H₂S removal from wastewater treatment plants off-gases using activated sludge process

G.R. Moosavi¹, K. Naddafi¹, A. Mesdaghinia¹and M.A. Deshusses² ¹ Dept. of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ² Dept. of Chemical and Environmental Engineering, University of

California at Riverside, California, USA

ABSTRACT. The emission of H_2S from POTWs is a serious problem so, collection and treatment of these emissions is essential. In this work, the performance of a bench scale activated sludge system in H_2S removal and the effects of H2S concentrations in range of 5 to 50 ppmv on COD reduction and biomass settleability was studied. After biomass acclimation, reactor was operated in continues mode at HRT and MCRT of 5 h and 6 days, respectively. Results showed that the level of COD and H2S removal during trial course were in turn over 93.5 and 94.5%. Furthermore, H2S concentration up to 50 ppmv could not significantly affect the reactor performance in COD reduction. H_2S loading rates of up to 7.5 mgH2S g-1MLSS d-1 that is lower than the toxicity threshold was handled very well. The only adverse observed effect of H_2S diffusion the reactor performance was SVI increase at loading rates over 4.5 mgH₂S g-1MLSS d-1, in which bulking sludge occurred. Overall, the results indicted that the H_2S in concentrations emitted from wastewater treatment processes (lower than 50 ppmv), can be efficiently treated using activated sludge diffusion without compromising the performance of the process.