
A general procedure to test
conjunctive query containment

Miguel Rodŕıguez Penabad

Ph.D Thesis
Departamento de Computación

Universidade da Coruña

Directed by: Nieves Rodŕıguez Brisaboa

2

3

Ph.D. Thesis directed by
Tese doutoral dirixida por

Nieves Rodŕıguez Brisaboa
Departamento de Computación
Facultade de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1243
Fax: +34 981 167160
brisaboa@udc.es

4

5

Agradecementos

O primeiro agradecemento vai para a miña familia. A meus pais, José e
Lola, a miña irmá Elba (“mamá número dous”) e a meu irmán Juan. A
meu cuñado Tino e meus sobriños Oscar, Nuria e Lućıa. Polo seu cariño e
apoio pero, sobre todo, por aguantarme.

A Nieves, a miña directora de tese e directora do Laboratorio de Bases
de Datos da Universidade da Coruña, por toda a súa axuda tanto dentro
coma fóra da tese. Ós demáis membros, actuais ou pasados, do laboratorio:
Jose, Eva, mon (en minúsculas, como ti queres), Ángeles, Mariajo, Charo,
Miguel, José Ramón, Antonio (Fari) e Tony. Gracias a todos, e espero non
esquecer a ninguén. Gracias tamén ó Doutor Héctor Hernández e á xente do
Departamento de Computer Science da New Mexico State University por
toda a súa axuda durante a miña estancia nesa universidade, onde empecei
o desenrolo desta Tese.

E finalmente, anque non menos importante, a tódolos amigos e amigas
que tamén estiveron ah́ı cando os necesitaba: Carlos, Ana, Manuel, Miryam,
David, Luli, Javi, e tantos outros. Gracias, amigos.

Acknowledgements

My first thanks go to my family. To my parents, José and Lola, my sister
Elba (“mom number two”), and my brother Juan. To my brother in law
Tino, and my nephew and nieces, Oscar, Nuria and Lućıa. For their love
and support, but especially for putting up with me.

To Nieves, my director or Thesis and director of the Database Lab at
the University of Coruña, for all her help in and out this thesis. To all
the members, former and current, of the Lab: Jose, Eva, mon (in lowercase
as you like it), Ángeles, Mariajo, Charo, Miguel, José Ramón (Viqueira),
Antonio (Fari) e Tony. Thanks, and I hope I am not missing anybody. Also,
special thanks to Dr. Héctor Hernández and the people of the Computer
Science Department at New Mexico State University, where I started this
Thesis.

Last, but not least, to all friend who were there when I needed them: Car-
los, Ana, Manuel, Miryam, David, Luli, Javi, and so many more. Thanks,
folks.

6

Contents

1 Introduction 11
1.1 Overview of the Thesis . 15

2 Definition of conjunctive queries 17
2.1 Introduction . 17
2.2 Conjunctive queries . 17
2.3 Set and Bag Semantics . 23

2.3.1 Definitions under set semantics 23
2.3.2 Definitions under bag semantics 24

2.4 Summary . 27

3 QCC: Query Containment Checker 29
3.1 Introduction . 29
3.2 Preliminary definitions . 30
3.3 Building the canonical database set for a query 32
3.4 Algorithm to build CDBS(Q) 34
3.5 Interest of canonical databases 35
3.6 General procedure to test query containment 37
3.7 Summary . 38

4 Previous work about set containment of conjunctive queries 39
4.1 Introduction . 39
4.2 Set containment of equality queries 39
4.3 Set containment of inequality queries 41
4.4 Summary . 43

5 Applying QCC to test set containment of equality queries 45

7

8

6 Applying QCC to test set containment of inequality queries 49
6.1 Step 1: Build CDBS(Q1) . 49
6.2 Step 2: Apply Q1 and Q2 to all canonical databases 51
6.3 Step 3: Test the set containment 54
6.4 Validation of QCC for the set containment of inequality queries 55
6.5 Testing Satisfiability . 56

6.5.1 Implications of the domain of the variables 62
6.6 Examples . 63
6.7 Summary . 69

7 Previous work about bag containment of conjunctive queries 71
7.1 Introduction . 71
7.2 Bag containment of equality queries 72
7.3 Bag containment of inequality queries 73
7.4 Summary . 73

8 Applying QCC to test bag containment of equality queries 75
8.1 Introduction . 75
8.2 Label systems . 76

8.2.1 Preliminary definitions 76
8.2.2 Definition of label systems 76
8.2.3 Definition of databases with respect to a label system 77
8.2.4 LS1 and LS2 databases 78

8.3 Step 1: Build CDBS(Q1) . 79
8.4 Step 2: Apply Q1 and Q2 to all canonical databases 79
8.5 Step 3: Test the bag containment 81
8.6 Validation of QCC for the bag containment of equality queries 82
8.7 Summary . 84

9 Applying QCC to test bag containment of inequality queries 85
9.1 Introduction . 85
9.2 Step 1: Build CDBS(Q1) . 86
9.3 Step 2: Apply Q1 and Q2 to all canonical databases 91

9.3.1 Application of Q1 to a canonical database ds
i 92

9.3.2 Application of Q2 to a canonical database ds
i 92

9.4 Step 3: Test the bag containment 95
9.5 Validation of QCC for the bag containment of inequality queries 95
9.6 Example . 97
9.7 Summary . 110

9

10 Conclusions and future work 111

10

Chapter 1

Introduction

The main goal of database query optimization techniques is to transform a
given query Q1 into another query Q2, which is semantically equivalent to
Q1 but can be more efficiently evaluated. Therefore, the problem of testing
equivalence of queries is a fundamental issue for database query optimizers.

Two queries Q1 and Q2 are equivalent (Q1 ≡ Q2) if they obtain the same
result when they are applied to the same database. That is,

Q1 ≡ Q2 ⇐⇒ ∀D, Q1(D) = Q2(D)

where Q1(D) and Q2(D) represent, respectively, the result of applying Q1

and Q2 to the database D. Note that, for the equivalence to hold, this result
must be true for any ground database D.

Unfortunately, query equivalence in the general framework of relational
algebra or calculus is undecidable [Tra50, Sol79, Fag93, AHV95]. However,
there is a subclass of queries, the conjunctive queries, whose equivalence was
shown to be decidable [CM77].

Conjunctive queries use only Selection, Projection and Cartesian product
operators [Ull89]. They are the typical SQL queries used in commercial
relational DBMSs, and they have been therefore extensively studied.

It is also possible to study conjunctive queries under the logic program-
ming perspective [Llo87], which is the underlying data model of deductive
databases. The most used query language in deductive databases is Datalog
[CGT89], which is an adaptation of Prolog to deal with databases. Using
deductive databases notation, a conjunctive query is a safe, nonrecursive
Datalog rule. We shall see that the SQL and Datalog notations used to
represent a conjunctive query are equivalent.

The test of equivalence of queries is usually done by checking their mutual

11

12

containment:
Q1 ≡ Q2 ⇐⇒ Q1 ≤ Q2 ∧Q2 ≤ Q1

where the containment of queries is expressed by the ≤ operator.
The containment of queries is defined as follows.

Q1 ≤ Q2 ⇐⇒ ∀D, Q1(D) ⊆ Q2(D).

That is, a query Q1 is contained in a query Q2 if and only if the result of
applying Q1 to any ground database D is contained in the result of applying
Q2 to the same database D.

Most of the work that has been done to solve the conjunctive query con-
tainment problem (see, for example, [ASU79a, ASU79b, CM77]) assumes the
set theoretic framework typical of the relational model [Cod70]. However,
commercial database management systems use a bag theoretic semantics.
Under bag semantics, duplicates of the tuples are allowed, and every table
in a database is a “bag” or multiset of tuples. Any SQL query used in
a commercial DBMS also produces as a result a bag of tuples, unless the
Distinct clause is used in the query to remove duplicates.

The use of a different semantic framework has strong implications in the
query containment/equivalence problem, because the results achieved in the
set containment problem are not valid to test bag containment of queries.
As we shall see, having two queries Q1 and Q2 such that Q1 is contained
in Q2 under set semantics does not imply that Q1 is contained in Q2 under
bag semantics, as Example 1.1 shows.

We use the symbols ≤ and ≡ to denote, respectively, containment and
equivalence of queries. However, in order to stress the differences among bag
and set semantics, we shall use the s and b letters to denote containment and
equivalence under set and bag semantics. Therefore, Q1 ≤s Q2 would mean
that the query Q1 is contained in Q2 under set semantics, and Q1 ≡b Q2

would mean that Q1 and Q2 are equivalent under bag semantics. These
concepts and notations are formally defined in Chapter 2.

Example 1.1 Let D be a database with only one relation p with scheme
p(A,B). Let Q1 and Q2 be the following queries, represented using Datalog
rules:

Q1 : q(X, Y) :- p(X,Y), p(Y, X).

Q2 : q(X, Y) :- p(X,Y).

It is obvious that Q1 is set contained in Q2, because Q1 is more re-
strictive. Assume that Q1 obtains the fact q(a, b), that is, q(a, b) ∈ Q1(D).

13

It means that the facts p(a, b) and p(b, a) are in D (they can be the same
fact, if a = b). Since p(a, b) ∈ D, Q2 also obtains the fact q(a, b) (that
is, q(a, b) ∈ Q2(D)). This happens for any arbitrary fact q(a, b) and any
arbitrary database D, therefore Q1 ≤s Q2.

However, under bag semantics, Q1 is not bag contained in Q2. We shall
show it using a counterexample.

Let D be the following database:

p

a a
a a

That is, D has two copies of the fact p(a, a).
In this case, Q1 obtains 4 copies of the fact q(a, a), because there are 4

different ways to obtain it, depending on which fact the predicates of Q1 are
mapped to:

• Both predicates are mapped to the first p(a, a) fact.

• p(X, Y) is mapped to the first fact and p(Y,X) to the second one.

• p(X, Y) is mapped to the second fact and p(Y, X) to the first one.

• Both predicates are mapped to the second fact.

Q2 obtains again a reproduction of the p relation into q, that is, 2 copies
of the fact q(a, a). Since Q1 obtains 4 duplicates of the fact q(a, a) and Q2

obtains only 2, we can conclude that Q1 6≤b Q2. ut

On the other hand, the study of the query containment problem has
been classically approached in a different way for queries with built-in pred-
icates and queries without them. For example, Chandra and Merlin [CM77],
Chaudhuri and Vardi [CV93] or Brisaboa and Hernández [BH97] dealt with
conjunctive queries without built-in predicates, while Klug [Klu88] and Ull-
man [Ull89] explicitly dealt with conjunctive queries with built-in predi-
cates. Built-in (also called interpreted) predicates are predicates of the form
X < Y , X ≤ Y , X = Y , or X 6= Y , where X and Y are either variables or
constants in any ordered domain (not both constants). A conjunctive query
can be an equality conjunctive query, if no built-in predicates are allowed,
or an inequality conjunctive query if built-in predicates are allowed.

Note that we might consider equality queries having the equality com-
parison (=). However, we shall use a compressed form to write the queries.

14

This way, a built-in predicate X = c where X is a variable and c is a con-
stant, is reflected by replacing every of X by c in the query. If we have
a built-in predicate X = Y , where both X and Y are variables, we will
choose one of them as a representative and replace the other variable by the
representative one. For example, a query like

q(X,Y, Z) :- p(X, Y), p(T, Z), r(Z, W), Y = T, W = 4.

would be represented by the following (equivalent) query, without any built-
in predicate:

q(X,Y, Z) :- p(X, Y), p(Y, Z), r(Z, 4).

In this Thesis, we shall consider two factors that affect the problem of
checking containment, and therefore equivalence, of conjunctive queries:

• The underlying semantics: The semantics can be set theoretic, where
no duplicates of tuples are allowed, or bag (multiset) theoretic. Under
bag semantics, tuples have an associated multiplicity, which indicates
the number of copies of the tuple in the database.

• Presence or absence of built-in predicates in the queries: Inequality
queries (that is, conjunctive queries with built-in predicates) will be
treated differently than equality queries (without built-in predicates).

Considering these two factors, the containment problem can be studied
under 4 different perspectives:

1. Set containment of equality queries,

2. Bag containment of equality queries,

3. Set containment of inequality queries, and

4. Bag containment of inequality queries.

The set containment of conjunctive queries was solved by Chandra
and Merlin [CM77]; the bag containment of conjunctive queries was par-
tially solved by Chaudhuri and Vardi [CV93] and then finally Brisaboa and
Hernández [Bri97, BH97] offered a necessary and sufficient condition, along
with a procedure, to test it. In these works, Brisaboa and Hernández trans-
formed the problem of testing bag containment of equality queries into the
problem of comparing two polynomials over Z+, the set of nonnegative in-
tegers.

There has also been work done in the set containment of inequality
queries, but no definitive result has been achieved. The major contribution

15

was made by Klug [Klu88], but he left the problem open when domain was
nondense, like the integers. There has been other works in this type of
containment [vdM97, IS97], but they either worked only for dense domains
or lacked of a procedure. Finally, to the best of our knowledge, there has
been no work done in the field of bag containment of inequality queries.

We shall present in this Thesis a general procedure to test conjunctive
query containment, with or without built-in predicates, which works under
set and bag semantics. This procedure, denoted QCC (Query Containment
Checker) is based on the idea of using a finite set of databases built from
the body of the query Q1, denoted Canonical Database Set (CDBS(Q1))
[Bri97], to test the containment.

1.1 Overview of the Thesis

This work tries to offer a unified procedure, QCC (Query Containment
Checker) to test, in three steps, whether a conjunctive query Q1 is contained
into another conjunctive query Q2. This procedure tests the containment
using only a small and finite set of databases. This set, denoted CDBS(Q1)
(Canonical Database Set for a query Q1) is built algorithmically from the
body of Q1, using a procedure derived from the one described in [BH97].
This thesis proves that, for two conjunctive queries Q1 and Q2, either equal-
ity or inequality queries, under set or bag semantics,

Q1 ≤ Q2 ⇐⇒ ∀d ∈ CDBS(Q1), Q1(d) ⊆ Q2(d)

That is, the containment can be checked using only a finite and usually
small number of databases, instead of using the infinite number of ground
databases from which Q1 and Q2 could derive new facts (which would be,
of course, impossible to test).

The use of this procedure reduces the conjunctive query containment
problem to different problems, depending on the underlying semantics and
the presence or absence of built-in predicates:

• The application of QCC to test set containment of equality queries is
reduced to the problem of finding an assignment mapping, in a similar
way as Chandra and Merlin originally solved the problem in [CM77].

• The application of QCC to test the bag containment of equality queries
reduces to a comparison of two polynomials. We will show that the
procedure described in [BH97] perfectly fits into the 3 steps that QCC
follows.

16

• The application of QCC to test the set containment of inequality
queries (a preliminary version of the work presented in Chapter 6 in
this Thesis was published in [BHPP98]) reduces the problem to the
test of the unsatisfiability of a formula composed of equalities and
inequalities.

• Finally, the application of QCC to test bag containment of inequality
queries is reduced to the test of the unsatisfiability of a formula plus
the comparison of pairs of polynomials.

The general layout of this Thesis is the following.
In Chapter 2, conjunctive queries are defined, as well as how to apply

them to a database under set or bag semantics.
One of the main contribution of this Thesis is shown in chapter 3, where a

general procedure to test the containment of conjunctive queries is described.
This procedure, generally called QCC, will be specifically described for the
4 types of containment considered in this Thesis, proving its correctness.

The next part of this Thesis deals with set semantics. Chapter 4 shows
the previous work about set containment of equality as well as inequality
queries. Chapter 5 describes how QCC is adapted to test set containment of
equality queries, and Chapter 6 shows the use of QCC to test set contain-
ment of inequality queries. Both chapters constitue an original contribu-
tion of this Thesis to the problem of testing set containment of conjunctive
queries.

The last chapters deal with bag semantics. Chapter 7 shows the previous
work about the bag containment of conjunctive queries. Chapter 8 describes
the adaptation of QCC to test bag containment of equality queries, using a
method derived from the one described in [Bri97] which fits the three steps of
QCC. Chapter 9 shows the application of QCC to test bag containment of
inequality queries, and this is again a new, original contribution of this The-
sis to the problem of testing containment among conjunctive queries. The
correctness of the procedure is also demonstrated in each of these chapters.

Finally, Chapter 10 shows our conclusions.

Chapter 2

Definition of conjunctive
queries

2.1 Introduction

Conjunctive queries are the most common SQL queries used in the commer-
cial database management systems, and have been, therefore, extensively
studied [CM77, ASU79a, ASU79b, Ull82, Klu88, Ull89, IR92, CV93, BH97,
BHPP98].

In this chapter, we will define the concept of conjunctive queries, distin-
guishing two types, equality and inequality queries, because the difference
between these types has a strong impact in how our general procedure to
test conjunctive query containment works.

A different concept, which also has implications on the query contain-
ment problem, is the underlying (set or bag theoretic) semantics. The ap-
plication of a query to a database, as well as the concepts of containment
and equivalence of queries, under both semantics, are also defined in this
chapter.

2.2 Conjunctive queries

A conjunctive query, under relational algebra theory, is a query that uses
only Selection, Projection and Cartesian product operations. Using deduc-
tive databases notation, a conjunctive query is a safe, nonrecursive rule
with the predicates of the body defined over EDB (Extensional Databases)
predicates [Ull89].

17

18

Conjunctive queries can be represented using different notations that
are equivalent. Among these notations, the most common are Datalog rules
(deductive databases notation), SQL queries, or Relational Algebra expres-
sions. Due to its simplicity and easiness of use, we shall use Datalog rules to
represent conjunctive queries. After formally defining conjunctive queries,
we shall prove that the SQL and Datalog notations are equivalent.

Depending on the presence or absence of built-in predicates in the bodies
of the rules, we distinguish two types of conjunctive queries:

Equality queries: They are conjunctive queries where built-in predicates
are not allowed. The general form of an equality query is

q(~X) :- p1(~Y1), . . . , pn(~Yn).

where

• q(~X) is the query predicate, being ~X a vector or tuple of variables.

• Every pi(~Yi) is an ordinary predicate defined over EDB predicates,
having pi as its predicate name, and being ~Yi a vector or tuple of
constants or variables.

Inequality queries: They are conjunctive queries with built-in predicates.
An inequality query, in its general form, is a Datalog rule of the form

q(~X) :- p1(~Y1), . . . , pn(~Yn), F1, . . . , Fk.

where q, ~X, pi’s, and ~Yi’s are defined as above, and every Fj is a built-
in predicate of the form XθY , being X and Y either variables that
appear in an ordinary predicate, or constants of the domain (but not
both constants), and θ ∈ {=, 6=, <,≤, >,≥}.

As stated before, the representations of a conjunctive query in SQL and
Datalog notations are equivalent. The following algorithm transforms a con-
junctive query written in SQL into its equivalent Datalog notation [Ull89].

Algorithm 1 Transform an SQL conjunctive query into its equivalent Dat-
alog rule.
Input: An SQL query of the form

SELECT DISTINCT A1, ..., An

FROM table1, ..., tablet

WHERE < condition1 > and . . . and < conditionc >

19

Output: The same query written as a Datalog rule.
Method:

1. There will be a different variable for each attribute in the relation
scheme of all tables in the FROM clause.

2. For each of the relations in the FROM clause, add a predicate to the
body of the rule, with the same number of attributes and in the same
order as in the relation scheme.

3. For each of the equalities or inequalities in the WHERE clause, add
a built-in predicate to the body of the rule that establishes the
(in)equality between two variables or one variable and one constant.

4. The variables in the head of the rule are those variables that appear
in the SELECT clause.

Note that this algorithm produces a Datalog rule with explicit equalities,
that is, if X = Y , then this built-in is added to the rule. A “compressed”
form of the rule can be built just considering all variables related by an =
operator as an equivalence class, replacing all the variables by the represen-
tative of the equivalence class and removing the equality from the body of
the rule. In the same way, if there is an equality X = c, being X a variable
and c a constant, every occurrence of X is replaced by c. ut

Example 2.1 Let D be a database with the following scheme:

emp(EmpNo, EmpName, DeptNo, Salary)

dept(DeptNo,DeptName)

The query “Obtain the names of the employees working in the ‘Sales’ de-
partment that earn more than 14000” can be represented as the following
SQL query:

SELECT DISTINCT EmpName
FROM emp, dept
WHERE emp.DeptNo = dept.Deptno
AND dept.Deptno = ”Sales”
AND emp.Salary > 14000

Following the previous algorithm, the equivalent Datalog rule is built:

• There are the following variables:

20

EmpNo, EmpName,EmpDeptNo, Salary, DeptNo,DeptName

• The predicates in the body of the rule are:

emp(EmpNo, EmpName, EmpDeptNo, Salary),

dept(DeptNo,DeptName)

• The following built-in predicates are added.

EmpDeptNo = Deptno, Deptno = ”Sales”, Salary > 14000

• The variables in the head of the rule are:

Empname

Therefore, the Datalog rule that represents this query is

result(EmpName) :- emp(EmpNo, EmpName,EmpDeptNo, Salary),
dept(DeptNo, DeptName),
EmpDeptNo = DeptNo, DeptName = ”Sales”,
Salary > 14000

We have the equality DeptName = ”Sales”, therefore DeptName can be
replaced by ”Sales” in the query. Additionally, the variables EmpDeptNo
and DeptNo are in the same equivalence class. Considering DeptNo as the
representative of this class, the query can be rewritten in a compressed form
as

result(EmpName) :- emp(EmpNo, EmpName,DeptNo, Salary),
dept(DeptNo, ”Sales”),
Salary > 14000

ut

It is obvious, by how Algorithm 1 works, that the SQL query and the
Datalog rule are equivalent.

The application of an SQL query to a database in order to obtain new
facts or tuples works in a different (although equivalent) way than the same
query written as a Datalog rule. The execution of an SQL query follows 3
steps:

• Compute the Cartesian Product of all the relations in the FROM
clause.

• Select the tuples that satisfy the conditions expressed in the WHERE
clause from the previous result.

21

• Project only those attributes that appear in the SELECT clause.

The application of a query written as a Datalog rule uses assignment
mappings to derive new facts. An assignment mapping [Ull82] τ from a
query Q to a database D is a function from the symbols of Q to those of
D; τ is the identity in the predicate names and constants, and it must map
every ordinary predicate in the body of Q to a fact in D. If the query has
built-in predicates, the application of the assignment mapping to them must
produce a formula that evaluates to true. The derived fact corresponds to
the application of the mapping to the head of the rule.

Let Q1 be a query of the form

q(~X) :- p1(~Y1), . . . , pn(~Yn), F1, . . . , Fk.

and D any arbitrary database. Assume there is an assignment mapping τ
from Q1 to D. Then,

• every τ(pi(~Yi)) (1 ≤ i ≤ n) is a fact in D.

• every τ(Fi) (1 ≤ i ≤ k) is true.

• τ(q(~X)) is the derived fact.

Example 2.2 Let us use the query from Example 2.1. Let us apply it to
the following database D.

emp
EmpNo EmpName DeptNo Salary

10 John Smith 10 11000
20 Peter Sellers 10 29000
30 Joe Sand 20 13000
40 Mary Raines 30 25000

dept
DeptNo DeptName

10 Sales
20 Accounting
30 Marketing

Let us apply the SQL query

SELECT DISTINCT EmpName
FROM emp, dept
WHERE emp.DeptNo = dept.Deptno
AND dept.Deptno = ”Sales”
AND emp.Salary > 14000

• Compute the Cartesian Product of the tables in the FROM clause
(emp and dept):

22

���������	��
�����������������
������� �����!"� ������� �����!#����� �$�%�&� '#���(�)!*� �������,+(��-�����. �����(�	� '#���(�)!*� �(�����$� '"�$�(��!#�����

/$0 1 �32�4+(�%
5��2 /$0 /3/$03060 /$0 +(�6-5�	�
/$0 1 �32�4+(�%
5��2 /$0 /3/$03060 7�0 8 �$�9�3��:��
;�<
/$0 1 �32�4+(�%
5��2 /$0 /3/$03060 =60 > �6��?3�9��
;�<
7�0 �@�����$�"+���-;-5�$��� /$0 76A603060 /$0 +(�6-5�	�
7�0 �@�����$�"+���-;-5�$��� /$0 76A603060 7�0 8 �$�9�3��:��
;�<
7�0 �@�����$�"+���-;-5�$��� /$0 76A603060 =60 > �6��?3�9��
;�<
=60 1 ���B+(��C� 7�0 /	=603060 /$0 +(�6-5�	�
=60 1 ���B+(��C� 7�0 /	=603060 7�0 8 �$�9�3��:��
;�<
=60 1 ���B+(��C� 7�0 /	=603060 =60 > �6��?3�9��
;�<
D 0 > ����.FE*��
;��$� =60 73G�03060 /$0 +(�6-5�	�
D 0 > ����.FE*��
;��$� =60 73G�03060 7�0 8 �$�9�3��:��
;�<
D 0 > ����.FE*��
;��$� =60 73G�03060 =60 > �6��?3�9��
;�<

• Select the tuples that satisfy the constraints in the WHERE clause:

���������	��
�������������������
������� ������� � ������� �������"!���� ���#��� $"�����%�&� �������'��!��(!�)�* +������,� $"�����%�&� +�������� $ �������"!����

-�. / ���0��) �1�������)�� 2 . -434.�.4. 2 . ��!4��,�

• Project the attributes in the SELECT clause:

Projection of attributes
emp.EmpName
Peter Sellers

Let us apply now the Datalog rule that represents the same query:

result(EmpName) :- emp(EmpNo, EmpName, DeptNo, Salary),
dept(DeptNo, ”Sales”),
Salary > 14000

There is only one assignment mapping τ from this query to D:

τ(EmpNo) = 20;

τ(EmpName) = ”Peter Sellers”;

τ(DeptNo) = 10;

τ(Salary) = 29000;

23

τ(”Sales”) = ”Sales”

That is,

τ(emp(EmpNo,EmpName, DeptNo, Salary)) =
emp(20, ”Peter Sellers”, 10, 29000);

τ(dept(DeptNo, ”Sales”)) = dept(10, ”Sales”)

Therefore, the result of applying this query is

τ(result(EmpName)) = result(”Peter Sellers”)

Obviously, the results obtained by the SQL query and the Datalog rule are
the same1. ut

2.3 Set and Bag Semantics

As shown in Example 1.1, set containment of conjunctive queries does not
imply bag containment (the opposite is true: bag containment does imply
set containment). The fundamental concept, which makes this difference, is
the multiplicity of the facts that appears under bag semantics.

We shall describe in this section how relations in databases are repre-
sented in both frameworks, as well as how to apply a query to a database.
The formal definitions of set and bag containment are also given in this
section.

2.3.1 Definitions under set semantics

Under the set theoretic framework, both relations (tables) in a database
and the result of applying a query to a database are sets of facts or tuples.
A tuple or ground fact in an EDB (Extensional Database) is represented,
under set semantics, as a predicate of the form p(A1, . . . , Al).

A conjunctive query Q1 is set contained in a conjunctive query Q2 (rep-
resented Q1 ≤s Q2) if and only if, for all databases D, Q1(D) ⊆s Q2(D),
that is, the set of facts obtained by Q1 is a subset of the set of facts obtained
by Q2:

Q1 ≤s Q2 ⇐⇒ ∀D, Q1(D) ⊆s Q2(D)

Note that we use the symbol ⊆s to represent the subset relationship, instead
of the usual ⊆, in order to distinguish it from the subbag (⊆b) relationship.

1Note that they are equivalent under set semantics, because Datalog always removes
duplicates of the facts, but under SQL it must be done explicitly by using the Distinct

clause.

24

Two conjunctive queries Q1 and Q2 are set equivalent, Q1 ≡s Q2, iff
Q1 ≤s Q2 and Q2 ≤s Q1.

Q1 ≡s Q2 ⇐⇒ Q1 ≤s Q2 ∧Q2 ≤s Q1

2.3.2 Definitions under bag semantics

Under bag semantics, a relation in a database is a bag or multiset of facts,
where every fact has a number of copies in the relation. It can be seen as if
every fact has an associated integer that indicates its multiplicity. Under this
point of view, any relation is a set of elements of the form p(A1, . . . , Al; [m]).
For each of these elements, p is a predicate name, A1, . . . , Al are constants
of the domain, and m is the multiplicity or number of copies of the fact
p(A1, . . . , Al) in the database. If a fact is not in a database D, then its
multiplicity in D is 0.

The multiplicity of a fact in a database D is represented as
|p(A1, . . . , Al)|D = m.

Example 2.3 Let D be a database with only one relation named menu.
The scheme for this relation is menu(Firstdish, Seconddish), and it repre-
sents the menus ordered for dinner in a given restaurant in an evening. An
instance of this database could be:

menu

soup, beefsteak; [3]
salad, burrito [9]

That means that there were 3 people that had for dinner soup and then
a beefsteak, and 9 people who had a salad and a burrito. The multiplicity
of the first fact is represented as

|menu(soup, beefsteak)|D = 3.

There were no people who had lasagna and octopus for dinner, therefore

|menu(lasagna, octopus)|D = 0.

ut

Definition of subbag

The concept of subbag will be fundamental to test the query containment
under bag semantics. A bag B is a subbag of another bag B′ if and only if
every element t in B is also in B′, with at least the same multiplicity as in
B:

B ⊆b B′ ⇐⇒ ∀t ∈ B, |t|B ≤ |t|B′

25

The equality among subbags, represented by =b, can be checked via their
mutual containment.

B =b B′ ⇐⇒ B ⊆b B′ ∧B′ ⊆b B

Example 2.4 Let D, D′ and D′′ be the following bags of tuples:

D

soup, beefsteak; [3]
salad, burrito; [9]

D′

soup, beefsteak; [4]
salad, burrito; [9]

D′′

soup, beefsteak; [2]
salad, burrito; [10]

salad, pizza; [4]

It is obvious that D ⊆b D′. But D 6⊆b D′′, even when D′′ has more tuples
than D. This happens because there is a fact, menu(soup, beefsteak), with
more multiplicity in D than in D′′. ut

Union of bags

The union of two bags B and B′, represented B ∪B′, is defined as
B ∪B′ = {(t; [m]) | t is in B or t is in B′, and m = |t|B + |t|B′}

Definition of bag containment of conjunctive queries

The containment of conjunctive queries under bag semantics, also denoted
bag containment or b-containment for short, is defined as follows. A query
Q1 is b-contained in a query Q2, represented Q1 ≤b Q2, if and only if, for
all databases D, Q1(D) ⊆b Q2(D). That is, the result obtained by applying
Q1 to any database is a subbag of the result obtained by Q2 applied to the
same database:

Q1 ≤b Q2 ⇐⇒ ∀D,Q1(D) ⊆b Q2(D)

Q1 ≤b Q2 ⇐⇒ ∀t,D t ∈ Q1(D) =⇒ |t|Q1(D) ≤ |t|Q2(D).

Definition of bag equivalence of conjunctive queries

As for the case of set equivalence, query equivalence is defined by mutual in-
clusion. Two conjunctive queries Q1 and Q2 are bag equivalent (represented
Q1 ≡b Q2) iff Q1 ≤b Q2 and Q2 ≤b Q1.

Q1 ≡b Q2 ⇐⇒ Q1 ≤b Q2 ∧Q2 ≤b Q1

26

Computing the multiplicity of a derived fact

In order to test the bag containment of queries, we must know how to
compute the multiplicity of a fact derived by a query when it is applied to
a database.

Given a database D and a query Q, Q(D) represents the derived facts
obtained by applying Q to D, and it is also a bag of facts. The multiplicity
of a fact t in Q(D) will be represented as |t|Q(D), and it is computed as
follows.

Let Q1 be a query of the form q(~X) :- p1(~Y1), . . . , pn(~Yn), and let D be
a database. Assume there are l assignment mappings τ1, . . . , τl from Q to
D that obtain the new derived fact t. That is,

t = τ1(q(~X)) = · · · = τl(q(~X)).

Every pi(~Yi) is mapped by any τj to a fact pi(~Ai) in the database D, which
has a multiplicity. Let us represent this multiplicity as mji:

mji = |τj(pi(~Yi))|D = |pi(~Ai)|D
The multiplicity of t using only the mapping τj is computed by multiplying
the multiplicities mji’s of the facts reached by the atoms in Q1 using the
mapping τj :

mj =
n∏

i=1

|τj(pi(~Yi))|D

The final multiplicity of t is computed by adding the multiplicities of t
obtained by every individual mapping τj :

|t|Q1(D) =
l∑

j=1

mj =
l∑

j=1

(
n∏

i=1

|τj(pi(~Yi))|D
)

Let us show it through an example.

Example 2.5 Let Q1 be q(X) :- p(X,Y), p(Y,Z). Let D be the database

p
a b; [3]
b c; [5]
b d; [4]

There are two mappings τ1 and τ2 that obtain the fact q(a):

27

τ1(X) = a; τ1(Y) = b; τ1(Z) = c

τ2(X) = a; τ2(Y) = b; τ2(Z) = d

The multiplicities obtained by each mapping are

m1 = |p(a, b)|D × |p(b, c)|D = 3× 5 = 15

m2 = |p(a, b)|D × |p(b, d)|D = 3× 4 = 12

and the total multiplicity is

|q(a)|Q1(D) = m1 + m2 = 15 + 12 = 27.

ut

2.4 Summary

We have defined in this chapter the necessary concepts to tackle the problem
of containment of conjunctive queries under the 4 perspectives shown in the
introduction. Therefore, the concepts of equality and inequality queries have
been defined. Set and bag semantics have also been described, as well as
how to apply a query to a database under either of them.

28

Chapter 3

QCC: Query Containment
Checker

3.1 Introduction

The Query Containment Checker (QCC) is a general procedure that can
decide whether a query Q1 is contained in another query Q2.

Basically, QCC consists of the following 3 steps:

1. Build CDBS(Q1), the canonical database set for the query Q1.

2. Apply Q1 and Q2 to all canonical databases d ∈ CDBS(Q1).

3. Test if ∀d ∈ CDBS(Q1), Q1(d) ⊆ Q2(D).

These three steps are the same for the 4 cases of conjunctive query con-
tainment covered by this Thesis (under set or bag semantics, for equality or
inequality queries), but there will be some particularization for each specific
case.

Given that the first step is to build CDBS(Q1), we shall begin describing
the canonical database set for a query Q1.

The idea under canonical databases [BH97] is to capture all the assign-
ment mappings that can be applied from a query Q to any database in
order to obtain a new fact. The Canonical Database Set for a query Q
(CDBS(Q)) is a finite set of databases with uninterpreted constants in its
facts. It captures all the patterns of equalities and inequalities among the
constants of a database D where the variables of Q are mapped when Q is
applied to D.

29

30

The algorithm that builds CDBS(Q) can be conceptually divided into
two steps. The first step, which is common for the 4 classes of conjunc-
tive query containment covered in this Thesis, is to build the canonical
databases. These canonical databases are adapted in the second step, so
they are suitable to test a specific type of conjunctive query containment.
This particularization is made by adding some constraints to the canonical
databases (for the containment of inequality queries) or assigning a symbolic
multiplicity to the facts in the databases (if the underlying semantics is bag
theoretic).

The common part of the algorithm is described in this chapter, and the
particularization needed by each type of containment will be described in
chapters 5, 6, 8, and 9, where the different types of the containment problem
are described. The last part of this chapter describes the 3 steps of QCC.

3.2 Preliminary definitions

Let Q be a conjunctive query of the form

Q : q(~X) :- p1(~Y1), . . . , pl(~Yl), K1, . . . , Kn.

Note that Q has built-in predicates, that is, Q is an inequality query. We
shall use this form of conjunctive query to describe the following concepts
because it is more general, since an equality query is just an inequality query
without built-in predicates.

Using the predicates in the body of Q, the following concepts are defined:

• db(Q): is the set of ordinary predicates in the body of Q.

db(Q) = {pi(~V) | pi(~V) is an ordinary predicate in the body of Q}
Recall that an ordinary predicate is defined over an EDB predicate.
Built-in predicates are not included in db(Q).

• VQ: is an ordering 〈V1, · · · , Vq〉 of the set of all the variables that appear
in the predicates in db(Q).

• AQ: is a set of q new, different uninterpreted constants, q being the
cardinality of VQ.

AQ = {A1, . . . , Aq | ∀i, j, (1 ≤ i 6= j ≤ q) Ai 6= Aj}

• Q-mapping: A Q-mapping θi from VQ to AQ is a q-tuple θi =
(Ai1 , ..., Aiq), where Aij ∈ AQ and 1 ≤ i1, i2, ..., iq ≤ q. It represents
the mapping θi(V1) = Ai1 , ..., θi(Vq) = Aiq .

31

A Q-mapping can be applied to a predicate in the body of Q: let θ
be a Q-mapping, and let pi(Y1, ..., Yri) be a predicate in Q. We define
the application of θ to pi(Y1, ..., Yri) as the fact pi(θ(Y1), ..., θ(Yri)).

• Isomorphic Q-mappings: Two Q-mappings θi = (Ai1 , ..., Aiq) and
θj = (Aj1 , ..., Ajq) are isomorphic if there are two mappings γ1

and γ2 (from AQ to AQ) such that (γ1(Ai1), ..., γ1(Aiq)) = θj , and
(γ2(Aj1), ..., γ2(Ajq)) = θi. In other words, two Q-mappings are iso-
morphic if the q-tuples that represent them are identical after a con-
sistent renaming of their uninterpreted constants. Isomorphic Q-
mappings are used to define a minimal number of canonical databases.

• Canonical database di = θi(db(Q)): It is the application of the Q-
mapping θi to the set of ordinary predicates in the body of Q, that
is,

di = θi(db(Q)) = {pk(θi(Y1), ..., θi(Yrk
)) | pk(Y1, ..., Yrk

) ∈ db(Q)}

di is a database with uninterpreted constants, which represents a pat-
tern of equalities and inequalities among the variables of the query that
are mapped to these uninterpreted constants. All the uninterpreted
constants must be different (Aj 6= Ak,∀j, k 1 ≤ j 6= k ≤ q)).

Each of these canonical databases will be adapted to test a specific
type of conjunctive query containment.

• Canonical fact tdi:

Let Q be the query q(~X) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn, and di be
the canonical database obtained by applying the Q-mapping θi to
db(Q). Then, the canonical fact tdi is the fact θi(q(~X)).

The following example illustrates these definitions.

Example 3.1 Let us consider the following query Q:

Q : q(X,Y, Z) :- r(X, U), r(U,Z), p(U, Y).

For this query,

• db(Q) = {r(X, U), r(U,Z), p(U, Y)}.
• VQ = 〈X, Y, Z, U〉 is an ordering of its variables.

• AQ = {A1, A2, A3, A4} is a set of 4 new, different uninterpreted con-
stants.

32

Let θ1 be the Q-mapping (A4, A3, A3, A4); θ1 denotes the mapping
θ1(X) = θ1(U) = A4 and θ1(Y) = θ1(Z) = A3. Applying the mapping
θ1 to db(Q), we obtain the canonical database

θ1(db(Q)) = {r(A4, A4), r(A4, A3), p(A4, A3)}
Another Q-mapping, which is isomorphic to θ1, is θ2 = (A1, A2, A2, A1).
The canonical fact that corresponds to the Q-mapping θ1 is td1 =

q(A4, A3, A3). ut

3.3 Building the canonical database set for a query

This section offers an algorithm to build all the non isomorphic canonical
databases di for a conjunctive query Q1. However, before formally describing
the algorithm, let us show how it works through an example.

Example 3.2 Let the query Q1 be q(X,Y, Z) : − r(X, U), r(U,Z), p(U, Y).
The letters A,B, C,D (which represent uninterpreted constants) will be used
to identify the values to which the variables in Q1 could be mapped. That
is, AQ = 〈A, B,C, D〉.

There are 4 variables in the body of Q1, which will be mapped to 4
uninterpreted constants. Therefore, there are 44 = 256 possible mappings.
For example, all the variables can be mapped to A, all of them mapped to
B, three of them mapped to A and one to B, and so on.

However, using all the possible mappings is redundant. For example, all
the variables mapped to A or mapped to B represent the same pattern of
equalities, thus only one of them is needed.

The following cases list all the different patterns of equalities among
the variables in the body of Q1 when they are mapped to 4 uninterpreted
constants.

Case 1: Each variable in Q1 is mapped to a different value. Then the
canonical database θ1(db(Q1)) shown on Table 3.1 is generated.

Table 3.1: Canonical databases generated for case 1
NAME θi(db(Q1)) MAPPING tdi

r p q

θ1 (A, D) (D, B) θ1(X) = A; θ1(Y) = B; ABC
(D, C) θ1(Z) = C; θ1(U) = D

33

Case 2: Three variables are mapped to the same value, the other one is
mapped to a different value. Table 3.2 shows the 4 canonical databases
for this case.

Table 3.2: Canonical databases generated for case 2
NAME θi(db(Q1)) MAPPING tdi

r p q

θ2 (A,B) (B,A) θ2(X) = θ2(Y) = θ2(Z) = A; θ2(U) = B AAA
(B,A)

θ3 (A,A) (A,A) θ3(X) = θ3(Y) = θ3(U) = A; θ3(Z) = B AAB
(A,B)

θ4 (A, A) (A, B) θ4(X) = θ4(Z) = θ4(U) = A; θ4(Y) = B ABA

θ5 (B, A) (A, A) θ5(Y) = θ5(Z) = θ5(U) = A; θ5(X) = B BAA
(A, A)

Case 3: Two variables are mapped to the same value and the other two
are mapped to another value. For this case, 3 canonical databases are
generated, as shown in Table 3.3.

Table 3.3: Canonical databases generated for case 3
NAME θi(db(Q1)) MAPPING td

r p q

θ6 (A,B) (B,A) θ6(X) = θ6(Y) = A; θ6(Z) = θ6(U) = B AAB
(B,B)

θ7 (A, B) (B, B) θ7(X) = θ7(Z) = A; θ7(Y) = θ7(U) = B ABA
(B, A)

θ8 (A, A) (A, B) θ8(X) = θ8(U) = A; θ8(Y) = θ8(Z) = B ABB
(A, B)

Case 4: Two variables are mapped to the same value and the other two
are mapped to different values, producing the 6 canonical databases
shown in Table 3.4.

Case 5: The four variables are mapped to the same value. Only one canon-
ical database, shown in Table 3.5, is generated in this case.

We have generated 15 canonical databases for Q1. Notice that not all
the possible Q-mappings are required. For example, the Q-mapping of X
and Y to B and U and Z to D would produce a database that has the same

34

Table 3.4: Canonical databases generated for case 4
NAME θi(db(Q1)) MAPPING tdi

r p q

θ9 (A,C) (C,A) θ9(X) = θ9(Y) = A; AAB
(C,B) θ9(Z) = B; θ9(U) = C

θ10 (A, C) (C, B) θ10(X) = θ10(Z) = A; ABA
(C, A) θ10(Y) = B; θ10(U) = C

θ11 (A, A) (A, B) θ11(X) = θ11(U) = A; ABC
(A, C) θ11(Y) = B; θ11(Z) = C

θ12 (B, C) (C, A) θ12(Y) = θ12(Z) = A; BAA
(C, A) θ12(X) = B; θ12(U) = C

θ13 (B, A) (A, A) θ13(Y) = θ13(U) = A; BAC
(A, C) θ13(X) = B; θ13(Z) = C

θ14 (B, A) (A, C) θ14(Z) = θ14(U) = A; BCA
(A, A) θ14(X) = B; θ14(Y) = C

Table 3.5: Canonical databases generated for case 5
NAME θi(db(Q1)) MAPPING td

r p q

θ15 (A,A) (A,A) θ15(X) = θ15(U) = θ15(Y) = θ15(Z) = A AAA

pattern of equalities as θ6(db(Q1)) (it would be isomorphic to θ6(db(Q1))).
With four variables there are 256 different possible canonical databases, but
there are only 15 different (non isomorphic) ones. In [Bri97], the reader
can find a procedure to compute the number of databases (the number of
non isomorphic Q-mappings) in terms of the number of variables in the
conjunctive query. ut

3.4 Algorithm to build CDBS(Q)

The following algorithm builds the set of canonical databases for a conjunc-
tive query Q. This algorithm generates all the non isomorphic Q-mappings,
which will be used to build all the canonical databases di in CDBS(Q1).
Since the canonical databases must be adapted to test each type of contain-
ment, the last part of the algorithm is a call to another algorithm, which
will be described in the corresponding chapter.

The set of all non isomorphic canonical databases that can be built from
a query Q is denoted CDBS(Q) (canonical database set of Q):

35

CDBS(Q) = {θ1(db(Q)), . . . , θx(db(Q))}
where x is the number of nonisomorphic Q-mappings that can be generated
from the body of Q.

Algorithm 2 Algorithm to build CDBS(Q).
Input: Q = q(~X) : −p1(~Y1), ..., pl(~Yl), K1, . . . , Kn.
Output: CDBS(Q)
Method:

1. Initialization.

Let db(Q) = {p1(~Y1), ..., pl(~Yl)};
Let VQ = 〈V1, ..., Vq〉 be an ordering of all the variables that appear in db(Q);

Let AQ = {A1, ..., Aq} be q new, distinct (uninterpreted) constants
(Ai 6= Aj , if i 6= j, 1 ≤ i, j ≤ q);

Let j = 1;

Let Mappings = ∅;
2. Definition of Q-mappings.

for i1 = 1 to q
for i2 = 1 to q

...
for iq = 1 to q {

θj = (Ai1 , Ai2 , ..., Aiq);
if (there is no Q-mapping in Mappings that is isomorphic to θj){

Mappings = Mappings ∪ {θj};
j = j + 1;

}
}

3. Generation of CDBS(Q)
for i = 1 to j − 1

Generate θi(db(Q))
//CDBS(Q) = {θ1(db(Q)), . . . , θj−1(db(Q))}

4. Call the algorithm to adapt CDBS(Q) for each type of containment.

(This step is shown individually for each type of containment)

ut

3.5 Interest of canonical databases

The use of canonical databases in the query containment problem offers an
important advantage: it reduces the problem of checking the containment
over the infinite possible number of ground databases from which Q1 and Q2

can derive new facts to check it over a finite (usually small) set of databases,
the canonical databases.

36

QCC is based on the use of canonical databases due to a fundamental
property of CDBS(Q1): the set (or bag) of facts of a database D reached by
an assignment mapping from Q1 to D (used to derive a new fact) is always
isomorphic to some canonical database di in CDBS(Q1). This will be proven
for each type of conjunctive query containment, because canonical databases
will be different and the isomorphism must consider different properties of
the canonical databases for each specific case (multiplicities in the facts
and/or constraints in the databases). We shall prove it for each type of
conjunctive query containment, but all the proofs take advantage of the
way the canonical databases are built. Given that CDBS(Q1) covers all the
possible patterns of equalities among uninterpreted constants, the subset of
D where the atoms in Q1 are mapped by an assignment mapping from Q1

to D will be isomorphic to a canonical database. The following lemma offers
a preliminary proof of this fact.

Lemma 3.1 Let Q1 be the conjunctive query

q(~W) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn.

Let τ be an assignment mapping from Q1 to a database D. Let sd =
{τ(p1(~Y1)), · · · , τ(pl(~Yl))}; i.e., sd is the subset of D on which τ maps the
ordinary predicates of Q1. Then sd is isomorphic to a canonical database
d ∈ CDBS(Q1).
Proof:

The set sd is the subset of D obtained by applying τ to the body of Q1.
Note that every canonical database d is obtained by using a mapping from
db(Q1), which is isomorphic to the body of Q1, to a set of uninterpreted
constants AQ.

Assume that τ maps every variable of Q1 to the same constant a in
sd. By construction of CDBS(Q1), there exists a canonical database, say
d1 = θ1(db(Q1)), where the Q-mapping θ1 maps every variable of Q to the
same uninterpreted constant, A ∈ AQ. It is obvious that sd and d1 are
isomorphic, because if, in every fact pi(A, . . . , A) of d1, we replace A by a,
sd and d1 are identical.

Now, assume that τ maps all variables of Q1 to the constant a, except
one, which is mapped to a different constant b. As in the previous case,
there exists a canonical database built using a Q-mapping with the same
pattern of equalities among the uninterpreted constants. Therefore, there
will be a canonical database, say d2, which is isomorphic to sd for this case.

The same method of reasoning can be used to cover all possible patterns
of equalities among the constants in sd to which the variables of Q1 are

37

mapped. By construction of CDBS(Q1), the equalities among the uninter-
preted constants in the facts of the canonical databases cover all the possible
patterns of equalities among the variables of Q1 when they are mapped to
any ground database D. Therefore, there exists always a canonical database
di isomorphic to sd. ut

3.6 General procedure to test query containment

QCC, the general procedure to test whether a conjunctive query Q1 is con-
tained in a conjunctive query Q2 consists of the following three steps.

Step 1: Build CDBS(Q1), the set of canonical databases for the query Q1.

CDBS(Q1) is built using Algorithm 2. The last step of this algorithm
is the adaptation of the canonical databases to check each specific
case of query containment. For example, CDBS(Q1) must include
multiplicities in the facts to check bag containment of equality queries,
or constraints to check set and bag containment of inequality queries.

Step 2: Apply Q1 and Q2 to all canonical databases d ∈ CDBS(Q1) in
order to derive the canonical fact td.

The application of both queries intend to derive only the canonical
fact td. Besides, all the mappings from either Q1 or Q2 that derive
td will be considered. However, under set semantics we only need to
apply Q2 to the databases since, as we will see, by construction of
CDBS(Q1), Q1 always obtains the canonical fact.

Step 3: Check the containment.

The query containment holds (i.e., Q1 ≤ Q2) if and only if Q2 obtains
the canonical fact td from all d in CDBS(Q1). Under bag semantics,
Q2 must obtain it with at least the same multiplicity as Q1.

The main advantage that QCC is that these three steps are the same for
different kinds of containment, such as equality and inequality queries under
set or bag semantics. There will be, of course, some adaptations for each
specific case, but conceptually every step of the procedure does the same in
all cases.

Therefore, QCC is a general procedure to test the conjunctive query
containment. This is the major contribution of this Thesis.

38

3.7 Summary

This chapter has shown one of the main contribution of this Thesis, the
QCC procedure. QCC is a procedure that consits on three steps, and it
can be used to test set or bag containment of equality as well as inequality
queries.

The first step of this procedure, the construction of CDBS(Q1), has
been shown in more detail, specifying an algorithm (adapted from [Bri97])
that builds the initial set of canonical databases that will be used in the next
steps to test the containmet. The adaptation of the canonical databases in
CDBS(Q1) to test each specific case of query containment will be described
in the corresponding chapter.

Chapter 4

Previous work about set
containment of conjunctive
queries

4.1 Introduction

This chapter presents the work that has been done in the field of set con-
tainment of equality and inequality conjunctive queries.

The set containment of equality queries was fully solved by Chandra and
Merlin [CM77], using the concept of containment mapping. However, the
set containment of inequality queries was not fully solved. There has been
extensive work on it (see [Klu88, Ull89, vdM97, IS97]), but the proofs given
by these authors either lack a procedure or are applicable only when the
underlying domain is dense.

4.2 Set containment of equality queries

We shall use the following general form to represent two equality queries Q1

and Q2:

Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl).

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk).

The definitive contribution to the containment problem for equality
queries under set semantics was made by Chandra and Merlin [CM77]. They
used the concept of containment mapping to prove the query containment.

39

40

A containment mapping γ from a query Q2 to a query Q1, as defined in
[CM77], is a mapping from the symbols of Q2 to those of Q1 such that:

• The mapping γ is the identity for constants and predicate names.

• It must map the head of Q2 to the head of Q1: γ(q(~V)) = q(~W).

• Every atom in the body of Q2 must be mapped to an atom in the body
of Q1: ∀i ∃j (1 ≤ i ≤ k, 1 ≤ j ≤ l) γ(pi(~Zi)) = pj(~Yj). Note that it is
not necessary that every atom of Q1 is reached by an atom in Q2.

The following theorem [CM77] states a necessary and sufficient condition
for the containment of equality queries.

Theorem 4.1 Let Q1 and Q2 be two equality queries. Then, Q1 ≤s Q2 if
and only if there exists a containment mapping γ from Q2 to Q1:

Q1 ≤s Q2 ⇐⇒ ∃γ, γ is a containment mapping Q2 → Q1

Proof: (adapted from [Bri97])

If: Assume there is a containment mapping γ from Q2 to Q1, and consider
any arbitrary ground database D. Q1 derives a fact t from D if and
only if there exists an assignment mapping τ from Q1 to D that maps
every predicate in the body of Q1 to a fact in D. That is, every
τ(pi(~Yi)) is a fact in D, and t = τ(q(~W)).

Now, consider the consecutive application of γ and τ to Q2. Applying
them to the head of Q2, we obtain τ(γ(q(~V))) = τ(q(~W)) = t.

The application of τ ◦ γ to every predicate in the body of Q2 is always
possible, since γ(pi(~Zi)) = pj(~Yj), for some j (1 ≤ j ≤ l). Then,
τ(γ(pi(~Zi))) = τ(pj(~Yj)), which is a fact in D. Therefore, every fact t
derived by Q1 using the assignment mapping τ is also derived by Q2,
using the assignment mapping τ ◦ γ. Thus, Q1 ≤s Q2.

Only If: Assume Q1 ≤s Q2. We want to prove that there is a containment
mapping γ from Q2 to Q1.

Let us build a ground database D, defining an assignment mapping τ
that maps every atom in the body of Q1 to a different fact in D. That
is,

τ(p1(~Y1)), . . . , τ(pl(~Yl)) ∈ D

41

Q1 obtains the fact t = τ(q(~W)) from D. Since Q1 ≤s Q2, Q2 also
obtains the same fact. Let λ be the assignment mapping from Q2 to
D that obtains it:

λ(q(~V)) = t = τ(q(~W))

Likewise, every predicate in the body of Q2 must be mapped to a fact
in D by the assignment mapping λ:

∀i (1 ≤ i ≤ k) ∃j (1 ≤ j ≤ l), λ(pi(~Zi)) = τ(pj(~Yj))

It is clear that applying λ to the atoms of Q2 followed by the appli-
cation of the inverse function of the assignment mapping τ (denoted
τ−1), we obtain the atoms of Q1. Therefore, the containment mapping
γ from Q2 to Q1 we are looking for is

γ = τ−1 ◦ λ.
ut

With this result, the set containment of equality queries was fully solved.
More information can be found in [CM77] and [Ull82].

4.3 Set containment of inequality queries

The following theorem [Ull89] provides one of the first results in set contain-
ment of inequality queries, giving a sufficient condition for it.

Theorem 4.2 Let Q1 and Q2 be the following queries:

Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl), K1, . . . , Kn.

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk), F1, . . . , Fm.

where Ki’s and Fi’s are built-in predicates, i.e., inequalities.
Then, Q1 ≤s Q2 if there is a containment mapping γ from Q2 to Q1

such that:

1. γ(q(~V)) = q(~W), that is, the head of Q2 is mapped to the head of Q1.

2. ∀i, 1 ≤ i ≤ k, ∃b, 1 ≤ b ≤ l such that γ(pi(~Zi)) = pb(~Yb), i.e., every
ordinary subgoal of Q2 is mapped to an ordinary subgoal of Q1.

3. Every built-in predicate of Q2, once γ is applied (i.e., every γ(Fi)) is
implied by the built-in predicates of Q1 (the Ki’s).

42

Proof:
The proof for this theorem is very similar to that of Theorem 4.1, but

in this case the built-in predicates must be considered.
Assume there is such a containment mapping γ from Q2 to Q1. Consider

an arbitrary ground database D from which Q1 derives a fact t using an
assignment mapping τ . That is, every τ(pi(~Yi)) is a fact in D, and t =
τ(q(~W)).

Now, consider the consecutive application of γ and τ to Q2. Applying
them to the head of Q2, we obtain τ(γ(q(~V))) = τ(q(~W)) = t.

The application of τ ◦ γ to every predicate in the body of Q2 is al-
ways possible, since γ(pi(~Zi)) = pj(~Yj), for some j (1 ≤ j ≤ l). Then,
τ(γ(pi(~Zi))) = τ(pj(~Yj)), which is a fact in D. The built-in predicates of Q2

will hold (every γ(Fi)), because they are implied by the built-in predicates
of Q1, which must be true in order to apply the assignment mapping that
derives t. Therefore, every fact t derived by Q1 using the assignment map-
ping τ is also derived by Q2, using the assignment mapping τ ◦ γ. Thus,
Q1 ≤s Q2. ut

Klug [Klu88] also sketches a proof for this theorem and shows that the
existence of this containment mapping provides a necessary and sufficient
condition for the set containment of a subclass of queries: left semiinterval
queries and right semiinterval queries. Left semiinterval queries only admit
inequalities of the form Xθc, where X is a variable, c is a constant, and θ is
one of ≤, < or =. Right semiinterval queries only admit inequalities of the
form cθX, being X, c and θ defined as above.

Besides, Klug gives a theorem [Klu88] that provides a necessary and
sufficient condition to check whether, given two inequality queries Q1 and Q2

whose variables range over any dense and totally ordered domain, Q1≤sQ2

holds. However, Klug stated in his paper that most of his results (including
this theorem) do not hold for nondense domains like the integers.

Ron van der Meyden [vdM97] studied the problem of querying indefinite
data over linear ordered domains. He demonstrated that one of the prob-
lems he dealt with was equivalent to the set containment of queries with
inequalities, showing that it was decidable and Πp

2-complete.
Using a different technique, based on counter machines, Ibarra and Su

[IS97] show that the containment/equivalence problem is decidable for linear
constraint queries (having an exponential time lower bound and an expo-
nential space upper bound), but no effective procedure to test it is given.

43

In [BHPP98], we used canonical databases to sketch a necessary and
sufficient condition and a procedure to test set containment of inequality
queries. This was a preliminary work in the direction of the QCC procedure
presented in this Thesis (Chapter 6).

4.4 Summary

This chapter showed the work that has been done about the set containment
of equality and inequality conjunctive queries. Our contributions will be
shown in chapters 5, for the set containment of equality queries, and 6, for
the set containment of inequality queries.

44

Chapter 5

Applying QCC to test set
containment of equality
queries

Although this problem has already been solved by Chandra and Merlin
[CM77], we show that QCC also works for this case. In fact, since an
equality query is just an inequality query without any built-in predicate,
the procedure shown later in Chapter 6 should also work for this particular
case.

Let Q1 and Q2 be two equality queries under set semantics. The proce-
dure to test if Q1 ≤s Q2 is the following.

Step 1: Build CDBS(Q1).

For this particular case, canonical databases are built as shown in
Algorithm 2 and do not need any further transformation. There is
no need to add constraints, because the queries do not have built-in
predicates, and the facts do not have symbolic multiplicities because
the underlying semantics is set theoretic. Therefore, step (4) of Algo-
rithm 2 can be omitted.

Step 2: Apply Q1 and Q2 to every d ∈ CDBS(Q1) in order to obtain the
canonical fact.

There is no real need to apply Q1 to each canonical database be-
cause, by the way they were built, we already know that Q1 obtains
the canonical fact, using an assignment mapping isomorphic to the re-
spective Q-mapping. Then, we only try to find an assignment mapping
from Q2 to every canonical database to derive the canonical fact.

45

46

Step 3: Test the containment. If Q2 obtains the canonical fact from every
canonical database d ∈ CDBS(Q1), then Q1 ≤s Q2, else the contain-
ment does not hold.

Example 5.1 Let Q1 and Q2 be the following equality queries:

Q1 : q(X) :- p(X,Y), p(Y, X).

Q2 : q(U) :- p(U, V).

It is obvious that Q1 is set contained in Q2, because Q2 is more restric-
tive than Q1. Using the results from [CM77], we can see that there is a
containment mapping γ from Q2 to Q1 (γ(U) = X; γ(V) = Y). The pres-
ence of a containment mapping is the unique condition needed to prove the
set containment of equality queries, therefore Q1 ≤s Q2.

Set containment can also be proven by the use of QCC. The follow-
ing table shows the two canonical databases in CDBS(Q1) and the assign-
ment mappings from Q2 that obtain the canonical facts from each canonical
database. Q2 obtains the canonical fact from all the canonical databases,

Table 5.1: Applying Q2 to every canonical database

Name Q-mapping CDB tdi Assignment mapping from Q2 to obtain tdi

X Y p q

d1 A A AA A τ1(U) = τ1(V) = A

d2 A B AB A τ2(U) = A; τ2(V) = B
BA

using the assignment mappings shown in Table 5.1. Therefore, Q1 ≤s Q2.
ut

We leave the use of QCC to test set containment of equality queries
without the proof of its correctness because it is a particular case of the
set containment of inequality queries, shown in Chapter 6. However, the
use of QCC for this case is very similar to the theorem offered by Chandra
and Merlin [CM77]. Observe that the canonical database di built using a Q-
mapping that maps every variable of Q1 to a different uninterpreted constant
(d2 in the previous example) is isomorphic to the body of Q1. Thus, finding
an assignment mapping from Q2 to such di (that is, applying Q2 to di) is
exactly the same problem as finding a containment mapping from Q2 to Q1,
which is the only needed condition to test the set containment of equality

47

queries shown in [CM77]. Therefore, for this case of containment, there is
no need to apply Q2 to every di ∈ CDBS(Q1), but only to the canonical
database built using the Q-mapping that maps every variable in the body
of Q1 to a different uninterpreted constant.

48

Chapter 6

Applying QCC to test set
containment of inequality
queries

In this chapter, the inequality queries Q1 and Q2 will be represented as
Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl), K1, . . . , Kn.

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk), F1, . . . , Fm.

where the pi’s are ordinary predicates, and Ki’s and Fi’s are built-in predi-
cates.

The three steps of QCC to check set containment of inequality queries
are the following.

6.1 Step 1: Build CDBS(Q1)

Let Q1 be an inequality query, and D a ground database. In order for Q1

to obtain a fact from D, there must exist (at least) one assignment mapping
τ from Q1 to D such that the constants in the tuples of D reached by the
variables in the body of Q1 using τ satisfy the constraints expressed by the
built-in predicates of Q1.

Given that canonical databases are used to test the query containment,
we are interested in those canonical databases from which Q1 derives the
canonical fact (if Q1 does not obtain it, the fact that Q2 derives it or not
is irrelevant for the containment). Therefore, the canonical databases used
to test set containment of inequality queries will have associated some con-
straints that ensure that Q1 will obtain the canonical fact from them. This

49

50

constraints will be denoted constraints(d) for any canonical database set,
and are composed of two sets of constraints:

1. All uninterpreted constants must represent different values for con-
stants. Therefore, ∀i, j (1 ≤ i 6= j ≤ q) Ai 6= Aj . (q is the cardinality
of VQ, i.e., the number of variables in Q1). This has already been
defined in Algorithm 2, before adapting canonical databases for each
type of containment.

2. The second set of constraints is built by applying the Q-mapping θi

used to build the canonical database di = θi(db(Q1)) to the built-in
predicates, (θi(K1) ∧ · · · ∧ θi(Kn)). This set of constraints reflects the
built-in predicates in the body of Q1.

If a canonical database di does not satisfy constraints(di), it will not be
used to test the set containment, because it is not possible to build a ground
database isomorphic to it from which Q1 obtains the canonical fact.

Therefore, the step (4) of Algorithm 2 is the following.

//Q−DBS = {θ1(db(Q1)), . . . , θj−1(db(Q1))}
4. Generation of canonical databases

For i = 1 to j − 1
constraints(di) = (∀k, l (1 ≤ k 6= l ≤ q) Ak 6= Al) ∧

(θi(K1) ∧ · · · ∧ θi(Kn))
if constraints(di) is satisfiable

then {
di = θi(db(Q1))}
}
else di = ∅ //Discard di

Return CDBS(Q1) = {d1, . . . , dj−1} ut
Example 6.1 Let Q1 be the query

Q1 : q(X, Y, Z) :- r(X, U), r(U,Z), p(U, Y), X > Y.

Table 6.1 shows the canonical database set for this query. The column
θi(db(Q1)) shows the facts in the canonical database, and constraints(di)
represents the constraints associated to this database. If constraints(di) is
not satisfiable, the canonical database will not be considered.

Q1 has 4 variables, therefore there are 15 possible nonisomorphic canon-
ical databases for Q1. However, not all of them are consistent with their
constraints. The canonical databases d2, d3, d6, d9, and d15 are not consis-
tent and will no longer be used, because it is not possible to build a ground
database isomorphic to any of them. ut

51

Table 6.1: (Example 6.1) CDBS(Q1)
di θi(db(Q1)) Q-Mapping td constraints(di)

r p X Y Z U q

d1 (A, D) (D, B) A B C D (A, B, C) A > B ∧
(D, C) A 6= B∧ A 6= C∧ A 6= D∧

B 6= C∧ B 6= D∧ C 6= D

d2 (A,B) (B,A) A A A B (A, A, A) A > A ∧A 6= B
(B,A) constraints(d2) is unsatisfiable

d3 (A,A) (A,A) A A B A (A, A, B) A > A ∧A 6= B
(A,B) constraints(d3) is unsatisfiable

d4 (A, A) (A, B) A B A A (A, B, A) A > B ∧A 6= B

d5 (B, A) (A, A) B A A A (B, A, A) B > A ∧A 6= B
(A, A)

d6 (A,B) (B,A) A A B B (A, A, B) A > A ∧A 6= B
(B,B) constraints(d6) is unsatisfiable

d7 (A, B) (B, B) A B A B (A, B, A) A > B ∧A 6= B
(B, A)

d8 (A, A) (A, B) A B B A (A, B, B) A > B ∧A 6= B
(A, B)

d9 (A,C) (C,A) A A B C (A, A, B) A > A ∧
(C,B) A 6= B ∧A 6= C ∧B 6= C

constraints(d9) is unsatisfiable

d10 (A, C) (C, B) A B A C (A, B, A) A > B ∧
(C, A) A 6= B ∧A 6= C ∧B 6= C

d11 (A, A) (A, B) A B C A (A, B, C) A > B ∧
(A, C) A 6= B ∧A 6= C ∧B 6= C

d12 (B, C) (C, A) B A A C (B, A, A) B > A ∧
(C, A) A 6= B ∧A 6= C ∧B 6= C

d13 (B, A) (A, A) B A C A (B, A, C) B > A ∧
(A, C) A 6= B ∧A 6= C ∧B 6= C

d14 (B, A) (A, C) B C A A (B, C, A) B > C ∧
(A, A) A 6= B ∧A 6= C ∧B 6= C

d15 (A,A) (A,A) A A A A (A, A, A) A > A
constraints(d15) is unsatisfiable

6.2 Step 2: Apply Q1 and Q2 to all canonical
databases

This step applies Q1 and Q2 to all canonical databases trying to derive the
canonical fact td. By adding constraints(d) to every canonical database d,
we ensure that Q1 always obtains td, therefore there is no need to apply Q1

to each d ∈ CDBS(Q1). However, it is necessary to define how to apply Q2

52

to a canonical database and how to know if Q2 obtains the canonical fact.
The following definition and lemma show how to do it.

Definition 6.1 td ∈ Q2(d):
Let d be a database in CDBS(Q1), and let td be the corresponding

canonical fact. We say that td ∈ Q2(d) if for all ground substitutions α,
defined on the variables in d, α(td) ∈ Q2(α(d)).

Lemma 6.1 Let Q1 and Q2 of the form

Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn.

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk), F1, . . . , Fm.

where Ki’s and Fi’s are the built-in predicates. Let d ∈ CDBS(Q1).
Then td ∈ Q2(d) if and only if the following two conditions hold:

1. There are assignment mappings τ1, . . . , τs (s ≥ 1) from the ordinary
predicates of Q2 to d such that τ1(q(~V)) = · · · = τs(q(~V)) = td, and

2. The formula F = constraints(d) ∧ ¬(τ1(F1) ∧ · · · ∧ τ1(Fm)) ∧ · · · ∧
¬(τs(F1) ∧ · · · ∧ τs(Fm)) is not satisfiable.

Proof:
Before giving the formal proof, let us sketch it in an intuitive manner.

The formula associated to each canonical database d has two parts: (1)
constraints(d), which is satisfiable (if it was unsatisfiable, the canonical
database would not be considered); and (2) A conjunction of negated sub-
formulas, each of which is the application of an assignment mapping (from
Q2 to d) to the built-in predicates in Q2. All assignment mappings from Q2

to d are included in this conjunction.
Given that constraints(d) must hold, the unsatisfiability of the formula

F indicates that the second part of the formula cannot be true. This means
that at least one of the elements of this part is false. Each of these elements
is the negation of the application of an assignment mapping τi from Q2 to
d, and without the negation it would be true. Therefore, there is always an
assignment mapping from Q2 to d that can be applied, so Q2 obtains td.

Only if: Condition 1 must be true, otherwise td cannot be in Q2(d). Now
by contradiction we prove that condition 2 is also necessary to obtain
td ∈ Q2(d).

Consider all the assignment mappings from Q2 to d. Suppose that F
is satisfiable. Then there is a ground substitution α for the variables

53

of F that makes the formula F true. Since F is a conjunction of
constraints, every individual constraint must be true in order for F to
become true.

Focusing on the second part of the formula, for the mentioned ground
substitution α, every element ¬α(τj(F1)∧· · ·∧τj(Fm)) is true. There-
fore, for all j, 1 ≤ j ≤ s, α(τj(F1) ∧ · · · ∧ τj(Fm)) is false.

Using the constants in the substitution, we can define a ground
database α(d) such that none of the assignment mappings from Q2

can be applied, because the application of the assignment mapping to
the built-in predicates of Q2 does not hold. Thus, α(td) 6∈ Q2(α(d)).
and, by Definition 6.1, td 6∈ Q2(d). Therefore, F must be unsatisfiable
in order to get td ∈ Q2(d).

If: Assume conditions 1 and 2 hold. By condition 2, F is not satisfiable.
Since F is not satisfiable, and constraints(d) must hold, there must
be some element ¬(τi(F1) ∧ · · · ∧ τi(Fm)) (1 ≤ i ≤ s) that is false for
any ground substitution α.

That is, for all α there exists an i (1 ≤ i ≤ s) such that α(¬(τi(F1) ∧
· · · ∧ τi(Fm))) is false. Therefore, α(τi(F1) ∧ · · · ∧ τi(Fm)) is true.

That means that, for any ground substitution α, there exists an as-
signment mapping τi from Q2 to d that satisfies the built-in predicates
in Q2, so Q2 obtains the canonical fact. Then, for any ground sub-
stitution α, α(td) ∈ Q2(α(d)), which (by Definition 6.1) means that
td ∈ Q2(d).

ut
The following example illustrates the test of membership of a tuple in

Q2(D).

Example 6.2 Let Q1 and Q2 be the following queries:

Q1 : q(X, Y) :- r(X, Y), p(U, V), p(V,U), X > Y.

Q2 : q(X, Y) :- r(X, Y), p(U, V), U ≤ V.

One of the canonical databases di that we can build from Q1 is the following,
where A, B, C, and D denote uninterpreted constants:

CDB tdi constraints(di)
r p q

A B C D A B (A 6= B) ∧ (A 6= C) ∧ (A 6= D) ∧ (B 6= C)∧
D C (B 6= D) ∧ (C 6= D) ∧ (A > B)

54

There are two ways to map the ordinary subgoals of Q2 to d in a way to
obtain the canonical fact q(A,B). These are

τ1(X) = A; τ1(Y) = B; τ1(U) = C; τ1(V) = D

τ2(X) = A; τ2(Y) = B; τ2(U) = D; τ2(V) = C

Then we use both mappings to test whether q(A,B) belongs to Q2(d), check-
ing if the following formula is not satisfiable:

constraints(d) ∧ ¬(τ1(U ≤ V)) ∧ ¬(τ2(U ≤ V))

There is a procedure in Section 6.5 to check the satisfiability of this kind of
formulas. However, for this example, due to the simplicity of the formula,
this check can be done directly. The above formula is not satisfiable, since

constraints(d) ∧ ¬(τ1(U ≤ V)) ∧ ¬(τ2(U ≤ V))

≡
constraints(d) ∧ ¬(C ≤ D) ∧ ¬(D ≤ C)

≡
constraints(d) ∧ (C > D) ∧ (D > C)

≡
unsatisfiable

The unsatisfiability of the formula means that, for any ground substitution
α, Q2 always obtains α(tdi

) from α(di), because either C ≤ D or D ≤ C is
true. That makes possible to apply at least one of the assignment mappings
from Q2 to d, satisfying the built-in predicates in Q2. Therefore, q(A,B) ∈
Q2(d). ut

6.3 Step 3: Test the set containment

In the previous step we showed how to check if the canonical fact td belongs
to Q2(d) for any canonical database d ∈ CDBS(Q1).

If for all canonical databases d ∈ CDBS(Q1), td ∈ Q2(d), then Q1 ≤s

Q2, otherwise the containment does not hold:

Q1 ≤s Q2 ⇐⇒ ∀d ∈ CDBS(Q1), td ∈ Q2(d)

Section 6.6 shows several examples that illustrate how to use QCC to
test the set containment of inequality queries.

55

6.4 Validation of QCC for the set containment of
inequality queries

The following lemma proves that the application of an assignment mapping
from an inequality query Q1 to any ground database D is isomorphic to some
canonical database di ∈ CDBS(Q1). Then, the main theorem for this case
demonstrates that ∀d ∈ CDBS(Q1), td ∈ Q2(d) constitutes a necessary and
sufficient condition to prove set containment of inequality queries.

Lemma 6.2 Let Q1 be an inequality query of the form
q(~W) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn. Let τ be an assignment map-
ping from Q1 to a database D. Let sd = {τ(p1(~Y1)), · · · , τ(pl(~Yl))}; i.e., sd
is the subset of D where τ maps the ordinary predicates of Q1. Then sd is
isomorphic to a canonical database d ∈ CDBS(Q1):

∃di ∈ CDBS(Q1) | di is isomorphic to sd

Proof:
The first part of the proof for this lemma is identical to that of

Lemma 3.1. Given that the canonical databases represent all the patterns
of equalities among uninterpreted constants (these patterns are built by
construction of the canonical databases), sd is isomorphic to a canonical
database di ∈ CDBS(Q1).

However, in order for the isomorphism to hold, the constants in the
facts of sd must satisfy constraints(di). But this is also true, because
constraints(di) always represents the application of an assignment map-
ping from Q1 to a ground database D (if constraints(d) were unsatisfiable,
the canonical database would not be considered). ut
Theorem 6.1 Let Q1 and Q2 of the form

Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl), K1, . . . , Kn.

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk), F1, . . . , Fm.

Then, Q1 ≤s Q2 ⇐⇒ ∀d ∈ CDBS(Q1) td ∈ Q2(d).
Proof:

Only If: By contradiction. Assume that there is d, d ∈ CDBS(Q1), such
that td 6∈ Q2(d). Then, by Definition 6.1, there exists a ground sub-
stitution α such that α(td) 6∈ Q2(α(d)). Since, by construction of
each d ∈ CDBS(Q1), td ∈ Q1(d), then α(td) ∈ Q1(α(d)). Therefore,
Q1 6≤s Q2.

56

If: We assume that ∀d ∈ CDBS(Q1), td ∈ Q2(d), and we want to prove
that Q1 ≤s Q2. Therefore, we need to prove that, if for any arbitrary
database D and any arbitrary derived fact t ∈ Q1(D), then t ∈ Q2(D).

Assume that t ∈ Q1(D). Then, there exists an assignment mapping τ
that maps the ordinary predicates of Q1 to some facts in D, such that
τ(q(~W)) = t.

Let sd = {τ(p1(~Y1)), · · · , τ(pl(~Yl))}, that is, sd is the subset of facts in
D mapped by the ordinary predicates in the body of Q1 through the
assignment mapping τ . By Lemma 6.2, sd is isomorphic to a database
d in CDBS(Q1). Let α be the mapping that shows that isomorphism.
Then α(td) = t and α(d) = sd. From hypothesis, td ∈ Q2(d). Then
α(td) ∈ Q2(α(d)), so, by Definition 6.1, t ∈ Q2(sd). Hence t ∈ Q2(D).

So for any database D and for any derived fact t in Q1(D), Q2(D)
contains t. Therefore, Q1 ≤s Q2.

ut

Corollary 1 Given two inequality queries Q1 and Q2, Q1 is set contained
into Q2 (Q1 ≤s Q2) if and only if ∀d ∈ CDBS(Q1), Q1(d) ⊆s Q2(d).
Proof:

Only If: If there is a d ∈ CDBS(Q1) such that Q1(d) 6⊆s Q2(d), we
can build a ground database D to show a counterexample that shows that
Q1 6≤s Q2.

If: By construction, td ∈ Q1(d); by hypothesis, given that
∀d ∈ CDBS(Q1), Q1(d) ⊆s Q2(d), we have that td ∈ Q2(d). Then,
∀d ∈ CDBS(Q1), td ∈ Q2(d). Using the previous theorem, we conclude
that Q1 ≤s Q2.

6.5 Testing Satisfiability

In section 6.2 we showed that, in order to know whether the canonical fact
td is obtained when a query Q2 is applied to a canonical database d, that is,
to test if td ∈ Q2(d), it is necessary to test the satisfiability of a formula F .

There has been a lot of work about testing the satisfiability of a formula
that is a conjunction of inequalities. Guo et al. [GSW96] offer excellent
results in this field. However, when a nondense domain (such as the integers)
is assumed, they only consider the operators < and ≤; the 6= operator is
used only with dense domains such as the real numbers. There are also
results about the satisfiability of a formula when the domain is dense in
[ZO93, IO97].

57

We will offer here a procedure to test the satisfiability of a formula when
the variables take their values from any ordered domain, either dense or
nondense. However, our procedure is specific for the kind of formulas we
are dealing with (the formula F shown in Lemma 6.1). These formulas will
always have the form

F = constraints(d) ∧ ¬(τ1(F1)∧· · ·∧τ1(Fm)) ∧ · · · ∧ ¬(τl(F1)∧· · ·∧τl(Fm))

where

constraints(d) = C1 ∧ C2 ∧ · · · ∧ Cn ∧ θd(K1) ∧ θd(K2) ∧ · · · ∧ θd(Kr).

Ci’s are the constraints that specify that all uninterpreted constants are
different, θd is the Q-mapping used to build d, and Ki’s are the built-in
predicates of Q1. τj(Fi) represents the built-in predicate Fi of Q2 mapped
to the uninterpreted constants in d by the assignment mapping τj .

Ci’s are of the form Ai 6= Aj where Ai and Aj are uninterpreted constants
in AQ, and both θd(Ki)’s and τj(Fi)’s are of the form X < Y , X ≤ Y , X = Y
or X 6= Y , where any of X or Y (but not both) can be a constant of the
domain, or X and Y can be two uninterpreted constants coming from the
facts in the canonical database.

The procedure to test the satisfiability of the formula F is the following.

1. Normalize the formula. It involves three steps: eliminate the nega-
tions of conjunctions of constraints; simplify the formula; and check
for equalities among uninterpreted constants. The output of this step
will be the normalized formula or the early decision that it is not
satisfiable.

(a) Eliminate the negations of conjunctions of constraints.
First, we apply DeMorgan’s Law to the negations of conjunctions
of constraints, obtaining

F = C1 ∧ C2 ∧ · · ·Cn ∧ θd(K1) ∧ θd(K2) ∧ · · · ∧ θd(Kr) ∧

(¬τ1(F1) ∨ · · · ∨ ¬τ1(Fm)) ∧ · · · ∧ (¬τl(F1) ∨ · · · ∨ ¬τl(Fm))

Second, since τj(Fi)’s are of the form X < Y , X ≤ Y , X = Y
or X 6= Y , we remove the negations of atomic constraints by
applying the following equivalences: ¬(A < B) ≡ A ≥ B, ¬(A ≤
B) ≡ A > B, ¬(A = B) ≡ A 6= B, and ¬(A 6= B) ≡ A = B.

58

Denoting Lij the constraint equivalent to ¬τi(Fj), the formula F
can be rewritten as

C1 ∧ C2 ∧ · · ·Cn ∧ θd(K1) ∧ θd(K2) ∧ · · · ∧ θd(Kr) ∧
(L11 ∨ L12 ∨ · · · ∨ L1m) ∧ · · · ∧ (Ll1 ∨ Ll2 ∨ · · · ∨ Llm)

Finally, we apply the distributive law of ∧ with respect to ∨,
obtaining

[C1∧· · ·∧Cn ∧ θd(K1) ∧ θd(K2) ∧ · · · ∧ θd(Kr) ∧ L11 ∧ · · · ∧ Ll1]

∨ · · · ∨
[C1∧· · ·∧Cn ∧ θd(K1) ∧ θd(K2) ∧ · · · ∧ θd(Kr) ∧ L1m ∧ · · · ∧ Llm]

Let us denote each element of the disjunction (shown in the above
formula enclosed in square brackets) by Pi. Then, F = P1 ∨P2 ∨
· · · ∨ Pw.

(b) Simplify the formula.
A special characteristic of the formula F is that all its unin-
terpreted constants are different (these constraints come from
constraints(d)). Therefore, for each Ai ≤ Aj we have a con-
straint Ai 6= Aj , and we can replace Ai ≤ Aj by Ai < Aj .
The second simplification that can be applied to the formula is
to remove duplicates of constraints. For example, if there is a
conjunction such as (· · · ∧ (A > B) ∧ · · · ∧ (A > B) ∧ · · ·), we
can remove all the duplicates of the (A > B) atomic constraints,
leaving just one.

(c) Check for equalities among uninterpreted constants.
If there is a subformula Pk with a constraint Ai = Aj , this Pk

will have also a constraint Ai 6= Aj because each Pk has all the
constraints Ck. Therefore, the part of the formula F expressed
by this Pk is clearly not satisfiable and we remove this Pk from
F . If all the Pk’s in F are removed and F becomes empty, then
we can conclude that F is not satisfiable and this procedure stops
here.

2. Build a directed graph G(Pi) for each Pi. The nodes of the graph
are the variables in Pi. The arcs of the graph are added as follows:

• If there is a constraint X < Y in Pi, we will draw a solid arc from
X to Y .

59

• If there is a constraint X ≤ Y in Pi, we will draw a dashed arc
from X to Y . Note that, for such a constraint to exist, either
X or Y is a constant, otherwise it would be converted into a <
constraint in step (1b).

• If there is a constraint X = Y , we will draw a dashed arc from
X to Y and another one from Y to X (As if replacing X = Y by
X ≤ Y ∧ Y ≤ X). As in the previous case, either X or Y must
be a constant.

• Each pair of (different) constants a and b will be connected by a
solid arc, from a to b if a < b, or from b to a if b < a.

3. Check the satisfiability of each graph G(Pi).

It is necessary to consider two different situations: when variables1

range over a dense domain such as the real numbers, and when vari-
ables range over a nondense domain such as the integers. In the first
case it is only necessary to check whether the first of the two following
conditions is satisfied. But in the second case, when variables range
over a nondense domain, the two next conditions must be satisfied.

Condition 1: If there is a cycle with at least one solid arc in the graph
G(Pi), the subformula Pi is unsatisfiable (that would mean that
a variable is strictly less than itself).

Condition 2: The idea in this condition is to check whether there
is “enough room” for all the variables that are placed between
two constants. This is only a problem if there are two or more
constants in the graph connected by one or more paths, and the
variables range over integers (or other nondense domain).
Let a and b be two constants in the graph connected through one
or more paths. Note that in these paths there can be a dashed
arc only between a variable and a constant, but never between
two variables.
Let s be the set of symbols that includes a, b and all constants
and variables in all paths between a and b, that is

s = {S|S = a or S = b or S is a symbol in any path from a to b}.
Let us call I the ordering of the set of consecutive integers between
a and b, both of them included, that is,

I = 〈a, a + 1, . . . b− 1, b〉
1It is possible to consider our uninterpreted constants as variables in this context

60

We are looking for a mapping β from symbols in s to the ordering
I. Such an assignment mapping must satisfy

(a) β(a) = a.
(b) β(b) = b.
(c) For all c ∈ s, if c is a constant, then β(c) = c, that is, β is

the identity for constants2.
(d) For all variables X, Y ∈ s, X 6= Y implies β(X) 6= β(Y).
(e) The relationships expressed in the subformula Pi (from which

the graph G(Pi) was built) between two symbols Si and Sj ∈
s must be preserved by the mapping.

If a graph G(Pi) satisfies Condition 1 and for every pair of constants a
and b with at least one path between them in the graph G(Pi), such an
assignment mapping β is found, the formula Pi is satisfiable, otherwise
it is not. Notice that if such assignment mapping exists, it will always
be found.

Example 6.3 Let Pi be represented by the following graph (the solid
arcs between some pairs of constants are omitted for clarity; they
would not produce any cycle):

3

4 X 5

8Y

Z W

6 U V

Let us consider the constants 3 and 8. For this example, s =
{3, 4, X, 5, Y, Z,W, 6, U, V, 8} and I = 〈3, 4, 5, 6, 7, 8〉. The next table
shows one of the possible assignment mappings β

β(3) = 3 β(4) = 4 β(X) = 4
β(5) = 5 β(Y) = 3 β(Z) = 5
β(W) = 6 β(6) = 6 β(U) = 7
β(V) = 8 β(8) = 8

Notice that each variable is mapped to a different constant and that all
the relationships expressed by the formula are preserved. The graph
has no cycles (condition 1) and the assignment mapping β was found,
therefore Pi is satisfiable. ut

2Evidently, this condition implies the two previous ones.

61

Example 6.4 Let Pi be represented by the following graph, and con-
sider again the constants 3 and 8.

3
6 X

8

Y 5 V W

In this case, s = {3, 6, X, Y, 5, V, W, 8} and I = 〈3, 4, 5, 6, 7, 8〉. Pi

satisfies condition 1, because the graph has no cycles. But it is not
possible to find an assignment mapping such that each variable is
mapped to a different constant preserving the relationships between
them. Therefore, Pi is not satisfiable. ut

4. Output the result. Recall that the formula F was transformed into
a disjunction of subformulas:

F = P1 ∨ P2 ∨ · · · ∨ Pw.

If all Pi’s are unsatisfiable, then the formula F is unsatisfiable. If there
exists a Pi that is satisfiable, the formula F is satisfiable.

Let us see an example:

Example 6.5 The formula F :

F = A 6= B ∧ B 6= C ∧ A 6= C ∧ B ≤ A ∧ B < C ∧ ¬(B < A)

is not satisfiable. Let us use the algorithm to prove it:

1. The normalized formula (without negated conjunctions of constraints
and with the ≤ converted into <) is

A 6= B ∧ B 6= C ∧A 6= C ∧B < A ∧B < C ∧A < B

2. We have to build only one graph. It is shown in the following picture.

B

A

C

3. The formula is not satisfiable, because the (only) Pi is not satisfiable:
there is a cycle with at least one solid line in the graph.

ut

62

6.5.1 Implications of the domain of the variables

The underlying domain of the variables has important implications in the
problem of containment of inequality queries. The results obtained by Klug
[Klu88] apply only when the domain is dense, like the real numbers; they
do not apply for nondense domain such as the integers.

The IC-RFT (Implication Constraint Refutation) problem, shown to be
polynomially equivalent to the query containment problem by Klug [Klu88]
was studied in [ZO93]. However, when the domain was nondense, only
the = and 6= operators were considered. Guo et al. [GSW96] solved the
satisfiability of a conjunction of constraints when the domain was dense;
when it was nondense, they did not allow the 6= operator in the formulas.

The difficulty added by nondense versus dense domains is that the test for
satisfiability must check if there is “enough room” for all the variables that
must fit between two constants. For example, the formula (X 6= Y) ∧ (3 <
X) ∧ (X < Y) ∧ (Y < 5) is satisfiable if the domain is the real numbers
(nondense) (with X=3.5 and Y =3.6, for example), while it is not satisfiable
for the integers: there is not enough space to fit two integer values between
3 and 5.

With the second condition we gave in our procedure to test the satisfia-
bility of a formula, this problem is also considered. Therefore, our procedure
is valid for dense as well as nondense domains.

Given that the unsatisfiability of the formula F introduced in Lemma 6.1
is the only test (applied to all canonical databases) needed to test the set
containment of inequality queries, the differences between the underlying
domains lead us to some interesting conclusions. Let us use R, the real
numbers, as a representative of dense domains, and Z, the integers, as a
representative of nondense domains. We shall denote query containment
under R as ≤Rs , and query containment under Z as ≤Zs .

• If F is unsatisfiable in R, then F is unsatisfiable in Z. That means
that if a query Q1 is set contained in another query Q2 under R, it is
also set contained under Z: Q1 ≤Rs Q2 =⇒ Q1 ≤Zs Q2.

• if F is unsatisfiable in Z, F may be satisfiable or unsatisfiable in R.
Therefore, Q1 ≤Zs Q2 6=⇒ Q1 ≤Rs Q2.

• if F is satisfiable in Z, then F is satisfiable in R. Therefore, Q1 6≤Zs
Q2 =⇒ Q1 6≤Rs Q2.

63

6.6 Examples

In this section we will show three examples. The first one shows two in-
equality queries that satisfy the containment (i.e., Q1≤sQ2). For the second
example, Q1 is not contained in Q2, and we shall use a canonical database
to show a counterexample. The last example shows two queries for which
the containment depends upon the underlying domain.

Example 6.6 Let Q1 and Q2 be the following queries:

Q1 : q(X, Y) :- p(X, Y), p(Y, Z), s(X, T), s(T,X), X ≥ Y, Y > Z.

Q2 : q(X, Y) :- p(X, Y), p(X,V), s(M, W), X ≥ V, M ≥ W.

Using the results from Ullman [Ull89] for these two queries, it is not
possible to check if Q1 ≤s Q2:

There are two containment mappings τ1 and τ2 from Q2 to Q1:

γ1(X) = X; γ1(Y) = Y ; γ1(V) = Y ; γ1(M) = X; γ1(W) = T

γ2(X) = X; γ2(Y) = Y ; γ2(V) = Y ; γ2(M) = T ; γ2(W) = X

But under none of these mappings can we imply the built-in predicates
of Q2. That is, we cannot imply either of γ1(X ≥ V ∧ M ≥ W) or
γ2(X ≥ V ∧ M ≥ W) from the built-in predicates of Q1, X ≥ Y ∧ Y > Z
(more specifically, we cannot imply either γ1(M ≥ W) = X ≥ T or γ2(M ≥
W) = T ≥ X).

Considering a nondense domain like the integers for the variables, the re-
sults of Klug [Klu88] are not useful either. However, applying our procedure,
which is summarized in Table 6.2, we can conclude that Q1≤sQ2.

Let us follow the steps of QCC for this case:

Step 1: Build CDBS(Q1)

Table 6.2 shows (in the column labeled CDBS(Q1)) the canonical
databases built from the body of Q1. From the 15 canonical databases
that are possible, there are only 7 that are consistent with their con-
straints: d3, d6, d9, d11, d13, d14 and d15. The procedure will need to
deal with only these databases to check the containment.

Step 2: Apply Q1 and Q2 to the canonical databases

The third column in the table shows td, the canonical fact that Q2

should obtain, the mappings we can use to get it, and the formula F
that is built as seen in Lemma 6.1.

64

Table 6.2: Example of containment
���������	��
����� ��������������� "! #%$'&�&)(*�+',.-0/21'35476 8:9<;<��=?>��
@ A B C DFE G H I @ A J K L
M M M M D � MNM MNM

OQPROTSUOWVRO D �YX H�Z�[]\N^_[Z�H X H"\a`)Z	\
D	b MNM MYc

M M M c c%M DFb X H�Z�[]\N^_[Z�H X H"\a`)Z	\
Oedf � SgOQPROTSUOhViO
D	j MNM MNM Okdf � SlOhPmOnSgOhV � S

M M c M MYc MYM M M M M M o � OQPROTSUOhPiO � S
Oedf � SgOhPiOpSlOhV � M M c M M o � OQP � SgOQPRO �
Drq MYc MNM

M c M M c%M D	q X H�Z�[]\N^_[Z�H X H"\a`)Z	\
Oedf � SgOQP � S � ViO
D	s c%M c%M

c M M M MNM MYc DFs X H�Z�[]\N^_[Z�H X H"\a`)Z	\
Oedf � S � PiOpSgOQVRO
D	t MNM MYc Okdf � SlOhPmOnSgOhV � S

M M c c MYc c%M MYM M M M M c o � OQPiOnSgOhP �u� S
Oedf � SgOhPiOpSlOhV � M M M c M o � OQPiOnS � PRO � S

M M c M c o � OQP � SUOhP �u� S
M M c c M o � OhP � S � PiO �

D	v MYc c%M
M c M c c%M c%M DFv X H�Z�[]\N^_[Z�H X H"\a`)Z	\

Oedf � SgOQP � S � ViO
D	w MYc MNM

M c c M c%c D w X H�Z�[]\N^_[Z�H X H"\a`)Z	\
Okdf � SgOhP � S � V �
D	x MNM MNy Ozdf � SgOedf � S � df � S

M M c y MYc y{M MYM M M M M y OhPmOnSgOhV � S
Okdf � SUOedf � S � df � S M M M y M o � OWPmOnSgOhP �:� S

OhPiOnSgOhV � M M c M y o � OWPmOnS � PmO � S
M M c y M o � OQP � SgOhP �:� S

o � OQP � S � PiO �
D �}| MYc MNy

M c M y c%M y{M D �~| X H%Z.[]\N^�[rZ�H X H"\a`)ZF\
Okdf � SUOedf � S � df � S

OQP � S � ViO
D �a� MYc MNM Ozdf � SgOedf � S � df � S

M c y M c�y MNc M c c M M OQP � S � V � S
Okdf � SUOedf � S � df � S o � OQP � SgOQPRO �

OhP � S � V �
D � b c%M c�y

c M M y MNM y{c D � b X H%Z.[]\N^�[rZ�H X H"\a`)ZF\
Okdf � SUOedf � S � df � S

� PiOnSgOhViO
D � j c%M c%M Ozdf � SgOedf � S � df � S

c M y M MNy MYc c{M c M M c M � PROTSUOQV � S
Okdf � SUOedf � S � df � S c M M M c o ��� PROTS � PiO � S

� PmOnSgOhV � o ��� PmOnSgOhP �u�
D � q c�y c%M Ozdf � SgOedf � S � df � S

c y M M y{M MYc c�y c y y c M � P � S � ViOpS
Okdf � SUOedf � S � df � S c y y M c o ��� P � S � PRO � S

� P � S � VmO o ��� P � SUOWP �u�
D � s MYc MN� Ozdf � SgOedf � S � df � S

M c y � c�y ��M MNc M c c M � OQP � S � V � S
Okdf � SUOedf � S � df � S M c c � M o � OWP � SUOhP ��� S

65

In order to verify that td ∈ Q2(d) we only need to check the unsat-
isfiability of the formula F for every canonical database, using the
algorithm shown in Section 6.5. Let us follow the algorithm to check
that the formula corresponding to d3 is unsatisfiable.

1. The original formula is

A 6= B ∧ A ≥ A ∧ A > B ∧ ¬(A ≥ A ∧ A ≥ A)
∧ ¬(A ≥ B ∧ A ≥ A)

2. Normalize the formula:

A 6= B ∧ A ≥ A ∧ A > B ∧ ¬(A ≥ A) ∧ ¬(A ≥ B ∧ A ≥ A)
=

A 6= B ∧ A ≥ A ∧ A > B ∧ (A < A) ∧ (A < B ∨A < A)
=

[A 6= B ∧ A ≥ A ∧ A > B ∧ A < A ∧ A < B)] ∨
[A 6= B ∧ A ≥ A ∧ A > B ∧ A < A ∧ A < A]

3. Build a directed graph for each subformula.
We should build two directed graphs, but just looking at the
formula we find the term (A < A) in both subformulas. Thus,
the formula is unsatisfiable, and we have that td2 ∈ Q2(d2).

Step 3: Test the containment

It is easy to follow the same algorithm for the rest of the canoni-
cal databases, checking that all of their corresponding formulas are
unsatisfiable. So, for all consistent canonical databases, we have
tdi ∈ Q2(di), and we can conclude that Q1≤sQ2.

ut

Example 6.7 Let us slightly modify the queries from the previous example,
and be Q1 and Q2 the following:

Q1 : q(X, Y) :- p(X, Y), p(Y, Z), s(X, T), s(T,X), X ≥ Y, Y > Z.

Q2 : q(X, Y) :- p(X, Y), p(X,V), s(X,W), X ≥ V, X ≤ W.

Let us focus in just one canonical database, d6. Since Q1 is the same as
the previous example, all the canonical databases are identical as the ones
shown in Table 6.2. The difference in the result comes from applying Q2

(which was the modified query) to the databases.
We can see that, applying Q2 to d6, the resulting formula is satisfiable:

66

Table 6.3: Example of non containment
���������	��
����� ��������������� "! #$�%�	��
���&� ')(+*+�-,/.��
0 1 2 3 4	5 6 7 8 0 1 9 :

4	; <=< <?> @BAC �ED @$FG@ D @$H �ID
< < > > <?> >J< <=< < < < > K � @LFM@ D @ON ���PD

@QAC �ID @$FR@ D @$H � < < > > K � @OF �SD @$N ���

A 6= B ∧ A ≥ A ∧ A > B ∧ ¬(A ≥ A ∧ A ≤ B) ∧ ¬(A ≥ B ∧ A ≤ B)

=

A 6= B ∧ A ≥ A ∧ A > B ∧ (A < A ∨A > B) ∧ (A < B ∨A > B)

=

[A 6= B ∧ A ≥ A ∧ A > B ∧ A < A ∧ A < B] (unsatisfiable)
∨

[A 6= B ∧ A ≥ A ∧ A > B ∧ A < A ∧ A > B] (unsatisfiable)
∨

[A 6= B ∧ A ≥ A ∧ A > B ∧ A > B ∧ A < B] (unsatisfiable)
∨

[A 6= B ∧ A ≥ A ∧ A > B ∧ A > B ∧ A > B] (satisfiable)

As it can be seen, this formula is satisfiable, so td6 = q(A,A) 6∈ Q2(d6)
We can build a ground database isomorphic to d6, using for example

integers, and verify that the containment does not hold:

p s

3 3 3 2
3 2 2 2

Over this database, Q1 obtains the tuple q(3, 3), while Q2 does not.
Therefore, Q1 6≤s Q2. ut
Example 6.8 Let Q1 and Q2 be the following inequality queries:

Q1 : q(X, Y) :- p(X,Y), r(X, W), r(W,X), X > Y, Y > 3,W > 4.

Q2 : q(X, Y) :- p(X,Y), r(M,N),M ≥ N, N > 4.

For these queries, constraints(d1) and constraints(d2) are not satisfi-
able, therefore d1 and d2 are not taken into account to test query contain-
ment. We must check whether the formulas generated for d3, d4 and d5 are
not satisfiable.

67

Table 6.4: Example domain-dependent containment
���������	��
����� ������������� � !#" $%�&�	��
����� ')(+*-,�.)/10
2 3 4 5+6 � 7 8 2 3 9 :

; ; ; 5 � ;<; ;=; ;=; 5 �
>�?��@BADC&@��)�E
>�EAGF �HA
IKJLINMOIPJRQSMOIKJUT

; ; V 5+W ;<; ;<V ;=;
V�; 5 W
>�?��@BADC&@��)�E
>�EAGF �HA

IYXZ � M[I\J]I^M
IPJRQSM � JUT

; V ; 5+_ ;<V ;=; ;<V IYXZ � M`I\J � M � JRQSM[IPJUTPM
IaXZ � MOI\J � M ; V ; ; b � IKcLINMOI\JRT �

� JRQSM[IPJUT

V ; ; 5	d V�; V�; V�; IaXZ � M � J]I^M`I\JRQSM[I\JRT\M
;<V V ; V ; b �e� c]I^M`I\JLT\M �

IaXZ � M � J]IfM V ; ; V b � IKc � M � JRT �
I\JRQSM[I\JRT

; V g 5+h ;<V ;=g ;<V IYXZ � M`IYXZ � M � XZ � M
gD; IPJ � M � J]QSM � JRT\M

IYXZ � M`IYXZ � M � XZ � M ; V ; g b � IPc � M � JUT � M
I\J � M � JRQSM � JLT ; V g ; b ��� cRIfM[I\JRT �

d3: The formula F for d3 is

A 6= B ∧ A > B ∧ B > 3 ∧ A > 4 ∧ ¬(A ≥ A ∧ A > 4)

≡
A 6= B ∧ A > B ∧ B > 3 ∧ A > 4 ∧ (A < A ∨ A ≤ 4)

≡
[A 6= B ∧ A > B ∧ B > 3 ∧ A > 4 ∧ A < A] ∨

[A 6= B ∧ A > B ∧ B > 3 ∧ A > 4 ∧ A ≤ 4]

It can be easily checked, without using the graph, that the two subfor-
mulas are unsatisfiable (the inequalities that make them unsatisfiable are
shown in boldface). Therefore, the formula F is unsatisfiable.

d4: The formula F for this canonical database is also unsatisfiable, since
all its subformulas are unsatisfiable.

A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ ¬(B ≥ A ∧ A > 4) ∧ ¬(A ≥ B ∧ B > 4)

≡
A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ (B < A ∨ A ≤ 4) ∧ (A < B ∨ B ≤ 4)

68

≡
[A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ B < A ∧ A < B] ∨
[A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ B < A ∧ B ≤ 4] ∨
[A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ A ≤ 4 ∧ A < B] ∨

[A 6= B ∧ B > A ∧ A > 3 ∧ A > 4 ∧ A ≤ 4 ∧ B ≤ 4]

d5: The formula F for this canonical database is:

A 6= B ∧ A 6= C ∧ B 6= C ∧ A > B ∧ B > 3 ∧ C > 4 ∧

¬(A ≥ C ∧ C > 4) ∧ ¬(C ≥ A ∧ A > 4)

≡
A 6= B ∧ A 6= C ∧ B 6= C ∧ A > B ∧ B > 3 ∧ C > 4 ∧

(A < C ∨ C ≤ 4) ∧ (C < A ∨ A ≤ 4)

≡
[A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧B > 3 ∧ C > 4 ∧A < C ∧ C < A] ∨
[A 6= B ∧ A 6= C ∧ B 6= C ∧ A > B ∧ B > 3 ∧ C > 4 ∧ A < C ∧ A ≤ 4] ∨
[A 6= B ∧ A 6= C ∧ B 6= C ∧ A > B ∧ B > 3 ∧C > 4 ∧ C ≤ 4 ∧ C < A] ∨
[A 6= B ∧ A 6= C ∧ B 6= C ∧ A > B ∧ B > 3 ∧ C > 4 ∧ C ≤ 4 ∧ A ≤ 4]

For this formula, the first, third and fourth subformulas are clearly un-
satisfiable. Let us build the graph for the second subformula, shown in
Figure 6.1.

3 B A

4 C

Figure 6.1: Domain-dependent satisfiability of a formula.

There are no cycles with a solid arc in the graph (in fact, there are no
cycles at all). This is the only condition needed to test the satisfiability of
the formula with a dense domain, thus the formula is satisfiable for dense
domains such as the real numbers (for example, mapping A, B and C to

69

3.1, 3.2 y 3.3, the subformula becomes true, and so does the formula F).
Therefore, using Theorem 6.1, we can conclude that Q1 6≤s Q2 when the
domain is dense.

However, when the underlying domain is nondense, such as the integers,
the results are different. There are two conditions that must be checked to
test the satisfiability of the formula:

1. The corresponding graph has no cycles with at least a solid arc. As
we have seen in the previous graph, the graph has no cycles.

2. It must be checked if there is “enough room” for all the variables and
constants that can be found between two constants connected by at
least one path in the graph. In this case, there is a path between
the constants 3 and 4. Using our algorithm, we must find a mapping
from s, the set of variables and constants in the graph, to I, the list
of consecutive integers between 3 and 4. For this graph, we have
s = {3, B, A, C, 4}, and I = 〈3, 4〉. The constraints in the graph,
3 < B ∧B < A ∧A ≤ 4, must hold, too. It is easy to check that such
mapping does not exist, so the formula is not satisfiable.

This second condition does not hold, therefore this subformula is unsat-
isfiable. We had already shown that the remaining subformulas (indepen-
dently from the domain) were always unsatisfiable, thus F is not satisfiable.
Therefore, for nondense domains, Q1 ≤s Q2. ut

6.7 Summary

This chapter has presented another original contribution of this Thesis. We
have shown how QCC can be applied to test the set containment of in-
equality queries, by adding some constraints to each canonical database.
The problem is then reduced to the test of the unsatisfiability of a formula
composed of equalities and inequalities, and we have presented a procedure
to perform this test.

The application of QCC to test the set containment of inequality queries
finally solves an open problem since [Klu88], where Klug left it open for the
cases when variables took their values from nondense domains.

This chapter closes the part of the thesis dedicated to the problem of the
set containment of conjunctive queries. The following chapters will show the
previous work and our contributions for the problem of bag containment of
conjunctive queries.

70

Chapter 7

Previous work about bag
containment of conjunctive
queries

7.1 Introduction

The study of the containment of conjunctive queries under bag semantics has
not been as extensive as under set semantics. Besides, the results achieved
for the set containment problem of conjunctive query containment do not
apply to the bag containment problem, because set containment does not
imply bag containment, as shown in Example 1.1.

However, Brisaboa and Hernández [BH97] gave a necessary and suffi-
cient condition, along with a procedure, to test bag containment of equality
queries.

There has been no results, to the best of our knowledge, that offer a
condition to test bag containment of inequality queries.

The key concept under set containment is the restrictiveness of the
queries. That is, a query Q1 is contained into a query Q2 if Q1 is more
restrictive than Q2. Under bag semantics, the key concept is the multiplicity
with which both queries obtain any fact. It was clear that, in Example 1.1,
Q1 would not obtain more facts than Q2; however, it obtains some facts
with higher multiplicity than Q2.

71

72

7.2 Bag containment of equality queries

Conjunctive queries under bag semantics were early studied by Dayal, Good-
man and Katz in [DGK82], where they sketched an extended relational alge-
bra with control over duplicate elimination. Later, Klausner [Kla86] studied
the problem of containment and equivalence of conjunctive queries under
bag semantics.

Ioannidis and Ramakrishnan [IR92, IR94] used databases whose tuples
had an associated label, which could have different meanings. For example,
the label could be a real number between 0 and 1, indicating the probability
of a fact belonging to a database; this labelling systems leads to fuzzy sets.
The label could also be a positive integer, where it represents the multiplicity
of the fact in the database. Ioannidis and Ramakrishnan provide some
results about containment for queries over databases that use bag semantics.
The most important of them is a necessary and sufficient condition for the
bag containment of queries that have no repeated predicate names in their
bodies.

However, the first major contribution to the problem of bag containment
of equality queries was introduced by Chaudhuri and Vardi [CV93], where
they gave two necessary and one sufficient condition to check the contain-
ment.

The following three theorems show the two necessary and one sufficient
conditions given by Chaudhuri and Vardi [CV93].

Theorem 7.1 Let Q1 and Q2 be two equality queries such that Q1≤bQ2.
Then, for each predicate name p, the number of predicates with name p in
Q1 is less than or equal to the number of predicates with name p in Q2. ut

Theorem 7.2 Let Q1 and Q2 be two equality queries such that Q1≤bQ2.
Then, every predicate of Q1 is assigned to some predicate of Q2 by some of
the possible containment mappings from Q2 to Q1. ut

Theorem 7.3 Let Q1 and Q2 be two equality queries. If there exists an
onto mapping from Q2 to Q1, then Q1 is bag contained into Q2 (Q1 ≤b Q2).
An onto mapping τ from an equality query Q2 to another equality query Q1

is a containment mapping from Q2 to Q1 such that every predicate in Q1 is
assigned to some predicate in Q2. ut

Brisaboa and Hernández [BH97] proposed the use of a new procedure
that solves the problem of testing the bag containment of equality queries,
reducing it to the comparison of pairs of polynomials. This procedure is

73

a particularization of QCC to test this type of containment, and will be
described in Chapter 8.

7.3 Bag containment of inequality queries

To the best of our knowledge, there is no work done in this kind of contain-
ment. We shall describe in Chapter 9 how QCC can be applied to test the
bag containment of inequality queries, offering a proof of its correctness.

7.4 Summary

This chapter has briefly reviewed the previous work about the bag con-
tainment problem of conjunctive queries. The work done by Brisaboa and
Hernández [BH97] will be adapted to fit the three steps of QCC in Chap-
ter 8. To the best of our knowledge, there have been no achievements in the
problem of bag containment of equality queries; our own contributions for
this problem will be shown in Chapter 9.

74

Chapter 8

Applying QCC to test bag
containment of equality
queries

8.1 Introduction

Under bag semantics, every fact in a database has an associated multiplicity,
which is the number of copies of the fact in the database (See Section 2.3.2).
For example, a database D = {p(A,B; [3])} represents a database with 3
copies of the fact p(A,B).

The bag containment of conjunctive queries is defined, as shown in Chap-
ter 2, as

Q1 ≤b Q2 ⇐⇒ ∀D, Q1(D) ⊆b Q2(D)

That is, Q1 is bag contained in Q2 if and only if the result of applying Q1

to any database D is a subbag of the result of applying Q2 to the same
database D. Using QCC to test bag containment of equality queries, we
only need to test the containment over the set of canonical databases built
from the body of Q1. Therefore, for a suitable test bag containment test,
every canonical database must have a symbolic multiplicity associated to
each of its facts.

The complete description of the procedure to test bag containment of
equality queries has been given in [Bri97]. We shall show here how this
procedure perfectly fits into the 3 steps of QCC.

The rest of this chapter first introduces the concept of Label System
[IR92], and then the three steps of QCC are explained in detail. The last

75

76

section proves the correctness of QCC to test bag containment of equality
queries.

8.2 Label systems

In order to test the bag containment of conjunctive queries, we need to define
databases (seen as bags of facts) with respect to two label systems, depend-
ing on the labels of the facts that represent their multiplicities. The first type
corresponds to those databases whose facts have multiplicities represented
by nonnegative integer numbers (Z+). The second type uses polynomials
to represent the (symbolic) multiplicity of every fact. This second type of
databases will be used to test the bag containment of conjunctive queries
(equality as well as inequality queries).

The definition of label system given in this chapter are adapted from
[IR92].

8.2.1 Preliminary definitions

A fact is a Horn clause with exactly one positive literal. Given a predicate
p, a fact defined on p is a fact whose predicate name is p. For a fact
p(A1, . . . , An), p is its predicate name and A1, . . . , An are its arguments. If
all the arguments are constants, the fact is called a ground fact.

A database scheme is a finite set of predicate names. In this work, we
assume that all predicates are implicitly in U , a fixed database scheme, and
that there is a fixed set of constants, the Herbrand Universe. The Herbrand
Base for U , denoted BU , is the set of all ground facts that can be formed
using predicate names in U and the constants in BU [Llo87].

8.2.2 Definition of label systems

A label system L is a quintuple L = 〈L, ∗, +, 0,≤〉 such that:

L is a domain of labels with a partial order ≤.

∗ is a binary operation (called product) on L that is associative and commu-
tative. In this work, we shall mainly use the implicit product notation
ommiting the ∗ symbol, for example writing m1m2 instead of m1 ∗m2.

+ is the addition, a binary operation on L that is associative and commu-
tative.

77

0 is an element of L, which is the additive identity and the annihilator with
respect to the product. 0 is also the least element with respect to the
partial order ≤ defined on L. That is, ∀a ∈ L, a + 0 = a; a ∗ 0 =
0; and 0 ≤ a.

∀a, b ∈ L− {0}, a ≤ a ∗ b.

∀a, b, c, d ∈ L, (a ≤ b ∧ c ≤ d) ⇒ (a + c ≤ b + d).

∀a ∈ L, ∃b ∈ L such that a ≤ b ∧ a 6= b. The relationship between two
elements a and b such that a ≤ b ∧ a 6= b is represented by the usual
notation a < b.

For the scope of this Thesis, we shall define two label systems, denoted
LS1 and LS2:

LS1: A label system L of type LS1 is a quintuple L = 〈Z+, ∗, +, 0,≤〉. That
is, the label domain is Z+, the set of nonnegative integer numbers; the
product and addition operations, as well as the ≤ partial order, are
the usual for integer numbers.

LS2: A label system L of type LS2 uses the polynomial arithmetic, and
it is defined as the quintuple L = 〈P, ∗,+, 0,≤〉, where P is a domain
of polynomials whose coefficients and variables take their values from
Z+.

The zero (0) element is the polynomial 0, that is, the polynomial that
is evaluated to 0 for all values of its variables.

The ≤ relationship between polynomials is defined as follows. Let
P1(~X) and P2(~X) be two polynomials. Then, P1(~X) ≤ P2(~X) if and
only if P1(~X) ≤ P2(~X) in Z+. That is, for any evaluation ρ of the
polynomials, ρ(P1(~X)) ≤ ρ(P2(~X)). An evaluation of a polynomial
P (~X) is a function from the variables in ~X to Z+. The result of an
evaluation is always a nonnegative integer.

8.2.3 Definition of databases with respect to a label system

Let L = 〈L, ∗.+, 0,≤〉 be a label system. A database D with respect to L is
defined as a function from the Herbrand base BU to L.

A database D with respect to a label system L is represented as a set of
facts of the form

p(A1, . . . , An; [m]),

78

where p(A1, . . . , An) is a fact in BU , and m ∈ L − {0}. That means that
those elements of the Herbrand base that are mapped to 0 are not shown in
the database.

A fact p(a1, . . . , an) is in D, represented p(a1, . . . , an) ∈ D, if there is a
fact p(b1, . . . , bn; [m]) such that ai = bi for i = 1, . . . , n.

The multiplicity of the fact t = p(b1, . . . , bn) in D is m, denoted |t|D = m,
if there is a fact p(b1, . . . , bn; [m]) in D. The multiplicity of a fact t not
present in D is zero, that is, |t|D = 0.

8.2.4 LS1 and LS2 databases

A database defined with respect to an LS1 label system will be denoted
LS1 database, and it will use the integer arithmetic. That is, the ∗ and +
operators are the integer product and addition. The relationship ≤ is the
usual for integers.

An LS2 database is a database defined with respect to an LS2 label
system. The binary operators ∗ and +, as well as the ≤ relationship, are
those defined for polynomials. The multiplicities in an LS2 database are
said to be symbolic multiplicities.

Example 8.1 The following database D is an LS1 database. D′ is an LS2
database.

D = {r(a, b; [2]), r(t, j; [4])}

D′ = {p(a, b; [m1]), p(t, t; [m2m3 + m2]), s(a; [2m3 + m4m
2
6])}

ut

Two databases are isomorphic is they are identical after a consistent
renaming of their constants. If one (or both) databases are LS2 databases,
it is necessary to assign values to the symbolic multiplicities in order to have
two identical databases.

Example 8.2 Let D = {p(a, b; [m1], p(b, c; [m2]), r(a; [m3])} be an
LS2 database. An LS1 database isomorphic to D is D′ =
{p(6, 7; [1], p(7, 9; [6]), r(6; [8])}. ut

The application of a conjunctive query over a database, either LS1 or
LS2, is defined in terms of assignment mappings [Ull82], as defined in Chap-
ter 2.

79

8.3 Step 1: Build CDBS(Q1)

In order to test bag containment of equality queries, canonical databases
will be adapted to include symbolic multiplicities in their facts. Then, for
each canonical database di = θi(db(Q1)), we add a symbolic multiplicity to
each fact in it. Every fact will be of the form

di = {p(θi(Y1), . . . , θi(Yl); [m]) | p(Y1, . . . , Yl) ∈ db(Q1)}

where each m is a new, different identifier that represents the multiplicity
of the fact p(θi(Y1), . . . , θi(Yl)) in di. Thus, canonical databases used to
test bag containment are LS2 databases; the multiplicities of their facts are
symbolic and they use the polynomial arithmetics.

Therefore, the step (4) of Algorithm 2 is the following:

//CDBS = {θ1(db(Q1)), . . . , θj−1(db(Q1))}

4. Adaptation of canonical databases
For i = 1 to j − 1

//Add a symbolic multiplicity to
//each fact of every canonical database
di = {pk(Yk1, . . . , Ykn; [mik]) | pk(Yk1, . . . , Ykn) ∈ θi(db(Q1))}

Return CDBS(Q1) = {d1, . . . , dj−1} ut

Example 8.3 Let Q1 and Q2 be the following equality queries.

Q1 : q(X) :- p(X), r(Y, Z), r(Z, Y).

Q2 : q(X) :- p(X), r(U, V), r(U, V).

The set of canonical databases for Q1 are shown in Table 8.1.
ut

8.4 Step 2: Apply Q1 and Q2 to all canonical
databases

In this step, Q1 and Q2 will be applied to every di ∈ CDBS(Q1) in order to
obtain the canonical fact tdi with a certain multiplicity. Note that there can
be more than one assignment mapping from either Q1 or Q2 that derive the
canonical fact. If this is the case, all assignment mappings must be taken
into account to compute the final multiplicity of the canonical fact, as shown
in Section 2.3.2.

80

Table 8.1: Canonical Database set for Q1

Q-mappings CDB td
X Y Z p r q

d1 A A A A[mp] AA[mr] A
d2 A A B A[mp] AB[mr1] A

BA[mr2]
d3 A B A A[mp] BA[mr1] A

AB[mr2]
d4 B A A B[mp] AA[mr] B
d5 A B C A[mp] BC[mr1] A

CB[mr2]

The canonical databases have symbolic multiplicities, that is, they are
LS2 databases. Therefore, the binary operations + and ∗ (addition and
product) used to compute the multiplicities are the addition and product of
polynomials.

Example 8.4 (Continued from Example 8.3).
The column CDB in Tables 8.2 and 8.3 shows the canonical databases,

whose facts have a symbolic multiplicity. The column td shows the canonical
fact for each database. The last column shows how Q1 (in Table 8.2) and Q2

(in Table 8.3) are applied to each canonical database to derive the canonical
fact. The multiplicities of the canonical facts obtained by Q1 and Q2 are
computed as shown in Section 2.3.2. Let us show how to compute the
multiplicity of td2 = q(A) obtained by Q1:

There are two assignment mappings τ1 and τ2 from Q1 to d2:

τ1(X) = A; τ1(Y) = A; τ1(Z) = B

τ2(X) = A; τ2(Y) = B; τ2(Z) = A

Applying τ1 and τ2 to the body of Q1, we get

τ1(p(X)) = p(A; [mp]); τ1(r(Y, Z)) = r(A,B; [mr1]); τ1(r(Z, Y)) =
r(B,A; [mr2])

τ2(p(X)) = p(A; [mp]); τ2(r(Y, Z)) = r(B,A; [mr2]); τ2(r(Z, Y)) =
r(A,B; [mr1])

Therefore, the multiplicity of p(A) using τ1 is mpmr1mr2; using τ2 is
mpmr2mr1. Then, the final multiplicity is

81

|td2 |Q1(d2) = |q(A)|Q1(d2) = mpmr1mr2 + mpmr2mr1.

The rest of the multiplicities is calculated in the same way.

Table 8.2: Multiplicities of the canonical facts obtained by Q1.
CDB td Applying Q1

p r q Assignm. mapps. |td|Q1

X Y Z

d1 A[mp] AA[mr] A A A A mpm2
r

d2 A[mp] AB[mr1] A A A B mpmr1mr2+
BA[mr2] A B A mpmr2mr1

d3 A[mp] BA[mr1] A A B A mpmr1mr2+
AB[mr2] A A B mpmr2mr1

d4 B[mp] AA[mr] B B A A mpm2
r

d5 A[mp] BC[mr1] A A B C mpmr1mr2+
CB[mr2] A C B mpmr2mr1

Table 8.3: Multiplicities of the canonical facts obtained by Q2.
CDB td Applying Q2

p r q Assignm. mapps. |td|Q2

X U V

d1 A[mp] AA[mr] A A A A mpm2
r

d2 A[mp] AB[mr1] A A A B mpm2
r1+

BA[mr2] A B A mpm2
r2

d3 A[mp] BA[mr1] A A B A mpm2
r1+

AB[mr2] A A B mpm2
r2

d4 B[mp] AA[mr] B A A A mpm2
r

d5 A[mp] BC[mr1] A A B C mpm2
r1+

CB[mr2] A C B mpm2
r2

ut

8.5 Step 3: Test the bag containment

We have at this point created CDBS(Q1) and computed the multiplicity of
every canonical fact when obtained by Q1 and Q2.

This last step of QCC compares the polynomials that represent the mul-
tiplicities with which Q1 and Q2 obtain every canonical fact. If, as we shall
prove in Theorem 8.1, Q2 obtains the canonical facts with at least the same

82

multiplicity as Q1 for all canonical databases, then the containment holds,
else Q1 6≤b Q2. Thus, the containment problem is reduced to a polynomial
comparison. For this comparison, the method presented in [BH97] can be
used.

Example 8.5 (Continued from Example 8.4) Notice that, for d1 and d4,
Q1 and Q2 obtain the canonical fact with the same multiplicity. For d2,
d3 and d5, Q2 obtains it with a higher multiplicity. Then, for all canonical
databases d, |td|Q1(d) ≤ |td|Q2(d). Thus, for this example, Q1 ≤b Q2. ut

8.6 Validation of QCC for the bag containment of
equality queries

The use of canonical databases to test the bag containment of equality
queries is based on the fact that each canonical database d ∈ CDBS(Q1)
represents (is isomorphic to) the application of an assignment mapping from
Q1 to any ground database D, as shown in the following lemma.

Lemma 8.1 Let Q1 be the equality query q(~W) :- p1(~Y1), . . . , pl(~Yl). Let
τ be an assignment mapping from Q1 to a database D. Let sd =
{τ(p1(~Y1; [c1])), · · · , τ(pl(~Yl; [cl]))}; i.e., sd is the subbag of D where τ maps
the ordinary predicates of Q1. Then, there exists a canonical database
di ∈ CDBS(Q1) that is isomorphic to sd:

∃di ∈ CDBS(Q1) | di is isomorphic to sd

Proof: The proof for this Lemma is practically the same as the proof of
Lemma 3.1, but we have to take into account the multiplicity of the facts in
sd and the symbolic multiplicities of the facts in the canonical databases.

The bag sd is the subbag of D obtained by applying τ to the body of Q1.
Note that every canonical database d is obtained by using a mapping from
db(Q1), which is isomorphic to the body of Q1, to a set of uninterpreted
constants AQ.

Assume that τ maps every variable of Q1 to the same constant a in
sd. By construction of CDBS(Q1), there exists a canonical database, say
d1 = θ1(db(Q1)), where the Q-mapping θ1 maps every variable of Q to
the same uninterpreted constant, A ∈ AQ. It is obvious that sd and d1

are isomorphic, because if, in every fact pi(A, . . . , A; [mi]) of d1, we replace
A by a and mi by the multiplicity of the fact pi(a, . . . , a) in sd, that is,
|pi(a, . . . , a)|sd, sd and d1 become identical.

83

Now, assume that τ maps all variables of Q1 to the constant a, except
one, which is mapped to a different constant b. As in the previous case,
there exists a canonical database built using a Q-mapping with the same
pattern of equalities among two uninterpreted constants and whose facts
have symbolic multiplicities.Therefore, there will be a canonical database,
say d2, which is isomorphic to sd for this case, because if, in every fact
pi(A, . . . , B, . . . , A; [mi]) of d2, we replace A by a, B by b and mi by the
multiplicity of the fact pi(a, . . . , b, . . . , a) in sd, that is, |pi(a, . . . , b, . . . , a)|sd,
sd and d2 become identical.

The same method of reasoning can be used to cover all possible patterns
of equalities among the constants in sd to which the variables of Q1 are
mapped. By construction of CDBS(Q1), the equalities among the uninter-
preted constants in the facts of the canonical databases cover all the possible
patterns of equalities among the variables of Q1 when they are mapped to
any ground database D. Therefore, there always exists a canonical database
di isomorphic to sd. ut

The following theorem and corollary prove the validity of QCC to test
query containment.

Theorem 8.1 Given two equality queries Q1 and Q2, Q1 is bag contained
into Q2 (Q1 ≤b Q2) if and only if ∀d ∈ CDBS(Q1), |td|Q1(d) ≤ |td|Q2(d).
Proof:

Only If: If there is a d ∈ CDBS(Q1) such that |td|Q1(d) 6≤ |td|Q2(d), we
can build a ground database D isomorphic to d that is a counterexample to
the bag containment, showing that Q1 6≤b Q2.

If: Assuming |td|Q1(d) ≤ |td|Q2(d), ∀d ∈ CDBS(Q1), we want to prove
that Q1 ≤b Q2.

Let D be an arbitrary database from which Q1 obtains a fact u using
several assignment mappings. By Lemma 8.1, the bag of facts reached from
the atoms in Q1 by every assignment mapping that obtains u is isomorphic
to a canonical database d. Since Q2 obtains the canonical fact td with at
least the same multiplicity as Q1 from all canonical databases, the total
multiplicity of u obtained by Q2 is at least the same as the multiplicity
obtained by Q1 for this fact u. Therefore, Q1 ≤b Q2. ut

Corollary 2 Given two equality queries Q1 and Q2, Q1 is bag contained
into Q2 (Q1 ≤b Q2) if and only if ∀d ∈ CDBS(Q1), Q1(d) ⊆b Q2(d).
Proof:

84

Only If: If there is a d ∈ CDBS(Q1) such that Q1(d) 6⊆b Q2(d), we
can build a ground database D to show a counterexample that shows that
Q1 6≤b Q2.

If: By construction, td ∈ Q1(d); by hypothesis, td ∈ Q2(d) with
at least the same multiplicity as the obtained by Q1. Then, ∀d ∈
CDBS(Q1), |td|Q1(d) ≤ |td|Q2(d). Using the previous theorem, we conclude
that Q1 ≤b Q2.

8.7 Summary

This chapter has shown how the procedure described in [Bri97, BH97] fits
the three steps of QCC. This procedure, which was the start point for
this Thesis, adapts the set of canonical databases including multiplicities in
their facts so they are suitable to test the containment under bag semantics.
The procedure reduces the problem of testing bag containment of equality
queries to the problem of comparing pairs of polynomials over Z+.

Chapter 9

Applying QCC to test bag
containment of inequality
queries

9.1 Introduction

The canonical database set for a query Q1 used to test bag containment of
inequality queries must include multiplicities in the facts, and constraints
that affect the uninterpreted constants in the database.

This particular type of containment requires a more complicated treat-
ment of the canonical databases, because the application of the assignment
mappings (from either Q1 or Q2) to a canonical database that derive the
canonical fact is not straightforward.

Under set semantics, we are interested in whether a query obtains the
canonical fact or it does not obtain it, because there are no multiplicities
in the facts. Therefore, we only need to know if there is (at least) one
assignment mapping from a query to a canonical database that obtains the
canonical fact. Under bag semantics, we need to apply all the assignment
mappings from a query to a canonical database in order to compute the
total multiplicity of the canonical fact derived by the query. All assignment
mappings are needed because each one of them adds a monomial to the
polynomial that represents the total multiplicity of the canonical fact, as
seen in Chapter 8.

The process of finding all assignment mappings from an inequality query
to a database is more complicated than for equality queries: All the assign-
ment mappings from an equality query to a database can always be applied;

85

86

however, for inequality queries, the application of an assignment mapping τ
from an inequality query Q to a database D must also satisfy the built-in
predicates of Q, and it is not so clear when an assignment mapping can be
applied, as we shall see in Example 9.1.

Taking into account these two factors (bag semantics and presence of
built-in predicates), the first step of QCC for this case must adapt the
canonical databases including multiplicities in their facts and constraints
in the databases that specify which assignment mappings from Q1 to any
di ∈ CDBS(Q1) can be applied. The second step applies Q1 and Q2 to all
canonical databases, obtaining the canonical facts with some multiplicities,
and the third step tests the bag containment by comparing the polynomials
that represent those multiplicities.

The following sections describe the three steps of QCC, as well as the
proof of its correctness, to test bag containment of inequality queries.

9.2 Step 1: Build CDBS(Q1)

In order to test bag containment, as in the previous chapter, canonical
databases will include multiplicities in their facts. However, the most in-
teresting aspect of the use of QCC to test bag containment of inequality
queries is the management of the inequalities in the queries in conjunction
with the multiplicities in the facts. In Chapter 6 we added some constraints
(constraints(d)) to each canonical database, in order to ensure that Q1

always obtains the canonical fact from them. However, for this type of con-
tainment, constraints(d) are not restrictive enough to let us know which
assignment mappings from Q1 to each canonical database can be applied,
as Example 9.1 shows.

Example 9.1 Consider the following query Q1 and the canonical database
d1:

Q1 : q(X, Y) :- r(X,Y), p(X, Z), p(Y, V), X < V.

Q-Mapping θ1(db(Q1)) constraints(d1) td

X Y Z V r p q

d1 A A B C AA[mr1] AB[mp1] (A 6= B ∧B 6= C ∧A 6= C) ∧A < C AA
AC[mp2]

Note that the facts of the canonical database already have multiplicities.
Also note that constraints(d1) is generated using the method presented in
Chapter 6. There are 4 possible ways of applying Q1 over d1, using the
assignment mappings τ1 through τ4, shown in the following table:

87

X Y Z V r(X, Y) p(X, Z) p(Y, V) X < V

τ1 A A B C r(A, A) p(A, B) p(A, C) A < C
τ2 A A B B r(A, A) p(A, B) p(A, B) A < B
τ3 A A C B r(A, A) p(A, C) p(A, B) A < B
τ4 A A C C r(A, A) p(A, C) p(A, C) A < C

The mapping τ1 is isomorphic to θ1 and it can always be applied, because
the application of τ1 to the built-in predicates of Q1, τ1(X < V) = A < C,
is already in constraints(d1). The assignment mapping τ4 applied to the
built-in predicate of Q1 is also A < C, thus τ4 can always be applied.

However, the application of τ2 and τ3 to X < V is A < B, which is not
in constraints(d1), so it is not possible to decide if τ2 and τ3 can be applied
to d1. Therefore, the multiplicity of the canonical fact obtained by Q1 is
either

mr1mp1mp2 + mr1m
2
p2

when only τ1 and τ4 can be applied, or

mr1mp1mp2 + mr1m
2
p1 + mr1mp2mp1 + mr1m

2
p2

when the 4 mappings can be applied.
Therefore, the multiplicity of the canonical fact obtained by Q1 is not

exactly known. ut

Since the multiplicity of the canonical fact obtained by Q1 will be com-
pared with the multiplicity obtained by Q2 (as it was in Chapter 8 to test the
bag containment of equality queries), it is clear that constraints(d), defined
identically as for the test of the set containment of inequality queries, are
not restrictive enough to specify when a given set of assignment mappings
from Q1 to each di can be applied.

The idea to solve this problem is to adapt the canonical databases so that
Q1 obtains the canonical fact with a predefined multiplicity (that is, using a
fixed and predetermined set of assignment mappings). Let us continue with
the example to show how this can be done.

Example 9.2 Let us “split” the canonical database d1 from Example 9.1
into two canonical databases that have the same bag of facts, but different
constraints that specify which mappings can be applied. That is, we split
d1 into two databases d1

1 and d2
1 that have the same bags of facts as d1, but

with the following constraints:

constraints(d1
1) = (A 6= B ∧B 6= C ∧A 6= C) ∧A < C ∧ ¬(A < B)

constraints(d2
1) = (A 6= B ∧B 6= C ∧A 6= C) ∧A < C ∧A < B

88

It is clear that, with these new canonical databases, the multiplicity of the
canonical fact obtained by Q1 is unique, because τ1 and τ4, but not τ2 and
τ3, can be applied to d1

1 (enforced by adding ¬(A < B) to constraints(d1
1)),

and all 4 mappings can be applied to d2
1 (enforced by adding A < B to

constraints(d2
1)). Therefore,

|td1
1
|Q1(d1

1)
= mr1mp1mp2 + mr1m

2
p2

and

|td2
1
|Q1(d2

1)
= mr1mp1mp2 + mr1m

2
p1 + mr1mp2mp1 + mr1m

2
p2.

ut

The following definition is needed to use the assignment mappings from
Q1 to each di to build the final set CDBS(Q1).

Definition 9.1 M: Possible assignment mappings from Q1 to a canonical
database di

Let τ1, . . . , τl be the set of assignment mappings that can be applied
from Q1 to a canonical database di, and let τ1 be the assignment mapping
isomorphic to the Q-mapping θi used to build di. Note that there always
exists such an assignment mapping, and it can always be applied to di to
derive the canonical fact. It is possible to enforce that, as it was done in the
test of set containment of inequality queries in Chapter 6, by adding τ1(K)
(for each built-in predicate K in Q1) to constraints(di).

The remaining assignment mappings, τ2,. . . ,τl, are defined as possible
mappings, because they may or may not be applied. It depends on whether
the built-in predicates of Q1 are satisfied with these assignment mappings.
Let us denoteM the set {τ2, . . . , τl}, the possible assignment mappings from
Q1 to d:

M = {τ2, . . . , τl}
Depending on the “less than” and equality relationships among the un-

interpreted constants in di, it is possible that all assignment mappings in a
given subset of M can be applied to di. All such subsets are elements of
P (M) (parts of M)

P (M) = {∅, {τ2}, . . . , {τl}, {τ2, τ3}, . . . ,M}
This set contains 2l−1 elements. Let us represent it as

P (M) = {M1, . . . , M2l−1}
ut

As shown in the previous example, in order to use QCC to test bag
containment of inequality queries, it is necessary to split each canonical

89

database di in the original CDBS(Q1) into different databases that have the
same bags of facts but with different sets of constraints. Each of these final
databases will allow Q1 to derive the canonical fact using only a predefined
set of assignment mappings in P (M).

Using P (M), we can describe completely the constraints associated to
canonical databases to test bag containment of inequality queries. The for-
mula constraints(di) is composed of three sets of constraints (the first two
defined identically as in Chapter 6 to test the set containment of inequality
queries).

• Constraints that specify that all uninterpreted constants are different.

• Constraints that reflect the built-in predicates of Q1.

• Constraints that specify which sets of mappings, from Q1 to di, can
be applied and which ones cannot.

This set of constraints establishes which set of mappings Mj ∈ P (M)
can be applied, by adding either [τi(K1) ∧ · · · ∧ τi(Kn)], if the as-
signment mapping τi can be applied (τi ∈ Mj), or ¬[τi(K1) ∧ · · · ∧
τi(Kn)] if it cannot (τi 6∈ Mj), ∀i, 2 ≤ i ≤ l, where K’s are the built-in
predicates of Q1.

We shall refer to these constraints again as constraints(d) even when
they are different from those defined for the use of QCC to test set contain-
ment of inequality queries. The reason is that constraints(d) represents, in
both cases, a set of constraints that comes from Q1 and ensures that Q1

derives the canonical fact: in the case of bag containment, with a predefined
set of assignment mappings; in the case of set containment, with at least
the assignment mapping isomorphic to the Q-mapping used to build d.

It is easy to see that a canonical database di can be split into a maximum
of 2l−1 canonical databases, l being the number of possible mappings from Q1

to di, because the two first sets of constraints in constraints(di) are unique,
and there are 2l−1 possibilities for the third set of constraints, because the
cardinality of P (M) is 2l−1. Of course, all canonical databases that have
an unsatisfiable constraints(di) will not be considered, because it is not
possible to build a ground database isomorphic to it, as will be shown in
Example 9.3.

The formal specification of the step 4 of Algorithm 2 is the following:

90

4. Generation of canonical databases
For i = 1 to j − 1

//Initially, add the multiplicities to the facts
di = {pc(Yc1, . . . , Ycn; [mck]) | pc(Yc1, . . . , Ycn) ∈ θi(db(Q1))}
constraints(di) = (θi(K1) ∧ · · · ∧ θi(Kn) ∧ (Aj 6= Ak,∀j, k 1 ≤ j 6= k ≤ q))

//Build the different canonical databases by adding the necessary
//constraints

//Let τ1,. . . ,τl be assignment mappings from Q1 to dk,
//where τ1 is isomorphic to θi

//M = {τ2, . . . , τl}
//P (M) = {∅, {τ2}, . . . , {τl}, {τ2, τ3}, . . . ,M}
P (M) = {M1, . . . , M2l−1}
for s = 1 to 2l−1 {

constraints(ds
i) = constraints(di)

F = true
for t = 2 to l {

if τt ∈ Ms

then F = F ∧ τt(K1) ∧ · · · ∧ τt(Kn)
else F = F ∧ ¬[τt(K1) ∧ · · · ∧ τt(Kn)]

}
constraints(ds

i) = constraints(ds
i) ∧ F

if constraints(ds
i) is unsatisfiable

or (∃x, 1 ≤ x < 2l−1 : dx
i is isomorphic to di and constraints(dx

i) =
constraints(ds

i))
then ds

i = ∅
else // The canonical database ds

i is generated
ds

i = θi(db(Q1))
Associate constraints(ds

i) to ds
i

}
ut

This step performs the particularization of Algorithm 2 needed to test
bag containment of inequality queries, adding multiplicities to the facts and
the necessary constraints.

Note that now each canonical database ds
i has a subindex i and a su-

perindex s. The subindex indicates the original canonical database di where
ds

i comes from, and the superindex indicates the case (refering to the set of
assignment mappings always applicable to the canonical database) used to
build ds

i .

Example 9.3 (Continued from Example 9.1) The mapping τ1 is isomorphic
to θ1, therefore it can always be applied. The rest of the mappings are the
possible mappings M = {τ2, τ3, τ4}, therefore P (M) = {∅, {τ2}, {τ3}, {τ4},
{τ2, τ3}, {τ2, τ4}, {τ3, τ4}, {τ2, τ3, τ4}}. Table 9.1 shows the 8 possibilities for

91

the third set of constraints that will be associated to the original canonical
database d1 that produce the 8 final canonical databases d0

1 to d7
1.

Each case Ci in the table represents a set Mi ∈ M, showing the assign-
ment mappings that belong to Mi as a positive literal (τj) and those that
do not belong to Mi as a negative literal (¬τj). For instance, the case C2

represents the set M2 = {τ3}, also identified as ¬τ2 τ3 ¬τ4 (meaning that
τ2 6∈ M2, τ3 ∈ M2, and τ4 6∈ M2).

Table 9.1: List of sets of possible mappings that can be applied
������� ���
	�	������� ���������������������� "!$#&% �('�)��*,+-�.���*-�(*,'0/1�2��3�3$�43
576 8:9�;28:9&<=8:9�> "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 8L "?MI C % E 8L N?MI C % E 8L "?MIK5H%
5L# 9&;=8:9&<28:9&> "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 N?JI C % E 8L "?MI C % E 8L N?MIO5H%
5(; 8:9&;H9&<28:9&> "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 8L N?MI C % E "?MI C % E 8L N?MIO5H%
5 < 8:9 ; 8:9 < 9 > "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 8L N?MI C % E 8L "?MI C % E N?MIO5H%
5 > 9 ; 9 < 8:9 > "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 "?MI C % E N?MI C % E 8L "?MIK5H%
5(P 9 ; 8:9 < 9 > "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 "?MI C % E 8L N?MI C % E "?MIK5H%
5(Q 8:9 ; 9 < 9 > "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 8L "?MI C % E N?JI C % E "?MIK5H%
5(R 9 ; 9 < 9 > "?A@BDCFEGC @B 5 E ?A@B 5H% E ?JIK5 N?MI C % E "?MI C % E N?JIS5H%

Note that for the cases C0, C1, C2, C4, C5, and C6, the resulting formula
constraints(ds

1) is unsatisfiable. Therefore, these cases can be discarded.
Only 2 canonical databases (that correspond to the cases C3 and C7, there-
fore labelled d3

1 and d7
1), shown in Table 9.2, produce satisfiable formulas

and can be considered to test the bag containment.

Table 9.2: Splitting of a canonical database into 2
������� �	��
���������� ������������������� "!$#&%('�)$*�+,#-'�%��.�/�"� '�0

) 1 2
��3 � � � 45476 8:9;�=< 45>?6 8A@B�C< 6 DFEGIHKJ:H EGKLMJ DFEGNLOJ DQP L < J 6 R � DQP H � < 4�4

45S?6 8A@�T;<
��U� ��� 45476 8 9;� < 45>?6 8 @B� < 6 DFEGKHIJ:H EGKLOJ DFEGKLMJ DVP L < J 6 � DQP H � < 4�4

45S?6 8 @�T <

ut

9.3 Step 2: Apply Q1 and Q2 to all canonical
databases

This section shows how to apply Q1 and Q2 to a canonical database in
order to derive only the canonical fact. Both queries will derive it with
a multiplicity that is represented by a polynomial (recall that canonical
databases are LS2 databases).

92

9.3.1 Application of Q1 to a canonical database ds
i

By construction of CDBS(Q1), the assignment mappings from Q1 that can
be applied to a canonical database ds

i are known. Therefore, the multi-
plicity of the canonical fact tds

i
obtained by Q1 is computed by adding the

multiplicities obtained by each single mapping, as shown in Chapter 2.

9.3.2 Application of Q2 to a canonical database ds
i

Similiarly as for Q1, there will be different sets of assignment mappings that
can be applied from Q2 to ds

i such that Q2 obtains the canonical fact. For
each of these sets of mappings, a different multiplicity for the canonical fact
is obtained, and all of them must be considered.

In order to compute such multiplicities, it is necessary to study which
sets of assignment mappings from Q2 to ds

i (to obtain the canonical fact)
can be applied.

The procedure used to compute all the different multiplicities is the
following:

Let M′ = {τ1, . . . , τm} be the set of assignment mappings from Q2 to ds
i

(possible mappings). The sets of possible assignment mappings that can be
applied to ds

i are parts of M′:

P (M′) = {∅, {τ1}, . . . , {τm}, {τ1, τ2}, . . . , {τ1, . . . , τm}} =
{M ′

0, . . . , M
′
2m−1}.

It is necessary to build the list of cases that correspond to the different
sets of mappings that can be applied from Q2 to ds

i . For each case, we
shall build a formula that is the conjunction of constraints(ds

i) and other
constraints that specify that a concrete set of assignment mappings M ′

j in
P (M′) can be applied from Q2 to ds

i . These constraints are added to the
formula in the following way:

• Let M ′
j be a set of mappings in P (M′).

• For each mapping τk ∈ M′, if τk ∈ M ′
j , then add τk(F1 ∧ . . . ∧ Fr) to

the formula, otherwise add ¬(τk(F1 ∧ . . .∧Fr)), where the F ’s are the
built-in predicates of Q2.

• The resulting formula must be satisfiable in order for the case to be
considered. If the formula is unsatisfiable, it would mean that Q2

cannnot be applied to ds
i to obtain the canonical fact using exaclty

the assignment mappings in M ′
j , because the built-in predicates of Q2

93

would not be satisfied. Therefore, if the formula is unsatisfiable, the
case is discarded.

For each case with a satisfiable formula, the multiplicity of the canon-
ical fact obtained by Q2 is the sum of the multiplicities obtained by
Q2 using only the mappings in M ′

j . Let us denote this multiplicity as
(|tds

i
|Q2(ds

i)
)M ′

j
.

Note that each of the previous cases is a possible case, that is, for some
values of the uninterpreted constants, Q2 can obtain the canonical fact using
the sets of assignment mappings specified for each case. However, there is no
guarantee that a particular set of mappings can always be applied. We need
to compute the multiplicity of the canonical fact for all the possible cases
because, as we shall see in the next section, the multiplicity obtained by Q1

must be compared with all of them in order to prove the bag containment.
A specially important case is C0, which corresponds to the empty set

of mappings. If it produces a satisfiable formula, it means that there is
a possibility that none of the assignment mappings from Q2 to ds

i can be
applied, so Q2 does not derive the canonical fact (the multiplicity would be
0)1. If this is the case, the general QCC procedure can stop at this point
concluding that the bag containment does not hold.

The following example shows how to apply Q2 to a canonical database.

Example 9.4 Assume there is the following canonical database d0
1 for some

query Q1 defined over two predicates r and p:

r p td0
1

constraints(d0
1)

A B [mr1] A B [mp1] A A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D
D C [mp2] ∧A < C

Let Q2 be the query

Q2 : q(X) :- r(X, Y), p(X,Y), p(Z, T), X < T

There are two assignment mappings from Q2 to d0
1 that obtain the canon-

ical fact. They are shown in the following table, along with the constraints
they must satisfy and the multiplicity of the canonical fact obtained using
only each individual mapping:

1Note that the formula for the case C0 is identical to the formula F used in Chapter 6
to test set containment of inequality queries, where the satisfiability of F also meant that
Q2 would not obtain the canonical fact.

94

������� �	��
� ������� ��� ������� ��� ����
�� ��� � �"! �$# %'&)(*�# +�,.-/&)(*101�1243
5�6 798:798 ; �=<?>A@CBED FHG 6JI � KL�=<?>$@MBED FCN 6)I � KO��<�>$@CB�D FMN 6AI � <	�P@ FHG 6 FHQN 6
5 Q 798:R�S ; �=<?>A@CBED F G 6 I � KL�=<?>$@MBED F N 6 I � KL��TU>AVWBED F N Q I � <	�XV F N 6 F N 6 F N Q
The set of possible mappings is M′ = {τ1, τ2}, therefore

P (M′) = {∅, {τ1}, {τ2}, {τ1, τ2}}.
The following table shows all the possible cases, the formula that must be
satisfiable in order to apply the set of mappings, and the multiplicity of the
canonical fact obtained by Q2 using only this set of mappings.

For example, the row for the case C1 corresponds to the set of mappings
M ′

1 = {τ1}, where τ1 can be applied and τ2 cannot (represented as τ1 ¬τ2).

Case Mappings Formula (|td0
1
|Q2(d0

1))M′
j

C0 ¬τ1 ¬τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D]
∧[A < C] 0

∧[¬(A < B) ∧ ¬(A < C)]
C1 τ1 ¬τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D]

∧[A < C] mr1m2
p1

∧[(A < B) ∧ ¬(A < C)]
C2 ¬τ1 τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D]

∧[A < C] mp1mp1mp2

∧[¬(A < B) ∧ (A < C)]
C3 τ1 τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D]

∧[A < C] mr1m2
p1+

∧[(A < B) ∧ (A < C)] mp1mp1mp2

Case C0 produces an unsatisfiable formula, so it will be discarded. This
implies that it is impossible that none of the two mappings from Q2 to d0

1

can be applied. Thus, Q2 will always obtain the canonical fact.
The formula for the case C1 is unsatisfiable, so it will not be considered.

It means that it is not possible for Q2 to obtain the canonical fact using
only the assignment mapping τ1.

The formula for the case C2 is satisfiable. For this case, the set of
mappings that can be applied is {τ2}, and the multiplicity of the canonical
fact is mr1mp1mp2.

The formula for the case C3 is satisfiable. For this case, the set of
mappings that can be applied is {τ1, τ2}, and the multiplicity of the canonical
fact using this set of mappings is mr1m

2
p1 + mr1mp1mp2.

Therefore, for this example, Q2 can obtain the canonical fact with two
different multiplicities, those that correspond to the cases C2 and C3. In
other words, applying Q2 to any ground database isomorphic to d0

1, and de-
pending on the “less than” relationships among the constants, Q2 can obtain
the canonical fact either using only the assignment mapping τ2 (therefore

95

the multiplicity of the canonical fact is mr1mp1mp2) or using both τ1 and
τ2, with a multiplicity of mr1m

2
p1 + mr1mp1mp2. ut

9.4 Step 3: Test the bag containment

At this point, the multiplicity of the canonical fact obtained by Q1, which is
predefined for each canonical database, is known. For Q2, there are several
possible multiplicities, depending on the sets of assignment mappings that
can be applied. We also know that Q2 always obtains the canonical fact with
some multiplicity, by testing the unsatisfiability of the formula corresponding
to case C0 (if it were satisfiable, that would mean that the containment
does not hold, because there would be cases where none of the assignment
mappings from Q2 could be applied).

In this third step, the multiplicity of the canonical fact obtained by Q1

is compared with all the multiplicities obtained by Q2. If, for all the cases
(and for all databases), the multiplicity obtained by Q2 is always at least
as high as that obtained by Q1, then the containment holds (Q1 ≤b Q2),
otherwise Q1 6≤b Q2.

The test is done, as we shall prove in Theorem 9.1, by checking the
following: Q1 ≤b Q2 ⇐⇒ ∀di ∈ CDBS(Q1) |tdi |Q1(di) ≤ (|tdi |Q2(di))M ′

j
, ∀M ′

j

possible set of assignment mappings from Q2 to di.
Note that (as it was the case in Example 9.4) the different multiplicities

of the canonical fact obtained by Q2 can be comparable (the multiplicity
obtained in the case C2 is strictly lower than the multiplicity for the case
C3), so in this step we need to compare the multiplicity of the canonical
fact obtained by Q1 with the lowest multiplicity obtained by Q2. If the Q2

obtains the canonical fact with multiplicities that are not comparable, the
multiplicity obtained by Q1 (which is unique) must be compared with all
the multiplicities obtained by Q2.

9.5 Validation of QCC for the bag containment of
inequality queries

The following lemma proves, as in the previous cases, that the application of
an assignment mapping from an inequality query Q1 to any ground database
D is isomorphic to some canonical database ds

i ∈ CDBS(Q1).

Lemma 9.1 Let Q1 be an inequality query of the form
q(~W) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn. Let τ be an assignment map-

96

ping from Q1 to a database D. Let sd = {τ(p1(~Y1; [c1])), · · · , τ(pl(~Yl; [cl]))};
i.e., sd is the subbag of D where τ maps the ordinary predicates of Q1.
Then sd is isomorphic to a canonical database ds

i ∈ CDBS(Q1):

∃ds
i ∈ CDBS(Q1) | ds

i is isomorphic to sd

Proof:
The first part of the proof for this lemma is similar to Lemma 8.1.

Given that the canonical databases represent all the patterns of equali-
ties among uninterpreted constants (these patterns are built by construc-
tion of the canonical databases), sd is isomorphic to a canonical database
ds

i ∈ CDBS(Q1).
Besides, in order for the isomorphism to hold, the constants in the

facts of sd must satisfy constraints(ds
i). But this is also true, because

constraints(ds
i) always represent the application of an assignment mapping

from Q1 to a ground database D (recall that, by construction of CDBS(Q1),
every set of mappings that can be applied is specified by adding some spe-
cific constraints). ut

The following theorem demonstrates that the test shown in the previ-
ous section, that is, ∀ds

i ∈ CDBS(Q1), |tds
i
|Q1(ds

i)
≤ (|tds

i
|Q2(ds

i)
)M ′

j
, for all

possible set of assignment mappings M ′
j from Q2 to ds

i , is a necessary and
sufficient condition to test the bag containment.

Theorem 9.1 Let Q1 and Q2 of the form

Q1 : q(~W) :- p1(~Y1), . . . , pl(~Yl),K1, . . . , Kn.

Q2 : q(~V) :- p1(~Z1), . . . , pk(~Zk), F1, . . . , Fm.

Then, Q1 ≤b Q2 ⇐⇒ ∀ds
i ∈ CDBS(Q1) |tds

i
|Q1(ds

i)
≤ (|tds

i
|Q2(ds

i)
)M ′

j
, for all

possible set of assignment mappings M ′
j from Q2 to ds

i .

Proof:

Only If : If there is a di ∈ CDBS(Q1) such that |tds
i
|Q1(ds

i)
6≤

(|tds
i
|Q2(ds

i)
)M ′

j
, for some set of assignment mappings M ′

j from Q2 to ds
i ,

we can build a ground database D to show a counterexample showing
that Q2 cannot obtain a fact (tds

i
) with at least the same multiplicity

as Q1, and therefore Q1 6≤b Q2. Note that this includes the case when

97

Q2 does not obtain the canonical fact (when the case C0 produces
a satisfiable formula), because the multiplicity of the canonical fact
obtained by Q2 would be zero.

If : Assuming |tds
i
|Q1(ds

i)
≤ (|tds

i
|Q2(ds

i)
)M ′

j
, for all possible set of assignment

mappings M ′
j from Q2 to ds

i , we want to prove that Q1 ≤b Q2.

Let D be an arbitrary database from which Q1 obtains a fact u using
several assignment mappings. By Lemma 9.1, the bag of facts reached
from the atoms in Q1 by every assignment mapping is isomorphic to a
canonical database ds

i . Since Q2 always obtains the canonical fact tds
i

with at least the same multiplicity as Q1 from all canonical databases,
the total multiplicity of u obtained by Q2 is at least the same as the
multiplicity obtained by Q1. Therefore, Q1 ≤b Q2.

ut

Corollary 3 Given two inequality queries Q1 and Q2, Q1 is bag contained
into Q2 (Q1 ≤b Q2) if and only if ∀d ∈ CDBS(Q1), Q1(d) ⊆b Q2(d).

Proof:
Only If: If there is a d ∈ CDBS(Q1) such that Q1(d) 6⊆b Q2(d), we

can build a ground database D to show a counterexample that shows that
Q1 6≤b Q2.

If: By construction, td ∈ Q1(d); by hypothesis, td ∈ Q2(d) with
at least the same multiplicity as the obtained by Q1. Then, ∀d ∈
CDBS(Q1), |td|Q1(d) ≤ |td|Q2(d). Using the previous theorem, we conclude
that Q1 ≤b Q2. ut

9.6 Example

Example 9.5 Let Q1 and Q2 be the following inequality queries:

Q1 : q(X, T) :- p(X), r(Y, X), r(Z, T), s(T), X > Y.

Q2 : q(X, T) :- p(X), r(Y, Z), r(W,Z), s(T), Y < Z, Y ≤ W.

Let us test if Q1 is bag contained in Q2, following the three steps of QCC:

Build CDBS(Q1):
Table 9.3 shows the initial set of canonical databases.
This table includes, for each initial canonical database, the two first sets

of constraints that will be included in constraints(d), since these sets will

98

Table 9.3: Initial CDBS(Q1)
Q-Mapping θi(db(Q1)) constraints td

CDB X Y Z T p r s q

d1 A A A A A AA A A > A AA
(Not satisfiable)

d2 A A A B A AA B A 6= B ∧A > A AB
AB (Not satisfiable)

d3 A A B A A AA A A 6= B ∧A > A AA
BA (Not satisfiable)

d4 A B A A A BA A A 6= B ∧A > B AA
AA

d5 B A A A B AB A A 6= B ∧B > A BA
AA

d6 A A B B A AA B A 6= B ∧A > A AB
BB (Not satisfiable)

d7 A B A B A BA B A 6= B ∧A > B AB
AB

d8 A B B A A BA A A 6= B ∧A > B AA
d9 A A B C A AA C A 6= B ∧A 6= C ∧B 6= C ∧A > A AC

BC (Not satisfiable)
d10 A B A C A BA C A 6= B ∧A 6= C ∧B 6= C ∧A > B AC

AC
d11 A B C A A BA A A 6= B ∧A 6= C ∧B 6= C ∧A > B AA

CA
d12 B A A C B AB C A 6= B ∧A 6= C ∧B 6= C ∧B > A BC

AC
d13 B A C A B AB A A 6= B ∧A 6= C ∧B 6= C ∧B > A BA

CA
d14 B C A A B CB A A 6= B ∧A 6= C ∧B 6= C ∧B > C BA

AA
d15 A B C D A BA D A 6= B ∧A 6= C ∧A 6= D ∧B 6= C∧ AD

CD B 6= D ∧ C 6= D ∧A > B

be included in the final constraints. The constraints generated for the Q-
mappings τ1, τ2, τ3, τ6, and τ9 already produce an unsatisfiable formula,
therefore Q1 does not derive the canonical fact from them. Thus, the cor-
responding canonical databases will not be further considered to test the

99

bag containment. For the rest of the canonical databases, we must find the
possible mappings from Q1 to them, build the list of cases corresponding to
the sets of possible mappings, and generate the final canonical databases.

d4: There are two assignment mappings from Q1 to d4, shown in the fol-
lowing table.

X Y Z T p(X) r(Y,X) r(Z,T) s(T) X > Y

τ1 A B A A p(A) r(B,A) r(A,A) s(A) A > B

τ2 A B B A p(A) r(B,A) r(B,A) s(A) A > B

The assignment mapping τ1 is isomorphic to the Q-mapping θ4, therefore
it can always be applied. The set of possible mappings for this case is
M = {τ2}, therefore P (M) = {∅, {τ2}}.

Let us build the list of cases that correspond to each set of possible map-
pings. For each case, the following table shows the constraints that would
be associated to each canonical database, represented as constraints(dj

i),
where i references the initial canonical database di and j references the case
Cj .

Case Mappings constraints(dj
4)

C0 ¬τ2 [A 6= B ∧A > B] ∧ ¬(A > B)
C1 τ2 [A 6= B ∧A > B] ∧ (A > B)

It is easy to check that constraints(d0
4) is unsatisfiable. Therefore, only one

canonical database, d1
4, is generated,

d5: There is only one assignment mapping from Q1 to d5, and it is isomor-
phic to θ5. Therefore, only one canonical database, d0

5 (which is identical to
d5 is generated.

d7: There is only one assignment from Q1 to d7, isomorphic to θ7. There-
fore, only the canonical database d0

7, identical to d7, is generated.

d8: Again, there is only one assignment mapping from Q1 to d8, and only
the canonical database d0

8 is generated.

d10: As in the previous cases, the only assignment mapping from Q1 to
d10 is isomorphic to the Q-mapping (θ10 in this case), and the canonical
database d0

10, identical to d10, is generated.

100

d11: There are 4 assignment mappings that can be applied from Q1 to d11,
shown in the following table.

X Y Z T p(X) r(Y,X) r(Z,T) s(T) X > Y

τ1 A B C A p(A) r(B,A) r(C,A) s(A) A > B

τ2 A B B A p(A) r(B,A) r(B,A) s(A) A > B

τ3 A C C A p(A) r(C,A) r(C,A) s(A) A > C

τ4 A C B A p(A) r(C,A) r(B,A) s(A) A > C

The assignment mapping τ1 is isomorphic to θ11 and can always be applied.
Thus, the set of possible assignment mappings is M = {τ2, τ3, τ4}.

The following table shows the list of cases that correspond to each of the
8 sets of assignment mappings in P (M).

Case Mappings constraints(dj
11)

C0 ¬τ2 ¬τ3 ¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
¬(A > B) ∧ ¬(A > C) ∧ ¬(A > C)

C1 ¬τ2 ¬τ3 τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
¬(A > B) ∧ ¬(A > C) ∧ (A > C)

C2 ¬τ2 τ3 ¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
¬(A > B) ∧ (A > C) ∧ ¬(A > C)

C3 τ2 ¬τ3 ¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
(A > B) ∧ ¬(A > C) ∧ ¬(A > C)

C4 ¬τ2 τ3 τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
¬(A > B) ∧ (A > C) ∧ (A > C)

C5 τ2 ¬τ3 τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
(A > B) ∧ ¬(A > C) ∧ (A > C)

C6 τ2 τ3 ¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
(A > B) ∧ (A > C) ∧ ¬(A > C)

C7 τ2 τ3 τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B] ∧
(A > B) ∧ (A > C) ∧ (A > C)

It is clear that the only satisfiable formulas are those for cases C3 and
C7. Therefore, two canonical databases, d3

11 and d7
11, are generated. Both

databases have the same facts as d11, and their constraints are those shown in
the previous table for cases C3 and C7, respectively. For d3

11, only assignment
mappings τ1 and τ2 can be applied; for d7

11, all 4 assignment mappings can.

d12, d13, d14, and d15: There is only one assignment mapping from Q1

to each of those canonical databases, and it is always isomorphic to the

101

Table 9.4: Final CDBS(Q1)���������	��
�	� ������������������� � �"!$#&%�'�(*)�!+%�#*�,��- � � %�.
/10�2 35476�8 9 ' # :
� �; < 2 <=< <�> ?A@CB 2 <D> ?FE � B <D> ?HG�B IKJLNMPO I5Q M <R<

<R<D> ? ETS B�VUW 2 <=<=< 2 > ? @ B < 2 > ? E � B <D> ? G B IKJLNMPOXM QYI 2 <
<R<D> ? ETS B� U Z < 2 < 2 <D> ? @ B 2 <D> ? E � B 2 > ? G B IKJLNMPO I5Q M < 2
< 2 > ?FE�S B�VU[< 2P2 < <D> ? @ B 2 <D> ' B <D> ? G B IKJLNMPO I5Q M <R<�VU � U < 2 < / <D> ? @ B 2 <D> ? E � B / > ? G B IKJL\MPO I7JLP]^OXM JLP]YO I5Q M < /
< / > ? E�S B�*_��� < 2`/ < <D> ?a@"B 2 <D> ?FE � B <D> ?HG�B IKJL\MPO I7JLP]^OXM JLP]YO I=Q MPOFb � I=Q] � <R</ <D> ?FETScB� Z ��� < 2`/ < <D> ? @ B 2 <D> ? E � B <D> ? G B I7JL\M\O IKJLP]^OXM JL`]dO I5Q MPO � I=Q] � <R</ <D> ? ETS B�VU � S 2 <=< / 2 > ?A@"B < 2 > ?FE � B / > ?HG�B IKJL\MPO I7JLP]^OXM JLP]YOXM QdI 2e/
< / > ?FE�ScB�VU � _ 2 < / < 2 > ? @ B < 2 > ? E � B <D> ? G B IKJL\MPO I7JLP]^OXM JLP]YOXM QdI 2 </ <D> ? ETS B� U � ; 2`/ <=< 2 > ? @ B /12 > ? E � B <D> ? G B I7JL\M`O IKJLP]YOfM JL`]^OfM Q] 2 <
<R<D> ?XETScB�VU � W < 2`/\0 <D> ?a@"B 2 <D> ?FE � B 0 > ?FG�B I7JLPM\O IKJL\]YO I7JL\g=OXM JL`]hO < 0
/10 > ?FETScB M JLNgiOX] JLNgiO I5Q M

corresponding Q-mapping, so only the one canonical database is generated
for each case (d0

12, d0
13, d0

14, and d0
15).

Therefore, the final set of canonical databases CDBS(Q1) is the one
shown in Table 9.4.

Apply Q1 and Q2 to each canonical database:
All the mappings from Q1 to each canonical database that obtain the

canonical fact are known. Therefore, the multiplicity of the canonical fact is
the sum of the multiplicities obtained by each individual assignment map-
pings. Table 9.5 shows the assignment mappings from Q1 to each canonical
database and the multiplicity of the canonical fact.

In order to apply Q2 to all canonical databases, we must find all the
possible mappings from Q2 to each one of them, and then build the list of
cases that will show the different multiplicities of the canonical fact obtained
by Q2.

d1
4: There are 2 possible assignment mappings that can be applied from Q2

to d1
4, shown in the following table.

102

Table 9.5: Application of Q1 to all canonical databases
���������	��
���� �������������������������� � ��! "$#%#'&)(+*�,	-�(/.102.	34
��

57698 : � � ; "=<�<�>@?A,	#%#%(/0%B�< C � ! C DFEHG !JI
KMLONQP

� �R "TS UWV�X 8Y"ZS U\[H�]X "ZS U2^�X _O`acbed _Mf b "g" "h"h8e" UWV�U2[�i�U\[H�JUj^�k
"g"lS U2[�iJX "M8c8c" UmV	U i[J� Uj^

��no 89S U V X "=8pS U [H� X "ZS U ^ X _O`acbedqb fr_ 8Y" 8e"h"h" U V U [H� U [�i U ^
"g"lS U [�i X

��ns "OS UWV�X 8Y"ZS U\[H�]X 8tS Uj^�X _O`acbed _Mf b "=8 "M8c"h8 UWV�U\[H�JU2[�i�U2^
"=8pS U\[]iHX

��nu "OS UWV�X 87"vS U\[�X "ZS U2^�X _O`acbed _Mf b "g" "M8c8c" UWV�U\[H�JU2[�i�U2^
� n � n "OS UWV�X 8Y"ZS U\[H�]X 5pS U2^�X _O`acbcd _Z`aewrd\b `acwxd "g5 "h8e"p5 UWV�U\[H�JU2[�i�U2^

"g5yS U []i X _Mf b
��z��� "OS UWV�X 8Y"ZS U\[H�]X "ZS U2^�X _O`acbcd _Z`aewrd\b `acwxd "g" "h8{5c" UWV�U2[J�HU\[]i�Uj^�k

57"ZS U\[]iJX _Mf bcd2| �}_hf w "M8c8c" UmV	U i[J� Uj^
� s ��� "OS UWV�X 8Y"ZS U\[H�]X "ZS U2^�X _O`acbcd _Z`aewrd\b `acwxd "g" "h8{5c" UWV�U2[J�HU\[]i�Uj^�k

57"ZS U []i X _hf bcd ��_Mf w "M8c8c" U V U i[H� U ^ k
"p5{5c" U V U i[]i U ^ k
"p5c8e" U V U []i U [J� U ^

� n �~i 8pS UmV�X "=8pS U\[H�]X 5pS U2^�X _O`acbcd _Z`aewrd\b `acwxd 8�5 8e"h"p5 UWV�U\[H�JU2[�i�U2^
"g5yS U2[]iHX b fr_

��n � z 8pS U V X "=8pS U [H� X "ZS U ^ X _O`acbcd _Z`aewrd\b `acwxd 8Y" 8e"p5c" U V U [H� U [�i U ^
57"ZS U []i X b fr_

��n � R 8pS UmV�X 578tS U2[H�]X "ZS U2^�X _O`acbcd _Z`aewrd\b `acwxd 8Y" 8{5c"h" UWV�U\[H�JU2[�i�U2^
"g"lS U2[�iJX b f w

��n � o "OS UWV�X 8Y"ZS U\[H�]X 6lS U2^JX _O`acbcd _v`aewrd _O`ac�Md\b `a{wxd "g6 "h8�5e6 UWV�U\[H�JU2[�i�U2^
576lS U\[]iHX b `ae�yd\w `ac�Md _Mf b

��������� 	�
��� ��
������� ��
������� ��
��� ��� � ��! "
$# %'&)(* # +-,)./&)(*$0 $1$243657�8 9�:;9�9�: 	-
 9=<�> ?A@CB ��
 : � 9D<E> ?GFH8$B ��
 : � 9=<�> ?IFJ8JB ��
 9=<�> ?LKMB N��PO N�!PN ?A@�?IQFH8 ?LK
7 Q 9�9�9�9�9 	-
 9=<�> ? @ B ��
 : � 9D<E> ? FH8 B ��
 9 � 9=<�> ? F Q B ��
 9=<�> ? K B N��PO NR!SO ? @ ? FJ8 ? F Q ? K

The set of possible mappings from Q2 do d1
4 is M′ = {τ1, τ2}, thus

P (M) = {∅, {τ1}, {τ2}, {τ1, τ2}} = {M ′
0, M

′
1,M

′
2,M

′
3}. The following table

shows whether each of these sets of assignment mappings can be applied to
d1

4.������� ���
	�	������� �������������
��� � �"!#� �%$ & ')(*,+,- '/. +102- �3&�4 +65 '87 - 4 +69:+ 7 02- �3&�4 +;5 '87 - 4 +;9 '<7 0
� ! � � ! � $ & ')(*=+,- '>. +?0@- �3&A4 +65 '<7 - 4 +;9B+ 7 02- &A4 +65 '<7 - 4 +69 '87 0
�C$ �D!%� �%$ & ')(*=+,- '>. +?0@- &A4 +;5 '<7 - 4 +;9B+ 7 0@- �3&A4 +65 '<7 - 4 +69 '87 0
�CE � ! � $ & ';(*F+=- '>. +10G- &�4 +65 '87 - 4 +69:+ 7 02- &�4 +;5 '87 - 4 +;9 '<7 0

The formula for the case C0 is not satisfiable. This case corresponds to
the empty set of assignment mappings, that is, the case when neither τ1

nor τ2 can be applied (it would be the case when Q2 does not derive the
canonical fact). Since the formula is not satisfiable, it means that Q2 always
obtains the canonical fact. Cases C2 and C3 also produce unsatisfiable
formulas, therefore it is not possible to apply exclusively either τ1 or τ2. C3

produces a satisfiable formula, therefore it is always possible to apply both
mappings to d1

4. The resulting multiplicitiy would be |td1
4
|Q1(d1

4) = mpm
2
r1ms

+ mpmr1mr2ms.

103

d0
5: There is only one assignment mapping from Q2 to d0

5, shown in the
following table.

��������� 	�
��� ��
������� ��
������� ��
��� ���! ��"$#
&% ')(+*,-% .0/213(+*,546575869;:
<�= >@?�>�?�? 	�
 >�ACB DFE�G ��
 ? � >�ACB DIHJ=&G ��
 ? � >�A�B DKH+=+G �C
 ?LACB DNM&G O��$P O�"QO DFERDKSH+= DKM

The set of possible mappings for this case is M′ = {τ1}, therefore
P (M) = {∅, {τ1}}. The list of cases is shown in the following table.

Case Mappings Formula
C0 ¬τ1 [A 6= B ∧B > A] ∧ ¬[A < B ∧ (A ≤ A)]
C1 ¬τ1 [A 6= B ∧B > A] ∧ [A < B ∧ (A ≤ A)]

The unsatisfiability of the formula for case C0 indicates that Q2 always
obtains the canonical fact. Case C1 produces a satisfiable formula, therefore
τ1 can always be applied. The multiplicity of the canonical fact obtained by
Q2 for this database is |td0

5
|Q1(d0

5) = mpm
2
r1ms.

d0
7: There is only one assignment mapping from Q2 to d0

7, shown in the
following table.

��������� 	�
��� ��
������� ��
������� ��
��� ��� � ��!#"
%$ &('*)+,$ -�.0/1'*)+(2354563798
:�; <�=><�=>= 	?
 <A@�B CEDGF ��
 = � <H@IB CKJL;5F ��
 = � <H@IB CKJL;%F ��
 =M@�B CON5F P��#Q P�!RP CSDGCUTJ*; CUN

The set of possible mappings for this case is M′ = {τ1}, therefore
P (M) = {∅, {τ1}}. The list of cases is shown in the following table.

Case Mappings Formula
C0 ¬τ1 [A 6= B ∧A > B] ∧ ¬[(B < A) ∧B ≤ B]
C1 ¬τ1 [A 6= B ∧A > B] ∧ [(B < A) ∧B ≤ B]

As for the previous database, the unsatisfiability of the formula for case
C0 indicates that Q2 always obtains the canonical fact, and C1 produces a
satisfiable formula. Thus, τ1 can always be applied, and the multiplicity of
the canonical fact obtained by Q2 for d0

7 is |td0
7
|Q1(d0

7) = mpm
2
r1ms.

d0
8: The only assignment mapping from Q2 to this database is shown in

the following table.

��������� 	�
��� ��
������� ��
������� ��
��� ����� ���!
#" $&%(')*" +-,/.0%(')&12#3#42576
8�9 :�;<:�:�; 	-
 :>=�? @BADC ��
 ; � :E=�? @GF(C ��
 ; � :>=�? @HFIC ��
 :E=�? @HJ#C KL�NM K��!K @BAO@GPF @HJ

The following list of cases shows that Q2 always obtains the canonical
fact applying the assignment mapping τ1 (the formula for the case C0 is
again unsatisfiable).

104

Case Mappings Formula
C0 ¬τ1 [A 6= B ∧A > B] ∧ ¬[(B < A) ∧B ≤ B]
C1 ¬τ1 [A 6= B ∧A > B] ∧ [(B < A) ∧B ≤ B]

The multiplicity of the canonical fact obtained by Q2 for this database is
|td0

8
|Q1(d0

8) = mpm
2
rms.

d0
10: There are two assignment mappigns from Q2 to d0

10:

��������� 	�
��� ��
������� ��
������� ��
��� ����� �! #"
%$ &('*) +) $,.-0/1'*) +)%2 %3%46587
9�: ;�<=;?>=< 	.
 ;A@�B CEDGF ��
 < � ;H@IB CKJL:MF ��
 < � ;A@�B CNJ*:*F �I
 >O@IB CNP*F Q!�SR QT SQ CED�CNUJL: CVP
9 U ;�;?>W>#; 	.
 ;A@�B C D F ��
 ; � >O@IB C J U F ��
 ; � >O@�B C J U F �I
 >O@IB C P F R��YX R� SR C D CNUJ U C P

The list of cases for this database is shown in the following table.������� ���
	�	������� �������������
��� �! #"$�! &% ' (*)+-,-. (/)+ � .0,)+ � . (21 ,435. �6' ,87 (.9,/:;,43<. �6' (7 � . (: (3
� " �! " % ' (*)+=,-. (*)+ � .9,)+ � . (21 ,>3�. �6' ,?7 (.0,/:;,43<. ' (7 � . (: (3
�@% A"&�! &% ' (*)+=,-. (*)+ � .9,)+ � . (21 ,>3�. ' ,/7 (.0,/:B,>39. �6' (7 � . (: (3
�@C " % ' (/)+D,=. (*)+ � .0,)+ � . (E1 ,435. ' ,/7 (.9,/:;,43<. ' (7 � . (: (3

Cases C0 and C1 produce unsatisfiable formulas, so they are discarded.
The formulas generated for the case C2 (corresponding to the set of mappings
M ′

2 = {τ1}) and C3(corresponding to the set of mappings M ′
3 = {τ1, τ2})

are satisfiable, therefore Q2 obtains the canonical fact from d0
10 with the

following two multiplicities:

(|td0
10
|Q2(d0

10)
)M ′

2
= mpm

2
r1ms

(|td0
10
|Q2(d0

10)
)M ′

3
= mpm

2
r1ms + mpm

2
r2ms

d3
11: There are two assignment mappings from Q2 to this database.

��������� 	�
��� ��
������� ��
������� ��
��� ����� �! #"
%$ &('*) +,+-$.�/102'*) +3+545%6%75839
:�; <�=><�<�= 	?
 <A@�B CEDGF ��
 = � <H@IB CKJL;%F ��
 = � <A@IB CMJ*;*F �I
 <A@IB CONPF Q!�SR Q! TQ CEDGCKUJL; CON
: U <�=V<�<XW 	?
 <A@�B C D F ��
 = � <H@IB C JL; F ��
 W � <A@IB C J U F �I
 <A@IB C N F Q!�SR Q! #Y C D C JL; C J U C N

The following table shows the list of cases:

Case Mappings Formula

C0 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧ ¬(A > C)]∧
¬[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]

C1 ¬τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧ ¬(A > C)]∧
¬[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]

C2 τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧ ¬(A > C)]∧
[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]

C3 τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧ ¬(A > C)]∧
[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]

105

For this database, only case C3 produces a satisfiable formula. Therefore,
Q2 obtains the canonical fact from d3

11 with the multiplicity:

(|td3
11
|Q2(d3

11)
)M ′

3
= mpm

2
r1ms + mpmr1mr2ms

d7
11: There are 4 possible assignment mappings from Q2 to d7

11:

��������� 	�
��� ��
������� ��
������� ��
��� ��� � ��! "
$# %'&)(*+*,# -�.0/1&)(*+*324656748+9
:�; <�=><�<�= 	?
 <A@�B CEDGF ��
 = � <H@IB CKJ);$F ��
 = � <A@�B CLJM;MF �I
 <A@�B CON$F P�� Q P�! P CRDGCKSJ); CON
: S <�=T<�<VU 	?
 <A@�B C D F ��
 = � <H@IB C J); F ��
 U � <A@�B C J S F �I
 <A@�B C N F P�� Q P�!XW C D C J); C J S C N:0Y <VU�<�<�= 	?
 <A@�B CEDGF ��
 U � <H@IB CKJ S F ��
 = � <A@�B CLJM;MF �I
 <A@�B CON$F WV�ZQ WV! P CED,CKJ S CLJM;)CLN:\[<VUT<�<VU 	?
 <A@�B CEDGF ��
 U � <H@IB CKJ S F ��
 U � <A@�B CLJ S F �I
 <A@�B CON$F WV�ZQ W]!XW CRDGCKSJ S CON

For this database, the list of cases consists of 24 = 16 elements, which is
the cardinality of P (M′), as the next tables show.

Case Mappings Formula
C0 ¬τ1¬τ2¬τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧

¬[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

C1 ¬τ1¬τ2¬τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
¬[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]

C2 ¬τ1¬τ2τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
¬[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧

[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]
C3 ¬τ1τ2¬τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧

¬[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

C4 τ1¬τ2¬τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

106

Case Mappings Formula
C5 ¬τ1¬τ2τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧

¬[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]

C6 ¬τ1τ2¬τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
¬[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]

C7 τ1¬τ2¬τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
¬[C < A ∧C ≤ B] ∧ [C < A ∧ C ≤ C]

C8 ¬τ1τ2τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
¬[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧

[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]
C9 τ1¬τ2τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧

[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

C10 τ1τ2¬τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

C11 ¬τ1τ2τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
¬[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧

[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]
C12 τ1¬τ2τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧

[B < A ∧B ≤ B] ∧ ¬[B < A ∧B ≤ C]∧
[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]

C13 τ1τ2¬τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧
¬[C < A ∧ C ≤ B] ∧ [C < A ∧ C ≤ C]

C14 τ1τ2τ3¬τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧
[C < A ∧C ≤ B] ∧ ¬[C < A ∧ C ≤ C]

C15 τ1τ2τ3τ4 [A 6= B ∧A 6= C ∧B 6= C ∧A > B ∧A > C]∧
[B < A ∧B ≤ B] ∧ [B < A ∧B ≤ C]∧

[C < A ∧C ≤ B] ∧ [C < A ∧ C ≤ C]

Testing the satisfiability of these 15 formulas (the method presented in
Section 6.5 can be used to test it, but the inequalities that will produce the
unsatisfiability of the formulas are shown in boldface in the table), only two
of them are satisfiable: those corresponding to cases C12 and C13. Therefore,
the multiplicities of the canonical fact obtained by Q2 are the following:

107

(|td7
11
|Q2(d7

11)
)M ′

12
= mpm

2
r1ms + mpmr2mr1ms + mpm

2
r2ms

(|td7
11
|Q2(d7

11)
)M ′

13
= mpm

2
r1ms + mpmr1mr2ms + mpm

2
r2ms

d0
12: The two possible assignment mappings from Q2 to this database are

shown in the following table.

��������� 	�
��� ��
������� ��
������� ��
��� ����� �� "!
$# %'&)(*�+,# - +/. &)(*�+10213142576
8�9 :�;�:=<>; 	�
 :�?A@ BDCFE �F
 ; � :�?A@ BHG)91E ��
 ; � :�?A@ BIGJ91E ��
 <K?�@ BML1E N��"O N� PN BQCRBISGJ9 BML
8 S :�;T<=<>; 	�
 :�?A@ B C E �F
 ; � <K?A@ B G S E ��
 ; � <K?A@ B G S E ��
 <K?�@ B L E N���U N� PN B C BISG S B L

The following table shows the list of 4 cases that correspond to all pos-
sible sets of assignment mappings from Q2 to d0

12.

Case Mappings Formula
C0 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

¬[A < B ∧A ≤ A] ∧ ¬[A < C ∧A ≤ A]
C1 ¬τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

¬[A < B ∧A ≤ A] ∧ [A < C ∧A ≤ A]
C2 τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

[A < B ∧A ≤ A] ∧ ¬[A < C ∧A ≤ A]
C3 τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

[A < B ∧A ≤ A] ∧ [A < C ∧A ≤ A]

Only C2 and C3 produce satisfiable formulas, so Q2 can derive the canon-
ical fact from d0

12 with the following two multiplicities:

(|td0
12
|Q2(d0

12)
)M ′

2
= mpm

2
r1ms

(|td0
12
|Q2(d0

12)
)M ′

3
= mpm

2
r1ms + mpm

2
r2ms

d0
13: There are the following two assignment mappings from Q2 to this

database.

��������� 	�
��� ��
������� ��
������� ��
��� ���� ��!#"
%$ &('*) +�,-$.�/102'*) +�,%3465%748�9
:�; <>=�<�=�= 	�
 <�?�@ ACBED �E
 = � <�?�@ AGF*;%D ��
 = � <�?�@ AHF1;%D ��
 =I?�@ AGJ%D K��ML K�!#K ACBNAGOF*; AGJ
: O <>P�=�=QP 	�
 <�?�@ A B D �E
 P � =R?�@ A F O D ��
 P � =I?�@ A F O D ��
 =I?�@ A J D ST�MK SU!VS A B AGOF O A J

The list of cases is shown in the following table, where only cases C2 and
C3 produce satisfiable formulas.

108

Case Mappings Formula
C0 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

¬[A < B ∧A ≤ A] ∧ ¬[C < A ∧ C ≤ C]
C1 ¬τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

¬[A < B ∧A ≤ A] ∧ [C < A ∧ C ≤ C]
C2 τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

[A < B ∧A ≤ A] ∧ ¬[C < A ∧ C ≤ C]
C3 τ1τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > A]∧

[A < B ∧A ≤ A] ∧ [C < A ∧ C ≤ C]

The multiplicities of the canonical fact obtained by Q2 from this database
are:

(|td0
13
|Q2(d0

13)
)M ′

2
= mpm

2
r1ms

(|td0
13
|Q2(d0

13)
)M ′

3
= mpm

2
r1ms + mpm

2
r2ms

d0
14: The following table shows the unique assignment mapping from Q2 to

this database.

��������� 	�
��� ��
������� ��
������� ��
��� ��� � ��! "
$# %'&)(*�+,# -�.0/1&)(*�+324$5$64798
:�; <>=?<�@A= 	�
 <�BDC EGF�H ��
 = � <IB�C EKJL;3H ��
 = � <IB�C EKJL;$H �D
 @MB�C EON3H PQ�SR PQ!TP EUFVEKWJL; EKN

Case Mappings Formula

C0 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > C] ∧ ¬[C < B ∧ C ≤ C]]

C1 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧B 6= C ∧B > C] ∧ [C < B ∧ C ≤ C]

Since the formula for the case C0 is unsatisfiable, Q2 always derives the
canonical fact from this database, with the following multiplicity:

(|td0
14
|Q2(d0

14)
)M ′

1
= mpm

2
r1ms

d0
15: There are 2 assignment mappings from Q2 to this database.

��������� 	�
��� ��
������� ��
������� ��
��� ���! ��"$#
&% ')(+* ,�-.% /�0213(+* ,�-)4)&5)6)7�8
9�: ;�<=;�>?< 	@
 ;BA�C DFEHG ��
 < � ;IA�C DKJL:MG ��
 < � ;IA�C DKJL:MG ��
 >NA�C DPOMG Q��SR Q�"SQ DTEHDKUJL: DPO
9 : ;WV�>?>W> 	@
 ;BA�C D E G ��
 V � >NA�C D J U G ��
 V � >NA�C D J U G ��
 >NA�C D O G XW�$Y X?"!X D E DKUJ U D O

The list of the 4 possible sets of assignment mappings from Q2 to d0
15

are shown in the following table.

109

Case Mappings Formula

C0 ¬τ1¬τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D ∧A > B]∧
¬[B < A ∧B ≤ B] ∧ ¬[C < D ∧ C ≤ C]

C1 ¬τ1τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D ∧A > B]∧
¬[B < A ∧B ≤ B] ∧ [C < D ∧ C ≤ C]

C2 τ1¬τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D ∧A > B]∧
[B < A ∧B ≤ B] ∧ ¬[C < D ∧ C ≤ C]

C3 τ1τ2 [A 6= B ∧A 6= C ∧A 6= D ∧B 6= C ∧B 6= D ∧ C 6= D ∧A > B]∧
[B < A ∧B ≤ B] ∧ [C < D ∧ C ≤ C]

Again, only cases C2 and C3 produce satisfiable formulas. Thus, the multi-
plicities of the canonical fact obtained by Q2 from d0

15 are:

(|td0
15
|Q2(d0

15)
)M ′

2
= mpm

2
r1ms

(|td0
15
|Q2(d0

15)
)M ′

3
= mpm

2
r1ms + mpm

2
r2ms

Test the bag containment:
At this point, the multiplicities of the canonical fact obtained from all

canonical databases by either Q1 or Q2 are known, and must be compared
in order to test the bag containment. The following table summarizes all
these multiplicities. Note that the column that shows the multiplicity of the
canonical fact obtained by the application of Q2 to any canonical database
can have several rows for the same database, when Q2 derives the canonical
fact with different multiplicities (for example, for database d7

11).

����� � ���	�
��� ��� � ���	�
��� ���
���� ����������� � � �"!�#$�%�&� �� � � ! �%�&� �� � � !'#(�%����� � � �)��� !�+*, � � � � � � ��� � ! � � � �� � � !� * - �%�&� � � �������"! �%�.� �� � �"!� * / � � � � � � ��� � ! � � � �� � !� * �0* �%�&� � � �������"! �%�.� �� � �"!

�%��� �� � � !1#$���.� ��)� � !�	2�)� � � � � � � ��� � ! #$� � � �� � � ! � � � �� � � !� - �)� � � � � � � ��� � ! #$� � � �� � � ! #$� � � ��)� � ! #3� � � ��� � � � � ! � � � �� � � ! #3� � � ��� � � � � ! #$� � � ���� � !
�%��� �� � �"!1#3�%�&� � � � �)��� !1#$����� ���� �"!� * � � � � � � � � ��� � ! � � � �� � � !

� � � �� � � ! #$� � � ��)� � !� * � 2 � � � � � � ��� � ! � � � �� � � !
� � � �� � � ! #$� � � ��)� � !�+* � � �%�&� � � �������"! �%�.� �� � �"!�+* � , � � � � � � ��� � ! � � � �� � � !
� � � �� � � ! #$� � � ��)� � !

The procedure must now compare the multiplicities of the canonical fact
obtained by Q1 and Q2, represented by polynomials. It is easy to test that
the multiplicity of td0

5
obtained by Q2 is not greater than (or equal to)

110

the multiplcity obtained by Q1 (for example, if mp = mr1 = ms = 1 and
mr2 = 2, the multiplicity obtained by Q1 would be greater). Therefore, the
procedure concludes that Q1 6≤b Q2.

Another canonical database that shows that the containment does not
hold is d0

13: The multiplicity obtained by Q1 is:

|td0
13
|Q1(d0

13)
= mpmr1mr2ms

And the multiplicities obtained by Q2 are:

(|td0
13
|Q2(d0

13)
)M ′

2
= mpm

2
r1ms

(|td0
13
|Q2(d0

13)
)M ′

3
= mpm

2
r1ms + mpm

2
r2ms

Since (|td0
13
|Q2(d0

13)
)M ′

2
is not at least as high as |td0

13
|Q1(d0

13)
(even when

(|td0
13
|Q2(d0

13)
)M ′

3
is), that means that the containment does not hold. ut

9.7 Summary

This chapter has described another important contribution of this Thesis,
the application of QCC to test bag containment of inequality queries, be-
cause it solves a problem for which there were no results so far. It combines
the multiplicities in the facts of the canonical databases (as used to test bag
containment of equality queries) and constraints associated to each canoni-
cal database (as used to test set containment of inequality queries) to offer
a procedure to test bag containment of inequality queries. This problem is
reduced, therefore, to the problems of checking the unsatisfiability of several
formulas, and the comparison of pairs of polynomials over Z+.

Chapter 10

Conclusions and future work

In this Thesis, we have studied the problem of containment of conjunctive
queries under four perspectives, taking into account the presence or absence
of built-in predicates in the conjunctive queries, and the underlying (set or
bag) semantics. The four perspectives generated using these two factors lead
to four types of conjunctive query containment:

• Set containment of equality queries;

• Bag containment of equality queries;

• Set containment of inequality queries; and

• Bag containment of inequality queries.

We first define the set and bag semantics and how to apply a query to
a database under both of them. Next, we review the state of the art in
these four types of containment, showing that the results achieved so far
are not applicable for the problem of testing the set and bag containment
of inequality queries.

The main contribution of this Thesis is QCC (Query Containment
Checker), a general procedure that can be used to check the previous four
types of conjunctive query containment. The key concept of QCC is the
use of the canonical database set built from the predicates in the body of a
query Q1 (CDBS(Q1)), because it allows us to test the containment of con-
junctive queries using only a finite (usually small) set of databases, those in
CDBS(Q1), instead of using an infinite number of databases (as described
in the formal definition of query containment).

QCC is a procedure that is capable of testing conjunctive query con-
tainment for those cases already solved, such as set containment of equality

111

112

queries [CM77] or bag containment of equality queries [CV93, BH97], but
it is also capable of succeessfully performing these tests for other types of
query containment problems (set and bag containment of inequality queries)
for which there were no results so far. It is our belief that QCC can also
be used to test other types of query containment, such us containment of
queries with negated subgoals, or containment of nonrecursive Datalog pro-
grams. Our current research is directed at finding a way to apply QCC to
test these containments.

Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases.
Adison-Wesley, 1995.

[ASU79a] A. V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Efficient
optimization of a class of relational queries. ACM Transactions
on Database Systems, 4(4):435–454, 1979.

[ASU79b] A. V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence
of relational expressions. SIAM J. of Computing, 8(2):218–246,
1979.

[BH97] Nieves R. Brisaboa and Héctor J. Hernández. Testing bag-
containment of conjunctive queries. Acta Informatica, 34:557–
578, 1997.

[BHPP98] Nieves R. Brisaboa, Héctor J. Hernández, José R. Paramá, and
Miguel R. Penabad. Containment of conjunctive queries with
built-in predicates with variables and constants over any or-
dered domain. In Advances in Databases and Information Sys-
tems. Second East Sympsium (ADBIS’98), number 1475 in Lec-
ture Notes in Computer Science, pages 46–57, Poznan, Poland,
September 1998. Springer-Verlag.

[Bri97] Nieves R. Brisaboa. Inclusión de Consultas Conjuntivas en la
semántica de bolsas. PhD thesis, Departamento de Computación,
Facultade de Informática, Universidade da Coruña, A Coruña,
Spain, May 1997.

[CGT89] S. Ceri, G. Gottlob, and L. Tanka. What you Always Wanted to
Know about Datalog (and Never Dared to Ask). IEEE Transac-
tions on Knowledge and Data Engineering, 1(1):146–166, March
1989.

113

114

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proc. 9th ACM
SIGACT Symp. on the Theory of Computing, pages 77–90, New
York, 1977.

[Cod70] E. F. Codd. A relational model for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[CV93] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunc-
tive queries. In Proc. Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 59–70,
Washington, DC, May 1993.

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An extended relational
algebra with control over duplicate elimination. In Proc. First
ACM Symposium on Principles of Database Systems, pages 117–
123, 1982.

[Fag93] R. Fagin. Finite model theory – a personal perspective. Theo-
retical Computer Science, 116(1):3–31, August 1993.

[GSW96] Sha Guo, Wei Sun, and Mark A. Weiss. Solving satisfiability and
implication problems in database systems. ACM Transactions on
Database Systems, 21(2):270–293, 1996.

[IO97] Naci S. Ishakbeyoglu and Z. Meral Ozsoyoglu. Testing satisfiabil-
ity of a conjunction of inequalities. In International Symposium
on Computer and Information Systems (ISCIS XII), pages 148–
154, Anlatya, Turkey, October 1997.

[IR92] Yannis E. Ioannidis and Raghu Ramakrishnan. Generalized con-
tainment of conjunctive queries. Technical report, Computer Sci-
ence Department. University of Wisconsin, Madison, WI 53706,
January 1992.

[IR94] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of
conjunctive queries beyond relations as sets. Technical report,
Computer Science Department. University of Wisconsin, Madi-
son, WI, 1994.

[IS97] Oscar H. Ibarra and Jianwen Su. On the containment and equiv-
alence of database queries with linear constraints. In PODS’97,
pages 32–43, Tucson, Arizona, 1997.

115

[Kla86] A. Klausner. Multirelations in Relational Databases. PhD thesis,
Harvard University, 1986.

[Klu88] Anthony Klug. On conjunctive queries containing inequalities.
Journal of the ACM, 35(1):146–160, 1988.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, second, extended edition, 1987.

[Sol79] M. K. Solomon. Some properties of relational expressions. In
Proceedings of the ACM Southeast Regional Conference, pages
111–116, ACM, New Yotk, 1979.

[Tra50] B. A. Trakhtenbrot. The imposibility of an algorithm for the de-
cision problem for finite models. Doklady Akademii Naurk SSR,
70:569–572, 1950.

[Ull82] Jeffrey D. Ullman. Principles of Database Systems. Computer
Science Press, second edition, 1982.

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-base
Systems, volume 1 and 2. Computer Science Press, 1988-1989.

[vdM97] Ron van der Meyden. The complexity of querying indefinite data
about linearly ordered domains. Journal of Computer and Sys-
tem Sciences, 54(1):113–135, 1997.

[ZO93] X. Zhang and Z. Meral Ozsoyoglu. On efficient reasoning with
implication constraints. In Proc. of 3rd International Conference
on Deductive and Object-Oriented Databases (DOOD’93), pages
236–252, Phoenix, Arizona, December 1993.

