5 1,5 4 28 44.00 32.00 28.00 32.00
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3.3.4 Dealing with noise in the target: Monk3

In this subsection, the Monk3 problem, which includes a 5% of misclassifications, i.e.

noise in the target, will be tested. The relevant features are x2, x4 and x5. However,

as it was stated by Kohavi and John (1997), for a feature selection algorithm it is easy

to find the variables x2 and x5, which together yield the second conjunction in the

expression seen in Section I.2.1.5 (Appendix I). According to the experimental results

presented by Kohavi and John (1997), selecting those features can lead to a better

performance than selecting the three relevant ones. This additional information can

help to explain the fact that in Table 3.7 several algorithms selected only two of the

relevant features.

Table 3.7: Results for Monk3. Relevant features: 2,4,5.

Method Relevant Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

CFS 2,5 0 67 93.44 88.52 89.34 79.51

Consistency 2,5 0 67 93.44 88.52 89.34 79.51

INTERACT 2,5 0 67 93.44 88.52 89.34 79.51

InfoGain 2,5 0 67 93.44 88.52 89.34 79.51

ReliefF 2,5,4 0 100 93.44 88.52 90.98 80.33

mRMR 2,5 3 17 92.62 88.52 80.33 78.69

Md(λ = 0) 2,4,5 2 67 93.44 88.52 84.43 81.97

Md(λ = 1) 2,4,5 2 67 93.44 88.52 84.43 81.97

SVM-RFE 2,4,5 2 67 93.44 88.52 84.43 84.43

SVM-RFE-G 2,4,5 2 67 93.44 88.52 84.43 84.43

FS-P 2,4,5 2 67 93.44 88.52 84.43 84.43

Wrapper SVM 2,4,5 1 83 93.44 89.34 82.79 79.51

Wrapper C4.5 2,5 0 67 93.44 88.52 89.34 79.51

Studying the index of success in Table 3.7, one can see that only ReliefF achieved

a value of 100. The worst behavior was showed by mRMR, since it selected the three

irrelevant features. As was justified above, many methods selected only two of the

relevant features and it can be considered a good comportment. For k-NN classifier,

the best accuracy corresponds to ReliefF, which also obtained the best result in terms of

index of success. Notice that C4.5 classifier achieves a very high classification accuracy

(93.44%), especially bearing in mind that 5% of the samples are missclassifications and

cannot be correctly identified.
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3.3.4.1 Dealing with a small ratio samples/features: SD1, SD2 and SD3

These synthetic datasets (see Section I.2.1.6 in Appendix I) have a small ratio between

number of samples and features, which makes difficult the task of feature selection. This

is the problematic present in microarray data, a hard challenge for machine learning

researchers. Besides these particularities of the data, there is a high number of irrelevant

features for the task of gene classification and also the presence of redundant variables

is a critical issue.

Table 3.8: Features selected by each algorithm on synthetic dataset SD1

(#) OPT(2) Red Irr suc
Accuracy (%)

C4.5 NB k-NN SVM

CFS 28 2 1 25 100 57.33 82.67 69.33 77.33

Cons 8 2 0 6 100 54.67 76.00 60.00 66.67

INT 23 2 0 21 100 60.00 81.33 66.67 80.00

IG 42 2 15 25 100 58.67 72.00 70.67 78.67

ReliefF1 2 1 1 0 50 40.00 45.33 44.00 46.67

ReliefF2 20 2 13 5 100 60.00 61.33 70.67 73.33

mRMR1 2 1 0 1 50 41.33 49.33 34.67 50.67

mRMR2 20 1 0 19 50 54.67 82.67 68.00 78.67

SVM-RFE1 2 2 0 0 100 56.00 60.00 52.00 57.33

SVM-RFE2 20 2 3 15 100 46.67 88.00 76.00 92.00

FS-P1 2 0 0 2 0 37.33 49.33 41.33 50.67

FS-P2 20 1 2 17 50 53.33 76.00 65.33 73.33

Md(λ = 0)1 2 1 1 0 50 41.33 48.00 32.00 44.00

Md(λ = 0)2 20 2 17 1 100 56.00 62.67 46.67 66.67

Md(λ = 1)1 2 1 0 1 50 48.00 61.33 58.67 57.33

Md(λ = 1)2 20 2 17 1 100 54.67 62.67 46.67 66.67

W-SVM 19 1 0 18 50 44.00 74.67 58.67 94.67

W-C4.5 10 0 0 10 0 77.33 38.67 40.00 38.67

1 Selecting the optimal number of features.

2 Selecting 20 features.

For these datasets, besides of using the index of success and classification accuracy,

we will use the measures employed in (Zhu, Ong, & Zurada, 2010), which are more
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specific for this problem. Hence, the performance of SD1, SD2 and SD3 will be also

evaluated in terms of:

• (#): number of selected features.

• OPT(x): number of selected features within the optimal subset, where x indi-

cates the optimal number of features.

• Red: number of redundant features.

• Irr: number of irrelevant features.

Table 3.9: Features selected by each algorithm on synthetic dataset SD2

(#) OPT(4) Red Irr suc
Accuracy (%)

C4.5 NB k-NN SVM

CFS 21 4 0 17 100 64.00 84.00 72.00 81.33

Cons 9 4 0 5 100 54.67 70.67 60.00 72.00

INT 20 3 0 17 75 70.67 80.00 74.67 81.33

IG 40 4 19 17 100 61.33 69.33 61.33 76.00

ReliefF1 4 0 0 4 0 48.00 64.00 50.67 52.00

ReliefF2 20 1 9 10 25 54.67 60.00 61.33 70.67

mRMR1 4 1 0 3 25 54.67 64.00 60.00 57.33

mRMR2 20 1 0 19 25 60.00 70.67 44.00 68.00

SVM-RFE1 4 3 1 0 75 46.67 62.67 54.67 65.33

SVM-RFE2 20 4 4 12 100 57.33 82.67 69.33 84.00

FS-P1 4 0 0 20 0 42.67 54.67 40.00 57.33

FS-P2 20 0 0 20 0 52.00 68.00 42.67 61.33

Md(λ = 0)1 4 2 2 0 50 56.00 56.00 26.67 50.67

Md(λ = 0)2 20 4 16 0 100 54.67 64.00 49.33 68.00

Md(λ = 1)1 4 1 0 3 25 46.67 69.33 56.00 69.33

Md(λ = 1)2 20 1 9 10 25 52.00 62.67 60.00 74.67

W-SVM 13 1 0 12 25 44.00 60.00 45.33 77.33

W-C4.5 6 1 0 5 25 72.00 46.67 34.67 42.67

1 Selecting the optimal number of features.

2 Selecting 20 features.

For the ranker methods ReliefF, mRMR, Md, SVM-RFE and FS-P, two different

cardinalities were tested: the optimal number of features and 20, since the subset
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methods have a similar cardinality. It has to be noted that in this problem and for

the calculation of the index of success, redundant features are treated the same as

irrelevant features in equation (3.1). Notice that the index of success is 100 even with

25 irrelevant features selected, due to the high number of irrelevant features (4000).

Table 3.10: Features selected by each algorithm on synthetic dataset SD3

(#) OPT(6) Red Irr suc
Accuracy (%)

C4.5 NB k-NN SVM

CFS 23 4 2 17 67 64.00 80.00 73.33 70.67

Cons 9 3 0 6 50 58.67 76.00 62.67 76.00

INT 19 4 1 14 67 61.33 82.67 70.67 66.67

IG 49 4 31 14 67 62.67 65.33 65.33 73.33

ReliefF1 6 1 5 0 17 50.67 57.33 45.33 53.33

ReliefF2 20 1 9 10 17 56.00 69.33 61.33 68.00

mRMR1 6 1 0 5 17 62.67 62.67 66.67 65.33

mRMR2 20 1 0 19 17 50.67 77.33 52.00 66.67

SVM-RFE1 6 3 0 3 50 56.00 70.67 61.33 65.33

SVM-RFE2 20 4 2 14 67 49.33 85.33 70.67 82.67

FS-P1 6 0 0 6 0 36.00 54.67 34.67 46.67

FS-P2 20 1 0 19 17 38.67 61.33 45.33 56.00

Md(λ = 0)1 6 1 5 0 17 52.00 58.67 40.00 54.67

Md(λ = 0)2 20 3 15 2 50 45.33 57.33 50.67 54.67

Md(λ = 1)1 6 1 5 0 17 52.00 58.67 42.67 53.33

Md(λ = 1)2 20 1 9 10 17 54.67 66.67 60.00 70.67

W-SVM 10 1 0 9 17 48.00 61.33 61.33 81.33

W-C4.5 5 1 0 4 17 68.00 50.67 37.33 48.00

1 Selecting the optimal number of features.

2 Selecting 20 features.

Tables 3.8, 3.9 and 3.10 show the results for the datasets SD1, SD2 and SD3,

respectively. Regarding the selected features, the subset filters and InfoGain (which

exhibits a similar behavior) showed excellent results, in all SD1, SD2 and SD3. Also

SVM-RFE obtained good results, although the version with a Gaussian kernel could

not been applied on these datasets due to memory complexity. With respect to the

classifiers, SVM achieves the highest accuracies.
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3.3.5 Dealing with a complex dataset: Madelon

Madelon (see Section I.2.1.7 in Appendix I) is a very complex artificial dataset which

is distorted by adding noise, flipping labels, shifting and rescaling. It is also a non-

linear problem, so it conforms a challenge for feature selection researchers. The desired

behavior for a feature selection method is to select the relevant features (1-5) and

discard the redundant and irrelevant ones.

Table 3.11 shows the relevant features selected by the feature selection methods,

as well as the number of redundant and irrelevant features elected by them and the

classification accuracy. Notice that for the calculation of index of success, the redundant

attributes selected stand for irrelevant features. Again the results for SVM and naive

Bayes will not be analyzed, since they are linear classifiers. The best result in terms

of index of success was obtained by the wrapper with C4.5, selecting all the 5 relevant

features, which also led to the best classification accuracy for C4.5.

Table 3.11: Results for Madelon. Relevant features: 1-5.

Method Relevant Red. No. Irr. No. suc.
Accuracy (%)

C4.5 NB k-NN SVM

CFS 3 7 0 20 80.92 69.58 86.83 66.08

Consistency 3,4 10 0 40 83.54 69.67 90.83 66.83

INTERACT 3,4 10 0 40 83.54 69.67 90.83 66.83

InfoGain 3,4 10 0 40 83.54 69.67 90.83 66.83

ReliefF 1,3,4,5 11 0 80 84.21 69.83 89.88 66.46

mRMR – 1 14 0 64.92 62.25 53.13 57.08

Md(λ = 0) 3,4 10 2 40 83.23 70.21 85.29 66.42

Md(λ = 1) 3,4 10 2 40 83.23 70.21 85.29 66.42

SVM-RFE 1,3,4,5 4 7 80 86.42 66.88 81.25 67.42

FS-P 3,4 3 10 40 70.50 66.17 62.54 66.96

Wrapper SVM 3 0 16 20 66.63 66.04 54.08 67.54

Wrapper C4.5 1-5 5 15 99 87.04 70.00 75.42 66.33
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3.4 Cases of study

After presenting the experimental results, and before discussing and analyzing them

in detail, we will describe several cases of study in order to decide among similar

methods. These cases of study will be based on the index of success, to make this

analysis classifier-independent.

3.4.1 Case of study I: different kernels for SVM-RFE

Two different kernels were applied on the embedded method SVM-RFE. The Gaussian

kernel allows to solve non-linear problems, but at the expense of being more computa-

tionally demanding. In fact, SVM-RFE-G could not be applied on the datasets SD and

Madelon, due to the space complexity. In Figure 3.2 one can see a comparison of these

two versions of the method. Note that as for both Led-25 and Led-100 datasets there

are results for 6 different levels of noise in the inputs, we have opted for computing the

average of the index of success.

Figure 3.2: SVM-RFE: Linear vs Gaussian kernel. The vertical axis represents the

index of success.

As expected, the linear kernel is not able to deal with non-linear problems (XOR-

100 and Parity3+3). On the other hand, the Gaussian kernel achieves a poor result over

Corral-100 dataset (where the number of irrelevant features increases considerably). In

the remaining datasets, the Gaussian kernel maintains or increases the performance of

the linear kernel. In these cases, it is necessary to bear in mind that the Gaussian kernel
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raises the computational time requirements of the algorithms and it cannot be applied

over high-dimensional datasets (such as Madelon and the SD family). For example,

over XOR-100 dataset, the time used by the Gaussian kernel quadruplicates that of the

linear one. We suggest to use the Gaussian kernel when there is some knowledge about

the non-linearity of the problem, and to use the linear kernel in the remaining cases,

specially when dealing with large amounts of data.

3.4.2 Case of study II: mRMR vs Md

The filter method Md is an extension of mRMR which instead of mutual information,

uses a measure of dependence to assess relevance and irrelevance. Besides, it included

a free parameter (λ) that controls the relative emphasis given on relevance and irrel-

evance. In light of the above, the authors think that it is interesting to compare the

behaviors showed by these two methods over the artificial datasets studied in this work.

Two values of lambda were tested, 0 and 1, and it is also important to see the difference

between them. When λ is equal to zero, the effect of the redundancy disappears and

the measure is based only on maximizing the relevance. On the other hand, when λ is

equal to one, it is more important to minimize the redundancy. For the sake of fairness,

note that for the SD family of datasets, we considered the results achieved selecting 20

features.

Figure 3.3: mRMR vs Md. The vertical axis represents the index of success.

With regard to the different values of λ, one can se in Figure 3.3 that the index of

succes is the same for most of the datasets tested (8 out of 11). However, there is a

important improvement in SD2 and SD3 when the value of λ is zero. Therefore, using
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this value of λ is recommended, although the appropriate value of λ is not an easy-to-

solve question that requires to be studied further and seems to be very dependent of

the nature of data.

ComparingMd and mRMR, the latter performs better in two datasets (Parity3+3

and Led25) whereasMd is better in 5 datasets (Monk3, Madelon, and the SD family).

In the remaining datasets, the index of success achieved by both methods is the same.

In light of these results, the use of Md is recommended, except in datasets with high

non-linearity.

3.4.3 Case of study III: subset filters

Subset evaluation produces candidate feature subsets based on a certain search strategy.

Each candidate subset is evaluated by a certain evaluation measure and compared with

the previous best one with respect to this measure. This approach can handle feature

redundancy together with feature relevance, besides of releasing the user from the task

of choosing how many features to retain.

Figure 3.4: Subset filters. The vertical axis represents the index of success.

In Figure 3.4 one can see a comparison among the three subset filters studied in this

work (CFS, INTERACT and Consistency-based) with regard to the index of success.

All the three methods show in general a very similar behavior, although some differences

have been found. Consistency-based is slightly worse on datasets which present noise

(Led25, Led100). This can be explained because for this filter, a pattern is considered

inconsistent if there exists at least two instances such that they match all but their class
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labels, and therefore the given subset of features is inconsistent and the features are

discarded. This case can happen when the data has been distorted with noise. On the

other hand, CFS decays on Madelon. This method aims to maximize the correlation

of the selected features with the class and to minimize the intercorrelation among the

selected features. However, this algorithm cannot identify really strong interactions as

the ones which may appear in parity problems (remind that Madelon is a generalization

of a parity problem). In light of the above, it is recommended to use INTERACT.

3.4.4 Case of study IV: different levels of noise in the input

Figure 3.5 shows an overview of the behavior of feature selection methods with regard

to different levels of noise, according to the index of success described in (3.1). As

we would have expected, in general the index of success decreases when the level of

noise increases, and worse performances were obtained over Led-100 due to the higher

number of irrelevant features. It may seem strange that in some cases the index of

success improves with higher levels of noise (for example, in Led-100 from 10% to 15%

of noise), but this fact can be explained by the random generation of the noise. Notice

that the influence of each relevant feature is not the same in this problem, so adding

noise to one or another may cause different results. In fact, the first five features (see

Figure I.1 in Appendix I) are enough to distinguish among the ten digits, therefore if

these attributes are distorted, the result may be altered.

Several conclusions can be extracted from the graphs in Figure 3.5. Regarding

the wrapper model, both versions tested degrade their results with the presence of

noise, both in Led-25 and Led-100. With respect to embedded methods, two opposite

behaviors have been observed. On the one hand, FS-P achieved very promising results

on both datasets, without showing degradation as the level of noise increases. In

fact, the index of success oscillates between 76 and 100 on Led-25 –subfigure 3.5a–

and between 71 and 99 on Led-100 –subfigure 3.5b–. On the other hand, SVM-RFE

(specially the version with the linear kernel) deteriorates considerably its behavior

with high levels of noise. Note that SVM-RFE with linear kernel obtained 9 as index

of success on Led-25 and -1 on Led-100, which is the worst result for all the feature

selection methods tested.

Concerning the filter model, mRMR and ReliefF are the methods that achieve the

best indices of success, being ReliefF slightly better in two cases (Led-100 with 0% and
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Figure 3.5: Results for Led-25 and Led-100

2% of noise). These two filters obtain very good results without being very affected

by noise. On the contrary, the subset filters (CFS, Consistency and INTERACT) and

Information Gain are affected by high levels of noise although they are robust to the

addition of irrelevant features. Finally, with respect toMd, it attains constant results,

particularly on Led-25, and no significant differences have been found between the two

values of λ tested.

It is curious the opposite behaviors of Information Gain and mRMR, bearing in mind

that both come from the Information Theory field. However, this fact can be explained

because Information Gain is a univariate measure that considers the entropy between

a given feature and the class level. On the other hand, mRMR takes into account the

mutual information among features. The latter is a multivariate measure and therefore

a better behavior is expected when noise is present in data, because although some
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features may be affected by noise in a sample, not all of them are supposed to suffer it.

This is why Information Gain obtains excellent results with low levels of noise but as

this increases, its performance decays until reaching an index of success with value 14.

To sum up, the filters mRMR and ReliefF and the embedded method FS-P are the

methods most tolerant to noise in the inputs and the subsets filters (CFS, Consistency

and INTERACT) and Information Gain are the most affected by noise.

3.5 Analysis and Discussion

In this section an analysis and discussion of the results presented in Section 3.3 will be

carried out, trying to check which method is the best and to explain some behaviors

showed in the experimental results. We will start by analyzing the index of success and

then we will discuss the relation between index of success and classification accuracy

focusing on the specific problems studied in this work.

3.5.1 Analysis of index of success

Table 3.12 shows the average of success for each feature selection method over each

scenario and also an overall average for each method (last column). For Led25 and

Led100 only one result is presented, respectively, corresponding to the average of the

results for the distinct levels of noise tested. Analogously, for the SD family of datasets,

only the average result of the 3 datasets is shown.

We are interested in an analysis of the index of success (regardless of the classi-

fication accuracy) in order to check the behavior of the feature selection methods in

a classifier-independent manner. In light of the results shown in Table 3.12, the best

method according to the index of success is the filter ReliefF, followed by the filters

mRMR and both versions of Md. However, the subset filters and Information Gain

showed poor results. Regarding the embedded model, FS-P is slightly better than

SVM-RFE, and both of them are in the middle of the ranking. Finally, wrapper meth-

ods turned out to be the worst option in this study, since they achieved the poorest

averages of success.
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Table 3.12: Average of success for every feature selection method tested. “N/A” stands

for “Not Applicable”.

Correlation Non-linear Noise High dimension

Method Corr. Corr100 XOR100 Par3+3 Led25 Led100 Monk3 SD Mad. Av.

CFS -25 -2 0 0 55 55 67 89 20 29

Consistency -25 -2 0 0 52 52 67 83 40 30

INTERACT -25 -2 0 0 55 55 67 81 40 30

InfoGain -25 -2 0 0 62 62 67 89 40 33

ReliefF 75 75 100 93 90 80 100 47 80 82

mRMR 75 99 50 56 90 76 17 31 0 55

Md
1 75 99 50 -19 76 73 67 83 40 60

Md
2 75 99 50 -19 76 76 67 47 40 57

SVM-RFE 75 25 -21 19 48 47 67 89 80 48

SVM-RFE-G 75 -44 100 100 66 64 67 N/A N/A N/A

FS-P 100 75 -19 -19 93 85 67 22 40 49

Wrap. SVM -25 -2 -4 -4 54 57 83 31 20 23

Wrap. C4.5 -25 -13 -4 -4 60 55 67 22 99 29

1 λ = 0

2 λ = 1

In light of the results presented in Table 3.12, some guidelines are suggested:

• In complete ignorance of the particulars of data, the authors suggest to use the fil-

ter ReliefF. It detects relevance in a satisfactory manner, even in complex datasets

such as XOR-100, and it is tolerant to noise (both in the inputs and in the out-

put). Moreover, due to the fact that it is a filter, it has the implicit advantage of

its low computational cost.

• When dealing with high non-linearity in data (such as XOR-100 and Parity3+3),

SVM-RFE with a Gaussian kernel is an excellent choice, since it is able to solve

these complex problems. However, at the expense of being computationally more

expensive than the remaining approaches seen in these experiments.

• In the presence of altered inputs, the best option is to use the embedded method

FS-P, since it has proved to be very robust to noise. A less expensive alternative

is the use of the filters ReliefF or mRMR, which also shown good behaviors over

this scenario. With low levels of noise (up to 6%), the use of the filter Information

Gain is also recommended.

• When the goal is to select the smallest number of irrelevant features (even at

the expense of selecting fewer relevant features), we suggest to employ one of the

subset filters (CFS, Consistency-based or INTERACT). This kind of methods
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have the advantage of releasing the user from the task of deciding how many

features to choose.

• When dealing with datasets with a small ratio between number of samples and

features and a high number of irrelevant attributes, which is part of the prob-

lematics of microarray data, the subset filters and Information Gain presented a

promising behavior. SVM-RFE performs also adequately, but because of being an

embedded method is computationally expensive, especially in high-dimensional

datasets like these.

• In general, the authors suggest the use of filters (specifically ReliefF), since they

carry out the feature selection process with independence of the induction algo-

rithm and are faster than embedded and wrapper methods. However, in case of

using another approach, we suggest to use the embedded method FS-P.

As was stated in Chapter 2, filters are the methods with the lower computational

cost whilst wrappers are computationally the most expensive. To illustrate this fact,

in Figure 3.6 one can see the execution time of the different feature selection methods

over two datasets: XOR-100 and Led-100 (with no noise). In order to be fair, mRMR

was not included in this study because it was executed in a different machine, however

one can expect a computational time similar to the one required by Md.
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Figure 3.6: Time in seconds for the datasets XOR-100 and Led-100.

As expected, the filter model achieves the lowest execution times, always below 1

second. The embedded methods require more computational time, specially SVM-RFE

with a Gaussian kernel. The time required by this method over Led-100 is especially

high because this is a multiclass dataset, a fact that also increases the computational
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time. Wrapper SVM (which uses a linear kernel), contrary to Wrapper C4.5 is a very

demanding method, particularly with Led-100, which needed almost 1 hour.

3.5.2 Analysis of classification accuracy

Although the previous analysis is interesting because it is not classifier-dependent, one

may want to see the classification accuracy in order to check if the desired subset of

features is unique and if it is the best option. For the sake of brevity, only the two

extreme values of noise for Led-25 and Led-100 datasets were included in this study.

Table 3.13 shows, for each classifier and dataset, the best accuracy obtained, as well

as the corresponding index of success and feature selection method employed. In this

manner, it is easy to see at a glance if the best accuracy matches with the best index of

success. In fact, this happens for all datasets except Led-100 with 20% of noise, where

the inputs are clearly disturbed. This may be explained because the irrelevant features

(randomly generated) are adding some information useful to the classifier, whilst the

disturbed relevant features are not so informative.

The k-NN classifier, based on nearest neighbors, seems to be the best match for the

proposed index of success, since it obtains the best result for classification when the

index obtains also its best result, specifically in 5 out of 13 datasets tested. Instance-

based learners are very susceptible to irrelevant features, therefore when a feature

selection method only selects the relevant features, its index of success is high and also

the classification accuracy obtained by this classifier. It has to be also noted that k-NN

is a non-linear classifier therefore it is capable to correctly classify problems such as

XOR-100 or Parity3+3, achieving 100% of classification accuracy when other methods

like SVM obtained poor results.

SVM obtained the highest classification accuracy in 7 out of 13 datasets showed in

Table 3.13, however it only coincides with the highest index of success in SD2 dataset.

This predictor takes advantage of the embedded method SVM-RFE and Wrapper SVM,

both methods using this classifier performance to select the features. In fact, the highest

accuracies were obtained after applying one of those methods for all datasets except

for Led-25 with 20% of noise.

Although the behavior of the classifiers is interesting, one may want to focus on

the problems studied in this work. For dealing with correlation and redundancy, two

datasets were evaluated in this chapter: CorrAL and CorrAL-100 (see Tables 3.1 and
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3.2). Focusing on Corral, the subset filters, InfoGain and the wrappers selected only

the correlated feature, which leads to an accuracy of 75% for all the classifiers except k-

NN, which apparently is not able to take advantage of the relation between this feature

and the class. When the four relevant features plus the correlated one are selected

(rows 6-10 in Tables 3.1 and 3.2), one can see that the correlated feature (since it is

correlated for 75% of data) is hindering the process of classification, preventing the

predictors to correctly classify all samples. FS-P was the only method that selected

the four relevant features and discarded the irrelevant and correlated ones; k-NN was

able to achieve a 100% of classification accuracy, whilst the other methods were not.

This fact is explained because of the complexity of the problem that may cause that a

given classifier may not solve the problem satisfactorily, even with the proper features.

Regarding Corral-100, the highest accuracy (96.88%) was obtained by SVM having

only one of the relevant features, the correlated one, and 8 irrelevant ones. This fact

can seem surprising but it can be explained because the irrelevant features (randomly

generated) are informative in this problem. Classifying only with the relevant features

and the correlated one, SVM achieves 65.62% of classification accuracy, therefore it

is clear that the irrelevant features are adding some useful information to the learner.

In fact, by randomly generating 94 binary features and having only 32 samples, the

probability that some of these irrelevant features could be correlated with the class is

very high. This situation happens again with Wrapper C4.5 and C4.5 classifier, whilst

the remaining methods exhibit a similar behavior to Corral.

Non-linearity is a difficult problem to deal with. In fact, two of the classifiers

employed in this work (SVM with linear kernel and naive Bayes) and several feature

selection methods do not turn very good results. This problematic is present in XOR-

100 and Parity3+3 datasets, in Tables 3.3 and 3.4. As we have said, naive Bayes and

SVM cannot deal with non-linearity therefore they will not be the focus in this Section.

On the other hand, k-NN (and C4.5 only over XOR-100) achieve 100% of classification

accuracy when the desired features are selected. Over XOR-100, C4.5 obtains also

100% of prediction accuracy after applying its own wrapper, even when it selected two

extra irrelevant features. It has to be noted that this classifier performs an embedded

selection of the features, therefore it may be using a subset of features smaller than

the one given by the feature selection method. Finally, it needs to be remarked the

improvement in SVM-RFE when using a Gaussian kernel for this kind of datasets.

SVM-RFE over XOR-100 did not select any of the relevant features, which led to a

classification accuracy below the baseline accuracy. However, the computational time

when using a Gaussian kernel is almost four times the one needed using a linear one

(see Table 3.6) so when choosing one or the other it is a fact to take into account.
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Table 3.13: Summary of results grouped by classifier. ‘Rf’ stands for ‘ReliefF’, ‘SR’ for ‘SVM-RFE’, ‘SRG’ for ‘SVM-RFE-G’ and

‘IG’ for ‘Information Gain’, respectively.

C4.5 NB k-NN SVM

Dataset Best Acc. suc. Method Best Acc. suc. Method Best Acc. suc. Method Best Acc. suc. Method

CorrAL
81.25 100 FS-P 81.25 75 Rf,mRMR,Md,SR 100.00 100 FS-P 87.50 75 Rf,mRMR,Md,SR

75 SRG

CorrAL-100
84.38 -13 W-C4.5 87.50 75 FS-P 90.63 99 mRMR 96.88 25 SR

25 SR

XOR-100
100.00 100 Rf,SRG 76.00 50 FS-P 100.00 100 Rf,SRG 78.00 -21 SR

99 W-C4.5

Parity3+3
90.63 100 SRG 64.06 -4 W-SVM,W-C4.5 100.00 100 SRG 64.06 -4 W-SVM,W-C4.5

93 Rf 93 Rf

Led-25 (0%)

92.00 100 IG,SRG,FS-P 100.00 100 IG,SRG,FS-P 100.00 100 IG,SRG,FS-P 100.00 67 W-SVM

93 Rf,mRMR,SR 86 CFS,INT 86 CFS,INT

86 CFS,INT 71 Cons 71 Cons

71 Cons,W-C4.5

67 W-SVM

Led-25 (20%) 48.00 36 W-C4.5 40.00 36 W-C4.5 40.00 93 Rf,mRMR 56.00 50 W-SVM

Led-100 (0%)

92.00 100 IG 100.00 100 IG 100.00 100 IG 100.00 99 Rf

99 Rf,FS-P 86 CFS,INT 86 CFS,INT 71 W-SVM

86 CFS,INT 71 Cons,W-C4.5 71 Cons,W-C4.5

85 mRMR,SRG

71 Cons,W-SVM,W-C4.5

Led-100 (20%)
44.00 28 W-C4.5 38.00 57* Rf,mRMR,Md(0) 44.00 57* Rf 48.00 57* mRMR

14 W-SVM

Monk3

93.44 100 Rf 89.34 83 W-SVM 90.98 100 Rf 84.43 67 SR

83 W-SVM SRG

67 Rest except mRMR FS-P

SD1 77.33 0 W-C4.5 88.00 100 SRG 76.00 100 SRG 94.67 50 W-SVM

SD2 72.00 25 W-C4.5 84.00 100 CFS 74.67 75 INT 84.00 100 SRG

SD3 68.00 17 W-C4.5 85.33 67 SRG 73.33 67 CFS 82.67 67 SRG

Madelon 87.04 99 W-C4.5 70.21 40 Md 90.83 40 Cons,INT,IG 67.54 20 W-SVM

* This is not the highest index of success achieved.
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Different levels of noise in the input features were tested over Led-25 (Table 3.5)

and Led-100 (Table 3.6) datasets. As expected, the classification accuracy decreases

when the level of noise increases. It has to be noted that, for both datasets, select-

ing 5 out of the 7 relevant features is enough to achieve 100% classification accuracy.

Because segments 1-5 (see Figure I.1, Appendix I) are enough to distinguish the 10

digits (actually, 5 binary features allow to represent 32 different states). In fact, when

the level of noise is 6%, the first four methods miss the third feature (which allows to

distinguish between digit 5 and 6) and the performance decays in 24%, that cannot

be ascribed to the level of noise. This is a case of classification showing that the true

model is not unique. On the other hand, it is curious that in some cases such as ReliefF

over Led-25 with 20% of noise, where it achieves an index of success of 93 (selecting the

7 relevant features), the maximum classification accuracy obtained with these features

was 40% (SVM) which is not the result expected. This fact can be explained because

of the high level of noise, which corrupts the relevant features and makes the classifi-

cation task very complex. In thoses cases with high levels of noise, wrappers appear

to be a good alternative, since they are classifier-dependent and try to search for the

best features to the given classifier. To sum up, the filters mRMR and ReliefF and

the embedded method FS-P are the methods most tolerant to noise in the inputs and

the subsets filters (CFS, Consistency and INTERACT) and Information Gain are the

most affected by noise, although wrappers are also a good choice if one is interested in

maximizing the classification accuracy.

Monk3 dataset (see Table 3.7) is studied to deal with noise in the target. As was

explained in Section 3.3.4, there are evidences that features x2 and x5 are enough for

certain classifier, which in fact happens in the experiments presented in this work.

This is an example of the optimal feature subset being different than the subset of

relevant features. On the other hand, again one can see the implicit capacity of C4.5

to select features, since it achieves the same result in cases where different subsets of

features were selected, although for mRMR some of the irrelevant features caused the

incorrect classification of one extra feature. This is not the case for k-NN classifier,

which achieves the highest accuracy only when the “known” set of relevant features is

selected. Naive Bayes and SVM seem to be more affected by misclassifications, since

they obtain the worst results and do not take advantage of the best indices of success.

SD1, SD2 and SD3 (Tables 3.8, 3.9 and 3.10) introduce the problematic of microar-

ray data: a small ratio between number of samples and features and a high number

of redundant and irrelevant features. In general, the classification results are poor,

because this kind of problems are very difficult to solve since the classifiers tend to
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overfit. Moreover, the accuracy decreases when the complexity of the dataset increases

(SD3). The embedded method SVM-RFE achieves very good results, specially with

the SVM classifier. CFS and INTERACT filters also work satisfactorily together with

naive Bayes and k-NN classifiers. The small ratio between number of samples and fea-

tures prevents the use of wrappers, which have the risk of overfitting due to the small

sample size. In fact, one can see in Tables 3.8, 3.9 and 3.10 that the wrappers obtain

high accuracies in conjunction with their corresponding classifiers, but the performance

decreases when using other classifiers. Regarding the classifiers, SVM achieves good

results, specially over SD1. SVMs have many mathematical properties that make them

attractive for gene expression analysis, including their flexibility in choosing a similar-

ity function, sparseness of solution when dealing with large data sets, the ability to

handle large feature spaces, and the ability to identify outliers (M. P. Brown et al.,

2000). Naive Bayes obtained also high accuracies, specially over SD2 and SD3. This

learner is robust with respect to irrelevant features, although it deteriorates quickly by

adding redundant features. In fact, it obtains the best accuracies when a small number

of redundant features are present.

Madelon (Table 3.11) is a complex dataset which includes noise, flipping labels and

non-linearity. Due to the latter, naive Bayes and SVM cannot obtain satisfactory results

so they will not be analyzed. C4.5 obtained its highest accuracy after applying its own

wrapper, as expected. It is more surprising the behavior of k-NN, which obtained

the highest prediction accuracy after applying methods that achieve poor indices of

success. However, this fact can be explained because these methods selected a high

number of redundant features. These redundant features were built by multiplying the

useful features by a random matrix, therefore they are also informative.

Table 3.14 shows the behavior of the different feature selection methods over the

different problems studied, where the larger the number of dots, the better the behav-

ior. To decide which methods were the most suitable under a given situation, it was

computed a trade-off between index of success and classification accuracy. In light of

these results, ReliefF turned out to be the best option independently of the particulars

of the data, with the added benefit that it is a filter, which is the model with the lowest

computational cost. However, SVM-RFE-G showed outstanding results, although its

computational time is in some cases prohibitive (in fact, it could not be applied over

some datasets). Wrappers have proven to be an interesting choice in some domains,

nevertheless they must be applied together with their own classifiers and it has to be

reminded that this is the model with the highest computational cost. In addition to

this, Table 3.14 provides some guidelines for specific problems.

52



3.6 Summary

Table 3.14: General guidelines for specific problems

Method Correlation and Non Noise Noise No. feat >>

redundancy Linearity Inputs Target No. samples

CFS • • • ••• ••••
Consistency • • • ••• ••
INTERACT • • • ••• •••
InfoGain • • • ••• •••
ReliefF •••• ••••• ••••• ••••• ••
mRMR •••• ••• ••••• •• •
Md(λ = 0) •••• •• ••• ••• •••
Md(λ = 1) •••• •• ••• ••• •••
SVM-RFE •••• • • •••• •••••
SVM-RFE-G •••• ••••• ••• •••• –

FS-P ••••• •• •••• •••• •
Wrapper SVM • • ••• •••• ••
Wrapper C4.5 •• ••• ••• ••• •••

3.6 Summary

Feature selection has been an active and fruitful field of research in machine learning.

Its importance is beyond doubt and it has proven effective in increasing predictive ac-

curacy and reducing complexity of machine learning models. However, choosing the

appropriate feature selection method for a given scenario is not an easy-to-solve ques-

tion. In this chapter, a review of eleven feature selection methods applied over eleven

synthetic datasets was presented aimed at studying their performance with respect to

several situations that can hinder the process of feature selection. The suite of syn-

thetic datasets chosen covers phenomena such as presence of irrelevant and redundant

features, noise in the data or interaction between attributes. A scenario with a small

ratio between number of samples and features where most of the features are irrele-

vant was also tested. It reflects the problematic of datasets such as microarray data,

a well-known and hard challenge in the machine learning field where feature selection

becomes indispensable.

Within the feature selection field, three major approaches were evaluated: filters,

wrappers and embedded methods. To test the effectiveness of the studied methods,

an evaluation measure was introduced trying to reward the selection of the relevant
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features and to penalize the inclusion of the irrelevant ones. Besides, four classifiers

were selected to measure the effectiveness of the selected features and to check if the

true model was also unique.

Besides a detailed analysis of the findings of this chapter, some cases of study were

also presented in order to decide among methods that showed similar behaviors and

helping to find the adequacy of them in different situations. Finally, some guidelines

about the appropriateness of the different feature selection methods in diverse scenarios

have been proposed.

So far, this thesis has described the fundamentals and state-of-the-art of feature

selection. The next chapters are dedicated to deeply study feature selection in appli-

cations such as DNA microarray classification or the medical domain.
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CHAPTER 4
Feature selection in DNA microarray classification

As mentioned in previous chapters, feature selection has been widely studied in the past

years by the machine learning researchers. This technique has found success in many

different real world applications, among them it is worth highlighting DNA microarray

analysis, since it is an important representative of high-dimensional data.

During the last two decades, the advent of DNA microarray datasets stimulated a

new line of research both in bioinformatics and in machine learning. This type of data

is used to collect information from tissue and cell samples regarding gene expression

differences that could be useful for diagnosis disease or for distinguishing a specific

tumor type. Although there are usually very few samples (often less than 100 patients)

for training and testing, the number of features in the raw data ranges from 6000 to

60000, since it measures the gene expression en masse. A typical classification task

is to separate healthy patients from cancer patients based on their gene expression

“profile” (binary approach). There are also datasets where the goal is to distinguish

among different types of tumors (multiclass approach), making the task even more

complicated.

Therefore, microarray data pose a great challenge for machine learning researchers.

Having so many fields relative to so few samples, create a high likelihood of finding

“false positives” that are due to chance (both in finding relevant genes and in build-

ing predictive models) (Piatetsky-Shapiro & Tamayo, 2003). It becomes necessary to

find robust methods to validate the models and assess their likelihood. Furthermore,

additional experimental complications like noise and variability render the analysis of

microarray data an exciting domain (Saeys, Inza, & Larrañaga, 2007).

Several studies have shown that most genes measured in a DNA microarray ex-

periment are not relevant for an accurate classification among different classes of the

problem (Golub et al., 1999). To avoid the “curse of dimensionality” (Jain & Zongker,
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1997), feature (gene) selection plays a crucial role in DNA microarray analysis. It

soon became indispensable among the researchers, not only to remove redundant and

irrelevant features, but also to help biologists to identify the underlying mechanism

that relates gene expression to diseases. This research area has received significant

attention in recent years (most of the work has been published in the last decade),

and new algorithms emerge as alternatives to the existing ones. However, when a new

method is proposed, there is a lack of standard state-of-the-art results to perform a

fair comparative study. Besides, there is a broad suite of microarray datasets to be

used in the experiments, some of them even are named the same, but the number of

samples or characteristics are different in different studies, which makes this task more

complicated.

The main goal of this chapter is to provide a framework for ongoing studies, paying

attention to the datasets used in the experimental analysis, the intrinsic data charac-

teristics and the experimental analysis of classical feature selection algorithms available

in data mining software tools used for microarray data. In this manner, it is possible to

be aware of the particularities of this type of data as well as its problematics, such as

the imbalance of the data, their complexity, the presence of overlapping and outliers, or

the so-called dataset shift. These problematics render the analysis of microarray data

an exciting domain.

An experimental framework has been designed in such a way that well-founded

conclusions can be extracted. A set of nine binary microarray datasets is used, which

suffer from problems such as class imbalance, overlapping or dataset shift. Some of these

datasets come originally divided into training and test datasets, so a holdout validation

is performed on them. For the remaining datasets, they will be evaluated with a k-fold

cross-validation, since it is a common choice in the literature. However, it has been

shown that cross-validation can potentially introduce dataset shift, so another strategy

has been included to create the partitioning, called Distribution optimally balanced

stratified cross-validation (DOB-SCV) (Moreno-Torres, Sáez, & Herrera, 2012). C4.5,

Support Vector Machine (SVM) and naive Bayes were selected as classifiers, and we use

classification accuracy, sensitivity and specificity on the test partitions as the evaluation

criteria.
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4.1 Background: the problem and first attempts

All cells have a nucleus, and inside nucleus there is DNA, which encodes the “pro-

gram” for future organisms. DNA has coding and non-coding segments. The coding

segments, also known as genes, specify the structure of proteins, which do the essential

work in every organism. Genes make proteins in two steps: DNA is transcribed into

mRNA and then mRNA is translated into proteins. Advances in molecular genetics

technologies, such as DNA microarrays, allow us to obtain a global view of the cell,

where it is possible to measure the simultaneous expression of tens of thousands of

genes (Piatetsky-Shapiro & Tamayo, 2003). Figure 4.1 displays the general process

of acquiring the gene expression data from a DNA microarray. These gene expression

profiles can be used as inputs to large-scale data analysis, for example, to increase our

understanding of normal and disease states.

Figure 4.1: General process of acquiring the gene expression data from DNA microarray

Microarray datasets began to be dealt with at the end of the nineties. Soon feature

(gene) selection was considered a de facto standard in this field. Further work was

carried out in the beginning of the 2000s (Saeys et al., 2007). The univariate paradigm,

which is fast and scalable but ignores feature dependencies, has dominated the field

during the 2000s (Dudoit, Fridlyand, & Speed, 2002; Li et al., 2004; J. Lee, Lee,

Park, & Song, 2005). However, there were also attempts to tackle microarray data

with multivariate methods, which are able to model feature dependencies, but at the

cost of being slower and less scalable than univariate techniques. Besides of applying
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multivariate filter methods (Ding & Peng, 2005; Yeung & Bumgarner, 2003; I. Wang

Y.and Tetko et al., 2005; Gevaert, Smet, Timmerman, Moreau, & Moor, 2006), the

microarray problem was also treated with more complex techniques such as wrappers

and embedded methods (Blanco, Larrañaga, Inza, & Sierra, 2004; Jirapech-Umpai &

Aitken, 2005; Inza, Larrañaga, Blanco, & Cerrolaza, 2004; Ruiz, Riquelme, & Aguilar-

Ruiz, 2006).

4.2 Intrinsic characteristics of microarray data

As mentioned at the beginning of this chapter, microarray data classification posed a

great challenge for computational techniques, because of their large dimensionality (up

to several tens of thousands of genes) while small sample sizes. Furthermore, there exist

additional experimental complications that render the analysis of microarray data an

exciting domain.

4.2.1 Small sample size

The first problem that one may find when dealing with microarray data is related

with the small samples size (usually less than 100). A key point in this situation

is that error estimation is greatly impacted by small samples (E. Dougherty, 2001).

Without the appropriate estimation of the error, there exists an unsound application

of classification methods, which has generated a large number of publications and an

equally large amount of unsubstantiated scientific hypotheses (Braga-Neto, 2007). For

example, Michiels, Koscielny, and Hill (2005) reported that reanalysis of data from

the seven largest published microarray-based studies that have attempted to predict

prognosis of cancer patients reveals that five out of those seven did not classify patients

better than by chance. To overcome this problem, it becomes necessary to select a

correct validation method for estimating the classification error.

4.2.2 Class imbalance

A common problem in microarray data is the so-called class imbalance problem. This

occurs when a dataset is dominated by a major class or classes which have significantly
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more instances than the other rare/minority classes in the data (He & Garcia, 2009;

Sun, Wong, & Kamel, 2009; López, Fernández, Garćıa, Palade, & Herrera, 2013).

Typically, people have more interests in learning rare classes. For example, in the

domain at hand, the cancer class tends to be rarer than the non-cancer class because

usually there are more healthy patients. However, it is important for practitioners

to predict and prevent the apparition of cancer. In these cases, standard classifier

learning algorithms have a bias toward the classes with greater number of instances,

since rules that correctly predict those instances are positively weighted in favor of

the accuracy metric, whereas specific rules that predict examples from the minority

class are usually ignored (treated as noise), because more general rules are preferred.

Therefore, minority class instances are more often misclassified than those from the

other classes (Galar, Fernández, Barrenechea, Bustince, & Herrera, 2012). Although

class imbalance does not hinder the learning task by itself, there are some difficulties

related to this problem that turn up, such as a small sample size, as it is the case

with microarray data. This problematic is of special importance when the imbalance

is more marked in the test set than in the training set, as will be further discussed in

subsection 4.2.4 dealing with the dataset shift problem. Multiclass datasets also suffer

this problem. For example, the widely-used Lymphoma dataset (Alizadeh et al., 2000)

has 9 classes but the majority class takes 48% of the samples. Traditional preprocessing

techniques to overcome this issue are undersampling methods, which create a subset

of the original dataset by eliminating instances; oversampling methods, which create a

superset of the original dataset by replicating some instances or creating new instances

from existing ones; and finally, hybrid methods that combine both sampling methods.

One of the most employed resampling techniques is the so-called SMOTE (Chawla,

Bowyer, Hall, & Kegelmeyer, 2002), where the minority class is over-sampled by taking

each minority class sample and introducing synthetic examples along the line segments

joining any/all of the k minority class nearest neighbors. This technique was applied

by Blagus and Lusa (2012) on microarray data, although the authors stated that it

does not attenuate the bias towards the classification in the majority class for most

classifiers. In recent years, ensemble of classifiers have arisen as a possible solution to

the class imbalance problem attracting great interest among researchers (Galar et al.,

2012; Galar, Fernández, Barrenechea, & Herrera, 2013), in several cases combined with

preprocessing techniques such as SMOTE. Ensemble-based algorithms have proven to

improve the results that are obtained by the usage of data preprocessing techniques and

training a single classifier. For all these reasons, it is worth considering this problematic

when dealing with unbalanced microarray datasets.
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4.2.3 Data complexity

Data complexity measures are a recent proposal to represent characteristics of the data

which are considered difficult in classification tasks, such as the overlapping among

classes, their separability or the linearity of the decision boundaries (Saez, Luengo, &

Herrera, 2013; T. K. Ho & Basu, 2002). Particularly, these measures have been referred

to gene expression analysis by Lorena, Costa, Spolaôr, and de Souto (2012) and Okun

and Priisalu (2009), demonstrating that low complexity corresponds to small classifi-

cation error. In particular, the measures of class overlapping, such as F1 (maximum

Fisher’s discriminant ratio) (Saez et al., 2013), focus on the effectiveness of a single fea-

ture dimension in separating the classes. They examine the range and spread of values

in the dataset within each class and check for overlapping among different classes.

4.2.4 Dataset shift

Another common problem when datasets come originally divided in training and test

sets, is the so-called dataset shift. It occurs when the testing (unseen) data experience

a phenomenon that leads to a change in the distribution of a single feature, a combi-

nation of features, or the class boundaries (Moreno-Torres, Raeder, Alaiz-Rodŕıguez,

Chawla, & Herrera, 2012). As a result, the common assumption that the training and

testing data follow the same distributions is often violated in real-world applications

and scenarios, which may hinder the process of feature selection and classification. For

example, Lung (Gordon et al., 2002) and Prostate (Singh et al., 2002) datasets have

separated training and test sets. In the case of Lung, there is a single feature (#1136)

which can correctly classify all the samples in the training set, as shown in Figure 4.2a,

where different colors and shapes stand for different classes and the dashed line shows

a clear linear separation between them. However, the same feature is not that informa-

tive in the test set and the class is not linearly separable, as displayed in Figure 4.2b.

Besides, note that there is a enormous disparity in the class distribution: 50%-50% in

the training set whilst 90%-10% in the test set.

The Prostate dataset poses a big challenge for machine learning methods since

the test dataset was extracted from a different experiment and has a nearly 10-fold

difference in overall microarray intensity from the training data. In fact, the test

distribution (26%-74%) differs significantly from the train distribution (49%-51%) and

with an inappropriate feature selection, some classifiers just assign all the samples to

one of the classes (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos, 2010, 2013a).
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Figure 4.2: Feature #1136 in Lung dataset

Dataset shift can also appear when performing a cross-validation technique, which

divides the whole training set into several subsets of data. In this case, there are some

partitioning methods which may solve the problem (Moreno-Torres, Sáez, & Herrera,

2012).

4.2.5 Outliers

An important aspect that has been neglected in the literature is to detect outliers

(Barnett & Lewis, 1994) in microarray samples. In some microarray datasets, there

are samples incorrectly labeled or identified as likely contaminated which should be

designated outliers, since they can exert a negative effect on the selection of infor-

mative genes for sample classification. Kadota, Tominaga, Akiyama, and Takahashi

(2003) developed a method which found some outlying samples in the well-known Colon

dataset. Therefore, analysis of samples designated as outliers should be considered as

a pre-processing step in classification of microarray datasets because they can have a

negative effect in the gene subset selection and, as a consequence, in the final prediction

(Gonzalez-Navarro, 2011).

61



Chapter 4. Feature selection in DNA microarray classification

4.3 Algorithms for feature selection on microarray data:

a review

Feature selection methods are constantly emerging and, for this reason, there is a wide

suite of methods that deal with microarray gene data. The aim of this section is to

present those methods developed in the last few years. As traditionally in the feature

selection domain, the most employed gene selection methods fall into the filter approach

(see subsection 4.3.1). Most of the novel filter methods proposed are based on informa-

tion theory, although issues such as robustness or division in multiple binary problems

are emerging topics. Discretization as a step prior to feature selection has also received

some amount of attention. On the other hand, and due to the heavy computational

consumption of resources and the high risk of overfitting, the wrapper approach has

been mostly avoided in the literature (see subsection 4.3.2). Although the embedded

model had not received enough attention during the infancy of microarray data clas-

sification, there appeared several proposals in the last years, as reported in subsection

4.3.3. It is also worth noticing that the review of the up-to-date literature showed a

tendency to mix algorithms, either in the form of hybrid methods or ensemble meth-

ods. Also, it is well-known that genes interact with each other through gene regulative

networks, so clustering methods have been also proposed. These novel approaches will

be described in subsection 4.3.4.

4.3.1 Filters

Filter methods evaluate the goodness of gene subsets by observing only intrinsic data

characteristics (i.e. statistical measures), where typically a single gene or a subset of

genes is evaluated against the class label. Classical filter methods are usually applied

to microarray data, such as Correlation Feature Selection (CFS), Fast Correlation-

Based Filter (FCBF), ReliefF, or the consistency-based filter (see Chapter 2). Also,

the well-known and widely-used minimum Redundancy Maximum Relevance (mRMR)

has proven to be an appropriate tool for gene selection. During the last lustrum, besides

the application of known methods, an important number of filter approaches have been

proposed and applied to microarray datasets, and this subsection will review the most

interesting ones. An important number of filters are based on information theory, as

can be seen in subsection 4.3.1.1. On the other hand, several approaches include a

preprocessing step to discretize data, since some filter require the data to be discrete,
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as reported in subsection 4.3.1.2. Subsection 4.3.1.3 presents the filters which can

deal with multiple binary problems and subsection 4.3.1.4 describes methods which are

related with another issues such as robustness. A summary of all the filters reviewed

in this subsection can be found in Table 4.1.

4.3.1.1 Information Theory

Firstly, the methods based on information theory will be presented, which despite

being born years ago, are still the focus of much attention. A novel filter framework

is presented by J. Wang, Wu, Kong, Li, and Zhang (2013) to select optimal feature

subset based on a maximum weight and minimum redundancy (MWMR) criterion. The

weight of each feature indicates its importance for some ad-hoc tasks (e.g. clustering or

classification) and the redundancy represents the correlation among features. With this

method it is possible to select the feature subset in which the features are most beneficial

to the subsequent tasks while the redundancy among them is minimal. Experimental

results on five datasets (two of them based on DNA microarray) demonstrated the

advantage and efficiency of MWMR.

In a previous work (Bolón-Canedo, Seth, Sánchez-Maroño, Alonso-Betanzos, &

Principe, 2011) a statistical dependence measure is presented for gene selection in

the context of DNA microarray classification. The proposed method is also based on

a maximum relevance minimum redundancy approach, but it uses a simple measure

of monotone dependence (Md) to quantify both relevance and redundancy. Md was

compared against the well-known minimum redundancy maximum relevance (mRMR)

method, and was shown to obtain better or equal performance over binary datasets.

Also related with information theory, Meyer, Schretter, and Bontempi (2008) in-

troduced MASSIVE, a new information-theoretic filter approach for mining microarray

data. This filter relies on a criterion which consists of maximizing a term appearing

both in the lower bound and in an upper bound of the mutual information of a subset.

The experimental results showed that the proposed method is competitive with five

state-of-the-art approaches.

An entropic filtering algorithm (EFA) (González Navarro & Belanche Muñoz, 2009)

was proposed as a fast feature selection method based on finding feature subsets that

jointly maximize the normalized multivariate conditional entropy with respect to the

63



Chapter 4. Feature selection in DNA microarray classification

classification ability of tumors. The solutions achieved are of comparable quality to

previous results, obtained in a maximum of half an hour computing time and using a

very low number of genes.

L. Song, Smola, Gretton, Bedo, and Borgwardt (2012) introduced a framework for

feature selection based on dependence maximization between the selected features and

the labels of an estimation problem, using the Hilbert-Schmidt Independence Crite-

rion. Their proposed method, BAHSIC, is a filter method that demonstrated good

performance on microarray data, compared with more specialized methods.

4.3.1.2 Discretization

After presenting the measures related with information theory, the topic of discretiza-

tion (Garćıa, Luengo, Sáez, López, & Herrera, 2013) related to feature selection will

be discussed. Although the use of a feature selection method when dealing with mi-

croarray data is a common practice, discretization has not received the same amount

of attention. Ferreira and Figueiredo (2012) proposed not only new techniques for

feature selection, but they also added a previous discretization step. They performed

scalar feature discretization with the well-known Linde-Buzo-Gray algorithm, using a

stopping criterion based on bit allocation. Then, the feature selection step applies a

simple unsupervised criterion with indicators on the original numeric features and on

the discretized features. They also devised two efficient relevance/redundancy feature

selection algorithms (RFS and RRFS) in order to remove redundant features.

The necessity of a prior discretization of the data is introduced for two main reasons:

the first one is to help the filtering process and the second one is related to the high

number of genes with very unbalanced values present in microarray datasets (Bolón-

Canedo et al., 2010). Results on ten datasets demonstrated that the combination

method, discretizer+filter, outperformed the results achieved by previous approaches,

in some cases with improvements in the classification accuracy and descents in the

number of genes needed. This methodology will be explained in detail in Chapter 7.
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4.3.1.3 Multiple binary problems

The same scheme of discretizer+filter was employed again (Sánchez-Maroño, Alonso-

Betanzos, Garćıa-González, & Bolón-Canedo, 2010), but in this case to be applied only

to multiclass datasets. While studies on feature selection using the multiclass approach

(a method that can deal directly with multiple classes) are relatively frequent in the

literature (Bolón-Canedo, Seth, et al., 2011; Meyer et al., 2008; L. Song et al., 2012;

Bolón-Canedo et al., 2010; Ferreira & Figueiredo, 2012; Nie, Huang, Cai, & Ding,

2010; Lan & Vucetic, 2011), very few studies employ the multiple binary sub-problems

approach. Two well-known methods were employed for generating binary problems

from a multiple class dataset: one versus one and one versus rest. The methodology

was applied on 21 datasets, including a microarray dataset (Leukemia). On this dataset,

the best results were obtained when applying feature selection. Specifically, the one

versus rest approach obtained promising accuracy results along with a drastic reduction

in the number of features needed.

Student and Fujarewicz (2012) also proposed a method based on Partial Least

Squares (PLS) and decomposition to a set of two-class sub-problems; again using one

versus one and one versus rest. They state that it is more effective to solve a multiclass

feature selection by splitting it into a set of two-class problems and merging the results

in one gene list. In this way, they obtained a very good accuracy rate and stability, as

well as providing easy interpretation of the results by biologists.

4.3.1.4 Other approaches

Robustness is a trending issue on feature selection. Nie et al. (2010) proposed a new

robust feature selection method (RFS) with emphasizing joint `2,1-norm minimization

on both loss function and regularization. This method is robust to outliers and also

efficient in calculation.

Finally, a very interesting and novel filter approach was proposed by Lan and Vucetic

(2011) based in so-called multi-task learning. When the number of labelled microarrays

is particularly small (e.g. less than 10), the amount of available information diminishes

to the level that even the most carefully designed classification approaches are bound

to outperform. An alternative approach is to utilize information from the external

microarray datasets, so accuracy on the target classification task can be significantly
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increased if data from the auxiliary tasks are consulted during learning. The multi-task

filter (M FS) was evaluated on microarray data showing that this method is successful

when applied in conjunction with both single-task and multi-tasks classifiers.

Table 4.1: Filter methods used on microarray data. Type of evaluation (ranker/subset)

and type of data (binary/multiclass).

Method Original Ref. Type (r/s) Data (b/m)

BAHSIC (L. Song et al., 2012) r m

Discretizer+filter (Bolón-Canedo et al., 2010; Sánchez-Maroño et al., 2010) s m

EFA (González Navarro & Belanche Muñoz, 2009) s b

Md (Bolón-Canedo, Seth, et al., 2011) r m

M FS (Lan & Vucetic, 2011) r m

MASSIVE (Meyer et al., 2008) r m

MWMR (J. Wang et al., 2013) s b

PLS (Student & Fujarewicz, 2012) r m

RFS (Ferreira & Figueiredo, 2012) r m

RFS (Nie et al., 2010) r m

RRFS (Ferreira & Figueiredo, 2012) r m

4.3.2 Wrappers

As mentioned before, the wrapper approach has not received the same amount of

attention than the filter methods, due to its high computational cost. As the number

of features grows, the space of feature subsets grows exponentially, something that

becomes a critical aspect when having tens of thousands of features. Besides, they

have the risk of overfitting due to the small sample size of microarray data. As a result,

the wrapper approach has been mostly avoided in the literature.

Some works using the wrapper approach can be found in the earliest years of the

investigation of microarray data. Notice that in a typical wrapper, a search is con-

ducted in the space of genes, evaluating the goodness of each found gene subset by the

estimation of the accuracy percentage of the specific classifier to be used, training the

classifier only with the found genes. For example, Inza et al. (2002) evaluated clas-

sical wrapper search algorithms (sequential forward and backward selection, floating

selection and best-first search) on three microarray datasets. Another example has

been provided by Ruiz et al. (2006), in which an incremental wrapper called BIRS is

presented for gene selection. Although the use of wrappers on microarray data has not

evolved in the same line than the other feature selection methods, some examples were

found in the last years.
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Sharma, Imoto, and Miyano (2012) proposed an algorithm called successive fea-

ture selection (SFS). It is well-known that most of the conventional feature selection

algorithms (e.g. individual ranking and forward selection schemes) have the drawback

that a weakly ranked gene that could perform well in terms of classification with an

appropriate subset of genes will be left out of the selection. Trying to overcome this

shortcoming, the proposed SFS consists of first partitioning the features into smaller

blocks. Once the top features from each of the blocks are obtained according to their

classification performance, they are compared among themselves to obtain the best

feature subset. This algorithm provides high classification accuracy on several DNA

microarray datasets.

Wanderley, Gardeux, Natowicz, and Braga (2013) presented an evolutionary wrap-

per method (GA-KDE-Bayes). It uses a non-parametric density estimation method

and a Bayesian classifier. The authors state that non-parametric methods are a good

alternative for scarce and sparse data, such as bioinformatics problem, since they do not

make any assumptions about its structure and all the information come from data itself.

Results on six microarray datasets showed better performance than other presented in

the literature.

Table 4.2 visualizes the wrapper methods described, along with the original refer-

ence, the type of evaluation (ranker or subset) and the type of data that they can deal

with (binary or multiclass).

Table 4.2: Wrapper methods used on microarray data. Type of evaluation

(ranker/subset) and type of data (binary/multiclass).

Method Original Ref. Type (r/s) Data (b/m)

GA-KDE-Bayes (Wanderley et al., 2013) s b

SPS (Sharma et al., 2012) s m

4.3.3 Embedded

Despite their lower time consumption, a main disadvantage of the filter approach is the

fact that it does not interact with the classifier, usually leading to worse performance

results than wrappers. However, it has been seen that the wrapper model comes with a
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expensive computational cost, especially aggravated by the high dimensionality of mi-

croarray data. An intermediate solution for researchers is the use of embedded methods,

which use the core of the classifier to establish a criteria to rank features. Probably

the most famous embedded method is Support Vector Machine based on Recursive

Feature Elimination (SVM-RFE), proposed by Guyon et al. (2002) to specifically deal

with gene selection for cancer classification. This method soon joined the group of al-

gorithms which represent the state-of-the-art for gene selection, and therefore multiple

extensions and modifications of it have been proposed. Next, we will describe several

embedded approaches designed to deal with microarray data that we found reviewing

the up-to-date literature (for a summary of them, consult Table 4.3).

Maldonado, Weber, and Basak (2011) introduced a new embedded method. It si-

multaneously selects relevant features during classifier construction by penalizing each

feature’s use in the dual formulation of support vector machines (SVM). The approach

is called kernel-penalized SVM (KP-SVM) and it optimizes the shape of an anisotropic

RBF Kernel eliminating features that have low relevance for the classifier. The experi-

ments on two benchmark microarray datasets and two real-world datasets showed that

KP-SVM outperformed the alternative approaches and determined consistently fewer

relevant features.

G. Wang, Song, Xu, and Zhou (2013) proposed a FOIL (First Order Inductive

Learner) rule based feature subset selection algorithm, called FRFS. This method firstly

generates the FOIL classification rules using a modified propositional implementation

of the FOIL algorithm. Then, it combines the features that appeared in the antecedents

of all rules together, and achieves a candidate feature subset that excludes redundant

features and reserves the interactive ones. Lastly, it measures the relevance of the

features in the candidate feature subset by their proposed new metric CoverRatio and

identifies and removes the irrelevant features.

Shah, Marchand, and Corbeil (2012) focused not only on obtaining a small number

of genes but also on having verifiable future performance guarantees. They investigated

the premise of learning conjunctions of decision stumps and proposed three formulations

based on different learning principles, which embed the feature selection as a part of the

learning process itself. One of their proposals, Probably Approximately Correct (PAC)

Bayes, yields competitive classification performance while at the same time utilizing

significantly fewer attributes.
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Canul-Reich, Hall, Goldgof, Korecki, and Eschrich (2012) introduced the iterative

perturbation method (IFP), which is an embedded gene selector applied to four mi-

croarray datasets. This algorithm uses a backward elimination approach and a criterion

to determine which features are the least important relying on the classification per-

formance impact that each feature has when perturbed by noise. If adding noise leads

to a big change in the classification performance, then the feature is considered rel-

evant. The IFP approach resulted in comparable or superior average class accuracy

when compared to well-studied SVM-RFE on three out of the four datasets.

To overcome the problem of the imbalance of some microarray datasets, a new

embedded method based on random forest algorithm is presented by Anaissi, Kennedy,

and Goyal (2011). Its strategy is composed of different methods and algorithms. First,

an algorithm to find the best training error cost for each class is run, in order to deal with

the imbalance of the data. Then, random forest is run to select the relevant features.

Finally, a strategy to avoid overfitting is also applied. The method was designed ad-hoc

to deal with a complex gene expression dataset for Leukemia malignancy, showing a

very acceptable outcome.

Table 4.3: Embedded methods used on microarray data. Type of evaluation

(ranker/subset) and type of data (binary/multiclass).

Method Original Ref. Type (r/s) Data (b/m)

FRFS (G. Wang et al., 2013) s m

IFP (Canul-Reich et al., 2012) s b

KP-SVM (Maldonado et al., 2011) s m

PAC-Bayes (Shah et al., 2012) r b

Random Forest (Anaissi et al., 2011) s m

4.3.4 Other algorithms

Nowadays, the trend is to use not only classical feature selection methods (filters,

wrappers and embedded) but also to focus on new combinations such as hybrid or

ensemble methods.

Hybrid methods usually combine two or more feature selection algorithms of differ-

ent conceptual origin in a sequential manner. Mundra and Rajapakse (2010) combined

two of the most famous feature selection methods for microarray data: SVM-RFE

69



Chapter 4. Feature selection in DNA microarray classification

and mRMR. They propose an approach that incorporates a mutual-information-based

mRMR filter in SVM-RFE to minimize the redundancy among selected genes. Their

approach improved the accuracy of classification and yielded smaller gene sets compared

with mRMR and SVM-RFE, as well as other popular methods.

Shreem, Abdullah, Nazri, and Alzaqebah (2012) also used mRMR in their hybrid

method. In this case, the proposed approach combines ReliefF, mRMR and GA (Ge-

netic Algorithm) coded as R-m-GA. In the first stage, the candidate gene set is identified

by applying ReliefF. Then, the redundancy is minimized with the help of mRMR, which

facilitates the selection of effectual gene subset from the candidate set. In the third

stage, GA with classifier (used as a fitness function by the GA) is applied to select

the most discriminating genes. The proposed method is capable of finding the smallest

gene subset that offers the highest classification accuracy.

Chuang, Yang, Wu, and Yang (2011) proposed a hybrid method called CFS-TGA,

which combines correlation-based feature selection (CFS) and the Taguchi-genetic al-

gorithm, where the K-nearest neighbor served as a classifier. The proposed method ob-

tained the highest classification accuracy in ten out the eleven gene expression datasets

in which it was tested on.

C. Lee and Leu (2011) developed another hybrid method. It first uses a genetic

algorithm with dynamic parameter setting (GADP) to generate a number of subsets

of genes and to rank the genes according to their occurrence frequencies in the gene

subsets. Then, χ2 is used to select a proper number of the top-ranked genes for data

analysis. Finally, a SVM is employed to verify the efficiency of the selected-genes.

The experimental results on six microarray datasets showed that the GADP method

is better than the existing methods in terms of the number of selected genes and the

prediction accuracy.

Leung and Hung (2010) proposed a multiple-filter-multiple-wrapper (MFMW) me-

thod. The rationale behind this proposal is that filters are fast but their predictions

are inaccurate whilst wrappers maximize classification accuracy at the expense of a

formidable computation burden. MFMW is based on previous hybrid approaches that

maximize the classification accuracy for a chosen classifier with respect to a filtered

set of genes. The drawback of the previous hybrid methods which combine filters and

wrappers is that the classification accuracy is dependent on the choice of specific filter

and wrapper. MFMW overcomes this problem by making use of multiple filters and

multiple wrappers to improve the accuracy and robustness of the classification.
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Ensemble feature selection builds on the assumption that combining the output of

multiple experts is better than the output of any single expert. Typically, ensemble

learning has been applied to classification, but it has recently been applied to microar-

ray gene selection. An ensemble of filters (EF) is proposed (Bolón-Canedo et al., 2012),

which will be further explained in chapter 8. The rationale of this approach is behind

the variability of results of each available filter over different microarray datasets. That

is, a filter can obtain excellent classification results in a given dataset while performing

poorly in another dataset, even in the same domain. This ensemble obtains a classifi-

cation prediction for every different filter conforming the ensemble, and then combines

these predictions by simple voting. Experiments on 10 microarray datasets showed that

the ensemble obtained the lowest average of classification error for the four classifiers

tested. Recently, the same authors introduced new ensembles to improve performance

(E1-cp, E1-nk, E1-ns, E2)(Bolón-Canedo et al., 2013a).

From the perspective of pattern analysis, researchers must focus not only in classi-

fication accuracy but also in producing a stable or robust solution. Trying to improve

the robustness of feature selection algorithms, F. Yang and Mao (2011) proposed an

ensemble method called multicriterion fusion-based recursive feature elimination (MCF-

RFE). Experimental studies on microarray datasets demonstrated that the MCF-RFE

method outperformed the commonly used benchmark feature selection algorithm SVM-

RFE both in classification performance and stability of feature selection results.

Abeel, Helleputte, Van de Peer, Dupont, and Saeys (2010) are also concerned with

the analysis of the robustness of biomarker selection techniques. For this sake, they

proposed a general experimental setup for stability analysis that can be easily included

in any biomarker identification pipeline. In addition, they also presented a set of

ensemble feature selection methods improving biomarker stability and classification

performance on four microarray datasets. They used recursive feature elimination

(RFE) as a baseline method and a bootstrapping method to generate diversity in the

selection. Then, two different schemes were proposed to aggregate the different rankings

of features. Their findings were that when decreasing the number of selected features,

the stability of RFE tends to degrade while ensemble methods offer significantly better

stability.

Ye, Wu, Zhexue Huang, Ng, and Li (2013) proposed a stratified sampling method to

select the feature subspaces for random forest (SRF). The key idea is to stratify features

into two groups. One group will contain strong informative features and the other weak

informative features. Then, for feature subset selection, features are randomly chosen
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from each group proportionally. The advantage of stratified sampling is that it can

ensure that each subspace contains enough informative features for classification in

high dimensional data.

Clustering methods for microarray data have been also recently proposed. Most

of the gene selection techniques are based on the assumption of the independence be-

tween genes (actually a typical approach is to rank them individually). However, it is

well known that genes interact with each other through gene regulative networks. To

overcome this problem, Lovato et al. (2012) presented a novel feature selection scheme,

based on the Counting Grid (GC) model, which can measure and consider the relation

and the influence between genes.

Table 4.4: Other feature selection methods used on microarray data. Type of evaluation

(ranker/subset) and type of data (binary/multiclass).

Method Original Ref. Type (r/s) Data (b/m)

CFS-TGA (Chuang et al., 2011) s m

E1-cp (Bolón-Canedo et al., 2013a) s b

E1-nk (Bolón-Canedo et al., 2013a) s b

E1-ns (Bolón-Canedo et al., 2013a) s b

E2 (Bolón-Canedo et al., 2013a) s b

Ensemble RFE (Abeel et al., 2010) s b

EF (Bolón-Canedo et al., 2012) s m

FAST (Q. Song, Ni, & Wang, 2013) s m

GADP (C. Lee & Leu, 2011) s m

GC (Lovato et al., 2012) r b

MCF-RFE (F. Yang & Mao, 2011) s b

MFMW (Leung & Hung, 2010) s b

R-m-GA (Shreem et al., 2012) s b

SRF (Ye et al., 2013) s m

SVM-RFE with MRMR (Mundra & Rajapakse, 2010) r b

Q. Song et al. (2013) presented a fast clustering-based feature selection algorithm

(FAST) which works in two steps. In the first step, features are divided into clusters by

using graph-theoretic clustering methods. In the second step, the most representative

feature that is strongly related to target classes is selected from each cluster to form

a subset of features. Since features in different clusters are relatively independent,

the clustering-based strategy of FAST has a high probability of producing a subset
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of useful and independent features. The exhaustive evaluation carried out on 35 real-

world datasets (14 of them in the microarray domain) demonstrated that FAST not

only produced smaller subsets of features, but also improved the performances for four

types of classifiers.

Table 4.4 depicts a summary of the methods presented in this section. The original

reference is displayed, as well as the type of evaluation (ranker or subset) and the type

of the data they can deal with (binary or multiclass).

4.4 A framework for feature selection evaluation in mi-

croarray datasets

The goal of performing feature selection on microarray data can be two-fold: class pre-

diction or biomarkers identification. If the goal is class prediction, there is a demand for

machine learning techniques such as supervised classification. However, if the objective

is to find informative genes, the classification performance is ignored and the selected

genes have to be individually evaluated. The experiments that will be presented in this

section are focused on class prediction, which is an important reason to use feature

selection methods in microarray analysis. The typical microarray pipeline is formed

by a feature selection step, followed by a classification stage and providing an error

estimation, as seen in Figure 4.3.

Figure 4.3: DNA microarray classification pipeline.

The rest of this section is devoted to the importance of the validation techniques

usually applied on microarray data and to analyze the characteristics of the datasets

whilst providing classification accuracy results obtained with classical feature selection

methods.
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4.4.1 Validation techniques

To evaluate the goodness of the selected set of genes, it is necessary to have an inde-

pendent test set with data which have not been seen by the feature selection method.

In some cases, the data come originally distributed into training and test sets, so the

training set is usually employed to perform the feature selection process and the test set

is used to evaluate the appropriateness of the selection. However, not all the datasets

found in the literature are originally partitioned. For overcoming this issue, there exist

several validation techniques, where the most used ones in the microarray domain are

k-fold cross validation, leave-one-out cross validation, bootstrap and holdout validation

(see Appendix I, Section I.3).

Probably cross-validation would be the most famous technique. However, it has

been shown (Moreno-Torres, Sáez, & Herrera, 2012) that it can potentially introduce

dataset shift, a harmful factor that is often not taken into account and can result

in inaccurate performance estimation. To solve this problem, Distribution optimally

balanced stratified cross-validation (DOB-SCV) (Moreno-Torres, Sáez, & Herrera, 2012)

is based on the idea that by assigning close-by examples to different folds, each fold

will end up with enough representatives of every region, thus avoiding dataset shift. To

achieve this goal, DOB-SCV starts on a random unassigned example, and then finds

its k − 1 nearest unassigned neighbors of the same class. Once it has found them, it

assigns each of those examples to a different fold. The process is repeated until all

examples are assigned.

The selection of a validation technique on the microarray domain is not an easy-

to-solve question. This is due to the fact that microarray data is characterized by a

extremely high number of features and comparatively small number of samples. This

situation is commonly referred to as a small-sample scenario, which means that appli-

cation of traditional pattern recognition methods must be carried out with judgment

to avoid pitfalls (Braga-Neto, 2007). A key point for microarray classification is that

error estimation is greatly impacted by small samples (E. Dougherty, 2001), so the

choice of a validation technique must be further discussed. In fact, there are several

works in the literature dealing with this issue. Ambroise and McLachlan (2002) rec-

ommended to use 10-fold cross validation rather than leave-one-out and, concerning

the bootstrap, they suggest using the so called 0.632+ bootstrap error estimate (which

weighs the bootstrapped resubstitution error) designed to handle overfitted prediction

rules. Braga-Neto and Dougherty (2004) performed an extensive simulation study by
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comparing cross-validation, resubstitution and bootstrap estimation. They stated that

while cross-validation error estimation is much less biased than resubstitution, it dis-

plays excessive variance, which makes individual estimates unreliable for small samples.

Bootstrap methods provide improved performance relative to variance, but at a high

computational cost and often with increased bias.

In this situation, it does not exist the so-called best validation technique for mi-

croarray data. In fact, reviewing the recent literature one can find examples of the four

methods described above. k-fold cross-validation is a common choice (Meyer et al.,

2008; L. Song et al., 2012; Nie et al., 2010; Shah et al., 2012; Canul-Reich et al., 2012;

Shreem et al., 2012; Ye et al., 2013), as well as holdout validation (González Navarro &

Belanche Muñoz, 2009; Ferreira & Figueiredo, 2012; Sharma et al., 2012; Maldonado et

al., 2011; Anaissi et al., 2011; C. Lee & Leu, 2011; Lovato et al., 2012). Bootstrap sam-

pling was less used (Student & Fujarewicz, 2012; Mundra & Rajapakse, 2010; F. Yang

& Mao, 2011), probably due to its high computational cost, and there are also some

representatives of leave-one-out cross-validation (Chuang et al., 2011; Leung & Hung,

2010).

4.4.2 On the datasets characteristics

In this study, nine widely-used binary microarray datasets have been considered, which

are available for download in (Feature Selection at ASU, n.d.; Statnikov, Aliferis, &

Tsamardinos, n.d.; Kent Ridge, n.d.). The reason to choose binary datasets is because

they are much more common in the literature than the multiclass ones. As a matter

of fact, a typical microarray dataset consists of distinguishing between having a given

cancer or not, therefore the great majority of the datasets are binary. Tables 4.5 and

4.6 show the imbalance ratio (IR) and the F1 (maximum Fisher’s discriminant ratio)

of the datasets used, whereas more details about them (such as number of features

or samples) can be found in Appendix I, Section I.2.4. The imbalance ratio (Orriols-

Puig & Bernadó-Mansilla, 2009) is defined as the number of negative class examples

that are divided by the number of positive class examples, where a high level indicates

that the dataset is highly imbalanced. F1 (see Section 4.2.3) checks for overlapping

among the classes where the higher the F1, the more separable the data is. Notice

that for the datasets in Table 4.5, which come originally divided in training and test

sets, these measures are shown for both partitions. For these two datasets, it is shown

that both of them present more imbalance in the test set than in the training set,
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especially in the case of Prostate dataset. As for the F1 measure, the higher amount

of overlapping occurs on Breast training set, with a value of 0.68. Regarding the

information depicted in Table 4.6, the most unbalanced dataset is GLI and the one

more affected by overlapping is SMK, with a F1 value of 0.41.

Table 4.5: Imbalance ratio and F1 of the binary datasets used in the holdout experi-

mental study

Train Test

Dataset IR F1 IR F1

Breast 1.29 0.68 1.71 4.98

Prostate 1.04 2.05 2.78 11.35

Table 4.6: Imbalance ratio and F1 of the binary datasets used in the k -fold cross-

validation experimental study

Dataset IR F1

Brain 2.00 0.89

CNS 1.86 0.45

Colon 1.82 1.08

DLBCL 1.04 2.91

GLI 2.27 2.35

Ovarian 1.78 6.94

SMK 1.08 0.41

4.4.3 Feature selection methods

Seven classical feature selection methods were chosen to be applied on this study: CFS,

FCBF, INTERACT, Information Gain, ReliefF, mRMR and SVM-RFE (see Chapter

2). All of them are available in the well-known Weka tool (M. Hall et al., 2009), except

for mRMR filter, whose implementation is available for Matlab R©. These methods are

used extensively in the literature, and their performance can serve as a reference for

the interested reader.
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4.4.4 Evaluation measures

In order to evaluate the behavior of the feature selection methods after applying a

classifier, three well-known measures are used: accuracy, sensitivity and specificity (see

Appendix I, Section I.6). In general, sensitivity indicates how well the test predicts the

actual positives (e.g. the percentage of cancer patients who are correctly identified as

having the condition) while specificity measures how well the test identifies the negatives

(e.g. the percentage of healthy patients who are correctly identified as not having

cancer). A perfect predictor would be described as 100% sensitive (e.g. predicting all

patients with cancer as such) and 100% specific (e.g. not predicting any patient from

the healthy group as having cancer). Accuracy is expected to measure how well the

test predicts both categories.

4.5 A practical evaluation: Analysis of results

The goal of this section is to perform an experimental study using the most represen-

tative binary datasets, described in Section 4.4.2 and some classical feature selection

methods. To evaluate the adequacy of these methods over microarray data, three

well-known classifiers were chosen: C4.5, naive Bayes and SVM (see Appendix I). As

reported in Section 4.4.1, there is no consensus in the literature about which validation

technique to use when dealing with microarray data. In light of those facts, two studies

will be performed. In the first one, a holdout validation will be applied on those datasets

which come originally divided in training and test datasets. As revealed in Section 4.2.4,

the training and test data of those datasets were extracted under different conditions,

which means an added challenge for the machine learning methods. If the two sets

are joined in an unique dataset (e.g. for later applying a k -fold cross-validation), the

new situation would be easier for the learner, and this particular characteristic of mi-

croarray data would be overlooked. The second study will consist on applying a 5-fold

cross-validation over those datasets which provide a unique training test, where 5 folds

have been chosen because with the standard value of 10, for some datasets the test set

would remain with only a couple of samples. However, as mentioned in Section 4.4.1,

in some cases cross-validation can potentially introduce dataset shift, so we will include

DOB-SCV in the experimental study trying to overcome this problem.
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The first three feature selection methods (CFS, FCBF and INTERACT) return

a subset of features, whilst the remaining four (IG, ReliefF, mRMR and SVM-RFE)

provide an ordered ranker of the features. For the ranker methods, the performance

when retaining the top 10 and 50 features is shown. For those methods which return

a subset of features, the number of features selected for each dataset is revealed in

Table 4.7. Notice that for the datasets involved in the cross-validation study (Brain,

CNS, Colon, DLBCL, Gli85, Ovarian and Smk) this number is the mean average of the

number of features selected in each fold. Since two types of partitions are tried, both

values are shown in the table (regular cross-validation / DOB-SCV).

Table 4.7: Number of features selected by subset methods on binary datasets

Method Brain Breast CNS Colon DLBCL Gli85 Ovarian Prostate Smk

CFS 36/49 130 44/44 24/25 61/65 141/156 35/33 89 107/103

FCBF 1/1 99 33/35 14/15 35/37 116/118 27/26 77 50/55

INT 36/49 102 33/34 14/16 45/51 117/123 32/31 73 51/51

4.5.1 Holdout validation study

This section reports the experimental results achieved over the binary datasets that are

originally divided into training and test sets (see Table 4.5). Tables 4.8, 4.9 and 4.10

show the results achieved by C4.5, naive Bayes and SVM, respectively. These tables

depict the classification accuracy (Ac), sensitivity (Se) and specificity (Sp) on the test

datasets. For the sake of comparison, the first row shows those values without applying

feature selection techniques. Notice that C4.5 algorithm does a feature selection because

not all the attributes are considered when constructing the tree. The best results for

dataset and classifier are marked in bold face.

Analyzing these tables, it is easy to note that the results obtained with SVM out-

performed notably those achieved by C4.5 or naive Bayes. In fact, it has been in the

literature a clear tendency to use SVM as the standard de facto method to estimate per-

formance measures and Gonzalez-Navarro (2011) stated that the superiority of SVMs

over other several classifiers seems out of doubt. As mentioned in Section 4.2.4, the

Prostate dataset suffers from dataset shift, since the test dataset was extracted from a

different experiment, and apparently C4.5 and naive Bayes classifiers cannot solve this

problem and opted for assigning all the examples to the majority class.
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Table 4.8: Experimental results for C4.5 classifier on binary datasets after performing

holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

no FS 0.74 1.00 0.58 0.26 1.00 0.00

CFS 0.68 0.71 0.66 0.26 1.00 0.00

FCBF 0.58 0.28 0.75 0.26 1.00 0.00

INT 0.79 0.71 0.83 0.26 1.00 0.00

IG
#10 0.47 0.28 0.58 0.26 1.00 0.00

#50 0.53 0.42 0.58 0.29 1.00 0.04

ReliefF
#10 0.58 0.28 0.75 0.26 1.00 0.00

#50 0.42 0.71 0.25 0.29 1.00 0.04

SVM-RFE
#10 0.58 1.00 0.33 0.32 1.00 0.08

#50 0.58 1.00 0.33 0.26 1.00 0.00

mRMR
#10 0.58 0.71 0.50 0.41 0.88 0.24

#50 0.74 0.42 0.91 0.35 1.00 0.12

Table 4.9: Experimental results for naive Bayes classifier on binary datasets after per-

forming holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

no FS 0.37 1.00 0.00 0.26 1.00 0.00

CFS 0.37 1.00 0.00 0.26 1.00 0.00

FCBF 0.37 1.00 0.00 0.26 1.00 0.00

INT 0.37 1.00 0.00 0.26 1.00 0.00

IG
#10 0.32 0.85 0.00 0.26 0.88 0.04

#50 0.37 1.00 0.00 0.24 0.88 0.00

ReliefF
#10 0.74 0.71 0.75 0.21 0.55 0.08

#50 0.89 0.85 0.91 0.21 0.77 0.00

SVM-RFE
#10 0.68 0.85 0.58 0.18 0.55 0.04

#50 0.63 1.00 0.41 0.26 1.00 0.00

mRMR
#10 0.37 1.00 0.00 0.26 1.00 0.00

#50 0.37 1.00 0.00 0.26 1.00 0.00
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Table 4.10: Experimental results for SVM classifier on binary datasets after performing

holdout validation

Breast Prostate

Ac Se Sp Ac Se Sp

no FS 0.58 0.85 0.41 0.53 1.00 0.36

CFS 0.68 0.85 0.58 0.97 1.00 0.96

FCBF 0.58 0.28 0.75 0.97 1.00 0.96

INT 0.74 0.71 0.75 0.71 1.00 0.60

IG
#10 0.58 0.71 0.50 0.97 1.00 0.96

#50 0.79 0.57 0.91 0.97 1.00 0.96

ReliefF
#10 0.84 1.00 0.75 0.94 0.88 0.96

#50 0.84 0.85 0.83 0.97 1.00 0.96

SVM-RFE
#10 0.68 1.00 0.50 0.79 1.00 0.72

#50 0.68 1.00 0.50 0.74 1.00 0.64

mRMR
#10 0.63 0.71 0.58 0.44 1.00 0.24

#50 0.68 0.71 0.66 0.91 0.77 0.96

4.5.2 Cross-validation study

This section reveals the classification results obtained when applying the well-known

cross-validation technique. A 5-fold cross-validation was performed over the binary

datasets presented in Table 4.6, which only have training set available. Since in some

cases cross-validation can potentially introduce the dataset shift problem, another strat-

egy has been used. Distribution optimally balanced stratified cross-validation (DOB-

SCV) tries to avoid dataset shift by assigning close-by examples to different folds. Sub-

section 4.5.2.1 analyzes the behavior of the feature selection methods studied on the

datasets, whilst subsection 4.5.2.2 compares the performance of regular cross-validation

against DOB-SCV. Finally, subsection 4.5.2.3 will analyze the influence of the datasets

characteristics.

Tables 4.11 - 4.16 show the results achieved by C4.5, naive Bayes and SVM, for

the two types of cross validation. The results shown in the tables are the average test

results for the 5 folds, depicting the classification accuracy (Ac), sensitivity (Se) and

specificity (Sp). Again, the first row reports those values without applying feature

selection and the best results are marked in bold face.
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Table 4.11: Experimental results for C4.5 classifier on binary datasets after performing

regular 5-fold cross-validation.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 1.00 0.58 0.74 0.70 0.75 0.97 0.65 0.77

Se 1.00 0.64 0.60 0.69 0.81 0.95 0.66 0.77

Sp 1.00 0.48 0.82 0.70 0.63 0.98 0.62 0.75

C
F

S

Ac 1.00 0.62 0.79 0.75 0.79 0.98 0.64 0.79

Se 1.00 0.64 0.68 0.78 0.81 0.95 0.56 0.78

Sp 1.00 0.58 0.85 0.71 0.75 0.99 0.71 0.80

F
C

B
F Ac 0.86 0.48 0.79 0.73 0.82 0.99 0.61 0.75

Se 0.80 0.49 0.64 0.74 0.86 0.99 0.65 0.74

Sp 0.86 0.50 0.87 0.70 0.75 0.99 0.56 0.75

IN
T

Ac 1.00 0.55 0.79 0.70 0.78 0.98 0.59 0.77

Se 1.00 0.54 0.72 0.74 0.81 0.98 0.51 0.76

Sp 1.00 0.58 0.82 0.66 0.71 0.98 0.66 0.77

IG

#
1
0 Ac 0.71 0.62 0.72 0.75 0.85 0.96 0.60 0.74

Se 0.70 0.69 0.78 0.79 0.88 0.93 0.71 0.78

Sp 0.70 0.48 0.70 0.71 0.79 0.97 0.48 0.69

#
5
0 Ac 0.81 0.63 0.84 0.73 0.81 0.96 0.65 0.78

Se 0.70 0.67 0.83 0.69 0.86 0.96 0.62 0.76

Sp 0.87 0.58 0.85 0.74 0.71 0.97 0.67 0.77

R
el

ie
fF #

1
0 Ac 0.72 0.47 0.72 0.85 0.85 0.97 0.65 0.75

Se 0.20 0.59 0.50 0.83 0.88 0.94 0.80 0.68

Sp 1.00 0.25 0.85 0.87 0.77 0.99 0.47 0.74

#
5
0 Ac 0.62 0.53 0.82 0.73 0.82 0.99 0.61 0.73

Se 0.20 0.60 0.68 0.74 0.88 0.99 0.61 0.67

Sp 0.86 0.44 0.90 0.70 0.70 0.99 0.62 0.74

S
V

M
-R

F
E #

1
0 Ac 0.57 0.65 0.71 0.81 0.81 0.98 0.60 0.73

Se 0.00 0.74 0.60 0.82 0.85 0.98 0.65 0.66

Sp 0.87 0.48 0.77 0.79 0.75 0.98 0.55 0.74

#
5
0 Ac 0.70 0.57 0.80 0.82 0.79 0.98 0.65 0.76

Se 1.00 0.61 0.77 0.84 0.83 0.99 0.62 0.81

Sp 0.56 0.49 0.82 0.79 0.70 0.98 0.66 0.72

m
R

M
R #
1
0 Ac 0.86 0.55 0.82 0.75 0.79 0.98 0.68 0.77

Se 0.90 0.72 0.68 0.79 0.86 0.96 0.71 0.80

Sp 0.87 0.23 0.90 0.70 0.61 0.99 0.64 0.70

#
5
0 Ac 0.86 0.58 0.82 0.73 0.80 0.97 0.62 0.77

Se 0.90 0.70 0.77 0.69 0.91 0.96 0.66 0.80

Sp 0.87 0.39 0.85 0.74 0.54 0.98 0.57 0.71
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Table 4.12: Experimental results for C4.5 classifier on binary datasets after performing

DOB-SCV with 5 folds.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 0.92 0.52 0.72 0.72 0.77 0.96 0.56 0.74

Se 0.80 0.58 0.55 0.70 0.79 0.93 0.63 0.71

Sp 1.00 0.39 0.80 0.74 0.74 0.97 0.48 0.73

C
F

S

Ac 0.92 0.52 0.79 0.80 0.75 0.96 0.59 0.76

Se 0.80 0.53 0.65 0.82 0.77 0.93 0.59 0.73

Sp 1.00 0.48 0.87 0.78 0.70 0.98 0.59 0.77

F
C

B
F Ac 0.72 0.52 0.81 0.72 0.76 0.98 0.59 0.73

Se 0.70 0.56 0.69 0.70 0.79 0.98 0.53 0.71

Sp 0.76 0.44 0.87 0.74 0.70 0.98 0.65 0.74

IN
T

Ac 0.92 0.53 0.81 0.74 0.71 0.97 0.67 0.76

Se 0.80 0.51 0.69 0.65 0.69 0.94 0.58 0.69

Sp 1.00 0.56 0.87 0.84 0.74 0.98 0.75 0.82

IG

#
1
0 Ac 0.72 0.60 0.79 0.78 0.82 0.96 0.62 0.76

Se 0.80 0.67 0.59 0.74 0.81 0.94 0.61 0.74

Sp 0.73 0.49 0.90 0.83 0.85 0.96 0.63 0.77

#
5
0 Ac 0.77 0.54 0.84 0.80 0.81 0.98 0.60 0.76

Se 0.80 0.59 0.74 0.82 0.79 0.98 0.58 0.76

Sp 0.80 0.44 0.90 0.79 0.85 0.97 0.62 0.77

R
el

ie
fF #

1
0 Ac 0.48 0.55 0.77 0.84 0.81 0.96 0.66 0.73

Se 0.10 0.76 0.69 0.82 0.91 0.93 0.67 0.70

Sp 0.63 0.15 0.82 0.87 0.57 0.98 0.64 0.67

#
5
0 Ac 0.53 0.56 0.76 0.80 0.85 0.98 0.68 0.74

Se 0.60 0.69 0.63 0.82 0.86 0.98 0.75 0.76

Sp 0.50 0.34 0.82 0.79 0.81 0.98 0.60 0.69

S
V

M
-R

F
E #

1
0 Ac 0.59 0.56 0.76 0.82 0.78 0.98 0.60 0.73

Se 0.40 0.66 0.64 0.73 0.79 0.96 0.66 0.69

Sp 0.70 0.37 0.82 0.92 0.74 0.98 0.53 0.72

#
5
0 Ac 0.70 0.62 0.78 0.78 0.76 0.97 0.65 0.75

Se 0.70 0.65 0.56 0.69 0.76 0.95 0.69 0.71

Sp 0.73 0.56 0.90 0.88 0.73 0.98 0.61 0.77

m
R

M
R #
1
0 Ac 0.80 0.60 0.79 0.78 0.80 0.98 0.68 0.78

Se 0.80 0.71 0.65 0.78 0.79 0.98 0.75 0.78

Sp 0.83 0.38 0.87 0.80 0.81 0.98 0.61 0.75

#
5
0 Ac 0.84 0.60 0.82 0.76 0.78 0.98 0.71 0.78

Se 0.90 0.66 0.69 0.78 0.76 0.98 0.71 0.78

Sp 0.83 0.47 0.90 0.74 0.82 0.98 0.70 0.78
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Table 4.13: Experimental results for naive Bayes classifier on binary datasets after

performing regular 5-fold cross-validation.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 0.67 0.60 0.55 0.92 0.84 0.93 0.63 0.73

Se 0.00 0.64 0.69 0.96 0.88 0.99 0.60 0.68

Sp 1.00 0.52 0.47 0.88 0.73 0.89 0.66 0.74

C
F

S

Ac 0.81 0.67 0.85 0.90 0.82 1.00 0.65 0.81

Se 0.50 0.75 0.76 0.96 0.90 0.99 0.67 0.79

Sp 1.00 0.54 0.90 0.84 0.67 1.00 0.62 0.79

F
C

B
F Ac 0.61 0.70 0.80 0.90 0.85 0.99 0.69 0.79

Se 1.00 0.77 0.76 0.96 0.90 1.00 0.72 0.87

Sp 0.40 0.58 0.82 0.84 0.74 0.99 0.65 0.72

IN
T

Ac 0.81 0.70 0.77 0.90 0.82 1.00 0.64 0.81

Se 0.50 0.77 0.76 0.96 0.88 1.00 0.72 0.80

Sp 1.00 0.58 0.77 0.83 0.71 0.99 0.55 0.78

IG

#
1
0 Ac 0.86 0.63 0.79 0.94 0.85 0.96 0.61 0.81

Se 0.70 0.67 0.72 0.96 0.88 0.95 0.59 0.78

Sp 0.93 0.58 0.82 0.92 0.77 0.96 0.64 0.80

#
5
0 Ac 0.81 0.63 0.77 0.92 0.85 0.98 0.66 0.80

Se 0.50 0.75 0.76 0.96 0.86 0.96 0.67 0.78

Sp 1.00 0.42 0.77 0.88 0.81 0.98 0.65 0.79

R
el

ie
fF #

1
0 Ac 0.20 0.63 0.82 0.94 0.86 0.96 0.67 0.73

Se 0.20 0.72 0.72 0.96 0.88 0.95 0.71 0.73

Sp 0.20 0.48 0.87 0.92 0.81 0.96 0.63 0.70

#
5
0 Ac 0.19 0.67 0.84 0.92 0.89 0.98 0.67 0.74

Se 0.50 0.72 0.77 0.96 0.86 0.95 0.72 0.78

Sp 0.07 0.58 0.87 0.88 0.97 0.99 0.61 0.71

S
V

M
-R

F
E #

1
0 Ac 0.62 0.68 0.73 0.92 0.82 0.99 0.71 0.78

Se 0.30 0.77 0.61 0.91 0.83 1.00 0.77 0.74

Sp 0.76 0.54 0.80 0.92 0.81 0.98 0.64 0.78

#
5
0 Ac 0.67 0.70 0.76 0.92 0.88 0.99 0.70 0.80

Se 0.20 0.82 0.69 0.91 0.86 1.00 0.73 0.75

Sp 0.90 0.49 0.80 0.92 0.93 0.98 0.65 0.81

m
R

M
R #
1
0 Ac 0.73 0.63 0.80 0.92 0.85 0.99 0.67 0.80

Se 0.60 0.79 0.78 0.96 0.88 0.96 0.68 0.81

Sp 0.86 0.33 0.82 0.88 0.77 1.00 0.65 0.76

#
5
0 Ac 0.63 0.62 0.80 0.94 0.80 0.99 0.67 0.78

Se 0.20 0.75 0.86 0.96 0.81 0.98 0.67 0.75

Sp 0.86 0.38 0.77 0.92 0.77 0.99 0.67 0.77
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Table 4.14: Experimental results for naive Bayes classifier on binary datasets after

performing DOB-SCV with 5 folds.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 0.67 0.63 0.58 0.98 0.87 0.94 0.63 0.76

Se 0.00 0.69 0.72 1.00 0.91 0.98 0.58 0.70

Sp 1.00 0.54 0.50 0.96 0.77 0.91 0.67 0.77

C
F

S

Ac 0.92 0.67 0.82 0.93 0.85 0.98 0.68 0.84

Se 0.80 0.76 0.77 1.00 0.93 0.98 0.74 0.85

Sp 1.00 0.50 0.85 0.87 0.66 0.98 0.62 0.78

F
C

B
F Ac 0.71 0.58 0.79 0.96 0.88 0.99 0.66 0.80

Se 0.80 0.69 0.77 1.00 0.93 0.99 0.70 0.84

Sp 0.70 0.40 0.80 0.92 0.77 0.99 0.62 0.74

IN
T

Ac 0.92 0.62 0.84 0.93 0.86 0.99 0.70 0.84

Se 0.80 0.69 0.86 1.00 0.91 1.00 0.74 0.86

Sp 1.00 0.50 0.82 0.87 0.73 0.99 0.65 0.79

IG

#
1
0 Ac 0.92 0.60 0.77 0.91 0.87 0.96 0.68 0.82

Se 0.80 0.59 0.72 0.96 0.89 0.95 0.66 0.80

Sp 1.00 0.64 0.80 0.87 0.81 0.96 0.71 0.83

#
5
0 Ac 0.92 0.65 0.79 0.96 0.87 0.98 0.70 0.84

Se 0.80 0.72 0.82 0.96 0.90 0.96 0.68 0.83

Sp 1.00 0.54 0.77 0.96 0.81 0.99 0.71 0.83

R
el

ie
fF #

1
0 Ac 0.26 0.65 0.84 0.93 0.84 0.96 0.67 0.74

Se 0.30 0.69 0.72 0.96 0.88 0.95 0.71 0.74

Sp 0.20 0.57 0.90 0.91 0.74 0.96 0.62 0.70

#
5
0 Ac 0.21 0.67 0.84 0.96 0.86 0.98 0.68 0.74

Se 0.30 0.71 0.72 0.96 0.86 0.95 0.77 0.75

Sp 0.13 0.58 0.90 0.96 0.85 0.99 0.59 0.71

S
V

M
-R

F
E #

1
0 Ac 0.58 0.72 0.76 0.94 0.83 1.00 0.70 0.79

Se 0.20 0.76 0.64 0.91 0.86 1.00 0.75 0.73

Sp 0.73 0.63 0.82 0.96 0.74 0.99 0.63 0.79

#
5
0 Ac 0.71 0.69 0.76 0.92 0.87 0.99 0.68 0.80

Se 0.10 0.77 0.69 1.00 0.88 1.00 0.76 0.74

Sp 1.00 0.54 0.80 0.84 0.85 0.99 0.59 0.80

m
R

M
R #
1
0 Ac 0.75 0.68 0.82 0.98 0.87 0.99 0.71 0.83

Se 0.80 0.74 0.77 1.00 0.93 0.98 0.74 0.85

Sp 0.73 0.58 0.85 0.96 0.73 0.99 0.66 0.79

#
5
0 Ac 0.77 0.67 0.79 0.98 0.85 0.98 0.67 0.82

Se 0.40 0.71 0.82 0.96 0.87 0.96 0.70 0.78

Sp 1.00 0.59 0.77 1.00 0.77 0.99 0.64 0.82
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Table 4.15: Experimental results for SVM classifier on binary datasets after performing

regular 5-fold cross-validation.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 0.68 0.67 0.77 0.96 0.92 1.00 0.72 0.82

Se 0.20 0.82 0.60 0.96 0.98 1.00 0.79 0.77

Sp 0.93 0.38 0.87 0.96 0.78 1.00 0.63 0.79

C
F

S

Ac 0.61 0.62 0.81 0.88 0.88 1.00 0.64 0.78

Se 0.60 0.70 0.69 0.86 0.93 1.00 0.66 0.78

Sp 0.66 0.49 0.87 0.88 0.77 1.00 0.61 0.76

F
C

B
F Ac 0.67 0.65 0.84 0.81 0.87 1.00 0.71 0.79

Se 0.00 0.80 0.73 0.82 0.93 1.00 0.76 0.72

Sp 1.00 0.39 0.90 0.79 0.73 1.00 0.64 0.78

IN
T

Ac 0.61 0.62 0.81 0.88 0.88 1.00 0.66 0.78

Se 0.60 0.75 0.64 0.91 0.91 1.00 0.69 0.79

Sp 0.66 0.39 0.90 0.83 0.81 1.00 0.63 0.75

IG

#
1
0 Ac 0.48 0.63 0.81 0.94 0.91 0.98 0.64 0.77

Se 0.00 0.82 0.59 0.96 0.98 0.96 0.74 0.72

Sp 0.70 0.30 0.92 0.92 0.74 0.99 0.53 0.73

#
5
0 Ac 0.66 0.67 0.85 0.94 0.86 1.00 0.72 0.81

Se 0.80 0.77 0.81 0.96 0.90 1.00 0.73 0.85

Sp 0.66 0.48 0.87 0.92 0.77 0.99 0.70 0.77

R
el

ie
fF

#
1
0 Ac 0.50 0.68 0.81 0.94 0.87 0.98 0.69 0.78

Se 0.00 0.87 0.60 0.96 0.96 0.94 0.82 0.74

Sp 0.73 0.34 0.92 0.92 0.66 0.99 0.54 0.73

#
5
0 Ac 0.35 0.73 0.85 0.92 0.89 1.00 0.69 0.78

Se 0.00 0.82 0.72 1.00 0.93 1.00 0.74 0.74

Sp 0.53 0.58 0.92 0.84 0.82 1.00 0.64 0.76

S
V

M
-R

F
E #

1
0 Ac 0.62 0.73 0.73 0.87 0.86 1.00 0.70 0.79

Se 0.20 0.84 0.56 0.87 0.88 1.00 0.78 0.73

Sp 0.86 0.53 0.82 0.88 0.81 1.00 0.61 0.79

#
5
0 Ac 0.48 0.72 0.71 0.88 0.89 1.00 0.72 0.77

Se 0.20 0.82 0.57 0.91 0.91 1.00 0.74 0.74

Sp 0.63 0.53 0.80 0.84 0.85 1.00 0.68 0.76

m
R

M
R #

1
0 Ac 0.53 0.65 0.77 0.92 0.89 1.00 0.68 0.78

Se 0.60 0.95 0.56 0.96 0.95 0.99 0.74 0.82

Sp 0.56 0.10 0.90 0.87 0.77 1.00 0.62 0.69

#
5
0 Ac 0.49 0.70 0.84 0.96 0.89 1.00 0.68 0.79

Se 0.20 0.77 0.77 1.00 0.95 1.00 0.74 0.78

Sp 0.63 0.57 0.87 0.92 0.77 1.00 0.62 0.77
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Table 4.16: Experimental results for SVM classifier on binary datasets after performing

DOB-SCV with 5 folds.

Brain CNS Colon DLBCL Gli85 Ovarian Smk Avg

N
o

F
S Ac 0.67 0.65 0.84 0.93 0.91 1.00 0.72 0.82

Se 0.30 0.77 0.82 0.95 0.97 1.00 0.77 0.80

Sp 0.86 0.44 0.85 0.92 0.77 1.00 0.66 0.79

C
F

S

Ac 0.80 0.66 0.82 0.94 0.89 1.00 0.68 0.83

Se 0.70 0.74 0.78 1.00 0.97 0.99 0.70 0.84

Sp 0.87 0.54 0.85 0.88 0.73 1.00 0.66 0.79

F
C

B
F Ac 0.67 0.58 0.79 0.92 0.90 0.99 0.66 0.79

Se 0.00 0.71 0.68 1.00 0.93 0.98 0.68 0.71

Sp 1.00 0.35 0.85 0.84 0.81 1.00 0.63 0.78

IN
T

Ac 0.80 0.60 0.77 0.91 0.87 1.00 0.72 0.81

Se 0.70 0.66 0.63 0.95 0.91 0.99 0.74 0.80

Sp 0.87 0.49 0.85 0.88 0.77 1.00 0.68 0.79

IG

#
1
0 Ac 0.62 0.65 0.79 0.91 0.91 0.96 0.68 0.79

Se 0.00 0.81 0.58 0.96 0.98 0.94 0.67 0.71

Sp 0.93 0.34 0.90 0.87 0.73 0.97 0.70 0.78

#
5
0 Ac 0.66 0.67 0.85 0.98 0.87 1.00 0.65 0.81

Se 0.80 0.74 0.82 1.00 0.93 1.00 0.70 0.86

Sp 0.63 0.54 0.87 0.96 0.73 1.00 0.60 0.76

R
el

ie
fF

#
1
0 Ac 0.45 0.63 0.82 0.95 0.84 0.98 0.65 0.76

Se 0.10 0.84 0.58 1.00 0.93 0.93 0.75 0.73

Sp 0.60 0.25 0.95 0.91 0.62 1.00 0.54 0.70

#
5
0 Ac 0.64 0.63 0.84 0.94 0.88 0.99 0.72 0.81

Se 0.30 0.74 0.81 1.00 0.95 0.98 0.83 0.80

Sp 0.80 0.43 0.85 0.88 0.73 1.00 0.58 0.75

S
V

M
-R

F
E #

1
0 Ac 0.62 0.67 0.76 0.94 0.85 1.00 0.67 0.79

Se 0.10 0.71 0.60 1.00 0.95 1.00 0.74 0.73

Sp 0.86 0.58 0.85 0.88 0.61 1.00 0.60 0.77

#
5
0 Ac 0.67 0.65 0.81 0.91 0.86 1.00 0.71 0.80

Se 0.30 0.72 0.78 0.95 0.91 1.00 0.70 0.77

Sp 0.86 0.54 0.82 0.88 0.73 1.00 0.71 0.79

m
R

M
R #

1
0 Ac 0.45 0.65 0.82 0.98 0.87 1.00 0.71 0.78

Se 0.20 0.87 0.72 1.00 0.95 1.00 0.74 0.78

Sp 0.60 0.24 0.87 0.96 0.69 1.00 0.66 0.72

#
5
0 Ac 0.58 0.70 0.84 0.93 0.87 1.00 0.66 0.80

Se 0.10 0.74 0.78 0.95 0.95 1.00 0.73 0.75

Sp 0.80 0.63 0.87 0.92 0.70 1.00 0.57 0.78
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4.5 A practical evaluation: Analysis of results

4.5.2.1 Analysis of algorithms

This subsection aims to analyze the behavior of the feature selection methods as well

as the influence of the classifier on the studied datasets. Some interesting conclusions

can be extracted by looking at the results reported by Tables 4.11 - 4.16.

1. The best performances are obtained by SVM and naive Bayes classifiers. As

mentioned above, some studies (Gonzalez-Navarro, 2011) stated the superiority

of SVMs over other classifiers. On the other hand, the performance of C4.5 may

be affected by its embedded feature selection, in some cases leading to a extremely

reduced set of features which can degrade the classification accuracy.

2. Focusing on the feature selection methods, in average for all datasets, the sub-

sets filters show an outstanding behavior, specially CFS and INTERACT. It is

surprising that SVM-RFE did not achieve the best results when combined with

SVM classifier, but the poor performance of the ranker methods can be explained

by the restriction of having to establish a threshold for the number of features to

retain. In the case of the subsets filters, the number of features which conform

the final subset of features is the optimal one for a given dataset and method.

However, in the case of rankers, since this number has to be set a priori, it may

result too small or too large, being this the main disadvantage of using this type

of methods.

4.5.2.2 Cross-validation Vs. DOB-SCV

The purpose of this subsection is to check the adequacy of performing DOB-SCV in-

stead of regular 5-fold cross-validation. In average for all datasets, DOB-SCV obtains

better results than regular cross-validation for SVM and naive Bayes classifiers, which

are the classifiers which showed the best overall performance. It is interesting to focus

on the case of Brain dataset, which presents a high imbalance and an important amount

of overlapping, as can be seen in Table 4.6. For this dataset, DOB-SCV outperforms

regular cross-validation for SVM and naive Bayes classifiers, although the highest ac-

curacy was achieved by C4.5 combined with the regular cross-validation. In the case of

CNS, another complex dataset, there are no important differences between the two val-

idation methods. On the other hand, there is the DLBCL dataset, which is in theory a

simpler dataset than CNS and Brain (see Table 4.6). In fact, the accuracy obtained by
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the classifiers is in most of the cases around 90%. Nevertheless, it is interesting to note

that for this dataset, DOB-SCV outperforms, in average, the regular cross-validation.

This datasets will be studied in detail in Section 4.5.2.3.

4.5.2.3 Analysis of datasets characteristics

As mentioned in Section 4.2, microarray datasets present several problematics such as

the imbalance of the data, the overlapping between classes or the dataset shift. Tables

4.5 and 4.6 reported the imbalance ratio and F1 of the datasets studied in this section,

which measure the imbalance of the data and the overlapping, respectively. GLI is the

most unbalanced dataset, and its highest accuracy was obtained by SVM with a regular

5-fold cross validation and no feature selection (92%), although the Information Gain

filter achieves a 91% of accuracy and this degradation can be equivalent to missclassify

only one or two samples.

SMK is the dataset which presents a higher level of overlapping between classes, and

its maximum classification accuracy is very poor, around 70%. A similar case happens

with CNS dataset, which has also a low value of F1 (see Table 4.6).

Regarding the dataset shift problem and the adequacy of DOB-SCV to solve it,

we will analyze in detail the case of DLBCL dataset. Figure 4.4 displays the 2-D

representation of the first two features selected by mRMR in the first fold of a 5-fold

cross-validation and a 5DOB-SCV for both train and test sets, where different colors

stand for different classes. As can be seen, cross-validation can indeed introduce dataset

shift. The two first features selected by mRMR obtain a linearly separable problem

(see Figure 4.4a) in the train set, but these features are not so informative in the test

set (see Figure 4.4b). However, the partitions created by DOB-SCV do not suffer from

dataset shift. In Figure 4.4c, the two first features selected by mRMR in the training

set make the problem almost linearly separable and this condition is maintained in

the test set. In fact, it has been demonstrated in the previous section that DOB-SCV

outperformed the regular cross-validation for this dataset.

In light of the above, it can be seen that the results displayed in this experimental

study are very dependent of the classifier, the feature selection method, and specially

the dataset. Although an analysis in detail of the results is out of the scope of this

chapter, it is easy to realize that the large number of problematics present in this
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Figure 4.4: Two first features selected by mRMR in the first fold for both 5-fold cross-

validation and 5DOB-SCV

type of datasets make the classification task very arduous. In such a situation, it is

recommended to study the particularities of each problem carefully, although it seems

that the best results (in general) are obtained with SVM classifier, a subset filter for

feature selection, and the DOB-SCV validation method.

4.6 Summary

This chapter has reviewed the up-to-date contributions of feature selection research

applied to the field of DNA microarray data analysis. The advent of this type of data

has posed a big challenge for machine learning researchers, because of the large input

dimensionality and small sample size. Since the infancy of microarray data classifica-

tion, feature selection became an imperative step, in order to reduce the number of

features (genes).
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Since the end of the nineties, when microarray datasets began to be dealt with, a

large number of feature selection methods were applied. In the literature one can find

both classical methods and methods developed especially for this kind of data. Due to

the high computational resources that these datasets demand, wrapper and embedded

methods have been mostly avoided, in favor of less expensive approaches such as filters.

The key point to understand all the attention devoted to microarray data is the

challenge that their problematic poses. Besides the obvious disadvantage of having so

much features for such a small number of samples, researchers have to deal also with

classes which are very unbalanced, training and test datasets extracted under different

conditions, dataset shift or the presence of outliers. This is the reason because new

methods emerge every year, not only trying to improve previous results in terms of

classification accuracy, but also aiming to help biologists to identify the underlying

mechanism that relates gene expression to diseases.

The objective of this chapter is not in any way to evaluate feature selection methods

for microarray data in terms of which one is the best, but to gather as much as possible

up-to-date knowledge for the interested reader. Bearing this in mind, the recent litera-

ture has been analyzed in order to give the reader a brushstroke about the tendency in

developing feature selection methods for microarray data. In order to have a complete

picture on the topic, the most common validation techniques have been also mentioned.

Since there is no consensus in the literature about this issue, some guidelines have been

provided.

Finally, a framework for feature selection evaluation in microarray datasets and a

practical evaluation have been provided, where the results obtained have been analyzed.

This experimental study tries to show in practice the problematics explained in theory.

For this sake, a suite of 9 widely-used binary datasets was chosen to apply over them

7 classical feature selection methods. For obtaining the final classification accuracy, 3

well-known classifiers were used. This large set of experiments aims also at facilitating

future comparative studies when a researcher proposes a new method.

Regarding the opportunities for future feature selection research, the tendency is

toward focusing on new combinations such as hybrid or ensemble methods. This type

of methods are able to enhance the robustness of the final subset of selected features,

which is also a trending topic in this domain. Another interesting line of future research

might be to distribute the microarray data vertically (i.e. by features) in order to reduce

the heavy computational burden when applying wrapper methods.
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CHAPTER 5
Feature selection in other real applications

This chapter is devoted to prove the benefits of feature selection in other real applica-

tions apart from DNA microarray data. Feature selection may be very useful in real

domains, since it allows to decrease the storage costs, to improve the performance of

a classifier and to obtain a good understanding of the learned model. Two cases when

feature selection has reported success will be presented: classification of the tear film

lipid layer and the K-complex classification.

5.1 Tear film lipid layer classification

Dry eye is a symptomatic disease which affects a wide range of population and has a

negative impact on their daily activities. Its diagnosis can be achieved by analyzing

the interference patterns of the tear film lipid layer and by classifying them into one

of the Guillon categories (Guillon, 1998): open meshwork, closed meshwork, wave,

amorphous and color fringe. However, the classification into these grades is a difficult

clinical task, especially with thinner lipid layers that lack color and/or morphological

features. The subjective interpretation of the experts via visual inspection may affect

the classification. This time-consuming task is very dependent on the training and

experience of the optometrist(s), and so produces a high degree of inter- and also intra-

observer variability (Garćıa-Resúa et al., 2013). The development of a systematic and

objective computerized method for analysis and classification is thus highly desirable,

allowing for homogeneous diagnosis and relieving the experts from this tedious task.

Remeseiro et al. (2011) proposed a wide set of feature vectors using different texture

analysis methods in three color spaces and a 95% of classification accuracy was obtained.

Nevertheless, the problem with this approach is that the time required to extract some

of the textural features is too long (more than 1 minute). Interviews with optometrists
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revealed that a scale of computation time over 10 seconds per image makes the system

not usable. Therefore, the previous approach prevents the practical clinical use of an

application developed to automatize the process, because it could not work in real time.

So, the objective of our work in the field is to obtain a reduction in time that allows

for the system to be used in daily clinical routine. In order to deal with this problem,

feature selection can play a crucial role. Because the number of features to extract and

process will be reduced, the time required will be also reduced in consonance, and most

of the times, this can be achieved with a minimum degradation of performance.

In order to obtain an efficient method for automatic tear film lipid layer classifi-

cation, a five-step methodology is applied as illustrated in Figure 5.1. First, feature

extraction is performed, after which feature selection methods are applied to select the

subset of relevant features, that allow for correct classification of the tear film lipid

layer thickness. After that, several performance measures are computed to evaluate

the performance of the system. Finally, a multiple-criteria decision-making method is

carried out to obtain a final result.

Figure 5.1: Steps of the research methodology.

The initial stage in this methodology is the processing of tear film images, in order

to extract their features. Firstly, the region of interest of an input image in RGB is

extracted. Then, this extracted region in RGB is converted to the Lab colour space

and its channels L, a and b are obtained. After that, the texture features of each

channel are extracted and three individual descriptors are generated. Finally, the three

individual descriptors are concatenated in order to generate the final descriptor of the

input image which contains its colour and texture features. Five different techniques

for texture analysis are tested in this study:

• Butterworth bandpass filters (Gonzalez & Woods, 2008) are frequency domain

filters that have an approximately flat response in the bandpass frequency, which

gradually decays in the stopband. The order of the filter defines the slope of the

decay; the higher the order, the faster the decay.

• The discrete wavelet transform (Mallat, 1989) generates a set of wavelets by scal-

ing and translating a mother wavelet. The wavelet decomposition of an image

consists of applying these wavelets horizontally and vertically, generating 4 im-
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5.1 Tear film lipid layer classification

ages (LL, LH, HL, HH). The process is repeated iteratively on the LL subimage

resulting in the standard pyramidal wavelet decomposition.

• Co-occurrence features method was introduced by Haralick, Shanmugam, and

Dinstein (1973), which is based on the computation of the conditional joint prob-

abilities of all pairwise combinations of gray levels. This method generates a set

of grey level co-occurrence matrices and extracts several statistics from their ele-

ments. In general, the number of orientations and so of matrices for a distance d

is 4d.

• Markov random fields (Woods, 1972) generate a texture model by expressing

the grey values of each pixel in an image as a function of the grey values in its

neighborhood.

• Gabor filters (Gabor, 1946) are complex exponential functions modulated by

Gaussian functions. The parameters of Gabor filters define their shape, and

represent their location in the spatial and frequency domains.

Table 5.1 shows the arrangements for applying the texture analysis methods. Note

that column No. of features contains the number of features generated by each method,

in which they are always multiplied by 3 because of the use of Lab.

Two bank datasets are selected to test the proposed methodology. There is a first

bank which contains 105 images from VOPTICAL I1 dataset (VOPTICAL I1, n.d.),

all of them taken over the same illumination conditions, which are considered to be the

optimum ones by practitioners. This dataset contains the samples that are expected

to be obtained in a real case situation and will be used to compute the performance

of algorithms. It includes 29 open meshwork, 29 closed meshwork, 25 wave and 22

color fringe images. The second bank contains 406 images from VOPTICAL Is dataset

(VOPTICAL Is, n.d.), taken over different illumination conditions. This bank will be

used only to evaluate the sensibility of algorithms to noisy data. It includes 159 open

meshwork, 117 closed meshwork, 90 wave and 40 color fringe images.

The performance measures considered are the following:

• The accuracy is the percentage of correctly classified instances on a dataset with

optimum illumination.
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Table 5.1: Arrangements for texture analysis methods and number of features.

Texture analysis Configuration (per component) No. features

Butterworth

filters

A bank of Butterworth bandpass filters composed of 9

second order filters was used, with bandpass frequencies

covering the whole frequency spectrum. The filter bank

maps each input image to 9 output images, one per fre-

quency band. Each output image was normalised sepa-

rately and then an uniform histogram with non-equidistant

bins (Ramos et al., 2011) was computed. Since 16 bin his-

tograms were used, the feature vectors contain 16 compo-

nents per frequency band.

9× 16× 3 = 432

Discrete

wavelet trans-

form

A Haar algorithm (Mallat, 1989) was applied as the mother

wavelet. The descriptor of an input image is constructed

calculating the mean and the absolute average deviation of

the input and LL images, and the energy of the LH, HL and

HH images. Since 2 scales were used, the feature vectors

contain 12 components.

12× 3 = 36

Co-occurrence

features

A set of 14 statistics proposed by Haralick et al. (1973) was

computed from each co-occurrence matrix. These statistics

represent features such as homogeneity or contrast. The de-

scriptor of an image consists of 2 properties, the mean and

range across matrices of these statistics, thus obtaining a

feature vector with 28 components per distance. Distances

from 1 to 7 were considered.

28× 7× 3 = 588

Markov ran-

dom fields

In this work, the neighborhood of a pixel is defined as the

set of pixels within a Chebyshev distance d. To gener-

ate the descriptor, the directional variances proposed by

Çesmeli and Wang (2001) were used. For a distance d, the

descriptor comprises 4d features. Distances from 1 to 10

were considered.

(Σ10
d=14d)× 3 = 660

Gabor filters

A bank of 16 Gabor filters centered at 4 frequencies and 4

orientations was created. The filter bank maps each input

image to 16 output images, one per frequency-orientation

pair. Using the same idea as in Butterworth Filters, the

descriptor of each output image is its uniform histogram

with non-equidistant bins. Since 7 bin histograms were

used, the feature vectors contain 7 components per filter.

16× 7× 3 = 336
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5.1 Tear film lipid layer classification

• The robustness is the classification accuracy in a noisy dataset, i.e. its accuracy

when the images in the dataset show illuminations outside the optimum range.

This measure is related to the generalization ability of the method when handling

noisy inputs. Notice that the higher the robustness the higher the generalization

performance.

• The feature extraction time is the time that the texture analysis methods take to

extract the selected features of a single image. Notice that this does not include

the training time of the classifier, which is not relevant for practical applications

because the classifier will be trained off-line. This also applies to FS, which is a

pre-processing step that is performed off-line.

The experimental procedure is detailed as follows,

1. Apply the five texture analysis methods (see Table 5.1) to the two banks of images.

Moreover, the concatenation of all the features extracted by these five methods is

also considered. As a result, six datasets with optimum illumination (105 images)

and six datasets with different illuminations (406 images) are available. Notice

that the feature extraction method chosen determines the number of features of

the datasets, as can be seen in the first column of Table 5.2.

2. Apply three feature subset selection methods (CFS, consistency-based and IN-

TERACT, see Chapter 2) to the datasets with optimum illumination to provide

the subset of features that describe properly the given problem.

3. Train a SVM classifier (see Appendix I) with radial basis kernel and automatic

parameter estimation. A 10-fold cross validation is used, so the average error

across all 10 trials is computed.

4. Evaluate the effectiveness of feature selection in terms of three performance mea-

sures (accuracy, robustness to noise and feature extraction time), by means of

the multiple-criteria decision-making method TOPSIS (see Appendix I, Section

I.6.1).

The results obtained with and without feature selection are compared in terms

of the three performance measures described above. Bear in mind that the column

None in the tables shows the results when no feature selection was performed, and

Concatenation stands for the concatenation of all the features of the five texture analysis
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Chapter 5. Feature selection in other real applications

methods. Note that the experimentation was performed on an Intel R©CoreTMi5 CPU

760 @ 2.80GHz with RAM 4 GB.

The number of features selected by each of the three feature selection filters is

summarized in Table 5.2. In average, CFS, Consistency-based filter (Cons) and IN-

TERACT (INT ) retain only the 4.9%, 1.6% and 3.2% of the features, respectively.

Table 5.2: Number of features.

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 432 26 6 14

Discrete wavelet transform 36 10 8 7

Co-occurrence features 588 27 6 21

Markov random fields 660 24 13 15

Gabor filters 336 29 7 18

Concatenation 2052 56 6 29

5.1.1 Classification accuracy

Table 5.3 shows the test accuracies for all pairwise texture analysis and feature selection

methods after applying the SVM classifier over the VOPTICAL I1 dataset. The best

result for each is marked in bold face. As can be seen, all texture analysis techniques

perform quite well providing results over 84% accuracy. The best result is generated by

the concatenation of all methods. Individually, Gabor filters and co-occurrence features

without feature selection outperform the other methods. In fact, feature selection

outperforms primal results in three out of six methods (Butterworth filters, the discrete

wavelet transform and Markov random fields), while accuracy is almost maintained in

co-occurrence features and the concatenation of all methods when CFS is applied.

As a conclusion, the best result is obtained by using the concatenation of all when

no feature selection is performed (97.14%). Closely, the discrete wavelet transform

with INTERACT filter and the concatenation of all with CFS obtain an accuracy

of 96.19%. Notice that although these results improve slightly the previous ones in

accuracy (Remeseiro et al., 2011) (95%), the goal of the work presented herein is to

reduce the processing time whilst maintaining accuracy in order to be able to use the

system in the daily clinical routine.
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5.1 Tear film lipid layer classification

Table 5.3: Mean test classification accuracy (%), VOPTICAL I1 dataset.

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 91.42 93.33 83.81 86.67

Discrete wavelet transform 88.57 91.43 94.29 96.19

Co-occurrence features 95.24 94.29 86.67 93.33

Markov random fields 84.76 85.71 83.81 75.24

Gabor filters 95.24 91.43 86.67 86.67

Concatenation 97.14 96.19 87.62 93.33

5.1.2 Robustness to noise

In some cases, data are taken over different illumination conditions which are not op-

timal. For this reason, it is also necessary to evaluate the sensibility of the proposed

methodology to noisy data. Table 5.4 shows the robustness of the six different meth-

ods over VOPTICAL IS dataset. Co-occurrence features and the concatenation of all

obtain remarkable better results than the remainder methods. Both methods obtain

values of robustness over 90% for some configurations. In particular, the best result is

obtained by using the concatenation of all methods when CFS filter is used (93.84%). In

relative terms, co-occurrence features and the concatenation of all methods deteriorate

their mean classification accuracy by 2.66% and 4.59%, respectively (mean differences

between the values contained in Tables 5.3 and 5.4).

Table 5.4: Robustness: mean test accuracy (%), VOPTICAL IS dataset.

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 88.18 84.98 71.92 79.56

Discrete wavelet transform 82.27 88.18 86.21 86.70

Co-occurrence features 92.17 92.36 85.22 89.16

Markov random fields 83.99 76.35 70.94 70.69

Gabor filters 89.90 85.22 69.46 82.51

Concatenation 92.61 93.84 77.59 91.87

97
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However, the remainder methods deteriorate their mean classification accuracy by

between 6.78% and 8.23%. Note also that the illumination levels affect the robustness in

different degrees. The brighter the illumination, the lower the robustness to noise. This

also happens to practitioners when performing this task manually. For this reason, their

experience to control the illumination level during the acquisition stage is cornerstone

for ensuring good classification performance.

5.1.3 Feature extraction time

Tear film lipid layer classification is a real-time task so the time a method takes to

process an image should not be a bottleneck. After applying feature selection and so

reducing the number of input attributes, the time needed for analyzing a single image

with any of the six methods was also reduced as can be seen in Table 5.5.

Table 5.5: Feature extraction time (s).

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 0.22 0.15 0.04 0.07

Discrete wavelet transform 0.03 0.01 0.01 0.01

Co-occurrence features 102.18 27.01 0.05 9.86

Markov random fields 13.83 0.50 0.27 0.31

Gabor filters 0.42 0.18 0.06 0.11

Concatenation 116.68 37.04 0.05 9.96

In general terms, Butterworth filters, the discrete wavelet transform and Gabor

filters take a negligible lapse of time to extract the features of an image (regardless of

whether or not feature selection is applied as preprocessing step). Moreover, Markov

random fields takes a time which could be acceptable for practical applications, even

when no feature selection is applied, although it could not work in real time. The

co-occurrence features method has been known to be slow and, despite the authors

implemented an optimization of the method (Clausi & Jernigan, 1998), it presents an

unacceptable extraction time. Regarding the time of the concatenation of all methods,

note that it is influenced by the time of co-occurrence features. Co-occurrence features

and the concatenation of all methods are only acceptable for practical applications when

consistency-based or INTERACT filters are used. Consistency-based filter selects fewer
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5.1 Tear film lipid layer classification

features (see Table 5.2) and consequently the processing time when this filter is used

is smaller. Co-occurrence features is the core behind the good performance of the

concatenation of all methods. This is demonstrated by further experiments showing

that the concatenation of the other four methods achieves a maximum accuracy of

93.33% and robustness of 88.91%. These results are significantly worse (around 4%)

than the best results obtained by the concatenation of all methods.

5.1.4 Overall analysis

In general terms, we can assert that in a field with a very large number of features,

feature selection filters play a significant role to reduce the cost of obtaining data and

the complexity of the classifier. Consistency-based filter performed the most aggressive

selection retaining only the 1.6% of the features (see Table 5.2). CFS retained three

times more features (4.9%) than the former. Halfway, INTERACT selected in average

3.2% of features. Moreover, in most cases the test accuracy is improved or maintained

with a remarkable reduction in the number of features when feature selection is used (see

Table 5.3). The effectiveness of feature selection on tear film lipid layer classification

was then demonstrated, paving the way for its use in daily clinical routine.

Evaluating the performance of the methods for texture analysis presented herein is

a multi-objective problem defined in terms of accuracy, robustness, and feature extrac-

tion time. Butterworth filters, the discrete wavelet transform and Gabor filters obtain

competitive classification accuracies in short spans of time (see Tables 5.3 and 5.5).

However, these methods are very sensitive to noisy data (see Table 5.4) which make

them inappropriate for practical applications. On the other hand, the co-occurrence

features method presents competitive results in classification accuracy and generali-

sation (see Tables 5.3 and 5.5). However, the time the method takes to extract its

features is an impediment (see Table 5.5). The concatenation of all methods improves

the previous results but at the expense of an even longer feature extraction time.

Table 5.6 shows the TOPSIS values obtained for every method when the weights

of each criteria are set equally. Note that the larger the value the better the method.

The top 3 methods are marked in bold. As can be seen, those methods with the best

balance among classification accuracy, robustness to noise and feature extraction time

are ranked in higher positions. In particular, Gabor filters with no feature selection,

the discrete wavelet transform with INTERACT filter, and the concatenation of all
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Chapter 5. Feature selection in other real applications

methods with INTERACT filter rank in the top 3 positions of the ranking. However,

those methods with good performance in accuracy and robustness but very long feature

extraction time are penalized. e.g. co-occurrence features or the concatenation of all

methods, with no feature selection in both cases.

Table 5.6: TOPSIS values obtained for every method when w = [1/3, 1/3, 1/3]

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 0.9774 0.9773 0.8159 0.9008

Discrete wavelet transform 0.9344 0.9775 0.9848 0.9900

Co-occurrence features 0.3431 0.9416 0.9281 0.9812

Markov random fields 0.8670 0.8691 0.8081 0.6923

Gabor filters 0.9954 0.9686 0.8295 0.9164

Concatenation 0.3066 0.8986 0.8988 0.9853

A more detailed look at the results contained in Tables 5.3, 5.4 and 5.5 reveals

that the combination of all methods in both CFS filtering configuration and without

feature selection obtain the best results in terms of accuracy and robustness. These two

configurations are in the Pareto front (Teich, 2001) of accuracy versus robustness (see

Figure 5.2). In multi-objective optimization, the Pareto front is defined as the border

between the region of feasible points (not strictly dominated by any other), for which

all constraints are satisfied, and the region of unfeasible points (dominated by others).

In this case, solutions are constrained to maximize accuracy and robustness.

The suitability of these two solutions to the problem in question is also corroborated

by TOPSIS. Table 5.7 shows the TOPSIS values when only accuracy and robustness

are considered (note that the third term in the weight vector is considered to be the

feature extraction time). The concatenation of all methods without feature selection

and with CFS filtering rank first and second, respectively.

However, the time for extracting the features must be shortened for practical ap-

plications. Thus, a case of study, in which a deeper analysis for feature selection is

carried out, is presented in the next section. Note that the number of features in the

concatenation of all methods without feature selection is too large (2052 features) to

be optimized by hand. Therefore, we will focus on the concatenation of all methods

with CFS (56 features).

100



5.1 Tear film lipid layer classification

65 70 75 80 85 90 95 100
65

70

75

80

85

90

95

100

Accuracy (%)

R
o
b
u
s
tn

e
s
s
 t
o
 n

o
is

e
 (

%
)

Concatenation
 FS: CFS

C
o
n
c
a
te

n
a
tio

n
 F

S
: N

o
n
e

Figure 5.2: Pareto front of a multi-objective optimization problem based on accuracy

and robustness to noise.

5.1.5 The concatenation of all methods with CFS: a case of study

When using feature selection, features are selected according to some specific criteria

depending on the method. Filters remove features based on redundancy and relevance,

but they do not take into account costs for obtaining them. Note that the cost for

obtaining a feature depends on the procedures required to extract it. Therefore, each

feature has an associated cost that can be related to financial cost, physical risk or

computation demands. This is the case of co-occurrence features and, consequently,

the concatenation of all methods. In co-occurrence features the cost for obtaining the

588 features is not homogeneous. Features are vectorized in groups of 28 related to

distances and channels in the color space. Each group of 28 features corresponds with

the mean and range of 14 statistics across the co-occurrence matrices.

If we focus on co-occurrence features when using CFS, the number of features

was reduced by 95.41% (from 588 to 27) but the processing time was not reduced in

the same proportion, being 27.01 instead of the initial 102.18 seconds (a reduction of

73.57%). This fact clearly shows that computing some of the 588 features takes longer

than others. Some experimentation was performed on the time the method takes to

compute each of the 14 statistics. Results disclosed that computing the 14th statistic,
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Table 5.7: TOPSIS values obtained for every method when w = [1/2, 1/2, 0]

Texture analysis
Feature selection filter

None CFS Cons INT

Butterworth filters 0.8983 0.9017 0.1694 0.4722

Discrete wavelet transform 0.6567 0.8986 0.9377 0.9629

Co-occurrence features 0.9923 0.9846 0.6233 0.9539

Markov random fields 0.4777 0.3361 0.1601 0.0009

Gabor filters 0.9829 0.8526 0.2717 0.5526

Concatenation 0.9991 0.9987 0.4769 0.9706

which corresponds with the maximal correlation coefficient (Haralick et al., 1973), takes

around 96% of the total time. So the time for obtaining a single matrix is negligible

compared to the time for computing the 14th statistic. Therefore, the key for reducing

the feature extraction time is to reduce the number of 14th statistics in the selection.

Table 5.8: Co-occurrence features selected by CFS over the concatenation of all meth-

ods, in which features corresponding with 14th statistic are marked in bold.

Distance
Component in the colour space

L a b

1 – 29,50 66

2 98 121,133 –

3 193 – 230

4 267,268,275,276,277 – 321

5 350,359 – –

6 434,443,446 – 492,502

7 518 546 576

In the case of the concatenation of all methods with CFS, the filter selects 56

features (see Table 5.2) distributed as follows: 17 features of Butterworth filters, 1

of the discrete wavelet transform, 24 of co-occurrence features, 1 of Markov random

fields, and 13 of Gabor filters. Five of the features selected in co-occurrence features

correspond with the 14th statistic (see Table 5.8). In co-occurrence features, the cost of

obtaining the statistics also depends on the distance and component in the color space.

On the one hand, the longer the distance the larger the number of matrices to compute
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5.1 Tear film lipid layer classification

(and so, the higher the processing time). On the other hand, the differences of color

have little contrast so the colorimetric components of the Lab color space are minimal.

As a consequence, the matrices within components a and b have smaller dimension

than the matrices within component L. As expected, the smaller the dimension the

shorter the time to compute a statistic.

Computing the five 14th statistics in the different distances and components take:

3.12 s (feature 98), 8.23 s (feature 350), 9.61 s (feature 434), 11.49 s (feature 518), and

4.81 s (feature 546). As can be seen, avoiding computing some of them will entail saving

a significant amount of time. The aim here is to explore the impact of removing some of

the five 14th statistics selected by CFS in terms of accuracy, robustness and time. There

are 5 features within the 14th statistic so only 25 = 32 different configurations need to

be explored. An empirical evaluation of brute force is acceptable. Table 5.9 shows the

performance of the different configurations in terms of accuracy, robustness and time.

Each configuration corresponds with those features selected by CFS removing some

14th statistics. For purposes of simplicity, only the acceptable results are shown. It is

assumed that one solution is unacceptable if it obtains a lower accuracy and robustness

in a longer span of time than other.

Table 5.9: Performance measures for the concatenation of all methods with CFS when

some of the five 14th statistics are not selected. The best results are marked in bold.

Features removed Acc (%) Rob (%) Time (s)

{}, baseline performance 96.19 93.84 37.04

{98, 434} 97.14 94.09 24.31

{98, 434, 546} 97.14 93.84 19.83

{98, 350, 518, 546} 97.14 93.60 9.72

{98, 434, 518, 546} 97.14 92.86 8.34

{98, 350, 434, 518, 546} 97.14 92.61 0.11

In terms of accuracy and robustness to noisy data, the best result is obtained

when removing the features {98, 434} (results of 97.14% and 94.09%, respectively),

but at the expense of a quite long lapse of time (24.31). Note that this result even

improves the baseline performance. In the remainder results, the classification accuracy

is maintained whilst the feature extraction time is reduced, only at the expense of a

slightly deterioration in terms of robustness to noise (less than 2%).
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It is also important to remark the effectiveness of CFS filter for selecting the most

appropriate features. If we do not apply feature selection and we simply remove the

14th statistics from the 588 features corresponding with co-occurrence features in the

concatenation of all methods, the accuracy and the robustness are 92.86% for both

of them. That is, the accuracy is worse than the results shown in Table 5.9 and the

robustness is not significantly different. As expected, the time is also longer: 14.74

seconds.

To sum up, the manual process done by experts could be automatized with the

benefits of being faster and unaffected by subjective factors, with maximum accuracy

over 97% and processing time under 1 second. The clinical significance of these results

should be highlighted, as the agreement between subjective observers is between 91%-

100%.

5.2 K-complex classification

Sleep staging classification is one of the most important tasks within the context of

sleep studies. For the characterization of patient’s sleep macro structure, three non

REM (Rapid Eye Movement) stages are identified. Then, to help in the sleep stage

characterization, a micro structural analysis is also necessary. Transient events such as

micro arousals, sleep spindles, K-complexes and other patterns should be analyzed.

According to the current American Academy of Sleep Medicine (AASM) (Iber,

Ancoli-Israel, Chesson, & Quan, 2007), the K-complex is a “well-delineated negative

sharp wave immediately followed by a positive component standing out from the back-

ground Electroencephalogram (EEG), with total duration ≥ 0.5 sec, usually maximal

in amplitude when recorded using frontal derivations”. The K-complex is one of the key

features that contributes to sleep stages assessment, specifically is one of the hallmarks

of stage 2. Unfortunately, their visual identification is very time-consuming –there are

typically 1 to 3 K-complexes per minute in stage 2 of young adults (Kryger, Roth, &

Dement, 2005)– and rather dependent on the knowledge and experience of the clini-

cian since it cannot be performed on regular basis. This is the reason why automatic

identification of K-complexes is of great interest. The main difficulty of the automated

K-complex identification problem has been the lack of specific characterization of the

wave and the similarity to other EEG waves as delta or vertex waves.
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Based on shape analysis, one of the most relevant works in the K-complex detec-

tion so far has been the one by Bankman, Sigillito, Wise, and Smith (1992), where a

feature-based detection approach is presented. However, analysis of the relevance of the

different features has not been carried out, so classification of K-complexes based on

shape analysis may take advantage of the application of feature selection methods. An

automatic methodology is then proposed aiming at obtaining a method that achieves

the best accuracy results with a low false positive rate in the K-complex classification

task. Over the EEG signal of a set sleep recordings, after applying a band filter, a set

of isolated waveforms are obtained. Using these patterns, two approaches were tested.

The first one uses the set of 14 Bankman’s features (Bankman et al., 1992) and over

a set of classifiers, chooses the best one in terms of accuracy. The second approach

uses feature selection over the 14 features previously mentioned to see if there exist

irrelevant features and, again, to choose the best classifier in terms of accuracy with

the selected features. The goal of this second approach is to achieve comparable or

better results than the first one, and also check the existence of possible redundant or

irrelevant features, that could be discarded so as to obtain a simpler final model. An

outline of the proposed methodology is shown in Figure 5.3.

• Data processing: The first step is to process the available EEG signals, which

are known to be very sensitive to noise. For this reason, the raw data was digitally

filtered using two different criteria. In the first one, a band-pass filter is applied

in the 0.5-2.3 Hz frequency band, being the resulting data identified as Dataf .

In the second case, a less conservative approach was investigated, where only the

very high frequency components were filtered out by means of a low-pass filter

with cut-off at 18 Hz. The resulting data is referred as Dataf2. Then, the isolet

waveforms are obtained. A set of positive and negative examples are identified

by the medical expert, calculating the Bankman features for each recording over

signal segments. Both datasets Dataf and Dataf2 have 222 instances (111 posi-

tive and 111 negative examples), extracted from 32 different recordings scored at

Brain Research Centre of the Medical University of Vienna.

• Feature extraction: A total of 14 features are extracted as defined by Bankman

et al. (1992), based on several amplitude and duration measurements taken on

significant points of the K-complex waveform.

• Feature selection: Three well-known feature selection methods (CFS, consistency-

based and INTERACT, see Chapter 2) are applied to the two resulting data to

provide a subset of features which could describe properly the given problem.
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• Classification: Several approaches were considered as classifiers, three lineal

models – a one-layer feedforward neural network (FNN), a logistic regression

and a proximal support vector machine (pSVM)–, and two non linear ones – a

multilayer feedforward neural network and a support vector machine (SVM)–.

More details can be found in Appendix I.

Classifier

K-complex

non K-complex

Classifier

K-complex

non K-complex

x1

x2

x3

...

x14

Feature

Selection

Bandpass filter
Examples Features

extracted

First approach

Second approach

CLASSIFICATIONFEATURE EXTRACTIONDATA PROCESSING

Figure 5.3: The K-complex classification methodology.

After the classifiers were trained, the performance of the system is evaluated in terms

of different measures of relevance to the problem in question. The classification accuracy

is computed as the percentage of correctly classified instances; the false positive rate

is the proportion of normal patterns erroneously classified as K-complexes; and the

sensitivity is the proportion of K-complexes which are correctly identified as such. In

the context of K-complex classification, a false identification is more undesirable than

missing a K-complex. Therefore, it is interesting to minimize the false positives while

retaining a satisfactory level of sensitivity.

The experimental procedure is detailed as follows,

1. Extract the initial set of features to be used as inputs.
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2. Apply the three feature subset selection methods (CFS, Consistency-based filter

and INTERACT) to provide the subset of features that describe properly the

given problem.

3. For each nonlinear classifier, establish its architecture/parameters

(a) For FNNs, set the number of hidden units by training independently each

of the FNNs. Bearing in mind that a FNN should never possess a number

of hidden units more than twice plus one the number of its input units i,

several topologies were trained using from 2 to 2 times i + 1. Then, for the

multilayer model set the number of output units (1 vs. 2). Among these

models, we try with a one hidden layer architecture and a two hidden layer

architecture. Logistic transfer functions were used for each neuron in both

the hidden and the output layers. The learning algorithm used was the

conjugate gradient with the mean squared error cost function. A maximum

number of 3000 epochs were performed on the training set.

(b) For the SVM, set the kernel function. We try with linear, polynomial of

degree 2, and gaussian (different sigma values were tried: 1, 100, 1000,

10000) kernel functions. The cost parameter value was set to values in the

range [100−∞].

4. Take the whole data set and generate 10-fold cross validation sets in order to

better estimate the true error rate of each model.

5. Obtain the accuracy measures, and a decision threshold for the output of each

model and select the best one. For the resulting model obtain false positive rate

and sensitivity measures.

6. Apply the TOPSIS method (see Appendix I, Section I.6.1) to the performance

measures previously obtained.

The results obtained with and without feature selection are presented, evaluated

in terms of the three performance measures described above. For the sake of clarity,

only the results that correspond with the models using the optimal number of hidden

neurons and the optimal classifier parameters are shown.
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5.2.1 Results without feature selection

Table 5.10 shows the accuracy, false positive rate and sensitivity measures obtained by

the selected models over a 10-fold cross validation for the K-complex classification with

all the Bankman features.

Table 5.10: K-complex classification results without feature selection. Mean test set

accuracy, false positive and sensitivity (%) of a 10-fold CV. Best results marked in bold

font

Accuracy False positive Sensitivity

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

One-lay. FNN 85.52 87.78 1.61 5.43 74.77 86.48

Log. Reg. 84.16 87.33 8.60 7.69 85.58 90.09

FNN 1out 85.07 87.33 8.14 8.14 86.48 90.99

FNN 2out 84.16 87.33 7.69 5.88 83.78 86.48

FNN 2lay-1out 85.97 87.33 8.60 4.52 89.20 83.78

SVM 84.61 88.69 9.95 5.88 89.20 89.20

pSVM 82.35 86.88 6.79 4.52 78.37 82.88

For the Dataf data set, the best accuracy was 85.97% with a 14-8-6-1 FNN. For

this model it was achieved a sensitivity of 89.20% and a FP rate of 8.60%. These values

are similar to those obtained by Bankman et al. (1992) with an 14-3-1 ANN. Among

the linear models tested (one-layer FNN, Logistic regression and pSVM), the one-layer

FNN seems to be the best method, achieving even the lowest FP rate (1.61%) but with

a sensitivity of 74.77%. As for the non-linear models, the two-layer FNN obtained the

best results.

On the other side, the Dataf2 dataset presents an improvement over the previous

dataset. This could be due to the fact thatDataf2 allows to obtain values more adjusted

to the features because the K-complex wave derived is more similar to the real one.

Besides, the 0.5-2.3 Hz band-pass filter from which Dataf resulted, was too aggressive

and some relevant features were missed. In this sense, the results improve for all the

classifiers. The best behavior is shown by the SVM (RBF kernel, C=inf) with 88.69%,

5.88% and 89.19% values of accuracy, FP rate and sensitivity, respectively.
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5.2 K-complex classification

5.2.2 Results with feature selection

Tables 5.11, 5.12 and 5.13 show the accuracy, false positive rate and sensitivity mea-

sures obtained by the selected models over a 10-fold cross validation for the K-complex

classification with the different feature selection methods used (indicating in brackets

the number of features selected in average). Best values for each dataset and feature

selection method are marked in bold font.

Table 5.11: K-complex classification results with feature selection. Mean test accuracy

(%) of a 10-fold CV.

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 86.42 90.04 86.42 89.14 86.42 89.14

Log. Reg. 85.52 89.59 85.52 89.14 85.52 89.14

FNN 1out 86.88 90.95 86.88 90.95 87.33 90.95

FNN 2out 86.88 91.40 85.97 89.59 86.88 89.14

FNN 2lay-1out 87.88 91.40 88.68 90.50 86.42 90.50

SVM 85.97 90.49 85.06 90.04 85.97 90.04

pSVM 84.16 89.14 84.16 88.69 84.16 88.69

Table 5.12: K-complex classification results with feature selection. Mean test false

positive rate (%) over a 10-fold cv.

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 7.24 4.98 7.24 6.33 7.24 6.33

Log. Reg. 9.95 3.62 5.43 3.17 7.69 3.17

FNN 1out 1.81 3.17 4.52 5.43 1.36 2.71

FNN 2out 4.98 4.52 5.43 4.07 4.07 4.52

FNN 2lay-1out 5.43 3.17 2.71 7.24 5.88 6.33

SVM 5.88 3.17 6.33 5.43 6.33 5.43

pSVM 6.33 4.07 6.33 3.62 6.33 3.62
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Table 5.13: K-complex classification results with feature selection. Mean test sensitivity

(%) over a 10-fold cv.

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 87.39 90.09 87.39 90.99 87.39 90.99

Log. Reg. 90.99 86.48 81.98 84.68 86.48 84.68

FNN 1out 74.77 88.29 82.88 92.79 74.77 87.39

FNN 2out 83.78 91.89 82.88 87.39 81.98 87.39

FNN 2lay-1out 86.49 89.19 82.88 95.49 84.68 93.69

SVM 83.78 87.39 82.88 90.99 84.68 90.99

pSVM 81.08 86.48 81.08 84.68 81.08 84.68

The feature selection procedure shows, in general, better performance than the

classification made with all Bankman features. This fact can be observed in both

data sets, Dataf and Dataf2. In particular, the accuracy is improved after applying

feature selection for any classifier. For Dataf , the two-layer FNN, with a 4-10-8-1 layer

architecture, achieves the best results when combined with CFS and consistency-based

filters. Notice that the reduction in features is also remarkable, since more than 50%

of the features are discarded.

Specifically, the consistency-based filter obtains the highest accuracy (88.68%) with

a FP rate of 2.71% and a sensitivity of 82.88%. This good result is repeated for the

Dataf2 dataset. In this case, the CFS filter with a 5-10-8-1 FNN obtains the highest

accuracy (91.40%), showing 3.17% and 89.19% as values for FP rate and sensitivity,

respectively. The model with the smallest FP rate is chosen since in the K-complex

classification task it is essential to minimize this value.

Among the linear models tested (one-layer FNN, Logistic regression and pSVM),

the one-layer FNN outperforms the other methods by achieving the highest accuracy

and sensitivity for the two datasets and filters tested. However, in this case the logistic

regression and the pSVM are the ones with the lowest FP rate.
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5.2.3 Overall analysis

In light of the results presented so far, it is not easy to conclude which method is the

best. Having into account the accuracy, FP rate and sensitivity (SEN) measures for

the model with and without feature selection, and for the two data sets (band-pass

and low-pass filter approaches), the experimental results were evaluated in terms of the

TOPSIS method. Due to the importance of avoiding false positives in the detection

of K-complex, the highest weight was assigned to this measure (double than the other

two measures). Among the different models evaluated, Table 5.14 displays the top ten

ranking over a total of 56 combinations (7 classifier models, 3 feature selection methods,

no feature selection and 2 filter approaches).

Table 5.14: Ten best results obtained from TOPSIS method.

TOPSIS Filter FS Model Accuracy FP(%) SEN

0.9343 low-pass INT 8-15-1 FNN 90.95 2.71 87.39

0.9237 low-pass CFS 5-10-8-1 FNN 91.40 3.17 89.19

0.9148 low-pass CFS 5-15-1 FNN 90.95 3.17 88.29

0.9044 low-pass CFS SVM∗ 90.49 3.17 87.39

0.8714 band-pass Cons. 4-8-6-1 FNN 88.68 2.71 82.88

0.8656 low-pass INT Log. Reg. 89.14 3.17 84.68

0.8656 low-pass Cons. Log. Reg. 89.14 3.17 84.68

0.8508 low-pass CFS Log. Reg. 89.59 3.62 86.48

0.8206 low-pass INT pSVM 88.69 3.62 84.68

0.8206 low-pass Cons. pSVM 88.69 3.62 84.68

∗ kernel=polynomial, C = 103.

These results confirm the fact that feature selection can play a crucial role in K-

complex classification. To state which feature selection is the best for this problem,

however, is not an easy-to-solve question. Regarding the filtering approach related to

the data processing stage, low-pass band takes 9 out of the top 10 results and FNN

seems to be the best classification model.
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5.2.4 Comparative study with previous results

The results presented above are mainly focused on maximizing accuracy. However,

aiming at comparing these results with the ones obtained by Bankman et al. (1992),

the decision threshold has to be oriented to achieve a required sensitivity of 85%, 90%

and 95%. Table 5.15 reports the sensitivity and false positive rate measures published

by Bankman et al. (1992) for a FNN model with three hidden units and those obtained

with the proposed methodology for Dataf (band-pass filter approach) and Dataf2

(low-pass filter approach) datasets.

Table 5.15: False positive rate (%) for different sensitivity levels in the test set.

Sensitivity

85% 90% 95%

Bankman 6.1 8.1 14.1

Dataf 5.4 7.7 9.9

Dataf2 4.5 3.2 8.6

The values obtained for Dataf correspond to the 4-10-8-1 FNN model, using as

inputs the features selected by the consistency-based filter. As for the Dataf2 dataset,

the features selected by CFS were considered, combined with a 5-10-8-1 FNN model.

It is easy to notice that the FP rate decreases for all the sensitivity levels considered,

where the best performance was obtained on Dataf2. Obviously, this comparison has

to be interpreted carefully as the datasets used in each case are different. Having said

this, these results pave the way to important improvements in K-complex classification

by using feature selection techniques.

5.3 Summary

Feature selection plays a crucial role in many real applications, since it reduces the

number of input features and, most of the times, it improves performance. This chapter

presented two real problems where feature selection has demonstrated to be useful to

achieve better performance results.
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The first real application considered was related with tear film lipid layer classifica-

tion. The time required by existing approaches dealing with this issue prevented their

clinical use because they could not work in real time. In this chapter, a methodology for

improving this classification problem was proposed, which includes the application of

feature subset selection methods: CFS, Consistency-based, and INTERACT. Results

obtained with this methodology surpass previous results in terms of processing time

whilst maintaining accuracy and robustness to noise. In clinical terms, the manual

process done by experts can be automated with the benefits of being faster and un-

affected by subjective factors, with maximum accuracy over 97% and processing time

under 1 second. The clinical significance of these results should be highlighted, as the

agreement between subjective observers is between 91%-100%.

The second real scenario was the K-complex classification, a key aspect in sleep stud-

ies. Three filter methods were applied combined with five different machine learning

algorithms, trying to achieve a low false positive rate whilst maintaining the accuracy.

When feature selection was applied, the results improved significantly for all the classi-

fiers. It is remarkable the 91.40% of classification accuracy obtained by CFS, reducing

in 64% the number of features.
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CHAPTER 6
Scalability in feature selection

Continuous advances in computer-based technologies have enabled researchers and en-

gineers to collect data at an increasingly fast pace (Z. A. Zhao & Liu, 2011). The

proliferation of high-dimensional data brings new challenges to researchers, and scala-

bility and efficiency are two critical issues in this new scenario.

Most algorithms were developed when data set sizes were much smaller, but nowa-

days distinct compromises are required for the case of small-scale and large-scale learn-

ing problems. Small-scale learning problems are subject to the usual approximation-

estimation trade-off. In the case of large-scale learning problems, the trade-off is more

complex because it involves not only the accuracy but also the computational complex-

ity of the learning algorithm, as seen in tear film lipid layer classification (Chapter 5).

Moreover, the problem here is that the majority of algorithms were designed under the

assumption that the data set would be represented as a single memory-resident table.

So if the entire data set does not fit in main memory, these algorithms are useless.

For all these reasons, scaling up learning algorithms is a trending issue. The organi-

zation of the workshop “PASCAL Large Scale Learning Challenge” at the 25th Interna-

tional Conference on Machine learning (ICML’08), and the workshop “Big Learning” at

the conference of the Neural Information Processing Systems Foundation (NIPS2011)

are cases in point. Scaling up is desirable because increasing the size of the training

set often increases the accuracy of algorithms (Catlett, 1991). Scalability is defined

as the effect that an increase in the size of the training set has on the computational

performance of an algorithm: accuracy, training time and allocated memory. Thus the

challenge is to find a deal among them or, in other words, getting “good enough” solu-

tions as “fast” as possible and as “efficiently” as possible. This issue becomes critical

in situations in which there exist temporal or spatial constraints like: real-time appli-

cations dealing with large data sets, unapproachable computational problems requiring

learning, or initial prototyping requiring quickly-implemented solutions.
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This chapter is devoted to scalability in feature selection and it is divided in two

parts. The first part studies the influence of feature selection methods on the scala-

bility of artificial neural networks (ANN) training algorithms by using the measures

defined during the PASCAL workshop (Sonnenburg, Franc, Yom-Tov, & Sebag, 2008).

These measures evaluate the scalability of algorithms in terms of error, computational

effort, allocated memory and training time. Then, in the second part, the scalabil-

ity of feature selection methods is studied, checking their performance in an artificial

controlled experimental scenario, contrasting the ability of the algorithms to select the

relevant features and to discard the irrelevant ones when the dimensionality increases

and without permitting noise or redundancy to obstruct this process. For analyzing

scalability, new evaluation measures are proposed, which need to be based not only in

the accuracy of the selection, but also in other aspects such as the execution time or

the stability of the features returned.

6.1 Scalability of neural networks through feature selec-

tion

The appearance of very large data sets is not sufficient to motivate scaling efforts.

The most commonly cited reason for scaling up algorithms are based on (typically)

increasing the accuracy of algorithms when increasing the size of the training data set

(Catlett, 1991). In fact, learning from small data sets frequently decreases the accuracy

of algorithms as a result of over-fitting.

For most scaling problems the limiting factor has been the number of samples and

features describing each sample. The growth rate of the training time of an algorithm

as the data set size increases is an outstanding question that arises. But temporal

complexity does not reflect scaling in its entirety, and must be used in conjunction

with other metrics. For scaling up learning algorithms the issue is not so much as one

of speeding up a slow algorithm but as one of tuning an impracticable algorithm into a

practical one. The crucial point in question is seldom how fast you can run on a certain

problem but rather how large a problem can you deal with (Provost & Kolluri, 1999).

More precisely, space considerations are critical to scale up learning algorithms. The

absolute size of the main memory plays a key role in this matter. Almost all existing

implementations of learning algorithms operate with the training set entirely in main

memory. If the spatial complexity of the algorithm exceeds the main memory then
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6.1 Scalability of neural networks through feature selection

the algorithm will not scale well –regardless of its computational complexity– because

page thrashing renders algorithms useless. Page thrashing is the consequence of many

accesses to disk occurring in a short time, cutting drastically the performance of a

system using virtual memory. Virtual memory is a technique for making a machine

behave as if it had more memory than it really has, by using disk space to simulate

RAM. But accessing to disk is much slower than accessing to RAM. In the worst case

scenario, out of memory exceptions will make algorithms unfeasible in practice.

It has been shown that popular algorithms for ANNs are unable to deal with very

large data sets (Peteiro-Barral, Guijarro-Berdiñas, Pérez-Sánchez, & Fontenla-Romero,

2013). For this reason, preprocessing methods may be desirable for reducing the input

space size and improving scalability. This section aims to demonstrate that feature

selection methods are an appropriate approach to improve scalability. By reducing

the number of input features and, consequently, the dimensionality of the data set, we

expect to reduce the computational time while maintaining the performance, as well as

being able to apply certain algorithms which could not deal with large data sets.

Among the feature selection methods available, this research will be focused on the

filter approach. The reason is that although wrappers and embedded methods tend to

obtain better performances, they are very time consuming and they will be intractable

in dealing with high dimensional data sets without compromising the time and memory

requirements of machine learning algorithms.

6.1.1 Experimental study

In order to check the effect of different feature selection methods on the scalability of

machine learning algorithms, four of the most popular training algorithms for ANNs

were selected. Two of these algorithms are gradient descent (GD) (Bishop, 2006) and

gradient descent with momentum and adaptive learning rate (GDX) (Bishop, 2006),

whose complexity is O(n). The other algorithms are scaled conjugated gradient (SCG)

(Moller, 1993) and Levenberg-Marquardt (LM) (More, 1978), whose complexities are

O(n2) and O(n3), respectively, being n the input size.

Classification and regression are two of the most common tasks in machine learning.

For classification, four datasets where chosen, Connect-4, KDD Cup 99, Forest and

MNIST, whose characteristics can be consulted in Appendix I. Forest and MNIST
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datasets, which are originally classification tasks, were also transformed into a regression

task by predicting −1 for samples of class 1; and +1 for samples of class 2 (Collobert

& Bengio, 2001). Notice that Friedman and Lorenz are artificial datasets. The goal of

the network is to predict the current sample based on the four previous samples.

6.1.1.1 Performance measures

In order to assess the performance of learning algorithms, common measures as accuracy

are insufficient since they do not take into account all aspects involved when dealing

with large datasets. Accordingly, the goal for machine learning developers is to find a

learning algorithm such that it achieves a low error in the shortest possible time using

as few samples as possible. Since there are no standard measures of scalability, those

defined in the PASCAL Large Scale Learning Challenge (Sonnenburg et al., 2008) are

used:
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Figure 6.1: Performance measures

• Figure 6.1a shows the relationship between training time and test error, com-

puted on the largest dataset size the algorithm is able to deal with, aimed at

118



6.1 Scalability of neural networks through feature selection

answering the question “Which test error can we expect given limited training

time resources?”. Following the PASCAL Challenge, the different training time

budgets are set to 10[···−1,0,1,2... ] seconds. We compute the following scalar mea-

sures based on this figure:

– Err : minimum test error (standard class error for classification and mean

squared error for regression (Weiss & Kulikowski, 1991)).

– AuTE : area under Training time vs Test error curve (gray area).

– Te5% : the time t for which the test error e falls below a threshold e−Err
e <

0.05.

• Figure 6.1b shows the relationship between different training set sizes and the

test error of each one aimed at answering the question “Which test error can be

expected given limited training data resources?”. Following the PASCAL Chal-

lenge, the different training set sizes (training samples) are set to 10[2,3,4... ] up

to the maximum size of the dataset. We compute the following scalar measures

based on this figure:

– AuSE : area under Training set size vs Test error curve (gray area).

– Se5% : the size s for which the test error e falls below a threshold e−Err
e <

0.05

• Figure 6.1c shows the relationship between different training set sizes and the

training time for each one aimed at answering the question “Which training time

can be expected given limited training data resources?”. Again, the different train-

ing set sizes are set to 10[2,3,4... ] and the maximum size of the dataset. We compute

the following scalar measure based on this figure:

– Eff : slope b of the curve using a least squares fit to axb.

In order to establish a general measure of scalability, the final Score of the algo-

rithms is calculated as the average rank of its contribution with regard to the six scalar

measures defined above.

6.1.1.2 Experimental procedure

As a preprocessing step, several feature selection methods were applied over the training

set to obtain a subset of features. CFS, INTERACT and Consistency-based were used
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for classification whilst CFS and ReliefF were employed for regression (see Chapter 2).

The latter follows the individual evaluation framework, and therefore a threshold is

required. In this research, we have opted for an aggressive (lower number of features

to retain) and a soft reduction (higher number of features to retain).

After the preprocessing step, different simulations (N=10) were carried out over the

training set for accurately estimating the scalability of algorithms on each dataset, as

showed in the following procedure:

1. Select features over the training set using the feature selection methods mentioned

above.

2. Set the number of hidden units of the ANN to 2×number of inputs+ 1 (Hecht-

Nielsen, 1990) and train the network. It is important to remark that the aim here

is not to investigate the optimal topology of an ANN for a given dataset, but to

check the scalability of learning algorithms on large networks.

3. Compute the score of algorithms as the average rank of their contribution with

regard to the six scalar measures defined in Section 6.1.1.1.

4. Apply a Kruskal-Wallis test (see Appendix I, Section I.4) to check if there are

significant differences among the medians for each algorithm with and without

feature selection for a level of significance α = 0.05.

5. If there are differences among the medians, then apply a multiple comparison

procedure (Tukey’s, see Appendix I, Section I.4) to find the simplest approach

whose score is not significantly different from the approach with the best score.

6.1.2 Experimental results

6.1.2.1 Classification

During the preprocessing step, the filters CFS, Consistency-based and INTERACT

were applied over the training set in order to obtain a subset of features which will be

employed in the classification stage. The number of features selected by each method,

along with the time required for this task, are depicted in Table 6.1. It has to be noted

that CFS is the filter which achieves the greatest reduction in the number of features
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in the minimum time in 3 out of the 4 dataset tested. On the other hand, Consistency-

based is the filter which requires more time to perform the selection (see that for Forest

dataset, Consistency-based takes 2 hours to perform this task while CFS only needs 17

seconds).

Table 6.1: Features selected by each feature selection method along with the required

time for classification datasets.

Data Filter Features Time (s) hh:mm:ss

Connect4

None 42 0.00 00:00:00.00

CFS 6 8.00 00:00:08.00

Consistency 40 2760.73 00:46:00.73

INTERACT 38 173.32 00:02:53.33

Forest

None 54 0.00 00:00:00.00

CFS 13 17.28 00:00:17.28

Consistency 31 7702.12 02:08:22.12

INTERACT 30 203.57 00:03:23.58

KDD Cup 99

None 42 0.00 00:00:00.00

CFS 5 61.94 00:01:01.95

Consistency 7 382.01 00:06:22.01

INTERACT 7 106.71 00:01:46.72

MNIST

None 748 0.00 00:00:00.00

CFS 55 805.27 00:13:25.27

Consistency 18 13775.09 03:49:35.10

INTERACT 36 652.96 00:10:52.96

Tables 6.2 and 6.3 present the average test results obtained by the learning algo-

rithms after applying the three different filters compared with those where no feature

selection was performed. Notice that N/A stands for Not Applicable and those algo-

rithms of which Score average test results are not significantly worse than the best

are labeled with a cross (†). Regarding the performance measures defined in Section

6.1.1.1, remind that the lower the result, the higher the scalability.

It has to be noted that not all the learning algorithms were able to deal with

all available samples for every dataset, mostly due to the spatial complexity of the

algorithms. In particular, on the MNIST dataset the Levenberg-Marquardt algorithm

is not able to train even on the smallest subset when no feature selection is applied.

If this occurs, the measures explained in Section 6.1.1.1 were computed on the largest

dataset that the learning algorithms were able to process and this fact was specified

along with the results.
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Table 6.2: Performance measures for classification datasets Connect-4 and Forest.

(a) Connect-4.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None 8.67 0.38 5.16e1 0.97 1.08e2 1.00e2 0.43

CFS 5.50† 0.51 1.01e1 1.24 1.39e1 1.00e2 0.26

Consistency 7.83 0.40 4.32e1 0.94 8.44e1 1.00e2 0.40

INTERACT 6.67† 0.35 3.37e1 0.90 8.14e1 1.00e2 0.40

GDX

None 7.00 0.31 3.71e1 0.92 7.98e1 6.00e4 0.40

CFS 4.00† 0.32 9.44e0 0.89 1.70e1 1.00e4 0.25

Consistency 4.83† 0.31 2.61e1 0.87 5.71e1 1.00e3 0.37

INTERACT 4.83† 0.28 2.71e1 0.80 6.96e1 1.00e4 0.38

LM

None* 8.83† 0.23 3.79e2 0.77 7.80e2 1.00e4 0.77

CFS 6.67† 0.31 4.79e1 0.87 6.68e1 1.00e4 0.44

Consistency 9.33† 0.27 2.31e2 0.85 5.01e2 1.00e4 0.71

INTERACT 8.17† 0.24 1.60e2 0.79 3.50e2 1.00e4 0.68

SCG

None 7.17 0.21 7.01e1 0.77 2.62e2 1.00e4 0.50

CFS 3.83† 0.29 9.97e0 0.82 2.28e1 1.00e4 0.31

Consistency 6.83 0.23 5.34e1 0.72 1.44e2 6.00e4 0.47

INTERACT 6.17† 0.23 4.95e1 0.70 1.41e2 6.00e4 0.47

* Largest training set it can deal with: 104 samples.

(b) Forest.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None 9.00 0.38 1.24e2 1.20 2.78e2 1.00e3 0.49

CFS 5.67† 0.45 2.74e1 1.36 3.34e1 1.00e2 0.35

Consistency 7.67† 0.41 5.67e1 1.30 1.12e2 1.00e3 0.42

INTERACT 7.00† 0.38 4.97e1 1.28 1.08e2 1.00e5 0.41

GDX

None 7.33 0.42 4.74e1 1.32 1.01e2 1.00e4 0.41

CFS 5.33† 0.51 6.81e0 1.41 0.43e0 1.00e2 0.24

Consistency 5.67† 0.38 3.21e1 1.23 7.20e1 1.00e5 0.37

INTERACT 4.33† 0.40 2.26e1 1.11 4.93e1 1.00e3 0.35

LM

None* 9.33† 0.24 6.41e2 0.94 1.74e3 1.00e4 0.84

CFS 9.17† 0.32 2.99e2 0.95 5.15e2 1.00e3 0.58

Consistency 8.17† 0.26 6.71e1 0.96 1.72e2 1.00e4 0.59

INTERACT 6.67† 0.25 5.72e1 0.93 1.55e2 1.00e4 0.58

SCG

None 7.50 0.20 1.64e2 0.81 5.80e2 1.00e5 0.55

CFS 4.00† 0.29 3.51e1 0.86 5.97e1 1.00e3 0.40

Consistency 6.50† 0.23 7.21e1 0.84 2.48e2 1.00e4 0.48

INTERACT 5.67† 0.20 6.21e1 0.84 1.70e2 1.00e5 0.47

* Largest training set it can deal with: 104 samples.
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Table 6.3: Performance measures for classification datasets KDD Cup 99 and MNIST.

(a) KDD Cup 99.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None** 7.00 0.13 4.29e1 0.43 5.53e1 1.00e2 0.50

CFS 4.67† 0.16 8.67e0 0.54 5.41e0 1.00e2 0.34

Consistency 6.50 0.20 8.80e0 0.70 2.49e1 1.00e3 0.32

INTERACT 3.33† 0.12 6.55e0 0.45 2.83e1 1.00e2 0.33

GDX

None** 7.00 0.15 2.55e1 0.46 5.93e1 1.00e3 0.44

CFS 1.83† 0.11 4.61e0 0.37 2.15e1 1.00e3 0.30

Consistency 5.33 0.19 7.06e0 0.70 5.65e0 1.00e2 0.31

INTERACT 3.50† 0.11 5.68e0 0.48 3.85e1 1.00e3 0.32

LM

None* 9.17† 0.11 2.21e2 0.46 1.24e3 1.00e4 0.80

CFS 8.00† 0.12 3.38e1 0.49 1.47e2 1.00e2 0.46

Consistency 9.33† 0.17 3.11e1 0.63 1.10e2 1.00e4 0.42

INTERACT 8.00† 0.12 2.89e1 0.55 6.32e1 1.00e5 0.44

SCG

None** 9.67 0.14 1.10e2 0.51 3.54e2 1.00e4 0.55

CFS 4.17† 0.08 1.13e1 0.31 4.40e1 1.00e4 0.38

Consistency 7.83 0.18 2.06e1 0.70 4.88e1 1.00e3 0.39

INTERACT 8.00 0.17 2.15e1 0.56 8.41e1 1.00e2 0.39

* Largest training set it can deal with: 104 samples.

** Largest training set it can deal with: 105 samples.

(b) MNIST.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None* 9.17 0.36 1.41e2 0.85 2.26e2 1.00e2 0.65

CFS 6.67 0.26 4.04e1 0.69 1.07e2 1.00e3 0.43

Consistency 5.00† 0.37 1.72e1 1.07 3.99e1 1.00e3 0.33

INTERACT 5.50† 0.31 2.92e1 0.79 7.46e1 1.00e3 0.39

GDX

None* 9.00 0.22 2.30e2 0.66 6.91e2 1.00e3 0.72

CFS 5.50 0.21 3.32e1 0.66 9.98e1 1.00e3 0.42

Consistency 3.50† 0.22 1.50e1 0.68 3.98e1 1.00e4 0.33

INTERACT 3.83† 0.21 2.33e1 0.64 6.80e1 1.00e3 0.38

LM

None N/A N/A N/A N/A N/A N/A N/A

CFS 9.17† 0.13 3.22e2 0.56 1.10e3 1.00e4 0.80

Consistency 6.83† 0.10 8.52e1 0.49 3.38e2 6.00e4 0.55

INTERACT 6.33† 0.13 6.45e1 0.48 2.05e2 1.00e4 0.62

SCG

None* 8.00 0.05 2.85e2 0.40 1.62e3 1.00e4 0.81

CFS 6.33† 0.11 4.77e1 0.49 2.42e2 6.00e4 0.50

Consistency 3.83† 0.11 1.73e1 0.51 8.62e1 6.00e4 0.40

INTERACT 5.50† 0.11 3.14e1 0.54 1.61e2 6.00e4 0.46

* Largest training set it can deal with: 104 samples.
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6.1.2.2 Regression

The filters CFS and ReliefF were selected for the regression task. It has to be reminded

that ReliefF provides a ranking of features and a threshold is required. In this work,

we have opted for two different arrangements: an aggressive and a soft reduction,

represented in the tables as ReliefF∨ and ReliefF∧, respectively.

Table 6.4: Features selected by each feature selection method along with the required

time for regression datasets. ReliefF∨ and ReliefF∧ stand for aggressive and soft

reduction, respectively.

Data Filter Features Time (s) hh:mm:ss

Forest

None 54 0.00 00:00:00.00

CFS 23 21.76 00:00:21.76

ReliefF∨ 5 11631.56 03:13:51.57

ReliefF∧ 48 11631.56 03:13:51.57

Friedman

None 10 0.00 00:00:00.00

CFS 5 17.39 00:00:17.39

ReliefF∨ 4 289191.43 80:19:51.44

ReliefF∧ 5 289191.43 80:19:51.44

Lorenz

None 8 0.00 00:00:00.00

CFS 1 11.83 00:00:11.83

ReliefF∨ 4 262575.40 72:56:15.40

ReliefF∧ 6 262575.40 72:56:15.40

MNIST

None 748 0.00 00:00:00.00

CFS 103 938.73 00:15:38.73

ReliefF∨ 31 57048.71 15:50:48.72

ReliefF∧ 418 57048.71 15:50:48.72

As for classification, Table 6.4 shows the number of features selected by each method

along with the time required. Note that the time required by ReliefF is the same for

the two arrangements, since the construction of the ranking is a mutual step. Again,

CFS is able to perform the selection mostly in the order of seconds whilst ReliefF needs

in the order of hours.

Tables 6.5 and 6.6 depict the average test results achieved by the learning algorithms

after applying CFS and ReliefF filters compared with those where no feature selection

was performed. Notice that N/A stands for Not Applicable. Those algorithms whose

Score average test results are not significantly worse than the best are labeled with a

cross (†). ReliefF∨ and ReliefF∧ stand for aggressive and soft reduction, respectively.
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Table 6.5: Performance measures for regression datasets Forest and Friedman.

(a) Forest.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None 9.17 0.90 1.26e3 3.62 5.38e2 1.00e4 0.55

CFS 7.67 0.99 1.29e2 3.15 8.27e1 1.00e3 0.38

ReliefF∨ 4.67† 0.95 2.37e1 2.96 1.54e1 1.00e3 0.26

ReliefF∧ 8.67 0.90 3.90e2 2.98 1.59e2 1.00e4 0.44

GDX

None 8.50 0.68 1.01e3 4.17 4.54e2 1.00e5 0.53

CFS 7.00† 1.13 6.91e1 3.32 3.59e1 1.00e3 0.32

ReliefF∨ 4.67† 0.99 1.61e1 3.00 1.07e1 1.00e3 0.21

ReliefF∧ 9.33 1.16 3.60e2 4.63 1.03e2 1.00e3 0.41

LM

None* 9.17 0.60 1.02e4 3.42 1.35e3 1.00e4 0.82

CFS 6.83† 0.80 4.20e2 2.48 8.83e1 1.00e3 0.40

ReliefF∨ 4.50† 0.64 4.71e1 2.39 4.07e1 1.00e4 0.35

ReliefF∧ 9.67 0.54 2.36e3 3.04 2.83e2 1.00e4 0.65

SCG

None 8.17 0.57 1.64e3 2.72 9.86e2 1.00e5 0.60

CFS 7.00 0.81 1.41e2 2.66 5.89e1 1.00e4 0.42

ReliefF∨ 3.67† 0.67 2.83e1 2.29 2.48e1 1.00e4 0.31

ReliefF∧ 8.00 0.61 5.33e2 2.60 2.16e2 1.00e5 0.50

* Largest training set it can deal with: 104 samples.

(b) Friedman.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None* 6.50† 8.33 2.19e3 36.77 7.51e1 1.00e3 0.37

CFS 7.83† 8.16 6.72e3 35.80 1.71e2 1.00e3 0.37

ReliefF∨ 7.67† 9.90 6.30e3 43.70 1.36e2 1.00e4 0.35

ReliefF∧ 8.67† 9.71 7.09e3 36.80 1.71e2 1.00e3 0.37

GDX

None* 5.84† 4.41 1.83e3 24.57 7.20e1 1.00e5 0.37

CFS 6.50† 3.86 6.36e3 23.00 1.69e2 1.00e5 0.37

ReliefF∨ 6.33† 5.08 5.49e3 31.10 1.36e2 1.00e6 0.35

ReliefF∧ 6.67† 4.00 6.44e3 23.71 1.69e2 1.00e4 0.37

LM

None* 5.00† 0.11 1.11e3 8.57 8.74e2 1.00e5 0.59

CFS 8.33 2.34 1.87e4 14.82 1.03e3 1.00e4 0.50

ReliefF∨ 7.50 2.35 1.38e4 14.24 7.76e2 1.00e4 0.48

ReliefF∧ 7.00 † 0.27 1.79e4 6.98 1.03e3 1.00e4 0.50

SCG

None* 5.00† 0.79 1.67e3 10.33 1.71e2 1.00e5 0.44

CFS 6.33† 2.66 4.77e3 16.10 3.88e2 1.00e5 0.43

ReliefF∨ 6.17† 2.85 4.49e3 17.81 3.10e2 1.00e6 0.41

ReliefF∧ 5.33† 0.93 5.58e3 9.34 3.87e2 1.00e4 0.43

* Largest training set it can deal with: 105 samples.

125



Chapter 6. Scalability in feature selection

Table 6.6: Performance measures for regression tasks Lorenz and MNIST.

(a) Lorenz.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None* 5.17† 0.74 4.82e2 2.98 6.17e1 1.00e2 0.36

CFS 7.00† 6.57 1.57e3 26.01 5.60e1 1.00e2 0.29

ReliefF∨ 7.67 1.44 2.16e3 6.37 1.37e2 1.00e3 0.35

ReliefF∧ 8.17 0.94 2.26e3 4.30 2.02e2 1.00e6 0.38

GDX

None* 4.83† 2.66 2.45e2 13.63 2.04e1 1.00e4 0.26

CFS 4.83† 1.29 1.19e3 5.37 4.26e1 1.00e3 0.27

ReliefF∨ 6.83† 4.02 1.76e3 13.23 7.53e1 1.00e3 0.31

ReliefF∧ 7.17 5.45 1.57e3 18.71 7.73e1 1.00e2 0.32

LM

None* 8.17† 0.00 3.26e3 0.00 5.19e2 1.00e5 0.54

CFS 5.17† 0.18 8.40e2 0.80 1.24e2 1.00e3 0.36

ReliefF∨ 7.83† 0.00 3.12e3 0.00 7.82e2 1.00e6 0.48

ReliefF∧ 8.50† 0.00 8.97e3 0.00 1.44e3 1.00e6 0.52

SCG

None* 5.83† 0.01 5.61e2 0.05 1.38e2 1.00e4 0.43

CFS 5.00† 0.21 4.86e2 1.59 1.15e2 1.00e4 0.35

ReliefF∨ 6.33† 0.01 1.21e3 0.10 3.11e2 1.00e6 0.41

ReliefF∧ 7.17† 0.01 2.00e3 0.12 4.53e2 1.00e4 0.44

* Largest training set it can deal with: 105 samples.

(b) MNIST.

Method Filter Score Err AuTE AuSE Te5% Se5% Eff

GD

None* 8.17 303.12 1.66e3 903.14 6.60e0 1.00e2 0.44

CFS 5.17† 37.14 1.44e2 143.11 3.23e0 6.00e4 0.23

ReliefF∨ 3.50† 1.33 3.86e1 3.95 1.40e1 1.00e3 0.28

ReliefF∧ 6.17† 210.98 9.11e2 528.32 4.55e0 1.00e2 0.35

GDX

None* 9.33 9.25 7.49e4 66.06 9.71e2 1.00e4 0.75

CFS 6.33 1.52 1.34e3 6.02 1.62e2 1.00e3 0.46

ReliefF∨ 2.83† 0.85 3.73e1 3.86 1.26e1 1.00e4 0.27

ReliefF∧ 8.83 12.92 1.51e4 76.51 3.06e2 1.00e4 0.62

LM

None* N/A N/A N/A N/A N/A N/A N/A

CFS N/A N/A N/A N/A N/A N/A N/A

ReliefF∨ 4.83† 0.59 3.80e2 3.08 8.68e1 1.00e4 0.51

ReliefF∧ N/A N/A N/A N/A N/A N/A N/A

SCG

None 9.17 3.06 3.10e4 41.52 1.82e3 1.00e4 0.82

CFS 5.83 0.44 1.09e3 3.62 4.20e2 6.00e4 0.55

ReliefF∨ 3.00† 0.55 3.87e1 2.12 1.56e1 1.00e4 0.32

ReliefF∧ 8.50 2.51 1.12e4 36.71 6.68e2 1.00e4 0.71

* Largest training set it can deal with: 104 samples.
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As well as in the classification case, when the learning algorithm is not able to train

on all available samples, this fact is specified along with the results. LM was again not

able to train on MNIST dataset (see Table 6.6b). Even when the number of weights

of an ANN is lower in a regression task than in a classification task (as the number of

outputs is also lower), the spatial complexity of the algorithm LM is still very high.

6.1.3 Discussion

The aim of the experiments carried out in this work is to assess the performance of ANN

algorithms in terms of scalability and not simply in terms of error like the great majority

of papers in the literature. All the six scalar measures defined in Section 6.1.1.1 are

considered to evaluate the scalability of learning algorithms, trying to achieve a balance

among them. When applying feature selection, it is expected that some measures are

positively affected by the dimensionality reduction (such as AuTe, Te5% or Eff ) because

the algorithms can deal with a larger number of samples employing the same execution

time. Nevertheless, the goal of this research is to demonstrate that this reduction does

not always affect negatively the remaining measures and also to find a trade-off among

all the measures which will be reflected on the final average Score.

6.1.3.1 Classification

In general lines, results without feature selection show a scarcely lower error (although

in some cases it is maintained or even improved, depending on the filter) at the expense

of a longer training time. On the other hand, the results after applying feature selection

present a shorter training time.

As expected, the measures related to the training time (AuTe, Te5% and Eff )

improve, since a shorter time is needed to train the same number of data. On the

other hand, AuSE and Se5% deteriorate their results after applying feature selection.

Although the error was expected to be higher after applying feature selection, INTER-

ACT maintains or improves the classification error in most of the cases, obtaining also

a good performance on the other scalability measures.

Since the assessment of the scalability of learning algorithms is a multi-objective

problem and there is no chance of defining a single optimal order of importance among
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measures, we have opted to focus on the general measure of scalability (Score). Tables

6.2 and 6.3 show that in most cases applying feature selection was significantly better

than not applying it (13 out of 16 cases). In order to decide which filter is the best

option, Table 6.7 depicts the average score for each filter on each dataset, as well as

the average filtering time. Since the algorithm LM is not able to train over MNIST

when no feature selection is applied, the results over this dataset are averaged on three

learning algorithms, instead of four.

Table 6.7: Average of Score for each filter on each dataset for classification tasks along

with the average time required by the filters.

Filter Connect-4 Forest KDD Cup 99 MNIST Average Time(s)

None 7.92 8.29 8.21 8.72 8.29 –

CFS 5.00 6.04 4.67 6.17 5.47 223.12

Consistency 7.21 7.00 7.25 4.11 6.39 6154.99

INTERACT 6.46 5.92 5.71 4.94 5.76 284.14

In light of the results showed in Table 6.7, it remains clear that applying feature

selection is better than not doing it. Among the three filters tested, CFS exhibits the

best Score in average, closely followed by INTERACT. Bearing in mind the average

time required by each filter (see last column in Table 6.7), the Consistency-based filter

does not seem to be a good option, due to the fact that it obtains the worst score along

with the highest processing time. CFS tends to select the smallest number of features

at the expense of a slightly higher error than INTERACT, therefore the decision of

which one is more adequate for the scalability of ANNs depends on if the user is more

interested in minimizing either the error or the other measures.

6.1.3.2 Regression

Over Forest and MNIST datasets, the performance measures follow the same trends as

with classification tasks: those related with the training time (AuTe, Te5% and Eff )

improve while AuSE and Se5% slightly worsen. However, this is not the case with

Friedman and Lorenz datasets. This fact is explained because these datasets have only

10 and 8 features, respectively, and reducing the input dimensionality does not lead

to a significant reduction in the training time, whilst it may remove some important

information which affects accuracy.
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Although in general it seems that feature selection methods do not achieve results

as good as over classification tasks, an in-depth analysis reveals that for all the com-

binations between dataset and learning algorithm, using feature selection obtained a

significantly better or equal Score (for all filters) than not using it.

Studying in detail the behavior of the filters, one may find that ReliefF∨ (aggres-

sive reduction) is the best (or one of the best ones) method with a significant difference

in all cases but two. Table 6.8 reinforces this fact by showing that this method obtains

the best Score in average for all datasets and learning algorithms. On the other hand,

ReliefF∧ (soft reduction) presents the worst Score in average. This fact can be ex-

plained because ReliefF∧ selects a higher number of features, which leads to a slightly

better error, but at the expense of requiring more training time and hence getting worse

results on the other measures.

Albeit ReliefF∨ is the best method according to Score, it has to be reminded

that ReliefF requires a much higher computational time than CFS (see last column in

Table 6.8). For this reason, in our opinion, CFS is the best option when looking for

a feature selection method which could help on the scalability of ANNs on regression

tasks. In fact, its Score shows that applying CFS is better than not doing it and the

computational time required is not prohibitive, as happens with ReliefF.

Regarding the results for Friedman and Lorenz datasets, with 10 and 8 input fea-

tures respectively, and bearing in mind the results depicted in Table 6.8, one may

question the adequacy of feature selection on these datasets with such a small number

of features. However, there is not a universal answer to this question, since it depends

on the nature of the problem and on the presence of irrelevant features. In this work,

no benefits were found after applying feature selection over Friedman dataset, but it

was worth to do it over Lorenz. In fact, the filter CFS over the latter dataset only

needs a couple of seconds to perform the selection and it retains one single feature.

Further experimentation showed that this feature is highly correlated with the output

and obtained results as good as with the whole set of features. It is remarkable the

fact that for GDX algorithm, the lower error was achieved by CFS using only that one

feature (see Table 6.6a).
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Table 6.8: Average of Score for each filter on each dataset for regression tasks along

with the average time required by the filters.

Filter Forest Friedman Lorenz MNIST Average Time(s)

None 7.88 5.59 6.00 8.89 7.09 –

CFS 7.13 7.25 5.50 5.78 6.42 247.43

ReliefF∨ 4.38 6.92 7.17 3.11 5.39 155111.60

ReliefF∧ 8.92 6.92 7.75 7.83 7.86 155111.60

6.2 Scalability of feature selection methods

The previous section has demonstrated that feature selection can be helpful in scal-

ing machine learning algorithms as it reduces the input dimensionality and therefore

the run-time required by an algorithm. However, when dealing with a dataset which

contains a huge number of features and samples, the scalability of a feature selection

method also becomes of crucial importance. Since most of the existing feature se-

lection techniques were designed to process small-scale data, their efficiency can be

downgraded, if not totally inapplicable, with high-dimensional data.

In this scenario, feature selection researchers need to be focused not only on the

accuracy of the selection but also on other aspects. Stability, that is the sensitivity of

the results to training set variations, is one of such factors, with a few studies pub-

lished regarding the behavior of filters in the case in which training set is small, but

the number of features can be high (G. Brown, Pocock, Zhao, & Luján, 2012; Fahad,

Tari, Khalil, Habib, & Alnuweiri, 2013; Gulgezen, Cataltepe, & Yu, 2009). The other

important aspect, scalability, that is the behavior of feature selection methods in the

case in which the training set is increasingly high, is still more scarce in the scien-

tific literature (Peteiro-Barral, Bolón-Canedo, Alonso-Betanzos, Guijarro-Berdiñas, &

Sánchez-Maroño, 2012). The studies are mainly concentrated in obtaining scalability

in a particular application (Luo et al., 2012), modifying certain previously existing ap-

proaches (Sun, Todorovic, & Goodison, 2008b), or adopting on-line (Hoi, Wang, Zhao,

& Jin, 2012) or parallel (Z. Zhao, Zhang, Cox, Duling, & Sarle, 2013) approaches. In

general, one can say that most of the classical feature selection approaches that are

univariate -that is each feature is considered separately- have an important advantage

in scalability, but at the cost of ignoring feature dependencies, and thus perhaps lead-

ing to lower performances than other feature selection techniques. To improve perfor-

mance, multivariate filter techniques are proposed, but at the cost of reducing scalability
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(Alonso-Betanzos, Bolón-Canedo, Fernández-Francos, Porto-Dı́az, & Sánchez-Maroño,

2013). In this situation, the scalability of a feature selection method becomes extremely

important.

In this section, the scalability of feature selection methods is studied, checking their

performance in an artificial controlled experimental scenario, contrasting the ability of

the algorithms to select the relevant features and to discard the irrelevant ones when

the dimensionality increases and without permitting noise or redundancy to obstruct

this process. For analyzing scalability, new evaluation measures are proposed, which

need to be based not only on the accuracy of the selection, but also on other aspects

such as the execution time or the stability of the features returned.

6.2.1 Experimental study

The experimental study will test the scalability of the three types of feature selection

methods: filters, embedded and wrappers (see Chapter 2 for consulting their descrip-

tions). Some of the methods (Chi-Squared, ReliefF, Information Gain, mRMR, FS-P

and SVM-RFE) follow the ranking approach, which consists of assessing individual fea-

tures by assigning them weights according to their relevance. The remaining algorithms

(CFS, FCBF, INTERACT, consistency-based and the wrapper) follow the subset eval-

uation approach, which consists of producing candidate feature subsets based on a

certain search strategy. With regard to the computational cost, it can be noticed that

some of the proposed filter techniques are univariate. This means that each feature is

considered separately, thereby ignoring feature dependencies, which may lead to worse

classification performance when compared to other types of feature selection techniques.

However, they have the advantage, in theory, of being scalable. Multivariate techniques

were introduced, aiming to incorporate feature dependencies to some degree, but at the

cost of reducing their scalability.

A common problem when testing the effectiveness of a feature selection method on

real data is that the relevant features are usually not known in advance. In these cases,

the performance of the feature selection methods clearly rely on the performance of the

learning method used afterwards and it can vary notably from one method to another.

The objective of this research is to study the scalability of feature selection methods

with independence of any other learning method (i.e. classifier, cluster method, etc.).

For this reason, it has been chosen to use artificial datasets to perform this task. The
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main advantage of these artificial scenarios is the knowledge of the set of optimal

features that must be selected, thus the degree of closeness to any of these solutions

can be assessed in a confident way.

The datasets chosen for this study try to cover different problems: increasing num-

ber of irrelevant features, redundancy, noise in the output, alteration of the inputs,

non-linearity of the data, etc. These factors complicate the task of the feature selection

methods, which are very affected by them. Besides, some of the datasets have a signifi-

cantly higher number of features than samples, which implies an added difficulty for the

correct selection of the relevant features. Details on the synthetic datasets employed in

this chapter can be found in Appendix I.

For assessing the scalability of the methods, different configurations of these datasets

were used. In particular, the number of features ranges from 23 to 27 whilst the number

of samples ranges from 23 to 214 (all pairwise combinations). In the case of the SD

datasets, the number of features ranges from 26 to 212 whilst the number of samples

ranges from 32 to 35. Notice that the number of relevant features is fixed and it is

the number of irrelevant features the one that varies, randomly generated. When the

number of samples increases, the new instances are also generated from a random

distribution.

Table 6.9 shows a summary of the ranges of features and samples tested for each

dataset. The first seven datasets in the table are classical datasets, having more samples

than features, so they will be studied together. SD1, SD2 and SD3 are datasets which

represent the characteristics of microarray data, with more features than samples, and

will be analyzed as a case of study in Section 6.2.3.2.

6.2.2 Evaluation metrics

The goal of this research is to assess the scalability of several feature selection meth-

ods. For this purpose, some evaluation measures need to be defined, covering different

aspects that must be addressed. First, some metrics which take into account the ac-

curacy of the selected features are presented, motivated by the measures proposed by

M.-L. Zhang et al. (2009); Rokach, Schclar, and Itach (2013); Tsoumakas, Katakis, and

Vlahavas (2010). However, it is also important to have measures which evaluate the

stability of feature selection, i.e. the insensitivity of the result of a feature selection
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Table 6.9: Summary of the synthetic datasets used

Dataset No. of features No. of samples

Corral 23 - 27 23 - 214

Led 23 - 27 23 - 214

Monk1 23 - 27 23 - 214

Monk2 23 - 27 23 - 214

Monk3 23 - 27 23 - 214

XOR 23 - 27 23 - 214

Parity 23 - 27 23 - 214

SD1 26 - 212 32 - 35

SD2 26 - 212 32 - 35

SD3 26 - 212 32 - 35

algorithm to variations in the training set. For this reason, some metrics for assessing

this issue will be introduced, based on the works presented by Kendall (1938); Spear-

man (1904); Kumar and Vassilvitskii (2010). Last but not least, the training time is

also a measure of success for the scalability of a feature selection method.

The evaluation measures used in this work are also divided in two types: the

ones devoted to subset methods (Hamming loss, F1− score, Tanimoto and Jaccard)

and those devoted to ranking methods (ranking loss, average error, Spearman and

Kendall). The training time is also considered, for both types of methods, reported in

seconds. For the sake of clarity, it has been decided that all the measures are desirable

to be minimized. Therefore, the measures related to how accurate the selection is are

focused on the error, whilst the metrics related to the stability are now considered as

related to the distance between rankings.

For the subset methods, feat sel stands for the subset of selected features, whilst

in the case of rankers, it represents the ranking of features returned. Plus, feats is

the total number of features, feat rel is the subset of relevant features and feat irr

represents the subset of irrelevant features (both of them known a priori). Notice that

all measures mentioned below except training time are bounded between 0 and 1.
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6.2.2.1 Measures for ranker methods

This section describes the evaluation measures applied to the feature selection methods

which return an ordered ranking of the features.

• The ranking loss (R) evaluates the number of irrelevant features that are better

ranked than the relevant ones. The fewer irrelevant features are on the top of the

ranking, the best classified are the relevant ones. Notice that pos stands for the

position of the last irrelevant feature in the ranking.

R = pos − #feat rel
#feats − #feat rel

• The average error (E) evaluates the mean of average fraction of relevant features

ranked above a particular feature of the ranking.

E =
∑

j;feat sel(j) ∈ feat rel ∩ j<i − #feat rel × (#feat rel − 1)
2

#feat irr × #feat rel

• The Spearman-distance (S) is a metric which measures dissimilarity between

rankings of features. It is complimentary of the Spearman correlation coefficient

(ρ), which is defined as the Pearson correlation coefficient between the ranked

variables. Therefore, the Spearman-distance between two rankings, A and B, is

obtained by subtracting the Spearman correlation coefficient from 1, where d is

the distance between the same elements in both rankings.

S(A,B) = 1− ρ = 1−
(

1− 6
∑

d2

#feats(#feats2−1)

)
• The Kendall-distance (K) is a metric that counts the number of pairwise dis-

agreements between two ranking lists A and B. The larger the distance, the

more dissimilar the two lists are.

K(A,B) =
∑
{i,j}∈P K̄i,j(A,B)

where

P is the set of unordered pairs of distinct elements in A and B

K̄i,j(A,B) = 0 if i and j are in the same order in A and B

K̄i,j(A,B) = 1 if i and j are in the opposite order in A and B
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6.2.2.2 Measures for subset methods

This section describes the evaluation measures applied to the feature selection methods

which return a subset of selected features.

• The Hamming loss (H) measure evaluates how many times a feature is misclas-

sified (selected when is irrelevant or not selected when is relevant)

H = #(feat sel ∩ feat irr) + #(feat not sel ∩ feat rel)
#(feat rel ∪ feat irr)

• The F1-score is defined as the harmonic mean between precision and recall. Pre-

cision is computed as the number of relevant features selected divided by the

number of features selected; and recall is the number of relevant features se-

lected divided by the total number of relevant features. Therefore, the F1-score

can be interpreted as a weighted average of the precision and recall. Considered

1− F1-score, it reaches its best value at 0 and worst score at 1.

F1 = 2× precision × recall
precision + recall

• The Tanimoto-distance (T ) is a metric which measures dissimilarity between sets

of features. It is complimentary of the Tanimoto-coefficient (TC) of the sets A

and B.

T (A,B) = 1− TC = 1− |A∩B|
|A|+|B|−|A∩B|

• The Jaccard-distance (J) is a metric which measures dissimilarity between sets

of samples (in this case, sets of features). It is complimentary of the Jaccard-

index (JI), which is defined as the cardinality of the intersection divided by the

cardinality of the union of the sets A and B. Therefore, the Jaccard-distance is

obtained by subtracting the Jaccard-index from 1, or, equivalently, by dividing

the difference of the sizes of the union and the intersection of two sets by the size

of the union.

J(A,B) = 1− JI = |A∪B| − |A∩B|
|A∪B|
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6.2.2.3 Summary of measures

As mentioned before, the measures described above are divided in three types of mea-

sures: those related with the error, the distance and the time. For visualizing the

graphs which will be obtained in the experimental section, it is necessary to have a

single measure per group. Therefore, since all the measures are bounded between 0

and 1 and are desired to be minimized, the arithmetic mean of the measures of the

same type is computed.

• Ranker methods:

– error = mean(ranking loss , average error)

– distance = mean(spearman , kendall)

– time

• Subset methods:

– error = mean(hamming loss , F1)

– distance = mean(tanimoto , jaccard)

– time

Motivated by the methodology proposed by Sonnenburg et al. (2008), we define

three figures from which eight scalar measures are extracted. Note that the evaluation

of feature selection algorithms relies on the bi-dimensional features-samples space (X -

Y -axes). So, these evaluation measures shape a surface (Z-axis) in a three-dimensional

space.

• Error surface: Feature size vs Sample size vs Error. It is obtained by displaying

the evolution of the error measure across the feature-sample space. The following

scalar measures are computed:

1. MinEr : minimum error.

2. Er5% : the minimum amount of data (features x samples) for which the error

drops below a threshold (5% of error).

3. VuEr : volume under the error surface.
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• Distance surface: Feature size vs Sample size vs Coverage. It is obtained by

displaying the evolution of the distance measure across the feature-sample space.

4. MinDi : minimum distance.

5. Di5% : the minimum amount of data (features x samples) for which the

distance drops below a threshold (5% of distance).

6. VuDi : volume under the distance surface.

• Training time surface: Feature size vs Sample size vs Traning time. It is obtained

by displaying the evolution of the average precision across the feature-sample

space.

7. MaxTt : training time in seconds for the maximum amount of data tested.

8. VuTt : volume under the training time surface.

6.2.3 Experimental results

This section shows the scalability results according to the measures explained above

after applying a 10-fold cross validation, where all the metrics are desirable to be min-

imized. Section 6.2.3.1 is devoted to show the scalability of filter methods, whilst

Sections 6.2.3.3 and 6.2.3.4 are dedicated to wrapper and embedded methods, respec-

tively.

6.2.3.1 Scalability of filters

This section studies the scalability properties shown by the eight filter methods consid-

ered (FCBF, CFS, consistency-based, INTERACT, InfoGain, ReliefF, Chi-Squared and

mRMR, see Chapter 2). Figures 6.2 and 6.3 plot an scalar metric of scalability per row

(error, distance and time) of ranker and subset filters, respectively, for Corral dataset

as an example. In general, the error is more affected by the number of samples than of

features. Nevertheless, it is easy to see that Chi-Squared, InfoGain and mRMR require

a larger number of features to achieve the lowest error than the remaining methods.

In terms of distance, which is a manner of measuring the stability of the features

selected by the algorithms (see Section 6.2.2), there is not a clear trend. The subset
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filters (FCBF, CFS, Cons and INTERACT, Figure 6.3) seem to be more affected by

the sample size, although as expected with high numbers of samples, the more features,

the more difficult is to select stable subsets of features. The exception to this behavior

is the Consistency-based filter, which is not affected by the number of features when

having more than 200 samples. On the other hand, the ranker filters (Figure 6.2) have

two types of behaviors. ReliefF and mRMR are mainly affected by the number of

features, worsening their performance as the number of features increases. However,

Chi-Squared and InfoGain are more affected by the number of samples, showing better

results than their counterparts.
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Figure 6.2: Measures of scalability of ranker selection methods in the Corral dataset,

showing feature size vs. sample size

Regarding the training time, it has to be noted that these plots are not bounded

between 0 and 1, since the time has not been normalized. For this reason, the reader has

to bear in mind that in some cases the time is up to 500 seconds (ReliefF, figure 6.2j),

whilst in other cases the time only raises until 1 second (FCBF, figure 6.3i). Having

said that, the training time raises exponentially with large amounts of both samples

and features, although it seems to be more affected by the number of samples. On the
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6.2 Scalability of feature selection methods

contrary, mRMR is more influenced by the number of features, as it is a multivariate

filter which takes into account relationships between features.
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Figure 6.3: Measures of scalability of subset methods in the Corral dataset, showing

feature size vs. sample size

For the sake of brevity, it is not possible to plot all the measures for all the datasets

considered in this study, therefore Tables 6.10 and 6.11 depict the eight scalar measures

defined in Section 6.2.2.3 for the ranker and subset methods, respectively, along with all

the pairwise combinations between filter and dataset for the first seven datasets of Table

6.9. Notice that the lower the value, the better the performance of the feature selection

method. Since it is difficult to draw conclusions from such amount of information, we

will apply some statistical tests to determine which feature selection performs better

in terms of the three groups of measures: error, distance and time.

The Friedman test (M. Friedman, 1937) is a non-parametric equivalent of the

repeated-measures ANOVA. It ranks the algorithms for each data set separately, the

best performing algorithm getting the rank of 1, the second best rank 2, etc. If the

null-hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test
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Chapter 6. Scalability in feature selection

Table 6.10: Precision, stability and time measures for ranker filters on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

C
h
i-

S
q
u
a
re

d

Corral 0.0080 32768 9.0826 0.0145 16384 7.8864 6.2475 16.9977

Led 0.0000 256 2.1907 0.0000 256 4.2786 6.4141 16.9912

Monk1 0.5925 128 30.4160 0.0000 512 6.3249 6.4752 16.6834

Monk2 0.0000 262144 23.6574 0.0551 262144 11.3443 6.4105 16.8058

Monk3 0.5142 512 29.0216 0.0534 1048576 8.6334 6.5255 17.9424

XOR 0.7650 128 36.6948 0.0000 256 5.6573 6.3941 16.8869

Parity 0.6822 512 34.3876 0.0000 512 5.7985 6.3602 16.8149

R
el

ie
fF

Corral 0.0000 2048 4.1311 0.2148 131072 28.7959 547.3706 606.7580

Led 0.0000 256 2.1828 0.0000 256 22.9613 545.3251 610.5523

Monk1 0.0000 32768 25.0318 0.0317 131072 33.1593 621.0799 683.9469

Monk2 0.0000 2048 12.3433 0.2918 16384 31.5688 621.1729 683.3628

Monk3 0.0000 32768 26.1069 0.1587 131072 35.4930 608.1903 676.2464

XOR 0.0000 512 3.2857 0.0169 131072 34.0864 538.0400 592.2760

Parity 0.0000 1024 8.3501 0.0794 65536 32.8342 539.6729 604.9484

In
fo

G
a
in

Corral 0.0081 65536 9.1260 0.0303 32768 8.8550 6.4418 17.1277

Led 0.0000 128 2.1755 0.0000 128 2.8284 6.2209 17.0493

Monk1 0.5881 512 30.5219 0.0000 512 5.9126 6.3224 16.8259

Monk2 0.0192 131072 23.7973 0.0858 16384 11.8515 6.4306 16.9691

Monk3 0.5467 256 28.9641 0.0293 2048 8.3751 6.5071 19.3314

XOR 0.6440 512 36.7136 0.0000 2048 5.5588 6.3952 16.4992

Parity 0.7197 128 34.2097 0.0000 1024 4.9880 6.3817 16.8673

m
R

M
R

Corral 0.0081 32768 6.3044 0.2151 131072 29.2121 5.8034 15.9463

Led 0.0000 256 2.8337 0.0000 256 22.6035 5.4714 15.7171

Monk1 0.1809 4096 14.2597 0.6635 128 37.0434 4.3368 14.5079

Monk2 0.0000 32768 12.2265 0.3335 131072 35.1601 4.2203 14.3078

Monk3 0.1427 524288 10.8967 0.6087 32768 35.8379 4.2913 14.5225

XOR 0.4087 1024 24.8969 0.6802 256 37.7154 6.2138 16.1184

Parity 0.5071 1024 28.0068 0.6966 128 37.9024 5.6746 15.9854
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Table 6.11: Precision, stability and time measures for subset filters on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

F
C

B
F

Corral 0.0556 2048 6.5688 0.5000 1024 27.9232 1.5979 14.0284

Led 0.0424 8192 4.4397 0.5000 64 23.3853 1.5778 14.1738

Monk1 0.3792 32768 21.7247 0.5000 512 29.7338 1.6233 13.7766

Monk2 0.0216 131072 19.9815 0.5000 4096 35.5311 1.6215 13.8563

Monk3 0.1983 262144 15.4796 0.5000 512 28.9344 1.5939 13.7829

XOR 0.4883 2048 24.8144 0.5000 512 34.7336 1.5812 13.8722

Parity 0.4896 512 25.9331 0.5000 256 33.7904 1.6173 13.9016

C
F

S

Corral 0.0556 2048 7.2957 0.5000 2048 29.1369 6.6850 17.7719

Led 0.0424 8192 4.3782 0.5000 256 23.3411 6.7841 18.7223

Monk1 0.3765 8192 21.5832 0.5000 512 29.9757 6.7498 18.0770

Monk2 0.0794 2097152 18.0169 0.5941 256 35.9813 6.8811 18.6108

Monk3 0.2009 1048576 15.3117 0.5000 65536 29.3408 7.0857 25.1294

XOR 0.1979 1024 14.1757 0.5000 128 33.7684 6.6487 17.6479

Parity 0.3094 512 18.0365 0.5000 256 34.9355 6.5489 18.1507

C
o
n
s

Corral 0.0466 8192 6.0037 0.5000 2048 27.0504 12.1497 26.9764

Led 0.0911 4096 6.3158 0.5000 128 22.5916 11.5639 26.8334

Monk1 0.3767 16384 21.5503 0.5000 512 26.3205 9.1498 22.6751

Monk2 0.4739 2048 28.0390 0.9667 256 59.8062 8.6256 23.0369

Monk3 0.1784 524288 15.0830 0.5000 1024 26.1744 10.4860 24.3033

XOR 0.4375 256 23.7986 0.9880 256 52.9460 8.8971 22.2011

Parity 0.4895 512 25.0176 0.9852 128 53.4165 9.2617 22.5169

IN
T

E
R

A
C

T

Corral 0.0556 1024 6.3456 0.5000 1024 27.6555 12.6862 26.2053

Led 0.0424 8192 4.4217 0.5000 256 23.4841 12.3948 26.5851

Monk1 0.3729 32768 21.4582 0.5000 512 29.6188 12.5901 26.3971

Monk2 0.0061 524288 17.7676 0.5167 131072 35.7957 12.7796 27.5088

Monk3 0.1916 524288 15.2224 0.5000 1024 28.4826 12.5099 26.0087

XOR 0.1979 32768 14.4977 0.5000 1024 34.4921 12.3733 25.8947

Parity 0.3094 4096 17.7334 0.5000 512 34.1927 12.4180 26.6287
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(Nemenyi, 1963) is similar to the Tukey test for ANOVA and is used when all algo-

rithms are compared to each other. The performance of two algorithms is significantly

different if the corresponding average ranks differ by at least a critical difference.
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Figure 6.4: Comparison of scalability measures for ranker filters (ChiSquared, InfoGain,

ReliefF and mRMR)

Figure 6.4 plots the results of the statistical tests carried out to compare the ranker

filters according to their performance on all datasets. In terms of error, ReliefF clearly

outperforms the other methods according to the minimum error achieved. In fact, in

Table 6.10, one can see that the minimum error obtained by this algorithm is zero for all

datasets. As expected, this is reflected also in the volume under the curve, where ReliefF

is better than ChiSquared and InfoGain with significant differences. Focusing on the

minimum amount of data for which the error drops below the 5% of its minimum value

(Er5%), InfoGain is the only one which improves significantly its performance with

respect to mRMR, whilst among the other methods there are no significant differences.

However, when examining the results related with the distance measure, InfoGain

and ChiSquared are significantly better than ReliefF and mRMR in two metrics (MinDi

and VuDi). On the other hand, InfoGain and mRMR are significantly better than
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ReliefF in terms of Di5%, which means that although mRMR is not the method which

achieves the minimum distance, it stabilizes rapidly. Finally, with regard to the training

time, mRMR clearly beats the other methods. Remark that ReliefF obtains very

good results in terms of error (0%) even when for XOR and Parity the minimum

error obtained by other methods ranges from 40.87% to 76.50%. Nevertheless, this is

accomplished at the expense of a much longer training time than the other rankers (see

Table 6.10, around 100 times longer).

Figure 6.5, in turn, displays the results of the statistical tests executed to compare

the different subset filters based on their scalability properties on all datasets. With

regard to the error, the results obtained by INTERACT outperform significantly those

achieved by FCBF and Consistency-based in terms of both MinEr and VuEr. However,

regarding Er5%, the performance of the filter Consistency-based is significantly better

than INTERACT, which means that the former requires a significantly smaller amount

of data than the latter to achieve a low error.
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Figure 6.5: Comparison of scalability measures for subset filters (FCBF, CFS, Cons

and INTERACT)

In terms of distance, FCBF achieves a low value in a significantly smaller amount of

data than INTERACT (see Figure 6.5e), as well as outperforming the filter Consistency-
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Table 6.12: Overview of the behavior regarding scalability of filter methods.

Method Error Distance Training time

Chi-Squared •• ••• ••••
ReliefF ••••• ••• •
InfoGain •• ••••• ••••
mRMR ••• •• •••••

FCBF ••• •••• •••••
CFS ••• ••• •••
Consistency ••• •• ••
INTERACT •••• ••• ••

based significantly regarding the minimum distance. Regarding the training time,

FCBF outperforms significantly the remaining algorithms.

In general terms, one can say that FCBF shows a good behavior in terms of stability

and training time at the expense of a slightly degradation in error. In fact, only

INTERACT is significantly better than FCBF in terms of minimum error (actually,

in 3 out of the 7 datasets considered). However, FCBF requires a maximum training

time around 1 second whilst InfoGain needs more than 12 seconds. Moreover, FCBF

becomes stable with the smallest amount of data.

In light of those results, Table 6.12 provides an overview regarding the specific

scalability aspects considered for classical datasets. Notice that the larger the number

of bullets, the better the behavior. It remains clear the predominance of ReliefF in

terms of accuracy, although InfoGain shows better performance according to stability.

The methods that require a smaller training time are mRMR and FCBF.

6.2.3.2 Case of study: SD datasets

These synthetic datasets (Appendix I, Section I.2.1.6) have a small ratio between num-

ber of samples and features, which makes difficult the task of feature selection. This is

the problematic present in microarray data, a hard challenge for machine learning re-

searchers. Besides these particularities of the data, there is a high number of irrelevant

features for the task of gene classification and also the presence of redundant variables

is a critical issue.
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6.2 Scalability of feature selection methods

Table 6.13: Precision, stability and time measures for ranker filters on SD datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

C
h
i-

S
q SD1 0.0010 995328 2.9980 0.0069 995328 2.0839 1.5609 7.6786

SD2 0.0287 497664 4.4338 0.0125 995328 2.6706 1.5655 7.7935

SD3 0.0288 995328 5.3982 0.0150 995328 3.5776 1.6365 8.0069

R
el

ie
fF

SD1 0.0019 995328 2.4878 0.4578 15552 15.5683 6.1160 11.2931

SD2 0.0212 995328 5.1582 0.4425 15552 15.4352 6.1757 11.2726

SD3 0.0332 995328 6.9056 0.5372 31104 15.7661 5.9989 11.4583

IG

SD1 0.0012 995328 2.8732 0.0065 995328 2.0854 1.5320 7.7193

SD2 0.0173 248832 4.4797 0.0085 124416 2.7332 1.6691 7.9059

SD3 0.0073 995328 5.3365 0.0201 497664 3.6923 1.4625 7.8284

m
R

M
R SD1 0.0009 995328 3.2350 0.5121 15552 15.1389 1178.9798 3732.9157

SD2 0.0185 497664 6.3140 0.5065 5184 14.6257 1143.7379 3742.0801

SD3 0.0599 15552 7.1948 0.4999 10368 14.9588 1161.7751 3751.4456

Tables 6.13 and 6.14 report the eight scalar measures defined in Section 6.2.2.3 for

the ranker and subset methods, respectively, along with all the pairwise combinations

between filter and dataset for the SD datasets (three last rows of Table 6.9). Focusing

on the ranker methods, one can see that in terms of error (MinEr, Er5% and VuEr),

there are not clear differences. In turn, with regard to the distance, Chi-Squared and

InfoGain return stable rankings (low distance) but they need a significant amount of

data to do it, whilst ReliefF and mRMR show high distances (around 50%). Finally,

the training time required by mRMR is in the order of thousands of seconds while the

remaining methods require in the order of seconds. This is due to the fact that mRMR

is a multivariate filter and so the time raises exponentially when the number of features

increases (in these experiments, up to 4096 features). In this scenario, the best ranker

seems to be InfoGain, since it achieves a low error, it becomes stable although requires

certain amount of data, and the computational cost is acceptable (low training time).

Table 6.14 displays the results devoted to the subset filters. First of all, it is worth

mentioning that the high distance results are due to the fact that the SD datasets have

an extremely high number of features (up to 4096), so the more features, the more

difficult is to select stable subsets of features. Having said that, FCBF seems to be

the best subset method, since it gets the lowest errors, for the three datasets, and the

maximum training time consumed is around 1 second whilst the remaining methods

takes in the order of tens of seconds. To sum up, Table 6.15 provides some guidelines

for the specific scalability aspects considered for the SD datasets. Note that the larger

the number of bullets, the better the behavior.
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Chapter 6. Scalability in feature selection

Table 6.14: Precision, stability and time measures for subset filters on SD datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

F
C

B
F

SD1 0.0000 15552 5.5601 0.9407 1728 17.7571 1.7655 8.1437

SD2 0.0206 15552 5.6811 0.9546 576 17.8004 1.6179 8.1407

SD3 0.0053 15552 5.7787 0.9704 576 17.8314 1.5242 8.1623

C
F

S

SD1 0.1995 5184 6.4969 0.9080 1728 17.4210 31.8743 57.5217

SD2 0.2301 31104 6.5341 0.9121 3456 17.4970 36.2336 64.3233

SD3 0.2162 62208 6.4938 0.9253 576 17.5632 37.6943 67.9754

C
o
n

s SD1 0.1701 10368 6.7155 0.8450 15552 17.1870 9.4680 16.8951

SD2 0.1833 10368 6.6635 0.8750 15552 17.3662 10.3833 18.3579

SD3 0.2461 5184 6.6344 0.8914 15552 17.4645 11.8190 19.3837

IN
T

SD1 0.1570 20736 6.6934 0.8425 15552 17.2295 8.1040 18.6182

SD2 0.2353 5184 6.5664 0.8985 15552 17.4977 10.8081 19.9816

SD3 0.2404 124416 6.5725 0.9095 576 17.5437 16.0517 22.1883

Table 6.15: Overview of the behavior regarding scalability of filters on SD datasets.

Method Error Distance Training time

Chi-Squared •••• •••• •••••
ReliefF •••• •• ••••
InfoGain •••• •••• •••••
mRMR •••• •• •

FCBF ••••• • •••••
CFS ••• • ••
Consistency ••• •• •••
INTERACT ••• •• •••

146



6.2 Scalability of feature selection methods

6.2.3.3 Scalability of wrappers

This section reveals the scalability of wrapper methods. For this sake, we have chosen

three representative classifiers (C4.5, k-NN and naive Bayes, see Appendix I) which

will be used to assess the relative usefulness of the subsets of variables. Notice that

the search strategy is best first, starting with the empty set of attributes and searching

forward. Figure 6.6 displays the results achieved by the wrapper combined with these

three classifiers applied on the Corral dataset. It can be seen that, in terms of error,

C4.5 and k-NN reported an acceptable behavior, although it seems that they are more

affected by the sample dimension and the minimum error is achieved with around 128

samples. The minimum error obtained by the wrapper using naive-Bayes is slightly

higher, but this method appears to be more stable. A similar behavior was also shown

on the remaining datasets (see Table 6.16). The wrapper combined with C4.5 and

k-NN obtained similar results for MinEr, whilst when combined with naive Bayes, it

requires more data to reach Er5%.

Table 6.16: Precision, stability and time measures for wrappers on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

W
-C

4
.5

Corral 0.0548 8192 7.0565 0.5000 4096 25.4117 56.8844 181.8961

Led 0.0439 32768 6.4084 0.5000 4096 23.0851 64.8711 200.3963

Led3 0.1725 131072 11.8689 0.5000 8192 24.2955 50.9306 168.4447

Parity 0.2104 8192 16.4408 0.7742 4096 33.4075 394.2772 616.2489

XOR 0.0975 1024 10.3626 0.6274 1024 30.6118 183.1688 420.8220

W
-k

-N
N

Corral 0.0167 65536 6.1080 0.5200 8192 25.0587 1539.2690 1720.1047

Led 0.0470 16384 5.2805 0.5167 512 21.2260 919.9601 1125.8321

Monk3 0.2217 16384 12.6873 0.5672 2048 28.0120 1567.8623 1670.3355

Parity 0.1993 1024 17.1441 0.7222 512 32.0195 10073.3259 8702.4207

XOR 0.1712 256 15.1980 0.7046 256 31.8317 11076.9449 7814.4760

W
-N

B

Corral 0.1926 4096 10.9833 0.6230 8192 30.0811 157.3330 262.6080

Led 0.0504 32768 5.2008 0.5000 1024 22.5974 110.8897 302.8381

Monk3 0.3083 8192 13.7294 0.6484 256 29.0853 83.4932 186.0066

Parity 0.4385 2048 18.1368 0.9171 128 34.1900 72.6553 194.4969

XOR 0.3838 256 17.1055 0.9052 256 33.9530 71.8749 197.2576

In terms of distance, a similar behavior to that of the error is reported in Figure

6.6. The wrapper combined with C4.5 and k-NN obtained the minimum distance using

around 128 samples, whereas naive Bayes, although being more stable, achieved a higher

minimum distance. Focusing on Table 6.16, it is easy to note that this circumstance

also happened with the rest of the datasets. The most different results were found
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Figure 6.6: Measures of scalability of wrappers in the Corral dataset, showing feature

size vs. sample size

on the training time. According to Table 6.16, the wrapper using C4.5 employed the

lowest time on datasets Corral, Led and Monk3. When combining the wrapper with

naive Bayes, the lowest values were achieved on Parity and XOR, whereas the k-NN

classifier caused the wrapper to consume more training time (around 139 times higher

when comparing the MaxTt value on Parity dataset with those of the k-NN and naive

Bayes learning methods).

Figure 6.7 shows the results of the statistical tests executed to compare the different

wrapper methods based on their scalability properties on all datasets. For MinEr and

MinDi, the use of C4.5 as learning algorithm outperformed those results achieved by

naive Bayes, although the latter presented the best results in terms of Er5% and Di5%.

As for the training time, C4.5 and naive Bayes required significantly less time than

k-NN.
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6.2 Scalability of feature selection methods
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Figure 6.7: Comparison of scalability measures for wrappers (combined with C4.5,

k-NN and naive Bayes)

In light of the above, the best learning algorithm to be combined with the wrapper

seems to be C4.5. Although k-NN shows a good behavior in terms of error and distance,

the training time is quite high. C4.5 achieves a lower error and distance in a shorter

time. To sum up, Table 6.17 provides some guidelines for the specific scalability aspects

considered for wrapper methods. Notice that the larger the number of bullets, the better

the behavior.

Table 6.17: Overview of the behavior regarding scalability of wrappers.

Method Error Distance Training time

W-C45 •••• ••• •••
W-k-NN •••• ••• •
W-NB ••• •• ••
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Chapter 6. Scalability in feature selection

6.2.3.4 Scalability of embedded methods

Finally, this section studies the scalability of two embedded methods: FS-P and SVM-

RFE (see Chapter 2, Section 2.2.2). Figure 6.8c shows the results obtained with Corral

dataset. As can be seen, the maximum training time required by SVM-RFE is around

16000 seconds. This high time is due to the recursive nature of the method so it

prevented its application to the remaining datasets.
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Figure 6.8: Measures of scalability of embedded methods in the Corral dataset, showing

feature size vs. sample size

In terms of error (Figure 6.8 and Table 6.18), the embedded methods seem to be

more affected by the number of samples than of features. Both of them achieved the

minimum error with around 128 samples, but FS-P performed better. Regarding the

distance, their performance is comparable to those of the ranker filters ReliefF and

mRMR, being more affected by the number of features than of samples.

Table 6.18: Precision, stability and time measures for embedded methods on Corral

dataset

MEthod MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt

SVM-RFE 0.0017 16384 5.5982 0.3138 2048 26.0390 17959.8755 7808.8825

FS-P 0.0000 4096 1.6481 0.4422 4096 13.8323 76.1025 116.2191
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6.2 Scalability of feature selection methods

Focusing on the training time, SVM-REF requires a much longer time than FS-P.

For this reason, FS-P seems to be a better option since in the rest of the measures

the performance is similar. However, only one dataset is not enough to draw strong

conclusions. For this reason, FS-P was applied to the remaining datasets.

Tables 6.19 and 6.20 report the eight scalar measures defined in section 6.2.2.3 after

applying the FS-P embedded method to classical and SD datasets, respectively. In

terms of error, FS-P obtains the best results with Corral and Led datasets whilst it

shows a poor performance with non-linear datasets, such as XOR or the Monk problems.

This result may be caused because FS-P uses a linear perceptron so it can only solve

linear problems (see Chapter 3). Regarding stability, FS-P obtains poor results, except

for the case of Led dataset, but at the expense of needing a larger amount of data.

Finally, the highest training times were required by the SD datasets, since they have the

largest number of features. Among the classical datasets (Table 6.19), it is surprising

the maximum training time obtained with Led dataset, which is almost four times that

of the remaining datasets. It can be due because of the fact that Led dataset is the

only multiclass dataset, which complicates the learning process.

Table 6.19: Precision, stability and time measures for embedded method FS-P on

classical datasets

Method MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt

Corral 0.0000 4096 1.6481 0.4422 4096 13.8323 76.1025 116.2191

Led 0.0000 1024 0.7920 0.2765 16384 11.9760 287.0183 435.4861

Monk1 0.5395 2048 11.2919 0.7919 256 16.1382 77.8572 117.4911

Monk2 0.5776 16384 11.9769 0.7718 512 16.0206 77.1672 117.0610

Monk3 0.4983 2048 10.5079 0.7917 2048 15.9776 77.0355 116.9248

XOR 0.3054 2048 9.2897 0.8003 256 16.0837 78.9096 117.9691

Parity 0.2362 32768 10.5824 0.8108 512 16.0578 77.0948 117.3677

Table 6.20: Precision, stability and time measures for embedded method FS-P on SD

datasets

Method MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt

SD1 0.0135 995328 4.6949 0.7888 5184 11.2110 582.1999 695.6317

SD2 0.0884 995328 7.0557 0.6103 1728 10.9029 581.9035 694.7263

SD3 0.1054 995328 7.4857 0.7308 10368 11.1356 578.1531 695.1090
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Table 6.21 provides a summary of the behavior of the two embedded methods

tested, in which the larger the number of bullets, the better the behavior. Notice that

the comparative is not complete, since SVM-RFE only was applied to Corral dataset.

Table 6.21: Overview of the behavior regarding scalability of embedded methods. SVM-

RFE has only been tested with Corral dataset.

Method Error Distance Training time

SVM-RFE ••• ••• •
FS-P •••• •• •••

6.2.3.5 Comparative among filters, wrappers and embedded

This section compares the three different types of feature selection methods according

to their scalability properties. Since it was not feasible to test all the methods on the

same datasets and settings, an in-depth comparative study cannot be accomplished. A

brief analysis focusing on Corral dataset (see Appendix I, Section I.2.1.1) is shown in

Table 6.22.

Table 6.22: Comparative of the scalability properties of filters, embedded and wrappers

on Corral dataset

Method MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt

Chi-Squared 0.0080 32768 9.0826 0.0145 16384 7.8864 6.2475 16.9977

ReliefF 0.0000 2048 4.1311 0.2148 131072 28.7959 547.3706 606.7580

InfoGain 0.0081 65536 9.1260 0.0303 32768 8.8550 6.4418 17.1277

mRMR 0.0081 32768 6.3044 0.2151 131072 29.2121 5.8034 15.9463

FCBF 0.0556 2048 6.5688 0.5000 1024 27.9232 1.5979 14.0284

CFS 0.0556 2048 7.2957 0.5000 2048 29.1369 6.6850 17.7719

Cons 0.0466 8192 6.0037 0.5000 2048 27.0504 12.1497 26.9764

INTERACT 0.0556 1024 6.3456 0.5000 1024 27.6555 12.6862 26.2053

W-C4.5 0.0548 8192 7.0565 0.5000 4096 25.4117 56.8844 181.8961

W-k-NN 0.0167 65536 6.1080 0.5200 8192 25.0587 1539.2690 1720.1047

W-NB 0.1926 4096 10.9833 0.6230 8192 30.0811 157.3330 262.6080

SVM-RFE 0.0017 16384 5.5982 0.3138 2048 26.0390 17959.8755 7808.8825

FS-P 0.0000 4096 1.6481 0.4422 4096 13.8323 76.1025 116.2191
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In terms of error, the embedded methods achieved lower values than wrappers and

filters, except for ReliefF, which obtained a minimum error of 0%. With regard to

the distance, the three types of methods obtained similar results, although is worth

highlighting the good performance of Chi-Squared and InfoGain, being both of them

univariate filters. As for the training time, all the filters except for ReliefF required

lower times than wrappers and embedded, as it was expected. If comparing the wrap-

per and the embedded model, the former combined with C4.5 needed less time than

embedded methods. SVM-RFE is the method which presents the higher training times,

followed by k-NN and naive Bayes combined with the wrapper.

As expected, filters seem to be the best option since, in general, showed a better

performance than embedded and wrappers. However, this comparative was only over

one dataset and there exist some variations in the number of features and samples

tested for each method.

6.3 Summary

When dealing with the performance of machine learning algorithms, most studies are

focused on the accuracy obtained by the algorithm. However, with the advent of high

dimensionality problems, researchers must study not only accuracy but also scalability.

Aiming at dealing with a problem as large as possible, feature selection can be helpful as

it reduces the input dimensionality and therefore the run-time required by an algorithm.

In this chapter, the effectiveness of feature selection on the scalability of training

algorithms for ANNs was evaluated, both for classification and regression tasks. Since

there are no standard measures of scalability, those defined in the PASCAL Large Scale

Learning Challenge were used to assess the scalability of the algorithms in terms of

error, computational effort, allocated memory and training time. Results showed that

feature selection as a preprocessing step is beneficial for the scalability of ANNs, even

allowing certain algorithms to be able to train on some datasets in cases where it

was impossible due to the spatial complexity. Moreover, some conclusions about the

adequacy of the different feature selection methods over this problem were extracted.

Then, an analysis of the scalability of feature selection methods was presented,

an important issue that however has not received much consideration in the literature.

Eight well-known filter-based feature selection algorithms were evaluated, covering both
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ranking and subset methods. Moreover, some representatives of embedded and wrapper

methods were also considered in this study. A suite of ten artificial datasets was

chosen, so as to be able to assess the degree of closeness to the optimal solution in a

confident way. For determining the scalability of the methods, several new measures

were proposed, based not only in accuracy but also in execution time and stability, and

their adequacy was demonstrated. In light of the experimental results, filters seem to

be the most scalable feature selection methods. Specifically, FCBF obtained the best

performance in terms of scalability. As for the ranker methods, ReliefF is a good choice

when having a small number of features (up to 128) at the expense of a long training

time. For this reason, when dealing with extremely-high datasets, Information Gain

demonstrated better scalability properties.
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Novel feature selection methods
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CHAPTER 7
Combination of discretization and feature selection

methods

After analyzing the particularities of feature selection methods and demonstrating their

adequacy on several scenarios, the second part of this thesis is devoted to developing

novel feature selection methods capable of being applied to high dimensional datasets.

The first step is to analyze how preprocessing techniques prior to feature selection can

affect the accuracy of the selection and subsequent classification. Therefore, this chapter

is committed to propose novel methods which take into account the discretization of

the features.

As mentioned in previous chapters, in complex classification domains features or

attributes may contain false correlations, which hinder the underlying process and in

general, the learning task to be carried out. Furthermore, some features may be irrel-

evant and some others may be redundant since the information they add is contained

in other features. These extra features can increase computation time, and can have

an impact on the accuracy of the classifier built. For this reason, these classification

domains seem to be suitable for the application of feature selection methods. Feature

selection methods are adequate for both classification and regression tasks, although

most of the research done is related to classification. In the feature selection field,

it is difficult to find methods that can deal directly with multiple class problems, as

very little research has been done in this aspect (Chidlovskii & Lecerf, 2008; Bruzzone

& Serpico, 2000). In these studies, the multiple class approaches are shown to suffer

from the so-called accumulative effect, which becomes more visible when the number

of classes grows and results in removing relevant and unredundant features. The main

difficulties to be taken into account in multiple class algorithms are the following:

• The data set presents one or several classes that contain a considerable higher

number of samples than the data of the other classes (unbalanced classes).
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• Determining which features are appropriate for each class is complicated, be-

cause feature selection results in a set of attributes that could represent only the

majority classes (Bosin, Dess̀ı, & Pes, 2007).

There are two main approaches for dealing with classification problems that involve

more than two classes. One tries to transform the multiple class problem in several

binary problems, while the other deals directly with the multiple class problem. This

last strategy can present overtraining for those classes that are easily separable or

those classes that are the majority in the dataset, i.e. those classes with a much higher

number of representative samples than the other classes (Forman, 2003). However, the

first strategy also presents some drawbacks, such as how to integrate the information

that comes from each of the binary classifiers, or the fact that there may not exist

enough representation of a specific class in the training set generated from the original

one to train the binary classifier.

On top of this, many filter algorithms are shown to work on discrete data (Liu

& Setiono, 1997). In order to deal with numeric attributes, a common practice for

those algorithms is to discretize the data before conducting feature selection. For both

users and experts, discrete features are easier to understand, use, and explain and

discretization can make learning more accurate and faster (Liu, Hussain, Tan, & Dash,

2002). In general, the results obtained (decision trees, induction rules) by using discrete

features are usually more compact, shorter and more accurate than by using continuous

ones, hence the results can be more closely examined, compared, used and reused. In

addition to the many advantages of having discrete data over continuous one, a suite

of classification learning algorithms can only deal with discrete data. Besides, the well-

known Weka tool (Witten & Frank, 2005), commonly used for the filtering process,

uses discretization by default.

In essence, the process of discretization (Janssens, Brijs, Vanhoof, & Wets, 2006)

involves the grouping of continuous values into a number of discrete intervals. However,

the decision of which continuous values group together, how many intervals to generate,

and thus where to position the interval cutpoints on the continuous scale of attribute

values is not always identical for the different discretization methods.

In this chapter, a method consisting of a combination of discretizers, filters and clas-

sifiers is presented. The main goal of this method is to significantly reduce the number

of features while maintaining the performance of the classifiers, or even improving it.
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Filters were selected because they are fast and more suitable for large data sets. The

first discretization step is required for some filters and its election may influence the

selection done by the filter and thus the performance results achieved by the classifier.

The proposed method will be firstly applied over the KDD (Knowledge Discov-

ery and Data Mining Tools Conference) Cup 99 benchmark dataset (KDD Cup 99

Dataset , n.d.) to test its effectiveness and to compare the results achieved with those

available in the literature, including the KDD Cup 99 winner. The KDD Cup prob-

lem will be considered in its two aspects: binary classification (attack or non-attack)

and multiple class classification (four types of attack and normal patterns). For the

sake of simplicity, the binary problem will be considered first. Some of the classifiers

employed in this research only can work with numerical features, so a conversion tech-

nique is required to transform symbolic features into numerical ones. Then, in order to

reinforce this study, several techniques will be applied. Later, the combinations (dis-

cretizer+filter+classifier) exhibiting better performance results will be applied to the

multiple class approach. As stated before, this problem can be considered by dealing

directly with its multiple class version or by subdividing it into several binary problems.

It will be shown that splitting the problem into several binary problems lead to better

performance results and besides, features needed for each class are easily reflected. It

has to be noticed that different subdivision techniques have been adopted (one versus

rest, one versus one) and also different strategies to unify the results obtained by the

binary classifiers have been used. Besides, to prevent the problem of unbalanced classes,

clearly present in the KDD Cup dataset, an undersampling technique was employed,

i.e., some samples for those classes with a high number of samples were discarded.

The results achieved by the proposed method will illustrate its adequacy because

it outperforms, in most cases, the results existing in the literature, even the KDD

Cup winner, in both its binary and multiclass form. Moreover, the number of features

employed is considerably reduced: 17% in both approaches. Once the effectiveness

of the proposed method is tested on the KDD Cup 99 benchmark dataset, it will be

tested over other challenging scenarios, such as DNA microarray data (see Chapter 4)

and several datasets with multiple classes, which have not received the same amount

of attention as the binary problems.
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7.1 The proposed methodology

In this chapter a combination method for binary and multiclass classification problems

is proposed. The method is divided in three steps, which will be following described.

• First, a discretizer method is applied over the input data, with the aim of solving

problems of unbalanced values, and preparing the attributes of the sample to be

processed by the feature selection algorithm of the next step. Several discretizers

have been chosen to test their influence on the classification problem.

• After discretization, feature selection is carried out using filters.

• Finally, a classifier is applied.

Figure 7.1 illustrates the proposed methodology, showing the specific methods used

in each step throughout this chapter.

Figure 7.1: The proposed methodology.

7.1.1 Discretization

There exist many discretizators in the literature, but in this research the most suitable

for large datasets have been chosen (Y. Yang & Webb, 2002). In this manner, EMD

(Entropy Minimization Discretization), EWD (Equal Width Discretization) and EFD

(Equal Frequency Discretization) were chosen because they are classic algorithms, and

PKID because it is a new approach that works well with large datasets. All of them

are described in the following subsections. Previously, some notation considerations
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are given: suppose a numeric attribute Xi and n training instances for which the value

of Xi is known, the minimum and the maximum value are vmin and vmax respectively.

All the discretization methods first sort the values into ascending order.

7.1.1.1 Entropy Minimization Discretization, EMD

This popular method was created by Fayyad and Irani (1993). EMD evaluates as a

candidate cut point the midpoint between each successive pair of the sorted values.

For evaluating each candidate cut point, the data are discretized into two intervals

and the resulting class information entropy is calculated. A binary discretization is

determined by selecting the cut point for which the entropy is minimal amongst all

candidates. The binary discretization is applied recursively, always selecting the best

cut point. A minimum description length criterion (MDL) is applied to decide when

to stop discretization.

7.1.1.2 Proportional k-Interval Discretization, PKID

PKID is a method created by Y. Yang and Webb (2001). The idea behind PKID is

that discretization bias and variance relate to interval size and interval number. This

strategy seeks an appropriate trade-off between the bias and variance of the probability

estimation by adjusting the number and size of intervals to the number of training

instances. The following compromise is adopted: given a numeric attribute, supposing

we have n training instances with known values for the attribute, we discretize it into
√
n intervals, with

√
n instances in each interval. Thus we give equal weight to both

bias and variance management. Further, with n increasing, both the number and size

of intervals increase correspondingly, which means discretization can decrease both the

bias and variance of the probability estimation. This is very desirable, because if a

numeric attribute has more instances available, there is more information about it.

PKID has greater capacity to take advantage of the additional information inherent to

large volumes of training data.
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7.1.1.3 Equal Width Discretization, EWD

EWD divides the number line between vmin and vmax into k intervals of equal width;

k is a user predefined parameter and usually is set as 10.

A variant of this method is the Bin-log l. In this case, the number of intervals, k, is

established as k = max{1, 2 ∗ log l}, where l is the number of distinct observed values

for each attribute (J. Dougherty, Kohavi, & Sahami, 1995).

7.1.1.4 Equal Frequency Discretization, EFD

EFD divides the sorted values into k intervals so that each interval contains approxi-

mately the same number of training instances. Thus each interval contains n/k (possi-

bly duplicated) adjacent values; k is a user predefined parameter and usually is set as

10.

7.1.2 Feature selection

Correlation-based Feature Selection (CFS), INTERACT and Consistency-based filters

were chosen for this study, with the aim of employing filters that use different perfor-

mance measurements to select the final features. CFS is one of the most well-known and

used filters, INTERACT is a new approach based in the interaction between features

and finally, Consistency-based is a classical algorithm. A short description of each one

can be found in Chapter 2.

7.1.3 Classification

Each combination of discretizer and filter may lead to different performance results

depending on the classifier used, then several classifiers have to be checked. Many

datasets, such as the KDD Cup 99, contain different types of attributes (symbolic,

numerical, binary) and it is well-known that not all classifiers may deal with symbolic

attributes. Therefore, in some cases, a symbolic-conversion is required. Throughout

this chapter, different classifiers will be used. Some of them do not need the symbolic-
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conversion (C4.5, naive Bayes, k-NN, AdaBoost, FVQIT) whereas others do demand

it (one-layer NN, PSVM, MLP). A detailed description of all of them is available in

Appendix I, Section I.5.

7.2 The KDD Cup 99 Dataset

The KDD Cup 99 dataset, which derived from the DARPA intrusion detection sys-

tem (IDS) evaluation dataset (Lippmann et al., 2000), was used for the KDD Cup 99

Competition (KDD Cup 99 Dataset , n.d.). The complete dataset has almost 5 million

input patterns and each record represents a TCP/IP connection that is composed of

41 features that are both qualitative and quantitative in nature (Stolfo, Fan, Lee, Pro-

dromidis, & Chan, 2000). The dataset used in our study is a smaller subset (10% of

the original training set), that contains 494 021 instances and it was already employed

as the training set in the competition. For the test set, we used the original KDD Cup

99 dataset containing 331 029 patterns. Around 20% of the two datasets are normal

patterns (no attacks). As for attack patterns, the 39 types of attacks are grouped into

four categories (Mukkamala, Sung, & Abraham, 2005):

• Denial of Service (DoS) attacks, where an attacker makes some computing or

memory resource too busy or too full to handle legitimate requests, thus denying

legitimate users access to a machine.

• Probe attacks, where an attacker scans a network to gather information or find

known vulnerabilities.

• Remote-to-Local (R2L) attacks, where an attacker sends packets to a machine

over a network, then exploits machines vulnerability to illegally gain local access

as a user.

• User-to-Root (U2R) attacks, where an attacker starts out with access to a normal

user account on the system and is able to exploit vulnerability to gain root access

to the system.

The training and test set percentages for normal activities and for the four attack

types are shown in Table 7.1. The KDD Cup 99 problem can be treated under two

approaches: the binary case, that consists of distinguishing between attack and no
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attack, and the multiple class case, that consists of distinguishing which kind of attack

it is.

Table 7.1: Percentages of distribution of normal activities and different kinds of attacks

in the KDD Cup 99

Type % Train Set % Test Set

Normal 19.69 19.48

DoS 79.24 73.90

Probe 0.83 1.34

R2L 0.23 5.21

U2R 0.01 0.07

As Table 7.1 shows, the percentage of attacks in both datasets is very high, over-

coming 80 %, where most of the attacks belong to type DoS. Furthermore, it is a very

unbalanced dataset, with some classes (such as U2R and R2L) containing very few

samples, which will make their classification difficult during the learning stage.

Table 7.2: Unbalanced continuous attributes of KDD Cup 99 dataset

Feature Min. Max. Mean StdDev Distinct

duration 0 58 329 47.98 707.75 2495

src byes 0 693 375 640 3025.61 988 218.10 3300

dst bytes 0 5 155 468 868.53 33 040.00 10 725

The KDD Cup 99 training dataset (494 021 instances) is a good candidate to feature

selection because of the characteristics of its input attributes. There are two features

that are constant (num outbound cmds and is host login) and some that are almost

constant (land, root shell, num shells . . . ). Apart from constant features, KDD Cup 99

dataset has continuous features that are very skewed and for which a possible solution

can be to discretize numeric data. Some examples of these attributes can be viewed in

Table 7.2, where it is shown the minimum and maximum value of each feature, as well

as its mean, standard deviation and the number of distinct examples.
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7.2.1 Results on the binary case

In general, the users of an intrusion detection system (IDS) are interested in differen-

tiating between normal connections and attack situations at a first stage. Later, they

would like to distinguish the type of attack that they have suffered. In this sense, the

KDD Cup 99 dataset can be considered as a binary problem, detecting normal versus

attack patterns, or a multiple class problem, classifying different types of attacks.

The goal of this research is to reduce the number of features of the KDD Cup

99 dataset in both cases, binary and multiple class, but maintaining the performance

results. Therefore, the proposed method, consisting of a combination of discretizator,

filter and classifier, was applied first, for the sake of simplicity, to the binary case.

Later, it will be applied to the multiple class case.

The distribution of the classes for the binary case can be seen in Table 7.3. It can

be checked that classes are clearly unbalanced, although there exist enough samples of

the minority class (97 278) for the adequate training of the classifiers.

Table 7.3: Percentages of distribution of normal activities and attacks in the KDD Cup

99 training and test datasets for the binary case

Type % Train Set % Test set

Normal 19.69 19.48

Attack 80.31 80.52

Table 7.4 illustrates the results achieved in a previous work by the KDD Cup win-

ner and other authors in the literature (Bolón-Canedo, Sánchez-Maroño, & Alonso-

Betanzos, 2009) using the whole set of features (41). The performance measures used

are the error (percentage of samples incorrectly classified), true positive rate and false

positive rate (see Appendix I, Section I.6).

Different filters (CFS, consistency-based and INTERACT, see Chapter 2) were ap-

plied to achieve a feature reduction. Moreover, some filters require a discretization

step. So, different analysis were carried out to check the influence of the distinct dis-

cretizators and filters. The results obtained show that both discretizators and filters

have a great influence in the results of the classifiers, as can be seen in a previous work

(Bolón-Canedo et al., 2009). In fact, each combination of discretizator and filter leads
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Table 7.4: Results obtained in the binary case over the test set by other authors (in

%).

Method Error True Positives False Positives

KDD winner 6.70 91.80 0.55

5FNs poly 6.48 92.45 0.86

5FNs fourier 6.69 92.72 0.75

5FNs exp 6.70 92.75 0.75

SVM Linear 6.89 91.83 1.62

SVM 2poly 6.95 91.79 1.74

SVM 3poly 7.10 91.67 1.94

SVM RBF 6.86 91.83 1.43

ANOVA ens. 6.88 91.67 0.90

Pocket 2cl. 6.90 91.80 1.52

Pocket mcl. 6.93 91.86 1.96

to a different subset of features. Therefore, it was not possible to determine which

combination was the best and several combinations were tested over the KDD Cup 99

binary dataset.

The classifier stage also affects the performance results, therefore it is necessary to

check several classifiers. Two types of classifiers will be tested: those which can deal

with symbolic attributes and those which cannot. For the latter, notice that a symbolic-

conversion will be required. Next sections will described the experiments related with

this issue.

7.2.1.1 Classifiers without symbolic conversion

This subsection shows the results obtained with two classifiers that can deal with both

numerical and symbolic attributes and so no conversion is needed: C4.5 and naive

Bayes (see Appendix I). In the case of C4.5, the confidence factor parameter was tuned

in order to obtain the best results, which has been set to 0.25 and 0.50.

Table 7.5 shows the best results obtained in a previous work (Bolón-Canedo et al.,

2009), where C4.5 results outperform the KDD winner score. However, in general,

none of the results obtained with naive Bayes improved it and thus only the best result
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achieved is included. The measures employed are again the error, true positive’s rate

and false positive’s rate, computed over the same test set, besides of the number of fea-

tures used. The method applied achieved good results over the binary case, outperform-

ing the KDD winner results in terms of error and true positive rate, while false positive

rate maintains reasonable values (see Table 7.4) with only 17% of the total features. It

is remarkable the result obtained with the combinaton EMD+INT+C4.5(0.50), since

none of the other authors (Table 7.4) have achieved better results than the KDD winner

in all three measures. It must be highlighted the low FP rate, while maintaining the

Error and TP rates. Notice that the FP rate is a measure of immense importance in

determining the quality of an IDS system (Axelsson, 1999).

Table 7.5: Results obtained in the binary case over the test set (in %).

Method Error True False No. of

Positives Positives Features

PKID+Cons+C4.5(0.25) 5.15 94.07 1.90 6

PKID+Cons+C4.5(0.50) 5.14 94.08 1.92 6

EMD+INT+C4.5(0.25) 6.74 91.73 0.44 7

EMD+INT+C4.5(0.50) 6.69 91.81 0.49 7

PKID+Cons+NB 7.99 90.18 0.42 6

7.2.1.2 Classifiers with symbolic conversion

Another three classifiers have been tested over the binary KDD Cup 99: one-layer NN,

PSVM and MLP (see Appendix I). One-layer NN and PSVM were chosen due to their

good performance and reduced time costs while MLP was selected because it is one

of the most employed neural network architectures. Unlike the methods tested before

(C4.5 and naive Bayes), these classifiers need a previous conversion of the symbolic

attributes of the dataset into numerical labels. For this task, the Separability of Split

Value (SSV) criterion based method (Grkabczewski & Jankowski, 2003) was chosen

due to the fact that it is a successful tool for symbolic to real-valued feature mapping.

The results obtained with these methods following the process illustrated in Figure

7.2 (i.e., only the symbolic features selected by filters are converted) are shown in Table

7.6 and compared with the best results obtained by (Bolón-Canedo et al., 2009) with

C4.5 and naive Bayes.
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Figure 7.2: Preprocessing for the classifiers with symbolic conversion.

Table 7.6: Comparison of the results (in %) obtained in the binary case with several

classifiers over the test set.

Method Error True False No. of

Positives Positives Features

EMD+Cons+One-layer 7.78 90.52 0.77 6

EMD+Cons+PSVM 7.78 90.53 0.78 6

EMD+Cons+MLP 8.01 90.18 0.54 6

EMD+INT+C4.5 6.69 91.81 0.49 7

PKID+Cons+NB 7.99 90.18 0.42 6

As can be seen, the results obtained with the three first classifiers of Table 7.6

did not improve those results shown in the previous subsection with naive Bayes and,

specially, with C4.5 (see Table 7.5). Hence, based on these results, it seems better

to use classifiers that do not require symbolic conversion methods, that in fact might

cause information loss.

7.2.2 Results on the multiple class case

The simplest way to classify a dataset with more than two classes is to use a multiple

class classifier. However it is not a very extended choice, because not all the machine

learning algorithms have this capacity. C4.5 and naive Bayes classifiers have turned

to give good results in the binary case and they can deal with multiple classes. This

approach, however, has the risk of focusing on the majority classes (see Table 7.1) and

good results are not expected (Forman, 2003).

Therefore, a more used approach is the one based on multiple binary classifiers.

This approach consists of employing class binarization techniques which reduce the

multiple class problem into a series of binary problems which are solved individually.
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Then, the resultant predictions are combined to obtain a final solution (Khoshgoftaar,

Gao, & Ibrahim, 2005). There are various class binarization approaches proposed in

the literature, and all of them can be summarized using a coding matrix Mb×c, being b

the number of classifiers and c the number of classes. A simple example for a problem

with 4 classes is shown in Figure 7.3. White and black boxes are positive and negative

examples, respectively, while gray boxes represent samples that must be ignored for the

corresponding classifier.
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Figure 7.3: Code matrix for a four-class problem

Once each classifier is individually trained, the global performance must be checked

using a test data set. Then, a test sample x is fed to each learning algorithm that

finds a hypothesis for it. The vector of predictions of these classifiers on an instance

x is denoted as h(x) = (h1(x), . . . , hb(x)) and the yth column of the matrix Mb×c is

denoted by My. Given an instance x, the label y for which the column My is the

closest to h(x) is predicted. In other words, it is predicted the class y that minimizes

the d(M(y),h(x)) for some distance d. Several distance measures can be considered

turning to different results.

Several class binarization techniques (Khoshgoftaar et al., 2005) have been proposed

in the literature. This research, however, is focused on the two more popular ones,

namely One vs Rest and One vs One.

• One vs Rest: This is the most popular class binarization technique, where one

takes each class in turn and learns binary concepts that discriminate that class
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from all other classes. This technique transforms a c-class problem into c two-

class problems. These two-class problems are constructed by using the examples

of class i as the positive examples and the examples of the rest of the classes as

the negative examples. Notice that this technique corresponds to the first four

rows of Figure 7.3.

• One vs One: This class binarization technique consists of learning one classifier

for each pair of classes. The One vs One class binarization transforms a c-

class problem into c(c−1)
2 two-class problems, one for each set of classes {i, j}.

The binary classifier for a problem is trained with examples of its corresponding

classes i, j , whereas examples of the rest of classes are ignored for this problem.

This technique is represented by rows 5-10 in Figure 7.3.

A c-class problem is subdivided into b binary problems according to the matrix

Mb×c, then each problem is solved by using a different classifier that is trained individ-

ually. Given a new sample x, one classifier obtains a probability (p) of assigning that

pattern to a given class and the rest (1−p) to the opposite class. However, in some cases,

a given test sample may not be assigned to any of those classes, because the classifier

was not trained with them (consider for example a pattern of class 3 or 4 in the fifth

classifier (fifth row) in Figure 7.3). Therefore, there are three possible outputs: positive

(+1), negative (-1) or ignored (0). Then, to assign a pattern to the positive or negative

classes, their corresponding probability must be higher than a determined threshold

(p > σ), otherwise the considered output is ignored. Given a test pattern x, each

individual classifier will obtain its corresponding output, h(x) = (h1(x), . . . , hb(x)).

However, a global result must be finally reached. There exist different techniques to

obtain the proper output, two of them use a measure distance between the vector h(x)

and the columns of matrix Mb×c, My and they are subsequently illustrated. Finally,

three different measures were designed ad hoc based on the probabilities.

• Hamming decoding: This technique (Allwein, Schapire, & Singer, 2001) counts

up the number of positions in which the sign of the vector of predictions h(x)

differs from the matrix column My.

• Loss-based decoding: Unlike Hamming decoding, this method (Allwein et al.,

2001) takes into account the magnitude of the predictions which can often be an

indication of a level of confidence as well as the relevant loss function L. The

idea is to choose the label y that is most consistent with the predictions hs(x) in
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the sense that, if instance x were labeled y, the total loss on instance (x, y) would

be minimized over choices of y ∈ {1, . . . , c}.

• Accumulative sum: Considering the learning methods used (NB and C4.5),

for each sample, the binary classifier obtains a probability (p) for the winning

class (positive or negative) while the probability for the remaining class is 1 −
p. Therefore, instead of calculating distances to determine the class from the

b different results, the accumulative probability sum of each class is computed.

Then, the desired output is the one with the highest value.

• Accumulative sum with threshold: This method is a modification of the

previous one and takes under consideration the fact that test patterns include

ignored classes, i.e., classes not used for the learning of the classifier. Then, this

technique only computes those probabilities that are over an established threshold

to guarantee that only clearly winning classes are computed.

• Probability accumulative sum: Previous techniques are more adequate for

one-versus-one binarization because of the existence of ignored outputs. In the

One vs Rest approach, a different technique was employed. Notice that, if all

the classifiers work properly, each pattern of a given class will be recognized by

the classifier of the class, while it will be assigned to class rest by the remaining

classifiers. However, if one of the classifiers does not work well, a conflict appears,

and the same pattern can be assigned to several classes, one for classifier. Again,

the accumulate sum of probabilities was selected to determine the adequate class.

The aim of the experiments that will be presented in this section is to overcome the

KDD winner score, that was measured according to the cost matrix that is shown in

Table 7.7 (Elkan, 2000). The KDD winner obtained a score of 0.2331 and non-winning

entries obtained an average cost per test example ranging from 0.2356 to 0.9414.

As was stated in Table 7.1, the classes are clearly unbalanced in both training and

test set. Normal and DoS classes have enough samples, while the number of instances

available for U2R and R2L is small and, moreover, it is different than in the test set.

In fact, they may suffer from the data shift phenomenon (see Chapter 4, Section 4.2.4).

Then, some classes are clearly difficult to learn, and for that reason it is also required

to compute the detection for each class (true positives).

Table 7.8 displays the best results for the multiple class case, in which the best

score is highlighted in bold face. Notice that the score is calculated according to
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Table 7.7: Cost matrix used in KDD Cup 99 competition

Prediction

Normal Probe DoS U2R R2L
R

ea
l

Normal 0 1 2 2 2

Probe 1 0 2 2 2

DoS 2 1 0 2 2

U2R 3 2 2 0 2

R2L 4 2 2 2 0

the competition cost matrix seen in Table 7.7 and the lower the score, the better the

behavior. First row shows the result obtained by the KDD Winner, second row displays

the best result obtained by a multiple class algorithm (Multi) and third row reports the

result for the one vs rest technique (1vsR). Finally, the last four rows reveal the best

results for the one vs one approach (1vs1) combined with the four different decoding

techniques.

Table 7.8: Best test results obtained with the multiple class algorithms

Combination Decoding technique Score No. of features

KDD winner – 0.2331 41

EMD + INT + C4.5 (Multi) – 0.2344 11

EMD + INT + C4.5 (1vsR) Accumulative sum 0.2324 15

PKID + Cons + C4.5 (1vs1) Sum 0.2132 13

PKID + Cons + C4.5 (1vs1) Sum-with-threshold 0.2209 13

PKID + Cons + C4.5 (1vs1) Loss-Based 0.2167 13

PKID + Cons + C4.5 (1vs1) Hamming 0.2242 13

For the multiclass algorithm, several combinations of discretizators, filters and clas-

sifiers were tested. A total of 13 experiments were conducted, but none of them im-

proved the KDD winner score. However, the best result achieved is close to the KDD

winner result but using a significant reduction in the number of features (see Table

7.8). As for the results achieved with the one vs rest approach (third row of Table 7.8),

one of the combinations improved the KDD winner score with an important reduction

(37 %) of the total number of features.
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The results for the one vs one approach shown in Table 7.8 were obtained employing

the PKID discretizer, the consistency-based filter and the C4.5 classifier, combined with

the four decoding techniques mentioned above. They manage to improve the KDD

winner score using only 32 % of the total features. It is very remarkable the first result,

achieved with the Accumulative Sum decoding technique, since the difference with the

KDD winner score is very wide and exactly the same that the one existing between the

winner and the tenth entry of the competition (Elkan, 2000).

7.2.2.1 Comparison with other authors

There exist several works in the literature (Fugate & Gattiker, 2003; Alonso-Betanzos,

Sánchez-Maroño, Carballal-Fortes, Suárez-Romero, & Pérez-Sánchez, 2007; Mukka-

mala & Sung, 2002) that deal with the KDD Cup 99 problem, so in this subsection

a comparative study will be carried out. In order to compare our results with those

obtained by other authors, it is not possible to use the score employed in the prior

comparisons with the KDD winner (according to the cost matrix seen in Table 7.7),

due to the fact that the confusion matrix is not available for those results and only

the detection percentage of attacks for each class is provided (see Table 7.9). Then,

the same performance measure will be used to make fair comparisons although it is

not possible to perform statistical tests in order to determine if there are significant

differences.

Table 7.9 shows the detection percentage of each class. The six first rows correspond

with results achieved in this work and are compared with those results obtained by the

KDD winner and other authors. The best result for each class is emphasized in bold

font.

The first six results were obtained with the proposed methodology. Comparing our

results with those obtained by the KDD winner, our approach improves the detection

in the minority classes: U2R, R2L and Probe, that are the more difficult classes to

detect (see Table 7.1). Regarding the results obtained by other authors, it can be seen

again that we achieve the best detections in classes R2L and Probe. Note that in any

case, the number of features used by our proposed approach is considerably lower than

those of other authors. This is very important because this reduction in the number

of features causes an important decrement in the data processing and the data storage

costs besides obtaining an interesting improvement in performance.
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Table 7.9: Best results obtained over the test dataset. Comparison with other authors.

Combination Normal U2R DoS R2L Probe

PKID + Cons + C4.5 97.08 25.00 96.08 8.12 73.62

EMD + INT + C4.5 96.36 19.30 94.07 32.87 79.48

EMD + CFS + C4.5 (1) 96.76 21.05 92.54 26.29 86.08

EMD + CFS + C4.5 (2) 96.56 32.89 93.35 5.32 78.18

PKID + Cons + NB (1) 96.63 24.12 90.20 29.98 89.94

PKID + Cons + NB (2) 96.13 11.40 95.12 13.85 96.67

KDD winner 99.45 13.16 97.12 8.40 83.32

5FNs poly 92.45 8.33 96.77 29.43 85.96

5FNs fourier 92.72 10.97 96.86 23.75 85.74

5FNs exp 92.75 13.60 96.85 23.77 85.60

SVM Linear 91.83 21.93 97.38 16.55 81.76

SVM 2poly 91.79 1.75 97.41 14.74 86.44

SVM 3poly 91.67 2.63 97.62 9.35 88.45

SVM RBF 91.83 25.88 97.30 18.29 79.26

ANOVA ens. 91.67 53.94 97.64 8.51 87.52

Pocket 2cl. 91.80 29.82 97.40 14.77 85.84

Pocket mcl. 91.86 54.38 97.65 11.45 86.79

7.3 DNA microarray data

As mentioned in Chapter 4, microarray data classification is a serious challenge for ma-

chine learning researchers because of its high dimensionality and the small sample size.

Typical values are around 10 000 gene expressions and a hundred or less tissue samples.

Theoretically, having more genes should give more discriminating power. However, this

fact can cause several problems, such as increasing computational complexity and cost,

too many redundant or irrelevant genes and estimation degradation in the classification

error. Having much higher number of attributes than instances causes difficulties for

most of machine learning methods, since they cannot generalize adequately and there-

fore, they obtain very poor test performances. To deal with this problem, the need

to reduce dimensionality was soon recognized and several works have used methods of

feature (gene) selection (see Chapter 4).

Besides of the need for feature selection, this research introduce the necessity of a

previous discretization of the data for two main reasons: the first one is to help the

filtering process and the second one is related to the high number of genes with very
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unbalanced values in microarray data. In fact, it will be shown that this preprocess-

ing discretization step will improve the performance of the filter+classifier approaches

employed. Also, and compared with other authors, better or similar performance re-

sults will be achieved by our combination method, that uses simpler classifiers and less

computational resources than those of other authors.

In an attempt to discover features with unbalanced values, a study of ten microarray

datasets was executed, in which unbalanced features were found for all of them. Figures

7.4-7.6 show some examples of unbalanced features and some values of those attributes

can be seen in Table 7.10.

Figure 7.4: An unbalanced gene of GCM dataset

Figure 7.5: An unbalanced gene of CNS dataset

Figure 7.6: An unbalanced gene of Prostate dataset

The proposed method consists of applying a discretizer, a filter and a classifier (see

Section 7.1). Two different discretizers (EMD and PKID, Section 7.1.1), three filters

(CFS, consistency-based and INTERACT, Chapter 2) and three classifiers (C4.5, naive
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Table 7.10: Unbalanced attributes of GMC, CNS and Prostate datasets

Dataset Min. Max. Mean StdDev Distinct

GCM (at. 164) -28 12 683 307.04 1141.79 122

CNS (at. 4503) 46 10 028 854.70 1673.27 39

Prostate (at. 52) 0 75 9.63 12.25 31

Bayes and k-NN, Appendix I) were tested, so as to be able to compare their results,

over these ten well-known microarray datasets with unbalanced features.

A total of ten datasets were chosen for this study. Two of them are multiclass

(Lymphoma and GCM) and their characteristics can be consulted in Appendix I, Table

I.9. The class distribution of GCM dataset is balanced and the percentages in the

training and the test sets are roughly maintained. However, for Lymphoma dataset,

one of the nine classes corresponds with half of the samples and thus, there are some

classes without representation in the training set or in the test set, making more difficult

the adequate classification of the data. The properties of the eight remaining binary

datasets (Leukemia, CNS, DLBCL, Colon, Prostate, Lung, Ovarian and Breast) are

summarized in Appendix I, Table I.8.

As mentioned in Chapter 4, not all the datasets included in this study were divided

to training and test sets. For the sake of comparison, the datasets with only training

set (CNS, DLBCL, Colon, Lymphoma, Ovarian and Breast) were randomly divided

using the common rule 2/3 for training and 1/3 for testing.

7.3.1 Experimental results

After demonstrating the adequacy of the proposed method over the KDD Cup 99

dataset, the aim of these experiments is to prove that it is also adequate for microar-

ray datasets, which have a much larger number of input features and a considerably

lower number of samples available. For this purpose, the results obtained with the pro-

posed method will be compared with the performance achieved by the classifier without

preprocessing.
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Table 7.11: Best results for each binary data set.

Dataset Method Validation Accuracy Test Accuracy No. of genes

Leukemia

C4.5 84.21 91.18 7129

PKID+Cons+C4.5 94.74 94.12 2

NB 94.74 88.24 7129

PKID+CFS+NB 100.00 94.12 18

k-NN 89.47 70.59 7129

EMD+Cons+k-NN 100.00 91.18 1

CNS

C4.5 55.00 60.00 7129

EMD+INT+C4.5 82.50 65.00 47

NB 65.00 60.00 7129

PKID+INT+NB 90.00 75.00 4

k-NN 50.00 55.00 7129

PKID+INT+k-NN 85.00 65.00 4

DLBCL

C4.5 87.50 86.67 4026

EMD+Cons+C4.5 96.88 86.67 2

NB 84.38 93.33 4026

EMD+INT+NB 100.00 93.33 36

k-NN 71.88 73.33 4026

EMD+INT+k-NN 96.88 66.67 36

Colon

C4.5 83.33 90.00 2000

EMD+Cons+C4.5 97.62 85.00 3

NB 54.14 70.00 2000

EMD+Cons+NB 100.00 85.00 3

k-NN 66.67 95.00 2000

EMD+Cons+k-NN 97.62 85.00 3

Prostate

C4.5 85.29 26.47 12 600

PKID+Cons+C4.5 88.24 73.53 2

NB 63.73 26.47 12 600

PKID+Cons+NB 85.29 73.53 2

k-NN 84.31 52.94 12 600

PKID+Cons+k-NN 88.24 73.53 2

Lung

C4.5 71.88 81.88 12 533

EMD+Cons+C4.5 100.00 81.88 1

NB 96.88 95.30 12 533

EMD+Cons+NB 96.88 95.30 1

k-NN 100.00 97.99 12 533

PKID+INT+k-NN 100.00 100.00 40

Ovarian

C4.5 91.72 98.81 15 154

EMD+Cons+C4.5 97.04 98.81 3

NB 92.31 88.10 15 154

EMD+Cons+NB 98.22 100.00 3

k-NN 93.49 92.86 15 154

PKID+CFS+k-NN 95.86 100.00 17

Breast

C4.5 51.28 73.68 24 481

PKID+INT+C4.5 67.95 78.95 3

NB 57.69 36.84 24 481

EMD+Cons+NB 96.15 73.68 5

k-NN 62.82 68.42 24 481

EMD+Cons+k-NN 96.15 73.68 5
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In Tables 7.11 and 7.12 one can see the results over ten microarray datasets obtained

after comparing the performance achieved with a classifier (without preprocessing)

and the best performance obtained by our proposed method grouped by dataset and

classifier. The tables show the validation accuracy (achieved from a 10-fold cross-

validation over the training dataset), the test accuracy (result of applying the model to

the independent test dataset) and the number of genes required for each combination

tested. Table 7.11 shows the results achieved for the binary datasets, while Table 7.12

is devoted to multiclass problems. In both tables, the best test accuracy obtained for

each dataset is emphasized in bold font. When some methods achieve the same test

accuracy, it is highlighted the one which uses the smaller number of features/genes.

Table 7.12: Best results for each multiclass data set.

Dataset Method Validation Accuracy Test Accuracy No. of genes

GCM

C4.5 50.00 52.17 16 063

EMD+Cons+C4.5 61.81 41.30 9

NB 67.36 52.17 16 063

EMD+Cons+NB 68.06 54.35 9

k-NN 58.33 45.65 16 063

PKID+CFS+k-NN 86.11 52.17 1431

Lymphoma

C4.5 70.31 75.00 4026

EMD+Cons+C4.5 85.94 59.38 3

NB 65.63 68.75 4026

EMD+INT+NB 98.44 81.25 160

k-NN 95.31 87.50 4026

PKID+CFS+k-NN 98.44 81.25 160

In most datasets, we can see an improvement in the accuracy over the test dataset

with a drastic reduction in the number of features employed over all the 10 datasets

studied. Colon and Leukemia are broadly studied, but not the remaining datasets,

perhaps due to their difficulties at classification tasks (in Table I.8 we can see that

Prostate and Lung have very different class distributions in training and test sets).

It is important to notice that while binary classification is heavily studied, only

a small amount of work has been made on multiclass classification (Li et al., 2004).

Multiclass classification problem is much more complicated than the binary one for

the DNA microarray datasets. The difficulty lies in the fact that the data are of

high dimensionality and the sample size is very small. Therefore, the classification

accuracy appears to degrade very rapidly as the number of classes increases. In this
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work there are two multiclass datasets: GCM (14 classes) and Lymphoma (9 classes),

and their results can be seen in Table 7.12. This first attempt towards multiclass

classification over microarray datasets has obtained satisfactory results. For GCM, one

of our combinations (Table 7.12, EMD+Cons+NB) achieved the best test accuracy.

On the other hand, Leukemia seems to suffer overfitting (it is important to remind that

some of the classes have no representation in the training or test sets). However, for

the naive Bayes classifier a improvement of 12% is achieved with our approach over the

test set (see Table 7.12).

Table 7.13 shows a summary in order to see clearly the performance of the proposed

method focused in each classifier. “Wins” indicates in how many datasets our proposed

method is better than the original classifier, “Loses” symbolizes in how many datasets

our proposed method is worse than the original classifier and “Draws” shows the number

of times that the performances are the same.

Table 7.13: Summary of Table 7.11

Classifier Wins Loses Draws

C4.5 4 3 3

NB 8 0 2

k-NN 7 3 0

The worse scores obtained by our method are the ones related with C4.5 classifier.

This fact can be explained because of the embedded capacity of C4.5 to select features

to construct its predictive model. Without a gene selection process, the classification

trees built by C4.5 have in most of the cases, the same number of features than the filter

provides. Anyway, our method overcomes or maintains the results in 7 of 10 datasets,

in some cases with a drastic improvement (see Breast and Prostate in Table 7.11).

However, for naive Bayes and k-NN classifiers our results are clearly better than

the ones accomplished by the original classifier. For NB there are some remarkable

improvements (see Ovarian and Breast in Table 7.11) and in this case, the drastic

reduction in the number of genes is real, since the method does not have a embedded

capacity to select features. Something similar happens for k-NN classifier, emphasizing

the results obtained over Leukemia and Prostate datasets (see Table 7.11), although

they are hard to classify due to the unbalanced distribution of their classes.
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Regarding the number of features employed, the reduction is very drastic for all the

classifiers. This is a very interesting fact, because it can facilitate the identification of

the underlying mechanisms relating gene expression to diseases. As the biologists have

much less genes to consider, their problem could be greatly facilitated.

7.3.1.1 Comparison with other authors

In order to see the adequacy of the proposed method over DNA microarray datasets we

compare our results with the results achieved by other authors in the literature. Never-

theless, it is impossible to do a equivalent comparison, because different methods were

employed by the different authors to test the effectiveness of their techniques. Tables

I.8 and I.9 in Appendix I indicate the number of samples and class distribution of the

train and test set used in this research (such as they appear in their original references

or, when only the training set was provided, using the common rule 2/3 for training and

1/3 for testing). In other works, new train and test datasets were generated by joining

the original ones and randomly dividing them using 90%-10% proportion. Therefore,

the training and test sets employed by other authors are notoriously different from our

sets; apart from the number of samples considered for the training (for example, Lung

data set has a 18%-82% train-test division), the class distribution problem may be par-

tially settled by the union of both sets (see Prostate data set in Table I.8). Obviously,

it is much more difficult to achieve good performance results over the original test set.

This fact can explain the low values of test accuracy obtained by the proposed method

in some data sets. On the contrary, showing the validation accuracy is advantageous

for our method because our validation samples have been seen by the discretization and

filtering steps, although not by the classifier. For these reasons, both values (validation

and test) are to be displayed in Tables 7.14 and 7.15. Table 7.14 shows a comparative

study among the test results obtained by Ruiz et al. (2006) and the validation and test

results obtained by our proposed approach. They performed a 10-fold cross validation

with the datasets Colon, Leukemia, Lymphoma and GCM to test the efficacy of their

wrapper method, called BIRS (Best Incremental Ranked Subset).

For each dataset, the results achieved by all three classifiers are shown. For each

classifier, a comparison between the score obtained by BIRS (first row) and the best

accomplished by our proposed method (second row) can be seen. For both binary class

data sets, our performance results improve or maintain those obtained by Ruiz et al.

(2006), using a smaller or similar number of genes, except in the Leukemia data set
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Table 7.14: Comparison with Ruiz et al.

Dataset Method
Accuracy

No.genes
Val. Test

Leukemia

BIRS+C4.5 88.57 1.20

PKID+Cons+C4.5 94.74 94.12 2.00

BIRS+NB 93.04 2.50

PKID+CFS+NB 100.00 94.12 18.00

BIRS+k-NN 93.04 3.30

EMD+Cons+k-NN 100.00 91.18 1.00

Colon

BIRS+C4.5 83.81 2.90

EMD+Cons+C4.5 97.62 85.00 3.00

BIRS+NB 85.48 3.50

EMD+Cons+NB 100.00 85.00 3.00

BIRS+k-NN 79.76 6.30

EMD+Cons+k-NN 97.62 85.00 3.00

GCM

BIRS+C4.5 46.84 9.80

EMD+Cons+C4.5 61.81 41.30 9.00

BIRS+NB 67.37 44.00

EMD+Cons+NB 68.06 54.35 9.00

BIRS+k-NN 58.95 37.00

PKID+CFS+k-NN 86.81 52.17 1431.00

Lymphoma

BIRS+C4.5 80.00 8.80

EMD+Cons+C4.5 85.94 59.38 3.00

BIRS+NB 82.14 10.30

EMD+INT+NB 98.44 81.25 160.00

BIRS+k-NN 85.56 16.40

PKID+CFS+k-NN 98.44 81.25 160.00
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using PKID+CFS. Multiple class data sets are more difficult to deal with and, although

the validation results were promising, the accuracy decreases in test set. It is important

to note that the GCM data set has 14 classes and only 146 samples were used to train

our model (171 by BIRS method). Lymphoma data set has very different representation

of classes in the original train and test sets. It has a class with no representation in the

train set, besides two classes with 1 and 2 samples, respectively. However, these three

classes have 9 samples in the test set. So, considering the original data distribution,

there are 27 samples that are biased towards being erroneously classified.

These results represent an important achievement, because wrappers tend to ob-

tain better performances than filters (at the expense of a higher computational cost).

Nevertheless, our proposed method achieves similar or even better scores for binary

class data sets, demanding less computational resources. The multiple class problems

present heterogeneous results. However, it must be borne in mind that the validation

and test results of our method are not direly comparable with those of Ruiz et al., be-

ing the first results (validation) advantageous for our method, while the second (test)

results are clearly advantageous for their method, due to the different divisions made

in both studies.

Table 7.15 shows a comparison with the results obtained by Alonso-González, Moro,

Prieto, and Simón (2010), who executed 15 repetitions where 90% randomly selected

instances were used for training and the remaining 10% for testing. Again, their results

will be compared with our validation and test results. They combined feature selection

techniques with several classifiers and chose the combination with best accuracy for

several binary data sets. For each data set, the first row corresponds with the best

result achieved by Alonso-González et al. (2010) and the second row corresponds with

the best result obtained with the method proposed in this work. For the sake of brevity,

only the best combination for each data set is shown.

The method proposed herein reduces considerably the number of genes required, ob-

taining the best accuracy for some data sets, although decreasing it for others. In those

cases in which the accuracy is lower (see Table 7.15, Leukemia data set) the reduction

in the number of genes is considerable (from 90 to 2), and also the number of samples

used for train and test is very different for both methods (52% - 48% vs. 90% - 10%,

38 samples used for training with our method vs. 65 samples used by Alonso-González

et al. (2010)). This data distribution together with the high number of features has

an influence on the performance results. The most noteworthy improvement is the one

achieved with Breast data set, that surpasses the one obtained by Alonso-González
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et al. (2010) in more than 8% and moreover reducing the genes needed from 50 to

3. Therefore, our method presents similar accuracy results that the one proposed by

Alonso-González et al. (2010), which does not include discretization as a previous step.

Table 7.15: Comparison with Alonso-González et al.

Dataset Method
Accuracy

No.genes
Val. Test

Leukemia
SVM-RFE+3-NN 100.00 90

PKID+Cons+C4.5 94.74 94.12 2

Breast
ReliefF+SVM 70.52 50

PKID+INT+C4.5 67.95 78.95 3

CNS
SVM-RFE+SVM 75.49 100

PKID+INT+NB 90.00 75.00 4

Colon
Random+SVM 88.41 60

EMD+Cons+NB 100.00 85.00 3

DLBCL
ReliefF+NB 98.67 120

EMD+INT+NB 100.00 93.33 36

Lung
SVM-RFE+NB 99.63 100

PKID+INT+k-NN 100 100 40

Ovarian
SVM-RFE+3-NN 100 10

EMD+Cons+NB 98.22 100 3

Prostate
SVM-RFE+SVM 95.39 180

PKID+Cons+k-NN 88.24 73.53 2

7.3.1.2 Results obtained by a classifier based on information theoretic

learning

Local modeling classifiers have not been prodigally applied to microarray-based datasets.

For this reason, the study presented in this section is devoted to the application of the

FVQIT (Frontier Vector Quantization using Information Theory) local modeling clas-

sifier (Mart́ınez-Rego, Fontenla-Romero, Porto-Dı́az, & Alonso-Betanzos, 2009) com-

bined with discretization and feature selection methods to several DNA microarray

datasets.
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The classification method used is a supervised algorithm for binary classification.

It is based on local modeling and information theoretic learning (Mart́ınez-Rego et al.,

2009). The algorithm works in two stages. First, a set of nodes or PEs (Processing

Elements) is set on the frontier between classes in such a way that each of these nodes

defines a local model. Then, a one-layer neural network is trained in each local model.

Therefore, the final system consists of a set of local experts, each of which is trained to

solve a subproblem of the original. In this manner, the method improves its general-

ization ability benefiting from a finer adaptation to the characteristics of the training

set.

The proposed method has been tested extensively over twelve binary DNA microar-

ray data sets (Brain, Breast, CNS, Colon, DLBCL, GLI, Leukemia, Lung, Myeloma,

Ovarian, Prostate and SMK). The number of features and samples for each data set can

be consulted in Appendix I, Table I.8. Some of these data sets are originally divided in

training and test, but some are not. So first, and similar to what has been previously

done in this section, Brain, Breast, CNS, Colon, DLBCL, GLI, Ovarian, Myeloma and

SMK data sets have been divided using 2/3 for training and 1/3 for testing. A 10-fold

cross-validation is performed upon the training sets, in order to estimate the validation

error to choose a good configuration of parameters for the classification algorithms.

In the following experiments the FVQIT method is compared with other classifiers

with the objective of finding out which classifier obtains the best performance. Thus,

six well-known machine learning classifiers which can be consulted in Appendix I –

naive Bayes (NB), k-Nearest Neighbor (k-NN), C4.5, Support Vector Machines (SVM),

Multi-Layer Perceptron (MLP) and AdaBoost (AB) – are applied over the filtered

datasets. Two discretizers will be used – Entropy Minimization Discretization (EMD)

and Proportional k-Interval Discretization (PKID) – in combination with three filters

– Correlation-based Feature Selection (CFS), consistency-based and INTERACT.

Table 7.16 shows the estimated test errors (TE in the table) as well as the sensitivity

(Se) and specificity (Sp) rates – in percentage – and the number of features (NF) selected

by each method tested (see Appendix I, Section I.6). Also, the best result obtained for

each dataset is emphasized in bold font. Despite having executed all six combinations

of discretizer + filter, only the best result for each classifier in each data set is shown.

As can be seen in Table 7.16, the FVQIT method obtains good performance on all

data sets, with an adequate number of selected features. Specially remarkable are the

results obtained on the datasets DLBCL and Leukemia, where the FVQIT classifier is
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Table 7.16: Best results on microarray datasets.

Dataset FVQIT SVM NB MLP AB k-NN C4.5

Brain

TE 0.00 14.29 14.29 28.57 0.00 0.00 0.00

Se 100.00 100.00 100.00 0.00 100.00 100.00 100.00

Sp 100.00 83.33 83.33 71.43 100.00 100.00 100.00

NF 1 45 45 1 1 1 45

Breast

TE 21.05 21.05 26.32 21.05 36.84 26.32 21.05

Se 75.00 83.33 83.30 83.33 85.71 83.30 66.70

Sp 85.71 71.43 57.10 71.43 50.00 57.10 100

NF 17 119 5 17 17 5 3

CNS

TE 25.00 35.00 25.00 35.00 35.00 35.00 35.00

Se 69.20 71.43 69.20 68.75 68.75 69.20 76.90

Sp 85.70 50 85.70 50.00 50.00 57.10 42.90

NF 4 60 4 60 60 4 47

Colon

TE 10.00 10.00 15.00 40.00 15.00 15.00 15.00

Se 80.00 80.00 87.50 50.00 77.78 87.50 87.50

Sp 100.00 100.00 83.30 61.11 90.91 83.30 83.30

NF 12 12 3 12 3 3 3

DLBCL

TE 0.00 6.67 6.67 6.67 13.33 6.67 13.33

Se 100.00 100.00 85.70 100.00 100.00 85.70 85.70

Sp 100.00 88.89 100.00 88.89 80.00 100.00 87.50

NF 36 36 36 47 47 36 2

GLI

TE 10.71 14.29 10.71 17.86 17.86 14.29 21.43

Se 85.71 85.00 85.71 78.26 80.95 81.82 75.00

Sp 100.00 87.50 100.00 100.00 85.71 100.00 100.00

NF 113 23 23 23 3 122 3

Leukemia

TE 0.00 2.94 5.88 5.88 8.82 8.82 5.88

Se 100.00 100.00 100.00 92.86 86.67 92.90 92.86

Sp 100.00 95.24 90.00 95.00 94.74 90.00 95.00

NF 2 18 18 2 1 1 2

Lung

TE 0.67 1.34 4.70 0.67 18.12 0.00 18.12

Se 100.00 99.26 94.80 99.26 96.52 100.00 82.80

Sp 93.75 93.33 100.00 100.00 32.35 100.00 73.30

NF 40 40 1 40 1 40 1

Myeloma

TE 21.05 21.05 21.05 21.05 24.56 29.82 19.3

Se 84.00 81.48 81.48 80.36 80.77 82.20 80.70

Sp 42.86 33.33 33.33 0.00 20.00 25.00 0.00

NF 2 40 2 2 7 2 2

Ovarian

TE 0.00 0.00 0.00 0.00 0.00 0.00 1.19

Se 100.00 100.00 100.00 100.00 100.00 100.00 98.10

Sp 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NF 3 3 3 37 17 3

Prostate

TE 20.59 73.53 26.47 23.53 23.53 26.47 26.47

Se 56.25 26.47 0.00 100.00 100.00 0.00 0.00

Sp 100.00 0.00 100.00 75.76 75.76 100.00 100.00

NF 64 3 2 3 11 2 2

SMK

TE 25.81 33.87 40.32 32.26 24.19 33.87 33.87

Se 78.79 71.88 67.85 89.47 79.41 75.00 68.42

Sp 68.97 60.00 52.94 58.14 71.43 58.82 62.50

NF 21 3 3 21 93 21 3
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Table 7.17: Ranking of test errors for each method in the comparative study.

Dataset FVQIT SVM MLP NB k-NN C4.5 AB

Brain 1st 5th 7th 5th 1st 1st 1st

Breast 1st 1st 1st 5th 5th 1st 7th

CNS 1st 3rd 3rd 1st 3rd 3rd 3rd

Colon 1st 1st 7th 3rd 3rd 3rd 3rd

DLBCL 1st 2nd 2nd 2nd 2nd 6th 6th

GLI 1st 3rd 5th 1st 3rd 7th 5th

Leukemia 1st 2nd 3rd 3rd 6th 3rd 6th

Lung 2nd 4th 2nd 5th 1st 6th 6th

Myeloma 2nd 2nd 2nd 2nd 7th 1st 6th

Ovarian 1st 1st 1st 1st 1st 7th 1st

Prostate 1st 7th 2nd 4th 4th 4th 2nd

SMK 2nd 4th 3rd 7th 4th 4th 1st

Average 1.25 2.92 3.17 3.25 3.33 3.83 3.92

the only method able to achieve 0% of test error. The result obtained on the Prostate

data set is also important. Its test set is unbalanced (26% of one class and 74% of the

other). C4.5, naive Bayes and k-NN are assigning all the samples to the majority class

and SVM is assigning all the samples to the minority class, whereas FVQIT is able to

do something different and better, which results in a lower test error.

In Tables 7.17, 7.18 and 7.19 a ranking of the test errors, sensitivities and speci-

ficities, respectively, is shown. The ranking assigns a position between 1 and 7 to each

method in each data set, taking into account the ties among them.

In Table 7.17 the proposed method obtains the best results for all data sets except

for three of them, where it gets the second best results. In average, the proposed

method is clearly preferable above the other methods studied. Tables 7.18 and 7.19

show that our method is the most specific (it correctly identifies most of the negatives)

and the most sensitive (it correctly identifies most of the positives). Therefore, in light

of the above, we can conclude that the FVQIT classifier is suitable to be combined with

discretizers and filters to deal with problems with a much higher number of features

than instances, such as DNA microarray gene-expression problems.
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7.4 Multiple class datasets

Table 7.18: Ranking of sensitivity rates for each method in the comparative study.

Dataset FVQIT SVM k-NN NB AB MLP C4.5

Brain 1st 1st 1st 1st 1st 7th 1st

Breast 6th 2nd 2nd 2nd 1st 2nd 7th

CNS 3rd 2nd 3rd 3rd 6th 6th 1st

Colon 4th 4th 1st 1st 6th 7th 1st

DLBCL 1st 1st 5th 5th 1st 1st 5th

GLI 1st 3rd 4th 1st 5th 6th 7th

Leukemia 1st 1st 1st 1st 7th 5th 5th

Lung 1st 3rd 6th 6th 5th 3rd 7th

Myeloma 1st 3rd 3rd 3rd 5th 7th 6th

Ovarian 1st 1st 1st 1st 1st 1st 7th

Prostate 3rd 4th 5th 5th 1st 1st 5th

SMK 3rd 5th 4th 7th 2nd 1st 6th

Average 2.17 2.50 2.75 3.00 3.42 3.92 4.83

Table 7.19: Ranking of specificity rates for each method in the comparative study.

Dataset FVQIT NB k-NN C4.5 SVM MLP AB

Brain 1st 5th 1st 1st 5th 7th 1st

Breast 2nd 5th 5th 1st 3rd 3rd 7th

CNS 1st 1st 3rd 7th 4th 4th 4th

Colon 1st 4th 4th 4th 1st 7th 3rd

DLBCL 1st 1st 1st 6th 4th 4th 7th

GLI 1st 1st 1st 1st 6th 1st 7th

Leukemia 1st 6th 6th 3rd 2nd 3rd 5th

Lung 4th 1st 1st 6th 5th 1st 7th

Myeloma 1st 2nd 4th 6th 2nd 6th 5th

Ovarian 1st 1st 7th 1st 1st 1st 1st

Prostate 1st 1st 1st 1st 7th 5th 5th

SMK 2nd 7th 5th 3rd 4th 6th 1st

Average 1.42 2.92 3.25 3.33 3.67 4.00 4.42
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Chapter 7. Combination of discretization and feature selection methods

7.4 Multiple class datasets

In the previous sections, the results obtained with the proposed combination method

have been presented, both over binary and multiclass datasets. However, while binary

classification problems are studied intensively in general, only very few works deal with

multiclass classification. In order to broaden the scope of this research and present

more reliable conclusions, a exhaustive study over 21 different multiclass datasets will

be carried out.

The direct multiple approach and the two multiple binary approaches, with and

without feature selection, and with the different methods of discretizers, filters and

classifiers are tested. A suite of 21 different datasets were selected (see Appendix I,

Table I.4), attempting to include several aspects such as different number of classes,

different number of samples, different ratios features/samples, unbalanced data sets,

etc. Specifically, there are 4 data sets with clearly unbalanced classes: Glass, Connect-

4, Dermatology and Thyroid (see details in Appendix I, Section I.2). Since the Glass

dataset has 3 out of 6 classes with very reduced number of samples (lower than 20),

an oversampling technique has been applied to it to ensure an adequate learning of the

classifiers. Oversampling techniques, as explained in Chapter 4, Section 4.2.2, creates a

superset of the original dataset by replicating some instances or creating new instances

from existing ones.

A 10-fold cross-validation was used to obtain results in percentage of correct clas-

sification and in features selected by the methods that use filters. For each data set,

in order to check if the several methods used exhibit statistically significant differences

in performance, statistical tests were applied (see Appendix I, Section I.4). The prefix

MFeat employed in some data sets of the tables of this section means Multi-feature,

whereas the prefix MLL in Leukemia data set denotes the type of leukemia being tack-

led. Both prefixes will be ignored in the rest of this study.

The methodology for the experiments is the one explained in Section 7.1. Four

different discretizers (EWD, EFD, EMD and PKID, Section 7.1.1), two filters (CFS

and consistency-based filter, Chapter 2) and two classifiers (C4.5 and naive Bayes,

Appendix I) were tested. These classifieres were selected because both of them can

be used for the direct multiclass approach. Besides, their use of computer resources is

affordable, an important factor in our study due to the high dimensionality of some of

the data sets employed.
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7.4 Multiple class datasets

7.4.1 Experimental results

For each data set, 16 different combinations with feature selection and 8 without filter-

ing were used for each approach considered. Then, there are 24 performance results for

both multiclass and One vs Rest approach and, moreover, 96 (24 × 4 union techniques,

see Section 7.2.2) One vs One results. Trying to show all results becomes intractable,

so the best results for each scheme with and without feature selection are shown. It

turns to 12 different results for each data set. As an example, in Figure 7.7 the results

obtained for the Thyroid data set are shown. As it can be seen, the best performance

with the smallest set of features is obtained by the One vs One approach using the

sum method to make the union of the multiple binary classifiers and the combination

EM+Cons+C4.5. The precision obtained was 99.52±0.34 using 5 features (the number

of attributes used by this approach is 23.81% of the total).
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Figure 7.7: Best results obtained for the Thyroid data set. Percentage of features

selected is represented at the left y axis, while on the right side, the accuracy obtained

by the approach is drawn. On the x axis, the best results for each approach without

and with feature selection are displayed.

In any case, Figure 7.7 shows that all approaches in this data set obtained good

results when using feature selection. Both multiclass and One vs One approaches (using

sum and sum with threshold as union techniques) achieved better accuracy values using

feature selection than not using it. On the other hand, two of the One vs One versions

(using Hamming and loss-based) and the One vs Rest approach obtained lower values

for the accuracy by using feature selection. This latter case is the one with the lowest

accuracy value when feature selection is applied (99.23 ± 0.36), a slightly lower value

than using the same approach without feature selection (99.44 ± 0.34). However, the

difference is not statistically significant and the reduction in the number of features

used is important (21 vs 8).
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Figure 7.8: Multiple comparison results using all features (ALL) and the features se-

lected by the multiple classes (MC), the One vs Rest(1R) and One vs One (11) ap-

proaches for the Thyroid data set

Figure 7.8 shows the result of applying a multiple comparison function (0.05 sig-

nificance level) between the number of features selected by the approaches multiclass,

One vs Rest and One vs One Sum (for the sake of completeness also the set containing

all features was included) for the Thyroid data set. The graph displays each group

mean represented by a symbol and an interval around the symbol. Two means are

significantly different if their intervals are disjoint, and are not significantly different

if their intervals overlap. Therefore, it can be seen that there is a significant statisti-

cal difference among the approaches with and without feature selection. Notice that

these differences are not so notorious as bars in figure 7.7 may suggest because X-axis

denotes average group ranks. Ranks are found by ordering the data from smallest to

largest across all groups, and taking the numeric index of this ordering. The rank for

a tied observation is equal to the average rank of all observations tied with it. So, in

figure 7.8, 40 different values were ranked (10 values, one per fold, for each one of the

4 approaches considered). Clearly, there are 10 tied values at the last positions of this

rank, one per fold of the approach with all features. On the other hand, the feature

subset returned by the One vs One approach is most of the times at the top.

The important reduction in the number of necessary attributes achieved by the

feature selection methods make their use worthwhile, specially in those cases in which

the elimination of features can contribute to better explanation of clinical situations,

such as it is the case in some data sets used in this work (i.e., Leukemia, Thyroid,...).

So, the results of the Leukemia dataset constitute another interesting example, since it

has a much higher number of features (12582) than samples (57). The results obtained
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7.4 Multiple class datasets

for the Leukemia data set can be seen in Figure 7.9. Again, better results are obtained

by the feature selection versions of the methods, and the best is that of the One vs Rest

approach. Although accuracy is the same for multiclass with feature selection, and

One vs Rest with and without feature selection, the drastic reduction in the number of

features needed (108 out of 12582) makes it worthwhile to use EWD+CFS+NB.
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Figure 7.9: Best results obtained for the Leukemia data set. Percentage of features

selected is represented at the left y axis, while on the right side, the accuracy obtained

by the approach is drawn. On the x axis, the best results for each approach without

and with feature selection are displayed.

7.4.1.1 Analysis of multiclass versus multiple binary approaches

In order to be able to establish a general comparative picture between all methods

and both alternatives, in Table 7.20 the results obtained for all 21 data sets by the

Multiclass, One vs Rest and One vs One approaches with (FS) and without (without

FS) feature selection are shown. For the latter approach, only the results achieved by

the sum as union method are shown, because it is the one obtaining the best results

in average. A column labeled Rk has been added with the idea of detecting which

approximation is the best in average. To do this, the 12 different approaches are

listed in order of percentage obtained for each data set. Subsequently, the average

ranking position is computed for each of the 12 approaches, so as to compare the

different methods. This value is shown in the last row of the table. Also, the average in

accuracy is displayed for each method in the previous row. It is necessary to note that

the ranks are computed over all the 12 approaches, although only the best 6 of them

are shown in the table. From results in Table 7.20 it can be concluded that, although

the multiclass approach appears to behave better in number of features selected and

with similar accuracy than the alternative multiple binary classifiers, the approach with

the best average results, in both ranking and accuracy, is One vs One using sum and
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feature selection. The ranking value of the latter, 3.9, is clearly separated from the

rest, that obtain values higher than 5. The same behavior can be observed for the

accuracy, in which the best value is obtained again by One vs One using sum and

feature selection, although in this case the difference with the other methods is smaller.

Notice that the scheme One vs One was not carried out for the Vowel data set, because

its 10 different classes will imply the training of 45 classifiers in this approximation.

A deeper analysis the properties of the datasets used (see Appendix I) suggests that

the One vs One approach clearly surpasses the others when there exists a high ratio

number of samples/number of features and enough samples per class. In general, the

One vs Rest approximation exhibits a poor behavior, even when using feature selection,

but surprisingly it achieves the best results when leading with the Leukemia data set

that has a very low ratio number of samples/number of features. Besides, the results

obtained by this approach worsen as the number of classes increases. This is due to

the consequent unbalanced division into positive and negative classes for each of its

classifiers.

The good results achieved by the multiclass approach were unexpected and a further

analysis was done in order to get more insight. It is important to remember that

different combinations of discretizer, filter and classifier were tested for each approach

and the best combination was selected for each one. An example showing all the

combinations for the Factor data set is depicted in Table 7.21. The first block of rows

of this table shows the results achieved when using the C4.5 classifier, while the last

block is devoted to the naive Bayes classifier. The best accuracy obtained for each

combination is emphasized in bold font. The last row indicates the average accuracy

achieved by each approach. It can be seen that the best accuracy is obtained by the

combination of EMD + CFS + C4.5 using the multiclass approach. However, the

last row denotes that the One vs One scheme achieves the best result in average, and

moreover, this scheme obtains the best accuracy in 12 of 16 combinations, whereas

the multiclass approach only gets the best values in 3 of them. Table 7.22 shows

similar results for Dermatology and Karhounen data sets, but summarized. For each

data set, the first row shows the values for each approach when the best accuracy is

achieved (EFD+CFS+NB combination for Dermatoloy data set and EWD+CFS+NB

combination for Karhounen data set). The second row indicates the mean average.

Again, the multiclass approach gets the best performance result in a combination,

however it is clearly surpassed by the One vs One scheme when focusing on averages.

192



7.4
M

u
ltip

le
class

d
atasets

Table 7.20: Best results for each data set.

Multiclass 1VsRest 1vs1 Sum

Without FS FS Without FS FS Without FS FS

Acc Rk Acc Rk % Feat Acc Rk Acc Rk % Feat Acc Rk Acc Rk % Feat

Iris 95.99±3.44 6 97.99±3.22 1 50.00 96.00±6.44 3 96.65±3.51 2 75.00 94.00±7.34 9 96.00±4.66 3 50.00

Vehicle 69.73±6.02 8 71.62±4.33 2 38.89 72.11±4.83 1 67.60±6.12 12 100 71.27±4.70 3 71.05±6.23 4 100

Wine 98.88±2.34 2 98.33±2.68 3 84.62 98.3±2.74 6 97.71±4.83 10 100 97.77±3.88 7 97.19±2.96 11 53.85

Waveform 80.98±1.72 10 80.86±1.82 11 71.42 79.78±1.78 12 82.36±1.76 6 95.23 81.02±1.72 8 82.64±1.50 4 90.47

Segmentation 91.38±1.99 12 92.42±2.07 9 63.15 92.12±1.96 11 92.42±2.25 9 94.73 94.31±1.61 5 94.37±1.54 4 84.21

Glass 73.83±8.56 9 70.15±9.06 11 77.77 72.01±8.20 10 68.83±8.51 12 100 85.81±4.58 3 85.34±8.51 4 100

Connect 4 80.94±0.74 2 81.16±0.51 1 83.33 80.61±0.50 3 80.61±0.51 3 97.62 80.38±0.56 5 80.26±0.55 8 97.62

Dermat. 98.35±2.31 4 98.91±1.89 1 67.64 97.79±2.87 11 97.00±2.36 12 76.47 98.07±2.28 8 98.34±1.93 7 94.11

Vowel 74.04±5.15 2 74.64±3.67 1 84.61 54.04±5.37 4 64.44±4.82 3 84.61 - ± - 0 - ± - 0 -

KDDSC 96.99±2.19 9 96.16±2.83 10 91.66 95.00±1.76 11 82.33±19.11 12 96.66 97.00±2.19 6 98.33±1.11 1 95.00

Splice 95.74±0.94 9 96.08±1.57 6 55.74 96.14±1.00 3 95.89±1.63 8 55.73 96.21±0.82 1 96.14±1.12 3 63.93

Thyroid 99.28±0.60 10 99.44±0.56 3 28.57 99.23±0.34 11 99.44±0.36 3 38.09 99.52±0.44 1 99.44±0.34 3 23.81

Optdigits 92.67±1.05 8 92.62±0.69 10 57.81 92.62±1.91 10 91.68±1.55 12 85.93 93.83±1.94 5 94.19±1.04 3 84.37

Pendigits 89.61±0.93 11 89.32±0.93 12 62.50 93.50±1.21 8 93.40±1.10 9 100 95.78±0.65 1 94.15±1.40 6 100

Landsat 85.27±1.40 8 84.75±1.45 12 88.88 84.82±2.14 11 84.98±1.57 9 100 86.89±1.21 3 87.10±1.36 1 100

Karhounen 92.50±1.90 4 93.10±1.64 1 92.18 92.50±1.56 4 90.95±1.78 8 100 89.75±2.58 10 92.50±2.27 4 100

Factor 93.30±1.70 6 95.90±1.32 1 49.53 88.70±2.2 8 92.90±2.52 7 84.72 88.00±2.51 10 95.65±1.85 2 99.07

Fourier 77.40±2.75 9 78.60±1.76 3 69.73 77.10±2.54 10 76.25±2.40 12 98.68 78.40±2.36 4 78.90±3.71 1 88.15

Pixel 93.50±1.24 4 93.30±1.18 5 57.50 91.70±1.33 11 91.15±1.39 12 90.00 92.95±1.42 7 94.15±1.05 2 97.91

Zernike 72.05±1.97 11 72.35±3.68 9 68.08 71.65±2.40 12 72.15±3.44 10 95.74 75.20±2.62 1 74.90±4.21 2 100

Leukemia 91.33±12.09 12 96.67±7.03 1 4.79 96.67±7.02 1 96.67±7.03 1 0.86 93.33±8.61 5 93.33±11.65 5 0.70

Accuracy 87.80 88.30 86.78 86.45 89.47 90.20

Ranking 7.43 5.48 7.67 8.19 5.10 3.90
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Table 7.21: Results in accuracy obtained for Factor data set. Average accuracies are

shown in last row of the table.

C4.5 Classifier

Multiclass 1vsRest 1vs1 Sum

EWD+CFS 95.00 ± 1.81 92.150 ± 2.30 94.65 ± 2.07

EFD+CFS 94.65 ± 1.47 91.50± 1.83 94.65 ± 1.55

PKID+CFS 92.50 ± 2.12 90.85 ± 1.93 94.25 ± 1.21

EMD+CFS 95.90 ± 1.33 92.90 ± 2.53 95.65 ± 1.86

EWD+CBF 84.90 ± 3.00 90.45± 2.73 92.35 ± 1.29

EFD+CBF 82.10 ± 1.90 88.65 ± 1.68 90.90 ± 1.88

PKID+CBF 69.75 ± 3.84 84.35 ± 1.89 90.95 ± 2.78

EMD+CBF 84.90 ± 3.34 92.55 ± 1.74 92.15 ± 1.97

NB Classifier

Multiclass OnevsRest 1vs1 Sum

EWD+CFS 79.20 ± 1.89 84.60 ± 2.85 89.75 ± 2.53

EFD+CFS 74.10 ± 2.53 85.45 ± 1.76 88.95 ± 2.06

PKID+CFS 52.75 ± 3.07 71.00 ± 4.60 88.05 ± 2.31

EMD+CFS 80.65 ± 3.07 87.75 ± 3.16 88.95 ± 2.60

EWD+CBF 78.60 ± 3.70 85.60 ± 2.39 89.20 ± 1.89

EFD+CBF 76.05 ± 3.13 85.00 ± 2.20 88.75 ± 2.23

PKID+CBF 53.95 ± 2.99 71.50 ± 2.59 89.40 ± 2.13

EMD+CBF 80.80 ± 3.15 87.30 ± 2.39 89.55± 2.24

Average 79.74±2.65 86.35±2.41 91.13±2.04

Table 7.22: Best and average accuracy obtained for multiclass and both multiple binary

classes approaches for the Dermatology and Karhounen datasets.

Dataset Multiclass 1vsRest 1vs1 Sum

Dermat.
98.91 ± 1.90 96.70 ± 3.61 98.08 ± 3.43

94.34 ± 4.06 94.66 ± 4.16 96.62 ± 3.52

Karhounen
93.10 ± 1.64 89.60 ± 2.20 91.60 ± 1.43

71.72 ± 3.16 73.73 ± 2.85 87.12 ± 2.33
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7.4.1.2 Best discretizer, filter and classifier combination

In this study, 16 different combinations of discretizer, filter and classifier were tried over

21 data sets. Moreover, for reasons of completeness, the filtering step was considered

optional.

Table 7.23: Number of times a combination gets the best results. W, F, K and M

stands for EWD, EFD, PKID and EMD discretizers, respectively.

Naive Bayes Classifier

CFS CBF Without FS

W F K M W F K M W F K M

4 1 0 4 1 0 0 2 1 0 0 2

C4.5 Classifier

CFS CBF Without FS

W F K M W F K M W F K M

0 0 1 0 2 0 0 2 1 0 0 3

Table 7.23 attempts to determine which combination gets the best accuracy values.

If two combinations obtain identical accuracy, both are computed in this table, and so

all values in table 7.23 add up to 24, not to 21. Several conclusions can be extracted

from this table attending to different issues:

• Feature selection (with or without): the number of combinations using feature

selection and reaching the best performance values are 17 from 24, which denotes

the adequacy of its use.

• Discretizer: Entropy minimization discretizer forms part of the “best” combi-

nation in 13 occasions. On the other hand, PKID is only included in a “best”

combination using C4.5, although it is suited for naive Bayes classifier, but it is

suboptimal when learning from training data of small size (Y. Yang & Webb,

2001).

• Filter: CFS seems to be a good filter combined with NB classifier either using

EWD or EMD discretizers. However, this filter does not achieve the best results
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when it is applied together with C4.5 classifier; in this case, the consistency based

filter is preferred.

• Classifier: Naive Bayes obtains better results in more data sets than C4.5. Specif-

ically, naive Bayes gets the best values for 12 different data sets, while C4.5 only

for 8 of them (both classifiers achieve the same accuracy for the Dermatology

dataset).

7.5 Summary

This chapter proposed a method based on the combination of discretization, filtering

and classification methods to be applied to different datasets with the goal of main-

taining or even improving the performance while using a reduced set of features. Up

to four discretizers, three filters and nine classifiers have been used to demonstrate the

adequacy of the combination method.

First, the proposed method was applied to the KDD Cup 99 dataset, a high dimen-

sional benchmark in the intrusion detection field with some features highly dispersed.

It improved the results obtained by the KDD Cup 99 Competition winner and also by

other authors with a significant reduction in the number of features used in two differ-

ent approaches. The simplest one considered a binary classification and the second one

a multiple class classification.

Then, the method was tested on the crucial task of accurate gene selection in class

prediction problems over DNA microarray datasets. The combination method was

then compared with the approaches of other authors (using wrappers and filters). Our

results outperform those obtained by them, in some cases with improvements in the

accuracy and descents in the number of genes needed. This result is very interesting,

especially when comparing with the wrapper approach, for two reasons: first, wrappers

theoretically obtain better performances, but at the expense of higher time and com-

putational requirements than the filter approach, which in turn has the advantage of

independence of the evaluation function used. Second, for very high-dimensional data

sets, wrapper methods might be computationally unfeasible. So, our proposed method

turns out to be a fast technique, independent of any evaluation function used, and pro-

vides good performance in prediction accuracy. The benefit of including a discretization

step previous to the filter+classification step was so proved.
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Among the broad suite of classifiers existing in the literature, local modeling classi-

fiers have not been prodigally applied to microarray data. For this sake, the proposed

method was also combined with a local classifier called FVQIT (Frontier Vector Quan-

tization using Information Theory). This classifier is able to successfully classify high

dimensional data sets with few instances. Some methods can not even confront those

data sets due to the very high number of features (tens of thousands) and other suffer

from overfitting problems when the ratio number of samples / number of features is

small. The results obtained when combining FVQIT with a discretizer and a filter

obtained better performance than combinations with other classifiers. FVQIT turned

out to be the best option when dealing with microarray data, obtaining an average

of 1.25 position in the ranking of classifiers, clearly improving the 2.92 of the second

classified.

Finally, a further study on multiclass datasets was presented. Multiple class prob-

lems can be dealt with by means of two different approaches: using a multiple class

algorithm and using multiple binary classifiers. For the latter approach, two class bi-

narization techniques were utilized, namely One vs Rest and One vs One. For the One

vs One scheme, the results provided for each classifier were gathered using 4 decoding

techniques. The experimental results supported the hypothesis that using feature se-

lection leads to better performance results than not using it. Comparing the different

approaches to deal with multiple class problems, the One vs One scheme obtains better

accuracy results in average than the others, although using a higher number of features.

This approach is also more computational demanding than the others, because each

sample must be tested for different classifiers, unifying their results later to obtain the

desired output. From the experimental results achieved, the One vs One scheme should

be used when there are enough samples per class and features, while, on the contrary,

the One vs Rest can be used with data sets with large number of features and reduced

number of samples.
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CHAPTER 8
An ensemble of filters and classifiers

Classically, machine learning methods have used a single learning model to solve a given

problem. However, the technique of using multiple prediction models for solving the

same problem, known as ensemble learning, has proven its effectiveness over the last few

years (Kuncheva, 2004). The idea builds on the assumption that combining the output

of multiple experts is better than the output of any single expert. Typically, ensemble

learning has been applied to classification, where the most popular methods are bagging

(Breiman, 1996) and boosting (Schapire, 1990) due to their theoretical performance

guarantees and robust experimental results. However, it can be also thought as a

means of improving other machine learning disciplines such as feature selection.

Feature subset selection was employed as a useful technique for creating diversity

in classification ensembles. In this case, diversity was incorporated as an objective in

the search for obtaining the best collection of feature subsets. While traditional feature

selection algorithms have as goal to find the best subset for both the learning task and

the selected inductive learning algorithms, the aim of this ensembled feature selection

was additionally finding a set of feature subsets that promote disagreement among

the base classifiers (Tsymbal, Pechenizkiy, & Cunningham, 2005). T. Ho (1998) has

shown that simple random selection of feature subsets may be an effective technique

for ensemble feature selection because the lack of accuracy in the ensemble members is

compensated by their diversity. Opitz (1999) describes an ensemble feature selection

technique for neural networks called Genetic Ensemble Feature Selection and another

ensemble method for decision trees is called Stochastic Attribute Selection Committees

(Zheng & Webb, 1998). More recently, Aly and Atiya (2006) proposed several novel

variations to the basic feature subset ensembles present in the literature, trying to

improve their results. Finally, Abeel et al. (2010) conducted a large-scale analysis of

ensemble feature selection in order to show their adequacy over biomarker selection.

However, the idea of ensemble feature selection presented herein is a little different.

Real life datasets come in diverse flavors and sizes, and so their nature imposes several
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substantial restrictions for both learning models and feature selection algorithms (Tuv

et al., 2009). Datasets may be very large in samples and number of features, and also

there might be problems with redundant, noisy, multivariate and non-linear scenarios.

Thus, most existing methods alone are not capable of confronting these problems, and

something like “the best feature selection method” simply does not exist in general,

making it difficult for users to select one method over another. In order to make a

correct choice, a user not only needs to know the domain well and the characteristics of

each dataset, but also is expected to understand technical details of available algorithms

(Liu & Yu, 2005).

So, the idea is to use an ensemble of filters to induce diversity, instead of a single

method, which is the approach that has been used in the previous chapters. In this

chapter, an in-depth research in ensembles of filters is presented, exploring novel en-

sembles that could improve performance. The objective is to introduce diversity and

increase the stability of the feature selection process, since it takes advantage of the

strengths of the single selectors and overcomes their weak points. A total of five config-

urations for the ensemble of filters are proposed, which are tested using four different

classifiers. Experimental validation of the methodology on synthetic data shows the

adequacy of the proposed ensembles, paving the way to their application on real and

DNA microarray data obtaining high level performance results.

8.1 The rationale of the approach

In some of the examples mentioned above, the disturbances in the training set due

to resampling cause diverse base classifiers to be built. In other cases, the technique

employed was to use different features for each of the base classifiers. Usually, the

ensembles found in the literature involving feature selection are based on the idea

of applying several feature selection methods in order to distribute the whole set of

features into the instances of the classifier (Pradhananga, 2007). It has to be noted

that this method implies that all the features in the training set are exhaustively used.

Nevertheless, the purpose of the proposed ensemble is different. As stated before,

one of the problems of choosing a filter is its variability of results over different data

sets. That is, a filter can obtain excellent classification results in a given data set

while performing poorly in another data set, even in the same domain, depending on

the specific properties of the different data sets. Our goal is to achieve a method that
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reduces the variability of the features selected by the filters in the different classification

domains. Therefore, this research will be based on the idea of combining several filters,

employing different metrics and performing a feature reduction.

Two distinct general approaches are proposed: Ensemble1 and Ensemble2 (see Fig-

ure 8.1). The main difference between them is that the former uses several filters and

classifies once for each filter, thus an integration method for the outputs of the clas-

sifier is necessary; whilst the later uses several filters, combines the different subsets

returned by each filter, and finally obtains a classification output for this unique subset

of features.

(a) Ensemble 1 (b) Ensemble 2

Figure 8.1: Implementations of the ensemble

8.2 The process of selecting the methods for the ensemble

As stated in Chapter 2, feature selection algorithms designed with different evalua-

tion criteria broadly fall into three categories: the filter model, the embedded model

and the wrapper model. The objective of the proposed ensemble is that it can be

applied to high-dimensional data, such as DNA microarray, so the wrapper model is

discarded because it could not generalize adequately. Therefore, in a first stage, filters

and embedded methods were chosen to perform a previous study, paving the way for

its application to the ensemble.

As the goal is to choose methods based on different metrics, five filters and two

embedded methods were tested over five synthetic data sets under different situations:

increasing number of irrelevant features and the insertion of noise in the inputs, as

well as the inclusion of correlated features. Both filter and embedded methods were

described in detail in Chapter 2 and it has to be noted that three of them (CFS,

consistency-based and INTERACT) provide a subset of features, whereas the remain-
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ing four (Information Gain, ReliefF, SVM-RFE and FS-P) provide features ordered

according to their relevance (a ranking of features).

In order to determine the effectiveness of each one of the feature selection methods

mentioned above at different situations, several widely-used synthetic datasets were

employed (see Appendix I): the LED dataset, the CorrAL dataset and the XOR-100

dataset.

Table 8.1 shows the score for each feature selection method over each scenario and

also an overall score for each method (last column). This score is defined as:

score =

[
Rs

Rt
− Is
It

]
× 100,

where Rs is the number of relevant features selected, Rt is the total number of

relevant features, Is is the number of irrelevant features selected and It is the total

number of irrelevant features. Notice that 100 is the desired value for this score and

negative values indicate a high selection of irrelevant features.

Table 8.1: Score for every feature selection method tested

Method CorrAL CorrAL-100 XOR-100 Led-25 Led-100 Average

CFS 50.00 94.00 46.00 71.50 71.33 66.57

Consistency 50.00 94.00 46.00 68.00 64.00 64.40

INTERACT 25.00 92.00 47.00 66.67 73.50 60.83

InfoGain 0.00 88.00 -1.00 66.33 70.00 44.67

ReliefF 50.00 88.00 95.00 78.17 82.50 78.73

SVM-RFE 50.00 59.00 -15.00 22.83 25.33 27.93

FS-P 0.00 43.00 -9.00 72.00 70.67 35.33

As can be seen in Table 8.1, the two embedded methods (SVM-RFE and FS-P)

achieve the poorest scores. As SVM-RFE achieved the worst result, we decided not

to use it in the proposed ensemble. Focusing on the filters, although ReliefF obtained

the best average, CFS, Consistency and INTERACT also showed a good performance.

Information Gain obtained the poorest results of the filters methods, and similar to

those obtained by FS-P. However, since Information Gain performs better than FS-P

and bearing in mind the higher computational cost of the embedded methods, FS-P is

discarded. Thus, all the five filters were selected to conform the proposed ensemble.
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8.3 The proposed filter ensemble approaches

As has been said before, when dealing with ensemble feature selection, a typical practice

is to use different features for each of the base classifiers. However, with the ensemble

proposed herein, not all the features have to be necessarily employed, since the idea

is to apply several filters based on different metrics so as to have a diverse set of

selections. By using this ensemble of filters, the user is released from the task of

choosing an adequate filter for each scenario, because this approach obtains acceptable

results independently of the characteristics of the data. Among the broad suite of filters

available in the literature, five filters were selected according to a study performed in

Section 8.2, all of them based on different metrics. Two distinct general approaches are

proposed: Ensemble1 and Ensemble2 (see Figure 8.1). The main difference between

them are that the former uses several filters and classifies once for each filter, as an

integration method for the outputs of the classifier is necessary, whilst the later uses

several filters, combines the different subsets returned by each filter, and finally obtains

a classification output for this unique subset of features.

8.3.1 Ensemble 1

This is a more classic approach, consisting of an ensemble of classifiers including a

previous stage of feature selection (see Figure 8.1a). Particularly, each one of the F

filters selects a subset of features and this subset is used for training a given classifier.

Therefore, there will be as many outputs as filters were employed in the ensemble

(F ). Due to the different metric the filters are based on, they select different sets

of features leading to classifier outputs that could be contradictory, so an integration

method becomes necessary. Note that in each execution F filters and only one classifier

are used, but the classifier is trained F times (once for each filter). The pseudo-code

is shown in Algorithm 8.1. Different variants of this philosophy will be implemented

regarding the combination of the F outputs. Two different methods are considered,

producing two implementations of Ensemble1. The first uses the well-known simple

voting (E1-sv), where for a particular instance, each classifier votes for a class and

the class with the greatest number of votes is considered the output class. The second

implementation (E1-cp) stores the probability with which an instance has been assigned

to a class. The class with the highest cumulative probability is considered the output

class.

203



Chapter 8. An ensemble of filters and classifiers

Algorithm 8.1: Pseudo-code for Ensemble1

Data: F ← number of filters

Result: P← classification prediction

1 for each f from 1 to F do

2 Select attributes A using filter f

3 Build classifier Cf with the selected attributes A

4 Obtain prediction Pf from classifier

end

5 Apply a combination method over predictions P1 . . . Pf

6 Obtain prediction P

Another variation in the basic scheme of Ensemble1 comes from thinking that in-

stead of using the same classifier for all five filters, there might be classifiers more

suitable for certain feature selection methods. In fact, in Chapter 3 it was stated that

CFS, Consistency-based, INTERACT and InfoGain select a small number of relevant

features, whilst ReliefF is very effective at removing redundancy. On the other hand,

k-NN and SVM deteriorate their performance when irrelevant features are present

whereas naive Bayes is robust with respect to irrelevant features but deteriorates with

redundant ones. In this situation, we propose to try an ensemble which uses naive

Bayes together with ReliefF and k-NN with the remaining filters (E1-nk) and another

which uses again naive Bayes together with ReliefF and SVM with the remaining filters

(E1-ns). Both these configurations can be seen in Figure 8.2.

(a) E1-nk (b) E1-ns

Figure 8.2: Configurations of Ensemble1: E1-nk and E1-ns

8.3.2 Ensemble 2

This approach consists of combining the subsets selected by each one of the F filters

obtaining only one subset of features. This method has the advantage of not requiring
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a combiner method in order to obtain the class prediction. On the contrary, it needs

a method to combine the features returned by each F filter, as can be seen in Figure

8.1b, since it only employs one classifier. In preliminary studies, strategies such as the

union or the intersection of the subsets were explored, but they led to poor results due

to the redundancy induced by the union or the extremely aggressive reduction in the

set of features produced by the intersection. Thus, as can be seen in Algorithm 8.2, in

this research we propose to combine the subsets of features so as to add to the final

subset only those subsets capable of outperforming the classification accuracy in the

training set.

Algorithm 8.2: Pseudo-code for Ensemble2

Data: F ← number of filters

Result: P← classification prediction

1 for each f from 1 to F do

2 Select attributes Af using filter f

end

3 A = Af

4 baseline = classifying subset A with classifier C

5 for each f from 2 to F do

6 Aaux = A ∪ Af

7 accuracy = classifying subset Aaux with classifier C

8 if accuracy > baseline then

9 A = Aaux

10 baseline = accuracy

end

end

11 Build classifier C with the selected attributes A

12 Obtain prediction P

The complexity of the proposed ensembles depends on the machine learning algo-

rithms used. Let K and J be the complexities of the feature selection and the data

mining algorithms, respectively, and F the number of filters used in the ensembles. The

complexity will be F max(K,J). Since the idea of both Ensemble1 and Ensemble2 is

to use a small number of filters, compared with the number of features or samples of

the datasets, F can be considered negligible and it can be said that the complexity of

these ensembles is determined by the method with the higher complexity (either K or

J). Therefore, it is not more computationally complex than the filters employed alone.
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8.4 Experimental setup

Although the final goal of a feature selection method is to test its effectiveness over a

real dataset, a first step showing performance over synthetic data follows. The main

advantage of artificial scenarios is the knowledge of the set of optimal features that must

be selected, thus the degree of closeness to any of these solutions can be assessed in a

confident way. The LED problem (see Appendix I) has been chosen as the synthetic

dataset to test the proposed ensembles. It is a simple classification task that consists of,

given the active leds on a seven segments display, identifying the digit that the display

is representing. Therefore, the classification task to be solved is described by 7 binary

attributes and 10 possible classes available. In particular, it will be used the dataset

Led100, which consists of 50 samples and 100 features, where 92 irrelevant attributes

(with random binary values) have been added to the 7 relevant ones.

Then, to check if the behavior displayed by the ensembles over the synthetic dataset

can be extrapolated to the real world, 5 real classical datasets were chosen, which

can be consulted in Appendix I, Table I.2. This suite of datasets represents different

problematic that can appear in real data, such as non-linearity (Madelon) or high

imbalance of the classes (Ozone). These datasets have only available a training dataset,

so a 10-fold cross-validation will be performed. Finally, and in order to widen the scope

of this research, the proposed ensemble will be also tested over a challenging scenario:

DNA microarray data. These type of datasets poses an enormous challenge for feature

selection researchers due to their high number of gene expression and the small sample

size. Seven well-known binary microarray datasets (see Chapter 4) are considered:

Colon, DLBCL, CNS, Leukemia, Prostate, Lung and Ovarian. Those datasets originally

divided into training and test sets were maintained, whereas, for the sake of comparison,

datasets with only training set were randomly divided using the common rule 2/3 for

training and 1/3 for testing, as done in previous chapters. This division introduces a

more challenging scenario, since in some datasets, the distribution of the classes in the

training set differs from the one in the test set. Table I.8 (Appendix I) depicts the

number of attributes and samples and also the distribution of the binary classes, i.e.

the percentage of binary labels in the datasets, showing if the data is unbalanced.

While three of the filters which form part of the ensemble return a feature subset

(CFS, Consistency-base and INTERACT), the other two (ReliefF and Information

Gain) are ranker methods, so it is necessary to establish a threshold in order to obtain

a subset of features. Initial experiments on microarray data showed that for most of
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the data sets, the subset filters selected a number of features between 25 and 50. For

the sake of fairness, the rankers were forced to select a number of features similar to

the cardinality obtained by the other type of filters. Several experiments were carried

out with 25 and 50 features. As performance did not improve using 50 features with

respect to 25, we have decided to force these ranker methods to obtain subsets with 25

features. Finally, to test the performance of the different ensembles of filters proposed

it is necessary to use a classifier which provides classification accuracy as a measure

of adequacy of the method. For this purpose, four well-known classifiers were chosen:

C4.5, naive Bayes, k-NN and SVM.

8.4.1 The stability of the selected filters

With the advent of high-dimensionality data sets in classification problems, a variety

of feature selection methods have been developed to tackle them. The major challenge

in feature selection methods is to extract a set of features, as small as possible, that

accurately classifies the learning examples (Kalousis, Prados, & Hilario, 2007). But a

relatively neglected issue in the work on high-dimensionality problems is the stability

of the feature selection methods used, which is defined as the sensitivity of a method

to variations in the training set.

In this study, we checked the stability of the different filters used in the proposed

ensemble. For this purpose, we measured similarity between two subsets of features

{s, s′}, using an adaptation of the Tanimoto distance between two sets (Kalousis et al.,

2007):

S(s, s′) = 1− |s|+ |s
′| − 2|s ∩ s′|

|s|+ |s′| − |s ∩ s′|

Table 8.2 shows the stability of the microarray datasets in terms of average. For

each data set and algorithm, the stability was measured comparing the subset selected

in each fold of a 10-fold cross-validation. Then, an average of each one of these results

was performed and is shown in Table 8.2. It has to be noted that according to Tanimoto

measure, 0 means the minimum stability and 1 the maximum. The best result for each

data set is emphasized in bold font.
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Table 8.2: Stability of the filters selected.

Algorithm Leuk. CNS DLBCL Lung Ovar. Prost. Colon AVG

CFS 0.213 0.208 0.274 0.247 0.386 0.340 0.319 0.284

Cons 0.170 0.151 0.470 0.126 0.486 0.077 0.138 0.231

INT 0.246 0.182 0.232 0.221 0.262 0.207 0.264 0.231

InfoGain 0.654 0.252 0.488 0.721 0.875 0.322 0.529 0.549

ReliefF 0.684 0.307 0.621 0.605 0.688 0.395 0.675 0.568

As one can see in the table above, the best stabilities are achieved by the ReliefF

filter, which also obtained the best performance in the previous study (see Table 8.1).

Therefore, this filter is expected to obtain good classification results. On the other hand,

Information Gain obtained very good stability results, although this filter performed

poorly in the previous study over synthetic data (see Table 8.1), but this result suggests

that this can be a useful filter since its stability is very high. It has to be noted that

both ReliefF and Information Gain are ranker methods. Interact, CFS and Consistency

are the least stable, however they obtained very good results in terms of score. Thus,

this study reaffirms the choice of these 5 filters to comprise the proposed ensemble.

8.5 Experimental results

In this section the results obtained after applying the different proposed ensembles will

be shown. To sum up, five ensemble approaches will be tested: E1-sv, which is En-

semble1 using simple voting as combination method; E1-cp, which is Ensemble1 using

cumulative probabilities as combination method; E1-nk, which is Ensemble1 with spe-

cific classifiers naive Bayes and k-NN; E1-ns, which is Ensemble1 with specific classifiers

naive Bayes and SVM and E2, which is Ensemble2.

8.5.1 Results on synthetic data

Table 8.3 shows the results obtained by the ensembles and the filters alone over the

synthetic dataset Led100. The number of relevant features selected (where the optimal

is 7), the number of irrelevant features selected (where the maximum is 92) and the test

classification error is exhibited, after randomly dividing the dataset using the common
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rule 2/3 for training and 1/3 for testing. Please note that in this concrete case, the

number of features the rankers were forced to select was 7, corresponding with the

optimal number of relevant features.

Table 8.3: Error results over the synthetic dataset Led100 as well as number of relevant

and irrelevant features selected.

No. rel. No. irrel. C4.5 NB k-NN SVM

E
n

se
m

b
le

s E1-sv 6 2 6.25 0.00 0.00 6.25

E1-cp 6 2 6.25 0.00 0.00 6.25

E1-nk 6 2 0.00 0.00 0.00 0.00

E1-ns 6 2 6.25 6.25 6.25 6.25

E2 6 0 6.25 0.00 0.00 6.25

F
il

te
rs

CFS 6 0 6.25 0.00 0.00 6.25

Cons 5 0 6.25 0.00 0.00 6.25

INT 6 0 6.25 0.00 0.00 6.25

IG 6 1 6.25 12.50 12.50 0.00

ReliefF 5 2 18.75 31.25 31.25 18.75

The results demonstrate the adequacy of the proposed ensembles, since they matched

or improved upon the results achieved by the filters alone. Focusing on the features

selected, it is important to note that although the theoretical number of relevant fea-

tures is 7 (one for each led segment), there are two segments that are not relevant for

distinguishing among the 10 numbers. For this reason, the consistency filter was able

to correctly classify all the instances using only 5 out of the 7 theoretical relevant fea-

tures. The reader should also notice that the features selected by the four Ensemble1

approaches are the union of the features selected by each one of the filters. Therefore

it is more informative to focus on the classification error. According to this measure,

it is easy to see that the ensembles take advantage of the filters which work correctly

on a dataset and discard the influence of those which do not (IG and ReliefF, in the

dataset at hand).

8.5.2 Results on classical datasets

After verifying on synthetic data that our proposed ensembles behave in a confident way,

the next step is to evaluate their performance on real classical datasets. Five datasets

were chosen for this task (Ozone, Spambase, Mushrooms, Splice and Madelon), which
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can be consulted in Table I.2 (Appendix I). In this case, a 10-fold cross validation will

be used and the results obtained are depicted in Table 8.4: average test classification

error along with the average number of features required to train the model. In the

case of the classifier alone, it uses the whole set of features. When using this type

of validation with several repetitions, the use of statistical inference for analyzing the

results is a crucial and necessary task in an investigation.

For this reason, a Kruskal-Wallis test was applied to check if there are significant

differences among the medians for each method for a level of significance α = 0.05. If

differences among the medians were found, a multiple comparison procedure (Tukey’s)

was applied to find the simplest approach whose classification error is not significantly

different for the approach with the lowest error (labeled with a cross in the tables).

For all datasets and classifiers, one of the five ensembles proposed in this research

obtains the lowest error, showing the adequacy of the ensemble approach in these

standard datasets. It is necessary to note that Ozone is an extremely unbalanced

dataset (see Table I.2, Appendix I) and by assigning all the samples to the majority

class, an error of 2.88% could be obtained. None of the methods tested was able to

improve this result, although some methods matched it. An oversampling technique

was applied over this difficult dataset but due to its extremely high imbalance, no

improvement was obtained. On the other hand, it is worth mentioning that E1-nk

achieves a promising result over Madelon dataset. In fact, it reduces the test error up

to 33% compared with the classifier alone and up to 24% compared with CFS filter,

using only 8% of the total features (see results for SVM).

These results are not easy to analyze since the classifier plays a crucial role and

provides a very different classification error even with the same set of features. There

are several cases found in Table 8.4 that confirm this fact, for example: ReliefF over

Ozone dataset achieves an error of 2.88% according to SVM whilst naive Bayes classifier

raises the error up to 29.06%; and the consistency filter over Madelon dataset increases

its error from 9.08% to 33.42% using k-NN and SVM, respectively.

Table 8.5 displays the average of test error for each dataset and method, indepen-

dently of the classifier, which should help to clarify which one is the best method for

a given dataset. E1-nk is the method which is significantly better in the maximum

number of datasets (3), followed by E2 and the consistency filter.
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Table 8.4: Test classification error after 10 fold cross-validation for classical datasets,

the number in parenthesis is the number of features selected by the method. Those

methods whose average test classification results are not significantly worse than the

best are labeled with a cross (†).

Method Ozone Spambase Mushrooms Splice Madelon

C
4
.5

E
n

se
m

b
le

s

E1-sv 3.35 (43)† 5.76 (44)† 0.00 (42)† 4.10 (32)† 16.17 (38)

E1-cp 3.23 (43)† 5.69 (44)† 0.00 (42)† 4.10 (32)† 15.42 (38)

E1-nk 4.18 (43) 8.22 (44) 0.00 (42)† 15.10 (32) 9.08 (38)†

E1-ns 2.88 (43)† 11.50 (44) 1.13 (42) 20.70 (32) 33.25 (38)

E2 3.71 (21)† 6.74 (31)† 0.00 (22)† 5.80 (18)† 14.21 (25)†

C4.5 4.61 6.67† 0.00† 6.00† 19.88

F
il
te

rs

CFS 3.71 (17)† 7.43 (15) 1.48 (8) 6.00 (12)† 19.33 (8)

Cons 3.08 (4)† 7.35 (25)† 0.15 (10) 5.50 (12)† 17.04 (13)

INT 3.82 (19)† 7.32 (29)† 0.00 (10)† 4.90 (15)† 17.04 (13)

IG 3.67 (25)† 7.43 (25) 0.00 (25)† 5.90 (25)† 18.33 (25)

ReliefF 3.86 (25)† 8.80 (25) 0.00 (25)† 5.90 (25)† 14.08 (25)†

N
a
iv

e
B

a
y
es E

n
se

m
b

le
s

E1-sv 21.06 (43) 14.39 (44) 6.84 (42) 17.60 (32)† 30.17 (38)

E1-cp 21.14 (43) 13.39 (44) 6.87 (42) 16.70 (32)† 29.92 (38)

E1-nk 4.18 (43)† 8.22 (44)† 0.00 (42)† 15.10 (32)† 9.08 (38)†

E1-ns 2.88 (43)† 11.50 (44)† 1.13 (42)† 20.70 (32)† 33.25 (38)

E2 20.98 (17) 15.24 (32) 1.23 (14)† 16.50 (27)† 30.08 (15)

NB 28.98 20.47 6.81 16.40† 31.38

F
il
te

rs

CFS 20.98 (17) 21.23 (15) 1.48 (8)† 17.90 (12)† 30.29 (8)

Cons 6.94 (4)† 11.82 (25)† 4.89 (10) 17.50 (12)† 29.92 (13)

INT 20.58 (19) 16.82 (29) 5.45 (10) 16.00 (15)† 29.92 (13)

IG 26.10 (25) 11.63 (25)† 6.95 (25) 17.10 (25)† 30.42 (25)

ReliefF 29.06 (25) 29.41 (25) 6.60 (25) 16.30 (25)† 30.08 (25)

k
-N

N

E
n

se
m

b
le

s

E1-sv 3.51 (43)† 7.93 (44)† 0.00 (42)† 15.50 (32)† 8.92 (38)†

E1-cp 3.51 (43)† 7.93 (44)† 0.00 (42)† 15.50 (32)† 8.92 (38)†

E1-nk 4.18 (43) 8.22 (44)† 0.00 (42)† 15.10 (32)† 9.08 (38)†

E1-ns 2.88 (43)† 11.50 (44) 1.13 (42) 20.70 (32) 33.25 (38)

E2 4.85 (28) 10.76 (19) 0.00 (19)† 20.20 (15)† 9.08 (13)†

k-NN 4.73 9.09† 0.00† 30.80 41.04

F
il
te

rs

CFS 4.97 (17) 11.50 (15) 1.75 (8) 20.50 (12) 13.38 (8)

Cons 3.23 (4)† 10.43 (25) 0.00 (10)† 19.40 (12)† 9.08 (13)†

INT 4.85 (19) 10.61 (29) 0.00 (10)† 19.10 (15)† 9.08 (13)†

IG 4.61 (25) 10.32 (25) 0.00 (25)† 24.70 (25) 23.08 (25)

ReliefF 4.30 (25) 12.54 (25) 0.00 (25)† 21.60 (25) 10.96 (25)†

S
V

M

E
n

se
m

b
le

s

E1-sv 2.88 (43)† 12.00 (44) 1.08 (42) 20.80 (32) 33.46 (38)

E1-cp 2.88 (43)† 12.00 (44) 1.08 (42) 20.80 (32) 33.46 (38)

E1-nk 4.18 (43) 8.22 (44)† 0.00 (42)† 15.10 (32)† 9.08 (38)†

E1-ns 2.88 (43)† 11.50 (44) 1.13 (42) 20.70 (32)† 33.25 (38)

E2 2.88 (17)† 10.28 (41)† 0.00 (19)† 19.70 (25)† 33.58 (16)

SVM 2.88† 9.59† 0.00† 20.40† 42.25

F
il
te

rs

CFS 2.88 (17)† 13.17 (15) 1.66 (8) 21.00 (12) 34.04 (8)

Cons 2.88 (4)† 12.50 (25) 0.00 (10)† 21.90 (12) 33.42 (13)

INT 2.88 (19)† 11.76 (29) 2.26 (10) 21.60 (15) 33.42 (13)

IG 2.88 (25)† 12.08 (25) 1.86 (25) 20.00 (25)† 33.50 (25)

ReliefF 2.88 (25)† 13.50 (25) 0.10 (25)† 19.30 (25)† 33.67 (25)
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Table 8.5: Average of test error for classical datasets focusing on the dataset. Those

methods whose average test classification results are not significantly worse than the

best are labeled with a cross (†).

Ozone Spambase Mushrooms Splice Madelon

E
n
se

m
b
le

s

E1-sv 7.70 10.02 1.98 14.50† 22.18

E1-cp 7.69 9.75† 1.99 14.28† 21.93

E1-nk 4.18 8.22† 0.00† 15.10 9.08†

E1-ns 2.88† 11.50 1.13 20.70 33.25

E2 8.10 10.75 0.31† 15.55† 21.74

Classif 10.30 11.45 1.70 18.40† 33.64

F
il
te

rs

CFS 8.13 13.33 1.59 16.35† 24.26

Cons 4.03† 10.52 1.26 16.07† 22.36

INT 8.03 11.63 1.93 15.40† 22.36

IG 9.32 10.37 2.20 16.93† 26.33

ReliefF 10.03 16.06 1.67 15.78† 22.20

Table 8.6: Average of test error for classical datasets focusing on the classifier.

C4.5 NB k-NN SVM

E
n

se
m

b
le

s E1-sv 5.88 18.01 7.17 14.04

E1-cp 5.69 17.60 7.17 14.04

E1-nk 7.32 7.32 7.32 7.32

E1-ns 13.89 13.89 13.89 13.89

E2 6.09 16.81 8.98 13.29

Classif 7.43 20.81 17.13 15.02

F
il

te
rs

CFS 7.59 18.38 10.42 14.55

Cons 6.62 14.21 8.43 14.14

INT 6.62 17.76 8.73 14.38

IG 7.07 18.44 12.54 14.06

ReliefF 6.53 22.29 9.88 13.89
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8.5 Experimental results

Table 8.6 depicts the average of test error for each method and classifier, indepen-

dently of the dataset. In this case it makes no sense to perform a statistical study

since the results achieved by the classifiers over different datasets are very different.

We can see that for these kinds of datasets, the best option is to use E1-cp combined

with C4.5 classifier. It is also worth noting that for the remainder of classifiers tested,

it is always one of the ensembles which achieves the best results, outperforming the

results obtained by the filters alone. In the next section we will see if the methods

tested exhibit the same behavior when dealing with an extremely complex scenario:

DNA microarray data classification.

8.5.3 Results on microarray data

The last step for testing the proposed methods is to evaluate them on a difficult scenario

such as DNA microarray classification, where the number of features is much higher

than the number of samples. Remind that, in this case, a division in training and test

sets is assumed (see Section 8.4).

Table 8.7 exhibits the results over all the seven microarray datasets considered for

the classifiers included in this research. Along with the error test achieved, one can see

the number of features required to train the model. In the case of the classifier alone,

it uses the whole set of features. For all the four classifiers employed, one of the five

ensemble approaches proposed achieves the lowest error, except for Colon dataset with

C4.5 and k-NN. Although the number of features is higher using ensembles than filters

alone, it is insignificant when compared with the difference in feature number regarding

the complete original feature set.

In order to summarize, Table 8.8 shows the results on average. The best result on

average for all datasets and classifiers is obtained by E1-sv and E1-cp combined with

SVM classifier, which happens to be a frequently used and appropriate classifier for

DNA microarray classification (Mukherjee et al., 1999; M. P. Brown et al., 2000; Furey

et al., 2000). As in the classical datasets case, again one of the ensembles achieves

always the best result for each classifier. It also should to be noted that there is a

slight difference between using cumulative probabilities (E1-cp) or simple voting (E1-

sv) as union method in Ensemble1. E1-cp only appears to be better for naive Bayes

classifier, but as it does not produce deterioration for any classifier, it is considered to

be a better choice than E1-sv. For all these reasons, the authors recommend to use

E1-cp combined with SVM classifier when dealing with DNA microarray data.
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Table 8.7: Test classification error for microarray datasets, the number in parenthesis is

the number of features selected by the method. Best error for each dataset is highlighted

in bold face.

Method Colon DLBCL CNS Leukemia Prostate Lung Ovarian

C
4
.5

E
n

se
m

b
le

s E1-sv 15.00 (58) 13.33 (73) 50.00 (95) 8.82 (63) 73.53 (126) 18.12 (55) 0.00 (67)

E1-cp 15.00 (58) 13.33 (73) 50.00 (95) 8.82 (63) 73.53 (126) 18.12 (55) 0.00 (67)

E1-nk 20.00 (58) 13.33 (73) 40.00 (95) 5.88 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-ns 20.00 (58) 6.67 (73) 30.00 (95) 11.76 (63) 29.41 (126) 1.34 (55) 0.00 (67)

E2 15.00 (34) 13.33 (47) 50.00 (60) 8.82 (36) 73.53 (89) 18.12 (40) 0.00 (37)

C4.5 10.00 13.33 40.00 8.82 73.53 18.12 1.19

F
il
te

rs

CFS 15.00 (19) 13.33 (47) 50.00 (60) 8.82 (36) 73.53 (89) 18.12 (40) 0.00 (37)

Cons 15.00 (3) 13.33 (2) 50.00 (3) 8.82 (1) 76.47 (4) 18.12 (1) 0.00 (3)

INT 15.00 (16) 13.33 (36) 45.00 (47) 8.82 (36) 73.53 (73) 18.12 (40) 1.19 (27)

IG 30.00 (25) 13.33 (25) 50.00 (25) 8.82 (25) 70.59 (25) 10.07 (25) 0.00 (25)

ReliefF 15.00 (25) 13.33 (25) 35.00 (25) 8.82 (25) 67.65 (25) 2.68 (25) 1.19 (25)

N
a
iv

e
B

a
y
es

E
n

se
m

b
le

s E1-sv 20.00 (58) 6.67 (73) 45.00 (95) 8.82 (63) 73.53 (126) 0.00 (55) 1.19 (67)

E1-cp 20.00 (58) 6.67 (73) 40.00 (95) 8.82 (63) 73.53 (126) 0.00 (55) 1.19 (67)

E1-nk 20.00 (58) 13.33 (73) 40.00 (95) 5.88 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-ns 20.00 (58) 6.67 (73) 30.00 (95) 11.76 (63) 29.41 (126) 1.34 (55) 0.00 (67)

E2 25.00 (34) 6.67 (47) 35.00 (60) 5.88 (36) 73.53 (89) 0.00 (40) 2.38 (37)

NB 30.00 6.67 40.00 11.76 73.53 4.70 11.90

F
il
te

rs

CFS 10.00 (19) 6.67 (47) 30.00 (60) 5.88 (36) 73.53 (89) 0.00 (40) 2.38 (37)

Cons 15.00 (3) 13.33 (2) 45.00 (3) 8.82 (1) 67.65 (4) 14.09 (1) 0.00 (3)

INT 15.00 (16) 6.67 (36) 35.00 (47) 5.88 (36) 73.53 (73) 0.00 (40) 0.00 (27)

IG 15.00 (25) 6.67 (25) 45.00 (25) 8.82 (25) 73.53 (25) 0.67 (25) 2.38 (25)

ReliefF 20.00 (25) 6.67 (25) 40.00 (25) 8.82 (25) 79.41 (25) 0.00 (25) 2.38 (25)

k
-N

N

E
n

se
m

b
le

s E1-sv 20.00 (58) 13.33 (73) 35.00 (95) 14.71 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-cp 20.00 (58) 13.33 (73) 35.00 (95) 14.71 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-nk 20.00 (58) 13.33 (73) 40.00 (95) 5.88 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-ns 20.00 (58) 6.67 (73) 30.00 (95) 11.76 (63) 29.41 (126) 1.34 (55) 0.00 (67)

E2 50.00 (34) 13.33 (47) 35.00 (60) 14.71 (36) 67.65 (89) 0.00 (40) 0.00 (37)

k-NN 5.00 26.67 45.00 29.41 47.06 2.01 7.14

F
il
te

rs

CFS 20.00 (19) 13.33 (47) 35.00 (60) 14.71 (36) 67.65 (89) 0.00 (40) 0.00 (37)

Cons 15.00 (3) 26.67 (2) 35.00 (3) 8.82 (1) 73.53 (4) 18.12 (1) 0.00 (3)

INT 20.00 (16) 13.33 (36) 40.00 (47) 14.71 (36) 67.65 (73) 0.00 (40) 0.00 (27)

IG 15.00 (25) 6.67 (25) 30.00 (25) 5.88 (25) 58.82 (25) 1.34 (25) 3.57 (25)

ReliefF 15.00 (25) 6.67 (25) 40.00 (25) 17.65 (25) 70.59 (25) 1.34 (25) 0.00 (25)

S
V

M

E
n

se
m

b
le

s E1-sv 15.00 (58) 6.67 (73) 30.00 (95) 14.71 (63) 2.94 (126) 1.34 (55) 0.00 (67)

E1-cp 15.00 (58) 6.67 (73) 30.00 (95) 14.71 (63) 2.94 (126) 1.34 (55) 0.00 (67)

E1-nk 20.00 (58) 13.33 (73) 40.00 (95) 5.88 (63) 67.65 (126) 0.00 (55) 0.00 (67)

E1-ns 20.00 (58) 6.67 (73) 30.00 (95) 11.76 (63) 29.41 (126) 1.34 (55) 0.00 (67)

E2 20.00 (34) 6.67 (47) 35.00 (60) 11.76 (36) 2.94 (89) 1.34 (40) 0.00 (37)

SVM 25.00 13.33 30.00 14.71 47.06 0.67 0.00

F
il
te

rs

CFS 15.00 (19) 6.67 (47) 35.00 (60) 11.76 (36) 2.94 (89) 1.34 (40) 0.00 (37)

Cons 20.00 (3) 13.33 (2) 35.00 (3) 20.59 (1) 73.53 (4) 18.12 (1) 0.00 (3)

INT 15.00 (16) 13.33 (36) 40.00 (47) 11.76 (36) 29.41 (73) 1.34 (40) 0.00 (27)

IG 15.00 (25) 6.67 (25) 35.00 (25) 11.76 (25) 2.94 (25) 0.67 (25) 1.19 (25)

ReliefF 15.00 (25) 6.67 (25) 30.00 (25) 17.65 (25) 5.88 (25) 2.01 (25) 0.00 (25)
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8.5 Experimental results

Table 8.8: Average of test error

C4.5 NB k-NN SVM

E
n
se

m
b
le

s

E1-sv 25.54 22.17 21.53 10.09

E1-cp 25.54 21.46 21.53 10.09

E1-nk 20.98 20.98 20.98 20.98

E1-ns 14.17 14.17 14.17 14.17

E2 25.54 20.49 25.81 11.10

Classifier 23.57 25.51 23.18 18.68

F
il
te

rs

CFS 25.54 18.35 21.53 10.39

Cons 25.96 23.41 25.31 25.80

INT 25.00 19.44 22.24 15.83

IG 26.12 21.72 17.33 10.46

ReliefF 20.52 22.47 21.61 11.03

8.5.4 The imbalance problem

Four of the microarray datasets considered in this work presented the so-called im-

balance problem (Colon, CNS, Leukemia and Ovarian; see Table I.8 in Appendix I).

A dataset is considered imbalanced when the classification categories are not approxi-

mately equally represented (see Chapter 4, Section 4.2.2).

Table 8.9: Average of test error after applying SMOTE for datasets Colon, CNS,

Leukemia and Ovarian.

C4.5 NB k-NN SVM

E
n
se

m
b
le

s

E1-sv 13.46 17.50 13.68 15.96

E1-cp 13.46 17.50 13.68 15.96

E1-nk 16.47 16.47 16.47 16.47

E1-ns 18.46 18.46 18.46 18.46

E2 16.25 15.82 24.93 20.44

Classifier 17.09 26.36 25.98 17.43

F
il
te

rs

CFS 16.25 15.82 24.93 20.44

Cons 17.50 17.21 15.96 18.46

INT 14.71 16.47 21.18 20.44

IG 15.00 17.80 14.86 18.54

ReliefF 16.25 18.32 17.21 18.16

215



Chapter 8. An ensemble of filters and classifiers

To overcome this issue, the SMOTE method is applied after the feature selection

process in the datasets that show imbalance in the training set. For the sake of brevity,

only the average of test error will be shown in Table 8.9. E1-sv and E1-cp obtained again

the lowest error combined with C4.5 classifier. As the results obtained are better using

SMOTE, the adequacy of this oversampling technique when combined with ensemble

techniques is confirmed.

8.6 Summary

Real life datasets may be very large in number of samples or features, and their clas-

sification can be hindered by phenomena such as redundancy, noise or non-linearity of

the data. For these reasons, some feature selection methods are not able to confront

these problems so it is the responsibility of the user to decide which one to use in a

particular situation. In this chapter, a framework for feature selection which can be

applicable to different scenarios with promising results was presented. The idea was to

use an ensemble of filters rather than a single method, in order to take advantage of

their individual strengths and overcome their weak points at the same time.

Two general approaches were presented, based on the role the classifier plays. En-

semble1 classifies as many times as there are filters, whereas Ensemble2 classifies only

once with the result of joining the different subsets selected by the filters. For En-

semble1, two methods for combining the outputs of the classifiers were studied (simple

voting and cumulative probabilities), as well as the possibility of using an adequate

specific classifier for each filter. A total of five different implementations of the two

approaches of ensemble were proposed, tested in the first place over synthetic data.

Results showed the adequacy of the proposed methods on this controlled scenario since

they selected the correct features. The next step was to apply these approaches over 5

UCI classical datasets. Experimental results demonstrated that one of the ensembles

(E1-cp) combined with C4.5 classifier was the best option when dealing with this type of

dataset. Finally, the ensemble configurations were tested over 7 DNA microarray data.

These are extremely challenging datasets because of their high number of input features

and small sample size, where feature selection becomes indispensable. It turned out

that using a ensemble was again the best option. Specifically, the best performance was

achieved again with E1-cp but this time combined with SVM classifier. It should be

noted that some of these datasets presented a high imbalance of the data. To overcome

this problem, an oversampling method was applied after the feature selection process.
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8.6 Summary

The result was that once again one of the ensembles achieved the best performance,

and that this was even better than the one obtained with no preprocessing, showing

the adequacy of the ensemble combined with over-sampling methods. Thus, the ap-

propriateness of using an ensemble instead of a single filter remained demonstrated,

considering that for all scenarios tested, the ensemble was always the more successful

solution.

Regarding the different implementations of the ensemble tested, several conclusions

can be drawn. There is a slight difference between the two combiner methods employed

with Ensemble1 (simple voting and cumulative probability), although the second one

obtained the best performance. Among the different classifiers chosen for this study,

it appeared that the type of data to be classified determines significantly the error

achieved, so it is responsibility of the user to know which classifier is more suitable for

a given type of data. The authors recommend using E1-cp with C4.5 when classifying

classical datasets (with more samples than features) and E1-cp with SVM when dealing

with microarray dataset (with more features than samples). In complete ignorance of

the particulars of the data, we suggest using E1-ns, which releases the user from the

task of choosing a specific classifier.

217



Chapter 8. An ensemble of filters and classifiers

218



CHAPTER 9
Cost-based feature selection

The most common approaches followed by feature selection methods are to find either

a subset of features that maximizes a given metric or either an ordered ranking of the

features based on this metric. Two of the most popular filter metrics for classification

problems are correlation and mutual information, although other common filter metrics

include error probability, probabilistic distance, entropy or consistency (see Chapter 2).

There are some situations where a user is not only interested in maximizing the merit

of a subset of features, but also in reducing costs that may be associated to features.

For example, for medical diagnosis, symptoms observed with the naked eye are costless,

but each diagnostic value extracted by a clinical test is associated with its own cost

and risk. In other fields, such as image analysis, the computational expense of features

refers to the time and space complexities of the feature acquisition process (Feddema,

Lee, & Mitchell, 1991). This is a critical issue, specifically in real-time applications,

where the computational time required to deal with one or another feature is crucial,

and also in the medical domain, where it is important to save economic costs and to

also improve the comfort of a patient by preventing risky or unpleasant clinical tests

(variables that can be also treated as costs).

Our goal is to obtain a trade-off between a filter metric and the cost associated to the

selected features, in order to select relevant features with low cost. A general framework

to be applied together with the filter approach is introduced. In this manner, any filter

metric can be modified to have into account the cost associated to the input features. In

this chapter three implementations of this framework will be presented as an example

of use, choosing three representative and widely-used filters: Correlation-based Feature

Selection (CFS), Minimal-Redundancy-Maximal-Relevance (mRMR) and ReliefF. All

these filters were described in Chapter 2 and are based on different metrics. The results

obtained with these three filters are promising, showing that the approach is sound.

Finally, the framework was applied to a real problem aiming at reducing the time

required to automatically classify the tear film lipid layer.
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Chapter 9. Cost-based feature selection

9.1 Background

New feature selection methods are constantly appearing, however, the great majority

of them only focus on removing irrelevant and redundant features but not on the costs

for obtaining the input features. The cost associated to a feature can be related to

different concepts. For example, in medical diagnosis, a pattern consists of observable

symptoms (such as age, sex, etc.) along with the results of some diagnostic tests.

Contrary to observable symptoms, which have no cost, diagnostic tests have associated

costs and risks. For example, an invasive exploratory surgery is much more expensive

and risky than a blood test (J. Yang & Honavar, 1998). Another example of the risk of

extracting a feature can be found in the work presented by Bahamonde et al. (2004), in

which for evaluating the merits of beef cattle as meat producers is necessary to carry

out zoometry on living animals.

On the other hand, the cost can also be related to computational issues. In the

medical imaging field, extracting a feature from a medical image can have a high com-

putational cost. For example, in the texture analysis technique known as co-occurrence

features (Haralick et al., 1973), the computational cost for extracting each feature is

not the same, which implies different computational times. In other cases, such as

real-time applications, the space complexity is negligible, but the time complexity is

very important (Feddema et al., 1991).

As one may notice, features with an associated cost can be found in many real-

life applications. However, this has not been the focus of much attention for machine

learning researchers. As mentioned above, the purpose of this research is to propose

a general framework to the problem of cost-based feature selection, trying to balance

the correlation of the features with the class and their cost. There have been similar

attempts to balance the contribution of different terms in other areas. For instance, in

classification, J. H. Friedman (1989) included a regularization term to the traditional

Linear Discriminant Analysis (LDA). The left side term of their cost function evaluates

the error and the right side term would be the regularization one, which is weighted

with λ. This provides a framework in which, according to the λ value, different reg-

ularized solutions can be obtained. Related to feature extraction, You, Hamsici, and

Martinez (2011) proposed a criterion to select kernel parameters based on maximiz-

ing between-class scattering and minimizing within-class scattering. Applied to face

recognition, Wright, Yang, Ganesh, Sastry, and Ma (2009) proposed a general classifi-

cation framework to study feature extraction and robustness to occlusion via obtaining
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9.1 Background

a sparse representation. Instead of measuring the correlation between a feature and

the class, this method evaluates the representation error. However, our objective is

completely different, as it is to provide a framework for feature selection where features

with an inherent cost could be dealt with. Thus, the practitioners could decide on the

balance on performance/cost that they prefer.

Despite the previous attempts in classification and feature extraction, to the best

knowledge of the authors, there are only a few attempts to deal with this issue in feature

selection. In the early 90s, Feddema et al. (1991) were developing methodologies for the

automatic selection of image features to be used by a robot. For this selection process,

they employed a weighted criterion that took into account the computational expense

of features, i.e. the time and space complexities of the feature extraction process. Sev-

eral years later, J. Yang and Honavar (1998) proposed a genetic algorithm to perform

feature subset selection where the fitness function combined two criteria: the accuracy

of the classification function realized by the neural network and the cost of performing

the classification (defined by the cost of measuring the value of a particular feature

needed for classification, the risk involved, etc.). A similar approach was presented

by Huang and Wang (2006), in which a genetic algorithm is used for feature selection

and parameters optimization for a support vector machine. In this case, classification

accuracy, the number of selected features and the feature cost were the three criteria

used to design the fitness function. Sivagaminathan and Ramakrishnan (2007) pre-

sented a hybrid method for feature subset selection based on ant colony optimization

and artificial neural networks. The heuristic that enables ants to select features is the

inverse of the cost parameter.

The methods found in the literature that deal with cost associated to the features,

which were described above, have the disadvantage of being computationally expensive

by having interaction with a classifier, which prevents their use in large databases, a

trending topic in recent years (Jiawei & Kamber, 2001). However, the general frame-

work proposed herein is applied together with the filter model, which is known to have

a low computational cost and be independent of any classifier. By being fast and with

a good generalization ability, filters using this cost-based feature selection framework

will be suitable for application to databases with a great number of input features like

microarray DNA data.

In light of the above, the novelty of this proposal lies in that there does not exist

too much research in cost-based feature selection methods. As a matter of fact, no cost

methods can be found in the most popular machine learning and data mining tools. For
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instance, in Weka (M. Hall et al., 2009) one can only find some methods that address

the problem of cost associated to the instances (not to the features), and they were

incorporated in the latest release. RapidMiner (Mierswa, Wurst, Klinkenberg, Scholz,

& Euler, 2006) does in fact include some methods that take cost into account, but

they are quite simple. One of them selects the attributes that have a cost value which

satisfies a given condition and another one just selects the k attributes with the lower

cost. Therefore, the general framework for cost-based feature selection proposed in this

chapter intends to cover this necessity.

9.2 Description of the method

The proposed method intends to be a framework applicable to any filter. However, in

this chapter three representative filters were chosen to implement the idea and carry

out an experimentation to discover whether the approach is sound. The filters chosen

are CFS, which is a subset filter, and mRMR and ReliefF, which are ranker filters. For

the sake of clarity, the modifications we have implemented in CFS, mRMR and ReliefF

will be presented and only then the approach will be generalized. Notice that the basic

descriptions of these methods can be found in Chapter 2.

9.2.1 minimum cost CFS, mC-CFS

CFS is a multivariate subset filter algorithm. It uses a search algorithm combined with

an evaluation function to estimate the merit of feature subsets (see Chapter 2). The

implementation of CFS utilized in this research uses forward best first search (Rich &

Knight, 1991) as its search algorithm. Best first search is an artificial intelligence search

strategy that allows backtracking along the search path. It moves through the search

space by making local changes to the current feature subset. If the explored path looks

uninteresting, the algorithm can backtrack to a previous subset and continue the search

from there on. As a stopping criterion, the search terminates if five consecutive fully

expanded (all possible local changes considered) subsets show no improvement over the

current best subset.
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9.2 Description of the method

The evaluation function takes into account the usefulness of individual features

for predicting the class label as well as the level of correlation among them. It is

assumed that good feature subsets contain features highly correlated with the class

and uncorrelated with each other. The evaluation function can be seen in (9.1).

MS =
krci√

k + k(k − 1)rii
(9.1)

where MS is the merit of a feature subset S that contains k features, rci is the average

correlation between the features of S and the class, and rii is the average intercorrela-

tion between the features of S. In fact, this function is Pearson’s correlation with all

variables standardized. The numerator estimates how S can predict the class and the

denominator quantifies the redundancy among the features in S.

The modification of CFS proposed consists of adding a term to the evaluation

function to take into account the cost of the features, as can be seen in equation (9.2).

MCS =
krci√

k + k(k − 1)rii
− λ

∑k
i=1Ci

k
(9.2)

where MCS is the merit of the subset S affected by the cost of the features, Ci is the

cost of the feature i, and λ is a parameter introduced to weight the influence of the

cost in the evaluation function.

The parameter λ is a positive real number. If λ is 0, the cost is ignored and the

method works as the regular CFS. If λ is between 0 and 1, the influence of the cost is

smaller than the other term. If λ = 1 both terms have the same influence and if λ > 1,

the influence of the cost is greater than the influence of the other term.

9.2.2 minimum cost mRMR, mC-mRMR

mRMR is a multivariate ranker filter algorithm. As mRMR is a ranker, the search

algorithm is simpler than that of CFS.

The evaluation function combines two constraints (as the name of the method in-

dicates), maximal relevance and minimal redundancy. The former is denoted by the

letter D, it corresponds with the mean value of all mutual information values between

each feature xi and class c, and has the expression shown in equation (9.3).

D(S, c) =
1

|S|
∑
xi∈S

I(xi; c) (9.3)

223



Chapter 9. Cost-based feature selection

where S is a subset of features and I(xi; c) is the mutual information between the

feature xi and the class c. The expression of I(x; y) is shown in equation (9.4).

I(x; y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (9.4)

The constraint of minimal redundancy is denoted by the letter R, and has the expression

shown in (9.5).

R(S) =
1

|S|2
∑

xi,xj∈S
I(xi, xj) (9.5)

The evaluation function to be maximized combines the two constraints (9.3) and (9.5).

It is called minimal-redundancy-maximal-relevance (mRMR) and has the expression

shown in (9.6).

Φ(D,R) =
1

|S|
∑
xi∈S

I(xi; c)−
1

|S|2
∑

xi,xj∈S
I(xi, xj) = D(S, c)−R(S) (9.6)

In practice, this is an incremental search method that selects on each iteration the

feature that maximizes the evaluation function. Suppose we already have Sm−1, the

feature set with m - 1 features, the mth selected feature will optimize the following

condition:

max
xj∈X−Sm−1

I(xj ; c)−
1

m− 1

∑
xi∈Sm−1

I(xj ;xi)

 (9.7)

The modification of mRMR which is proposed in this research consists of adding a

term to the condition to be maximized so as to take into account the cost of the feature

to be selected, as can be seen in (9.8)

max
xj∈X−Sm−1

I(xj ; c)−
1

m− 1

∑
xi∈Sm−1

I(xj ;xi)

− λCj

 (9.8)

where Cj is the cost of the feature j, and λ is a parameter introduced to weight the

influence of the cost in the evaluation function, as explained in the previous subsection.
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9.2.3 minimum cost ReliefF, mC-ReliefF

ReliefF is a multivariate ranker filter algorithm. It randomly selects an instance Ri,

but then searches for k of its nearest neighbors from the same class c, nearest hits

Hj , and also k nearest neighbors from each one of the different classes, nearest misses

Mj(c). It updates the quality estimation W [A] for all attributes A depending on their

values for Ri, hits Hj and misses Mj(c). If instances Ri and Hj have different values of

the attribute A, then this attribute separates instances of the same class, which clearly

is not desirable, and thus the quality estimation W [A] has to be decreased. On the

contrary, if instances Ri and Mj have different values of the attribute A for a class then

the attribute A separates two instances with different class values which is desirable so

the quality estimation W [A] is increased. Since ReliefF considers multiclass problems,

the contribution of all the hits and all the misses is averaged. Besides, the contribution

for each class of the misses is weighted with the prior probability of that class P (c)

(estimated from the training set). The whole process is repeated m times (where m is

a user-defined parameter) and can be seen in Algorithm 9.1.

Algorithm 9.1: Pseudo-code of ReliefF algorithm

Data: training set D, iterations m, attributes a

Result: the vector W of estimations of the qualities of attributes

1 set all weights W [A] := 0

2 for i← 1 to m do

3 randomly select an instance Ri

4 find k nearest hits Hj

5 for each class c 6= class(Ri) do

6 from class c find k nearest misses Mj(c)

end

end

7 for f ← 1 to a do

8

W [f ] := W [f ]−
∑k
j=1 diff(f,Ri,Hj)

(m·k) +

∑
c 6=class(Ri)

[
P (c)

1−P (class(Ri))

∑k
j=1 diff(f,Ri,Mj(c))

]
(m·k)

end

The function diff(A, I1, I2) calculates the difference between the values of the at-

tribute A for two instances, I1 and I2. If the attributes are nominal, it is defined

as:
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diff(A, I1, I2) =

0; value(A, I1) = value(A, I2)

1; otherwise

The modification of ReliefF we propose in this research, mC-ReliefF, consists of

adding a term to the quality estimation W [f ] to take into account the cost of the

features, as can be seen in (9.9).

W [f ] := W [f ]−
∑k

j=1 diff(f,Ri, Hj)

(m · k)
+∑

c 6=class(Ri)

[
P (c)

1−P (class(Ri))

∑k
j=1 diff(f,Ri,Mj(c))

]
(m · k)

− λ · Cf ,

(9.9)

where Cf is the cost of the feature f , and λ is a free parameter introduced to weight

the influence of the cost in the quality estimation of the attributes. When λ > 0, the

greater the λ the greater the influence of the cost.

9.2.4 Generalization

Ultimately, the general idea consists on adding a term to the evaluation function of

the filter to take into account the cost of the features. Since, to our best knowledge,

all filters use an evaluation function, this evaluation function could be modified to

contemplate costs in the following manner. Let MS be the merit of the set of k features

S, that is, the value originally returned by the function.

MS = EvF (S) (9.10)

where EvF is the evaluation function. Let CS be the average cost of S.

CS =

∑k
i=1Ci

k
(9.11)

where Ci is the cost of feature i. The evaluation function can be modified to become:

MCS = MS − λCS (9.12)

where λ is a parameter introduced in order to weight the influence of the cost in the

evaluation. If λ is 0, the cost is ignored and the method works as the regular feature
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selection method that is being modified. If the merit of the set of features MS is

bounded between 0 and 1, and λ is between 0 and 1, the influence of the cost is smaller

than the other term. If λ = 1 both terms have the same influence and if λ > 1, the

influence of the cost is greater than the influence of the other term. Notice that when

using a ranker, which selects or evaluates one feature at a time, the cardinality of S is

one and then CS in (9.11) results in the cost of that single feature.

Note that the parameter λ needs to be left as a free parameter because determining

the importance of the cost is highly dependent of the domain. For example, in a

medical diagnosis, the accuracy cannot been sacrificed in favor of reducing economical

costs. On the contrary, in some real-time applications, a slight decrease in classification

accuracy is allowed in order to reduce the processing time significantly. An example of

this behavior will be shown on a real scenario in Section 9.5.

9.3 Experimental study

The experiment is performed over three blocks of datasets. The main feature of the

first block of datasets is that they have intrinsic cost associated to the input features

(Hepatitis, Liver, Pima and Thyroid, see Appendix I). Since this type of datasets is

not common in the literature, we have opted for including dataset with no cost and

generate it randomly. Thus, the second block of datasets consists of four classical

datasets selected from the UCI repository (Letter, Magic04, Optdigits, Pendigits, Sat,

Segmentation, Wafeform and Yeast, see Appendix I) with a larger number of samples

than of features. Finally, the third block consists of five microarray datasets (Brain,

CNS, Colon, DLBCL and Leukemia), which are characterized for having a much larger

number of features than samples (see Appendix I). Since datasets from second and third

block do not have intrinsic cost associated, random cost for their input attributes has

been generated. For each feature, the cost was generated as a random number between

0 and 1. As an example, Table 9.1 displays the random costs generated for each feature

of Magic04 dataset.

Overall, the chosen classification datasets are very heterogeneous. They present a

variable number of classes, ranging from two to twenty six. The number of samples and

features range from single digits to the tens of thousands. Notice that datasets in the

first and second blocks have a larger number of samples than features, whilst datasets

in the third block have a much larger number of features than samples, which poses

227



Chapter 9. Cost-based feature selection

a big challenge for feature selection researchers. This variety of datasets allows for a

better understanding of the behavior of the proposed method.

Table 9.1: Random cost for the features of Magic04 dataset.

Feature Cost

1 0.3555

2 0.2519

3 0.0175

4 0.9678

5 0.6751

6 0.4465

7 0.8329

8 0.1711

9 0.6077

10 0.7329

For the sake of brevity, mC-CFS and mC-mRMR will be tested in the following

section on these datasets whilst mC-ReliefF will be applied on a real problem in Section

9.5. The goal of these experiments is to study the behavior of the proposed framework

under the influence of λ parameter. The performance is evaluated in terms of both

the total cost of the selected features and the classification error by a SVM classifier

estimated under a 10-fold cross-validation (see Appendix I). It is expected that the

larger the λ the lower the cost and the higher the error, because increasing λ gives

more weight to the cost at the expense of correlation between features. Moreover,

a Kruskal-Wallis statistical test and a multiple comparison test (based on Tukey’s

honestly significant difference criterion) have been run on the errors obtained. The

results of the tests could help the user to choose the adequate value of the λ parameter.

9.4 Experimental results

Figures 9.1, 9.3 and 9.6 show the average cost and error for several values of λ. The

solid line with ’x’ represents the error (referenced on the left Y axis) and the dashed

line with ’o’ represents the cost (referenced on the right Y axis). Notice than when

λ = 0, the cost has no influence on the behavior of the method and it behaves as if it

was the non-cost version.
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(a) Hepatitis CFS
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(b) Liver CFS
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(c) Pima CFS
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(d) Thyroid CFS
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(e) Hepatitis mRMR
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(f) Liver mRMR
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(g) Pima mRMR
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(h) Thyroid mRMR

Figure 9.1: Error / cost plots of first block of datasets for cost feature selection with

CFS and mRMR.

Figure 9.1 plots the error/cost of the four datasets with cost associated found at

the UCI repository. The behavior expected when applying cost feature selection is that

the higher the λ, the lower the cost and the higher the error. The results obtained for

the first block of datasets, in fact, show that cost value behaves as expected (although

the magnitude of the cost does not change too much because these datasets have few

features and the set of selected ones is often very similar). The error, however, remains

constant in most of the cases. This may happen because these datasets are quite simple

and the same set of features is often chosen. The Kruskal-Wallis statistical test run

on the results displayed that the errors are not significantly different, except for Pima

dataset. This fact can be caused because this dataset has very few expensive features

(which are often associated with a higher predictive power), as can be seen on Table

9.2. Therefore, removing them has a greater effect on the classification accuracy.

Fig. 9.2 displays the results of the Kruskal-Wallis statistical test for Pima dataset.

The entries in the ANOVA (ANalysis Of VAriance) Table (Figs. 9.2a and 9.2c) are

the usual sums of squares (SS), degrees of freedom (df), mean square estimator (MS),

chi-square statistic (Chi-sq) and the p value that determines the significance of the

chi-square statistic (Prob>Chi-sq). As can be seen, the p value is 9 × 10−6 for the

Cost CFS and 2 × 10−4 for the Cost mRMR, as displayed in Figs. 9.2a and 9.2c.

This indicates that there exist values significantly different than others. In Figs. 9.2b

and 9.2d it is shown which groups of errors are significantly different, information that

can be helpful for the user to decide which value of λ utilize. When using Cost CFS,
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Table 9.2: Cost of the features for Pima dataset (normalized to 1).

Feature Cost

1 0.0100

2 0.7574

3 0.0100

4 0.0100

5 0.9900

6 0.0100

7 0.0100

8 0.0100

(a) ANOVA Table (mC-CFS).
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(b) Graph of multiple comparison (mC-CFS).

(c) ANOVA Table (mC-mRMR).
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(d) Graph of multiple comparison (mC-mRMR).

Figure 9.2: Kruskal-Wallis statistical test results of Pima dataset.
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λ can be 0.5 (which means decreasing the cost) without significantly increasing the

error, whilst when using Cost mRMR, a reduction in cost can not be achieved without

worsening the error measure. For Cost mRMR, when λ is 0 (and hence, the cost is not

taken into account), the second feature is selected, which has a high cost (see Table

9.2). However, when the method is forced to decrease the cost (by increasing the value

of λ), this feature is not selected anymore and prevents the classifier to obtain a high

prediction accuracy. Something similar happens with Cost CFS, where the second

feature is selected for λ values 0 and 0.5 and removed for the remaining values due to

its high cost.
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(a) Letter CFS
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(b) Magic04 CFS
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(c) Optdigits CFS
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(d) Pendigits CFS
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(e) Letter mRMR

0 0.5 0.75 1 2 5 10
0

0.2

0.4

0.6

0.8

1

λ

E
rr

o
r

 

 

0

10

20

30

40

50

C
o

s
t

Error

Cost

(f) Magic04 mRMR
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(g) Optdigits mRMR
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(h) Pendigits mRMR
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(i) Sat CFS
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(j) Segment CFS
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(k) Waveform CFS
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(l) Yeast CFS
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(m) Sat mRMR
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(n) Segment mRMR
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(o) Waveform mRMR
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(p) Yeast mRMR

Figure 9.3: Error / cost plots of second block of datasets for cost feature selection with

CFS and mRMR.
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The error/cost graphs of the second block of datasets are displayed in Fig. 9.3. It

can be seen how cost decreases, according to expected, and how, contrary to first block,

error usually raises when λ increases. In the cases when error raises monotonically (see

Figures 9.3a or 9.3j, for example), there exist significant error changes (p-values are

close to zero), therefore the user has to make a choice to find an appropriate trade-off

between cost and error. On the other hand, there are some other cases, such as Sat

dataset with Cost CFS (see Fig. 9.4) where with λ = 2, the error is not significantly

worse but a significant reduction in cost (Fig. 9.5) is achieved.

(a) ANOVA Table.
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(b) Graph of multiple comparison.

Figure 9.4: Kruskal-Wallis error statistical test of Sat dataset with mC-CFS.

(a) ANOVA Table.
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(b) Graph of multiple comparison.

Figure 9.5: Kruskal-Wallis cost statistical test results of Sat dataset with mC-CFS.

Finally, Fig. 9.6 presents the results for the third block of datasets, corresponding

with the well-known DNA microarray domain, with much more features than samples.

As expected, the cost decreases as λ increases, and since these datasets have a larger

number of input attributes than the ones in previous blocks, the cost experiments also

a larger variability (see, for example, Figs. 9.6h, 9.6j). For instance, for the DLBCL

dataset with Cost mRMR, we can choose λ = 10, as the errors are not significantly

different (see Fig. 9.7) and the cost for λ = 10 is significantly lower than the one for

the four first λ (0, 0.5, 0.75 and 1) (see Fig. 9.8).
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(a) Brain CFS
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(b) CNS CFS
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(c) Colon CFS
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(d) DLBCL CFS
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(e) Brain mRMR
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(f) CNS mRMR
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(g) Colon mRMR
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(h) DLBCL mRMR
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(i) Leukemia CFS
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(j) Leukemia mRMR

Figure 9.6: Error / cost plots on third block of datasets for cost feature selection with

CFS and mRMR.

(a) ANOVA Table.
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Figure 9.7: Kruskal-Wallis error statistical test of DLBCL dataset with mC-mRMR.
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(a) ANOVA Table.
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(b) Graph of multiple comparison.

Figure 9.8: Kruskal-Wallis cost statistical test of DLBCL dataset with mC-mRMR.

Notwithstanding, the behavior of the error, in some cases, and contrary to expected,

remains almost constant (see, for instance, Figs. 9.6c or 9.6f). The reason why the error

is not raising can be two-fold:

• On the one hand, it is necessary to remind that the proposed framework is be-

ing tested using filter feature selection methods. This approach has the benefit

of being fast and computationally inexpensive. This characteristic of filters can

cause that the selected features, according to particular criteria, would not be

the more suitable for a given classifier to obtain the highest accuracy. There-

fore, forcing a filter to select features according to another criterion rather than

correlation (or the one used for each particular filter) may cause the selection of

features to be more suitable for minimizing classification error. For example, in

Chapter 3, a synthetic dataset called Monk3 is dealt with. Among others, this

dataset contains three relevant features. However, some classifiers obtain a better

classification accuracy when filters only had selected two relevant features than

when selecting the three relevant ones. This fact demonstrates that the behavior

of some filters is somewhat unpredictable and not always the one expected.

• On the other hand, it has to be noted that DNA microarray datasets are a

difficult challenge for feature selection methods, due to the enormous amount

of features they present. In fact, the filters evaluated in these experiments are

usually retaining a maximum of 2% of the original features. Therefore, irregular

results are expected with such an important reduction in number of features.

It is also worth reflecting on the behavior of CFS and mRMR filters. Studying in

detail graphs in Figure 9.6, one can see that in general, mRMR achieves the lowest
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cost at the expense of a higher error than CFS. Therefore, it is the user who has to

decide which filter to use depending on the degradation in the error he/she is willing

to assume.

9.5 Case of study: a real life problem

In this section it is presented a real-life problem where the cost, in the form of computa-

tional time, needs to be reduced. Evaporative dry eye (EDE) is a symptomatic disease

which affects a wide range of population and has a negative impact on their daily activ-

ities, such as driving or working with computers (see Chapter 5). Its diagnosis can be

achieved by several clinical tests, one of which is the analysis of the interference pattern

and its classification into one of the four categories defined by Guillon (1998) for this

purpose. A methodology for automatic tear film lipid layer (TFLL) classification into

one of these categories has been developed (Remeseiro et al., 2011), based on color tex-

ture analysis. The co-occurrence features technique (Haralick et al., 1973), as a texture

extraction method, and the Lab color space provide the highest discriminative power

from a wide range of methods analyzed. This methodology needs to be fast in order to

be applied as a clinical routine. However, the best accuracy results were obtained at

the expense of a too long processing time (38 seconds) because many features had to be

computed. This fact makes the methodology unfeasible for practical applications and

prevents its clinical use. Reducing processing time is a critical issue in this application

which should work in real-time in order to be used in the clinical routine. Therefore, the

proposed mC-ReliefF is applied in an attempt to decrease the number of features and,

consequently, the computational time without compromising the classification perfor-

mance. Note that this processing time was recorded on an Intel R©CoreTMi5 CPU 760

@ 2.80GHz with RAM 20 GB.

So, the adequacy of the proposed framework using ReliefF is tested on the real

problem of TFLL classification using the dataset VOPTICAL I1 (VOPTICAL I1, n.d.).

This dataset consists of 105 images (samples) belonging to the four Guillon’s categories

(classes). The methodology for TFLL classification proposed by Remeseiro et al. (2011)

consists of extracting the region of interest (ROI) of an input image, and analyzing it

based on color and texture information. Thus, the ROI in the RGB color space is

transformed to the Lab color space and the texture of its three components of color (L,

a and b) is analyzed. For texture analysis, the co-occurrence features method generates

a set of grey level co-occurrence matrices (GLCM) for an specific distance and extracts
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14 statistical measures from their elements. Then, the mean and the range of these 14

statistical measures are calculated across matrices and so a set of 28 features is obtained.

Distances from 1 to 7 in the co-occurrence features method and the 3 components of

the Lab color space are considered, so the size of the final descriptor obtained from an

input image is: 28 features × 7 distances × 3 components = 588 features. Notice that

the cost for obtaining these features is not homogeneous. Features are vectorized in

groups of 28 related to distances and components in the color space, where the higher

the distance, the higher the cost. Plus, each group of 28 features corresponds with the

mean and range of the 14 statistical measures calculated across the GLCMs. Among

these statistical measures, it was shown that computing the so-called 14th statistic takes

around 75% of the total time. Therefore, we have to deal with a dataset with a very

variable cost (in this case, computational time) associated to the input features.
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(b) Error/cost 35 feats
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Figure 9.9: Error / cost plots (top) and Pareto front (bottom) of VOPTICAL I1 dataset

for different values of λ, and different number of selected features (25, 35 and 50)

Figure 9.9 (top) shows the average error and cost after performing a 10-fold cross-

validation for VOPTICAL I1 dataset for different values of λ, for three different sets of

features. As expected, when λ increases, the cost decreases and the error either raises

or is maintained (see Section 9.2.4). Regarding the different subsets of features, the

larger the number of features, the higher the cost. The Kruskal-Wallis statistical test

run on the results demonstrated that there are no significant differences among the

errors achieved using different values of λ, whilst using a λ > 0 decreases significantly

the cost. This situation happens when retaining 25, 35 and 50 features.
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9.5 Case of study: a real life problem

Trying to shed light on the issue of which value of λ is better for the problem at

hand, the Pareto front (Teich, 2001) for each alternative is showed in Figure 9.9 (bot-

tom). In multi-objective optimization, the Pareto front is defined as the border between

the region of feasible points, for which all constraints are satisfied, and the region of

infeasible points. In this case, solutions are constrained to minimize classification error

and cost. In Figure 9.9 (bottom), points (values of λ) in the Pareto front are marked

with a red circle. All those points are equally satisfying the constraints, and it is de-

cision of the users if they prefer to minimize either the cost or the classification error.

On the other hand, choosing a value of λ outside the Pareto front would imply to chose

a worse solution than any in the Pareto front.

Table 9.3: Mean classification error(%), time (milliseconds), and number of features in

the union of the 10 folds for the Pareto front points. Best error and time are marked

in bold face.

Feats λ Error Time Feats union

25

0.75 10.36 208.68 30

2 10.55 206.46 30

5 14.36 197.22 29

30 15.18 174.35 26

35

1 7.55 306.53 43

2 11.36 328.24 46

5 13.18 273.11 39

25 16.09 249.92 36

50

0 6.64 1377.04 82

1 9.36 397.70 55

2 9.36 412.14 57

25 14.27 364.45 51

30 14.36 364.45 51

Table 9.3 reports the classification error and cost (in the form of time) for all the

Pareto front points. Notice that as a 10-fold cross-validation was performed, the final

subset of selected features is the union of the features selected in each fold, and that

is why the number of features in column 5 differs from the one in the first column.

Even so, the reduction in the number of features is considerable. As expected, the

higher the λ, the higher the error and the lower the time. The best result in terms of

classification error was obtained with λ = 0 when retaining 50 features per fold. In

turn, the lowest time was obtained with λ = 30 when retaining 25 features per fold,
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but at the expense of increasing the error in 8.54%. In this situation, the authors

think that it is better to choose a trade-off between cost and error. The error obtained

with λ = 1 when retaining 35 features is 7.55%, which is slightly higher than the best

one but no significant differences were found between them. With this combination

the time required is 306.53 milliseconds, which although is not the lowest time, it is

still under 1 second. The time required by previous approaches which deal with TFLL

classification prevented their clinical use because they could not work in real time, since

extracting the whole set of features took 38 seconds. Thus, since this is a real-time

scenario where reducing the computing time is a crucial issue, having a processing time

under 1 second leads to a significant improvement. In this manner, the methodology for

TFLL classification could be used in the clinical routine as a support tool to diagnose

EDE.

9.6 Summary

In this chapter a new framework for cost-based feature selection was proposed. The

objective was to solve problems where it is not only interesting to minimize the classi-

fication error, but also to reduce costs that may be associated to input features. This

framework consists of adding a new term to the evaluation function of any filter feature

selection method so that it is possible to reach a trade-off between a filter metric (e.g.

correlation or mutual information) and the cost associated to the selected features. A

new parameter, called λ, is introduced in order to adjust the influence of the cost into

the evaluation function, allowing the users fine control of the process according to their

needs.

In order to test the adequacy of the proposed framework, three well-known and

representative filters are chosen: CFS, mRMR and ReliefF. Experimentation is executed

over a broad suite of different datasets including one real-life problem. Results after

performing classification with a SVM displayed that the approach is sound and allows

the user to reduce the cost without compromising the classification error significantly,

which can be very useful in fields such as medical diagnosis or real-time applications.
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CHAPTER 10
Distributed and parallel feature selection

As can be seen in previous chapters, feature selection is usually applied in a centralized

manner, i.e. a single learning model to solve a given problem. However, if the data

is distributed, feature selection may take advantage of processing multiple subsets in

sequence or concurrently. There are several ways in which a feature selection task could

be distributed (Bramer, 2007):

(a) If all the data is together in one very large dataset, we can distribute it on several

processors, run an identical feature selection algorithm on each one and combine

the results.

(b) The data may inherently be in different datasets on different locations, for example

in different parts of a company or even in different cooperating organizations. As

for the previous case, we could run an identical feature selection on each one and

combine the results.

(c) An extreme case of a large data volume is streaming data arriving in effectively a

continuous infinite stream in real time. If the data is all coming to a single source,

different parts of it could be processed by different processors acting in parallel. If

it is coming into several different processors, it could be handled in a similar way

to (b).

(d) An entirely different situation arises where we have a dataset that is not particularly

large, but we wish to generate several or many different feature selection methods

from it and then combine the results by some kind of voting system in order to

learn unseen instances. In this case we might have the whole dataset on a single

processor, accessed by different feature selection methods (possibly identical or

possibly different) accessing all or part of the data. This approach is known as

ensemble learning and it has been discussed in Chapter 8.
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The first part of this chapter will be focused on the first category of application,

i.e. all the data is together in one large dataset, a part of which can be distributed

in different processors, then run an identical feature selection algorithm on each one

and combine the results. This approach can be useful since most existing feature

selection algorithms do not scale well and their efficiency significantly deteriorates or

even becomes inapplicable when dealing with large-scale data (see Chapter 6). There

are two main techniques for partitioning and distributing data: vertically, i.e. by

features, and horizontally, i.e. by samples. Distributed learning has been used to scale

up datasets that are too large for batch learning in terms of samples (Chan & Stolfo,

1993; Ananthanarayana, Subramanian, & Murty, 2000; Tsoumakas & Vlahavas, 2002).

While not common, there are some other developments that distribute the data by

features (McConnell & Skillicorn, 2004; Skillicorn & McConnell, 2008). When the data

come distributed in origin, vertical distribution is solely useful where the representation

of data could vary along time by adding new attributes.

Both alternatives will be explored in this chapter. Horizontal partitioning is es-

pecially suitable when dealing with datasets with a high number of samples whilst

vertical partitioning is more appropriate to datasets with a high number of features.

The experimental results on several different datasets demonstrate that our proposal

can improve the performance of original feature selection methods and show important

savings in running times.

Then, this chapter will also attempt to deal with the third category of application

(the (c) type above). In this manner, the vertical partitioning will be modified so as to

combine the learned models obtained from each node in an incremental manner, paving

the way to the application of the methodology to streaming data.

10.1 General methodology

As stated above, parallel and distributed feature selection have not been deeply explored

yet. A method is said to be parallel when the processes are executed on different cores

of one or several nodes connected by a high-speed network at the same location (e.g. a

cluster). On the other hand, a method is said to be distributed if the data are allocated

in different locations and there is very low interaction among the processes (e.g. grid

computing). The method that we present in this chapter can be seen as potential

distributed, since it was designed to be applied in a distributed manner although, for

technical reasons, the experiments were executed on a single machine.
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So, in this chapter we present a distributed filter approach trying to improve stan-

dard accuracy results as well as reducing the running time. Our proposal consists of

performing several fast filters over several partitions of the data, combined afterwards

into a single subset of features. Thus, we divide each dataset D into several small dis-

joint subsets Di. The feature selection algorithm is applied to each one of these subsets,

and a selection Si is generated for each subset of data. After all the small datasets Di

were used, (which could be done in parallel, as all of them are independent from each

other), the combination method builds the final selection S as the result of the feature

selection process. To sum up, there are three main steps in this methodology:

1. Partition of the datasets.

2. Application of feature selection to the subsets.

3. Combination of the results.

The partition of the dataset consists of dividing the original dataset into several

disjoint subsets of approximately the same size that cover the full dataset. As mentioned

in the introduction of this chapter, the partition can be done vertically or horizontally.

Therefore, the data is split by assigning groups of k data to each subset, where the

number of data k in each subset needs to be determined. After having several small

disjoint datasets Di, the feature selection method will be applied to each of them,

returning a selection Si for each subset of data. Finally, to combine the results, a

merging procedure using a classifier will be executed. At the end, the final selection

S is applied to the training and test sets in order to obtain the ultimate classification

accuracies.

10.2 Horizontal partitioning

In this section we present a parallel filter approach by partitioning the data horizon-

tally. The methodology consists of applying filters over several partitions of the data,

obtaining several subsets that are combined in the final step into a single subset of fea-

tures. The feature selection algorithm (see pseudo-code in Algorithm 10.1) is applied to

each dataset in several iterations or rounds. This repetition ensures capturing enough

information for the combination stage. At each round, the first step is the partition

of the dataset, which consists of randomly dividing the original training dataset into
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several disjoint subsets of approximately the same size that cover the full dataset (see

Algorithm 10.1, line 3). As mentioned above, the partition will be done horizontally

(i.e. by samples). Then, the chosen filter algorithm is applied to each subset separately

and the features selected to be removed receive a vote (Algorithm 10.1, lines 5 - 8). At

that point, a new partition is performed and another round of votes is accomplished

until reaching the predefined number of rounds. Finally, the features that have received

a number of votes above a certain threshold are removed. Therefore, a unique set of

features is obtained to train a classifier C and to test its performance over a new set of

samples (test dataset).

Determining the threshold of votes required to remove a feature is not an easy-to-

solve question, since it depends on the given dataset. Therefore, we have developed

our own automatic method which calculates this threshold, outlined in Algorithm 10.1,

lines 9-19. The best value for the number of votes is estimated from its effect on the

training set, but due to the large size of the datasets, the complete training set was not

used, only 10% was employed.

Following the recommendations exposed by de Haro Garćıa (2011), the selection of

the number of votes must take into account two different criteria: the training error and

the percentage of features retained. Both values must be minimized to the maximum

possible extent, by minimizing the fitness criterion e[v]:

e[v]← α× error + (1− α)× featPercentage (10.1)

where α is a parameter in [0,1] which measures the relative relevance of both values

and v is any possible value for the threshold. This parameter was set to α = 0.75 as

suggested by de Haro Garćıa (2011), giving more influence to the classification error.

Because of performing a horizontally partition of the data, the maximum number of

votes is the number of rounds r times the number of subsets s. Since in some cases this

number is in the order of thousands, instead of evaluating all the possible values for the

number of votes we have opted for delimiting it into an interval [minV ote,maxV ote]

computed used the mean and standard deviation (see lines 9-12 in Algorithm 10.1). In

order to reduce the searching time, the increment within the interval was set to 5.
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Algorithm 10.1: Pseudo-code for horizontal partitioning

Data: D(m×n+1) ← labeled training dataset with m samples and n input features

X←set of features, X = {x1, . . . , xn}
s← number of submatrices of D with p samples

r ← number of rounds

α← 0.75

Result: S← subset of features \S ⊂ X

/* Obtaining a vector of votes for discarding features */

1 initialize the vector votes to 0, |vector|=n

2 for each round do

3 Split D randomly into s disjoint submatrices

4 for each submatrix do

5 apply a feature selection algorithm

6 F← features selected by the algorithm

7 E← features eliminated by the algorithm \E ∪ F = X

8 increment one vote for each feature in E

end

end

/* Obtain threshold of votes, Th, to remove a feature */

9 avg ← compute the average of the vector votes

10 std← compute the standard deviation of the vector votes

11 minV ote← minimum threshold considered (computed as avg − 1/2std)

12 maxV ote← maximum threshold considered (computed as avg + 1/2std)

13 z← submatrix of D with only 10% of samples

14 for v ← minVote to maxVote with increment 5 do

15 Fth ← subset of selected features (number of votes < v)

16 error ← classification error after training z using only features in Fth

17 featPercentage← percentage of features retained
(
|Fth|
|X| × 100

)
18 e[v]← α× error + (1− α)× featPercentage

end

19 Th← min(e), Th is the value which minimizes the error e

20 S← subset of features after removing from X all features with a number of

votes ≥ Th
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10.2.1 Experimental setup

In order to test the proposed distributed filter approach, we have selected six benchmark

datasets which can be consulted in Appendix I, Section I.2.2: Connect4, Isolet, Made-

lon, Ozone, Spambase and MNIST. These datasets can be considered representative of

problems from medium to large size, since the horizontal distribution is not suitable

for small-sample datasets. Those datasets originally divided to training and test sets

were maintained, whereas, for the sake of comparison, datasets with only training set

were randomly divided using the common rule 2/3 for training and 1/3 for testing. For

calculating the number of packets s, the proportion between number of samples and

number of features is computed, with the constraint of having, at least, three packets

per datasets. The following rules are considered, trying to have a enough number of

samples in each packet:

1. If proportion ≥ 10 000, p = 10 000 samples per packet.

2. If proportion ≥ 1000, p = 1000 samples per packet.

3. If proportion ≥ t being t ∈ [0.5, 1000), p = n × t in which n is the number of

features.

According to these rules, the number of packets (s) to partition the dataset in each

round is displayed in Table 10.1.

Table 10.1: Number of packets (s) for the datasets used with the horizontal partition

Dataset Packets

Connect4 45

Isolet 5

Madelon 3

Ozone 11

Spambase 5

Mnist 5
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10.2.2 Experimental results

In this section the experimental results over the six benchmark datasets described above

will be presented and discussed. The distributed approach proposed in this chapter can

be used with any filter method. In these experiments, five well-known filters, based on

different metrics where chosen (all of them available in the Weka tool). While three

of the filters return a feature subset (CFS, Consistency-based and INTERACT), the

other two (ReliefF and Information Gain) are ranker methods, so it is necessary to

establish a threshold in order to obtain a subset of features. In this case we have opted

for retaining the c top features, being c the number of features selected by CFS. It is

also worth noting that although most of the filters work only over nominal features,

the discretization step is done by default by Weka, working as a black box for the user.

A detailed description of the filters can be found in Chapter 2.

Our distributed approach is compared with the centralized standard approach for

each method. To distinguish between both approaches, a “C” (centralized) or a “D”

(distributed) was added to the name of the filter. In the case of the distributed ap-

proach, five rounds (r in Algorithm 10.1) have been executed. To ensure reliable results,

a hold-out validation was applied and repeated 5 times, using the common partition

2/3 for training and 1/3 for testing.

10.2.2.1 Number of features selected

Tables 10.2 and 10.3 show the number of features selected (in average) by the centralized

and distributed approach, respectively. Notice that the number of features selected by

the distributed approach (Table 10.3) depends on the classifier, because of the stage

devoted to finding the threshold of votes (see Algorithm 10.1, lines 14-18).

As can be seen in the tables, there are no significant differences between the number

of features selected by both approaches. Therefore, we can affirm that applying the

distributed approach does not imply a larger selection of features.
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Table 10.2: Number of features selected by the centralized approach

Connect4 Isolet Madelon Ozone Spambase Mnist

Full set 42 617 500 72 57 717

CFS-C 7 186 18 20 19 61

IG-C 7 186 18 20 19 61

ReliefF-C 7 186 18 20 19 61

INT-C 36 56 23 16 26 40

Cons-C 39 11 22 16 20 18

Table 10.3: Number of features selected by the distributed approach

Connect4 Isolet Madelon Ozone Spambase Mnist

C
4
.5

CFS-D 9 132 14 14 19 90

IG-D 9 142 15 13 19 79

ReliefF-D 9 146 18 12 17 74

INT-D 9 75 14 12 19 72

Cons-D 9 32 15 6 18 50

N
B

CFS-D 9 132 14 14 20 90

IG-D 9 142 15 13 19 79

ReliefF-D 9 146 18 13 19 74

INT-D 9 75 14 12 19 72

Cons-D 10 32 15 6 20 50

k
-N

N

CFS-D 9 131 14 14 19 90

IG-D 10 142 15 13 19 79

ReliefF-D 11 145 18 12 17 74

INT-D 10 78 14 12 19 72

Cons-D 10 34 15 6 18 50

S
V

M

CFS-D 9 137 14 14 19 90

IG-D 9 142 15 13 20 79

ReliefF-D 9 149 18 12 17 74

INT-D 9 70 14 12 19 72

Cons-D 9 28 15 6 18 50
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10.2.2.2 Classification accuracy results

This section presents the classification accuracy obtained by C4.5, naive Bayes, k-NN

and SVM classifiers both with the centralized and distributed approach. After the 5

repetitions, a Kruskal-Wallis test (see Appendix I, Section I.4) was applied to check if

there were significant differences for a level of significance α = 0.05. Then, a multiple

comparison procedure (Tukey’s) was applied to find the simplest approach in which the

accuracy is not significantly different from the approach with the best accuracy (labeled

with a cross in Table 10.4). Notice that for each one of the 5 repetitions, 5 rounds of the

partitioning and filtering steps are executed. Table 10.4 reports the test classification

accuracies obtained with C4.5, naive Bayes, k-NN and SVM (see Appendix I, Section

I.5). The best result for each dataset and classifier is highlighted in bold face.

As expected, the results are very variable depending on the dataset and the classifier.

However, in terms of average (last column), the best result for each classifier is obtained

by a distributed approach. In particular, ReliefF-D combined with C4.5 achieves the

highest accuracy, outperforming in at least 3.5% the best results for the remaining

classifiers. For some datasets (Connect4, Isolet and Madelon) the highest accuracies are

obtained by centralized approaches, whereas for others (Spambase and MNIST) the best

results are accomplished by a distributed method. The important conclusion, however,

is that by distributing the data there is not a significant degradation in classification

accuracy. In fact, in some cases the accuracy is improved. It is worth mentioning,

for example, the case of MNIST, in which distributed consistency-filter combined with

k-NN classifier reports 94.08% accuracy whilst the same filter method in the standard

centralized approach degrades significantly its performance (85.21% accuracy).

10.2.2.3 Runtime

Table 10.5 reports the runtime of the feature selection algorithms, both in centralized

and distributed manners. In the distributed approach, considering that all the subsets

can be processed at the same time, the time displayed in the table is the maximum of

the times required by the filter in each subset generated in the partitioning stage. In

these experiments, all the subsets were processed in the same machine, but the proposed

algorithm could be executed in multiple processors. Please note that this filtering time

is independent of the classifier chosen. The lowest time for each dataset is emphasized

in bold font.
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Table 10.4: Test classification accuracy for horizontal partitioning.

Connect4 Isolet Madelon Ozone Spambase Mnist Average

C
4
.5

CFS-C 70.38 80.61† 75.58 95.63† 91.91† 85.78 83.31

CFS-D 72.66† 80.05† 77.74† 95.42† 91.80† 87.28 † 84.16

IG-C 70.70 78.90† 80.15† 95.59† 91.52† 86.56† 83.90

IG-D 72.60† 76.93† 77.80† 95.74† 91.46† 86.70† 83.53

ReliefF-C 70.98 78.31† 84.49† 95.52† 88.53 85.61 83.90

ReliefF-D 72.08† 77.63† 83.64† 95.45† 90.63† 86.18† 84.26

INT-C 74.79† 76.61† 77.98† 95.59† 91.40† 85.08 83.57

INT-D 72.44† 77.18† 75.63 95.93† 91.97† 87.40† 83.57

Cons-C 74.89† 57.03 79.20† 95.59† 90.89† 84.47 80.34

Cons-D 72.45† 69.54 78.74† 96.56† 90.98† 88.25† 80.34

N
B

CFS-C 65.74† 72.74† 69.05† 79.85† 78.54† 72.13† 73.00

CFS-D 66.55† 73.63† 69.36† 81.45† 80.64† 73.51† 74.09

IG-C 65.75† 71.19† 69.23† 75.78 87.97† 69.80 73.15

IG-D 66.22† 66.59† 69.63† 79.70† 87.99† 69.51 73.27

ReliefF-C 65.72† 66.75† 69.57† 67.37 71.65 69.96 68.50

ReliefF-D 66.04† 60.35 69.54† 68.84 80.53† 70.58† 69.31

INT-C 59.38 66.39† 68.92† 81.04† 82.14† 68.44† 71.05

INT-D 66.21† 68.35† 69.44† 84.33† 82.02† 71.26† 73.53

Cons-C 59.07 42.68 69.00† 81.09† 84.19† 73.26† 68.21

Cons-D 66.19† 60.70 69.34† 91.36† 85.79† 75.17† 74.76

k
-N

N

CFS-C 62.31† 55.31† 68.41 95.28† 87.71† 87.38 76.06

CFS-D 65.38† 53.94† 75.44† 94.97† 88.11† 90.41† 78.04

IG-C 62.91† 54.27† 80.36† 95.16† 88.15† 89.46† 78.38

IG-D 65.09† 60.52† 78.34† 95.43† 88.33† 90.37† 79.68

ReliefF-C 60.99 57.07† 91.16† 95.17† 84.07 89.49† 79.66

ReliefF-D 66.66† 54.07† 89.89† 94.60† 87.28† 90.21† 80.45

INT-C 61.74 48.85 74.82 95.22† 88.43† 85.49 75.76

INT-D 65.16† 49.24 77.18† 95.10† 88.74† 90.69† 77.68

Cons-C 61.28 54.16† 76.12† 95.14† 86.81† 85.21 76.45

Cons-D 65.21† 60.35† 79.03† 93.05† 87.13† 94.08† 79.80

S
V

M

CFS-C 65.72† 82.04† 64.16† 97.16† 87.67† 80.76† 79.58

CFS-D 65.72† 81.10† 64.82† 97.16† 87.80† 81.75† 79.73

IG-C 65.72† 81.48† 64.68† 97.16† 87.64† 78.64† 79.22

IG-D 65.72† 77.34† 65.35† 97.16† 87.99† 79.06† 78.80

ReliefF-C 65.72† 82.00† 65.84† 97.16† 85.23 74.86 78.47

ReliefF-D 65.72† 79.03† 65.85† 97.16† 86.91† 75.15 78.30

INT-C 65.72† 71.92† 63.70† 97.16† 88.22† 78.25† 77.50

INT-D 65.72† 73.64† 65.01† 97.16† 88.07† 80.67† 78.37

Cons-C 65.72† 28.22 64.22† 97.16† 86.99† 75.19 69.54

Cons-D 65.72† 53.53 64.81† 97.16† 86.70† 80.02† 74.65
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10.3 Vertical partitioning

Table 10.5: Runtime (hh:mm:ss) for the feature selection methods tested

Connect4 Isolet Madelon Ozone Spambase Mnist

CFS-C 00:01:40 00:04:10 00:00:36 00:00:10 00:00:12 00:29:47

CFS-D 00:00:10 00:01:17 00:00:25 00:00:08 00:00:06 00:04:17

IG-C 00:01:37 00:02:51 00:00:41 00:00:09 00:00:11 00:24:11

IG-D 00:00:04 00:00:54 00:00:29 00:00:09 00:00:05 00:03:55

ReliefF-C 00:28:00 00:09:13 00:01:02 00:00:14 00:00:21 08:26:53

ReliefF-D 00:00:11 00:01:43 00:00:40 00:00:08 00:00:04 00:22:26

INT-C 00:01:52 00:03:16 00:00:40 00:00:09 00:00:13 00:52:25

INT-D 00:00:11 00:01:10 00:00:31 00:00:08 00:00:04 00:03:19

Cons-C 00:06:08 00:04:05 00:00:52 00:00:11 00:00:14 01:42:43

Cons-D 00:00:10 00:01:20 00:00:25 00:00:06 00:00:02 00:03:17

As expected, the advantage of the distributed approach in terms of execution time

over the standard method is significant. The time is reduced for all datasets and filters,

except for Ozone with Information Gain filter, in which it is maintained. It is worth

mentioning the important reductions when the dimensionality of the dataset grows.

For Mnist dataset, which has 717 features and 40000 training samples, the reduction is

more than notable. For ReliefF filter, the processing time is reduced from more than

8 hours to 22 minutes, proving the adequacy of the distributed approach when dealing

with large datasets.

For the distributed approach, it is necessary to take into account the time required

to find the threshold to build the final subset of features. This time depends highly

on the classifier, as can be seen in Table 10.6. In the table it is visualized the average

runtime for each filter, classifier and dataset. It is easy to note that the classifier which

requires more execution time is SVM whilst the one which requires the shortest time

is naive Bayes. Except for Mnist dataset with SVM classifier, this time is usually in

the order of seconds or a couple of minutes, so it is insignificant when compared with

the time required by any of the centralized algorithms showed above. Moreover, if the

user would prefer to save this time, it is possible to establish a fixed threshold in an

attempt to avoid this specific calculation. In light of these results, we can conclude that

our horizontal distributed proposal performed successfully, since the running time was

considerably reduced and the accuracy did not drop to inadmissible values. In fact,

our approach is able to match and in some cases even improve the standard algorithms

applied to the non-partitioned datasets.
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Table 10.6: Runtime (hh:mm:ss) for obtaining the threshold of votes.

Connect4 Isolet Madelon Ozone Spambase Mnist

C
4.

5

CFS-D 00:01:46 00:00:28 00:00:02 00:00:02 00:00:07 00:05:01

IG-D 00:01:42 00:00:24 00:00:02 00:00:02 00:00:06 00:00:29

ReliefF-D 00:01:42 00:00:28 00:00:02 00:00:02 00:00:06 00:04:49

INT-D 00:02:03 00:00:30 00:00:02 00:00:03 00:00:06 00:05:03

Cons-D 00:01:54 00:00:05 00:00:02 00:00:02 00:00:06 00:00:19

N
B

CFS-D 00:01:21 00:00:23 00:00:02 00:00:02 00:00:08 00:02:57

IG-D 00:01:16 00:00:21 00:00:02 00:00:02 00:00:07 00:00:20

ReliefF-D 00:01:18 00:00:22 00:00:03 00:00:03 00:00:07 00:03:01

INT-D 00:01:32 00:00:25 00:00:02 00:00:04 00:00:07 00:02:53

Cons-D 00:01:22 00:00:04 00:00:02 00:00:02 00:00:07 00:00:14

IB
1

CFS-D 00:02:37 00:00:18 00:00:02 00:00:02 00:00:06 00:10:39

IG-D 00:02:33 00:00:16 00:00:02 00:00:02 00:00:06 00:01:06

ReliefF-D 00:02:33 00:00:18 00:00:02 00:00:02 00:00:06 00:10:28

INT-D 00:03:04 00:00:20 00:00:02 00.00:03 00:00:06 00:10:29

Cons-D 00:02:50 00:00:04 00:00:02 00:00:02 00:00:06 00:0040

S
V

M

CFS-D 00:03:11 00:01:49 00:00:02 00:00:02 00:00:07 00:56:58

IG-D 00:03:09 00:01:39 00:00:02 00:00:02 00:00:06 00:03:40

ReliefF-D 00:03:09 00:01:35 00:00:02 00:00:04 00:00:06 01:04:51

INT-D 00:03:53 00:01:41 00:00:02 00:00:03 00:00:06 00:57:46

Cons-D 00:03:24 00:00:20 00:00:02 00:00:02 00:00:06 00:02:54

10.3 Vertical partitioning

When having a large number of features, it is more appropriate to distribute the data

by features. Thus, we will deal with subsets with a more balanced features/samples

ratio and overfitting problems will be avoided. The approach that will be tested in this

section for the vertical partitioning is the same than the one applied for the horizontal

partitioning. Analogously to Algorithm 10.1, the pseudocode for the vertical partition-

ing can be seen in Algorithm 10.2. Notice that, in this case, and since there are not

duplicated features in different packets, the maximum number of votes corresponds to

the number of rounds r, so only the threshold values from 1 to r are evaluated.
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10.3 Vertical partitioning

Algorithm 10.2: Pseudo-code for vertical partitioning

Data: D(m×n+1) ← labeled training dataset with m samples and n input features

X←set of features, X = {x1, . . . , xn}
s← number of submatrices of D with p features

r ← number of rounds

α← 0.75

Result: S← subset of features \S ⊂ X

/* Obtaining a vector of votes for discarding features */

1 initialize the vector votes to 0, |vector|=n

2 for each round do

3 Split D randomly into s disjoint submatrices

4 for each submatrix do

5 apply a feature selection algorithm

6 F← features selected by the algorithm

7 E← features eliminated by the algorithm \E ∪ F = X

8 increment one vote for each feature in E

end

end

/* Obtain threshold of votes, Th, to remove a feature */

9 avg ← compute the average of the vector votes

10 std← compute the standard deviation of the vector votes

11 minV ote← minimum threshold considered (1)

12 maxV ote← maximum threshold considered (number of rounds, r)

13 z← submatrix of D with only 10% of samples

14 for v ← minVote to maxVote with increment 1 do

15 Fth ← subset of selected features (number of votes < v)

16 error ← classification error after training z using only features in Fth

17 featPercentage← percentage of features retained
(
|Fth|
|X| × 100

)
18 e[v]← α× error + (1− α)× featPercentage

end

19 Th← min(e), Th is the value which minimizes the error e

20 S← subset of features after removing from X all features with a number of

votes ≥ Th
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10.3.1 Experimental results

For these experiments, only the datasets with the largest number of features were

considered, i.e. Isolet, Madelon and MNIST (see Appendix I, Section I.2). We have

opted for dividing the datasets in five packets, so that each packet will contain 20%

of features, without replacement. In this manner, the considered datasets will have

enough features to lead to a correct learning.

This approach has been tested using filter methods (CFS, Information Gain, Reli-

efF, INTERACT and consistency-based, see Chapter 2. The wrapper model has been

also studied in a previous work (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos,

2013b). However, this chapter will be focused on the filter approach, since the results

happened to be more interesting.

10.3.1.1 Number of features selected

This section reports the average number of features selected by the centralized and

distributed approaches. First, Table 10.7 displays the results for the standard central-

ized method, as well as the full number of features for each dataset. Then, Table 10.8

shows the number of features selected by the distributed approach, which depends on

the classifier employed to find the optimal threshold of votes.

Contrary to the horizontal distribution case, the number of features selected by

the distributed methods is larger than those selected by the centralized approaches.

Moreover, the number of features selected by the distributed approach with the vertical

partition is also larger than in the case of the horizontal distribution (see Table 10.3).

This is caused by the fact that, with the vertical partition, the features are distributed

across the packets and it is more difficult to detect redundancy between features if they

are in different partitions. Even so, our distributed approach is using (in the worst case)

53%, 5% and 16% of the total features for Isolet, Madelon and Mnist, respectively.
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10.3 Vertical partitioning

Table 10.7: Number of features selected by the centralized approach

Isolet Madelon Mnist

Full set 617 500 717

CFS-C 189 17 60

IG-C 189 17 60

ReliefF-C 189 17 60

INT-C 58 23 38

Cons-C 11 22 17

Table 10.8: Number of features selected by the distributed approach

Isolet Madelon Mnist

C
4
.5

CFS-D 229 20 60

IG-D 323 17 111

ReliefF-D 307 13 75

INT-D 103 23 49

Cons-D 78 20 28

N
B

CFS-D 229 17 90

IG-D 328 20 99

ReliefF-D 293 16 42

INT-D 57 23 85

Cons-D 36 20 28

k
-N

N

CFS-D 242 23 114

IG-D 330 18 111

ReliefF-D 307 16 113

INT-D 219 23 85

Cons-D 19 21 76

S
V

M

CFS-D 229 20 90

IG-D 325 2 99

ReliefF-D 304 11 75

INT-D 187 23 49

Cons-D 162 19 76
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10.3.1.2 Classification accuracy results

To test the vertical approach, the same filters and classifiers used with the horizontal

approach were selected. Again, for the vertical partitioning, the number of rounds r

was set to 5 and a hold-out validation was applied and repeated 5 times. Statistical

tests were performed, labeled with a cross in Table 10.9, which shows the average test

classification accuracy obtained with C4.5, naive Bayes, k-NN and SVM. Notice that

in the table, the best result for each dataset and classifier is highlighted in bold face.

In terms of classification accuracy, the best results were obtained by the distributed

approach for Isolet and Madelon, as well as in average for all datasets and classifiers.

However, as can be seen in Table 10.9, in general there are no significant differences in

terms of accuracy, as expected. When proposing a distributed approach, the goal is to

maintain the classification performance whilst reducing the running time.

10.3.1.3 Runtime

Table 10.10 shows the runtime required by the feature selection methods. In the case

of the distributed approach, the time displayed is the maximum time among those

obtained in the different packets. As happened with the horizontal distribution, this

filtering time is independent of the classifier chosen. The lowest time for each dataset

is marked in bold.

Again, the execution time is drastically shortened by applying the distributed ap-

proach. It is specially notable the case of Mnist with ReliefF, in which the runtime

is reduced from six hours to one hour. Notice that the larger the dataset, the larger

the reduction in time. Table 10.11 depicts the time required to find the threshold in

order to obtain the final subset of features. Analogously to the horizontal partition, the

classifier that takes the longest time is SVM, particularly when it is combined with the

Mnist dataset. In the remaining cases, however, the runtime is in the order of seconds

or a few minutes. If the main objective is to reduce notably the time, the user must

select another classifier instead of SVM.

Our proposal was able to reduce the running time significantly with respect to the

standard (centralized) filtering algorithms. In terms of execution time, the behavior

is excellent, being this fact the most important advantage of our method. Moreover,
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10.3 Vertical partitioning

Table 10.9: Test classification accuracy for the first approach of vertical partitioning.

Isolet Madelon Mnist Average

C
4
.5

CFS-C 80.61 † 75.34 85.36 80.44

CFS-D 80.85 † 75.08 † 86.16 † 80.70

IG-C 79.00 † 79.63 † 86.69 † 81.77

IG-D 79.54 † 78.27 † 88.85 † 82.22

ReliefF-C 79.02 † 82.93 † 85.59 † 82.51

ReliefF-D 80.04 † 81.33 † 88.57 † 83.31

INT-C 76.76 77.94 † 84.77 † 79.82

INT-D 77.59 † 78.09 † 87.06 † 80.91

Cons-C 54.04 78.39 † 85.40 72.61

Cons-D 74.99 77.3 † 85.01 79.10

N
B

CFS-C 72.44 † 69.94 † 72.18 † 71.52

CFS-D 74.07 † 69.57 † 73.26 † 72.30

IG-C 69.62 † 69.78 † 68.80 69.40

IG-D 70.93 † 69.55 † 71.38 † 70.62

ReliefF-C 64.67 69.64 † 69.58 67.96

ReliefF-D 69.53 † 69.32 † 69.27 69.37

INT-C 67.17 † 69.73 † 69.87 68.92

INT-D 65.21 † 69.46 † 76.08 † 70.25

Cons-C 40.19 69.81 † 71.78 † 60.59

Cons-D 60.22 69.74 † 73.84 † 67.93

k
-N

N

CFS-C 55.63 † 68.86 86.34 70.28

CFS-D 57.90 † 71.75 91.25 † 73.63

IG-C 53.94 78.07 † 89.35 † 73.79

IG-D 55.62 † 78.76 † 94.02 † 76.13

ReliefF-C 56.69 † 89.32 † 89.27 † 78.43

ReliefF-D 59.36 † 88.76 † 95.80 † 81.31

INT-C 46.88 72.95 † 85.04 68.29

INT-D 53.10 † 72.64 † 94.36 † 73.37

Cons-C 53.05 75.04 † 85.42 71.17

Cons-D 57.39 † 73.91 † 96.03 † 75.78

S
V

M

CFS-C 82.36 † 65.23 † 80.15 † 75.91

CFS-D 83.55 † 64.92 † 81.58 † 76.68

IG-C 81.09 † 65.9 † 78.6 † 75.20

IG-D 82.61 † 65.16 † 80.02 † 75.93

ReliefF-C 81.92 † 66.4 † 74.93 74.42

ReliefF-D 83.98 † 66.33 † 76.82 † 75.71

INT-C 72.53 65.01 † 78.44 † 71.99

INT-D 80.38 † 64.97 † 78.46 † 74.60

Cons-C 29.29 65.04 † 74.42 56.25

Cons-D 76.45 65.73 † 80.17 † 74.12

255



Chapter 10. Distributed and parallel feature selection

Table 10.10: Runtime (hh:mm:ss) for the feature selection methods tested.

Isolet Madelon Mnist

CFS-C 00:03:52 00:00:49 00:32:39

CFS-D 00:00:40 00:00:18 00:04:47

IG-C 00:02:34 00:00:47 00:26:24

IG-D 00:00:42 00:00:15 00:04:33

ReliefF-C 00:08:55 00:01:15 06:22:00

ReliefF-D 00:03:10 00:00:26 01:32:02

INT-C 00:03:06 00:00:49 00:31:01

INT-D 00:00:46 00:00:16 00:03:45

Cons-C 00:03:57 00:01:05 01:21:16

Cons-D 00:00:58 00:00:16 00:03:45

Table 10.11: Runtime (hh:mm:ss) for obtaining the threshold of votes.

Isolet Madelon Mnist

C
4.

5

CFS-D 00:02:14 00:00:14 00:03:01

IG-D 00:01:59 00:00:14 00:03:08

ReliefF-D 00:01:10 00:00:13 00:03:59

INT-D 00:01:11 00:00:13 00:03:58

Cons-D 00:00:33 00:00:14 00:03:56

N
B

CFS-D 00:01:30 00:00:16 00:02:03

IG-D 00:01:40 00:00:14 00:02:04

ReliefF-D 00:01:43 00:00:14 00:03:30

INT-D 00:00:56 00:00:16 00:02:29

Cons-D 00:00:29 00:00:16 00:02:16

IB
1

CFS-D 00:01:15 00:00:13 00:06:14

IG-D 00:01:26 00:00:13 00:06:03

ReliefF-D 00:01:27 00:00:12 00:07:25

INT-D 00:00:51 00:00:13 00:07:35

Cons-D 00:00:26 00:00:13 00:05:34

S
V

M

CFS-D 00:06:41 00:00:14 00:19:06

IG-D 00:06:59 00:00:13 00:26:38

ReliefF-D 00:07:06 00:00:14 01:02:20

INT-D 00:04:00 00:00:14 00:36:08

Cons-D 00:02:01 00:00:15 00:37:02
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regarding the classification accuracy, our vertical distributed approach was able to

match and in some cases even improve the standard algorithms applied to the non-

partitioned datasets.

10.4 Case of study: vertical partitioning applied to DNA

microarray data

As could be seen in Chapter 4, many filter approaches were applied to successfully

classify microarray data. However, up to the authors’ knowledge, there is no attempt

in the literature to tackle this problem with distributed feature selection, apart from

the method proposed by Sharma et al. (2012). They introduced an algorithm that first

distributes genes into relative small subsets, then selects informative smaller subsets of

genes from a subset and merges the chosen genes with another gene subset to update

the final gene subset.

Still, DNA microarray data prevents the use of horizontal partition because of the

small sample size. The distributed methods found in the literature which are based on

vertical partition (McConnell & Skillicorn, 2004; Skillicorn & McConnell, 2008; Rokach,

2009) have not been designed specifically for dealing with microarray data, so they do

not tackle the particularities of this data, such as the high redundancy present among

the features. The method proposed by Sharma et al. (2012) address these issues, but

it has the disadvantage of being computationally expensive by having interaction with

a classifier to select the genes in each subset. In this case of study a distributed filter

method will be applied, suitable to microarray data and with a low computational cost.

The general methodology is the same explained in Section 10.1, which consists of the

partition of the datasets, the application of feature selection techniques fo the subsets

and, finally, the combination of the results. The partition of the dataset is performed by

dividing the original dataset into several disjoint vertical subsets of approximately the

same size that cover the full dataset. Two different methods were used for partitioning

the data: (a) performing a randomly partition and (b) ranking the original features

before generating the subsets. The second option was introduced trying to improve the

performance results obtained by the first one. By having an ordered ranking, features

with similar relevance to the class will be in the same subset, which will facilitate

the task of the subset filter which will be applied later. These two techniques for
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partitioning the data will generate two different approaches for the distributed method:

Distributed Filter (DF) with the randomly partition and Distributed Ranking Filter

(DRF) associated to the ranking partition.

Figure 10.1: Flow chart of proposed algorithm

After this step, the data is split by assigning groups of k features to each subset,

where the number of features k in each subset is half the number of samples, to avoid

overfitting. Notice that, since we are working with microarray data, this division gen-

erates a large number of subsets. When opting for the randomly partition (DF), the

groups of k features are constructed randomly, having into account that the subsets

have to be disjoint. In the case of the ranking partition (DRF), the groups of k features

are generated sequentially over the ranking, so features with a similar ranking position

will be in the same group. Notice that the random partition is equivalent to obtain

a random ranking of the features and then follow the same steps as with the ordered

ranking. Figure 10.1 shows a flow chart which reflects the two algorithms proposed,

DF and DRF.
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Algorithm 10.3: Pseudo-code for vertical partitioning for DNA microarray data

Data: D(m×n+1) ← labeled training dataset with m samples and n input features

X←set of features, X = {x1, . . . , xn}
s← number of submatrices of D with p features

Result: S← subset of features \S ⊂ X

1 Select the partition method:

2 DF ← Mix up dataset D to obtain a random ranking R or

3 DRF ← Apply a ranker method to D to obtain an ordered ranking R

/* Splitting the dataset */

4 for i← 1 to s with increment 1 do

5 Ri = first p features in R

6 R = R \Ri

7 Di = D(m×Ri)

end

/* Application of feature selection methods to the subsets */

8 for i← 1 to s with increment 1 do

9 Si = subset of features obtained after applying the chosen filter over Di

end

/* Merging procedure */

10 S = S1

11 baseline = classification accuracy after training subset D(m×Si)

12 for i← 2 to s with increment 1 do

13 Saux = S ∪ Si
14 accuracy = classification accuracy after training subset D(m×Saux)

15 if accuracy > baseline then

16 S = Saux

17 baseline = accuracy

end

end

18 S← final subset of features
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After having several small disjoint datasets Di, the filter method will be applied to

each of them, returning a selection Si for each subset of data. Finally, to combine the

results, a merging procedure using a classifier will be executed. The first selection S1 is

taken to calculate the classification accuracy, which will be the baseline, and the features

in S1 will become part of the final selection S. Then, the features in the remaining

selections Si will be merged with the candidate feature subset. If the classification

accuracy using them improves the baseline accuracy, these features will be part of the

final selection and this accuracy will become the baseline accuracy, as can be seen in

more detail in Algorithm 10.3. By combining the features in this manner, it is expected

to remove redundancy and solve the problem detected with the previous approach (see

Section 10.3), since a redundant feature will not improve the accuracy and hence will

not be added to the final selection. At the end, this final selection S is applied to the

training and test sets in order to obtain the ultimate classification accuracies. It has

to be noted that this algorithm can be used with any feature subset filter.

10.4.1 Experimental setup

In order to test the proposed distributed filter approach, we have selected eight mi-

croarray benchmark datasets which can be consulted in Appendix I, Table I.8: Colon,

DLBCL, CNS, Leukemia, Prostate, Lung, Ovarian and Breast. Those datasets origi-

nally divided to training and test sets were maintained, whereas, for a fair comparison,

datasets with only training set were randomly divided using the common rule 2/3 for

training and 1/3 for testing. For calculating the number of packets s, it was considered

that each packet would have as many features as twice the number of samples, to avoid

overfitting.

As can be seen in Table I.8, Leukemia dataset presents the so-called imbalance

problem (see Chapter 4, Section 4.2.2). A dataset is considered imbalanced when the

classification categories are not approximately equally represented in the training set.

This situation is very common in microarray datasets, when most of the instances

correspond with “normal” patterns while the standard interest consists of identifying

the “abnormal” patterns. There exist some techniques to overcome the imbalance

problem, however some of them are not appropriate to microarray data (Blagus &

Lusa, 2012). For this sake, and following the recommendations given by Blagus and

Lusa (2012), we will use random oversampling to deal with Leukemia dataset, which

consists of replicating, at random, elements of the under-sized class until it matches

the size of the other classes.
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10.4.2 Election of the ranker method

There are two different types of ranker feature selection: univariate and multivariate

(see Chapter 2). Univariate methods are fast and scalable, but ignore feature depen-

dencies. On the other hand, multivariate filters model feature dependencies, but at the

cost of being slower and less scalable than univariate techniques. As a representative

of univariate ranker filters we have chosen the well known Information Gain (M. Hall

& Smith, 1998). As for multivariate ranker filter, ReliefF (Kira & Rendell, 1992)

and minimum-Redundancy-maximum-Relevance (mRMR) were chosen. The detailed

descriptions of these filters can be consulted in Chapter 2.

Because of their nature, the ranking returned by Information Gain and ReliefF

places the more relevant features on the top of the ranking (even when they are re-

dundant) whilst mRMR is able to detect the redundant features and move them to

lower positions in the ranking. Feature/gene redundancy is an important problem in

microarray data classification. In the presence of thousands of features, researchers

noticed that it is common that a large number of features are not informative because

they are redundant. Empirical evidence showed that along with irrelevant features,

redundant features also affect the speed and accuracy of mining algorithms (Yu & Liu,

2004b).

In light of the above, the behavior of mRMR might seem an advantage in removing

redundancy, but it is not the case in these experiments. Preliminary tests with these

three ranker filters (not included for the sake of brevity) revealed that it was better to

have the redundant features in the same packet of features, so the filter applied after-

wards could remove the redundant features at once. On the contrary, if the redundant

features are split in different packets, there are more chances to keep them and degrade

the performance. Moreover, multivariate ranker filters are slower than univariate ones,

and to deal with the entire set of features (thousands of them) it is important to reduce

this processing time. For these reasons, Information Gain was chosen for this study.

This univariate filter provides an ordered ranking of all the features in which the worth

of an attribute is evaluated by measuring the information gain with respect to the class.

One of the particularities of the Information Gain filter is that, if a feature is not

relevant to the prediction task, its information gain with respect to the class would be

zero. For this reason, we will also try an approach which consists of eliminating the

features with information gain zero from the initial ranking.
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10.4.3 Experimental results

In this section the experimental results over the eight datasets mentioned above will

be presented and discussed. The distributed approach proposed in this chapter can

be used with any filter method. In these experiments, five well-known filters, based

on different metrics where chosen. While three of the filters return a feature subset

(CFS, Consistency-based and INTERACT), the other two (ReliefF and Information

Gain) are ranker methods, so it is necessary to establish a threshold in order to obtain

a subset of features. In this case we have opted for retaining the 10% and 25% top

features. Notice that although most of the filters work only over nominal features, the

discretization step is done by default by Weka, working as a black box for the user. A

detailed description of the filters can be found in Chapter 2.

Four different approaches will be compared in the tables of this section: the central-

ized filter approach (CF), the distributed filter approach (DF), the distributed ranking

filter approach (DRF) and the distributed ranking filter approach removing the fea-

tures with information gain zero from the ranking (DRF0). Notice that with the DF

method, the subsets of features are randomly generated so they are different in each

iteration. For this reason, the experiments are run 5 times and the average of them is

shown in the tables.

10.4.3.1 Number of features selected

Table 10.12 displays the number of features selected by the centralized approach, which

is independent of the classifier, as well as the original number of features for each

dataset. Notice that the number of features selected by the ranker methods (Informa-

tion Gain and ReliefF) are notably higher than those of the subset filters, because it is

necessary to establish a percentage of features to retain. Tables 10.13 and 10.14 show

the number of features selected by the distributed approaches on the eight datasets.

Note that the features selected by the distributed approaches depend on the classifier

because of the merging procedure.

From these tables it can be observed that the number of features selected by any

method is considerably much smaller than that of the full features. Therefore, all the

feature selection algorithms tested herein are able to reduce significantly the number

of features as well as the storage requirements and the classification runtime.
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Table 10.12: Number of features selected by the centralized approach

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast

Full set 2000 7129 7129 4026 12600 12533 15154 24481

CFS 19 36 60 47 89 40 37 130

Cons 3 1 3 2 4 1 3 5

INT 16 36 47 36 73 40 27 102

IG10% 200 713 713 403 1260 1254 1516 2449

IG25% 500 1783 1783 1007 3150 3134 3789 6121

ReliefF10% 200 713 713 403 1260 1254 1516 2449

ReliefF25% 500 1783 1783 1007 3150 3134 3789 6121

In general, the feature selection method that selects the lowest number of features

for any dataset is the consistency-based filter, especially in its centralized approach.

The subset filters (CFS, consistency-based and INTERACT) tend to select a larger

number of features when they are applied in a distributed approach. On the contrary,

the ranker methods (Information Gain and ReliefF) reduce the number of features in

the final subset when the process is distributed. This can be explained because with

the centralized approach, they have no option but to select the established percentage

of features, and this fixed number is smaller when it is applied to a subset of the data.

It is worth noticing that the centralized version of consistency-based, as well as

some distributed approaches, select a single feature for Leukemia and Lung datasets.

These two datasets were originally divided to training and test datasets, with the

data extracted under different conditions, which may hinder the process of feature

selection and classification. This phenomenon is known as dataset shift and it has

been discussed in Chapter 4, Section 4.2.4. In fact, the single feature selected by the

consistency-based filter on the Lung dataset was the feature #1136. This feature in

the training set can be used to distinguish clearly the target concept values, as shown

in Figure 4.2a. Nevertheless, this feature is not so informative in the test set and the

class is not linearly separable, as displayed in Figure 4.2b. For this reason, although

100% classification accuracy was obtained with the training set of this dataset using

this feature (not included in the tables for the sake of brevity), the precision decreases

on the test set (see Tables 10.15 - 10.18). A similar situation also happens with the

Leukemia dataset.
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Table 10.13: Number of features selected by the distributed approaches with C4.5 and

naive Bayes classifiers

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast

C
4
.5

DF-CFS 8 11 8 6 50 11 95 20

DRF-CFS 25 13 28 11 121 17 16 31

DRF0-CFS 22 13 28 11 129 17 16 27

DF-Cons 5 8 7 4 39 9 62 16

DRF-Cons 5 1 12 2 21 1 22 24

DRF0-Cons 10 1 11 2 13 1 22 6

DF-INT 8 10 8 6 53 11 75 19

DRF-INT 20 13 16 9 87 17 33 30

DRF0-INT 18 13 26 9 88 17 33 27

DF-IG10% 14 9 14 9 53 9 85 48

DRF-IG10% 9 2 6 2 30 2 36 44

DRF0-IG10% 9 2 4 2 30 2 27 16

DF-IG25% 34 22 28 19 125 17 194 118

DRF-IG25% 6 5 15 4 91 4 44 100

DRF0-IG25% 6 5 5 4 65 4 44 50

DF-ReliefF10% 17 11 14 11 49 9 70 41

DRF-ReliefF10% 9 4 8 2 30 2 18 20

DRF0-ReliefF10% 9 4 6 2 24 2 18 8

DF-ReliefF25% 34 22 34 21 99 18 176 142

DRF-ReliefF25% 12 5 20 4 52 4 66 80

DRF0-ReliefF25% 12 5 10 4 26 4 66 10

N
B

DF-CFS 11 12 12 10 58 9 97 24

DRF-CFS 25 13 50 26 20 17 38 152

DRF0-CFS 10 13 50 26 20 17 34 150

DF-Cons 5 10 10 6 56 8 66 16

DRF-Cons 12 4 28 5 5 3 3 33

DRF0-Cons 5 4 17 5 5 3 3 33

DF-INT 11 11 12 10 60 9 87 24

DRF-INT 18 13 41 9 22 17 22 126

DRF0-INT 15 13 34 9 21 17 22 123

DF-IG10% 16 11 22 14 48 9 108 32

DRF-IG10% 6 6 14 4 12 2 45 28

DRF0-IG10% 3 6 8 4 12 2 36 20

DF-IG25% 37 22 47 33 109 20 172 76

DRF-IG25% 12 5 15 8 26 4 66 100

DRF0-IG25% 6 5 5 8 39 4 22 30

DF-ReliefF10% 19 11 16 14 50 10 99 44

DRF-ReliefF10% 6 4 14 4 24 4 27 40

DRF0-ReliefF10% 6 4 4 4 24 4 18 24

DF-ReliefF25% 35 26 38 30 114 17 202 116

DRF-ReliefF25% 6 10 25 4 13 8 88 40

DRF0-ReliefF25% 12 10 10 4 13 8 66 20
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Table 10.14: Number of features selected by the distributed approaches with k-NN and

SVM classifiers

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast

k
-N

N

DF-CFS 12 16 9 8 70 11 77 22

DRF-CFS 27 13 37 11 48 17 33 34

DRF0-CFS 23 13 32 11 35 17 33 27

DF-Cons 7 13 8 7 54 10 56 15

DRF-Cons 12 4 19 6 48 3 22 44

DRF0-Cons 9 4 18 2 31 3 23 54

DF-INT 12 18 9 8 66 11 77 24

DRF-INT 20 13 31 9 58 17 11 35

DRF0-INT 7 13 27 9 51 17 11 27

DF-IG10% 15 12 16 14 55 9 61 60

DRF-IG10% 6 4 12 4 24 2 18 52

DRF0-IG10% 6 4 6 4 30 2 18 32

DF-IG25% 41 25 43 33 135 20 158 136

DRF-IG25% 18 10 10 8 65 4 66 40

DRF0-IG25% 6 10 5 8 65 4 44 10

DF-ReliefF10% 16 12 16 11 46 10 68 42

DRF-ReliefF10% 9 6 8 6 30 2 18 40

DRF0-ReliefF10% 6 6 6 6 24 2 18 20

DF-ReliefF25% 35 27 39 24 101 18 172 100

DRF-ReliefF25% 12 15 30 12 65 4 22 50

DRF0-ReliefF25% 6 15 15 8 52 4 22 40

S
V

M

DF-CFS 8 17 10 9 59 14 51 21

DRF-CFS 12 13 52 11 62 17 16 82

DRF0-CFS 10 13 64 11 113 17 16 82

DF-Cons 7 15 5 7 54 10 41 21

DRF-Cons 5 10 18 5 59 5 8 42

DRF0-Cons 5 10 17 5 51 5 8 51

DF-INT 8 18 10 9 68 13 47 18

DRF-INT 7 13 78 9 65 17 11 116

DRF0-INT 7 13 27 9 61 17 11 97

DF-IG10% 14 14 13 16 52 9 49 56

DRF-IG10% 3 8 2 4 30 2 45 44

DRF0-IG10% 3 8 2 2 36 2 45 24

DF-IG25% 35 34 57 30 117 18 84 130

DRF-IG25% 12 15 30 12 26 4 66 100

DRF0-IG25% 6 15 15 12 39 4 44 40

DF-ReliefF10% 18 14 16 13 54 10 47 47

DRF-ReliefF10% 6 6 12 6 30 2 18 44

DRF0-ReliefF10% 6 6 8 6 18 2 18 24

DF-ReliefF25% 32 26 43 22 99 18 84 102

DRF-ReliefF25% 12 10 40 8 52 4 22 100

DRF0-ReliefF25% 18 10 20 4 52 4 22 60
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This situation reflects the enormous problematic of microarray data (see Chapter 4),

in which in some cases the training and test samples are recorded under completely dif-

ferent situations. In the case of Leukemia dataset, the training samples were extracted

from adult patients, whereas the test samples were obtained mainly from children.

10.4.3.2 Classification accuracy results

In this section we discuss the test classification accuracy obtained by C4.5, naive Bayes,

k-NN and SVM classifiers with the centralized and distributed approaches. Notice that

in these tables, the best results are marked in bold.

Table 10.15 reports the classification accuracy obtained by C4.5 for all datasets and

approaches tested. The centralized approach achieves the best result for two datasets

(Lung and Breast), whilst for the remaining datasets, the distributed approach DRF

outperforms the other methods with Colon, CNS and Prostate datasets. It is worth

mentioning the case of the CNS datasets, in which DRF and DRF0 combined with

the consistency-based filter surpassed the best centralized results by 20%. As for the

Prostate dataset, the results obtained with DRF combined with ReliefF retaining 25%

of the features outperformed the best centralized results by 32.35%. In terms of average

accuracy for all datasets, the best option is DRF0 combined with the consistency-based

filter. It seems that, in general, the features with no information gain with respect to

the class are not relevant to the prediction task.

From Table 10.16 we can observe the classification accuracy reported by naive Bayes

for the eight datasets at hand. For some datasets the best choice is the centralized

approach (Leukemia, Prostate and Lung), whereas for others it is better to apply a

distributed method (DLBCL and Breast). The differences between the centralized and

the distributed approach are not so prominent as with C4.5 classifier. Even though,

the case of Breast dataset can be emphasized, in which DRF combined with ReliefF

outperforms the best centralized result in more than 10%. In fact, the best result in

average for all datasets was achieved by DRF together with ReliefF when retaining the

top 25% of features in each partition.

Table 10.17 shows the results obtained by k-NN. On the one hand, the highest

accuracy for the datasets Colon and Lung was reported by a centralized approach.

On the other hand, the distributed approach performed better with Leukemia, CNS,
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Table 10.15: Test classification accuracy of C4.5

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast Average

C
F

S

CF 85.00 91.18 50.00 86.67 26.47 81.88 100.00 68.42 73.70

DF 76.00 74.71 69.00 80.00 35.88 91.28 95.24 58.95 72.63

DRF 85.00 91.18 45.00 86.67 29.41 89.26 100.00 57.89 73.05

DRF0 85.00 91.18 45.00 86.67 29.41 89.26 100.00 52.63 72.39

C
o
n

s

CF 85.00 91.18 50.00 86.67 23.53 81.88 100.00 68.42 73.33

DF 80.00 70.00 62.00 84.00 36.47 90.60 95.95 65.26 73.04

DRF 70.00 91.18 80.00 86.67 58.82 89.26 96.43 68.42 80.10

DRF0 85.00 91.18 80.00 86.67 58.82 89.26 96.43 73.68 82.63

IN
T

CF 85.00 91.18 55.00 86.67 26.47 81.88 98.81 78.95 75.49

DF 76.00 78.24 69.00 78.67 37.06 91.28 94.76 54.74 72.47

DRF 85.00 91.18 55.00 86.67 29.41 89.26 98.81 52.63 73.49

DRF0 85.00 91.18 60.00 86.67 29.41 89.26 98.81 52.63 74.12

IG
1
0
%

CF 85.00 91.18 45.00 86.67 26.47 89.26 98.81 73.68 74.51

DF 80.00 74.71 54.00 82.67 35.88 91.41 93.81 68.42 72.61

DRF 90.00 91.18 55.00 86.67 23.53 89.26 100.00 63.16 74.85

DRF0 85.00 91.18 40.00 86.67 38.24 89.26 100.00 73.68 75.50

IG
2
5
%

CF 85.00 91.18 60.00 86.67 26.47 89.26 98.81 73.68 76.38

DF 80.00 82.35 61.00 81.33 29.41 91.28 96.67 62.11 73.02

DRF 85.00 91.18 65.00 86.67 23.53 89.26 98.81 47.37 73.35

DRF0 80.00 91.18 65.00 86.67 26.47 89.26 98.81 52.63 73.75

R
el

ie
fF

1
0
% CF 85.00 91.18 45.00 86.67 29.41 97.32 98.81 63.16 74.57

DF 75.00 78.24 60.00 86.67 25.88 91.28 96.90 65.26 72.40

DRF 85.00 67.65 65.00 86.67 26.47 89.93 98.81 52.63 71.52

DRF0 85.00 67.65 65.00 86.67 26.47 89.93 98.81 57.89 72.18

R
el

ie
fF

2
5
% CF 85.00 91.18 45.00 86.67 29.41 97.32 98.81 73.68 75.88

DF 80.00 74.71 54.00 84.00 40.59 90.60 95.95 64.21 73.01

DRF 90.00 91.18 65.00 86.67 61.76 89.93 98.81 47.37 78.84

DRF0 85.00 91.18 65.00 86.67 41.18 89.93 98.81 42.11 74.98
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DLBCL and Prostate datasets. In general, focusing on the distributed approach, the

methods which include a ranking as a first step (DRF and DRF0) obtain better results

than DF, which divides the data randomly. As a matter of fact, the method with the

best average accuracy for all datasets was DRF0 combined with CFS.

Table 10.16: Test classification accuracy of naive Bayes

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast Average

C
F

S

CF 90.00 94.12 70.00 93.33 26.47 100.00 97.62 36.84 76.05

DF 84.00 72.94 57.00 92.00 25.29 87.79 95.95 49.47 70.56

DRF 85.00 88.24 60.00 93.33 20.59 98.66 100.00 36.84 72.83

DRF0 90.00 88.24 60.00 93.33 20.59 98.66 100.00 36.84 73.46

C
o
n
s

CF 85.00 91.18 55.00 86.67 32.35 85.91 100.00 36.84 71.62

DF 85.00 74.12 53.00 90.67 26.47 86.71 95.00 62.11 71.63

DRF 90.00 94.12 55.00 73.33 26.47 94.63 97.62 36.84 71.00

DRF0 85.00 94.12 65.00 73.33 26.47 94.63 97.62 36.84 71.63

IN
T

CF 85.00 94.12 65.00 93.33 26.47 100.00 100.00 36.84 75.10

DF 84.00 79.41 57.00 90.67 26.47 88.05 93.33 52.63 71.45

DRF 90.00 88.24 65.00 93.33 23.53 98.66 98.81 36.84 74.30

DRF0 85.00 88.24 65.00 93.33 23.53 98.66 98.81 36.84 73.68

IG
1
0
%

CF 85.00 97.06 60.00 93.33 26.47 98.66 92.86 36.84 73.78

DF 81.00 73.53 59.00 94.67 24.71 90.47 92.14 42.11 69.70

DRF 85.00 94.12 60.00 86.67 26.47 90.60 100.00 42.11 73.12

DRF0 85.00 94.12 55.00 86.67 26.47 90.60 97.62 31.58 70.88

IG
2
5
%

CF 80.00 97.06 50.00 93.33 26.47 98.66 92.86 36.84 71.90

DF 83.00 72.35 61.00 89.33 26.47 92.62 91.19 38.95 69.36

DRF 85.00 94.12 35.00 86.67 26.47 96.64 98.81 36.84 69.94

DRF0 85.00 94.12 55.00 86.67 26.47 96.64 97.62 36.84 72.30

R
el

ie
fF

1
0
% CF 85.00 94.12 65.00 93.33 26.47 99.33 92.86 68.42 78.07

DF 84.00 73.53 60.00 85.33 25.29 92.21 94.05 73.68 73.51

DRF 85.00 82.35 70.00 80.00 23.53 98.66 100.00 78.95 77.31

DRF0 85.00 82.35 60.00 80.00 23.53 98.66 100.00 78.95 76.06

R
el

ie
fF

2
5
% CF 85.00 94.12 55.00 93.33 26.47 99.33 92.86 63.16 76.16

DF 79.00 77.65 65.00 84.00 26.47 88.72 91.67 65.26 72.22

DRF 85.00 91.18 65.00 86.67 23.53 98.66 98.81 78.95 78.47

DRF0 85.00 91.18 55.00 86.67 23.53 98.66 100.00 73.68 76.71

Finally, from Table 10.18 we can confirm that the SVM classifier is very suitable

for microarray data (as mentioned in Chapter 4), since it achieves high classification

accuracies in average for all datasets. Notice that this classifier can successfully handle
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this kind of datasets with a much higher number of features than samples. Particularly,

the best result in terms of average accuracy was obtained by DRF0 combined with

Information Gain when retaining the top 25% of features in each partition. It is worth

commenting the excellent result for Prostate dataset (obtained by CF with INTERACT

and DRF with Information Gain 10%), which outperforms in more than 35% the highest

accuracy reported by the other classifiers.

Table 10.17: Test classification accuracy of k-NN

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast Average

C
F

S

CF 80.00 85.29 65.00 86.67 32.35 100.00 100.00 63.16 76.56

DF 79.00 78.24 61.00 88.00 31.18 91.68 99.05 57.89 73.25

DRF 80.00 88.24 55.00 93.33 47.06 97.32 98.81 57.89 77.21

DRF0 80.00 88.24 55.00 93.33 61.76 97.32 98.81 73.68 81.02

C
o
n
s

CF 85.00 91.18 65.00 73.33 26.47 81.88 100.00 47.37 71.28

DF 79.00 76.47 59.00 82.67 32.94 88.72 97.14 58.95 71.86

DRF 80.00 94.12 60.00 80.00 26.47 93.96 98.81 63.16 74.56

DRF0 75.00 94.12 65.00 80.00 26.47 93.96 98.81 68.42 75.22

IN
T

CF 80.00 85.29 60.00 86.67 32.35 100.00 100.00 52.63 74.62

DF 77.00 78.24 61.00 88.00 38.82 91.68 97.86 56.84 73.68

DRF 70.00 88.24 60.00 93.33 32.35 97.32 100.00 73.68 76.87

DRF0 85.00 88.24 60.00 93.33 41.18 97.32 100.00 68.42 79.19

IG
1
0
%

CF 90.00 76.47 50.00 86.67 26.47 98.66 97.62 73.68 74.95

DF 80.00 75.29 59.00 85.33 34.71 88.99 99.05 62.11 73.06

DRF 70.00 88.24 70.00 86.67 38.24 90.60 100.00 78.95 77.84

DRF0 80.00 88.24 65.00 86.67 52.94 90.60 100.00 68.42 78.98

IG
2
5
%

CF 95.00 79.41 60.00 80.00 38.24 99.33 96.43 73.68 77.76

DF 82.00 73.53 54.00 81.33 34.71 92.48 97.14 65.26 72.56

DRF 80.00 91.18 45.00 86.67 26.47 97.32 97.62 63.16 73.43

DRF0 70.00 91.18 50.00 86.67 26.47 97.32 98.81 47.37 70.98

R
el

ie
fF

1
0
% CF 90.00 76.47 50.00 86.67 26.47 98.66 97.62 73.68 74.95

DF 83.00 80.00 56.00 90.67 37.06 94.23 98.10 54.74 74.22

DRF 70.00 82.35 65.00 86.67 26.47 96.64 100.00 73.68 75.10

DRF0 80.00 85.29 60.00 86.67 50.00 96.64 100.00 73.68 79.04

R
el

ie
fF

2
5
% CF 85.00 73.53 55.00 86.67 29.41 97.99 96.43 78.95 75.37

DF 79.00 75.29 54.00 84.00 34.71 93.56 95.95 63.16 72.46

DRF 80.00 91.18 75.00 93.33 23.53 97.99 100.00 63.16 78.02

DRF0 55.00 91.18 75.00 93.33 29.41 97.99 100.00 52.63 74.32

Since for the CF, DRF and DRF0 approaches the experiments were run only once, it

is not possible to conduct statistical tests to check if the differences among the methods
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are statistically significant. Nevertheless, one can see easily from Tables 10.15 - 10.18

that the average results are very similar. In any case, the best average accuracy was

obtained by a distributed approach for all the classifiers tested. Therefore we can affirm

that, in terms of classification accuracy, our proposed distributed approaches at least

maintain the performance compared with that of the standard centralized approach.

Table 10.18: Test classification accuracy of SVM

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast Average

C
F

S

CF 85.00 82.35 65.00 93.33 91.18 98.66 100.00 73.68 86.15

DF 76.00 82.35 67.00 89.33 66.47 91.01 99.05 67.37 79.82

DRF 80.00 88.24 50.00 86.67 76.47 95.30 98.81 73.68 81.15

DRF0 80.00 88.24 70.00 86.67 85.29 95.30 98.81 73.68 84.75

C
o
n

s

CF 70.00 73.53 65.00 86.67 26.47 52.35 98.81 52.63 65.68

DF 78.00 73.53 64.00 89.33 68.24 91.81 98.81 61.05 78.10

DRF 75.00 67.65 80.00 80.00 35.29 91.28 98.81 68.42 74.56

DRF0 75.00 85.29 70.00 80.00 26.47 91.28 98.81 63.16 73.75

IN
T

CF 80.00 82.35 55.00 86.67 97.06 98.66 100.00 73.68 84.18

DF 76.00 78.82 67.00 90.67 78.82 91.14 98.57 67.37 81.05

DRF 75.00 88.24 70.00 93.33 91.18 95.30 98.81 73.68 85.69

DRF0 75.00 88.24 60.00 93.33 82.35 95.30 98.81 84.21 84.66

IG
1
0
%

CF 80.00 94.12 60.00 93.33 82.35 99.33 98.81 73.68 85.20

DF 77.00 78.82 59.00 88.00 57.65 86.04 98.33 68.42 76.66

DRF 75.00 82.35 65.00 86.67 97.06 74.50 100.00 68.42 81.12

DRF0 75.00 88.24 65.00 86.67 85.29 74.50 100.00 63.16 79.73

IG
2
5
%

CF 80.00 94.12 65.00 93.33 73.53 99.33 98.81 57.89 82.75

DF 74.00 78.24 65.00 84.00 60.00 94.23 99.05 60.00 76.81

DRF 85.00 91.18 60.00 93.33 79.41 97.99 100.00 63.16 83.76

DRF0 75.00 91.18 80.00 93.33 79.41 97.99 98.81 73.68 86.18

R
el

ie
fF

1
0
% CF 70.00 91.18 65.00 93.33 79.41 99.33 98.81 57.89 81.87

DF 77.00 78.82 57.00 90.67 68.24 91.54 98.10 67.37 78.59

DRF 80.00 79.41 60.00 80.00 91.18 95.97 100.00 52.63 79.90

DRF0 80.00 82.35 65.00 80.00 70.59 95.97 100.00 63.16 79.63

R
el

ie
fF

2
5
% CF 75.00 88.24 65.00 93.33 76.47 99.33 98.81 63.16 82.42

DF 75.00 78.24 63.00 90.67 69.41 93.69 98.57 70.53 79.89

DRF 75.00 85.29 75.00 86.67 73.53 96.64 100.00 57.89 81.25

DRF0 80.00 85.29 70.00 86.67 64.71 96.64 100.00 68.42 81.47
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10.4.3.3 Runtime

Table 10.19 reports the runtime of the feature selection algorithms studied applied to

the eight microarray datasets. In the distributed approaches (DF, DRF and DRF0),

all the subsets can be processed at the same time, so the time displayed in the table

is the maximum of the times required by the filter for all the subsets generated at the

partitioning stage.

Table 10.19: Runtime (in seconds) for the feature selection methods tested.

Colon Leukemia CNS DLBCL Prostate Lung Ovarian Breast

C
F

S

CF 4.92 7.31 198.14 47.52 1225.87 13.73 202.62 13323.50

DF 0.18 0.19 0.17 0.17 0.27 0.16 0.38 0.22

DRF 0.20 0.25 0.35 0.18 0.32 0.28 0.42 0.28

DRF0 0.19 0.19 0.18 0.18 0.31 0.18 0.42 0.28

C
o
n
s

CF 1.00 2.73 3.06 1.39 8.83 4.89 14.40 25.26

DF 0.20 0.21 0.20 0.19 0.43 0.19 0.47 0.28

DRF 0.22 0.20 0.20 0.19 0.40 0.20 0.49 0.29

DRF0 0.23 0.20 0.21 0.19 0.34 0.19 0.50 0.30

IN
T

CF 1.64 15.47 12.75 3.69 123.10 38.23 224.72 285.21

DF 0.24 0.24 0.24 0.23 0.31 0.23 0.48 0.28

DRF 0.24 0.27 0.23 0.22 0.33 0.33 0.48 0.29

DRF0 0.24 0.24 0.23 0.22 0.34 0.23 0.53 0.29

IG

CF 0.66 1.08 1.11 0.86 1.79 1.49 3.51 3.32

DF 0.16 0.17 0.17 0.16 0.24 0.16 0.31 0.21

DRF 0.16 0.17 0.16 0.16 0.23 0.28 0.31 0.25

DRF0 0.16 0.16 0.16 0.15 0.24 0.15 0.32 0.22

R
el

ie
fF

CF 0.61 1.14 1.19 0.78 4.50 1.56 12.92 8.14

DF 0.19 0.20 0.20 0.28 0.27 0.18 0.34 0.24

DRF 0.20 0.19 0.19 0.18 0.28 0.24 0.34 0.24

DRF0 0.18 0.19 0.18 0.18 0.28 0.18 0.34 0.24

As expected, when applying a distributed approach the time is reduced for all

datasets. It is worth pointing out the case of Brain dataset combined with the CFS

filter, in which the centralized approach took almost 4 hours whilst the time required

by the distributed approaches was under 1 second. Having said this, it is necessary

to remind that the distributed approaches have also a stage for combining the results

from the different partitions. However, in this case, the time required to merging the
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features is in the order of minutes, therefore our proposed method is able to shorten the

execution time impressively compared to the standard version of the filter algorithm.

In light of the above, the most important advantage of our distributed methods

is the large reduction in both execution time and number of features needed whilst

maintaining the classification accuracy at reasonable levels, and in some cases even im-

proving it. Two main different versions of the distributed algorithm have been proposed:

the distributed ranking filter (DRF) and the distributed filter (DF), which performs

a random partition of the data. DRF and its variant DRF0, using Information Gain

in the first ranking stage, obtained the best results. However, as mentioned in the

introduction of this chapter, the reason for which a user would like to apply distributed

feature selection is two-fold: (i) data is sometimes distributed in multiple locations and

often with multiple parties; and (ii) most existing feature selection algorithms do not

scale well and their efficiency deteriorates significantly or even becomes inapplicable

when dealing with large-scale data. In the first scenario, an ordered ranking of the

features as a first step is not possible, since features are distributed in origin, therefore

the distributed algorithm cannot take advantage of the ranking provided by Informa-

tion Gain. On the other hand, they might appear cases in which the extremely huge

amount of features prevent the use of Information Gain in order to obtain a previous

ordered ranking of the features, so the random partition (DF) is the only option left. To

sum up, we consider interesting to count on these two different options for distributed

feature selection, although we recommend to use DRF or DRF0 if possible.

10.5 Incremental vertical partitioning

As mentioned in the introduction of this chapter, there are several ways in which a

feature selection task could be distributed. An extreme case of a large data volume is

streaming data that arrives in real time as effectively an infinite stream. To deal with

the frequent arrival of new training data we need to use learning algorithms that are

incremental, i.e. where an algorithm already constructed can be updated using new

data without needing to re-process data already used (Bramer, 2007). To simulate this

situation, the approach presented in this section consists of process parts of the data

by different processors acting in parallel and then combining the individual results in

an incremental way. In this manner, the proposed methodology will pave to way to its

application to real incremental learning situations.

272



10.5 Incremental vertical partitioning

The idea of this approach is to deal with distributed learning problems through

distributing vertically the data and performing a feature selection process which can be

carried out at separate nodes. Since the computational complexity of most of feature

selection methods is affected by the number of features, the complexity in each node

will be reduced with respect to the centralized approach. Then, the selection procedure

required for the data reduction will be integrated with the classifier learning. For the

feature selection step, we choose the χ2 metric (see Chapter 2), because of its simplicity

and effectiveness. However, this filter requires data to be discrete, so a discretization

stage has to be added to preprocess the data. Finally, a classifier is necessary, and

the well-known naive Bayes (see Appendix I, Section I.5) was chosen. This decision

has been made because after performing the three stages in each node (discretization,

selection and classification), the learned models are combined in a incremental manner,

and naive Bayes has some characteristics that makes it inherently incremental. With

the proposed methodology, it is expected that the global learning process will be sped

up and so become more computationally efficient.

10.5.1 The proposed method

As stated before, distributed feature selection on vertically partitioned data has not

been deeply explored yet. Distributed methods usually consist of three stages:

1. Partition of the dataset (if the dataset is not distributed from origin).

2. Application of learning methods in each node. In the case of the method proposed

herein, it consists of three steps:

(a) Discretization.

(b) Feature selection.

(c) Classification.

3. Combination of the results.

The interest of this work relies on the independence of the methodology, that can be

performed on all the nodes at the same time. Besides, the novelty in the combination

stage is that it is done in an incremental manner. As explained before, the learning

methodology to be applied to each node consists of three steps: discretization, feature

selection and classification (see Figure 10.2).
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Figure 10.2: Flow chart of proposed methodology

10.5.1.1 Partition of the Dataset

In some cases, data can be originally distributed by features. In this manner, different

features belonging to the same sample are recorded in different locations. Each node

gathers the values for one or more features for a given instance and then, each node has

a different “view” of the data. For instance, a sensor network usually records a single

feature in each sensor. Another example may be a patient that performs several medical

tests in different hospitals. In such these situations, a distributed learning approach

can be much more efficient computationally than moving all distributed datasets into

a centralized site for learning the global model. Moreover, even when data are stored

in a single site, distributed learning can be also useful to speed up the process.

As most of the datasets publicly available are stored in a centralized manner, the

first step consists of partitioning the dataset, i.e. dividing the original dataset into

several disjoint subsets of approximately the same size that cover the full dataset. As

mentioned in the introduction, in this research the partition will be done vertically.

Notice that this step could be eliminated in a real distributed situation.
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10.5 Incremental vertical partitioning

10.5.1.2 Learning Methods

In this methodology, the learning stage consists of three steps: discretizer, filter and

classifier, which will be following described.

Discretizer

Many filter algorithms are shown to work effectively on discrete data (Liu & Setiono,

1997), so discretization is recommended as a previous step. The well-known k -means

discretization algorithm (Tou & González, 1977; Ventura & Martinez, 1995) was chosen

because of its simplicity and effectiveness. K-means moves the representative weights

of each cluster along an unrestrained input space, where each feature is discretized

independently, making it suitable for our purposes. This clustering algorithm operates

on a set of data points and assumes that the number of clusters to be determined

(k) is given. The partition is done based on certain objective function. The most

frequently used criterion function in k-means is minimizing the squared error ε between

the centroids µi of clusters ci, i = 1, . . . , k and the samples in those clusters

ε =
∑
x∈ci

|x− µi|2

Let C be the set of clusters and |C| its cardinality. For each new sample x, the

discretizer works as follows,

• If |C| < k and x /∈ C then C = {x} ∪ C, i.e. if the maximum number of clusters

was not reached already and the new sample is not in C, then create a new cluster

with its centroid in x.

• else

1. Find the closest cluster to x.

2. Update its centroid µ as the average of all values in that cluster.

The method assigns at most k clusters. Notice that the number of clusters is the

minimum between the parameter k and the number of different values in the feature.
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Filter

The χ2 method (Liu & Setiono, 1995) evaluates features individually by measuring

their chi-squared statistic with respect to the class labels. The χ2 value of an attribute

is defined as:

χ2 =
t∑

i=1

l∑
j=1

(Aij − Eij)
2

Eij
(10.2)

where

Eij = Ri ∗ Lj/S (10.3)

t being the number of intervals (number of different values in a feature), l the number

of class labels, Aij the number of samples in the i-th interval, j-th class, Ri the number

of samples in the i-th interval, Lj the number of samples in the j-th class, S the total

number of samples, and Eij the expected frequency of Aij . Note that the size of the

matrices is related to the number of intervals. In this manner, a very large k in the

discretizer will lead to a very large size of the matrices A and E. A very large matrix is

computationally expensive to update and this should be taken into account for real-time

applications.

After calculating the χ2 value of all considered features in each node, these values

can be sorted with the largest one at the first position, as the larger the χ2 value, the

more important the feature is. This will provide an ordered ranking of features, and

a threshold needs to be established. In these experiments, the choice is to estimate

the threshold from the effect on the training set, specifically using 10% of the training

dataset available at each node so as to speed up the process. The selection of this

threshold must take into account two different criteria: the training error, e, and the

percentage of features retained, m. Both values must be minimized to the maximum

possible extent. The fitness function is showed in equation (10.4), in which the function

f(v) is calculated using those features for which the χ2 value is above v.

f(v) = αe(v) + (1− α)m(v) (10.4)
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10.5 Incremental vertical partitioning

α being a value in the interval [0,1] that measures the relative relevance of both values.

Following the recommendations given by de Haro Garćıa (2011), a value of α = 0.75

was chosen, since in general the error minimization is more important than storage

reduction. For the possible values of the threshold v, three options were considered for

the experimental part:

• v = mean(χ2)

• v = mean(χ2) + std(χ2)

• v = mean(χ2) + 2std(χ2)

Classifier

Among the broad range of classifiers available in the literature, the naive Bayes method

(see Appendix I, Section I.5) was chosen for the classification step. This classifier is

simple, efficient and robust to noise and irrelevant attributes. Besides, it requires a

small amount of input data to estimate the necessary parameters for classification.

Given a set of l mutually exclusive and exhaustive classes c1, c2, . . . , cl, which have

prior probabilities P (c1), P (c2), . . . , P (cl), respectively, and n attributes a1, a2, . . . , an

which for a given instance have values v1, v2, . . . , vn respectively, the posterior proba-

bility of class ci occurring for the specified instance can be shown to be proportional

to

P (ci)× P (a1 = v1 and a2 = v2 . . . and an = vn|ci) (10.5)

Making the assumption that the attributes are independent, the value of this ex-

pression can be calculated using the product

P (ci)× P (a1 = v1|ci)× P (a2 = v2|ci)× · · · × P (an = vn|ci) (10.6)

This product is calculated for each value of i from 1 to l and the class which has

the largest value is chosen. Notice that this method is suitable for a dynamic space of

input features.
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10.5.1.3 Combination of the results

After performing the previous stages, the methodology will return as many trained

classifiers as nodes we have. These classifiers are trained using only the features selected

in each node. The final step consists of combining all the trained classifiers in an

incremental manner, in order to have a unique classifier trained on the subset of features

as a result of the union of the features selected in every node. This combination is

possible because the naive Bayes classifier is inherently incremental. In this algorithm,

each feature makes an independent contribution toward the prediction of a class, as

stated in the previous section.

Notice that the main contribution of this methodology relies in this merging step.

The formulation of the naive Bayes classifier allows to build an exact solution, i.e. the

same as would be obtained in batch learning. For this reason, the solution achieved

is more reliable than other schemes, such as voting. Moreover, this methodology is

flexible, since it can work independently of the number of nodes, the number of features

selected and so on.

10.5.2 Experimental setup

In this case, in addition to the traditional approach of evaluating the performance of

an algorithm in terms of test accuracy, our proposed distributed algorithm will be also

evaluated in terms of speed-up (Bramer, 2007). Speed-up experiments evaluate the

performance of the system with respect to the number of nodes for a given dataset.

We measure the training time as the number of nodes is increased. This shows how

much a distributed algorithm is faster than the serial (one processor) version, as the

dataset is distributed to more and more nodes. We can define two performance metrics

associated with speep-up:

• The speedup factor Sn is defined by Sn = R1
Rn

, where R1 and Rn are the training

times of the algorithm on a single and n nodes, respectively. This factor measures

how much the training time is faster using n nodes instead of just one. The

ideal case is that Sn = n, but the usual situation is that Sn < n because of

communication or other overheads. Occasionally, it can be a value greater than

n, in the case of what is known as superlinear speedup.
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10.5 Incremental vertical partitioning

• The efficiency En of using n nodes instead of one is defined by En = Sn
n , i.e. the

speedup factor divided by the number of nodes.

Five binary classic datasets were selected for these experiments, the main charac-

teristics of them can be consulted in Appendix I, Section I.2.2: Madelon, Mushrooms,

Ozone and Spambase. A holdout validation was performed, using the common partition

2/3 for training and 1/3 for test (see Appendix I, Section I.6). Then, the training data

have been scattered across either 2, 4, or 8 nodes; 1 node was also considered to perform

a comparative study with the standard centralized approach. Experiments were run

10 times with random partitions of the datasets in order to ensure reliable results. We

use the methodology proposed by Demšar (2006) to perform a statistical comparison of

the algorithms over the multiple data sets. First a Friedman test (M. Friedman, 1940)

is done and then, if significant differences are found, the Bonferroni-Dunn test (Dunn,

1961) is considered.

10.5.3 Experimental results

Table 10.20 shows the training time of the algorithm for the different datasets and

number of nodes. As can be seen, the training time is dramatically reduced as the

number of nodes is increased. Statistical tests demonstrate that doubling the number

of nodes obtains significantly better results in terms of time. Table 10.21 shows the test

accuracy on the different datasets for the different number of nodes. In general terms,

the accuracy is maintained as the number of nodes in increased. Statistical tests prove

this fact.

Table 10.20: Training time (s).

Number of nodes

1 2 4 8

Madelon 127.74 63.96 31.89 16.18

Mushrooms 94.28 46.96 23.58 11.82

Ozone 19.95 9.96 4.99 2.50

Spambase 28.20 14.14 7.10 3.57
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Table 10.21: Test accuracy (%).

Number of nodes

1 2 4 8

Madelon 71.38 71.27 71.05 70.82

Mushrooms 93.25 92.04 91.81 91.78

Ozone 86.15 85.93 85.76 85.73

Spambase 88.78 88.72 88.76 88.81
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Figure 10.3: Plots regarding time performance of the algorithm.

Finally, Figure 10.3 shows three graphs representing the different measures related

with the time performance of the algorithm. Figure 10.3a plots the training time versus

the number of nodes. Figure 10.3b shows a graph of speedup factor against the number

of nodes. This form of display is often preferred to the more obvious plot of training

time versus the number of nodes, as it makes straightforward to see the impact on

the training time of increasing the number of nodes. As can be deduced from Figure

10.3c, the efficiency of the proposed method is close to 1, i.e. increasing the number
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of nodes by n divides the training time by the same n. Notice the implications of

these results when dealing with high dimensional datasets. The training time may

be notably reduced without compromising the classification accuracy. In this manner,

the proposed methodology allows to deal with problems which were intractable with

classical approaches. However, this is a preliminary attempt and further experiment

should be done on large-scale data, for example on microarray DNA classification.

10.6 Summary

Feature selection is usually applied in a centralized manner. However, if the data are

distributed, feature selection may take advantage of processing multiple subsets in se-

quence or concurrently. The need to use distributed feature selection can be two-fold.

On the one hand, with the advent of network technologies, the data are sometimes dis-

tributed in multiple locations and often with multiple parties. On the other hand, most

existing feature selection algorithms do no scale well and their efficiency significantly

deteriorates when dealing with large-scale data.

In this chapter several methodologies for distributing the process of feature selection

have been proposed. First, we tackled the most common distribution in the literature:

the horizontal partition. Then, we applied the same algorithm to data partitioned by

features, showing satisfactory results.

A case of study was also presented for dealing with microarray data, in which we

have opted for a vertical partition. In light of the experimental results, the most im-

portant advantage of our distributed method is the large reduction in execution time

whilst maintaining the accuracy at reasonable levels, and sometimes even improving

it. Moreover, our method has the additional advantage of allowing an easy parallel

implementation. As could be seen in this chapter, the application of the filter algo-

rithm to each subset of features is independent of all the remaining subsets, so all the

subsets can be processed at the same time. It is worth mentioning that there is little

communication among the nodes of parallel execution, only in the combination step to

compute the final subset of selected features.

Finally, our last proposal consisted of performing a vertical partition of the data

in which feature selection and classification are executed in parallel and, at the end,

the learned models obtained from each node are combined in an incremental manner.
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The proposed methodology has been tested considering different number of nodes to

distribute the data. The experimental results showed that, in most of the datasets,

increasing the number of nodes did not lead to a significant degradation in classification

accuracy. As an additional advantage, the larger the number of nodes, the shorter the

time required for the computation. Notice that this was a preliminary study, tested up

to 8 nodes, and further experimentation is necessary to ensure these conclusions.
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CHAPTER 11
Conclusions and future work

Continual advances in computer-based technologies have enabled researchers and en-

gineers to collect data at an increasingly fast pace. To address this challenge, feature

selection becomes an imperative preprocessing step which needs to be adapted and

improved to handle high-dimensional data. This thesis is devoted to studying feature

selection methods and their adequacy to be applied to large-scale data. The tendency

nowadays is two-fold: on the one hand, to improve and to extend the existing methods

to address the new challenges associated to high-dimensionality. And, on the other

hand, to develop novel techniques to directly solving the arising challenges.

The first part of this thesis has dealt with the critical analysis of existing feature

selection methods, by checking their appropriateness toward different challenges and

aiming at being able to provide recommendations. The following issues have been

addressed:

• Critical review of the most popular feature selection methods in the

literature. A total of eleven feature selection methods were applied over eleven

synthetic datasets, covering phenomena such as presence of irrelevant and redun-

dant features, noise in the data or interaction between attributes. To test the

effectiveness of the studied methods, an evaluation measure was introduced try-

ing to reward the selection of the relevant features and to penalize the inclusion

of the irrelevant ones. Some cases of study were also presented in order to decide

among methods that showed similar behaviors and helping to find their adequacy

in different situations. In light of the results obtained from the experiments, we

suggest the use of filters (particularly, ReliefF), since they are independent of the

induction algorithm and are faster than embedded and wrapper methods, as well

as having a good generalization ability.
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• Analysis of the behavior of feature selection in DNA microarray clas-

sification. The advent of DNA microarray data has posed a serious challenge

for machine learning researchers, because of the large input dimensionality and

small sample size. Thus, feature selection became an imperative step, in order to

reduce the number of features (genes). We have analyzed the recent literature in

order to describe in broad brushstrokes the trends in the development of feature

selection methods for microarray data. In order to provide a complete picture of

the topic, we have also mentioned the most common validation techniques. Since

there is no consensus in the literature about this issue, we have provided some

guidelines. Finally, we have proposed a practical evaluation for feature selection

methods using microarray datasets in which we analyze the results obtained. This

experimental study tries to show in practice the problematics that we have ex-

plained in theory. To this end, a suite of 9 widely-used binary datasets was chosen

to apply over them 7 classical feature selection methods. In order to obtain the

final classification accuracy, 3 well-known classifiers were used. This large set of

experiments also aims at facilitating future comparative studies when a researcher

proposes a new method.

• Application of classic feature selection methods to real problems. Fea-

ture selection plays a crucial role in many real applications. To illustrate this fact,

two real problems were presented, in which feature selection has demonstrated

to be useful to improve performance. First, we tackled the problem of tear film

lipid layer classification. The time required by existing approaches dealing with

this issue prevented their clinical use because they could not work in real time.

A methodology for improving this classification problem was proposed, which in-

cluded the application of feature selection methods. In clinical terms, the manual

process done by experts could be automated with the benefits of being faster and

unaffected by subjective factors, with maximum accuracy over 97% and processing

time under 1 second. The second real scenario was the K-complex classification,

which is a key aspect in sleep studies. Several feature selection methods were ap-

plied in combination with different machine learning algorithms, trying to achieve

a low false positive rate whereas maintaining the accuracy. With the inclusion of

this feature selection stage, the results improved significantly for all the classifiers

tested.

• Scalability in feature selection. With the proliferation of large-scale data,

researchers must focus not only on the accuracy but also on the scalability of the

existing methods. First, the effectiveness of feature selection on the scalability of

training algorithms for artificial neural networks (ANNs) was evaluated, both in
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classification and regression tasks. The experimental results showed that feature

selection as a preprocessing step is beneficial for the scalability of ANNs, even

allowing certain algorithms to be able to train on some datasets in cases in which

it was impossible due to the spacial complexity. Then, an analysis of the scala-

bility of feature selection methods was presented, an issue which has not received

much consideration in the literature. A total of eleven feature selection methods

were evaluated, belonging to the three main groups of feature selection methods:

filters, wrappers and embedded. The experimental study was performed with

artificial datasets, so as to be able to assess the degree of closeness to the op-

timal solution in a confident way. In order to determine the scalability of the

methods, new measures were proposed, based not only on accuracy but also on

execution time and stability. Considering the experimental results, filters seemed

to be the most scalable feature selection methods. Specifically, FCBF obtained

the best performance in terms of scalability. As for the ranker methods, ReliefF

is a good choice when having a small number of features, at the expense of a

long training time. For this reason, when dealing with extremely-high datasets,

Information Gain demonstrated better scalability properties. As future work, we

plan to extend this research to real datasets in order to check if the conclusions

drawn inhere can be extrapolated.

The second part of this thesis has been dedicated to proposing novel techniques for

large-scale feature selection. Although the benefits of feature selection have been ex-

tensively proved, new feature selection methods are constantly emerging using different

strategies. In fact, the current tendency in feature selection is not toward developing

new algorithmic measures, but toward favoring the combination or modification of ex-

isting algorithms. Different strategies to deal with the new problematics derived from

the big data explosion have been proposed:

• A combination of discretization and feature selection methods. Most

feature selection algorithms only work on discrete data, so a common practice is

to discretize the data before conducting feature selection. However, many studies

entrust this task to default discretizers, as the case of the Weka tool. In an attempt

to shed light on this issue, a framework was proposed which consists of combin-

ing discretization, filtering and classification methods to be applied to different

scenarios. The adequacy of the combination method in terms of improvement

in classification accuracy has been demonstrated on intrusion detection systems,

microarray DNA data and a large suite of multiclass datasets.
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• An ensemble of filters and classifiers. The goal of the proposed ensemble

is to reduce the variability of the results obtained by different feature selection

methods, based on the assumption that combining the output of multiple experts

is better than the output of any single expert. Two general approaches were

presented, based on the role the classifier plays. The first approach classifies

as many times as filters there are, whilst the second one classifies only once

with the result of joining the different subsets selected by the filters. A total of

five implementations of the two approaches were proposed, tested on synthetic

datasets, UCI classical datasets and microarray data. The appropriateness of

using an ensemble instead of a single filter remained demonstrated, considering

that for all scenarios tested, the ensemble was always the more successful solution.

• A framework for cost-based feature selection. There are some situations

in which a user is not only interested in selecting the more accurate subset of

features, but also in reducing the costs that may be associated to it. For example,

for medical diagnosis, symptoms observed with the naked eye are costless, but

each diagnostic value extracted by a clinical test is associated with its own cost

and risk. Bearing this in mind, a new framework for cost-based feature selection

was proposed. The objective was to solve problems in which it is interesting

not only to minimize the classification error, but also to reduce the associated

costs. The proposed framework consists of adding a new term to the evaluation

function of any filter in order to reach a trade-off between a filter metric (e.g.

correlation) and the cost associated to the input features. To test the adequacy

of the proposed framework, three representative filters were chosen, applied to

a broad suite of different datasets including a real-life problem. The obtained

results demonstrated that the approach is sound and allows the user to reduce

the cost without compromising the classification error significantly. We have

left open the question of applying this framework together with other feature

selection methods, such as embedded or wrappers, which might help to improve

the classification accuracy. It would be also interesting to combine the cost-based

feature selection with distributed learning.

• Distributed and parallel feature selection. When dealing with large-scale

data, a possible strategy is to distribute the learning task over a number of pro-

cessors. The main goal was to distribute the feature selection process, expecting

that the execution time would be considerably shortened and the accuracy would

not degrade to poor values. Several proposals have been presented in this chapter,

in an attempt to deal with both horizontal and vertical partitioning of the data.

The experimental results showed that our proposals have been able to reduce
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the running time significantly with respect to the standard (centralized) feature

selection algorithms. Actually, in terms of execution time, the behavior is excel-

lent, being this fact the most important advantage of our method. Furthermore,

with regard to the classification accuracy, our distributed approaches were able

to match and in some cases even improve the standard algorithms applied to the

non-partitioned datasets. As future work, it would be interesting to distribute

other feature selection techniques, such as wrapper or embedded methods, as

well as trying to improve the already proposed methods. On the one hand, the

methodology for horizontal partitioning could be improved if the class distribu-

tion would be considered to distribute the samples across the different nodes.

On the other hand, the incremental vertical partitioning leaves as future work

to try another distributed approach in which all nodes share their results after

each step. In this sense, the difficulty of this future line of research lies on the

fact that all the methods have to be adapted to work in an incremental fashion.

Finally, we plan to perform parallel feature selection using a cluster computing

framework called Spark. This distributed programming model has been proposed

to handle large-scale data problems. However, most existing feature selection

techniques are designed to run in a centralized computing environment and their

implementations have to be adapted to this new technology. By using Spark, the

final user would be released of the decision of how to distribute the data.

As can be seen, this thesis covers a broad suite of problems arisen from the advent

of high dimensionality. The proposed approaches have demonstrated to be sound, and

it is expected that their contribution will be important in the next years, since feature

selection for large-scale data is likely to continue to be a trending topic in the near

future.

In addition to the future works that have been mentioned below, which are already

in progress, there are some other lines of research that we would like to tackle. First,

it would be interesting to study the relationship between data complexity and the

accuracy of the feature selection process in classification tasks. There are several factors

which can affect accuracy, such as the shape of the decision class boundary, the amount

of overlap among the classes, the proximity of two classes and the number of informative

samples available for training (Basu & Ho, 2006). Although some of these aspects have

been commented in Chapter 4, it is necessary an analysis in depth. In a similar manner,

a future line of research might be to develop distributed feature selection methods

which address the possible data heterogeneity in the different partitions. There might
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even exist situations in which a certain class would not be represented in some of the

partitions, so this kind of problems need to be tackled.

Finally, when having a distributed feature selection method which provides an or-

dered ranking of features for each partition, it is not easy to combine the different

rankings. For this reason, we plan to devise feature selection methods which learn from

preference judgments. Thus, several rankings obtained from different feature selection

methods can be combined in such a manner that the new method will take advantage

of the coherence in the ranker given by the different methods.
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APPENDIX I
Materials and methods

This appendix describes the materials and methods used in this thesis, as well as the

evaluation techniques and performance metrics employed.

I.1 Software tools

The experiments performed in this thesis were executed using the software tools Matlab

and Weka, which will be following described.

• Matlab (MATLAB, 2013) is a numerical computing environment, well known and

widely used by scientific researchers. It was developed by MathWorks in 1984 and

its name comes from Matrix Laboratory. Matlab allows matrix manipulations,

plotting of functions and data, implementation of algorithms, creation of user

interfaces, and interfacing with programs written in other languages, including

C, C++, Java, and Fortran.

• Weka (Waikato Environment for Knowledge Analysis) (M. Hall et al., 2009) is a

collection of machine learning algorithms for data mining tasks. The algorithms

can either be applied directly to a dataset or called from your own Java code.

Weka contains tools for data pre-processing, classification, regression, clustering,

association rules, and visualization. It is also well-suited for developing new

machine learning schemes.
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I.2 Datasets

The feature selection methods used or proposed in this thesis are tested over a diverse

suite of datasets. Some of them are synthetic (i.e. the relevant features are known

a priori), others are classical datasets extracted from the widely used UCI repository

(Asuncion & Newman, 2007) and others belong to the popular category of DNA mi-

croarray datasets. The following subsections will present the main characteristics of

the datasets employed in this thesis.

I.2.1 Synthetic datasets

Several authors choose to use artificial data since the desired output is known, therefore

a feature selection algorithm can be evaluated with independence of the classifier used.

Although the final goal of a feature selection method is to test its effectiveness over a

real dataset, the first step should be on synthetic data. The reason for this is two-fold

(Belanche & González, 2011):

1. Controlled experiments can be developed by systematically varying chosen ex-

perimental conditions, like adding more irrelevant features or noise in the input.

This fact facilitates to draw more useful conclusions and to test the strengths and

weaknesses of the existing algorithms.

2. The main advantage of artificial scenarios is the knowledge of the set of opti-

mal features that must be selected, thus the degree of closeness to any of these

solutions can be assessed in a confident way.

The synthetic datasets used in this thesis try to cover different problems: increasing

number of irrelevant features, redundancy, noise in the output, alteration of the inputs,

non-linearity of the data, etc. These factors complicate the task of the feature selection

methods, which are very affected by them as it will be shown afterwards. Besides, some

of the datasets have a significantly higher number of features than samples, which

implies an added difficulty for the correct selection of the relevant features. Table

I.1 shows a summary of the main problems covered by them, as well as the number

of features and samples and the relevant attributes which should be selected by the
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feature selection methods. Notice that it is emphasized the main characteristic of each

dataset, but it can have other characteristics too.

Table I.1: Summary of the synthetic datasets used. “Corr.” stands for “Correlation”.

Dataset
No. of No. of Relevant

Corr. Noise
Non No. feat >>

features samples features linear No. samples

Corral 6 32 1-4 X

Corral-100 99 32 1-4 X X

Led-25 24 50 1-7 X

Led-100 99 50 1-7 X X

Madelon 500 2400 1-5 X X

Monk1 6 122 1,2,5 X

Monk2 6 122 1-6 X

Monk3 6 122 2,4,5 X

Parity3+3 12 64 1-3 X

SD1* 4020 75 G1, G2 X

SD2* 4040 75 G1 −G4 X

SD3* 4060 75 G1 −G6 X

XOR-100 99 50 1,2 X X

* Gi means that the feature selection method must select only one feature within the i-th group of features.

I.2.1.1 CorrAL

The CorrAL dataset (John, Kohavi, & Pfleger, 1994) has six binary features (i.e.

f1, f2, f3, f4, f5, f6), and its class value is (f1 ∧ f2) ∨ (f3 ∧ f4). Feature f5 is irrele-

vant and f6 is correlated to the class label by 75%.

CorrAL-100 (Kim et al., 2010) was constructed by adding 93 irrelevant binary fea-

tures to the previous CorrAL dataset. The data for the added features were generated

randomly. Both datasets (CorrAL and CorrAL-100) have 32 samples that are formed

by considering all possible values of the four relevant features and the correlated one

(25). The correct behavior for a given feature selection method is to select the four rel-

evant features and to discard the irrelevant and correlated ones. The correlated feature

is redundant if the four relevant features are selected and, besides, it is correlated to

the class label by 75%, so if one applies a classifier after the feature selection process,

a 25% of error will be obtained.
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I.2.1.2 XOR-100

XOR-100 (Kim et al., 2010) has 2 relevant binary features and 97 irrelevant binary

features (randomly generated). The class attribute takes binary values and the dataset

consists of 50 samples. Features f1 and f2 are correlated with the class value with

XOR operation (i.e., class equals f1⊕f2). This is a hard dataset for the sake of feature

selection because of the small ratio between number of samples and number of features

and due to its non-linearity (unlike CorrAL dataset, which is a multi-variate dataset).

I.2.1.3 Parity3+3

The parity problem is a classic problem where the output is f(x1, . . . , xn) = 1 if the

number of xi = 1 is odd and f(x1, . . . , xn) = 0 otherwise. The Parity3+3 dataset is

a modified version of the original parity dataset. The target concept is the parity of

three bits. It contains 12 features among which 3 are relevant, another 3 are redundant

(repeated) and other 6 are irrelevant (randomly generated).

I.2.1.4 The Led problem

The LED problem (Breiman, 1993) is a simple classification task that consists of, given

the active leds on a seven segments display, identifying the digit that the display is

representing. Thus, the classification task to be solved is described by seven binary at-

tributes (see Figure I.1) and ten possible classes available (C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).
A 1 in a attribute indicates that the led is active, and a 0 indicates that it is not active.

x1

x7

x4

x2 x3

x5 x6

Figure I.1: LED Scheme

Two versions of the Led problem will be used: the first one, Led25, adding 17

irrelevant attributes (with random binary values) and the second one, Led100, adding 92
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irrelevant attributes. Both versions contain 50 samples. The small number of samples

was chosen because we are interested in dealing with datasets with a high number of

features and a small sample size. Besides, different levels of noise (altered inputs) have

been added to the attributes of these two versions of the Led dataset: 2%, 6%, 10%,

15% and 20%. In this manner, the tolerance to different levels of noise of the feature

selection methods tested will be checked. Note that, as the attributes take binary

values, adding noise means assigning to the relevant features an incorrect value.

I.2.1.5 The Monk problems

The MONK’s problems (Thrun et al., 1991) rely on an artificial robot domain, in which

robots are described by six different discrete attributes (x1, . . . , x6). The learning task

is a binary classification task. The logical description of the class of the Monk problems

are the following:

• Monk1: (x1 = x2) ∨ (x5 = 1)

• Monk2: (xn = 1) exactly two n ∈ 1, 2, 3, 4, 5, 6

• Monk3: (x5 = 3 ∧ x4 = 1) ∨ (x5 6= 4 ∧ x2 6= 3)

In the case of Monk3, among the 122 samples, 5% are misclassifications, i.e. noise

in the target.

I.2.1.6 SD1, SD2 and SD3

These three synthetic datasets (SD1, SD2 and SD3) (Zhu et al., 2010) are challenging

problems because of their high number of features (around 4000) and the small number

of samples (75), besides of a high number of irrelevant attributes.
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SD1, SD2 and SD3 are three-class datasets with 75 samples (each class containing

25 samples) generated based on the approach described by Dı́az-Uriarte and De Andres

(2006). Each synthetic dataset consists of both relevant and irrelevant features. The

relevant features in each dataset are generated from a multivariate normal distribu-

tion using mean and covariance matrixes (Zhu et al., 2010). Besides, 4000 irrelevant

features are added to each dataset, where 2000 are drawn from a normal distribution

of N(0,1) and the other 2000 are sampled with a uniform distribution U[-1,1]. It is

necessary to introduce some new definitions of multiclass relevancy features: full class

relevant (FCR) and partial class relevant (PCR) features. Specifically, FCR denotes

genes (features) that serve as candidate biomarkers for discriminating all cancer types.

However, PCR are genes (features) that distinguish subsets of cancer types.

SD1 is designed to contain only 20 FCR and 4000 irrelevant features. Two groups

of relevant genes are generated from a multivariate normal distribution, with 10 genes

in each group. Genes in the same group are redundant with each other and the optimal

gene subset for distinguishing the three classes consists of any two relevant genes from

different groups.

SD2 is designed to contain 10 FCR, 30 PCR, and 4000 irrelevant features. Four

groups of relevant, i.e., FCR and PCR, genes are generated from a multivariate normal

distribution, with 10 genes in each group. Genes in each group are redundant to each

other and in this dataset, only genes in the first group are FCR genes while genes in

the three last groups are PCR genes. The optimal gene subset to distinguish all the

three classes consists of four genes, one FCR gene from the first group and three PCR

genes each from one of the three remaining groups.

SD3 has been designed to contain only 60 PCR and 4000 irrelevant features. Six

groups of relevant genes are generated from a multivariate normal distribution, with

10 genes in each group. Genes in the same group are designed to be redundant to each

other and the optimal gene subset to distinguish all the three classes thus consists of

six genes with one from each group.

It has to be noted that the easiest dataset in order to detect relevant features is

SD1, since it contains only FCR features and the hardest one is SD3, due to the fact

that it contains only PCR genes, which are more difficult to detect.
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I.2.1.7 Madelon

The Madelon dataset (Guyon, 2006) is a 2 class problem originally proposed in the

NIPS’2003 feature selection challenge. The relevant features are situated on the ver-

tices of a five dimensional hypercube. Five redundant features were added, obtained

by multiplying the useful features by a random matrix. Some of the previously de-

fined features were repeated to create 10 more features. The other 480 features are

drawn from a Gaussian distribution and labeled randomly. This dataset presents high

dimensionality both in number of features and in number of samples and the data were

distorted by adding noise, flipping labels, shifting and rescaling. For all these reasons,

it conforms a hard dataset for the sake of feature selection.

I.2.2 Classical datasets

Several classical datasets are used in this thesis as a benchmark for testing feature

selection methods. Most of them can be downloaded from the UCI Machine Learning

Repository (Asuncion & Newman, 2007), which is a collection of databases, domain

theories, and data generators that are used by the machine learning community for the

empirical analysis of machine learning algorithms.

Table I.2: Dataset description for binary classic datasets

Dataset Attributes Samples Distribution

Hepatitis 19 155 55% - 45%

Liver 6 345 42% - 58%

Madelon 500 2400 50% - 50%

Magic04 10 19020 35% - 65%

Mushrooms 112 8124 48% - 52%

Ozone 72 2536 97% - 3%

Pima 8 768 65% - 35%

Spambase 57 4601 61% - 39%

Splice 60 1000 48% - 52%

Table I.2 depicts the main characteristics of the binary classic datasets with only

training test employed in this thesis, such as the number of attributes, samples and

the class distribution. Table I.3 shows the description of the binary datasets that were
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originally divided to train and test datasets. Finally, Table I.4 reports the number of

classes, samples and features for the multiclass datasets considered in this research.

Table I.3: Dataset description for binary classic datasets with train and test sets

Dataset Attributes Train samples Test samples

Forest 54 100000 50620

KDD Cup 99 42 494021 311029

MNIST 748 60000 10000

Table I.4: Dataset description for multiclass classic datasets

Dataset Classes Samples Features

Connect 4 3 67557 42

Dermatology 6 366 34

Glass 6 214 10

Iris 3 150 4

KDD SC 6 600 60

Landsat 6 4435 36

Letter 26 20000 16

MFeat-Factor 10 2000 216

MFeat-Fourier 10 2000 76

MFeat-Karhounen 10 2000 64

MFeat-Pixel 10 2000 240

MFeat-Zernike 10 2000 47

MLL-Leukemia 3 57 12582

Optdigits 10 3823 64

Pendigits 10 7494 16

Sat 6 4435 36

Segmentation 7 2310 19

Splice 3 3190 61

Thyroid 3 3772 21

Vehicle 4 846 18

Vowel 11 990 13

Waveform 3 5000 21

Wine 3 178 13

Yeast 10 1033 8
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Table I.5: Dataset description for multiclass classic datasets with train and test sets

Dataset Classes Features Train samples Test samples

Connect-4 3 42 60000 7557

Isolet 26 617 6238 1236

I.2.3 Datasets for regression

Although most of this thesis is devoted to improve classification tasks, several datasets

for regression are also used, whose main characteristics are depicted in Table I.6. No-

tice that some of them (Covertype and MNIST) can be used both as classification and

regression datasets. Covertype dataset can be downloaded from the UCI Repository

(Asuncion & Newman, 2007) whilst MNIST is available on http://yann.lecun.com/

exdb/mnist/. Friedman and Lorenz are artificial datasets. Friedman is defined by the

equation y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1) where the input at-

tributes x1, . . . , x10 are generated independently, each of which is uniformly distributed

over interval [0, 1]. Variables x6 − x10 are randomly generated. On the other hand,

Lorenz is defined by the simultaneous solution of three equations dX
dt = δY − δX, dYdt =

−XZ+rX−Y, dZdt = XY −bZ, where the systems exhibits chaotic behavior for δ = 10,

r = 28 and b = 8
3 .

Table I.6: Dataset description for datasets used in regression tasks

Dataset Features Train samples Test samples

Forest 54 100000 50620

Friedman 10 1000000 100000

Lorenz 8 1000000 100000

MNIST 748 60000 10000
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I.2.4 DNA microarray datasets

DNA microarray data classification (see Chapter 4) is a serious challenge for machine

learning researchers due of its high dimensionality and small sample size. Typical values

are around 10 000 gene expressions and a hundred or less tissue samples. For this reason,

this type of datasets are usually employed to test the efficiency of a feature selection

method. Some datasets were originally divided to training and test set whilst others

have only a training set. On the one hand, Table I.7 shows the main characteristics of

the datasets employed in this thesis having a unique training set (for example, to be

applied a 10-fold cross validation). On the other hand, Tables I.8 and I.9 visualize the

characteristics of the datasets used with separated training and test sets. For the sake

of comparison, datasets with only training set were randomly divided using the common

rule 2/3 for training and 1/3 for testing. This division introduces a more challenging

scenario, since in some datasets, the distribution of the classes in the training set differs

from the one in the test set. Notice that throughout this thesis, both versions of the

datasets are used in different chapters. All the datasets described in this section are

available for download in (Broad Institute, n.d.) and (Kent Ridge, n.d.).

Table I.7: Dataset description for binary microarray datasets

Dataset Attributes Samples Distribution

Brain 12625 21 33% - 67%

Breast 24481 97 47% - 53%

CNS 7129 60 35% - 65%

Colon 2000 62 35% - 65%

DLBCL 4026 47 49% - 51%

GLI 22283 85 31% - 69%

Leukemia 7129 72 34% - 66%

Lung 12533 181 17% - 83%

Myeloma 12625 173 21% - 79%

Ovarian 15154 253 36% - 64%

Prostate 12600 136 43% - 57%

SMK 19993 187 48% - 52%
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Table I.8: Dataset description for binary microarray datasets with train and test sets

Dataset Attributes Samples Train Test

Train Test distribution distribution

Brain 12625 14 7 36% - 64% 44% - 56%

Breast 24481 78 19 44% - 56% 37% - 63%

CNS 7129 40 20 65% - 35% 65% - 35%

Colon 2000 42 20 67% - 33% 60% - 40%

DLBCL 4026 32 15 50% - 50% 53% - 47%

GLI 22283 57 28 28% - 72% 36% - 64%

Leukemia 7129 38 34 71% - 29% 59% - 41%

Lung 12 533 32 149 50% - 50% 90% - 10%

Myeloma 12625 116 57 22% - 78% 19% - 81%

Ovarian 15 154 169 84 35% - 65% 38% - 62%

Prostate 12 600 102 34 49% - 51% 26% - 74%

SMK 19993 125 62 50% - 50% 44% - 56%

Table I.9: Dataset description for multiple class datasets.

Dataset Attrib. Samples No. of

Train Test classes

GCM 16063 144 46 14

Lymphoma 4026 64 32 9

I.3 Validation techniques

To evaluate the goodness of the selected set of features, it is necessary to have an inde-

pendent test set with data which have not been seen by the feature selection method.

In some cases, the data come originally distributed into training and test sets, so the

training set is usually employed to perform the feature selection process and the test set

is used to evaluate the appropriateness of the selection. However, not all the datasets

come originally partitioned. For overcoming this issue, there exist several validation

techniques, and we following describe those used in this thesis.
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I.3.1 k-fold cross validation

This is one of the most famous validation techniques (Bramer, 2007). The data (D)

is partitioned into k non-overlapping subsets D1, . . . , Dk of roughly equal size. The

learner is trained on k − 1 of these subsets combined together and then applied to the

remaining subset to obtain an estimate of the prediction error. This process is repeated

in turn for each of the k subsets, and the cross-validation error is given by the average of

the k estimates of the prediction error thus obtained. In the case of feature selection,

notice that with this method there will be k subsets of selected features. Common

practices are to merge the k different subsets (either by union or by intersection) or to

keep the subset obtained in the fold with the best classification result.

I.3.2 Leave-one-out cross validation

This is a variant of k-fold cross validation where k is the number of samples (Bramer,

2007). A single observation is left out each time.

I.3.3 Bootstrap

This is a general resampling strategy (Efron, 1979). A bootstrap sample consists of n

(being n the number of samples) equally-likely draws with replacement from the original

data. Therefore, some of the samples will appear multiple times, whereas others will not

appear at all. The learner is designed on the bootstrap sample and tested on the left-

out data points. The error is approximated by a sample mean based on independent

replicates (usually between 25 and 200). There exist some famous variants of the

method such as balanced bootstrap or 0.632 bootstrap (Efron & Tibshirani, 1993). As

in the previous methods, there will be as many subsets of features as repetitions of the

method.

I.3.4 Holdout validation

This technique consists of randomly splitting the available data into a disjoint pair

training-test (Bramer, 2007). A common partition is to use 2/3 for training and 1/3
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for testing. The learner is designed on the training data and the estimated error rate is

the proportion of errors observed on the test data. This approach is usually employed

when some of the datasets in a study come originally divided into training and test

sets whilst others do not. In contrast to other validation techniques, a unique set of

selected features is obtained.

I.4 Statistical tests

When performing several executions of a method, different results are obtained (e.g.

after applying a k-fold cross validation). In this situation, statistical tests may be

performed to check if there are significant differences among the medians for each

method. In this thesis, the most used statistical methods were Kruskal-Wallis (Wolfe

& Hollander, 1973) and a multiple comparison procedure (Tukey’s) (Hsu, 1996). The

experimental procedure is following detailed:

1. A Kruskal-Wallis test is applied to check if there are significant differences among

the medians for each model. In this thesis, we have opted for a level of significance

α = 0.05.

2. If the non-parametric Kruskal-Wallis test is significant, it means that there exists

at least a model that is better than the others. In this case, it is necessary to

perform a multiple comparison procedure to figure out which model is the best.

3. Finally, the set of models with performance not significantly worse than the best

is obtained. Among the models in this set, it should be selected the simplest one.

I.5 Classification algorithms

If we are dealing with real datasets, the relevant features are not known a priori.

Therefore, it is necessary to use a classification algorithm to evaluate the performance

of the feature selection, focusing on the classification accuracy. Unfortunately, the

class prediction depends also on the classification algorithm used, so when testing

a feature selection method, a common practice is to use several classifiers to obtain

results as classifier-independent as possible. This section describes the most common
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classification algorithms which are used along this thesis. Notice that some of them

only can work with categorical features, whereas others require numerical attributes.

In the first case, the problem is often solved by discretizing the numerical features.

In the second case, it is common to use a conversion method which assigns numerical

values to the categorical features.

I.5.1 Support Vector Machine, SVM

A Support Vector Machine (Vapnik, 1998) is a learning algorithm typically used for

classification problems (text categorization, handwritten character recognition, image

classification, etc.). More formally, a support vector machine constructs a hyperplane

or set of hyperplanes in a high- or infinite-dimensional space, which can be used for

classification, regression, or other tasks. Intuitively, a good separation is achieved by

the hyperplane that has the largest distance to the nearest training data point of any

class (so-called functional margin), since in general the larger the margin the lower the

generalization error of the classifier. In its basic implementation, it can only work with

numerical data and binary classes.

I.5.2 Proximal Support Vector Machine, PSVM

This method classifies points assigning them to the closest of two parallel planes (in

input or feature space) that are pushed as far apart as possible (Fung & Mangasarian,

2001). The difference with a Support Vector Machine (SVM) is that PSVM classifies

points by assigning them to one of two disjoint half-spaces. The PSVM leads to an

extremely fast and simple algorithm by generating a linear or nonlinear classifier that

merely requires the solution of a single system of linear equations.

I.5.3 C4.5

C4.5 is a classifier developed by Quinlan (1993), as an extension of the ID3 algorithm

(Iterative Dicotomiser 3). Both algorithms are based in decision trees. A decision tree

classifies a pattern doing a descending filtering of it until finding a leaf, that points

to the corresponding classification. One of the improvements of C4.5 with respect to

ID3 is that C4.5 can deal with both numerical and symbolic data. In order to handle
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continuous attributes, C4.5 creates a threshold and depending on the value that takes

the attribute, the set of instances is divided.

I.5.4 naive Bayes, NB

A naive Bayes classifier (Rish, 2001) is a simple probabilistic classifier based on applying

Bayes’ theorem with strong (naive) independence assumptions. This classifier assumes

that the presence or absence of a particular feature is unrelated to the presence or

absence of any other feature, given the class variable. A naive Bayes classifier considers

each of the features to contribute independently to the probability that a sample belongs

to a given class, regardless of the presence or absence of the other features. Despite

their naive design and apparently oversimplified assumptions, naive Bayes classifiers

have worked quite well in many complex real-world situations. In fact, naive Bayes

classifiers are simple, efficient and robust to noise and irrelevant attributes. However,

they can only deal with symbolic data, although discretization techniques can be used

to preprocess the data.

I.5.5 k-nearest neighbors, k-NN

K-Nearest neighbor (Aha, Kibler, & Albert, 1991) is a classification strategy that is an

example of a “lazy learner”. An object is classified by a majority vote of its neighbors,

with the object being assigned to the class most common amongst its k nearest neigh-

bors (where k is some user specified constant). If k = 1 (as it is the case in this thesis),

then the object is simply assigned to the class of that single nearest neighbor. This

method is more adequate for numerical data, although it can also deal with discrete

values.

I.5.6 Multi-Layer Perceptron, MLP

A multi-layer perceptron (Rumelhart, Hinton, & Williams, 1985; Hornik, Stinchcombe,

& White, 1989) is a feedforward artificial neural network model that maps sets of

numerical input data onto a set of appropriate outputs. A MLP consists of multiple

layers of nodes in a directed graph, with each layer fully connected to the next one.

Except for the input nodes, each node is a neuron (or processing element) with a
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nonlinear activation function. MLP utilizes a supervised learning technique called

back-propagation for training the network. MLP is a modification of the standard

linear perceptron and can distinguish data that are not linearly separable.

I.5.7 One-layer Feedfoward Neural Network, One-layer NN

This algorithm consists of training a single-layer feedfoward neural network using a new

supervised learning method proposed by Castillo, Fontenla-Romero, Guijarro-Berdiñas,

and Alonso-Betanzos (2002). The method is based on the use of an alternative cost

function that measures the errors before the nonlinear activation functions instead of

after them, as is normally the case. As an important consequence, the solution can be

obtained easily and rapidly because the new cost function is convex. Therefore, the

absence of local minima is assured in this situation.

I.5.8 AdaBoost, AB

AdaBoost (“Adaptive Boosting”) (Freund & Schapire, 1995), is a meta-algorithm which

can be used in conjunction with many other learning algorithms to improve their perfor-

mance. AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked

in favor of those instances misclassified by previous classifiers. It generates and calls a

new weak classifier in each of a series of rounds. For each call, a distribution of weights

is updated that indicates the importance of examples in the data set for the classifica-

tion. On each round, the weights of each incorrectly classified example are increased,

and the weights of each correctly classified example are decreased, so the new classifier

focuses on the examples which have so far eluded correct classification. AdaBoost is

sensitive to noisy data and outliers.

I.6 Evaluation measures

In order to evaluate the behavior of the feature selection methods after applying a

classifier, several evaluation measures need to be defined.

• True positive (TP): percentage of positive examples correctly classified as so.
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• False positive (FP): percentage of negative examples incorrectly classified as pos-

itive.

• True negative (TN): percentage of negative examples correctly classified as so.

• False negative (FN): percentage of positive examples incorrectly classified as neg-

ative.

• Sensitivity = TP
TP+FN

• Specificity = TN
TN+FP

• Accuracy = TN+TP
TN+TP+FN+FP

• Error = FN+FP
TN+TP+FN+FP

I.6.1 Multiple-criteria decision-making

Multiple-criteria decision-making (MCDM) (Zeleny & Cochrane, 1982) is focused on

evaluating classifiers from different aspects and produce rankings of them. A multi-

criteria problem is formulated using a set of alternatives and criteria. Among many

MCDM methods that have been developed up to now, technique for order of preference

by similarity to ideal solution (TOPSIS) (Hwang & Yoon, 1981) is a well-known method

that will be used. TOPSIS finds the best algorithms by minimizing the distance to the

ideal solution whilst maximising the distance to the anti-ideal one. The extension of

TOPSIS proposed by Olson (2004) is used in this research.
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APPENDIX III
Resumen del trabajo

La aparición de conjuntos de datos de alta dimensión ha supuesto un reto sin prece-

dentes para los investigadores de aprendizaje máquina, haciendo que las tareas de

aprendizaje se vuelvan más dif́ıciles y costosas computacionalmente. El término alta

dimensión se aplica a una base de datos que presenta una de las siguientes carac-

teŕısticas: (a) el número de muestras es muy elevado; (b) el número de caracteŕısticas

es muy elevado; o (c) tanto el número de muestras como el de caracteŕısticas son muy

elevados. Se considera que un conjunto de datos es de alta dimensión cuando tiene más

de 10 000 datos (considerando datos como caracteŕısticas por muestras).

Cuando se trata con bases de datos de alta dimensión, el rendimiento de los al-

goritmos de aprendizaje puede verse degradado debido al sobreajuste, los modelos

aprendidos disminuyen su interpretabilidad cuando son más complejos y, además, la

velocidad y eficiencia de los algoritmos decae en concordancia con el tamaño. El apen-

dizaje máquina puede beneficiarse de los métodos de selección de caracteŕısticas, ya

que éstos son capaces de reducir la dimensión de un problema dado. La selección de

caracteŕısticas es el proceso de detectar las caracteŕısticas relevantes y eliminar las

redundantes e irrelevantes, tratando de obtener un subconjunto de caracteŕısticas lo

más pequeño posible que resuelva el problema dado con una degradación mı́nima en el

rendimiento. La selección de caracteŕısticas, ya que es una actividad importante en el

preprocesado de los datos, ha sido un área activa de investigación en la última década,

obteniendo resultados exitosos en diferentes aplicaciones reales, especialmente aquellas

relacionadas con problemas de clasificación.

Esta tesis está dedicada a la investigación en métodos de selección de caracteŕısticas

y su aplicación a datos de alta dimensión. En primer lugar, se realiza un análisis cŕıtico

de los métodos de selección de caracteŕısticas existentes, para comprobar su idoneidad

frente a diferentes problemas y para poder dar recomendaciones a los usuarios sobre qué

método usar. Teniendo presente este análisis, se aplican las técnicas más adecuadas a
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varios problemas reales, obteniendo una notable mejora en el rendimiento. Además de la

eficiencia, otro aspecto cŕıtico para las aplicaciones de gran escala es la escalabilidad. La

eficiencia de los métodos de selección de caracteŕısticas puede verse significativamente

degradada, si no totalmente inaplicable, cuando el volumen de datos se incrementa

constantemente. Por este motivo, se analiza la escalabilidad de los métodos de selección

de caracteŕısticas.

Además, también se proponen nuevas técnicas para selección de caracteŕısticas en

datos de gran escala. En primer lugar, ya que la mayoŕıa de métodos existentes nece-

sitan que los datos sean discretos, se propone una nueva metodoloǵıa que consiste en

la combinación de un discretizador, un filtro y un clasificador simple, obteniendo re-

sultados prometedores. Otra de las propuestas trata de usar un conjunto de filtros en

lugar de uno sólo, liberando al usuario de tomar la decisión de qué técnica es la más

apropiada para un problema dado. Otro tema interesante a tener en cuenta es con-

siderar el coste asociado de las diferentes caracteŕısticas (económico, o relacionado con

los requisitos temporales o computacionales), por lo que se porpone una metodoloǵıa

para selección de caracteŕısticas basada en coste, demostrando su idioneidad en un

problema real. Por último, es bien sabido que una forma de tratar con datos de gran

escala es transformar el problema de gran escala en varios subproblemas de pequeña

escala, distribuyendo los datos. Con este objetivo, se proponen varias alternativas para

abordar la selección de caracteŕısticas de forma distribuida o paralela. A continuación

se resumen las aportaciones principales de cada uno de los bloques de la tesis.

Análisis de los métodos de selección de caracteŕısticas

Los métodos de selección de caracteŕısticas suelen estar divididos en tres grandes gru-

pos: filtros, envolventes y embebidos. Los filtros se basan en las caracteŕısticas gene-

rales de los datos de entrenamiento y llevan a cabo el proceso de selección como un

paso de preprocesado independiente del algoritmo de inducción. Por el contrario, los

métodos envolventes involucran la optimización de un predictor como parte del pro-

ceso de selección. Entre estos dos modelos se encuentran los métodos embebidos, que

realizan la selección de caracteŕısticas en el proceso de entrenamiento y normalmente

son espećıficos para un algoritmo de aprendizaje en particular.

En la literatura especializada existe un gran número de métodos de selección de

caracteŕısticas, incluyendo filtros basados en distintas métricas (p.e. entroṕıa, distribu-
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que usan distintos algoritmos de inducción. Sin embargo, la proliferación de algoritmos

de selección de caracteŕısticas no ha tráıdo consigo una metodoloǵıa general que per-

mita una selección inteligente de entre los algoritmos existentes. Para poder tomar una

decisión acertada, un usuario no sólo debe conocer bien el dominio, sinó que también

debe entender los detalles técnicos de los algoritmos disponibles. Además de esto, la

mayoŕıa de los algoritmos fueron desarrollados cuando las bases de datos eran mucho

más pequeñas, pero hoy en d́ıa se requieren compromisos distintos para los problemas

de aprendizaje de grande y pequeña escala. Los problemas de pequeña escala están

sujetos al compromiso habitual de aproximación-estimación. En el caso de los proble-

mas de gran escala, la solución de compromiso es más compleja porque involucra no

sólo a la precisión de la selección sinó también otros aspectos como la estabilidad (i.e.

la sensibilidad de los resultados ante variaciones en el conjunto de entrenamiento) o la

escalabilidad.

La primera parte de esta tesis está dedicada a analizar los métodos que forman el

estado del arte de la selección de caracteŕısticas y demostrar su eficacia en aplicaciones

reales. Las principales contribuciones son las siguientes:

• Revisión cŕıtica de los métodos de selección de caracteŕısticas más populares en la

bibliograf́ıa estudiando su comportamiento en un escenario artificial controlado.

De esta manera, se evalúa la habilidad de los algoritmos para seleccionar las

caracteŕısticas relevantes y descartar las irrelevantes sin permitir que el ruido

o la redundancia obstruya este proceso. Además, se presentan varios casos de

estudio para ayudar a decidir entre métodos que muestran un comportamiento

similar. A la vista de los resultados obtenidos, se recomienda usar filtros (en

particular, ReliefF), ya que son independientes del algoritmo de clasificación y

son más rápidos que embebidos o envolventes, además de presentar una buena

capacidad de generalización.

• Análisis del comportamiento de la selección de caracteŕısticas en un campo ex-

igente: la clasificación de microarrays de ADN. Este tipo de datos supone un

reto para los investigadores en aprendizaje máquina debido a su elevado número

de caracteŕısticas (sobre 10 000) frente a un número de muestras muy pequeño

(t́ıpicamente cien o menos). Para esto, es necesario revisar los algoritmos más

recientes desarrollados a medida para este tipo de datos, aśı como también es-

tudiar sus particularidades. Se propone una evaluación práctica de los métodos

de selección de caracteŕısticas sobre conjuntos microarray para estudiar los resul-
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tados. Se cuenta con un amplio abanico de 9 conjuntos de datos ampliamente

usados en la literatura, 7 métodos de selección de caracteŕısticas clásicos y 3 al-

goritmos de clasificación. Este amplio conjunto de experimentos facilitan futuras

comparaciones cuando un investigador propone un nuevo método.

• Aplicación de métodos de selección de caracteŕısticas clásicos a problemas reales

para comprobar su idoneidad. Concretamente, se prueba la eficacia de la selección

de caracteŕısticas en dos problemas del dominio médico. En el primero de ellos,

se aborda la clasificación de la capa liṕıdica de la peĺıcula lagrimal. El tiempo

que requeŕıan los métodos existentes para tratar este problema era prohibitivo

para su uso cĺınico, ya que no era posible trabajar en tiempo real. En esta

tesis se propone una metodoloǵıa para resolver este problema, que incluye la

aplicación de métodos de selección de caracteŕısticas. En términos cĺınicos, se

puede aśı automatizar el proceso manual realizado por expertos, con las ventajas

de hacerlo más rápido e independiente de factores subjetivos, obteniendo una

precisión máxima por encima del 97% con un tiempo de procesado menor que un

segundo. El segundo caso de estudio es la clasificación de complejos K en apnea

del sueño, que es un punto clave en los estudios relacionados con el sueño. Se

aplican varios métodos de selección de caracteŕısticas en combinación con varios

algoritmos de aprendizaje máquina, intentando obtener una tasa baja de falsos

positivos al mismo tiempo que se mantiene la precisión. Con la inclusión del paso

de selección de caracteŕısticas, los resultados mejoran de forma significativa para

todos los clasificadores considerados.

• Escalabilidad de los métodos de selección de caracteŕısticas. Con la proliferación

de los conjuntos de datos de gran escala, los investigadores deben centrarse no

sólo en la precisión sinó también en la escalabilidad de los métodos existentes.

En primer lugar, se evalúa la eficacia de la selección de caracteŕısticas en la es-

calabilidad de los algoritmos de entrenamiento para redes de neuronas artificiales

(RNAs), tanto en tareas de clasificación como de regresión. Los resultados experi-

mentales muestran que la selección de caracteŕısticas como paso de preprocesado

es beneficiosa para la escalabilidad de RNAs, incluso haciendo que ciertos algo-

ritmos sean capaces de entrenar en algunos conjuntos de datos en los que era

imposible debido a la complejidad espacial. Además, se analiza también la es-

calabilidad de los métodos de selección de caracteŕısticas, que es un tema que

no ha recibido suficiente consideración en la bibliograf́ıa. Se evalúa un total de

11 métodos de selección pertenecientes a las tres categoŕıas existentes: filtros,

envolventes y embebidos. El estudio experimental se realiza sobre conjuntos de

datos artificiales, para ser capaz de evaluar el grado de proximidad a la solución
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óptima de forma segura. Para poder evaluar la escalabilidad de los métodos, es

necesario proponer nuevas medidas que estén basadas no sólo en la precisión sino

también en el tiempo de ejecución y la estabilidad. Considerando los resultados

experimentales, los filtros parecen ser la opción más escalable. En particular,

FCBF presenta el mejor comportamiento en cuando a escalabilidad. De entre

los métodos que devuelven un orden de las caracteŕısticas, ReliefF es una buena

opción cuando se cuenta con un número no muy elevado de caracteŕısticas, a

costa de un tiempo de entrenamiento grande. Por este motivo, el filtro basado

en la ganancia de información demuestra ser más escalable cuando se abordan

problemas de alta dimensión.

Nuevos métodos de selección de caracteŕısticas

La segunda parte de esta tesis trata del desarrollo de nuevos métodos de selección de

caracteŕısticas que sean aplicables a conjuntos de alta dimensión. Aunque los benefi-

cios de la selección de caracteŕısticas están ampliamente demostrados, la mayoŕıa de

los investigadores coinciden en que no existe el “mejor” método de selección de carac-

teŕısticas y sus esfuerzos se centran en encontrar un método que sea bueno para un

problema espećıfico. Por este motivo, costantemente aparecen nuevos métodos de se-

lección de caracteŕısticas que usan estrategias diferentes. De hecho, la tendencia actual

en la selección de caracteŕısticas no está enfocada hacia el desarollo de nuevas medidas

algoŕıtmicas, sinó hacia la combinación o modificación de algoritmos existentes. Por

lo tanto, el objetivo de esta parte de la tesis se centra en explorar distintas estrategias

para tratar con las nuevas problemáticas que han surgido con la aparición de los datos

de gran escala.

La primera aproximación está relacionada con las técnicas de preprocesado, por

tanto se introduce una etapa de discretización previa a la etapa de selección de carac-

teŕısticas para tratar de mejorar el rendimiento de los algoritmos de inducción. Otra

ĺınea de investigación muy interesante y popular en los últimos tiempos es el apren-

dizaje de conjuntos (ensemble), que se basa en la suposición de que un conjunto de

expertos es mejor que un único experto, por lo que se propone un método que consiste

en usar un conjunto de filtros y clasificadores. También es interesante considerar casos

en los que las caracteŕısticas tienen su propio coste o riesgo asociado, ya que este factor

debe tenerse en cuenta además de la precisión. Por este motivo, se proponen métodos

de selección de caracteŕısticas que tengan en cuenta el coste. Por último, recientemente

317



Appendix III. Resumen del trabajo

ha surgido un nuevo tema de interés que consiste en distribuir el proceso de selección

de caracteŕısticas con el objetivo de mejorar la precisión al mismo tiempo que se reduce

el tiempo de entrenamiento.

Las principales contribuciones de la segunda parte de esta tesis son las siguientes:

• Combinación de métodos de discretización y selección de caracteŕısticas. La

mayoŕıa de los algoritmos de selección de caracteŕısticas sólo pueden trabajar

con datos discretos, por lo que una práctica ampliamente utilizada es discretizar

los datos antes de realizar el proceso de selección. Sin embargo, muchos trabajos

conf́ıan esta tarea a discretizadores “por defecto”, como es el caso de la famosa

herramienta Weka. Para arrojar luz sobre este tema, se propone una metodoloǵıa

que consiste en la combinación de distintos métdos de discretización, selección

de caracteŕısticas y clasificación y que se aplica a escenarios muy diferentes. La

idoneidad de la metodoloǵıa propuesta se demuestra sobre conjuntos de datos de

un sistema de detección de intrusos, datos de microarrays de ADN y un amplio

conjunto de datos multiclase.

• Aprendizaje por conjunto de filtros y clasificadores. El objetivo del método pro-

puesto es reducir la variabilidad de los resultados obtenidos por métodos de dis-

cretización y selección de caracteŕısticas diferentes, basándose en la suposición

de que combinar la salida de varios expertos es mejor que la salida de un único

experto. Se presentan dos algoritmos genéricos, en función del rol del clasifi-

cador. La primera propuesta clasifica los datos tantas veces como filtros se estén

usando, mientras que la segunda clasifica una única vez con el resultado de unir

los distintos subconjuntos de caracteŕısticas seleccionados por los distintos filtros.

Se proponen un total de cinco implementaciones de las dos propuestas, que se

prueban tanto en conjuntos artificiales, como conjuntos de datos clásicos y de

microarray de ADN. Se demuestra aśı lo apropiado de usar un conjunto de filtros

en lugar de uno solo, ya que para todos los escenarios considerados, el conjunto

de filtros siempre aparece como la mejor opción.

• Metodoloǵıa para selección de caracteŕısticas basada en coste. En algunas situa-

ciones, un usuario no está interesado sólo en seleccionar el subconjunto de carac-

teŕısticas más preciso, sino también en reducir los costes asociados a los datos.

Por ejemplo, para un diagnóstico médico, los śıntomas que se pueden observar a

ojo no tienen coste, pero cada dato diagnóstico extráıdo de una prueba cĺınica

está asociado con su propio coste y riesgo. Teniendo esto en cuenta, se propone
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una nueva metodoloǵıa que permite realizar selección de caracteŕısticas basada

en coste. Esta metodoloǵıa consiste en añadir un nuevo término a la función de

evaluación de cualquier filtro para tratar de obtener una solución intermedia entre

la métrica de un filtro (p.e. correlación) y el coste asociado con las caracteŕısticas.

Para probar la efectividad del método se seleccionan tres filtros representativos y

se aplica a un amplio conjunto de bases de datos, incluyendo un problema real.

Los resultados experimentales demuestran que la propuesta es sólida y permite

al usuario reducir el coste sin comprometer el error de clasificación de forma

significativa.

• Selección de caracteŕısticas distribuida y paralela. Cuando se trata con datos de

gran escala, una posible estrategia consiste en distribuir la tarea de aprendizaje

en varios procesadores. El objetivo principal de esta estrategia es distribuir el

proceso de selección de caracteŕısticas, suponiendo que se obtendrá una reducción

considerable en el tiempo de ejecución y la precisión no se verá afectada en exceso.

Se presentan varias propuestas para tratar tanto con una distribución horizontal

como vertical de los datos. Los resultados experimentales muestran que las pro-

puestas permiten reducir el tiempo de ejecución significativamente con respecto

a la aproximación estándar (centralizada). De hecho, en cuanto a tiempo de

ejecución, el comportamiento de las propuestas distribuidas es excelente, siendo

ésta la ventaja más importante del método. Además, en cuanto a la precisión

de clasificación, estas propuestas distribuidas son capaces de igualar –y en algún

caso de mejorar– los resultados obtenidos por los algoritmos estándar aplicados

a datos no distribuidos.

Organización de la tesis

En este resumen se han introducido los temas principales que se tratan en esta tesis. La

primera parte (Análisis de los métodos de selección de caracteŕısticas) se trata en los

caṕıtulos 2 - 6. El caṕıtulo 2 presenta los fundamentos de la selección de caracteŕısticas,

además de una descripción de los métodos que se emplean en esta tesis. A continuación,

el caṕıtulo 3 hace una revisión de los métodos más populares de la literatura y prueba su

comportamiento en un escenario artificial controlado, proponiendo varias pautas para

su uso en distintos dominios. El caṕıtulo 4 analiza las contribuciones más recientes de

la investigación de selección de caracteŕısticas aplicada al campo de la clasificación de

microarrays de ADN, mientras que el caṕıtulo 5 se dedica a demostrar los beneficios
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de la selección de caracteŕısticas en otras aplicaciones reales como la clasificación de la

capa liṕıdica de la peĺıcula lagrimal y los complejos K para detectar apena del sueño. El

caṕıtulo 6 cierra la primera parte de la tesis estudiando la escalabilidad de los métodos

de selección de caracteŕısticas existentes.

La segunda parte de la tesis (Nuevos métodos de selección de caracteŕısticas) está

formada por los caṕıtulos 7 - 10. El caṕıtulo 7 presenta un método que está compuesto

por la combinación de discretizadores, filtros y clasificadores. El método propuesto se

aplica a un conjunto de datos de detección de intrusos, ampliamente utilizado como

banco de prueba, aśı como a otros escenarios exigentes como los microarrays de ADN.

El caṕıtulo 8 presenta un método basado en un conjunto de filtros para poder ser

aplicado a escenarios diversos. La idea se centra en la suposición de que un conjunto

de filtros es mejor que un método simple, ya que de este modo es posible aprovechar

sus fortalezas individuales y superar sus puntos débiles al mismo tiempo. El caṕıtulo

9 propone una nueva metodoloǵıa para selección de caracteŕısticas basada en coste. El

objetivo es resolver problemas en los cuales es interesante no sólo minimizar el error de

clasificación sinó también reducir los posibles costes asociados a las caracteŕısticas. El

caṕıtulo 10 presenta varias aproximaciones para tratar la selección de caracteŕısticas

distribuida o paralela, mediante un particionado de los datos vertical y horizontal.
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(2013). A comparative study of the scalability of a sensitivity-based learning

algorithm for artificial neural networks. Expert Systems with Applications, 40 (10),

3900-3905.

Piatetsky-Shapiro, G., & Tamayo, P. (2003). Microarray data mining: facing the

challenges. ACM SIGKDD Explorations Newsletter , 5 (2), 1–5.

Pradhananga, N. (2007). Effective linear-time feature selection. Unpublished doctoral

dissertation, Citeseer.

Provost, F. (2000). Distributed data mining: Scaling up and beyond. Advances in

distributed and parallel knowledge discovery , 3–27.

Provost, F., & Kolluri, V. (1999). A survey of methods for scaling up inductive

algorithms. Data mining and knowledge discovery , 3 (2), 131–169.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning , 1 (1), 81–106.

Quinlan, J. R. (1993). C4. 5: programs for machine learning (Vol. 1). Morgan kauf-

mann.

Rakotomamonjy, A. (2003). Variable selection using svm based criteria. The Journal

of Machine Learning Research, 3 , 1357–1370.

Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N., & Yebra-Pimentel,

E. (2011). Texture and color analysis for the automatic classification of the eye

lipid layer. In Advances in computational intelligence (pp. 66–73). Springer.

Remeseiro, B., Ramos, L., Penas, M., Martinez, E., Penedo, M. G., & Mosquera, A.

(2011). Colour texture analysis for classifying the tear film lipid layer: a com-

parative study. In Digital image computing techniques and applications (dicta),

2011 international conference on (pp. 268–273).

Rich, E., & Knight, K. (1991). Artificial intelligence. NY: McGraw-Hill.

Rish, I. (2001). An empirical study of the naive bayes classifier. In Ijcai 2001 workshop

on empirical methods in artificial intelligence (Vol. 3, pp. 41–46).

Rokach, L. (2009). Taxonomy for characterizing ensemble methods in classification

tasks: A review and annotated bibliography. Computational Statistics & Data

Analysis, 53 (12), 4046–4072.

Rokach, L., Schclar, A., & Itach, E. (2013). Ensemble methods for multi-label classifi-

cation. arXiv preprint arXiv:1307.1769 .

Ruiz, R., Riquelme, J., & Aguilar-Ruiz, J. (2006). Incremental wrapper-based gene

selection from microarray data for cancer classification. Pattern Recognition,

39 (12), 2383–2392.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal repre-

sentations by error propagation (Tech. Rep.). DTIC Document.

334



Saari, P., Eerola, T., & Lartillot, O. (2011). Generalizability and simplicity as criteria

in feature selection: application to mood classification in music. Audio, Speech,

and Language Processing, IEEE Transactions on, 19 (6), 1802–1812.

Saeys, Y., Abeel, T., & Van de Peer, Y. (2008). Robust feature selection using ensemble

feature selection techniques. In Machine learning and knowledge discovery in

databases (pp. 313–325). Springer.
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