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Abstract

This work lays at the intersection of two disciplines, Machine Learning (ML) research

and predictive maintenance of machinery. On the one hand, Machine Learning aims

at detecting patterns in data gathered from phenomena which can be very different

in nature. On the other hand, predictive maintenance of industrial machinery is the

discipline which, based on the measurement of physical conditions of its internal com-

ponents, assesses its present and near future condition in order to prevent fatal failures.

In this work it is highlighted that these two disciplines can benefit from their synergy.

Predictive maintenance is a challenge for Machine Learning algorithms due to the na-

ture of data generated by rotating machinery: (a) each machine constitutes an new

individual case so fault data is not available for model construction and (b) working

conditions of the machine are changeable in many situations and affects captured data.

Machine Learning can help predictive maintenance to: (a) cut plant costs though the

automation of tedious periodic tasks which are carried out by experts and (b) reduce

the probability of fatal damages in machinery due to the possibility of monitoring it

more frequently at a modest cost increase.

General purpose ML techniques able to deal with the aforementioned conditions are

proposed. Also, its application to the specific field of predictive maintenance of rotat-

ing machinery based on vibration signature analysis is thoroughly treated. Since only

normal state data is available to model the vibration captures of a machine, we are

restricted to the use of anomaly detection algorithms, which will be one of the main

blocks of this work. In addition, predictive maintenance also aims at assessing its state

in the near future. The second main block of this work, on-line learning algorithms, will

help us in this task. A novel on-line learning algorithm for a single layer neural network

with a non-linear output function is proposed. In addition to the application to pre-

dictive maintenance, the proposed algorithm is able to continuously train a network in

a one pattern at a time manner. If some conditions are hold, it analytically ensures to

reach a global optimal model. As well as predictive maintenance, the proposed on-line

learning algorithm can be applied to scenarios of stream data learning such as big data

sets, changing contexts and distributed data.

Some of the principles described in this work were introduced in a commercial software

prototype, GIDAS R⃝. This software was developed and installed in real plants as part
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of the work of this thesis. The experiences in applying ML to fault detection with

this software are also described and prove that the proposed methodology can be very

effective. Fault detection experiments with simulated and real vibration data are also

carried out and demonstrate the performance of the proposed techniques when applied

to the problem of predictive maintenance of rotating machinery.

Keywords: Machine learning, anomaly detection, on-line learning, stream

data, vibration analysis, predictive maintenance, mechanical engineering
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Resumen

La presente tesis doctoral se sitúa en el ámbito de dos disciplinas, la investigación en

Aprendizaje Computacional (AC) y el Mantenimiento Predictivo (MP) de maquinaria

rotativa. Por una parte, el AC estudia la problemática de detectar y clasificar patrones

en conjuntos de datos extráıdos de fenómenos de interés de la más variada naturaleza.

Por su parte, el MP es la disciplina que, basándose en la monitorización de variables

f́ısicas de los componentes internos de maquinaria industrial, se encarga de valorar las

condiciones de éstos tanto en el momento presente como en un futuro próximo con el

fin último de prevenir roturas que pueden resultar de fatales consecuencias. En este

trabajo se pone de relevancia que ambas disciplinas pueden beneficiarse de su sinergia.

El MP supone un reto para el AC debido a la naturaleza de los datos generados por

la maquinaria: (a) las propiedades de las medidas f́ısicas recogidas vaŕıan para cada

máquina y, debido a que la monitorización debe comenzar en condiciones correctas,

no contamos con datos de fallos para construir un modelo de comportamiento y (b)

las condiciones de funcionamiento de las máquinas pueden ser variables y afectar a los

datos generados por éstas.

El AC puede ayudar al MP a: (a) reducir costes a través de la automatización de tareas

periódicas tediosas que tienen que ser realizadas por expertos en el área y (b) reducir la

probabilidad de grandes daños a la maquinaria gracias a la posibilidad de monitorizarla

con una mayor frecuencia sin elevar los costes sustancialmente.

En este trabajo, se proponen algoritmos de AC de propósito general capaces de trabajar

en las condiciones anteriores. Además, su aplicación espećıfica al campo del manten-

imiento predictivo de maquinaria rotativa basada en el análisis de vibraciones se estudia

en detalle, aportando resultados para casos reales. El hecho de disponer sólamente de

datos en condiciones de normalidad de la maquinaria nos restringe al uso de técnicas de

detección de anomaĺıas. Éste será uno de los bloques principales del presente trabajo.

Por otra parte, el MP también intenta valorar si la maquinaria se encontrará en un

estado inaceptable en un futuro próximo. En el segundo bloque se presenta un nuevo

algoritmo de aprendizaje en tiempo real (on-line) que será de gran ayuda en esta tarea.

Se propone un nuevo algoritmo de aprendizaje on-line para una red neuronas monocapa

con función de transferencia no lineal. Además de su aplicación al mantenimiento pre-

dictivo, el algoritmo propuesto puede ser empleado en otros escenarios de aprendizaje
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on-line como grandes conjuntos de datos, cambios de contexto o datos distribuidos.

Algunas de las ideas descritas en este trabajo fueron implantadas en un prototipo de

software comercial, GIDAS R⃝. Este software fue desarrollado e implantado en plantas

reales por el autor de este trabajo y las experiencias extráıdas de su aplicación también

se describen en el presente volumen.

Palabras clave: Aprendizaje Computacional, Detección de Anomaĺıas, Apren-

dizaje on-line, Datos stream, Análisis de vibraciones, Mantenimiento Predictivo, Inge-

nieŕıa Mecánica.
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Resumo

O presente traballo sitúase no ámbito de dúas disciplinas, a investigación en Apren-

dizaxe Computacional (AC) e o Mantemento Predictivo (MP) de maquinaria rotativa.

Por unha banda, o AC estuda a problemática de detectar e clasificar patróns en con-

xuntos de datos extráıdos de fenómenos de interese da máis variada natureza. Pola súa

banda, o MP é a disciplina que, baseándose na monitorización de variables f́ısicas dos

seus compoñentes internos, encárgase de valorar as condicións destes tanto no momento

presente como nun futuro próximo co fin último de previr roturas que poden resultar de

fatais consecuencias. Neste traballo ponse de relevancia que ambas disciplinas poden

beneficiarse da súa sinergia.

O MP supón un reto para o AC debido á natureza dos datos xerados pola maquinaria:

(a) as propiedades das medidas f́ısicas recolleitas vaŕıan para cada máquina e, debido a

que a monitorización debe comezar en condicións correctas, non contamos con datos de

fallos para constrúır un modelo de comportamento e (b) as condicións de funcionamento

das máquinas poden ser variables e afectar aos datos xerados por estas. O AC pode

axudar ao MP a: (a) reducir custos a través da automatización de tarefas periódicas

tediosas que teñen que ser realizadas por expertos no área e (b) reducir a probabilidade

de grandes danos na maquinaria grazas á posibilidade de monitorizala cunha maior

frecuencia sen elevar os custos sustancialmente.

Neste traballo, propóñense algoritmos de AC de propósito xeral capaces de traballar nas

condicións anteriores. Ademais, a súa aplicación espećıfica ao campo do mantemento

predictivo de maquinaria rotativa baseada na análise de vibracións estúdase en detalle

aportando resultados para casos reais. Debido a contar só con datos en condicións de

normalidade da maquinaria, estamos restrinxidos ao uso de técnicas de detección de

anomaĺıas. Éste será un dos bloques principais do presente traballo.

Por outra banda, o MP tamén intenta valorar si a maquinaria atoparase nun estado

inaceptable nun futuro próximo. No segundo bloque do presente traballo preséntase

un novo algoritmo de aprendizaxe en tempo real (on-line) que será de gran axuda

nesta tarefa. Proponse un novo algoritmo de aprendizaxe on-line para unha rede neu-

ronas monocapa con función de transferencia non lineal. Ademais da súa aplicación

ao mantemento predictivo, o algoritmo proposto pode ser empregado en escenarios de

aprendizaxe on-line como grandes conxuntos de datos, cambios de contexto ou datos
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distribúıdos.

Algunhas das ideas descritas neste traballo foron implantadas nun prototipo de software

comercial, GIDAS R⃝. Este software foi desenvolvido e implantado en plantas reais polo

autor deste traballo e as experiencias extráıdas da súa aplicación tamén se describen

no presente volume.

Palabras clave: Aprendizaxe Computacional, Detección de Anomaĺıas, Apren-

dizaxe on-line, Datos stream, Análise de vibraciones, Mantemento Predictivo, Enxeñaŕıa

Mecánica.
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CHAPTER1
Introduction

This thesis is devoted both to Machine Learning (ML) research and its application to a

relevant industrial field, predictive maintenance of machinery. Predictive maintenance

of industrial machinery is the discipline which, based on the measurement of physical

conditions of its internal components, assesses its present and near future condition in

order to prevent fatal failures. The main objective of the present work is to develop

novel ML algorithms which can tackle predictive maintenance problem in real scenarios.

Namely, two main restrictions have to be taken into account: (a) values of monitored

physical signals vary for each machine and, since each component starts working at

good conditions, we will not have data under fault conditions in order to build an

individual ML model and (b) working conditions of the machine are changeable in

many situations and this is reflected in captured data.

This work flows from general principles to details. First, general purpose ML techniques

able to deal with the aforementioned conditions are proposed and, ultimately, we detail

their application to the specific field of predictive maintenance of rotating machinery.

Availability of only normal state data in order to build a model restricts us to the use

of anomaly detection algorithms, which will be one of the main blocks of this work.

In addition to current condition determination, predictive maintenance also aims at

assessing the state of the machine in the near future. This drives us to the second main

block devoted to ML, on-line learning algorithms, which will help us in this task.

Before diving the specific aspects of each topic, in this introduction a summary of the

main intentions of the present work in each field is given. Each block of the thesis

covers a very specific topic which constitutes a subfield by itself and so they have been

made as self-contained as possible.
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Chapter 1. Introduction

1.1 Anomaly detection

First block is devoted to the development of ML anomaly detection methods, or in other

words, to tackle classification in the absence of counterexamples. Anomaly detection

methods are gaining importance in the last decade. In this ”data-driven” modern world

we are overwhelmed by huge amounts of data impossible to deal with and it turns out

that anomalies, or if preferred unexpected events, although being unusual and finding

them could seem ”mining a needle in a haystack” carry the most important information.

These are some examples of this fact: there are millions of credit card payments per

day but only a small percentage of them are potential frauds that could cost losses to

customers and companies, a commercial web portal receives millions of requests per

day but only some requests can carry malicious intentions, stock exchange moves tons

of data per second but only a tiny percentage are in the position of being an ”inside

trader”. But not only negative examples can be found: retailers sell different baskets

of products to thousands of clients each day, anomalous selling patterns can be a sign

of changing tastes that can be analyzed and exploited by the retailer to give a better

service to their customers.

Although very different in nature, all anomaly detection algorithms share a common

characteristic: they try to determine the region of input space which received data

under normal conditions belong to. Some algorithms choose beforehand a specific

shape for this ”normal region”. In this work, three novel anomaly detection algorithms

are proposed:

• Minimum Volume Set of Covering Ellipsoids (MSCE). The most common choices

in state-of-the art algorithms for the ”normal region” shape have been a sphere

or an ellipsoid. This choice translates learning process into the classic Minimum

Volume Covering Ellipsoid problem, in which a minimum volume ellipsoid which

covers ”normal” data samples is built. It turns out that this choice can be very

restrictive and give poor results in situations where, for example, we have to

deal with multi-modal or noisy data. In this first proposed algorithm we extend

the classic Minimum Volume Covering Ellipsoid (MVCE) problem to a robust

algorithm which obtains a minimum volume set of covering ellipsoids. It will be

shown that this algorithm is more flexible and robust than the classic MVCE and

can approximate complex regions in an accurate way.

• Extreme Value Statistics One-class Classifier (EVOC). If we could not make any

assumption about the shape or nature of the ”normal region” and we still need to

2



1.2 On-line learning

comply with an anomaly detection task, we need a criterium to decide whether a

new data instance is anomalous or not. The second proposed algorithm aims at

obtaining an accurate anomaly detection model based only on a distance measure

between instances and a base data set of normal state patterns. This algorithm

can be applied to any type of complex data (sequences, graphs, ...) if only a

distance measure is available.

• On-line Stream Data Anomaly Detection (OSDAD). Most of state-of-the art

anomaly detection algorithms, and also the two previous ones, deal with the

case where a dataset of normal data is available beforehand and we train a model

in a batch manner. But, in many situations, a stream of data patterns arrives

continuously and we want to highlight those parts of the stream where an anomaly

(or change) has occurred while continuously adapting to new scenarios. The final

proposed model tackles this on-line anomaly detection problem through a Passive-

Agressive classification algorithm combined with a well stablished CUSUM chart.

1.2 On-line learning

Second block is devoted to on-line learning on stream data. On-line ML is a model of

induction that learns one instance at a time. Its goal is to predict a correct output value

for each instance (a label or a real valued property) only based on the current model

trained with data previously seen and the current input. In the context of stream data,

the algorithm receives periodically (after each input pattern or set of inputs) feedback

of the correct output and, based on this information, it has to continuously update its

model based only on the last information received. This limitation on the data window

available to update the model can be imposed by one of the following requirements:

(a) real-time restrictions, (b) database size or (c) change of conditions on data. On-

line learning algorithms are gaining applicability also due the proliferation of data in

modern times. Web click-through data or real-time stock market analysis tools are

examples where stream data ML algorithms find applicability with a huge impact.

In this work we review the problematic of on-line learning in its different flavors (big

data sets, changing contexts, distributed data) and propose a novel on-line learning

algorithm for a neural node with a non-linear output function. The proposed algorithm

is able to continuously train a neuron in a one pattern at a time manner. If some

conditions are hold, it analytically ensures to reach a global optimal model. As it will

be detailed in this work, proposed algorithm covers previous state-of-the art algorithms
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such as classic Recursive Least Squares (RLS) [99] as special cases and is able to tackle

the aforementioned three different scenarios of stream data learning: big data sets,

changing contexts and distributed data.

1.3 Data-driven predictive maintenance

Third block dives in the details of the application field of this thesis, automatic pre-

dictive maintenance software systems. In order to evoke the motivation of the present

work in reader’s mind we start with a common episode that virtually everybody has

suffered at some point in his/her lifetime:

You are driving your car in the highway and, suddenly, you feel that some-

thing is wrong with your car. At first impression you cannot explain it but

you feel it somehow. Maybe there’s a strange sound, or a strange response

of the steering but it is physically noticeable. Eventually, it drives you to

the garage for a overhaul where you discover that you have had an unno-

ticed problem for a long time that will cost you an expensive replacement

and inconveniently prevent you from driving.

Fortunately, the end of this episode isn’t always like that. Many times, when repairing

the fault, you discover that it has a simple solution thanks to having noticed the problem

in time. In these occasions, driver is acting as part of the maintenance of his/her own

car. Each time he drives his car he has the opportunity of noticing whether there is

any kind of internal problem depending on his ability to notice anomalies. Mechanical

faults are usually caused by materials fatigue and this is usually noticeable before the

breakdown is dramatic. Let’s move this episode to an industrial environment:

A 4$ million wind turbine is working 24/7 offshore in the Irish Sea in the

middle of the winter. Due to wear, one of its main components is producing

undesired fatigue in the whole mechanism. An early stop would prevent a

major breakdown that could cost hundreds of thousand of dollars.

Unfortunately, in this second case there is not any human being around able to notice

that something is not working and that the machine should be stopped in order to
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avoid a fatal ending. Since human inspection is not possible for this case, we need to

build a software able to ”hear” or ”feel” any fault symptoms in the machinery before

they become dangerous, interpret those symptoms and report its presence in order to

avoid costly breakdowns. This is the main objective of this work in its application field,

fault detection and assessment.

A software of this kind would fall into the Predictive Maintenance paradigm. As pre-

viously stated, predictive maintenance aims at reducing the maintenance costs of a

plant’s budget by determining the status of equipment through performing a periodic

monitoring of signals which describe its state. Thanks to an early detection of faults,

fatal breakdowns are avoided and scheduling maintenance tasks when they are most

cost-effective is possible. Predictive maintenance technologies are key to extending

equipment life, reducing maintenance costs and increasing asset exploitation. In order

to build such a kind of software, it is necessary to have a physical phenomenon where

fault symptoms are apparent. Vibration analysis is one of the most effective techniques

to evaluate industrial equipment condition, detecting defects and avoiding fatal fail-

ures. As equipment begins to degrade, it may exhibit symptoms that can be revealed,

if adequate methodology is used, to detect failure precursors. Integrating sensors with

predictive maintenance techniques can avoid unnecessary equipment replacement, save

costs, and improve process safety, availability, and efficiency. The impact of advances

in this field soars when we take into account the continuous growth of some rotating

machinery based markets such as wind mill power generation, which in 2012 had a

cumulative power of 238 GW worldwide [57].

But, in order to fully automate the process of detecting a fault, a predictive mainte-

nance software based on vibration captures should be able to distinguish between good

and abnormal conditions.

Machine Learning techniques can give an answer to this problematic and will be the

topic of the second main part of this thesis. How to deal with fault detection problem

from an anomaly detection perspective is detailed and tackled through both state-of-

the art and the proposed algorithms in this thesis. Some of this algorithms were made

part of GIDASR⃝ software. This system was developed in collaboration with INDRA

Systems S.A. by the author of this work. The experiences in applying ML to fault

detection in real plants through this software are also described. This thesis extends

the work carried out with this software, studying its potential fault detection accuracy

through the novel algorithms proposed in this work.
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1.4 Outlook of this thesis

In this chapter we have introduced the main topics to be discussed in this work. The

first block is covered by chapters 2 and 3. Chapter 2 gives an introduction to the

anomaly detection problem, its main challenges, the state-of-the-art algorithms that

can be found in the literature and the families in which they can be grouped. Chapter 3

gathers together the anomaly detection algorithms proposed in this work. Subsequently,

second block is covered by chapter 4 where an extended introduction to on-line learning

and the proposed learning algorithm for neural nodes is presented. Chapter 5 marks the

turning point in the reading between Machine Learning contents and the application

field. In this chapter, an introduction to vibration analysis and maintenance main

concepts is introduced in order to make the book self-contained. Also in this chapter,

the anomaly detection strategy for fault detection that is used in the remainder of the

work is presented. Chapter 6 presents GIDAS R⃝ software, the workbench used in this

work for fault detection in real production scenarios and the pilot experience carried out

in this work is described. Chapter 7 we detail all the results obtained with the proposed

algorithms of this work in the case of fault detection on rolling element bearings, one

of the most common components of modern rotating machinery. Finally, in chapter 8

the main conclusions and contributions of this work are summarized.

6



CHAPTER2
Anomaly detection: background and challenges

In essence, anomaly detection refers to the problem of detecting data which do not con-

form to an expected behavior. In mathematical terms, we have a phenomenon which

emits descriptive data {x1, x2, . . . } about itself. Under normal conditions, these data

are generated under a probability distribution P (x). Thus, this distribution determines

that there are data which are unlikely under normal conditions. Having the actual P (x),

we could examine a sample of i.i.d. emitted data samples {x1, x2, . . . , xN}, for example

calculating their likelihood under normal conditions and evaluating whether there is

a deviation in the underlying phenomenon. If that is the case, it could be necessary

to trigger an assessment and adequate counteractions. For instance, a deep fall in the

likelihood of traffic patterns in a news server could indicate that a hacked computer is

trying to attack the server or that an unexpected event has occurred and so, an unex-

pected amount of people are accessing in a novel pattern. This example remarks the

fact that anomaly detection is a key model which, in real situations, triggers a further

complex decision making process which finally treats the anomaly in a proper way.

It turns out that in real situations we do not have the actual probability distribution

P (x) which fully describes the phenomenon, so we have to circumvent this eventuality

and come up with a process that emulates the aforementioned detection algorithm.

Detecting outliers or anomalies in data has been studied in the statistics community as

early as the 19th century [70]. The amount of domains in which this philosophy has en-

countered applicability (intrusion detection [139], tumor detection [223], fraud detection

[13], sensor and machine fault detection [87] and many more) has made impossible to

find any generic all-purpose technique. Thus, over time a variety of anomaly detection

techniques have been developed in several research communities. Many of these tech-

niques have been specifically developed for certain application domains, while others

are more generic.
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Anomaly detection will be one of the three main topics of this thesis work so we

start up in this chapter with an introduction to the vast literature on anomaly detection

techniques through a categorization of the main problems and approaches that can be

found. In the next chapter, three novel algorithms for anomaly detection are presented.

As we will see, algorithms of chapter 3 expand the range of techniques of the taxonomy

presented hereunder.

2.1 Anomaly: definition

Although the notion of what is an anomaly may seems evident at first hand, many

definitions in the literature are a bit vague at this point and this does not help to clar-

ify what the techniques are really doing and how to apply them in a specific domain.

In this work we will use the following definition for an anomaly which relies on the

existence of an unknown probability distribution P (x) of the data:

Anomalies are data patterns which are unlikely to appear under the normal condi-

tion’s data emission probability distribution P (x).

There are some subtleties emerging from this definition that are worth clarifying. An

anomaly is not necessarily an impossible event under normal conditions. For instance,

a high vibration level in a machine could be due to a temporal peak load or to a bad

sensor capture which are also normal situations that do not mean a need of an overhaul.

Whether an anomaly is certainly an abnormal or undesired behavior and not just an

unlikely data pattern is a decision which has to be made by higher level complimentary

techniques. An anomaly detection technique only assesses whether a data pattern is

likely or unlikely to happen.

2.2 Anomaly detection: problem statement and challenges

At an abstract level, anomaly detection consist on building a model able to decide

for any data pattern whether it is likely or unlikely under normal conditions. For

building that model, a set of data patterns generated by the underlying phenomenon

8



2.2 Anomaly detection: problem statement and challenges
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Figure 2.1: A simple example of anomalies in a 2-dimensional data set (red points are

anomaly candidates).

{x1, x2, . . . , xN} is available. Thus, the aim is to define a region into the input space

which represents a normal behavior and declare any observation which does not belong

to this normal region as an anomaly (see figure 2.1). But several factors make this

apparently simple problem very challenging:

• The region which encompasses every possible normal behavior could be very com-

plex in nature. Thus, deciding a prior shape of this region (e.g., Gaussian, Mix-

ture of Gaussians, etc.) could be very difficult, if not impossible, for a problem

at hand.

• The data set available for building the model is usually unlabeled and includes

some unlikely (or even abnormal) data patterns. Thus, it is necessary to decide

during the model building phase which data patterns are unlikely (or abnormal) in

order not to include them as part of the region of normal behavior. This decision

usually leads to an imprecise boundary between normal and anomalous behavior

and always involves a trade off between false alarm and true alarm rate. A model

that only cares about covering the available data patterns (a simplistic approach

could be a model which covers the whole data input space) would never or almost

ever detects that something unlikely is happening, leading to a system with a low

or null true alarm rate and so making it useless for practical purposes. On the
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other hand, a model which rejects many data patterns could lead to a situation

in which the learnt normal region is too tight so too many patterns are wrongly

considered as unlikely. This could lead to a useless system for practical purposes

because it produces higher costs (e.g., if the patterns detected as unlikely are to

be assessed by a human) or a higher false alarm rate (e.g., due to the noise that

normal patterns incorrectly assessed as unlikely introduce in subsequent phases).

• In many domains normal behavior keeps evolving and a current notion of normal

behavior might not be sufficiently representative in the future. These scenarios

impose the necessity of detecting when the normal behavior has changed and thus

continuously evolving the model.

• Availability of labeled data for training/validation of models used by anomaly

detection techniques is usually a major issue. In many situations we can only

treat normal data to construct a model, so classical hyperparameter selection

techniques like for example cross validation [15] become invalidated or of limited

use.

Due to the above challenges, the anomaly detection problem, in its most general

form, is not easy to solve. In fact, most of the existing anomaly detection techniques

solve a specific formulation of the problem in a very specific domain. The formulation

is conditioned by various factors such as: (a) nature of the data, (b) availability of

labeled data, (b) type of anomalies to be detected, etc. These factors are usually

determined by the application domain in which the anomalies need to be detected.

Researchers have adopted concepts from diverse disciplines such as statistics, machine

learning, data mining, information theory, spectral theory, and have applied them to

specific problem formulations. Anomaly detection has been the topic of a number of

surveys and review articles, as well as books. This introduction is mainly based on the

recent categorizations of anomaly detection problems and techniques which have been

published in the literature. Namely, it is mainly based on the surveys presented in

[11][53][108][160][161][186]. The author refers to these publications for further details.

2.3 Anomaly detection scenarios classification

As it was mentioned in the previous section, anomaly detection application domains

can impose beforehand restrictions which dramatically determine the design of the
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anomaly detection algorithm. Among all the possible restrictions, the following are the

most common:

1. Nature of input data: Input is generally a collection of data instances captured

under normal conditions of the studied phenomenon. Each data instance can be

described using a set of attributes and these can be of different types such as bi-

nary, categorical or continuous and in the case of multivariate data instances, all

attributes might be of the same type or might be a mixture of different data types.

The nature of attributes determines the applicability of anomaly detection tech-

niques. For example, different statistical models have to be used for continuous

and categorical data. Similarly, for nearest neighbor based techniques, the nature

of attributes would determine the distance measure to be used. Often, instead of

the actual data, the pairwise distance between instances might be provided in the

form of a distance (or similarity) matrix. In such cases, techniques that require a

specific form of input data (e.g., Euclidean space) are not applicable. Input data

can also be categorized based on the relationship present among data instances

[229]. Most of the existing anomaly detection techniques deal with data in which

no relationship is assumed among the data instances. In general, data instances

can be related to each other (e.g., temporally or spatially). In this second case,

the algorithm may have to take into account this relationship in order to obtain

accurate results. In this work we will mainly deal with data in Euclidean spaces,

although some of the proposed techniques can deal with data in any metric space.

2. Type of anomaly: Anomalies can be classified into three categories:

• Point anomalies. If an individual data instance can be considered as anoma-

lous with respect to the rest of data, then the instance is termed as a point

anomaly. This is the simplest type of anomaly and is the focus of the ma-

jority of research on anomaly detection.

• Contextual anomalies. If a data instance is anomalous in a specific context

(but not otherwise), then it is termed as a contextual anomaly (also referred

to as conditional anomaly [222]).

• Collective anomalies. If a collection of related data instances is anomalous

with respect to the entire data set, it is termed as a collective anomaly. The

individual data instances in a collective anomaly may not be anomalies by

themselves, but their occurrence together as a collection is anomalous.

In this work we will focus our attention on point anomalies.
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3. Data Labels: In this aspect we can found ourselves in any of the following scenar-

ios: (a) supervised anomaly detection, in this scenario we assume that we have

labelled instances for both normal as well as abnormal class. Typical approach

in such cases is to build a predictive model for normal vs. anomaly classes, (b)

semi-supervised anomaly detection, in this scenario we assume that we have la-

bels only for the normal class. Since they do not require labels for the anomaly

class, they are more widely applicable than supervised techniques. The typical

approach used in such techniques is to build a model for the class corresponding

to normal behavior, and use the model to identify anomalies in the test data; (c)

unsupervised anomaly detection, in this scenario we assume that we have labels

neither for the normal behavior nor for any abnormal case. Thus, the techniques

in this category make the implicit assumption that normal instances are far more

frequent than anomalies in the test data. Many semi-supervised techniques can

be adapted to operate in an unsupervised mode by using a sample of the unla-

beled data set as training data. Such adaptation assumes that the training data

contains very few anomalies and the model learnt during training is robust to

these few anomalies. Since getting a labeled set of data instances is usually diffi-

cult and costly in a vast amount of scenarios, the third scenario is the most usual

and the most widely studied. Most of the anomaly detection techniques assume

that the available dataset can contain a very small fraction of abnormal or rare

events (e.g., if we were to model the behavior of a user of an online newspaper,

we could use its access log as the dataset representing its normal consumption

behavior, but we cannot assume that there are not some abnormal accesses that

the user has clicked by error) and try to build a model which covers the majority

of the dataset but those data patterns which appear to be rare or abnormal. In

this work we will focus on semi-supervised and unsupervised anomaly detection

scenarios.

4. Anomaly detection desired output: Typically, the desired outputs produced by

anomaly detection techniques are one of the following two types: (a) scores,

scoring techniques assign an anomaly score to each instance in the test data

depending on the degree to which that instance is considered an anomaly; (b)

labels, techniques in this category assign a label (normal or anomalous) to each

test instance. Many of the techniques which assign a label to each data pattern

possess an underlying score to which they apply a threshold in order to produce

a final label. This threshold stage could be avoided if the domain requires a

score. Scoring based anomaly detection techniques allow the analyst to use a

domain-specific threshold to select the most relevant candidates for anomalies.

12
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The techniques proposed in this work pertain to both the thresholded and labeling

groups.

2.4 Anomaly detection techniques taxonomy

As we have mentioned in the Introduction, a vast literature on anomaly detection has

emerged due to the large amount of contexts where it can be applied. This variety

requires a taxonomy of techniques that brings to order the field and standardizes the

terms being used. In this section we introduce such a taxonomy. This taxonomy will

also help to classify the proposed techniques of chapter 3.

2.4.1 Classification based anomaly detection techniques

Classification can be defined as the process of learning a model (classifier) from a set

of labeled data instances (training) in order to categorize future instances into one of

the classes using the learnt model. Classification based anomaly detection techniques

operate in a similar two-phase fashion and are named in the literature as One Class

Classifiers (OCC) [165]. The training phase learns a classifier using the available la-

beled (or unlabeled) training data. In case the algorithms have to deal with unlabeled

data, the assumption that abnormal events are rare in the available data is used as a

regularizer criteria for the normal state region learning. In the detection phase, the

classifier is applied to categorize new observations as normal or abnormal. This kind of

techniques have attracted much interest in recent years due to its numerous possibilities

of application in situations when only data gathered from one class is available and we

aim to discriminate between data gathered in an specific state and data gathered in

other (possibly still unknown) states [162]. It also has been reported that, depend-

ing on the problem at hand, OCC methods can outperform classic two-class classifiers

[115][116]. OCC techniques assume a prior basic approximate shape of the normal

state data region and try to adapt that shape to the data set in a regularized way

(avoiding potential abnormal patterns in the available data set and covering the least

input space as possible). This principle avoids the need of trying to, for example, fit a

huge amount of parameters in a probabilistic approach, when we only are interested in

the final normal state region. In this niche, the kernel methods’ literature is specially

prolific. We can find mainly two seminal approaches which have remained a constant
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in the past years: (a) Support Vector Data Description (SVDD) [234] that adjusts a

minimum volume hypersphere to the data set in the feature space, and (b) the ap-

proach based on finding the maximum margin hyperplane which separates data from

the origin in [209]. When Radial Basis Function (RBF) kernel is used with these two

methods (which is the common choice in the majority of the works and applications due

to its high performance), both approaches are equivalent and they can be regarded as

reduced set Parzen Density Estimators [209]. Recently, new versions of SVDD based on

adjusting a ellipsoid to the data in the feature space have been presented with promis-

ing results [62]. It has been observed that although these models include a regularizing

term, the ability of avoiding potential abnormalities in the data set could be very im-

precise in some situations. Improvements to the basic models trying to obtain more

robust methods have been proposed such as the work in [199][200], variants of Support

Vector OCC models [221] and extensions to detect anomalies in temporal sequences

[155][156]. A second type of techniques which can be included in this section are Rule

Based Anomaly Detection techniques, which aim at learning rules that capture the

normal behavior of a system. If a test instance is not covered by any such rule, then it

is considered as an anomaly. The first step is to learn rules from the training data using

a rule learning algorithm, such as RIPPER [56], Decision Trees [15], etc. Each rule has

an associated confidence value which is proportional to the ratio between the number

of training instances correctly classified by the rule and the total number of training

instances covered by it. Second step is to find the rule that best captures each test

instance. The inverse of the confidence associated with the best rule is the anomaly

score of the test instance. Several minor variants of the basic rule based technique have

been proposed [78][105][142][202][238]. Association rule mining [9] has also been used

for one-class anomaly detection by generating rules from the data in an unsupervised

fashion. Association rules are generated from a categorical data set. To ensure that

the rules correspond to strong patterns, a support threshold is used to prune out rules

with low support [229]. Since frequent item sets are generated in the intermediate step

of association rule mining algorithms, [104] proposed an anomaly detection algorithm

for categorical data sets in which the anomaly score of a test instance is equal to the

number of frequent item sets it occurs in. Applications of these techniques can be found

in [21] [35][143] [158][159][179][191][231][249].

In the literature, the following characteristics (see [165]) have been remarked as desir-

able for OCC models:

1. Robustness to outliers: In OCC methods it is assumed that training set charac-

terizes the target distribution. However, in real life scenarios this data set can be
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contaminated by outliers. These can lead to great deviations from the optimal

OCC model so it is desirable to have an strategy that avoids these outliers.

2. Incorporation of known outliers: If some data from the alternative class is avail-

able, it is desirable to incorporate them in the analysis in order to tighten the

description.

3. Ease of configuration: One of the most important feature of one class classifiers

is the number of parameters and the availability of a methodology to estimate

them for specific situations. A reduced number of parameters with predictable

behavior of the model is desirable. The incorporation of magic parameters (those

such that a bad estimation of them leads to a poor class description) should be

avoided.

4. Resource requirements: Although this aspect becomes less important with time,

the fact that evaluating a single test point takes much time might make the model

useless in practice.

2.4.2 Nearest Neighbor based anomaly detection techniques

The concept of nearest neighbor analysis has been used in several anomaly detection

techniques. Such techniques are based on the key hypothesis that normal data instances

occur in dense neighborhoods, while anomalies occur far from their closest neighbors.

Nearest neighbor based anomaly detection techniques require a distance or similarity

measure (or a metric) defined between two data instances and can be classified in the

following categories:

• Using Distance to k-th Nearest Neighbor: In this case, the anomaly score of a data

instance is defined as its distance to its k-th nearest neighbor in a given data set.

This basic technique has been applied to detect land mines from satellite ground

images [41] and to detect shorted turns (anomalies) in the DC field windings of

large synchronous turbine-generators [94]. Usually, a threshold is then applied to

the anomaly score to determine if a test instance is anomalous or not. On the

other hand, we can use this criterium also to select n instances with the largest

anomaly scores as the candidate anomalies [194]. The basic technique has been

extended by researchers in three different ways:

15



Chapter 2. Anomaly detection: background and challenges

– The first set of variants modify the above definition to obtain the anomaly

score of a data instance. In [17], [75] and [258], the authors compute the

anomaly score of a data instance as the sum of its distances from its k nearest

neighbors. A different way to compute the anomaly score of a data instance

is to count the number of nearest neighbors n that are not more than d

distance apart from the given data instance [132][133][134][135].

– The second set of variants use different distance/similarity measures to han-

dle different data types. A hyper-graph based technique is proposed by [246]

called HOT. where the authors model the categorical values using a hyper-

graph, and measure distance between two data instances by analyzing the

connectivity of the graph. A distance measure for data containing a mix

of categorical and continuous attributes has been proposed for anomaly de-

tection [180] by adding distance for categorical and continuous attributes

separately. In [182] the authors adapt the technique proposed in [134] to

continuous sequences. The work in [136] extends the technique proposed in

[194] to spatial data.

– The third set of variants focus on improving the efficiency of the basic tech-

nique (the complexity of the basic technique is O(N2), where N is the data

size) in different ways. Some techniques prune the search space by either ig-

noring instances that cannot be anomalous or by focussing on instances that

are most likely to be anomalous. Authors of [27] show that for a sufficiently

randomized data, a simple pruning step could result in the average complex-

ity of the nearest neighbor search to be nearly linear. In [194] a partition

based technique is proposed, which first clusters the instances and computes

lower and upper bounds on distance of a instance from its k-th nearest

neighbor for all instances in each partition. This information is then used

to identify the partitions that cannot possibly contain the top k anomalies;

such partitions are pruned. Anomalies are then computed from the remain-

ing instances (belonging to unpruned partitions) in a final phase. Similar

cluster based prunings have been proposed by [75] [166] [233]. To prune the

search space for nearest neighbors, several techniques partition the attribute

space into a hyper-grid consisting of hypercubes of fixed sizes. The intu-

ition behind such techniques is that if a hypercube contains many instances,

such instances are likely to be normal. Moreover, if for a given instance, the

hypercube that contains the instance and its adjoining hypercubes contain

very few instances, the given instance is likely to be anomalous. Techniques

based on this intuition have been proposed by [133]. Angiulli and Pizzuti [17]
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extended these models by linearizing the search space through the Hilbert

space filling curve.

• Using Relative Density: these algorithms estimate the density of the neighbor-

hood of each data instance. An instance that lies in a neighborhood with low

density is declared to be anomalous while an instance that lies in a dense neigh-

borhood is declared to be normal. For a given data instance, the distance to

its k-th nearest neighbor is equivalent to the radius of a hyper-sphere, centered

at the given data instance, which contains k other instances. Thus the distance

to the kth nearest neighbor for a given data instance can be viewed as an esti-

mate of the inverse of the density of the instance in the data set. Density based

techniques perform poorly if data has regions of varying densities. To handle

the issue of varying densities in the data set, several techniques that compute

the density of instances in relation to the density of their neighbors have been

proposed. The work in [36][37] assigns an anomaly score to a given data instance,

known as Local Outlier Factor (LOF). For any given data instance, the LOF

score is equal to the ratio of average local density of the k nearest neighbors of

the instance and the local density of the data instance itself. To find the local

density for a data instance, the authors first find the radius of the smallest hyper-

sphere centered at the data instance, that contains its k nearest neighbors. The

local density is then computed by dividing k by the volume of this hyper-sphere.

For a normal instance lying in a dense region, its local density will be similar to

that of its neighbors, while for an anomalous instance, its local density will be

lower than that of its nearest neighbors. Hence the anomalous instance will get

a higher LOF score. Tang et al. [232] discuss a variation of the LOF, which they

call Connectivity-based Outlier Factor (COF). The difference between LOF and

COF is the manner in which the k neighborhood for an instance is computed.

In COF, the neighborhood for an instance is calculated in an incremental mode.

To start, the closest instance to the given instance is added to the neighborhood

set. The next instance added to the neighborhood set is such that its distance to

the existing neighborhood set is minimum among all remaining data instances,

defining the distance between an instance and a set of instances as the minimum

distance between the given instance and any instance belonging to the given set.

The neighborhood is grown in this manner until it reaches size k. Once the neigh-

borhood is computed, the anomaly score (COF) is computed in the same manner

as LOF. Other variations of these techniques have been proposed in recent years

[38][54][97][119][183][188][225][226].
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2.4.3 Clustering based anomaly detection techniques

Classical clustering [114][229] aims at grouping similar data instances into homogeneous

groups. Clustering is primarily an unsupervised technique though semi-supervised clus-

tering [26] has also been explored lately. Three categories can be detected in this area.

The first one embraces those techniques which follow the assumption that normal data

instances belong to a cluster in the data, while anomalies do not belong to any cluster.

Thus techniques based on the above assumption apply a known clustering based algo-

rithm to the data set and declare any data instance that does not belong to any cluster

as anomalous. Several clustering algorithms that do not force every data instance to

belong to a cluster, such as DBSCAN [77], ROCK [92], and SNN clustering [74] can be

used. The FindOut algorithm [256] is an extension of the WaveCluster algorithm [215]

in which the detected clusters are removed from the data and the residual instances are

declared as anomalies. A disadvantage of such techniques is that they are not optimized

to find anomalies, since the main aim of the underlying clustering algorithm is to find

clusters.

The second category includes those techniques which rely on the assumption that nor-

mal data instances lie close to their closest cluster centroid, while anomalies are far

away from their closest cluster centroid. Algorihtms based on the above assumption

consist of two steps. In the first step, the data is divided in groups using a cluster-

ing algorithm. In the second step, for each data instance, its distance to its closest

cluster centroid is calculated as its anomaly score. A number of anomaly detection

techniques that follow this two step approach have been proposed using different clus-

tering algorithms: Self-Organizing Maps (SOM), K-means Clustering, and Expectation

Maximization (EM) to cluster training data and then use the clusters to classify test

data [219]. Note that if the anomalies in the data form clusters by themselves, the

above discussed techniques will not be able to detect such anomalies.

To address this issue a third category of clustering based techniques have been proposed

that rely on the hypothesis that normal data instances belong to large and dense clus-

ters, while anomalies either belong to small or sparse clusters. Techniques based on the

above assumption declare instances belonging to clusters whose size and/or density is

below a threshold as anomalous. Several variations of this third category of techniques

have been proposed [75][102][118][159][179][187][189][225].
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2.4.4 Statistical anomaly detection techniques

The underlying principle of any statistical anomaly detection technique is mainly the

basic definition of anomaly that we stated overleaf: normal data instances occur in high

probability regions of an underlying stochastic model, while anomalies occur in the

low probability regions of the stochastic model. Statistical techniques fit a probability

distribution to normal data and then apply inference to determine if an unseen instance

belongs to this model or not. Instances that have a low probability to be generated

from the learnt mode are considered as potential anomalies. Both parametric as well

as non-parametric techniques have been applied to fit a statistical model. The main

difference between both is that the latter do not generally assume any knowledge about

the underlying distribution [61].

Parametric Techniques assume that the normal data is generated by a distribu-

tion P (x,w), where x is an observation and w is the parameter vector. The parameters

w need to be estimated from given data [218]. This is a key disadvantage of this kind

of techniques because this parametric assumption does not usually hold true, and pa-

rameter estimation can be an issue for high dimensional data sets. Based on the type

of distribution assumed, we can distinguish:

• Gaussian Model Based Techniques, which assume that the data is generated from

a Gaussian distribution. The parameters are usually estimated using Maximum

Likelihood Estimates (MLE). Sophisticated statistical tests have been used to

detect potential anomalies, as discussed in [23][24][28].

• Regression Model Based Techniques, which have been extensively investigated for

time-series data [2][3][84]. It consists of two steps. In the first step, a regression

model is fitted on the data. In the second step, for each test instance, the residual

for the test instance is used to determine the anomaly score. The residual is the

part of the instance which is not explained by the regression model. The magni-

tude of the residual can be used as the anomaly score for the test instance, though

statistical tests have been proposed to determine anomalies with certain confi-

dence [18][28][98][241]. Certain techniques detect the presence of anomalies in a

data set by analyzing the Akaike Information Content (AIC) during model fitting

[131]. Presence of anomalies in the training data can influence the regression

parameters and hence the regression model might not produce accurate results.

A popular technique to handle such anomalies while fitting regression models is

called robust regression [111][201]. Variants of the basic regression models based
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technique have been proposed to handle multivariate time-series data. In [242]

the authors discuss the additional complexity in multivariate time-series over the

univariate time-series and come up with statistics that can be applied to detect

anomalies in multivariate Autoregressive Integrated Moving Average (ARIMA)

models. Another variant to detect anomalies in multivariate time-series data

generated by an Autoregressive Moving Average (ARMA) model, was proposed

by [88] in which the authors transform the multivariate time-series to univari-

ate time-series and the anomaly detection in each projection is done by using

univariate test statistics.

• Mixture Distribution Based Techniques. These techniques model the normal

instances as a mixture of parametric distributions. A test instance which does not

belong to any of the learnt models is declared to be anomaly. Gaussian mixture

models have been mostly used for such techniques [5]. Similar techniques have

been applied to detect anomalies in biomedical signal data [4][197][198], where

extreme value statistics are used to determine if a test point is an anomaly with

respect to the learnt mixture of models or not. In [41] a mixture of Poisson

distributions is used to model the normal data and then detect anomalies.

Non-parametric Techniques use non-parametric statistical models - in which

the model structure is not defined a prioiri but it is instead directly determined from

given data. Such techniques typically make fewer assumptions regarding the data (if

any) when compared to parametric techniques. They can be classified in:

• Histogram Based, it is the simplest non-parametric statistical technique and uses

histograms to maintain a profile of the normal data. They are particularly pop-

ular in intrusion detection community [60][76][218] and fraud detection [81]. For

univariate data two steps are considered. The first step involves building a his-

togram based on the different values taken by that feature in the training data. In

the second step, the technique checks if a test instance falls in any one of the bins

of the histogram. If it does, the test instance is normal, otherwise it is anomalous.

A variant of the basic histogram based technique is to assign an anomaly score to

each test instance based on the height (frequency) of the bin in which it falls. The

size of the bin used when building the histogram is key for anomaly detection.

If the bins are small, many normal test instances will fall in empty or rare bins,

resulting in a high false alarm rate. If the bins are large, many anomalous test

instances will fall in frequent bins, resulting in a high false negative rate.

For multivariate data, a basic technique is to construct attribute-wise histograms.
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During testing, for each test instance, the anomaly score for each attribute value

of the test instance is calculated as the height of the bin that contains the at-

tribute value. The per-attribute anomaly scores are aggregated to obtain an

overall anomaly score for the test instance. Note that these techniques present a

drawback since they not take into account the relations between the attributes.

• Kernel Function Based. In the non parametric group, the Parzen Density es-

timation [185] is the most extended and paradigmatic method. It assumes no

distribution beforehand and extracts it directly from the data. If an appropri-

ate kernel function and parameters are selected and a reasonable sample size is

available, these methods can exhibit a good performance. However, a bad choice

of both kernel function and parameters can introduce a large bias in the final

model, and sample size requirements can grow exponentially with the dimen-

sionality of the input patterns. Noisy samples can also degrade considerably the

performance of these methods. In [61] a semi-supervised statistical technique to

detect anomalies is proposed which uses kernel functions to estimate the proba-

bility distribution function (pdf) for the normal instances. A new instance which

lies in the low probability area of this pdf is declared to be anomalous.

2.4.5 Spectral anomaly detection techniques

Spectral techniques try to find an approximation of the data using a combination of

attributes that capture the bulk of variability in the data. The basic assumption is that

data can be embedded into a lower dimensional subspace in which normal instances

and anomalies appear significantly different. Thus the general approach adopted by

spectral anomaly detection techniques is to determine such subspaces (embeddings,

projections, etc.) in which the anomalous instances can be easily identified [8]. Using

these models, it is possible to calculate a reconstruction of each sample disregarding

unimportant features and capturing most of the contained information. These two

facts are used for anomaly detection in the following manner: if the difference between

a sample and its reconstructed counterpart exceeds a given threshold, this sample is

considered a novel or abnormal one. These techniques can work in an unsupervised as

well as semi-supervised setting. There are different methods that can be used in this

way, such as: (a) k-means [30] in which the distance to the closest center is used as

a distance metric, (b) Learning Vector Quantization (LVQ) [220] in which a lattice of

centers is adjusted to the normal data following a competitive training rule, and (c)

Self Organizing Maps (SOM) [220], in which the difference between a data sample and
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its closest node of the lattice is used as the detection feature.

The following methods have a different philosophy and are more commonly applied

to real life problems: (a) Principal Component Analysis (PCA) [122][244] in which

the most representative principal components of the data set are selected in order to

calculate the reconstruction of a new sample in the principal subspace and orthogonal

reconstruction error is used to detect novelties, (b) Autoassociative Neural Networks

(AARNA) [115] in which a single hidden layer neural network with less units in the

hidden layer than the input dimensionality is used to model data, and the error in the

output of the network is used as the distance to the true distribution (this method can

be demonstrated to be equivalent to the PCA [32] if only a single hidden layer is used),

(c) Kernel Principal Component Analysis (KPCA) [31] which is based on the same

principle as the Principal Component approach but acomplishes it in feature space

thanks to the application of the kernel trick [109] and (d) Diabolo Networks [137][248]

which add to the AARNA more hidden layers to obtain non linear reconstruction

subspaces (this method can be regarded as equivalent to the KPCA method [137]).

Although reconstruction methods are very practical, they can suffer considerably in

the presence of noise.

Several variant of this seminal approaches have been proposed. One such technique [184]

analyzes the projection of each data instance along the principal components with low

variance. A normal instance that satisfies the correlation structure of the data will have

a low value for such projections while an anomalous instance that deviates from the

correlation structure will have a large value. In [66] the authors adopt this approach

to detect anomalies in astronomy catalogs. In [217] an anomaly detection technique

is presented where the authors perform robust PCA [110] to estimate the principal

components from the covariance matrix of the normal training data.

2.4.6 Information theoretic anomaly detection techniques

Information theoretic techniques analyze the information content of a data set using

different information theoretic measures such as Kolmogorov Complexity, entropy, rel-

ative entropy, etc. Such techniques are based on the assumption that anomalies induce

irregularities in the information content of the data set.

Let C(D) denote the complexity of a given data set, D. A basic information theoretic

technique can be described as follows: given a data set D, find the minimal subset of

instances, I, such that C(D)−C(D− I) is maximum. All instances in the subset thus

obtained are considered as anomalous. The problem addressed by this basic technique
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is to find a Pareto-optimal solution, which does not have a single optimum, since there

are two different objectives that need to be optimized.

The basic technique described above involves dual optimization to minimize the subset

size while maximizing the reduction in the complexity of the data set. Thus an exhaus-

tive approach in which every possible subset of the data set is considered would run

in exponential time. Several techniques have been proposed that perform approximate

search for the most anomalous subset. He et al. use an approximate algorithm called

Local Search Algorithm (LSA) [103] to approximately determine such a subset in a

linear fashion, using entropy as the complexity measure. A similar technique that uses

an information bottleneck measure was proposed by [16].

Information theoretic techniques can also be used in data sets in which data instances

are naturally ordered (e.g. , sequential data and spatial data). In these cases, the data

is broken into substructures, and the anomaly detection technique finds the substruc-

ture, I, such that C(D) − C(D − I) is maximum. This technique has been applied

to sequences [19][52][148], graph data [177], and spatial data [149]. A key challenge of

such techniques is to find the optimal size of the substructure which would result in

detecting anomalies. The complexity of a data set C can be measured in different ways.

Kolmogorov complexity [147] has been used by several techniques [19][128]. The work

in [19] uses the size of the regular expression to measure the Kolmogorov Complexity

of data (represented as a string) for anomaly detection. On the other hand, authors

in [128] use the size of the compressed data file (employing any standard compression

algorithm), as a measure of the data set’s Kolmogorov Complexity. Other information

theoretic measures such as entropy, relative uncertainty, etc., have also been used to

measure the complexity of a categorical data set [16][101][103][144].

The performance of such techniques is highly dependent on the choice of the informa-

tion theoretic measure. Often, such measures can detect the presence of anomalies only

when there is a significantly large number of anomalies present in the data. It is also

difficult to obtain an anomaly score for a specific test instance using an information

theoretic technique.

2.5 Stream anomaly detection

The techniques mentioned in the taxonomy of previous section do not take into account

the specific case when a continuous stream of data has to be analyzed in a on-line man-

ner. Stream anomaly detection can be stated as the problem of accurately determining

when the process that generates the stream of data has severely changed. This type of
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scenario appears in cases such as robotics or web traffic pattern analysis, where batch

data analysis is not possible. Usually, the nature of the anomaly is a temporal or per-

manent change in the source which is generating the data stream and being monitored.

In the former case (temporal change), tracking of the subsequent changes is desirable

whilst in the latter (permanent change), once the detection has been performed the

process ends. Generally, the detection is intended to trigger some counteraction in or-

der to avoid an undesirable effect or to recover a normal functioning of the underlying

process. Formally, this problem can be stated as follows [12]:

Definition[On-line Anomaly detection]: An anomaly αi that starts at instant τi and

lasts for li intervals is represented as αi = (τi, li). Using data obtained so far, on-line

stream anomaly detection is to output a signal at interval di for every αi such that

τi ≤ di ≤ τi + li and (dj − τi) is minimal.

This kind of task has practical applications in many areas such as fault detection in

rotating machinery [79][125][163][170][253], credit fraud detection, intrusion detection,

medical anomaly detection, etc. [53], and it is a challenging task due to the following

aspects:

• The method has to face the fact that anomalous events may appear rarely and

do not have fixed signature. This leads to the necessity of eliciting a detection

rule only from normal data.

• The method should be able to adapt to concept drifts when these are not severe

in order to avoid false alarms.

• The method should be able to adapt to complex decision boundaries in order to

accurately capture the normal support of complex data streams.

Some previous works in stream anomaly detection can be found in the literature. There

is a group of algorithms based on principal subspace tracking [63][140] which try to

detect deviations from the principal subspace of normal data as a sign of being an

anomaly. These techniques can find limitations when dealing with non linear data,

thus in [12] this philosophy is applied in feature space through an adaptation of Kernel

Recursive Least Squares. In [43] an adaptation for non-stationary data of One-class

SVM is introduced. This algorithm obtains good representations but suffers a computa-
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tional complexity burden when facing large high dimensional datasets. In [251], a fully

probabilistic model for stream anomaly detection is presented. This method obtains

also good results but assumes a predefined distribution of data. Other more recent

techniques are based on classification trees [230] and clustering [71]. These techniques

are adaptations of more classical techniques and need to maintain batches of data in

order to update the model and detect abnormalities, which could lead to storage and

detection delay issues.

A straightforward manner of tackling this problem is to: (a) continuously capture the

support of the probability distribution of the data stream and (b) detecting changes

on it. Solving the problem in this way is closely related to concept drift techniques

[67][72][172][247]. The first task has been tackled in the literature through one-class

classifiers. However, one-class classification has traditionally been addressed from a

batch perspective assuming that the whole dataset is available for the training (i.e., it

is complete and it can be stored in memory). It turns out that, when facing streaming

data, these assumptions are not fulfilled and effective solutions which treat each pat-

tern in a one pass manner are needed. Very few on-line techniques specially designed

for on line anomaly detection have been devised. Besides, there is not consensus on

the categorization of the types of changes which take place and should be detected.

Recently, a categorization of the type of changes has been proposed [173] and will be

used hereunder in this work.
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CHAPTER3
Anomaly detection: proposals and results

In this chapter we present the contributions of this thesis to the field of anomaly

detection. Three novel anomaly detection algorithms are proposed:

• The first algorithm is an extension of the classic problem that aims at finding the

minimum volume ellipsoid that covers a given set of data points to the multiple

ellipsoids case. This extension allows for more complex covering of normal data

and, in addition, allows to avoid spurious data which can degrade significantly the

solution. This algorithm should be included in the One Class Classifiers group

described in the previous chapter.

• The second technique is based on nearest neighbor principles. Using concepts

from Extreme Value Statistics, the method is able to accurately build a normal

state region based only on a distance measure among data patterns. This tech-

nique can be useful when dealing with complex input data scenarios where we can

count only on distance values. This algorithm should be included in the nearest

neighbor group described in the previous chapter.

• The last technique tackles challenging stream anomaly detection problem. In this

setting, the data set arrives continuously as a stream and a one pass treatment of

the data set is needed. Adopting a passive-agressive perspective [58], an anomaly

detection algorithm able to continuously detect changes of context and adapt to

them is built. This algorithm should be included in the stream anomaly detection

techniques group.

The performance of the three devised algorithms has been tested on benchmark datasets.

The application of these techniques to real industrial problems, specifically to machin-

ery fault detection will be detailed in next chapters. As we will see in chapter 5, the

most sensible way of treating automatic predictive maintenance of machinery is through
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an anomaly detection perspective, due to the lack of fault data to build multiple class

classification models beforehand.
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3.1 A minimum volume covering approach with a set of

ellipsoids

The minimum volume covering ellipsoid (MVCE) problem has been studied since John

[120] discussed it for the first time in his work on optimality conditions. Once this prob-

lem is solved, an anomaly detection method can be easily derived, using the obtained

ellipsoid to decide which data are anomalous (those which are not covered by the ellip-

soid). The problem consist on covering a set of points X = {x1,x2, · · ·xm} ∈ Rn with

an ellipsoid of minimum volume. The problem can be found in different formulations,

each one presenting different properties [34][181]. In its most simple formulation we

define an ellipsoid E ⊂ Rn as

E = {x ∈ Rn|(x− a)TM(x− a) ≤ 1} (3.1)

where a is the center of the ellipsoid and matrix M determines its shape. In other

words, we define the ellipsoid as the set of point which have a restricted Mahalanobis

distance with matrix M from center a. Given this representation, the volume of E is

given by the formula

πn/2

Γ(n/2 + 1)

1√
det(M)

(3.2)

where Γ is the gamma function and the mathematical formulation of the problem is as

follows

Minimize
a,M

det(M)−1 (3.3)

subject to

(xi − a)TM(xi − a) ≤ 1 (3.4)

M ≻ 0 (3.5)

where xi ∈ X. It can be noted that the objective function minimizes a quantity pro-

portional to the volume of the ellipsoid and restrictions assure that the data samples

are covered by it. Given its applicability in areas such as statistics and data mining,

several algorithms for solving it have been developed in the past decades. In [22] the

authors provided an algorithm based on matrix eigenvalue decomposition. Posteriorly

Khachiyan and Todd [130] first used interior-point methods in developing an algorithm

for this purpose. This seminal work is the root of recent developments [138][240].

From a theoretical point of view, several authors obtained bounds for the complex-

ity of the problem. Nesterov and Nemirovskii [175] obtained a complexity bound of
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O(m3.5 log(mR/ϵ)) operations for a ϵ-optimal ellipsoid where m is the number of points

and R is defined such that the convex hull of the given points contains the unit ball

centered at 0 and is contained in the concentric ball of a given radius R. More recently,

Khachiyan [129] reduced this to O(m3.5 log(m/ϵ)) operations.

There is a classical and well-known result of John [120] which states that the number

of boundary points is not too large: The minimum-volume covering ellipsoid is de-

termined by a subset of at most O(n2 + 3n/2) points. This has motivated the design

of active-set strategies for solving the problem such as the one in [181], wherein they

try to make an intelligent guess of active points xi at each iteration, and presumably

inactive points are discarded from time to time.

Recent developments have shown that this problem can be formulated as a Semidefi-

nite Programming Problem (SDP) which now can be solved efficiently with standard

software [33][34]. It also can be considered as an instance of the more general problem

of log-determinant maximization (minimization) for which several solving methods can

be found [245].

In this section we aim at extending the well-studied MVCE problem. Specifically, we

present an algorithm able to determine a set of ellipsoids that cover totally or partially

a set of points, have minimum total volume and eventually ignore possible outliers.

This problem can be formally stated as follows: find a set of centers ae and matrices

Me for e = 1, . . . , |E| such that the following conditions are fulfilled:

1. For every data point xj ∈ X

(xj − ai)
TM−1

i (xj − ai) ≤ 1, (3.6)

for some i ∈ {1, 2, . . . , |E|}.

2. The total volume of the ellipsoids defined by ae and Me for e = 1, . . . , |E| is
minimum.

As it can be observed, we will use an alternate formulation where M−1
e is used in

the restrictions instead of Me and the objective function is changed accordingly.

In order to tackle real life situations, where noise in the data set is present, it is desirable

to extend this formulation towards one that allows some data samples to fall outside

the region defined by the set of ellipsoids and even ignore some potential outliers that

can appear in the data set. These two issues are also covered by the proposed model.

The solution of this problem leads to a model that can be applied both in clustering

applications and one class classification problems (OCC). In Section 3.1.1 the formula-
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tion of the single minimum volume covering ellipsoid problem and the main challenges

covered in this work are described. Moreover, the original contributions of this section

are listed. In Section 3.1.2 we present the proposed method by incorporating one by

one the new features and providing two theorems that justify it. In Section 3.1.3 we

discuss the problem of sensitivity analysis and derive a classification rule. In Section

3.1.4 examples of covering artificial datasets and clustering problems are given. Finally,

in Section 3.1.6 we summarize the main contributions and discuss future work.

3.1.1 Single minimum volume covering ellipsoid: formulation and im-

provements

If we are to deal with ellipsoids which are not centered at the origin and have arbitrary

orientation, the boundary of one of such ellipsoids can be described as

(x− a)TM−1(x− a) = 1, (3.7)

where x is the vector of coordinates of a point on the ellipsoid surface, a is the column

vector with the center coordinates of the ellipsoid and M should be a positive definite

symmetric matrix (this is an implicit constraint). In this case, the volume of the

ellipsoid is directly proportional to the determinant of matrix M. In order to deal

with abnormal data points in real data sets a penalty term in the formulation which

allows for some data points to lie outside the ellipsoid is added. This approach can

be found in other works such as [216]. Joining all, the formulation of the problem of

Single Minimum Volume Covering Ellipsoid with Direct Determinant (SCEDD) is:

Minimize
ξ,a,M

det(M) + C
∑
i
ξi (3.8)

subject to

(xi − a)TM−1(xi − a) ≤ 1 + ξi : αi (3.9)

ξi ≥ 0 : γi, (3.10)

where C is a constant with hypervolume dimensions which weights the error of not

covered samples, ξi are non-negative dimensionless variables measuring the distance of

the associated point i to the ellipsoid, xi is the vector of coordinates of data point i, a

is the vector of coordinates of the center of the ellipsoid, M is positive definite and αi

and γi are the associated dual variables.

The optimization problem (3.8)-(3.10) presents the following weaknesses:
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1. The determinant appearing in the objective function (3.8) is difficult to deal

with, even though some authors, such as [34][62] provide a solution. A method

permitting an indirect and simple evaluation of this determinant would be very

convenient.

2. Only one ellipsoid is considered to cover the desired region. It would be convenient

to provide methods that include a set of several ellipsoids in order to obtain a

better covering of the desired data set.

3. No data points can be excluded from the analysis. In practical cases, even after

including the slack variables ξi, outliers that distort the solution of the problem

can still be present. Thus, the possibility of detecting these outliers and excluding

them from the analysis would be desirable.

4. The exclusion of singular points and the consideration of a set of ellipsoids involve

the use of binary variables which are associated with a high computational cost.

Providing a method that avoids the use of these binary variables could reduce

substantially the time of computation.

5. Combining the ellipsoid identification, the outlier detection and the classification

problems in a single optimization problem can lead to high memory and CPU

time requirements. Thus, bilevel and multilevel methods are convenient ways to

reduce these requirements that can be a burden in large size applications.

In next section SCEDD will be extended in order to tackle these limitations and to

obtain a more accurate and general model.

3.1.2 Proposed model

In the following sections we describe how to modify the SCEDD problem (equations

(3.8)-(3.10)) to incorporate the above five mentioned improvements.

3.1.2.1 Dealing with the determinant problem

To avoid the direct evaluation of the determinant, we use a method that is justified in

the following theorem.
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Theorem 3.1.1 (Single Covering Ellipsoid Indirect Determinant): The

initial SCEDD problem (3.8)-(3.10) is equivalent to the following one:

Minimize
ξ,d,p,a

∏
j
dj + C

∑
i
ξi (3.11)

subject to

Ai ≤ 1 + ξi : αi (3.12)

ξi ≥ 0 : γi (3.13)

dj > 0 : χj (3.14)

where

Ai =
∑
j

(xij − aj)
∑
k≤j

pjk
dk

∑
ℓ≥k

pℓk(xiℓ − aℓ). (3.15)

dj are positive real numbers, xij is the jth coordinate component of point i, aj is the j

component of the center of the ellipsoid and pij is the element ij of the dimensionless

unit lower triangular matrix P that diagonalizes matrix M, αi, γi and χj are dual

variables. This problem will be named from now on Single Covering Ellipsoid Indirect

Determinant (SCEID).

Proof: It is well known that any symmetric positive definite matrix M can be

diagonalized by means of a lower unit triangular matrix P, that is, we can write

M = PDPT , (3.16)

where D is a diagonal matrix (see [96], corollary 14.5.10).

From Equation (3.16) we have that

|M| = |P||D||PT| = |D| =
∏
j

dj , (3.17)

where | · | refers to the determinant, and dj is the j-th element of the diagonal matrix

D. Replacing the determinant in (3.8) by the one in (3.17), using variables pij (for

i > j) and dk to represent the elements of the matrices, P and D, respectively, and

adding the lower unit triangular constraint we get the SCEID problem (3.11)-(3.14).

Observe that although equation (3.12) has been written including the diagonal terms

of matrix P in order not to make the notation cumbersome, we only need to consider

and optimize its elements under the diagonal, as the diagonal is fixed to 1.
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In the original SCEDD problem, described in (3.8)-(3.10), it is implicitly required

that matrix M is positive definite. However, in our modified problem this is solved by

imposing the positivity of the dj values.

Theorem 3.1.1 provides an elegant form of dealing with the determinant. It employs

a minimum number of variables thanks to the use of one unit lower triangular matrix

and facilitates the work with positive definite matrices since this restriction reduces to

impose positivity on the dj variables. SCEID problem (3.11)-(3.14) is a convex problem

because the objective function is convex in the first quadrant and the constraints include

positive definite matrices.

3.1.2.2 Considering a set of covering ellipsoids

To deal with a fixed number of ellipsoids we need a binary variable ηei able to identify

the ellipsoid associated with each data point. This variable ηei takes value 1 if point i

belongs to ellipsoid e and 0, otherwise. However, we must guarantee that each point is

associated with one and only one ellipsoid (see Equation (3.20)).

Thus, proposed problem (MCEID) (Multiple Covering Ellipsoids Indirect Determi-

nant) can be stated as

Minimize
ξ,d,p,a,η

Z =
∑
e

(∏
j
dej

)
+ C

∑
i
ξi (3.18)

subject to ∑
e

ηeiA
e
i ≤ 1 + ξi : αi (3.19)∑

e

ηei = 1 : λi (3.20)

ξi ≥ 0 : γi, (3.21)

dej > 0 : χe
j (3.22)

ηei ∈ {0, 1}, (3.23)

where αi, λi, γi, χ
e
j ; i = 1, 2, . . . , n are dual variables and

Ae
i =

∑
j

(xij − aej)
∑
k≤j

pejk
dek

∑
ℓ≥k

peℓk(xiℓ − aeℓ). (3.24)
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Note that the ηei variables allow testing if data point i is inside the adequate ellipsoid

by means of Equation (3.19). The ξ variables allow some points to be outside the

ellipsoids but they are penalized in the objective function (3.18). Finally, condition

(3.22) guarantees positive definiteness.

3.1.2.3 Removing outliers

In order to allow for removing outliers, we incorporate a binary variable ui that takes

value zero if the data point i is an outlier, and value one, otherwise. With this aim

we modify the MCEID problem (3.18)-(3.23) to our final problem (RMCEID) (Robust

Multiple Covering Ellipsoids Indirect Determinant):

Minimize
ξ,d,p,a,u,η

Z =
∑
e

(∏
j
dej

)
+ C

∑
i
uiξi (3.25)

subject to ∑
e

ηeiA
e
i ≤ 1 + ξi : αi (3.26)∑

i

ui = n− nout : ρ (3.27)∑
e

ηei = 1 : λi (3.28)

ξi ≥ 0 : γi, (3.29)

dej > 0 : χe
j (3.30)

ηei ∈ {0, 1}, (3.31)

ui ∈ {0, 1}, (3.32)

where n is the number of data points, nout is the number of outliers to be removed from

the analysis, and αi, ρ, λi, γi and χe
i are dual variables.

Note that with respect to other existing approaches in the literature, this problem

allows to remove a given number nout of outliers. This allows us to reduce substantially

the total volume of the ellipsoids and provides a robust solution, because the dependence

of the solution on some possible strange points is eliminated. If we are interested in

the number of outliers to be chosen by the program, we can add a penalizing function

to the objective function. However, decide whether or not a point is an outlier is a

delicate decision that must be controlled by the user, perhaps with some additional
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information (for example, revising the lab tests or data for some singularities). Thus,

nout is left as an input parameter determined by the user.

3.1.2.4 Avoiding binary variables

The RMCEID problem (3.25)-(3.32) can be relaxed by considering both the ui and

the ηei as continuous variables in the range [0, 1], leading to the relaxed problem (RR-

MCEID) (Relaxed Robust Multiple Covering Ellipsoids Indirect Determinant)

Minimize
ξ,d,p,a,u,η

∑
e

(∏
j
dej

)
+ C

∑
i
uiξi (3.33)

subject to ∑
e

ηeiA
e
i ≤ 1 + ξi : αi (3.34)∑

i

ui = n− nout : ρ (3.35)∑
e

ηei = 1 : λi (3.36)

ξi ≥ 0 : γi, (3.37)

dej > 0 : χe
j (3.38)

ηei ≥ 0 : ϵei , (3.39)

ηei ≤ 1 : ϕe
i , (3.40)

ui ≥ 0 : ϑi, (3.41)

ui ≤ 1 : νi, (3.42)

where ϵei , ϕ
e
i , ϑi and νi are added dual variables.

This means that the relaxed problem has an optimal value smaller or equal to the

original problem. We will show below that in fact both problems share the same optimal

value. This result has important practical implications, because if we do not need to

deal with binary variables, that implies a substantial reduction in computational time.

Note that we have one u-binary variable per point and one ηei -binary variable per point

and ellipsoid. Thus, avoiding the ηei -binary variables is even more important than

avoiding the u-binary variables.

The RMCEID problem (3.25)-(3.32), as the RR-MCEID problem (3.33)-(3.42) is

a non-linear non-convex problem, so that we can expect only local optimal solutions.
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However, if a good initial solution is provided (for example, by means of the k-means

method), the resulting optimal seems to be satisfactory from a practical point of view.

The RR-MCEID problem (3.33)-(3.42) does not require a special software, so that

standard software, such as GAMS [49] can be used. In addition, also due to the not

convex and combinatorial nature (due to the fact that points can be assigned to a set of

several ellipsoids and several options are possible for outliers) of RR-MCEID problem

(3.33)-(3.42) slow convergence is expected. A comparison of the CPU times required

by different methods will be detailed in Section 3.1.4. In the following paragraphs,

some rules to assign points to ellipsoids and to decide which points are the outliers are

obtained from the Karush-Kuhn-Tucker (KKT) conditions. In addition, an efficient

algorithm to find good solutions is provided.

3.1.2.5 Karush-Kuhn-Tucker conditions

With the aim of discovering how to avoid binary variables and to design our bilevel

algorithm as an alternative to the direct solution of this problem, we analyze in this

section the Karush-Kuhn-Tucker conditions of the relaxed primal RR-MCEID problem

(3.33)-(3.42).

The Lagrangean function of RR-MCEID problem (3.33)-(3.42), L(·) = L(ξ,d,
p,a,u,η;α,γ, ρ,λ, ϵ,ϕ,ϑ,ν), is

L(·) =
∑
e

∏
j

dej

+ C
∑
i∈I

uiξi

+
∑
i

αi

{∑
e

ηeiA
e
i − 1− ξi

}

−
∑
i

γiξi −
∑
e

∑
j

χe
jd

e
j + ρ

(∑
i

ui − n+ nout

)

+
∑
i

λi

(∑
e

ηei − 1)

)
−
∑
i,e

ϵeiη
e
i

+
∑
i,e

ϕe
i (η

e
i − 1)−

∑
i

ϑiui +
∑
i

νi(ui − 1) (3.43)
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and the corresponding Karush-Kuhn-Tucker conditions are:

Cui − αi − γi = 0 (3.44)∏
j ̸=k

dej − χe
k −

∑
i

αi

∑
e

ηeiB
e
ik = 0 (3.45)

2
∑
i

αiη
e
i

(xiu − aeu)

dev

∑
ℓ≥v

peℓv(xiℓ − aeℓ)

 = 0 (3.46)

∑
i

αiη
e
i

∑
k≤s

pesk
dek

∑
ℓ≥k

peℓk(xiℓ − aeℓ) = 0 (3.47)

Cξi + ρ− ϑi + νi = 0 (3.48)

αiA
e
i + λi − ϵei + ϕe

i = 0 (3.49)

∑
e

ηeiA
e
i ≤ 1 + ξi (3.50)∑

i

ui = n−nout (3.51)∑
e

ηei = 1 (3.52)

ξi ≥ 0, ηei ≥ 0, ηei ≤ 1, ui ≥ 0, ui ≤ 1 (3.53)

αi

{∑
e

ηeiA
e
i − 1− ξi

}
= 0 (3.54)

γiξi = 0 (3.55)

ϵeiη
e
i = 0 (3.56)

ϕe
i (η

e
i − 1) = 0 (3.57)

ϑiui = 0 (3.58)

νi(ui − 1) = 0 (3.59)

αi ≥ 0, γi ≥ 0, ϵei ≥ 0 (3.60)

χe
i ≥ 0, ϕe

i ≥ 0, ϑi ≥ 0, νi ≥ 0 (3.61)
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where

Be
ik =

∑
j

(xij − aej)p
e
jk/(d

e
k)

2
∑
ℓ≥k

peℓk(xiℓ − aeℓ)

 (3.62)

These conditions allow us to derive the following important theorem.

Theorem 3.1.2 (Binary and relaxed problems equivalence): The binary

RMCEID problem described in equations (3.25)-(3.32) and its relaxed form RR-MCEID

(3.33)-(3.42) share the same optimal value and the same solutions with the exception

of the u values. However, the binary u values of the binary problem can be immedi-

ately obtained from the u values of the relaxed problem without changing the values

of variables ξ,d,p,a and η.

Proof: The first part of the theorem concentrates on the u-values. From Equation

(3.48) we get

Cξi + ρ− ϑi + νi = 0. (3.63)

If 0 < ui < 1, from (3.58) and (3.59) we obtain ϑi = νi = 0, respectively, and from

(3.63) we get ξi = −
ρ

C
, that is, this case is possible only when ξi = −

ρ

C
share the same

value for all i. This proves that

ξi ̸= −
ρ

C
⇒ ui = 0 or ui = 1. (3.64)

If all the resulting values of ui are zeros or ones, we have a binary solution and then

the relaxed and the binary problems provide the same solution. Otherwise, all data

points i with 0 < ui < 1 must share the same ξi value. In this case, we can reassign the

ui values to binary values by keeping its sum (see (3.35)) without changing the solution

ellipsoids because we do not change ξi (see Equation (3.34)). Since this change in the

ui values does not alter the sum
∑
i
uiξi in the objective function (3.33), we obtain a

feasible binary solution that provides the same value of the objective function. Since

this can always be done, we have proved that the relaxed and the binary problems

reach the same optimal value.
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If we perform a similar analysis for the case of ηei , from Equation (3.49) we get1

λi = ϵei − ϕe
i −Ae

i . (3.65)

and then we have:

If 0 < ηei < 1, from (3.56) and (3.57) we obtain ϵei = 0 and ϕe
i = 0, respectively, and

then from (3.65) we obtain λi = −Ae
i , that is, this case is possible only when Ae

i = −λi

share the same value for all e and each i. This proves that

Ae
i ̸= −λi ⇒ ηei = 0 or ηei = 1 (3.66)

If all the resulting values of ηei are zeros or ones, we have a binary solution and then

the relaxed and the binary problems provide the same solution. Otherwise, all data

points i with 0 < ηei < 1 must share the same Ae
i value. In this case, we can reassign the

ηei values to binary values by keeping its sum (see (3.36)) without changing the solution

ellipsoids because we do not change
∑
e
ηeiA

e
i (see Equation (3.34)). Since this change

in the ηei values does not alter the the objective function (3.33) we obtain a feasible

binary solution that provides the same value of the objective function. Since this can

be always done, we have proved that the relaxed and the binary problems reach the

same optimal value.

Corollary 3.1.1 (Ellipsoid and outliers assignment rules): The optimal solu-

tion of RR-MCEID problem (3.33)-(3.42) assigns points to ellipsoids using the following

rule: Point i is assigned to the ellipsoid ei = argmineA
e
i . In addition, point i is selected

as an outlier if its ξi is among the nout largest values of ξi.

Proof: From the Karush-Kuhn-Tucker conditions above we have the following

properties:

1. If ηei = 0 because of (3.57) then ϕe
i = 0 and due to (3.65) we have

ϵei = λi +Ae
i ≥ 0 ⇔ Ae

i ≥ −λi. (3.67)

1Since αi is common for all Ae
i it can be removed from the definition of Ae

i when assigning points
to the ellipsoid.
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2. If ηei = 1 because of (3.56) then ϵei = 0 and due to (3.65) we have

ϕe
i = −λi −Ae

i ≥ 0 ⇔ Ae
i ≤ −λi. (3.68)

3. If ϵei > 0 because of (3.56) then ηei = 0 and due to (3.57) ϕe
i = 0. In this case,

from (3.65) we get

Ae
i > −λi. (3.69)

4. If ϕe
i > 0 because of (3.57) then ηei = 1 and due to (3.56) ϵei = 0. In this case,

from (3.65) we get

Ae
i < −λi. (3.70)

5. If ui = 0 because of (3.59) then νi = 0 and due to (3.63) we have

ϑi = Cξi + ρ ≥ 0 ⇔ ξi ≥ −
ρ

C
. (3.71)

6. If ui = 1 because of (3.58) then ϑi = 0 and due to (3.63) we have

νi = −Cξi − ρ ⇔ ξi ≤ −
ρ

C
. (3.72)

7. If ϑi > 0 because of (3.58) then ui = 0 and due to (3.59) νi = 0. In this case,

from (3.63) we get

ϑi = Cξi + ρ > 0 ⇔ ξi > −
ρ

C
. (3.73)

that implies ξi > −λ.

8. If νi > 0 because of (3.59) then ui = 1 and due to (3.58) ϑi = 0. In this case,

from (3.63) we get

νi = −Cξi − ρ > 0 ⇔ ξi < −
ρ

C
. (3.74)

that implies ξi < −λ.

The first four properties imply the indicated point to ellipsoid assignation rule. Simi-

larly, the last four properties imply the above outlier selection rule.

Finally, we clarify that ties can occur only by coincidence and then it is indifferent

whether the point is assigned to any of the tied ellipsoids. The same is true for ties

with outliers.
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3.1.2.6 Proposed bilevel algorithm

The relaxed problem still incorporates the η and u complicating variables. Due to its

combinatorial nature (it combines indices i and e), they are a problem from the point

of view of memory requirements and computer time. However, the KKT conditions

suggest how the points are assigned to the ellipsoids. Therefore, in addition, we can

avoid the ηei and the ui variables. Note that these variables decide to which ellipsoid

each data point belongs to and which ones are outliers, so there are a huge number

of combinations. This suggest solving the problem by using bilevel techniques. In the

first level we fix the η and u variables and optimize the objective function with respect

to the ξ,d,p,a variables. In the second level, points are re-assigned to ellipsoids and

avoided as outliers using collorary 1. More precisely, to assign the points to ellipsoids

we evaluate Ae
i for all ellipsoids, and we assign a point in the ellipsoid e to the ellipsoid

e1 = argmine(A
e
i ) if A

e
i > Ae1

i . On the other hand, we assign ui = 0 for the nout points

with biggest ξi.

So, the resulting bilevel algorithm that we present is detailed in Algorithm 1. In

the first level, ellipsoids are adjusted individually to its data subset. In the second

level, data and outliers are reorganized following the aforementioned principles. The

algorithm keeps executing the bi-level approach until it is not able to find a new better

assignment of data points or until the new found optimum does not improve significantly

the previous solution. The control variable opt is initialized to a large constant T

in order to initiate the optimization process. This process is repeated twice for two

different values of C. It is convenient to use a small value of C in a first loop and

then use the desired value of C because small values of C provide initially more flexible

ellipsoid choices.

Since the bilevel problem responds to the Karush-Kuhn-Tucker conditions, it pro-

vides the same solution as the original problem. Note that the bilevel structure allows

us to reduce the memory requirements and reducing computer time by separating large

size problems into smaller ones. In fact, the second level is a simple assignment of

points to ellipses based on a simple rule obtained from the KKT conditions. Note also

that the proposed algorithm divides the problem of minimum volume set of covering

ellipsoids in a set of independent single minimum volume covering ellipsoid problems

plus a second level re-assignment. This fact opens the possibility of (a) dividing the task

in a multicore environment and (b) using any formulation available in the literature to

solve the individual ellipsoids.
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3.1 A minimum volume covering approach with a set of ellipsoids

Algorithm 1: Solving minimum volume set of covering ellipsoids (MCSE algo-

rithm).

• INPUT: The data points {xi; i = 1, 2, . . . ,m}, the number of ellipsoids E,

the tolerance tol, the number nout of outliers, and two values

Cinitial and Cfinal of the constant C.

• OUTPUT: The values of ξ,d,p,a,u,η.

Initialize variables: globalchange = true, opt = T (big const.), lastopt = 3 ∗ opt,

C = Cinitial.

Initialize the u values: random.

Initialize the η values: use any clustering method (for example the k-means method)

to determine the initial ηei values.

Use the following process to solve the problem.

loop(s=1 to 2),

while (globalchange),

if ((lastopt− opt)/opt < tol),

exit and return ξ,d,p,a,u,η.
else

lastopt = opt

globalchange = false

end

FIRST LEVEL

SOLVE problem (3.33)-(3.42) for ξ,d,p,a with fixed η and u

opt = Z (objective function value (3.33))

SECOND LEVEL

loop (i = 1 to m),

Evaluate Ae
i ; e = 1, 2, . . . , E.

e1 = argmine Ae
i

if

(
Ae1

i ̸=
E∑

e=1
ηeiA

e
i

)
,

ηe1i = 1

ηei = 0, ∀ e ̸= e1
globalchange = true

end
if (|{ξj ≥ ξi; j = 1 to m}| <= nout),

vi = 0
else

vi = 1
end

end
if (u ̸= v),

u = v
globalchange = true

end
end
C = Cfinal

end
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3.1.3 Sensitivity analysis and classification rule

Sensitivity analysis is a very important technique (see [48, 51]) that permits evaluating

how much the objective function, the primal or the dual variables change when some

(small) changes in the data points are done. This can be used for many purposes, as

for example detecting outliers or the most influential points.

In this section we perform a sensitivity analysis trying to identify which are the

data points having the largest influence on the objective function. In other words, we

evaluate the partial derivative of the objective function optimal value with respect to

the data point coordinates.

According to [47, 50] we have that the sensitivity of the objective function with

respect to a parameter is equal to the derivative of the Lagrangian with respect to that

parameter. Thus, in our problem we have that:

∂L
∂xrs

= 2αr

∑
e

ηei

∑
k≤s

pesk
dek

∑
ℓ≥k

peℓk(xrℓ − aeℓ)

 (3.75)

To evaluate the total sensitivity of the objective function Z with respect to data

point r we can use the values of

Sr =

√√√√∑
s

(
∂L
∂xrs

)2

. (3.76)

To illustrate this we have performed the analysis in the normal data example to

be presented in the next section. Figure 3.1 shows the most influential data points

accompanied by a number. The numbers correspond to the order of their influence,

that is, we use 1 for the most influential point, 2 for the second, and so on.

When we have new data points available, we can classify then using the classification

rule

min
e

max (0, Ae
i − 1) , (3.77)

which corresponds to the associated ξi values. Ties can be broken by assigning to any

of the tied ellipsoids. Figure 3.1 shows also the contours of this classification rule.
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Figure 3.1: Graphic illustration of the classification rule and sensitivity analysis for the

Normal data set example.

3.1.4 Experimental results

In this section we illustrate the proposed method by means of two scenarios: (a) ar-

tificial data sets, where it can be observed graphically the different properties of the

proposed method and (b) its application to clustering problems. In the clustering ap-

plications section, the proposed model is compared to state of the art methods for each

field of application. The method proposed in previous sections has been implemented

in GAMS (see [49]).

3.1.5 Artificial Data sets

In order to analyze the behavior of the proposed method when the data shows some

characteristic forms, we present below several illustrative examples.
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Chapter 3. Anomaly detection: proposals and results

3.1.5.1 Square example

The first is the case of data with a square ring pattern. In this case we have set the

number of ellipsoids to E = 8. Figure 3.2 shows the resulting estimation process. We

can see that the outliers (black dots in the graph) are correctly identified (and removed)

from the initial stage and do not change until the end. The use of a small C value during

the first step allows a more flexible estimation providing sufficient degrees of freedom

to adapt to the square pattern. The increase of the C value during the second step

forces the ellipsoids to include more points. The dashed ellipses provide the limits of

a weak inclusion with the initial C, and the continuous line ellipses, the corresponding

strong inclusion with the final C (with a higher value and thus, more restrictive). In

this example, the specific values for the parameters are Cinitial = 0.01, Cfinal = 0.1

and nout = 4. The final result of the proposed method can be observed in subfigure

3.2(c). It can be observed that our bilevel approach provides the same optimal value

than the binary optimization problem, which corresponds to subfigure 3.2(d), but with

an improvement in computational time that will be explained at the end of this section.

3.1.5.2 Normal data

In this example we use simulated data of three bivariate normal distributions with

centers (0, 0), (3, 3) and (0, 6), respectively and different covariance matrices. These

data are later rotated by different angles. In addition, we have added three outliers,

one per group.

Our aim is to obtain the minimum volume ellipsoids to identify the three groups.

We also want the outliers to be excluded from the analysis. We assume that we do

not know the exact number of outliers so we provide a number of ellipsoids E = 4

value and a tentative value for nout of 3. We obtain the results illustrated in Figure

3.3, where subfigures 3.3(a) and 3.3(b) show the fitted ellipsoids for the first step (for

parameters Cinitial = 0.3, Cfinal = 3). We have used a small value of C in order to allow

for weak inclusion of some points. Finally, the full circles in black color correspond to

the outliers, that is, the excluded points.

Subfigure 3.3(a) shows the initial assignment of points to the different ellipses. Sub-

figure 3.3(b) illustrates how the points are re-assigned by using the algorithm proposed

in Section 3.1.2. Note the important improvement associated with these changes and
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Figure 3.2: Evolution of the proposed algorithm for the Square data set: (a) initial

step, (b) iteration 2, (c) final solution and (d) solution of the problem with binary

variables (equations (3.25)-(3.32)).
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how the outliers have changed during this process.

Subfigures 3.3(c) and 3.3(d) correspond to the second step, where the value of C has

been assigned to the desired value. Note that the weak inclusion is more restrictive that

the one in step one. The improvement in this step is much smaller that the one in the

previous step. Subfigure 3.3(e) provides the the same local optimum as the one obtained

by the binary variables program, as it can be seen by comparing both subfigures 3.3(e)

and 3.3(f). We note that the subfigure 3.3(f) corresponds to the solution of the Problem

(3.25)-(3.32), however this problem requires much more computation time.

In order to illustrate what happens when we overestimate the number of ellipses,

we consider the case of 8 ellipses. Figure 3.4 shows the resulting process. It can be

observed how the proposed model still captures the support of the data and detect

outliers properly despite the overestimation of the number of necessary ellipsoids. It is

interesting to see how the outliers change during the process until they stabilize in the

final steps. Again, subfigure 3.4(f) corresponds to the solution of the binary problem

(3.25)-(3.32).

3.1.5.3 Spiral example

Finally, we analyze the case of a highly nonlinear problem as is the spiral trend data

problem. Figure 3.5 shows the data set together with the different solutions obtained

in the different steps of the process (for parameters Cinitial = 0.01, Cfinal = 0.03). The

sequence of figures follows the same pattern than in the Normal case. It can be observed

how the proposed model captures perfectly the shape of the data avoiding the use of

clear outlier data points.

A comparison of the CPU times required by the different methods for the three

examples in this section is given in Table 3.1, which shows how the relaxed Problem

(3.33)-(3.42) requires less CPU than the initial binary Problem (3.25)-(3.32), and that

the proposed algorithm allows an important improvement. This justifies the practical

relevance of Theorem 3.1.2 and the ellipsoid assignment rule in equation (3.77) used in

Algorithm 1.
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Figure 3.3: Evolution of the proposed algorithm for the Normal data set: (a) initial

step, (b) iteration 2, (c) iteration 3, (d) iteration 4, (e) final solution and (f) solution

of the problem with binary variables (equations (3.25)-(3.32)).
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Figure 3.4: Evolution of the proposed algorithm for the Normal data set (number of

ellipsoids overestimated): (a) initial step, (b) iteration 2, (c) iteration 3, (d) iteration

4, (e) final solution and (f) solution of the problem with binary variables (equations

(3.25)-(3.32)).
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Figure 3.5: Evolution of the proposed algorithm for the Spiral data set: (a) initial step,

(b) iteration 2, (c) iteration 3, (d) iteration 4, (e) final solution and (f) solution of the

problem with binary variables (equations (3.25)-(3.32)).
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CPU times in seconds

Example RMCEID RR-MCEID Algorithm

(3.25)-(3.32) (3.33)-(3.42)

Normal 10.575 4.431 1.918

Square 10.990 6.053 2.513

Spiral 10.689 4.743 4.181

Table 3.1: A comparison of the times required by the binary, relaxed and algorithmic

approaches respectively.

3.1.5.4 Clustering applications

The aim of this section is to study the behavior of the proposed model for clustering

applications. In order to accomplish this, we carried out a comparative study with the

results of other state of the art methods, obtained by the experiments detailed in [174].

Four data sets are used to compare the proposed method with previous approaches.

First we used two data sets (S1 and S2) from the S-dataset collection [86]. Both are 2D

datasets with 5000 vectors and 15 Gaussian clusters with different degrees of complex-

ity. In order to test the methods with real life data sets we used data gathered from

meteorological stations in Grand St. Bernard (GSB) and Heron Island [174]. In both

data sets we used the labeling obtained in [174], based on temporal information. We

compared the proposed model with DENCLUE [106], k-means [65], Subtractive Clus-

tering (SC) [55], Gustafson - Kessel (GK) [93] and HyCARCE [174] clustering methods.

In order to compare these algorithms, we followed the indexes of cluster quality used

in [174]: (a) the normalized mutual information (NMI) and (b) the misclassification

rate (MCR). NMI is a known technique in the evaluation of clustering algorithms and

it is based on information theoretic concepts.

NMI(Ψ,Ω) =
I(Ψ,Ω)

(H(Ψ) +H(Ω))/2
(3.78)

where I represents the mutual information between Ψ and Ω and H represents the

entropy. On the other hand, in order to calculate MCR we need to know which is the

best pairing between the real clustering and the one obtained by the method subject

of study. To tackle this problem the Hungarian algorithm [40] was used. After this

preprocessing step, we compute the misclassification rate by dividing the number of
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samples that are not correctly labeled by the total number of samples.

MCR =
# Missclassified

Total # of samples
(3.79)

Table 3.2 shows the results obtained in the comparative study. The parameters of

the proposed model where selected in the following way: (a) the number of ellipses

where set to the actual number of clusters as in [174], (b) the number of outliers was

set to 0 as we do not consider the existence of outliers in these examples, (b) the value

of Cinitial was set to a 50% of the value of Cfinal and (d) the value of Cfinal was selected

by the best mean result of 5 10-fold crossvalidation. The range for Cfinal was tested

in the range {0.01, 10} and the values selected were Cfinal = 5 for Grand St. Bernard

(GSB), Cfinal = 0.05 for Heron Island, Cfinal = 2 for S1 and Cfinal = 0.5 for S2. It can

be observed that the proposed model obtains similar or better results in both indexes

compared to the ones obtained by the best method in each data set.

Table 3.2: Results for clustering problems (best results for each data set are boldfaced)

Data sets

S1 S2 GSB Heron Island

Algorithm NMI MCR NMI MCR NMI MCR NMI MCR

K-Means 0.93 0.16 0.90 0.14 0.87 0.14 0.82 0.25

SC 0.89 0.14 0.81 0.25 0.79 0.30 0.83 0.15

GK 0.97 0.03 0.92 0.06 0.98 0.03 0.94 0.02

DENCLUE 0.98 0.005 0.94 0.03 0.99 0.001 0.94 0.02

HyCARCE 0.93 0.08 0.89 0.11 0.97 0.03 0.78 0.3

Proposed 0.99 0.005 0.95 0.03 0.99 0.002 0.94 0.02

3.1.6 Discussion and future work

In this section, a practical method for solving the problem of minimum volume set

of covering ellipsoids was presented. Classical minumum volume covering ellipsoid

problem has been generalized through relaxation and multilevel optimization and an

effective training algorithm was obtained. The use of multiple ellipsoids allows to ob-

tain better results in cases where a single ellipsoid is not a good model of the data. In
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addition, the proposed formulation allows to automatically detect outliers making it

suitable for practical applications. The solution to this problem can find significant ap-

plications in fields such as clustering and one class classification. Technically speaking,

the development of the aforementioned algorithm faces two main challenges in order

to obtain an effective method: (a) finding an equivalent formulation of the original

SCEDD problem in order to avoid the use of the determinant function and obtain a

convenient formulation and (b) circumvent the combinatorial explosion in the search

of an optimal data point assignation to different ellipsoids and outlier selection. Both

problems have been addressed using decomposition facts extracted from the realm of

linear algebra and bilevel algorithms. Furthermore, a series of theoretical results have

been proved in order to formally demonstrate the adequacy of the proposed method.

Experimental results show that the proposed algorithm can obtain good performance

both in terms of accuracy and computational time for artificial and real-word data

sets. This justifies considering it as a potential solution for machinery anomaly detec-

tion presented in the second main block of this thesis. The bi-level algorithm obtained

can be used to generalize the Support Vector Data Description (SVDD) [234] algorithm

mentioned in previous chapter to the case of multiple ellipsoids in kernel space using

the formulation in [62].
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3.2 Nearest neighbor anomaly detection based on extreme

value statistics

In this section a new anomaly detection technique based on nearest neighbor principle

and extreme value statistics [68] is presented. It aims at exploiting distance informa-

tion under normal conditions to solve one class classification problems. Specifically, the

probability distribution function of the distance of a sample, under normal conditions,

to its close neighbors is modeled either parametrically or non-parametrically. After-

wards, using a result from extreme value statistics, when a new sample s is presented,

the probability of obtaining a more dissimilar sample than s under normal conditions

is obtained and eventually used as an indicative of an anomaly. Thanks to the specific

modeling of the distribution of distances to close samples under normal conditions, we

shall be able to capture the support of normal data while neglecting possible spurious

data in the normal state data set, as these data are typically characterized as being

disperse and far from the normal state support. In the experimental section, it can be

noticed that exploiting distance information in this manner leads to an accurate one

class classifier.

3.2.1 Method description

In this section the principal results and rationale under the proposed Extreme Value

One class Classifier (EVOC) method are presented. Firstly, a theorem rooted in Ex-

treme Value Statistics field [68] on which the proposed method is largely based on is

presented:

Theorem 3.2.1 (Distribution Function of any order statistics) The probability

distribution function Fr:n of any order statistics r of a sample of n values of a random

variable with distribution function F (x) is:

Fr:n = BF (x)(r, n− r + 1) (3.80)

where B is the regularized incomplete beta function.
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This result is based on treating the sampling process as a multinomial distribution

and using the probabilities extracted from the original distribution function F (x). It

can be derived as follows:

Fr:n(x) = P (Xr:n ≤ x) = 1− Fmn(x)(r − 1) =

n∑
k=r

(
n

r

)
F k(x)[1− F (x)]n−k

= r

(
n

r

)∫ F (x)

0
ur−1(1− u)n−rdu = BF (x)(r, n− r + 1)

where mn(x) is the number of elements of the samples with a value Xj ≤ x and

Fmn(x)(k) with k ∈ (0, n) represents the probability that the number of samples below

x is less than or equal to k. Based on this result, when a new sample s is presented, it

is possible to model the probability of obtaining a sample more discrepant or abnormal

than s. In order to do this, consider a metric space M where the data we want to

classify belongs to.

First, in the training phase the probability distribution function Fd(x) of the distance

of each sample to its k nearest neighbors is modeled based on data drawn from only

one class, which shall be called Normal state data. In order to do this, for each data

sample in the normal state data set, we search its k nearest neighbors and use those

distances to model Fd(x). It is important to remark that this step relies only on the

fact that the data is embedded into a metric space where we have a distance function

d, so it is possible to use other data encodings apart form the Euclidean space Rn. For

the probability distribution function estimation, both parametric and non-parametric

methods are available. In this work we will adopt a parametric approach. In order to

set the significance level of the classification rule, we set α to a value that leaves p%

samples of the available set as outliers, where p is a parameter of the method. All these

steps are summarized in algorithm 2.

Subsequently, when a new data point s is to be classified, the following rule is used:

C(s) = I(P (Dk > ds)− α) = I

(
k∏

i=1

(1− F d
i:k(ds(i)))− α

)
(3.81)

where I is the heaviside step function, ds is the set of distances to the k nearest neigh-

bors of s in the normal state data set, ds(i) is the distance to the i-th closest pattern

to s in the normal state data set, Dk is a random variable that represents the distance

to the k nearest neighbors (Dk > dk if ∀i ∈ [1, k], Dk(i) > dk(i)), F
d
r:k is the r-th order

statistics formula of theorem 3.2.1 in which the estimated distribution function Fd(x) of

the distance to a neighbor is plugged in, and α is a threshold that controls under which

level the data sample s is considered abnormal (in this rule, logarithms can be taken

to prevent underflow). Note that the classification rule is monitoring the probability of

obtaining, under normal conditions, a set of k nearest neighbors more dissimilar than
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3.2 Nearest neighbor anomaly detection based on extreme value statistics

the ones we have found for s. If this probability falls, it means that the normal state

hypothesis for s has been violated and so it is classified as abnormal or counterexample.

This classification process is detailed in the lower section of algorithm (see algorithm

2).

When applied to high dimensional data sets, negative effects due to curse of dimension-

ality can appear. Depending on the used metric, the notion of proximity can become

meaningless degrading the contrast between sparse and close neighbors in which the

proposed model is based [6]. In this situation, careful selection of distances and dimen-

sionality reduction techniques should be considered.

Algorithm 2: Proposed EVOC classification method

Training Stage

Input: Normal State data X, number of neighbors k, estimated fraction of

outliers p

Output: Classifier (X, Fd, α)

foreach sample s ∈ X do
Calculate the set of distances ds of s to its k-nearest neighbors in X.

Add the distances in ds to the set D.
Estimate Fd based on the sample values in D.

Set α leaving a p fraction of data in X out of the support.

Classification Stage

Input: Classifier (D, Fd, α), and a new sample s

Output: Classification result C(s), {1 - Normal State, 0 - Novelty}

Calculate the set of distances ds of s to its k-nearest neighbors in X.

Classify s following the rule:

C(s) = I(P (Dk > ds)− α) = I

(
k∏

i=1

(1− F d
i:k(ds(i)))− α

)
(3.82)

3.2.2 Experimental results

In order to explore the features of the proposed method, both artificial and real one-

class classification data sets are used. For the experiments presented hereafter, we
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Figure 3.6: Illustration of EVOC normal support capture.

adopt a parametric approach to model the distance between samples. Since distances

are all positive and it was experimentally observed that they are concentrated around

a mean, the lognormal distribution [121] was adopted.

3.2.2.1 Artificial data sets

In this section, the ability of the proposed method to capture the support of normal data

is depicted for two 2D artificial data sets. Specifically, we tested it with a multimodal

gaussian data set and a banana shaped data set. The results for number of neighbors

k = 4 and p = 0.06 are depicted in figures 3.6(a) and 3.6(b). As it can be observed in

the figures, the exploiting of nearest neighbors distances through order statistics, makes

it possible to automatically detect far outliers while still capturing the main support

of the normal data.

3.2.2.2 Real data sets

In this section we explore the applicability of the proposed method and compare it with

well-established methods in the field of one class classification. Specifically, three data

sets from the UCI Machine Learning Repository [85] are used. The first one, Wine,

was originally proposed as a multiclass classification problem and in this case it will

be casted into a one class classificacion following a one vs the rest approach (class 1

versus the rest). It is a well posed classification problem so it shall be treated as first
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Figure 3.7: Accuracy for Wine data set when changing hyperparameters.

benchmark under good conditions. The second one, Spambase, consists of a collection

of spam and non-spam e-mails. This data set is a good representation of the proposed

method’s applicability in abnormality detection from normal data (non-spam e-mail)

in harder scenarios. The third one, Cardiotocography, exemplifies the applicability of

this method to biomedical applications. This dataset consists of fetal cardiotocograms

(CTGs), which were automatically processed to extract diagnostic features, and the

diagnosis label of ’normal’, ’suspect’ and ’pathological’. For our case of one class

classification, we assume both suspect and pathologic as abnormal cardiotocograms.

We compare the classification accuracy obtained by the proposed method with the one

obtained by two most widespread used one class classifiers: one class ν-SVM [20] and

Autoassociative Multilayer Perceptron [115].

For each data set, 30 random runs using 70% of normal class data as training set

were done. In table 3.3, the mean accuracy of each method and its standard deviation

is shown (best combination of hyperparameters along the random runs). As it can be

observed, the proposed method obtains equal or better accuracy than the other two well

established one class classifiers. In addition, for the Wine data set, we tested the ability

of the three methods to tackle noise samples in the normal state data set introducing

in the training set a 10% of abnormal samples. It can be noticed that EVOC still

maintains better accuracy than the other two tested methods. Moreover, in figure

3.7 the variability of the accuracy obtained by the proposed method is experimentally

studied. It can be observed that for a large range of combinations of k and p, EVOC

presents an stable behavior with accuracies above 92%.
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Data set EVOC one class ν-SVM Autoass-MLP

Wine 94.70% (0.001) 92.45% (0.004) 94.30 % (0.013)

Wine (10%) 93.25% (0.015) 91.70% (0.0034) 91.93 % (0.008)

Spambase 86.33% (0.003) 86.26% (0.002) 79.52 % (9.81e-4)

Cardiotocography 80.38% (0.009) 76.71% (0.007) 75.44 % (0.03)

Table 3.3: Results of EVOC method for UCI data sets.

3.2.3 Discussion and future work

In this section, a one class classifier based on extreme value statistics was presented. The

proposed methodology relies only in the existence of a measure of dissimilarity or metric

between samples, so it can be extended to other spaces different from Rn. Moreover,

the proposed EVOC method has a reduced set of hyperparameters and presents a good

performance compared to other frequently used one class classifiers. Proposed method’s

performance is also explored in problems settled in the Euclidean space, obtaining good

results. As it is a memory-based learning method, it can suffer when applied to large

data sets. Additional effort could be made in the future aiming at reducing final

model’s complexity using efficient nearest neighbor methods and trimming the normal

state data set.
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3.3 On line anomaly detection via passive-agressive one class classification

3.3 On line anomaly detection via passive-agressive one

class classification

In this section we move on to the problem of stream anomaly detection. This section is

divided in two main parts having the aim of obtaining an accurate and general purpose

method for solving this kind of problems. Firstly, a new on-line method for one class

classification is developed. This model is based on the passive-aggressive paradigm

[58][59] and introduces a new formulation more suitable for practical purposes and

which can be applied in complex Hilbert spaces admitting a mapping through the ker-

nel trick [211]. This on-line method has the ability of capturing complex normal data

support area treating each sample in a one-pass manner. Subsequently, we present the

On line Stream Data Anomaly Detector (OSDAD) algorithm. This algorithm stems

from the combination of the aforementioned one class classifier with a CUSUM chart

of a Bernoulli process. The rationale of this combination is as follows: under normal

conditions, the learned training model has a low probability p0 of classifying a pattern

as abnormal; in case there is a change in the conditions, this proportion rises and is

eventually detected by the CUSUM chart. Thanks to the ability of on-line adaptation

of the classification model and its combination with the CUSUM chart, the proposed

algorithm is able to detect significant anomalies with a reduced response time. The

algorithm parameters can be selected in order to adapt its sensitivity to changes. Thus,

it can be tuned to detect anomalies at a severity level adequate for the problem at hand.

3.3.1 Passive-Aggressive one class classifier

3.3.1.1 Background

In [58] one class classification problems are solved by covering the normal data patterns

by an n-dimensional sphere with centerw and radius ϵ. Following the passive-aggressive

paradigm, when a new pattern xt is presented to the model, this is adjusted balancing

two criteria: a minimal perturbation of the previous model and a maximal predic-

tion accuracy. These two criteria are considered in the original formulation which we
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reproduce here:

wt+1 = argmin
w∈Rn

1

2
∥w −wt∥2 (3.83)

s.t. lϵ(w;xt) = 0

where wt is the center of the sphere at instant t, xt is the new pattern presented and

lϵ is the ϵ-insensitive error function.

lϵ(w;xt) =

{
0 if ∥w − xt∥ ≤ ϵ

∥w − xt∥ − ϵ if ∥w − xt∥ > ϵ
(3.84)

It can be observed how the optimization program penalizes a perturbation of the center

of the sphere and, at the same time, it tries to include the new data point inside the

sphere. Also in [58], a slack variable ξt to balance these two aims is introduced. This

extension leads to further formulations called PA-I (Passive-Agressive I) and PA-II in

[58]. The following are the corresponding optimization programs of PA-I (equation

(3.85)) and PA-II (equation (3.86)).

wt+1 = argmin
w∈Rn

1

2
∥w −wt∥2 + Cξt (3.85)

s.t. ∥w − xt∥ ≤ ϵ+ ξt

ξt ≥ 0

wt+1 = argmin
w∈Rn

1

2
∥w −wt∥2 + Cξ2t (3.86)

s.t. ∥w − xt∥ ≤ ϵ+ ξt

It can be observed that the difference between these two formulations lies in the weight-

ing of the distance of a data point to the model represented by the slack variable ξt.

While PA-II squares this outer error, PA-1 introduces it lineally in the objective func-

tion. The constant C is in the range (0,∞) and penalizes that a new incoming pattern

is incorrectly classified.

Although in [58] the update formulas obtained from these optimization programs in

equations (3.85) and (3.86) are very efficient, they present a problem concerning the

radius of the sphere. It can be observed in equations (3.84), (3.85) and (3.86) that

the parameter ϵ is not part of the optimization program and has to be set manually
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by the practitioner, which can be an impractical decision in many real-world environ-

ments. In [58], this issue is tackled by introducing the radius as an extra dimension

in the weight vector (details can be consulted in the reference). This approach has

two limitations: (a) radius can only grow along the time so, in a real application, an

incorrect or very low probability observation can increase it too much, leading to a

suboptimal sphere which can not recover an optimal volume; (b) the interpretation of

this approach when extending the algorithm to another Hilbert space using the kernel

trick is not straightforward. In the next section, we propose an alternative formulation

which tries to tackle these two issues and leads to an algorithm that: (a) can adapt

its radius (volume) to the requirements of the problem thus being more robust against

noise and changing conditions and (b) can be combined in a straightforward manner

with the kernel trick in order to obtain non-linear decision boundaries.

3.3.1.2 Proposed Method

Before exposing the proposed formulation, we introduce the principles that lead to it.

First of all, the original outer error slack variable of equation (3.85) is maintained

and represented by ξt. This variable accounts for the distance of a data point to the

projection of this point into the sphere. In addition, we add the radius of the sphere

r as an extra variable in the program to be solved at each step. The idea of the

objective function is the following: try to correctly classify the incoming pattern xt,

with a minimal impact on the current model, namely the center of the sphere wt, and

maintaining a minimum volume sphere (proportional to radius r). Figure 3.8 depicts

this idea. In order to correctly classify a new incoming pattern with a minimal impact

in the center of the sphere, the optimal direction of movement of the center wt is to

move it directly towards xt, so this restriction is introduced in the program to be solved

a each step. Following these criteria, the proposed formulation is:

wt+1, rt+1 = argmin
w∈Rn,r∈R

1

2
∥w −wt∥2 + Crr + Cξt

s.t. w = (1− λ)wt + λxt (3.87)

∥w − xt∥ − r ≤ ξt

r ≥ (1− qi)rt

ξt, r, λ ≥ 0

where wt+1 is the new center, rt+1 the new radius and xt the new input pattern. The

hyperparameters of the model are described in table 3.4. In the formulation, it can
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Table 3.4: Hyperparameters of the proposed model.

C Its value is in the range (0,∞). It penalizes that a new incoming

pattern is incorrectly classified.

Cr Its value is in the range (0,∞) It penalizes having a large

volume sphere.

qi Its value is in the range (0, 1). In case the new pattern falls into

the sphere, the model will decrease the radius if needed. This

value controls the maximum decrease of the radius as a

proportion of the last radius.

Figure 3.8: Training data patterns with ξt > 0.

be observed that the radius can increase or decrease as needed, trying to maintain a

minimal volume. When a new income pattern is not covered by the current model,

radius increment is penalised by the cost function. Otherwise, radius decrement is

constrained by qi to control the impact on the current model. Thus, passive-aggressive

principle is maintained during learning both for w and r.

In order to solve the presented optimization problem, it can be proved that this can

be done through a reduced quadratic program.

Lemma 3.3.1(equivalent quadratic program): The solution to the optimiza-

tion problem of equation (3.87) can be found by solving the following quadratic pro-
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gram.

λt, rt+1 = argmin
λ,r

1

2
P 2λ2 + Crr + Cξt

s.t. (1− λ)P − r ≤ ξt (3.88)

r ≥ (1− qi)rt

ξt, r, λ ≥ 0

where P = ∥wt − xt∥ and wt+1 = (1− λt)wt + λtxt.

Proof : The equivalent quadratic program is constructed by following these steps:

• Substitute the first constraint in the terms involving norms. Namely:

∥w −wt∥2 = ∥((1− λ)wt + λxt)−wt∥2

= (1− λ)2⟨wt,wt⟩+ 2λ(1− λ)⟨wt,xt⟩

+λ2⟨xt,xt⟩ − 2(1− λ)⟨wt,wt⟩

−2λ⟨xt,wt⟩+ ⟨wt,wt⟩

= λ2(⟨wt,wt⟩ − 2⟨wt,xt⟩+ ⟨xt,xt⟩)

= λ2∥wt − xt∥2

∥w − xt∥ = ∥((1− λ)wt + λxt)− xt∥

=
√

(1− λ)2⟨wt,wt⟩+ 2λ(1− λ)⟨wt,xt⟩

+λ2⟨xt,xt⟩ − 2(1− λ)⟨wt,xt⟩

−2λ⟨xt,xt⟩+ ⟨xt,xt⟩

=
√

(1− λ)2(⟨wt,wt⟩ − 2⟨wt,xt⟩)

+(1− λ)2⟨xt,xt⟩

= (1− λ)∥wt − xt∥

Substituting these two equations in the objective function and in the second

condition, respectively, we obtain the quadratic program of lemma 3.3.1.

It can be observed that the algorithm can be applied in a feature space F via

non-linear mapping of a kernel function k which approximates the inner product in F .
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Namely, in equation (3.88), the only information concerning operations in F is P and

so the norm induced by k can be used. This can be done because the optimal center

wt is always a linear combination of the past presented patterns xi, i ≤ t, allowing the

calculation of the norm induced by the inner product k using the linear property of the

inner product in a Hilbert space. Several different kernel functions can be used, like

RBF (Radial Basis Funtion), polynomial, sigmoid, etc [211]. In this work the following

Gaussian RBF kernel is used:

k(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
(3.89)

where σ controls the width of the distribution.

The patterns xt for which λt > 0 are called Support Vectors (SV). The update

formula of the center of the sphere w in equation (3.87) could lead to hard storage

limitations since the number of SV could grow very quickly. Hereunder we present a

lemma that states that this problem is automatically addressed by the model, discard-

ing many patterns once a stable accurate model is obtained.

Lemma 3.3.2 (controlled growth): If ∥wt−xt∥ ≤ rt, then the optimal solution

of the problem in lemma 3.3.1 has λ = 0.

Proof: First of all we construct the Langrangian and the KKT conditions of the

quadratic program in lemma 3.3.1.

L(·) =
1

2
P 2λ2 + Crr + Cξt + β((1− λ)P − r − ξt) +

+ η((1− qi)rt − r)− θξt − ϕr − ωλ (3.90)

δL

δλ
= P 2λ− βP − ω = 0 (3.91)

δL

δr
= Cr − β − η − ϕ = 0 (3.92)

δL

δξt
= C − β − θ = 0 (3.93)
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β((1− λ)P − r − ξt) = 0 (3.94)

η((1− qi)rt − r) = 0 (3.95)

θξt = 0 (3.96)

ϕr = 0 (3.97)

ωλ = 0 (3.98)

where β, η, θ, ϕ, ω are dual variables. We will prove that if P = ∥wt − xt∥ ≤ r and

the solution has λ > 0 then it violates the KKT conditions of the optimal. First, using

equation (3.91) we have that

λ =
β

P
+

ω

P 2
(3.99)

Thus, using equation (3.98), we have that if λ > 0 then ω = 0 and β > 0. This last

fact implies that in the optimal solution, using equation (3.94), necessarily

(1− λ)P − r − ξt = (P − r)− λP − ξt = 0 (3.100)

as P ≤ r we have that

−λP − ξt ≥ 0 (3.101)

since we supposed that λ > 0 the only possibility is that ξt is negative, which contradicts

a primal condition. This leads to the conclusion that a solution with λ > 0 can not be

optimal.

This lemma has important implications for practical purposes. Basically, it states

that when a new training data point is correctly labeled as normal (inside the sphere),

this data point is discarded and will not be part of the final model. This fact implies: (a)

this model can be considered as a member of the passive-agressive, since it minimizes

the disruption of the current model when a new sample is correctly classified and (b)

once the model is a stable and accurate description of the normal support of the dataset,

it will automatically decelerate its growing since the probability of the next pattern xt

being correctly classified is high. This final aspect will be inspected in the experimental

section.
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3.3.2 Stream anomaly detection algorithm

In some machine learning applications, it is needed to find a method able to detect

significant changes in the generative distribution of a process, while being able to adapt

to low severity not significant variations that can occur during it. One example of

this scenario is rotating machinery fault detection [79][125][163][170][253]. In rotating

machinery working continuously, such as a wind mill or a turbine, low severity variations

of the vibration signatures is normal, while the sudden degradation of them could be

produced by the presence of a fault, which we would like to detect. In addition, these

processes usually produce a continuous stream of data, so on-line processing could be

necessary. This application field is studied in later chapters of this thesis.

In this section, a method for change or anomaly detection using the proposed one

class classifier described above is presented. The method fulfills the aforementioned

properties: (a) is completely on-line, (b) is able to adapt to low severity changes and,

at the same time, (c) detect significant anomalies.

The proposed algorithm stems from the combination of the proposed one class classifier

and the continuous application of a Bernoulli CUSUM test [196]. The rationale is as

follows: under stable conditions, a trained model will maintain a stable low probability

p0 of classifying an incoming pattern as anomalous. In case the generative distribution

of the process changes due to a disturbance, the model will be no longer an accurate

description of the process, so this probability of misclassification will rise, giving sign

of an anomaly. Detecting this change needs an accurate multipurpose change detection

algorithm. In the next section, how to construct a Bernoulli CUSUM chart for this

purpose is explained and we close the subsection detailing how it is integrated in the

proposed algorithm.

3.3.2.1 The Bernouilli CUSUM chart

This section presents the CUmulative SUM (CUSUM) chart for monitoring a process

when items from the process are inspected and classified into one of two categories,

namely defective or non-defective. Specifically, the notation will be as follows: the

results for the k-th item inspected can be represented as a Bernoulli observation Xk

where:

Xk =

{
1 if k − th item is defective

0 otherwise
(3.102)

68



3.3 On line anomaly detection via passive-agressive one class classification

Using this data, Bernoulli CUSUM monitors whether the probability of obtain-

ing a defective item p is p0 or whether it has risen. The Bernoulli CUSUM chart is

not the only possibility for monitoring the proportion of a Bernoulli process. Other

approaches have been proposed in the literature such as the Stewart p-chart or the

Binomial CUSUM [196]. However, CUSUM chart has the advantage of being based

directly on each individual observations X1, X2, . . . Xn. When samples of size n > 1

are taken (for example in a stream of data), the Bernoulli CUSUM chart is applied

individually to the items in the sample and a point is plotted on the Bernoulli CUSUM

chart after each individual observation within the sample of n. This is a desirable prop-

erty for an on-line processing since it is not needed to store a sample and change point

detection can be more accurate. For detecting an increase in p, the Bernoulli CUSUM

control statistic can be expressed as:

Bk = max(0, Bk−1) + (Xk − δ), k = 1, 2, 3, . . . (3.103)

where the reference value is δ, and which calculations will be seen immediately after-

wards. The starting value, B0, for the statistic is frequently taken to be 0 but can

be taken to be a positive value if a head start is desired. Before starting the test,

a detection threshold h is fixed. Each time an item is inspected, the value of Bk is

updated using equation 3.103. The test will signal that there has been an increase in

p if Bk > h.

This expression of the Bernoulli CUSUM statistic is not the traditional one and it can

take negative values. The reason is that some statistical properties of the Bernoulli

CUSUM chart depend on knowing the value of Bk when it drops below zero (details

can be consulted in [195]).

To determine the value of δ, it is necessary to specify a value p1 > p0, which represents

an out-of-control value of p that should be detected quickly. For a given in-control

value p0 and a given out-of-control value p1, constants r1 and r2 are defined as:

r1 = ln

(
1− p1
1− p0

)
(3.104)

r2 = ln

(
p1(1− p0)

p0(1− p1)

)
(3.105)

Then, starting from the basic definition of a Sequential Probability Test (SPRT), it can

be shown that the appropriate choice for δ is:

δ =
r1
r2

(3.106)

Details and proofs of these expressions can be consulted in [195].
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3.3.2.2 Proposed algorithm: OSDAD

In this section we present the algorithm On-line Stream Data Anomaly Detector (OS-

DAD). As previously mentioned, it stems from the combination of the on-line one class

classifier proposed in section 3.3.1.2 and a Bernoulli CUSUM Chart. Inspired on the ap-

plication of CUSUM charts for adaptive tracking (see [25]), the details of our approach

are explained in algorithm 3.

The proposed method is designed to sequentially detect changes of concept based

on the received data stream. The algorithm is able to tackle this task under the

assumption that length of time intervals between concept drifts allow learning a stable

model of each concept. The model under each scenario is used in the subsequent change

detection phase in order to detect anomalies. The estimation and detection phases work

cyclically as detailed in algorithm 3.

The algorithm takes as inputs: the hyperparameters of the proposed classifier,

the initial radius, the kernel function and Average Number of Observations to Signal

(ANOS), explained later in this section. On the absence of any guidance for setting

the initial model, the center is set to the vector 0. When algorithm 3 starts, anomaly

detection process (Bernoulli CUSUM) is disabled until a first stable model is adjusted.

In order to obtain this first model, we update the classifier for N data samples (line

23). Once the model is trained, the probability p0 of classifying a pattern as anomalous

is estimated and the parameters of the Bernoulli CUSUM test are calculated (lines

14-18), see next subsections for more details). Subsequently, since anomaly detection

monitoring is enabled (line 4), in case a significant change appears, the CUSUM test

will signal an anomaly (lines 5-11). In this case two options are possible: (a) detection

of this anomaly finishes the process or (b) tracking of changes is required. In the latter

case, the process can be reinitialized in order to detect future changes.

Proportion of abnormal patterns estimation

In algorithm 3, once a model of normal data is constructed using a window S of |S| = N

patterns, it is necessary to calculate the probability p0 of classifying a pattern as ab-

normal under normal conditions. In order to initiate the detection phase, a subwindow

of the classification values for the latest M patterns in S (M < N) is taken as a

sample to estimate p0. It is supposed that, during this subwindow, the model has al-
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Algorithm 3: OSDAD Algorithm

Require: C,Cr, qi, (N,M) (data window sizes), (k, σ) (kernel function and kernel

parameters), ANOS (Average Number of Observations to Signal), rin (initial

radius)

1: changeActivated← false, S ← ∅ (sample set)

2: w← 0, r ← rin

3: for each new pattern xt do

4: if changeActivated then

5: Xt = classify(xt,w, r)

6: Bt ← max(0, Bt−1) + (Xt − δ)

7: if Bt > h then

8: Signal an alert in point t

9: Reinitialize the model w← 0, r ← rin

10: Set changeActivated← false

11: end if

12: else

13: if |S| = N then

14: Estimate p0 based on a subwindow

15: of the last patterns M in S

16: Compute p1, δ, h based on p0 and ANOS

17: Set Bt ← 0, S ← ∅

18: Set changeActivated← true

19: else

20: Add pattern xt to the set S

21: end if

22: end if

23: Update w, r using pattern xt and C,Cr, qi (equation (3.88)).

24: end for
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ready captured the support of the distribution. Thus, these classification values can be

considered a sample of the behavior of the model in the subsequent detection phase.

There are different estimators for this purpose in the literature. In our case, we have

some limitations for this estimation, since the probability of classifying a pattern as

abnormal is low and the number of patterns available for the estimation of p0 will not

be high in many real applications. In [39], a detailed study of various estimators is

presented and it is demonstrated that, for low values of p0 and sample size n, there

are estimators different from the classical Wald estimator which obtain better results.

Taking this study into account, we selected the Agresti-Coull estimator [10] since it

presents a better behavior for low p and n:

p̂ =
X + 2

n+ 4
(3.107)

being X the number of successes (patterns classified as abnormal) and n the sample size

used (N in algorithm 3). We refer to [39] and [10] for further details of this estimator.

Bernoulli CUSUM Limit fixation

The final aspect of the OSDAD algorithm that should be covered is how to set the

limit h of the Bernoulli CUSUM chart. This value balances the false alarm rate and

fast detection shifts to p1. Since the probability of classifying a pattern as anomalous

under normal conditions should be low, the target p1 is typically set as 3-5 times the

probability p0 (see discussion in [195]). In order to set this value, a quantity called

Average Number of Observations to Signal is introduced (ANOS). In practice, it is

desirable to have a high ANOS when p = p0 in order to have a low false alarm rate.

The equations involved in this calculation are:

h∗ = h+ ϵ(p0)
√

po(1− p0) (3.108)

ϵ(p) =



0.410− 0.0842log(p)

−0.0391log(p)3−
−0.00378log(p)4−
−0.000008log(p)7 if 0.01 ≤ p ≤ 0.5

1
3

(√
1−p
p −

√
p

1−p

)
if 0 < p < 0.01

(3.109)

ANOS(p0) =
exp(h∗r2)− h∗r2 − 1

|r2p0 − r1|
(3.110)
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For given values of r1 and r2 and a desired value for the in-control ANOS, equation

(3.110) can be used to find the required value of h∗ and, subsequently, equations (3.108)

and (3.109) can be used to find the required value for h. The value of ANOS balances

the number of false alarms and the detection delay of the method. The greater the value,

the lesser false alarms are expected, but on the other hand the delay of the detection

can increase. The properties and derivation of these equations can be consulted in

[195].

3.3.3 Experimental Results

The experiments are divided in two subsections. In the first one, the response of the

on-line algorithm proposed is tested in stationary and dynamical environments. In

the second one, the performance of the OSDAD algorithm is showed using for simu-

lated anomaly detection problems. As was previously mentioned, in all experiments a

Gaussian RBF kernel is used (see equation (3.89)).

3.3.3.1 One class classification in stationary and dynamical environments

Artificial datasets

Four different datasets have been used to assess the performance of the on-line one

class classification method previously presented. All datasets are simulated in a two-

dimensional Euclidean space and their properties are detailed in Table 3.5. Whilst

Dataset #1 is an static Gaussian, Datasets #2, #3, and #4 change dynamically.

Datasets #2 and #3 change the center of a Gaussian continuously along an straight

line and an arc. Dataset #4 consists of ’C’ shaped data generated along a semicircle

and adding gaussian noise. The center of this semicircle is increased 3 units each 200

samples giving two changes for the whole dataset. These datasets have been used by

other authors [43] in order to assess the performance of one class classifiers in dynamical

environments.

The parameter values used for building the classifier are listed in Table 3.6. The

first parameter, σ, controls the width of the RBF kernel selected to carry out the
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Table 3.5: Characteristics of experimental datasets.

Dataset #1 #2 #3 #4

Dimensionality 2 2 2 2

Size 300 200 150 600

Stationarity YES NO-

straight

move-

ment

NO-

arc

move-

ment

NO-straight

movement

Geometry Gaussian

µ =
[

0 0
]

Σ =

 1 0.8

0.8 1



Letter C

radius = 8

center = (14, 0)

Σ =

 1 0.8

0.8 1



Table 3.6: Parameters of the model for each experiment.

Dataset Parameters #1 #2 #3 #4

σ 2 3 3 10

C 0.1 0.1 0.1 0.1

Cr 0.005 0.03 0.014 0.02

qi 5e-6 0.01 0.05 3e-5

experiments. The meaning of the ofther parameters has been described before (section

3.3.1.2) in Table 3.4. Since the aim of these artificial data sets is to give a good

illustration of the method performance, parameters were manually tuned in order to

show its main characteristics.

Figure 3.9 depicts the estimated classification boundary for dataset #1, which is

used to observe the behavior of the model in stationary environments. It can be noted

that the model approximates very well the high density region of the distribution. In

order to check this quantitatively we approximated the following probability

P (∥w − x∥ < r|x ∈ D) =

∫
S
I(∥w − x∥ − r)p(x)dx (3.111)

which accounts for the probability of classifying a pattern as normal when it is indeed

normal. In this formula D represents the distribution of the data under normal condi-

tions, S for the input space and I is the indicator function for nonnegative reals. This

integral has been approximated by Markov Chain Monte Carlo methods [151] giving a
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Figure 3.9: Outcome of the proposed model for stationary dataset #1.

value of P (∥w−x∥ < r|x ∼ D) = 0.96. This value proofs that the proposed algorithm

was able to capture the support of the distribution with minimum volume.

Figure 3.10 shows the evolution of the classification boundary for dataset #2 (thicker

boundaries represent the final model). In this case, as part of a dynamic process, the

class moves along a straight line. The boundary after every fifty new data points is

shown. As can be seen, oldest data are forgotten by the model and most recent data

are effectively delimited by the last boundary, thus the model captures very well the

dynamic nature of the data.

In the case of dataset #3 (see figure 3.11), the class moves along the arc of a circle.

As in the previous example, after every fifty new data points the classification boundary

is depicted. As can be seen, the classification boundary moves in the direction of the

class and approximates quite well the shape of the newest data also in more complex

variations.

Finally, figure 3.12 shows the outcome of the model for dataset #4. In this case,

the dataset is ’C’ shaped data that move along a straight line and the boundaries

are depicted every new 200 samples. Once again, the most recent data are perfectly

detected, despite of the complexity of the support of the data’s distribution.

In section 3.3.1.2, lemma 3.3.2 states that any time a new pattern is classified as

normal, it does not increase the support vector base of the model. Figure 3.13 shows
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Figure 3.10: Outcome of the proposed model for non-stationary dataset #2.
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Figure 3.11: Outcome of the proposed model for non-stationary dataset #3.

the growth of the support vector base of the model for the four datasets. It can be

observed that the proposed model is able to obtain an accurate representation of the

support of complex datasets with a reduced support vector base regarding the total

number of samples. In dataset #1, the stationarity of the problem helps to converge

to a stable number of SVs in a very short time. On the other hand, the continuous

change of datasets #2 and #3 makes difficult to stabilize a static model, although the

proposed algorithm is able to obtain an accurate model with a small fraction of the

number of patterns presented. Finally, in dataset #4 it can be observed that while

76



3.3 On line anomaly detection via passive-agressive one class classification

5 10 15 20 25

−10

−5

0

5

10

Figure 3.12: Outcome of the proposed model for non-stationary dataset #4.
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Figure 3.13: Scalability of the proposed model for datasets #1, #2, #3 and #4.

the distribution of the data remains stable, the proposed model is able to calculate its

support with a reduced amount of SVs. When the changes occur, the model re-adjusts

itself to the new distribution and converges again eventually. An open line of research

could be how to discard useless patterns after a change has occurred leading to a further

reduction of the SV base. This is a very interesting property for practical purposes in

on line learning scenarios.

Real datasets
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In order to assess the performance of the proposed model in real one class scenarios

we have compared it with well-established kernel methods for one class classification.

Namely, we have compared with: (a) the on-line PA-I described in [58] and (b) the

batch one class ν-SVM [209][211] . The aim of this comparison is to confirm that

the proposed model obtains better classification performance in real datasets when

compared to previous methods.

We have selected four datasets in the UCI repository [85]: Iris, Balance, Ionosphere

and Wine. A brief description of each dataset can be seen in Table 3.7. In order to map

them to a one class problem, we have trained the three models in order to separate each

one of the classes from the rest. This generates as many one classification problems as

the number of classes in each dataset.

Each dataset was randomly divided into a training set and a testing set using the

70-30 ratio. In order to select the best combination of hyper-parameters, a 10-fold

cross validation was performed. The range of parameters compared for each method

are listed in Table 3.8. In Table 3.9 we report the mean area under the curve (AUC)

on the test set for 10 runs for each of the problem setups and the mean CPU time

for each dataset. In the first column the class identifier of each dataset is followed by,

respectively, the number of samples of the class considered as normal and the number of

samples of the class considered as pertaining to the abnormal class. It can be observed

that the proposed model obtains a better mean AUC than the former PA-I in every

dataset. This results confirm that an automatically selected radius can give better

results in real data sets. When compared to the batch ν-SVM, the proposed model

obtains a comparable or slightly worse classification accuracy. This result verifies that

the proposed model can obtain a performance comparable to a batch kernel one class

classifier tackling the training in an efficient one pattern at a time manner. The slightly

worse results in some setups arise from the fact that the batch one class classifier has

the possibility to manage the whole dataset to find the optimal model. It can be also

observed that the execution times are in the order of the execution times of the PA-I

and faster than the batch ν-SVM.

In order to check the impact of the parameter selection in the accuracy of the

proposed model, the parameters have been varied around the optimal ones for the case

of the Wine dataset. In this case, the optimal parameters were σ = 8.5, C = 0.1,

Cr = 0.00075 and qi = 0.00001. Figures 3.14, 3.15, 3.16 and 3.17 show the variation of

the AUC when one of the parameters varies with respect to the others which remain

constant. It can be observed through the AUC curves that there are many parameter
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3.3 On line anomaly detection via passive-agressive one class classification

Table 3.7: UCI datasets description.

Dataset Type Attributes Samples Classes

Iris Real 4 150 3

Balance Categorical 4 625 3

Ionosphere Integer, Real 34 351 2

Wine Integer, Real 13 178 3

Table 3.8: Combinations of parameters used in cross validation.

Method Parameters

Proposed

σ: [1− 10]

C: [0.001− 0.1]

Cr: [0.0001− 0.1]

qi: [1e-7− 1e-4]

PA-I

σ: [1− 10]

C: [0.005− 0.1]

r: [0.9− 0.99]

ν-SVM
γ: [0.05− 0.5]

ν: [0.001− 0.1]

Table 3.9: AUC results and CPU time achieved on UCI benchmarks datasets.
Dataset Proposed PA-I ν-SVM

Iris

Class 1 (50,100) 100 98.46 100

Class 2 (50,100) 95.61 94.93 96.3

Class 3 (50,100) 93.09 92.1 93.04

CPU time (s) 0.052 0.012 0.087

Balance

Class 1 (288,337) 89.04 87.58 88.64

Class 2 (49,576) 68.67 65.09 69.50

Class 3 (288,337) 88.64 87.22 89.25

CPU time (s) 0.21 0.30 0.69

Ionosphere

Class 1 (225,126) 91.61 91.18 91.83

Class 2 (126,225) 69.22 68.79 69.39

CPU time (s) 0.19 0.28 1.09

Wine

Class 1 (59,119) 97.50 94.52 94.64

Class 2 (71,107) 81.03 80.12 80.42

Class 3 (48,130) 97.21 93.32 96.06

CPU time (s) 0.06 0.03 0.19
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Figure 3.14: AUC obtained varying parameter σ while C = 0.1, Cr = 0.00075 and

qi = 1e− 5.
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Figure 3.15: AUC obtained varying parameter C while σ = 8.5, Cr = 0.00075 and

qi = 1e− 5.

combinations around the optimal which can give a good performance.

3.3.3.2 Anomaly detection scenarios

Artificial Dataset

In this section, in order to show the adequacy of the OSDAD algorithm for tracking

scenarios, an artificial dataset illustrated by Yamanishi and Takeuchi in [250] was used.
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3.3 On line anomaly detection via passive-agressive one class classification

This dataset is a data sequence generated according the following AR model:

xt = 0.6xt−1 − 0.5xt−2 + ϵt, (3.112)

where ϵt is a Gaussian random variable with mean 0 and variance 1. This dataset

consist of 10,000 samples and the previous mean of the data is shifted by ∆(x) = x

at time x × 1, 000 (x = 1, 2, ..., 9). The aim of this non-stationary dataset is to detect

the shifts correctly with minimum false alarm rate. The detection is considered to be

correct if an alarm is given within the 50 records after the true change point.

It should be noticed that the parameters of the OSDAD algorithm can be tuned in

order to: (a) detect severe drifts maintaining a low false alarm rate or, (b) detect any

intersected or low severity drift at the cost of a higher rate of false alarms.

In figure 3.18, it can be observed that all the drifts which are present in this dataset

are abrupt and that its severity grows with time. All the changes which were considered

as severe, and thus must be detected, are marked with a red mark. The parameters on

this example were tuned in order to only detect abrupt severe changes while maintain-

ing a low false alarm rate.

It can be observed in figure 3.18 how the OSDAD algorithm complies with this be-

haviour (change detection time points are illustrated in the figure) with absence of

false alarms. In this experiment a window of 200 samples was used to stabilize the

model at the beginning and every time the process was reinitialized due the detection

of a significant change. Parameter values used for building the model were the follow-

ing: σ = 10, 2, C = 0, 07, Cr = 0, 07 and qi = 1e − 6. As we stated before, with this

set of parameters the model is able to detect small changes in the data. Moreover, the

values of the two parameters employed for the CUSUM chart were: ANOS = 600 and

p1 = 5 × p0. As p0 was very small (most of samples fall inside the modeling sphere),

we chose p1 as a relative large multiple of p0 [195].

3.3.4 Discussion an future work

In this section two classical problems are addressed from an on-line perspective: one

class classification and anomaly detection. A new passive-agressive formulation for on-

line one class classification is presented. From a practical perspective, the proposed

formulation has the following advantages: (a) it is able to accurately fit the support
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Figure 3.16: AUC obtained varying parameter Cr while σ = 8.5, C = 0.1 and qi =

1e− 5.
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Figure 3.17: AUC obtained varying parameter qi while σ = 8.5, C = 0.1, and Cr =

0.00075.

of normal data in an on-line fashion, (a) it is able to dynamically adapt to changes

in the distribution of data, (c) it can be applied in a feature Hilbert space via kernel

mapping and (d) it automatically controls the growth of the number of support vectors.

Furthermore, this model is combined with a CUSUM chart of proportion of abnormal

patterns giving the OSDAD algorithm, specially designed for stream anomaly detection.

Experimental results on synthetic and real data sets confirm that the proposed model

shows very good performance when compared to state of the art algorithms for one

class classification and anomaly detection. The results of this section leave as future

work the determination of the theoretical properties of this algorithm (convergence and

classification error bounds), the design of a criteria for discarding not relevant past SVs
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Figure 3.18: Change point detection of the proposed model for dataset by Yamanishi

and Takeuchi.

and its application to problems using other feature spaces [214].
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CHAPTER4
On-line learning: incremental, non stationary and

distributed scenarios

In this chapter we move on to the second main block of this thesis, on-line learning

algorithms. Traditionally, most Machine Learning (ML) algorithms lay on assuming

that the data being analyzed is drawn from a stationary distribution and is centrally

available for training. However, in many real-life problems these assumptions are not

realistic. Namely, the following eventualities can happen:

• Non stationarity: this happens when the joint probability distribution of the

learning problem at hand P (X,Y ), where X are input data and Y represents

the variable to predict, experiences changes between training phase and predic-

tion phase when the learnt model is used. This can be due to the change of the

conditions of the process underlying the learning problem (e.g., change of tastes

in client behavior prediction, change on the physical state of the machine com-

ponents in a machinery fault assessment application, etc.) or can be imposed

by the way of tackling learning (e.g., changes between marginal distributions

Ptrain(X) ̸= Ptest(X) can be due to the way the sampling is done). Thus, in

these cases what was learnt in the past may not be accurate or even significant

for present data [192]. This problem can be found in the literature mainly un-

der two names: covariate-shift [192] and concept-drift learning [243]. The former

studies the case where the marginal probability distribution P (X) of input data

changes between training and prediction while the latter embraces more general

changes in the learning problem.

• Distributed data: In this kind of scenario, data is distributed in several nodes.

This eventuality can stem from different restrictions: (a) data is distributed in

remote locations and it is not possible (or practical) to move data between nodes,

and (b) learning from a large amount of data available which is so massive that
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it becomes impossible to tackle learning using batch ML classical approaches in

a central node. This problem has been also named in the literature as horizon-

tal partitioned learning and large scale learning and has recently emerged as a

subarea of machine learning. Currently, there is much interest in this area which

continuously generates challenges and projects [207]. Recently, many classical ML

methods have been studied from a distributed learning perspective [45][190][213]

and even privacy preserving issues are being discussed in current research lit-

erature [7]. The latter has attracted much interest due to the expansion and

exploitation of heavy enterprise databases characterized by large numbers of data

points and/or high dimensions [176][227]. Incremental learning models, such as

the one presented in this chapter, are promising tools in this area.

• Incremental learning: In this case, training data arrives continuously in a

stream and a decision has to be made based on the information previously seen.

Due to the continuous nature of the stream of data, learning can not be broken

in training/testing phases. Training set in this case can be considered infinite in

a sense (there’s always new received data to add) but a decision has to be made

also periodically only based on the data available so training has to be made

continuously in order to have a suitable just-in-time model. In addition, this

kind of scenario can be combined with non-stationarity and in many applications

real-time response restrictions are imposed by the problem at hand. Thus, this

kind of scenarios need to count on a model able to retrain efficiently when new

data is available and which asymptotically converges to an optimal model.

Traditional batch and stationary vision of machine learning, although still being dom-

inant and effective in many environments, has steadily yielded center stage to on-line,

distributed and non-stationary learning due to their applicability in real life problems.

Much research has been devoted to these areas, that had expanded ML applicability to

real life scenarios. For example, and encompassing with the last part of this thesis, in

a machinery fault assessment application it is desirable to anticipate a potential fault.

Based on current data, an anomaly detection technique, such as any of the ones pro-

posed in the previous chapter, can assess whether there is an anomalous behavior in

the present time. But, if we can predict the value of some key parameters in the close

future we could anticipate an anomalous situation. Since machine’s condition changes

along the time, a model able to deal with a on-line and non-stationary scenario would

be worthwhile.

In this chapter we present an algorithm able to incrementally train a non linear model in

all the aforementioned scenarios. The work in this chapter is underpinned by previous
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work in [83] where a new convex objective function for one-layer neural networks has

been presented which is able to exactly adjust (up to first order of a Taylor series) the

weight matrix of a neural network without hidden layers and non linear output func-

tions, provided that these have inverse and derivative. In that research it was pointed

succinctly that the proposed approach opened the opportunity of learning incremen-

tally (i.e., without the necessity of storing previous data). However, this incremental

capacity involves the inversion of a I × I matrix for each new data point, leading in

some situations to numerical instabilities and with a complexity of O(M ∗ I2) being I

the dimension of the input space and M a heavy constant. Afterwards, in [164] the

incremental learning capability of the model described above [83], was explored and

extended to concept drift scenarios, obtaining good results. This algorithm weights the

importance of each data sample taking into account whether it is recent or not, giving

exponentially more importance to recent data points. Although it demonstrates that

it is an effective method for concept drift problems, it still has to solve a system of

linear equations for each new data sample and needs to reset the weighting of the data

samples periodically, thus leading to a cumbersome algorithm.

Although not considered in those previous works, both algorithms share its roots in the

classical Recursive Least Squares (RLS) [99] algorithm, originally designed for solving

least-squares problems. The RLS method is an efficient semi-second-order approach

that leads to a faster convergence compared with the first-order models. It has been

extensively studied and applied in the last decades to problems such as real time signal

processing, control, adaptive filtering and noise cancellation, among others [91, 124].

The algorithm has the advantage of exhibiting extremely fast convergence in a few

steps of learning. However, each iteration has a high computational complexity and

potentially poor tracking performance when the system to be estimated changes [257].

In addition, it has the extra limitation of only considering linear output functions.

The algorithm proposed in this chapter presents the following main characteristics:

• It is able to train a single layer neural network with any non linear output function

that complies with the aforementioned conditions.

• Since most of the output functions used in Artificial Neural Networks [29] comply

with these requisites, it can be used as basic building block for more complex

neural models.

• It generalizes previous models. Depending on the values given to the hyper-

parameters and the selected output function, it includes as special cases: RLS

[99] when a linear output function is fixed, the model in [83] when concept-drift

capabilities are disabled and the one in [164].
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• It is demonstrated the relation between its initialization scheme and regularization

which can improve its generalization ability under ill-conditioned problems (high-

dimensional, noise, ...).

• Due to its incremental nature, it is suitable for applications in non stationary,

distributed and stream data scenarios.

Experimental results demonstrate that the proposed model can obtain accurate results

and fast convergence in stable, non stationary and distributed scenarios. Its connections

with machinery fault assessment will be explored in the last chapter of this work.

4.1 Background: Non linear single layer neural network

learning algorithm

In this section we present the derivation of a previous algorithm that obtains the optimal

weights of a single layer feedforward neural network with non linear output functions

which need to have inverse and derivative. These restrictions come from the fact that we

use a theorem demonstrated in [83], where an equivalent formulation for minimizing the

error of a non linear single layer neural network was presented. This derivation follows a

very different philosophy in comparison to previous algorithms since it backpropagates

networks’s desired output signal instead of the error committed. In figure 4.1 this

process is depicted graphically. For each pattern xs, its desired output ds is propagated

backwards using the inverse of the output function for each neuron f−1
j and we tackle

the minimization of the error between the internal network value zjs and f−1
j (djs).

The theorem presented in that work is the first step in the derivation of the proposed

algorithm and it states:

Theorem 1 Let x ∈ RI+1 be the input of a single-layer feedforward neural network,

d; y ∈ RJ be the desired and real outputs, W ∈ RJ×(I+1) be the weight matrix, and f ;

f−1; f ′ : RJ → RJ be the non linear function, its inverse and its derivative. Then, the
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Figure 4.1: Architecture of a single-layer feedforward neural network.

minimization of the MSE between d and y at the output of the non linearity

min
W

1

S

S∑
s=1

∥ys − ds∥2 (4.1)

where S is the number of data points, y = f (Wx), is equivalent, up to first Taylor

order, to minimizing the MSE before the non linearity, i.e., between z = Wx and

d̄ = f−1(d) weighted according to the value of the derivative of the non linearity at the

corresponding operating point. Mathematically, this property can be written as

min
W

E[(d− y)T (d− y)] ≈ min
W

E[(f ′(d̄) · ϵ̄)T (f ′(d̄) · ϵ̄)] (4.2)

where (·) denotes the element-wise Hadamard product of the vectors f ′(d̄) and ϵ̄ = d̄−z.

The details of the proof of this theorem can be consulted in [83]. In the following,

we center our attention to only one neuron in order to avoid a cumbersome derivation.

For solving a full layer of neurons as the one in figure 4.1, the process has to be applied

identically for each neuron.

The optimal weight vector of a neural network, as the one in figure 4.1, using this

theorem has to be a stationary point of the right hand side of equation (4.2). Thus,

taking derivatives of this expression and equating to 0, we conclude that the optimal

model w is the one which solves the following system of linear equations:

Aw = b (4.3)

where A and b are defined as:
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A =

S∑
t=1

xtx
T
t f

′2(d̄t) (4.4)

b =
S∑

t=1

d̄txtf
′2(d̄t)

With this model we have a way to tackle both batch and incremental learning

scenarios, as we can save previous At and bt, and when new information is supplied

up to time t + p we can incrementally construct At+p and bt+p using equation (4.4).

Although mathematically correct, this approach has the following problem: it needs to

solve a system of equations each time new information is provided and a much simple

numerical algorithm to solve this incremental learning scenario is desirable.

4.1.1 Concept-drift learning algorithm

Taking advantage of the incremental learning capacity of the presented model, this can

be extended to non stationary learning scenarios. In [164] an algorithm for tackling

incremental learning with forgetting capacity based on this previous model was devised.

It consisted on weighting in equation (4.4) each pattern exponentially, depending on

how much time has passed since its inclusion on the learning process. This algorithm

is equivalent to exponentially reducing the importance of the error committed for a

past pattern xt proportionally to the time that has passed since it appeared. If we

combine this idea with the result of theorem 1, we arrive to the following error function

to minimize

min
w

(d̄−XTw)TFΛ(d̄−XTw) (4.5)

where X is a matrix with data patterns {x1,x2, . . . ,xS} as columns, d̄ ∈ RS (for a

single neuron) complies with d̄ = f−1(d), Λ is a diagonal matrix with diagonal elements

Λii = λS−i for i = 1, . . . , S and F is a diagonal matrix with Fii = f ′2(d̄i). If we take

derivatives with respect to w and equating the result to 0, we arrive to the following

system of linear equations that solves the time weighted optimal neural network.
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AS =

S∑
t=1

λS−txtx
T
t f

′2(d̄t) (4.6)

bS =
S∑

t=1

λS−td̄txtf
′2(d̄t)

The parameter λ controls the ability of the network to forget when the system under

identification changes. It can be fixed in advance or it can be changed dynamically

based on the error history of the network [107][117][146], controlling the length of the

time window considered in order to adjust the weights.

Up to this moment, in every scenario (non stationary, incremental or distributed

learning), we had to solve the system in (4.3) or (4.6) each time new information was

received. This can lead to an inefficient and complex algorithm when incremental or

non stationary learning scenarios are considered since in these cases the network has

to be updated each time a new pattern is received.

4.2 Diminishing complexity and incrementing efficiency:

proposed algorithm

In this section, we present and demonstrate two lemmas that obtain a much simpler

and efficient algorithm when applied to the aforementioned scenarios. In next sub-

section, the new algorithm is presented and, in addition, a lemma that demonstrates

the relation between its initialization and the regularization capacity of the model is

detailed. Finally, in the last subsection the main differences and advantages of the

proposed model compared to previous approaches are analyzed.

Algorithm 4 is able to solve the same model than the one presented in section 2, and

its equivalence can be demonstrated by the following lemma:

Lemma 4.1: Algorithm 4 solves the optimal weights of a single layer neural net-

work as the one depicted in figure 4.1 up to first order Taylor approximation.

Proof: Following theorem 1 proved in [83], the optimal weight vector of a single
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layer neural network (see Figure 4.1) for a data set of inputs X = {x1,x2, . . . ,xS} and
desired outputs d = [d1, d2, . . . , dS ] can be obtained solving the following system of

linear equations:

ASwS = bS (4.7)

where AS and bS are defined as:

AS =

S∑
t=1

λS−txtx
T
t f

′2(d̄t)

bS =
S∑

t=1

λS−td̄txtf
′2(d̄t)

and this solution is given by

wS = A−1
S bS (4.8)

If we unroll equation (4.24) for AS and bS we obtain:

AS = λ
S−1∑
t=1

λS−1−txtx
T
t f

′2(d̄t) + xSx
T
Sf

′2(d̄S)

bS = λ

S−1∑
t=1

λS−1−td̄txtf
′2(d̄t) + xS d̄Sf

′2(d̄S)

and using the Woodbury identity [90]:

A = B−1 +CD−1CT (4.9)

A−1 = B−BC(D+CTBC)−1CTB (4.10)

with D = 1 in equation 4.10, B−1 = λAS−1 and C = f
′
(d̄S)xS we have that

A−1
S = λ−1A−1

S−1 −
λ−2f ′2(d̄S)A

−1
S−1xSx

T
SA

−1
S−1

1 + λ−1xT
SA

−1
S−1xSf ′2(d̄S)

(4.11)

if we rename

PS = A−1
S

kS =
λ−1PS−1xS

1 + λ−1xT
SPS−1xSf ′2(d̄S)

(4.12)

we have that

PS = λ−1[PS−1 − kSx
T
SPS−1f

′2(d̄S)] (4.13)

kS = PSxS (4.14)
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since

kS [1 + λ−1xT
SPS−1xSf

′2(d̄S)] = λ−1PS−1xS (4.15)

kS + λ−1kSx
T
SPS−1xSf

′2(d̄S) = λ−1PS−1xS (4.16)

which using (4.13) leads to

kS = λ−1[PS−1 − kSx
T
SPS−1f

′2(d̄S)]xS = PSxS (4.17)

If we plug these results into the solution of the linear system in equation (4.8), we

finally have that:

wS = A−1
S bS = PS [λbs−1 + xS d̄Sf

′2(d̄S)]

= PS [λAS−1wS−1 + xS d̄Sf
′2(d̄S)]

= PS [λ(AS − xSx
T
S )wS−1 + xS d̄Sf

′2(d̄S)]

= wS−1 − f ′2(d̄S)PSxSx
T
SwS−1 +PSxS d̄Sf

′2(d̄S)

= wS−1 − f ′2(d̄S)PSxS [d̄S − xT
SwS−1]

= wS−1 + ksαSf
′2(d̄S)

where

αS = d̄S − xT
SwS−1 (4.18)

These last two equations complete the algorithm 4 in conjunction with equations (4.12)

and (4.13).

As it can be seen in the algorithm, we update the weight vector for each pattern

through a vector kt pondered by the error committed for that pattern and the deriva-

tive of the output function in d̄t. This vector kt is proportional to a matrix Pt−1 which

represents A−1
t−1 (see appendix for details). In order to initialize the method, we have

to give a value to P0, before any pattern is presented to the network, with the ini-

tialization term P0 = δI, where I represents the identity matrix. The meaning of the

value of δ is analyzed in the next section.

4.2.1 Regularization property

It is a well known fact in statistics and machine learning that regularization schemes

lead to models with a better generalization performance when ill-conditioned parameter
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Algorithm 4: Non linear single layer neural network training

Input : Data set that comprises inputs X = [x1,x2, . . . ,xS ] and desired outputs

d = {d1, d2, . . . , dS}, forgetting factor λ, initial value δ

Output : Optimal weight vector wS.

Initialize P0 = δI and w0 = 0

for t =1, . . . , S

kt =
λ−1Pt−1xt

1 + λ−1xT
t Pt−1xtf ′2(d̄t)

Pt = λ−1[Pt−1 − ktx
T
t Pt−1f

′2(d̄t)]

αt = d̄t − xT
t wt−1

wt = wt−1 + ktαtf
′2(d̄t)

end

estimation problems are faced [29]. One standard way of bring in regularization in

linear models is by entering a penalty term into the error function that introduces

in the training phase a bias towards more simple models with a better generalization

ability [15]:

Error′ = Error on data+ Complexity penalty (4.19)

For linear models fitted by least squares method, Tikhonov regularization [239] has

demonstrated its effectiveness and has a bayesian interpretation. The Tikhonov regu-

larization term has this form

Complexity penalty = ∥Γw∥2 (4.20)

being w the vector of parameters of the linear model and Γ = µI with I the identity

matrix the most common choice. The choice for the initialization of P0 introduces indi-

rectly a Tikhonov regularization term into the network error function as the following

lemma states:

Lemma 4.2: The parameter δ in algorithm 4 is inversely proportional to the value

µ in the following extended error function.

min
w

(d̄−XTw)TFΛ(d̄−XTw) + µwTw (4.21)

where d̄ = f−1(d), X is a matrix with data patterns {x1,x2, . . . ,xS} as columns, Λ

is a diagonal matrix with diagonal elements Λii = λS−i for i = 1, . . . , S and F is a
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diagonal matrix with Fii = f ′2(d̄i)

Proof: In order to find the minimum of expression (4.21), we take the derivative

and equate it to 0. Thus we arrive to the following expression:

(µI +XFΛXT )w = XFΛd̄ (4.22)

So, in order to obtain the optimal weights, we have to solve the following system:

ASwS = bS (4.23)

where AS and bS are defined as:

AS = µI +

S∑
t=1

λS−txtx
T
t f

′2(d̄t)

bS =

S∑
t=1

λS−td̄txtf
′2(d̄t)

Using these expressions for AS and bS we can use the derivation of the previous proof

to derive algorithm 4. Specifically, in this case, we have an expression for P0,

P0 = A−1
0 = (µI)−1 =

1

µ
I (4.24)

As we can observe, this expression corresponds to the initialization we have detailed in

algorithm 4 with δ = 1
µ .

4.2.2 Main differences and advantages

The results previously detailed in this section allow to derive an algorithm able to

incrementally train a regularized single layer neural network and optionally includes

the capacity of forgetting past information in presence of changes of the system under

identification. Both parameters δ and λ control this behavior and can be tuned in order

to obtain a quick response under changes in the model being learnt and to introduce a

bias towards more simple models in noisy situations. The parameter λ takes values in

the interval (0, 1], and controls the ability of the network to forget past patterns. If it

takes the value 1, this algorithm approximately obtains the same network that the one

in [83]. Exact equivalence depends on the value of δ. The difference emerges from the

fact that the work in [83] does not have the ability to introduce regularization into the
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network. In the proposed algorithm, δ controls the importance of a Tikhonov regular-

ization term introduced into the network error function. Both models are equivalent

in the limit δ = 1
µ →∞. It is important to remark that this algorithm is equivalent to

the RLS algorithm when the output function is linear.

It can be also observed that the proposed algorithm is able to train a non linear

model through simple matrix algebra operations, particularly by matrix-vector mul-

tiplications and vector summations, which makes it suitable for implementing single

layer neural networks trained in embedded and real time systems without the need

of a matrix algebra package. Since it carries all past information in Pt and wt, it is

also suitable for incremental learning and horizontal partitioned distributed learning

scenarios. In both scenarios, it is impossible to access the whole data set available for

training, in the former case due to real time or storage restrictions, and in the latter

due to data is distributed in remote nodes and it can not be collected up in a central

node. In both cases, learning can be suspended and continued afterwards in a different

remote node or future time thanks to the information carried by the aforementioned

Pt and wt. This property is also very convenient for privacy preserving machine learn-

ing [7] since the learnt information is codified in this Pt and wt making it possible to

collaborate in the learning process without revealing actual data.

In [145], an extension of the RLS algorithm to non linear neural networks was

presented. Although similar in philosophy to the present work, their derivation obtains

a different algorithm through the linearization of the network’s output function instead

of backpropagating network’s desired output signal. In the experimental section, we

prove that the proposed derivation leads to an algorithm which obtains more accurate

results and a faster convergence to the minimum in comparison to this previous work.

In addition, when applied to non stationary environments, the proposed model obtains

a more precise and faster system identification.

4.3 Experimental Results

In this section we study the following aspects of the proposed model: (a) its regular-

ization capacity for some real data sets, (b) its convergence for a series of data sets in

stable conditions, (c) its convergence and system change identification ability in non

stationary learning problems, (d) its behavior in distributed environments and (e) the
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interaction between forgetting factor and regularization.

4.3.1 Regularization behavior

As we mentioned in previous sections, when a regularization term is introduced into

the objective function of a model, the solution is biased towards more simple models

with better generalization performance, avoiding overfitting to data. However, when

this bias is too restrictive, it leads to too simple models which have not the ability to

learn the underlying function. This behavior is tested experimentally in this section

for both a classification and a regression problem. For the classification experiment,

we divided into training and test subsets the ionosphere dataset [85]. For the regres-

sion experiment, an artificial problem was created taking an objective random weight

vector of 50 dimensions and a one dimensional desired output to which we introduced

random Gaussian noise. A reduced training set of 500 patterns was generated. In both

situations algorithm 4 was used to train the network with the whole training partition

and finally tested with a separate test set of 500 samples.

In figure 4.2 it can be observed how the initialization parameter δ controls the

regularization behavior of the network. Figure 4.2(a) plots the test error and Figure

4.2(b) shows the sum (in absolute value) of the weights’ network. Both graphics have

in the abscissas axis the different values of the regularization term µ = 1
δ . As it can

be observed, it is experimentally confirmed what we demonstrated in section 4.2.1. In

one hand, the sum of the final weights decreases as we increase the regularization term

(initial δ). On the other hand, regarding the test error, there is an optimal point where

the bias introduced by the regularization term into the training phase makes the model

increase its generalization avoiding overfitting to training set and, from this point, this

bias is too restrictive being impossible to properly learn the underlying desired function.

Analogously, Figure 4.3 shows the test error and weight sum for the regression data

set. As it can be seen, the behavior is the same as in the classification example.

4.3.2 Interaction between forgetting factor and regularization

In this section we explore how the forgetting factor λ and the regularization term µ

interact in an ill-posed non stationary problem. On one hand we have proved how the
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Figure 4.3: Regularization behavior for linear data set.

98



4.3 Experimental Results

forgetting factor controls the ability of the network to adapt to changes in the underlying

function to be learnt. This is done such that if too much adaptation is allowed the

network obtains an unstable accuracy in presence of noise. If on the contrary, it is too

large, the model is too inflexible when it needs to adapt to changes in the data. On the

other hand, the initialization introduced previously allows the network to control the

complexity of the model, obtaining better performance when an adequate regularization

level is introduced in the initialization of algorithm 4. Taking these two arguments into

account, when we try to tackle an ill-posed non stationary learning problem, we should

take into account both parameters since there should be an optimum combination of

adaptation-regularization level for each specific problem depending on its particular

properties. In order to test this, we generated a set of 30 dimensions random regression

ill-posed problems with three changes of context in each one. For each dataset, three

contexts of 30 training patterns and 100 test patterns were generated, having each

context a random objective weight vector. Each problem had a single desired output

with a low energy Gaussian noise added. Thus, in the generated problems it is necessary

to control both the complexity of the model and its adaptation to changes in the

function to be learnt. The mean error committed by the network during its adaptation

is calculated for a test set. In figure 4.4 we show the mean test error obtained by the

network for different combinations of regularization and adaptation levels. In the x-axis

the value of µ is represented whilst in the y-axis the different values of λ can be found.

As it can be derived from the obtained curves, it exists an optimum combination of µ

and λ values that present an equilibrium between adaptation and regularization of the

learnt model.
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and the forgetting factor.

4.3.3 Stationary data sets comparison

In order to illustrate the performance of the proposed algorithm we apply it for the

on-line prediction of twelve time series. Table 4.1 contains the characteristics of the

data sets. The results were also compared with the RLS approach proposed in [145] to

check the efficiency of the new algorithm. In all cases a initial value δ = 100 was used

for both algorithms.

For the comparative study 20 different simulations were performed for each data

set using random permutations of the samples to construct the training and test sets.

Figure 4.5 shows the average test MSE curves of the 20 simulations for the twelve

time series studied respectively. As the learning is accomplished in an on-line fashion,

the curves show the error for each iteration of the process until the whole data set

is presented to the model (the dotted lines represent the variability between different

simulations). As can be observed in this figure the proposed method obtains better

results than the standard RLS, using the algorithm by Leung et al., achieving also a

faster convergence speed.
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Data set Samples Inputs

Artificial 1 20000 3

Artificial 2 20000 4

Artificial 3 20000 10

Annulus1 15000 6

Lorenz1 20000 6

Kobe Earthquake2 3000 6

Concrete Compressive Strength3 1030 9

Forest Fires3 517 12

Glassfurnace4 1247 3

pH neutralization process4 2001 2

Industrial dryer4 867 3

Industrial winding process4 2500 5

1. Available at Eric Weeksis Chaotic Time Series repository (http://www.physics.emory.edu/ weeks/research/tseries4.html)

2. Available at Time Series Data Library (http://robjhyndman.com/TSDL)

3. Available at UCI Machine Learning Repository (http://archive.ics.uci.edu/ml)

4. Available at DaISy: Database for the Identification of Systems (http://homes.esat.kuleuven.be/ smc/daisy)

Table 4.1: Data sets employed in the comparative study.
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Figure 4.5: Comparative results for the twelve stationary data sets
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4.3.4 Non stationary scenarios

The performance of the proposed algorithm in non stationary contexts was checked

both for artificial and chaotic series. In the first experiment we generated an artificial

data set with 3 inputs and 1 output to be predicted using a linear combination of the

inputs. This combination is changed two times during the learning process and thus

three different mixtures of the inputs are obtained. The generated training set contains

27000 samples and, for each data point, a different random test set of 3000 data points

was created using the associated parameters of the current context. As in previous

experiments, 20 different simulations were performed and the averaged MSE curves

were calculated. The RLS algorithm proposed by Leung et al. [145] was used again for

comparison, however, in this case, and in order to be fair, it was modified to include a

forgetting factor, not proposed by the authors in their original formulation. This term

is mandatory in this experiment because we are managing non stationary data.

Figure 4.6 includes the results for these simulations. The training MSE curves for

the on-line training process, and the test curves obtained using the specific test set for

each sample, are shown. Each subfigure contains the results for a different forgetting

factor (λ) in the algorithm. As can be observed, the proposed algorithm presents the

fastest convergence speed to the optimum when a change is introduced in the function

to be learnt. Specifically, in the most conservative scenario (λ = 0.99) the proposed

method is able to recover its best performance, in the presence of change, in around

3300 data points while the algorithm by Leung et al. needs many more samples. In the

most adaptive scenario showed in the figure (λ = 0.50) the proposed method requires

approximately 60 samples to obtain the new optimal parameters whilst the other one

achieves the same results but using around [1000− 1200] new samples. It is important

to remark that as the forgetting factor decreases, and therefore a shorter window of

relevant data is used, the variability of the error is higher.

Moreover, the proposed model was tested for the prediction of the Mackey-Glass

[157] and Lorenz [154] chaotic time series. In order to test the ability to adapt to

changes in non stationary environments in complex scenarios, the data sets were gener-

ated in the following manner: (a) the parameters of the Mackey-Glass equations were

changed each 900 data points in the following order τ = {10, 15, 10, 14, 10, 13} and the

task was to predict the value 85 steps ahead using an embedding dimension of 8 values,

and (b) the Rayleigh number ρ of the Lorenz equations was changed each 900 samples

in the following order ρ = {13, 14, 20, 28} and the task was to predict the next sample
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(a) Results for a forgetting parameter λ = 0.99
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(b) Results for a forgetting parameter λ = 0.90
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(c) Results for a forgetting parameter λ = 0.50

Figure 4.6: Results for the first non stationary data set.
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4.3 Experimental Results
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(a) Results for the Mackey-Glass non station-

ary data set.
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(b) Results for the Lorenz non stationary

data set.

Figure 4.7: Results for the chaotic time series.

using an embedding dimension of 10 values. In both cases and for the two methods

compared, λ was set to 0.99 (see figure 4.7). It can be observed how, also in complex

identifications tasks, the proposed model presents a fast convergence to the optimal

and a high accuracy.

4.3.5 Distributed environments

Due to the incremental nature of the proposed algorithm, learning the optimal weights

of a single layer neural network in distributed environments (in which the patterns are

scattered in several processing nodes and they can not be shared in a central node due

to privacy or storage limitations) does not pose a further challenge. In order to fulfill

a distributed learning task, the learning process has to be paused in a processing node

and continued in other node after interchanging the pair {w,P}. Three situations can

arise:

1. Distributed batch learning, in this scenario the nodes have all the available data

from the beginning. Once all data has been processed in one node, the learning

process continues in the next one until no node has any unprocessed data.

2. Distributed on-line learning, in this scenario the processing nodes receive available

data on-line. In this case, if the current node has not any unprocessed data and

other node receives new data, learning process is transferred to the latter node.

3. Distributed concept drift learning, in this case, in addition to the distributed na-

ture of the learning, concept drift is present. So, whilst in the first two situations
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Chapter 4. On-line learning: incremental, non stationary and distributed scenarios

the constant λ is set to 1, in this situation it should be set to a value in (0, 1)

in order to adapt to changes. This value should be shared among the processing

nodes.

In this work we will deal with the distributed stairs problem. To the best of the author’s

knowledge, this problem has not been discussed elsewhere. Distributed stairs problem

data is depicted in figure 4.8, where the numbers represent how data is distributed

across the nodes. Each step of the stair is stored in a processing node and data from

different stairs can not be shared between nodes. Although both the local problems and

the global one are easy to solve, there is not any information in the individual nodes

that guides their solutions to an optimal global solution. Only incremental methods

that share global statistics, like the one proposed in this chapter can obtain an accurate

global solution in an effective manner. Figures 4.8, 4.9 and 4.10 present the results of

the proposed algorithm in the aforementioned three scenarios for the distributed stairs

data set. The line in figure 4.8 represents the global classifier obtained in learning

scenarios (1) and (2); note that they are superimposed due to the equivalence of the

two situations for the case of the proposed model. In figure 4.9, learning scenario (3)

is presented for this data set (the same distribution among the nodes as in figure 4.8 is

used but each 2000 samples dataset is rotated) and figure 4.10 presents the classification

error of the model along time for this situation with λ = 0.99. It can be observed how

the presented model is able to quickly adapt in a concept drift scenario even in a

distributed environment.
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Figure 4.8: Results for the distributed stairs data set.
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4.4 Dicussion
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Figure 4.9: Distributed stairs data set with concept drift.
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Figure 4.10: Classification error for the distributed stairs data set with concept drift.

4.4 Dicussion

In this chapter we have covered the second main block of this thesis work, on-line learn-

ing methods. Namely, a novel training algorithm for single layer neural networks with

non linear output functions was presented. The derivation is theoretically underpinned

by previously demonstrated results such as the one in [83]. It contains as special cases

the works in [83], [164] and the classical Recursive Least Squares algorithm (RLS),

which is interesting from a theoretical point of view. For practical purposes, it avoids

the necessity of solving a system of linear equations each time a new network update is

required, as in [83] and [164], thus making it a easier and more efficient algorithm for

distributed and concept drift scenarios. For its application to large scale learning sce-

narios, the proposed model complies with the property of incremental learning, making
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Chapter 4. On-line learning: incremental, non stationary and distributed scenarios

it a suitable algorithm for learning from batch data which need to be considered by

parts. Finally, an initialization scheme has also been proposed, which is equivalent to

introducing a Tikhonov regularization term in the training objective function, as it was

demonstrated. This last property makes the proposed algorithm suitable for complex

high-dimensional or noisy problems which are typically ill-posed. Experimental results

show high accuracy and better performance compared with previous extensions of RLS

algorithm to non linear output functions [145].
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CHAPTER5
Automatic fault detection in rotating machinery:

theory and background

This chapter initiates the second main part of this work, application of Machine Learn-

ing, namely anomaly detection and on-line learning algorithms, to the problem of au-

tomatic fault detection in industrial systems. The proliferation of multi-system plants

such as modern wind mill farms turns manual fault detection practices into a costly

activity and pave the way for the application of the presented algorithms for its au-

tomation. We start by introducing in this chapter the main concepts and practices on

industrial machinery fault detection and we leave for the last chapter the experimental

results obtained with the proposed algorithms of this thesis. First, the classical pro-

cess which has governed maintenance of rotating machinery in plants during the past

decades is presented. Also a catalog of the existing diagnosis technologies is provided

and the benefits of a vibration based process are remarked. Subsequently, basic con-

cepts of mechanical vibrations are introduced in order to make the text self contained

and further references are given. Afterwards the technologies involved in vibration

data capture process and vibration signal processing are described. In addition, how

fault detection in industrial environments can be tackled from an anomaly detection

perspective is presented. This will be the framework that we adopt in the software

described in the next chapter and in the experiments of chapter 7.

5.1 Rotating machinery fault detection based on vibra-

tion signatures

In every industrial plant where critical rotating machinery is present, it is necessary to

comply with its maintenance in order to preserve its availability in optimal conditions
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Chapter 5. Automatic fault detection in rotating machinery: theory and background

and guarantee plant’s future production and security. The level of sophistication of this

maintenance depends on the nature and criticalness of the machinery. Traditionally,

the following schemes have been dominant in the industry:

• Corrective maintenance. In this case there are not maintenance actions until

a breakdown occurs. Under this scheme, a machine works continuously until

a breakdown makes necessary a complete stop for an overhaul. This process

presents serious inconveniences since, due to the unexpectedness of the break-

down, the repair is far more costly due to the logistics and severity of the fault

(which could be less severe if stopped earlier).

• Routine replacements and checking. This type of maintenance consist on a peri-

odical replacement and checking of greases, oil, tension, hollows, etc. With this

actions, it is possible to lengthen the lifetime of a machinery under normal con-

ditions. However, if an internal fault in an inner stage is present, it will not be

noticed by this kind of maintenance and will lead to an unplanned and costly

stop of its functioning, similarly to the corrective maintenance. On the other

hand, many replacements are made following the guidance of the manufactures.

Depending on the working conditions, advised periods could be too short (leading

to unnecessary costs) or too long (risking the integrity of the components).

• Preventive maintenance. This methodology may have been the most extended

during the past two decades in many plants. In this scheme, each critical ma-

chinery is stopped an unmounted periodically for a complete inspection after a

pre-specified period. All the possible defects are inspected and corrected. As in

the previous case, if the periodicity is inaccurate (it must be taken into account

that universal periods are very difficult to come up with) it can put at risk the

assets or lead to high maintenance costs.

In summary, these maintenance policies are insecure, due to unnoticed inner faults

which can lead to fatal breakdowns, and imprecise, due to the difficulties found to

come up with accurate revision periodicities. In order to overcome these difficulties,

the new trend, which has demonstrated effective if correctly implemented, is Predictive

Maintenance. This kind of maintenance aims at reducing costs (due to unplanned cut

downs in production and to repairs) and at improving security and availability. When

generally defined, it is based on a continuous measure and analysis of health parameters

of the machinery in order to detect deviations which can indicate the presence of a fault.

A comprehensive predictive maintenance program utilizes a combination of the most
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5.1 Rotating machinery fault detection based on vibration signatures

cost-effective tools to obtain the actual operating conditions of the equipment. On the

basis of this collected data, maintenance schedules are selected. Making an analogy

with medical care, the machine is the patient which may have an internal problem. If

this problem exhibits a known symptom, its presence and evolution can be assessed

by specific tests and suitable treatment is recommended in order to prevent further

damages. In the same way, machines always exhibit known symptoms before break-

down, which can be controlled and treated before further damages produce a costly

complete breakdown. The specific techniques depend on the type of plant equipment,

the cost and other key parameters. Among all of them, the following are the most

significant: (a) acoustic emission, mainly used to detect and locate cracks in structures

and pipelines; (b) oil analysis, lubrication oil is analyzed in order to find the occurrence

of certain microscopic particles in it that can be connected to the condition of bearings

and gears; (c) particle analysis, in which the debris of the machinery is analyzed in

order to find information of components such as gearboxes, hydraulic systems, etc.;

(d) corrosion monitoring, in which ultrasonic thickness measurements are conducted

in order to find any corrosive wear; (e) thermography, in which thermal images are

analyzed in order to find overheating of components which can appear due to internal

defects; (f) performance monitoring, in which the performance of the machinery in its

duty is monitored in order to find downfalls which could indicate any problem; and

(g) vibration monitoring, in which vibration pickup sensors are mounted in order to

find deviations in the internal relative movements and impacts which are symptoms of

many possible internal faults.

When devising and implanting a predictive maintenance program in a plant it has to

be taken into account that it implies an increase in costs of personal, hardware and

software. Many predictive maintenance initiatives have been stopped due to the fact

that their benefits do not beat the costs compared with less sophisticated maintenance

policies. Selecting an adequate technology and methodology is a matter of both detec-

tion accuracy and costs. Taking this into account, vibration analysis based predictive

maintenance has emerged as the dominating technology due to the following facts: (a)

it allows for a fully automatized capture, store and analysis process, (b) it can pinpoint

much of the most common fault symptoms of rotating machinery and (c) there is an

extensive literature already available which covers the analysis of many of the possible

faults.

Ideally, predictive maintenance should follow the next curse of action: (a) an analytical

model of the machine is devised and its set of fault explanatory parameters is extracted

from that model, (b) this set of explanatory parameters together with their alert levels

is compiled as a manual for the maintenance office and (c) the machine is periodically

monitored in order to detect deviations which, if aligned with any fault parameter,
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derive a machine overhaul. Unfortunately, when devising an automatic detection and

diagnosis system, it has to be taken into account that although the “vibration symp-

toms” are qualitatively studied in the literature, the coupling of all the components in a

complex machinery makes it impossible to generate accurate analytical models of each

situation. Thus, there is a uncertainty in the meaning of some levels of vibration under

different conditions and its significance from a diagnosis point of view. A highly trained

team of human experts is always necessary in order to implant an effective predictive

maintenance plan.

In the following sections, we will try to show how ML technologies can be introduced in

modern vibration based predictive maintenance programs. ML techniques can save the

highly valuable time of scarce vibration experts in order to expand their throughput in

real demanding scenarios.

5.2 Mechanical vibration physics: an introduction

Since we will talk in the remainder of this thesis about fault detection based on vibration

signatures it is convenient to clarify the basic notions of the physical phenomenon

of vibration. Mechanical vibrations in rotating machinery are an example of forced

vibration of a structure under an oscillatory force at a specific frequency. We will

first explain the basic terminology and the model of free vibrations of the most basic

mechanical system and incrementally construct the final model of forced vibrations

similar to the ones that are built for mechanical systems. This section only gives a

narrow view of the huge field of vibration analysis and is intended to understand the

basic notions of the physical measurements on which fault assessment is based.

5.2.1 Basic concepts and terminology

Any mechanical system (machines, structures, etc.) when suffering an impact or the

action of forces that vary with time, react modifying their equilibrium. When the

perturbation presents some specific characteristics, its response is a vibration which

can reach significant amplitudes even for weak perturbations. The amplitude of the

response depends both on the variations of the perturbation along the time and on

the mechanical characteristics of the system. Tangible examples of vibration are the

ones of a diesel engine of a car, an earthquake on a building, etc. The effects of these
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vibrations range from breakages to just annoyance. In some cases, such as the vibration

of mechanical components, the maximum peak of a vibration may not cause a fault,

but if the phenomenon continues along the time, it produces a fatigue which can cause

a major fault eventually.

Generally speaking, any system with mass and which is able to be deformed can vibrate.

Virtually all machines are subject to vibration of any kind and its design has to consider

its vibrational behavior in order to avoid a vibration excess. This can be tacked through

the modification of the applied forces and movements or modifying their physics.

Vibration can be defined as the variation of state (position, velocity and acceleration)

of a system along the time with respect to a reference. These changes can be classified

in several ways depending on the aspect considered:

• Depending on the type of movement. A vibration is periodic when the changes

sequence repeats along the time. Periodic vibrations are characterizez by the

period (time T between repetition of the change sequence) and frequency (number

of cycles of the change sequence per time unit which is usually calculated as the

inverse of the period F = 1
T and is expressed in Herzs). Aperiodic vibrations do

not repeat a sequence at time intervals. They can be classified in deterministic,

when we can predict its state in the future, and random, which can only be

studied statistically.

• Depending on the evolution of the movement. Vibration can be: (a) damped

when the maximal displacements diminish, (b) constant, when the displacements

remain constant along the time or (c) amplified, when the maximal displacements

increase.

• Depending on the cause of the vibration. They can be free vibrations when there

are not external forces that produce the vibrations and they were just displaced

from their equilibrium position. On the other hand they can be forced, when

there is an external force applied during the vibration.

• Depending on the duration. Vibrations can be transitory, if their amplitude re-

duces with time until their complete disappearance, or permanent, which stay

stable along the time. Forced vibrations are stable and remain until the excite-

ment forces disappear.

• Considering their nature. Vibrations can be linear if the equation of the movement

can be described through a linear model and non-linear otherwise. Being precise,

all mechanical systems have non-linear vibrations. However, the deviation from
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linearity is very small in many cases and, in practice, almost every system is

studied using linear models.

• Considering the number of degrees of freedom. The number of degrees of free-

dom is defined as the number of parameters which are necessary to describe the

configuration of a system at any time. If the number of degrees of freedom is

finite then the system is discrete, otherwise it is defined as continuous. As in the

previous case, almost all mechanical systems are continuous because they possess

an infinite number of points for which we have to specify their configuration. In

practice, they have to be treated as discrete, defining a mesh of representative

points in order to be able to study their vibrational behavior.

Vibration of any mechanical system is mainly governed by four basic physical con-

cepts:

• Mass: Is the property of the solids which causes inertial forces. This forces oppose

to the changes of velocity of a solid. Thus, the inertial force is defined by the

expression:

FI = −ma (5.1)

where m is the mass of the particle and a its acceleration with respect to a

reference.

• Stiffness: Is the characteristic of a solid which opposes to its deformation with

a force or momentum. In the case of elastic systems, the energy absorbed by

the deformation is recovered afterwards when the deformation force disappears.

This reaction opposes to the previously produced deformation. The most simple

example of this property is a spring. In this kind of system, the force needed to

produce an increment of length δ varies linearly with the increment:

F = kδ (5.2)

where k is called stiffness coefficient or simply stiffness. Although virtually any

system has a non-linear stiffness, almost any studied system can be approximated

by a linear equation like this one.

• Damping: It is defined as the process of energy dissipation while the vibration

is present. If the vibration is only due to an initial perturbation, damping pro-

duces a progressive reduction of the amplitude until a final disappearance (we

will see this in detail in the next section). If vibration is forced, damping reduces
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the amplitude of the perturbation produced in the system. Damping can origi-

nate from diverse causes like internal friction of the materials or between moving

parts (Coulomb damping), acoustic waves, the introduction of a fluid into a case

through small holes like in the shock-absorvers of the cars (fluid damping). Gen-

erally, various kinds of damping are present in a system, although there is always

one which is predominant

• Deformation forces: In order for a vibration to be present it is necessary an

external perturbation of the equilibrium. This perturbation can present different

forms and be classified into the following different kinds:

– Initial shock. Is a modification of the position or the velocity of a system

with respect to a reference equilibrium. The sudden end of the deformation

allows the system to steadily recover its initial static position. System inertia

prevents the system to recover immediately its initial equilibrium and a

vibration phenomena appears. The example of this kind of perturbation is

an impact in an object like a table, which vibrates until it recovers its initial

position.

– Short duration forces. These are characterized by a sudden initial impact

followed by a slow posterior variation. Due to the initial shock, inertia of

the system prevents its deformation to follow exactly the force and a tran-

sitory vibration appears. Damping produces that this vibration disappears

eventually and the system finally follows the force. An example of this kind

can be to put an object on a weighting scale.

– Periodic forces. In this case the perturbation has a periodic component.

The amplitude of the vibration depends on the amplitude and the frequency

of the applied force and the mass, stiffness and damping of the system.

Rotating mechanical systems explained in this chapter and in chapter 7 are

an example of this kind of systems.

– Irregular aperiodic forces. In this case the forces do not disappear after some

time but they do not have a periodic component. This kind of variations

can only be studied statistically. Example of this kind of perturbation are

waves against a ship or wind on a building.
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5.2.2 Fundamental equations of vibration

In this section we give a short introduction to the fundamental equations of vibration

in a mechanical system which will help to understand the analysis of chapter 7. The

equations that govern the vibration of any mechanical system are established through

the same fundamental principles as the ones presented hereunder through discretization

and linealization of the system. The most simple discrete systems which can be studied

are those with only 1 Degree of Freedom (DOF). This kind of system is depicted in

figure 5.1 and it is completely described by the position of the solid x. If we apply a

force f(t) on the solid with mass m in the positive direction on x, the basic equation

of this system can be established through D’Alembert principle, introducing inertial

forces:

mx
′′
(t) + cx

′
(t) + kx(t) = f(t) (5.3)

cx
'
 kx


m
x


k
 c


m


Figure 5.1: 1 Degree of Freedom System. An example of this kind of system are

shock-absorbers

where m is the mass, k is the stiffness coefficient of the system and c is the damping

factor, x
′′
the acceleration of the particle/mass, x

′
its velocity and x its displacement.

When we have a free vibration, we are in a situation where only an initial shock

x0 = x(t0), x
′
0 = x

′
(t0) is present and external action on the system is null f(t) = 0.

In this case we have a linear ordinary differential equation and the equation of the

vibration can be completely solved analytically. The expression of the movement has
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the form

x(t) = Cest (5.4)

where C is a constant to be determined from initial conditions and s has the form

s = − c

2m
±
√( c

2m

)2
− k

m
(5.5)

Depending on the physical properties of the system, vibrations can be:

• Free vibration without damping. In this case c = 0 and equation for s can be

reduced to

s = ±
√
−w2 = ±iw (5.6)

where i is the imaginary constant and w2 = k
m . Thus, the equation of the

vibration in this case is a pure oscillatory one governed by the equation

x(t) = Acos(wt) +Bsen(wt) (5.7)

where constants A and B can be determined by initial conditions.

x(t) = x0cos(wt) +
x

′
0

w
sen(wt) (5.8)

The conclusion is that, without damping, vibration is an harmonic function with

frequency w = k
m .

• Free vibration with damping. In this case c ̸= 0 and the root for the equation of s

can be real or complex conjugate. The constant ξ = c
2mw is called critic damping

and the expression for s can be transformed as follows

s = −ξw ±
√

ξ2w2 − w2 = −ξw ± w
√

ξ2 − 1 (5.9)

Three cases are possible:

– Critic damping (ξ = 1). In this case s = −w and the vibration has the form

x(t) = (c1 + c2t)e
−wt (5.10)

where c1 and c2 are constants to be calculated from the initial conditions.

Thus, in this case there is not an oscillatory vibration and it has not interest

for machine dynamics.
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– Supercritic damping (ξ2 > 1). In this case we can call w̄ = w
√

ξ2 − 1 and

the vibration has the form

x(t)e−ξwt(Acosh(w̄t) +Bsenh(w̄t)) (5.11)

which is not oscillatory and, again, has not interest from a machine dynamics

perspective.

– Subcritic damping (ξ2 < 1). In this case s = −ξw ± iw
√

1− ξ2, we call

wD = w
√

1− ξ2 and vibration has the form

x(t) = e−ξwtXcos(wDt− ρ) (5.12)

where X and ρ are determined from the initial conditions. The final expres-

sion has the form

x(t) =

√
x20 +

(
x

′
0 + ξwx0
wD

)2

e−ξwtcos

(
wDt− arctg

(
x

′
0 + ξwx0
x0wD

))
(5.13)

This is the case which has interest from a machine dynamics perspective. As

it can be observed in the expression, vibration in this case is a combination

of a oscillatory movement and a damping component which reduces the am-

plitude proportionally to time (see an example in figure 5.2). The frequency

wD is called the natural frequency of the system and as it can be observed

is completely determined by the mass, damping and stiffness factor of the

component at hand.
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Figure 5.2: Damped Vibration example

The subcritic damping vibration is directly related to the vibrations of a defective

bearing in rotating machinery which will be studied in chapter 7. In this case, the defect
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produces periodically an impact in the machine which subsequently produces a subcritic

damping vibration of the whole housing of the bearing. This vibration is captured by

the transducers to be explained in the following sections and a peak vibration should

appear at a frequency close to wD. Unfortunately, this mathematical model is only

an approximation of these continuous systems. The parameters c, k and m can only

be known approximately (usually only an approximation of wD can be known) and

the vibration is affected by other components of a machinery. These difficulties makes

these expressions a good qualitative model of the phenomenon but, in quantitatively

terms, it is only a raw approximation of the actual vibration phenomenon.

In rotating machinery, the forces affecting the internal components vary harmonically

with time. Thus, this perturbation can be expressed as a Fourier series of harmonic

functions:

f(t) =
N∑
j=0

fj(cos(wjt) + i sin(wjt)) (5.14)

Physically, a complex force has not a real sense, but is a useful compact mathematical

expression. Since this equation should be solved for the real and imaginary part, if

the perturbation varies as a sinusoid we should consider the imaginary part of the final

expression and the real part if, otherwise, the perturbation follows a cosine form. If we

concede that the perturbation has a main pure oscillatory form

f(t) = f0(cos(ŵt) + i sin(ŵt)) (5.15)

we have that wD is the natural frequency of the system, ŵ the frequency of the pertur-

bation and we call

β =
ŵ

wD
(5.16)

The final expression of the response of a 1 Degree of Freedom (DOF) system with an

oscillatory perturbation is

x(t) = Xe−ξwtcos(wDt− ρ) +
f0
k

1

1− β2 + 2ξβi
eiŵt (5.17)

where constants X and ρ are to be determined by the initial conditions and we consider

the imaginary part of the second summand if the perturbation is sinusoidal or the real

part otherwise. As we can observe, the final form of the vibration has two very different

components (see an example in figure 5.3):

• Transitory vibration. Which has an oscillatory movement at the natural frequency

and disappears after some time. It corresponds to the first component of the

aforementioned expression.
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• Stationary response. Which is present while the perturbation is active and cor-

responds with the second component of the final expression.

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

t

Figure 5.3: Forced vibration example (combination of a transitory and a stationary

component)

The second component has an important term called transference function of the

system

H(ŵ) =
1
k

1− β2 + 2ξβi
(5.18)

This function governs the response of a system. If a force with the expression

f(t) = f0e
iŵt (5.19)

is applied, then the system produces a final stable vibration with the form

x(t) = f0H(ŵ)eiŵt (5.20)

This function has two effects

• Ω = arctg 2ξβ
(1−β2)

is the delay that the system introduces in the effect of the

perturbation.

• X = f0
k

1√
(1−β2)2+(2ξβ)2

is the amplitude modulation introduced in the perturba-

tion.

The most important component is the second one since, as it can be observed in the

expression, even a small amplitude perturbation can produce a huge vibration depend-

ing on the β coefficient. This means, encompassing with the vibration of bearings

studied in the last chapter, that a small defect in a component can produce a fatal
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effect depending on the position and the rotating frequency of the machinery (in the

extreme case of resonance, the vibration can become infinite, producing the breakage

of the solid). Due to this effect, predictive correct design and predictive maintenance

are key factors for a machinery asset to have a long life. Figure 5.4 depicts a typical

transference curve for a mechanical component.

Figure 5.4: Vibration transference of a mechanical system

Of course, real systems are not of the 1 DOF type, albeit the fundamental concepts

presented in this brief introduction are the basis of the vibration models of many

rotational machinery systems and, specifically, the components that will be studied

in the next sections. If we are to study a more general system, we will end in a

system of linear ordinary differential equations and the natural frequencies at which

each component will vibrate are called natural modes of vibrations. Just to give a

notion of the mathematical form of a n degrees of freedom system consider the one

in figure 5.5
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Figure 5.5: Scheme of a 2 degrees of freedom system.

The equations that govern the vibration of this system when affected by a pertur-
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bation are:

m1x
′′
1 + k1x1 + c1x

′
1 − k2(x2 − x1)− c2(x

′
2 − x

′
1) = F1(t) (5.21)

m2x
′′
2 + k3x2 + c3x

′
2 + k2(x2 − x1) + c2(x

′
2 − x

′
1) = F2(t) (5.22)

which can be put into matrix form[
m1 0

0 m2

] [
x
′′
1

x
′′
2

]
+

[
c1 + c2 −c2

−c2 c2 + c3

] [
x
′
1

x
′
2

]
+

[
k1 + k2 −k2

−k2 k2 + k3

] [
x1

x2

]
=

[
F1(t)

F2(t)

]
where the first matrix is the inertial matrix, the second one is the damping matrix

and the third one the stiffness matrix. In the general case, the whole system ends in

a system of linear ordinary differential equations of order n in which the couplings of

all the components are codified in the three matrices of the system. The analytical

solution to this system of linear equations can be obtained in some cases. In many

occasions, the system can be simulated in order to predict an approximation of the

vibration of the whole system.

5.2.3 Physical models of vibrations of a rotating machinery

After reading the concepts of the last section it could be argued that all the vibration

modes of a piece of machinery can be studied analytically. In a real scenario, this is

not always the case and the models constructed are limited in the number of degrees of

freedom considered and their utility is restricted to control the vibration limits of the

machine in their design. As an example of this, in big structures like ships or planes,

their design is conceived in order to avoid resonance frequencies due to the previously

explained effects. To give an illustration of the complexity of such models of a real

system, a 34 degrees of freedom model of a bearing fault simulator presented in [205]

is reproduced hereunder. Figures 5.6 and 5.7 depict respectively the actual test rig

and its 34-DOF dynamic model. This model will be used in chapter 7 to simulate

bearing faults and illustrate the detection capabilities of the algorithms presented in

this thesis. It is depicted here in order to illustrate the complexity of a complete model

of a real system. This complexity makes the complete analytical complete study of

many systems impractical.

From the predictive maintenance perspective, the analytical study of the vibration

phenomenon carried out through the principles briefly presented in this section allows

to build qualitative models of the vibration behavior like the ones presented in chapter 7
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Figure 5.6: University of South Wales’ fault test rig photo and scheme (courtesy of the

authors)
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Figure 5.7: 34-DOF modeling of the gearbox (courtesy of the authors)

for bearings. Unfortunately, many assumptions have to be made during this study and

many parameters such as stiffness, damping and couplings between components can

not be completely determined. This leads us to the necessity of constructing ad hoc vi-

bration models for each machine in order to be able to detect faults in a real situation.

In chapter 7 we will see how Machine Learning (ML) techniques can be worthwhile

for this task. Nevertheless, there’s a synergy between analytical study of mechanical

systems and ML fault detectors since the former helps in the design of ML automatic

systems in decisions such as feature selection and algorithm design.

5.3 Mechanical vibration technologies

The topics discussed in the previous section were theoretical, introducing the basics of

mechanical vibrations. In this section we take the first step towards practical vibration

analysis. We start with the description of the most common transducers that can be

found in a real scenario.
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5.3.1 Vibration transducers: characteristics and installation

As in many other areas such as medicine, transports, etc. in order to measure rotating

machinery vibrations a transducer, able to transform the vibration phenomenon in other

type of energy, is necessary. In this section we briefly describe the three types of trans-

ducers which are standard in the field: velocity pickups or velocimeters, accelerometers

and proximity probes. Each component is specialized on capturing vibration velocity,

acceleration and displacement and each one has its own advantages and disadvantages

which will also be commented. In the experimental section, accelerometers will be used

due to the necessity of capturing a broad frequency band.

Velocity pickups or velocimeters

Velocity pickup is a very common transducer for monitoring the vibration of rotating

machinery. This type of vibration transducer installs easily on most analyzers, and is

rather inexpensive compared to other sensors. For these reasons, the velocity trans-

ducer is ideal for general purpose machine monitoring applications. Velocity pickups

have been used as vibration transducers on rotating machines for a very long time, and

these are still utilized for a variety of applications today. Velocity pickups are available

in many different physical configurations and output sensitivities. Wire is wound on a

hollow bobbin to form the wire coil. Some times the wire coil is counter wound (wound

in one direction and then in the opposite direction) to counteract external electrical

fields. The bobbin is supported by thin, flat springs to position it accurately in the

permanent magnet’s field. When a coil of wire is moved through a magnetic field a

voltage is induced across the end wires of the coil. The transfer of energy from the flux

field of the magnet to the wire coil generates the induced voltage. As the coil is forced

through the magnetic field by vibratory motion, a voltage signal correlating with the

vibration velocity is produced. The magnet-in-coil type of sensor (see figure 5.8(b)) is

made up of three components: a permanent magnet, a coil of wire and spring supports

for the magnet. The pickup is filled with oil to dampen the spring action. The relative

motion between the magnet and the coil caused by the vibration motion induces a volt-

age signal. The coil-in-magnet contains the same components in a reciprocal mounting.

The velocity pickup is a self-generating sensor and requires no external devices to pro-

duce a voltage signal. The voltage generated by the pickup is directly proportional to

the velocity of the relative motion. Due to gravity forces, velocity transducers are man-

ufactured differently for horizontal or vertical axis mounting. The velocity sensor has a

sensitive axis that must be considered when applying it to rotating machinery. Velocity
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(a) Example of a Velocity pick-up.
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(b) Velocity pick-up scheme.

Figure 5.8: Velocity pick-ups

sensors are also susceptible to cross-axis vibration, which could damage it. A velocity

signal produced by vibratory motion is normally sinusoidal in nature. Thus, in one

cycle of vibration, the signal reaches a maximum value twice. The second maximum

value is equal in magnitude to the first, but opposite in direction. The convention is

that motion towards the bottom of a velocity transducer will generate a positive output

signal.

The fact that all vibration sensors measure motion along their major axis should be

taken into account when choosing the number of sensors to be used. Due to the struc-

tural asymmetry of machine cases, the vibration signals in the vertical, horizontal and

axial directions (with respect to the shaft) may differ. Where possible, a velocity trans-

ducer should be mounted in each of the three directions. In doing so, we will have a

complete picture of the vibration signature of the machine.

Some velocity pickups are among the sensors with the highest sensitivity for rotating

machine applications, which could be very convenient if electrical noise is a problem.

However, there are some limitations. Generally, output values are in the range of 20–

30 mV/(mm/s). The sensitivity is constant over a specified frequency range, usually

between 10 Hz and 1kHz. At low frequencies of vibration, the sensitivity decreases

because the pickup coil is no longer stationary with respect to the magnet, or vice

versa. This decrease in pickup output drops exponentially and starts approximately at

10 Hz. Thus, velocity captures taken at frequencies below 10 Hz are inaccurate. Above

that band, the velocity pickups should reach a useful response up to 2kHz. This is

a limitation since the expected frequency range must be covered by the sensor. Also

velocity pickups should be calibrated in a annual basis, since they are the only type of

sensor with internal moving parts which are subject to fatigue failure.
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Accelerometers

Accelerometers are the most popular transducers used for rotating machinery appli-

cations. They are compact, lightweight transducers with a wide frequency response

range. Accelerometers are extensively used in many condition monitoring applications.

Components such as rolling element bearings or gear sets generate vibration at high

frequencies when defective (as we will observe in chapter 7). Machines with these com-

ponents should be monitored with accelerometers. The installation of an accelerometer

must be carefully considered for an accurate and reliable measurement. Accelerometers

are designed to be mounted on machine cases and can provide continuous or periodic

measure of case motion acceleration.

Accelerometers are inertial measurement devices that convert mechanical motion into

a voltage signal. The signal is proportional to the vibrations’s acceleration using the

piezoelectric principle. Inertial measurement devices measure motion relative to a mass.

This follows Newton’s third law of motion: a body acting on another will result in an

equal and opposite reaction of the first. Accelerometers (see figure 5.9(b)) consist of

a piezoelectric crystal made of ferroelectric materials like lead zirconate titanate and

barium titanate and a small mass normally enclosed in a protective metal case. When

the accelerometer is subjected to vibration, the mass exerts a varying force on the

piezoelectric crystal, which is directly proportional to the vibratory acceleration. The

charge produced by the piezoelectric crystal is proportional to the varying vibratory

force.

The charge output is measured in Pico-coulombs per g, where g is the gravitational

acceleration. Current or voltage accelerometers have an internal low-output impedance

amplifier and require an external power source which can be either a constant current

source or a regulated voltage source. This type of accelerometers are normally a two

wire transducer with one wire for the power and signal and the second wire for common.

They have a lower temperature rating due to the internal amplifier circuitry and long

cable lengths can reduce their effective frequency response range. There is a second

family of accelerometers named charge mode, in which the amplifier is external and

therefore have a higher temperature rating.

Accelerometers have usually a sensitivity of 100 mV/g but there is a wide variety of

types specially designed for applications such as structural analysis, geophysical mea-

surement, high frequency analysis, etc. Nowadays they even find applications in video

games, mobile phones and robotics, being one of the standard component in many of

these systems.

The main characteristic of the accelerometers is their frequency response. Once a par-

ticular frequency range of interest for a machine is known, an accelerometer can be

selected. They typically have a frequency range from 1 or 2 Hz to 8 or 10 kHz. Some
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(a) Example of an accelerometer. (b) Acceleration pick-up scheme.

Figure 5.9: Accelerometers

specific models can reach 20 kHz, although those are still expensive for some appli-

cations. This characteristic makes accelerometers suitable for detecting events which

occur above the 2 Hz band, since this band is not well captured by velocimeters or

proximity probes.

Proximity Probes

Proximity probes find their typical applications in high speed turbomachinery. They

are the only transducers which provide displacement of the shaft or its relative vibra-

tion measurements. A proximity probe is a matched component system which consists

of a probe, an extension cable and an oscillator/demodulator (see figure 5.10(b)). A

high-frequency radio signal (RF) at 2 Mhz is generated by the oscillator/demodulator.

This is sent through the extension cable and radiated from the probe tip. Eddy currents

are generated in the surface of the shaft. The oscillator/demodulator demodulates the

signal and provides a modulated DC voltage, where the DC portion is directly propor-

tional to the gap (distance to the shaft) and the AC portion is directly proportional to

vibration.

This vibration transducers measure motion in the mounted plane. In other words, shaft

motion is either directed away from or towards the mounted Eddy current probe, and

thus the radial vibration is measured in this way. This type of vibration pickups should
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(a) Example of a proximity probe. (b) Proximity probe

mounting.

Figure 5.10: Proximity probe

be mounted in the plane where the largest vibrations are expected. The effective fre-

quency range of this kind of vibration transducers is from about 0 Hz to 600 Hz.

In the experiments that we present herein afterwards, we will use always signals

extracted from accelerometers measurements. This is due to the fact that we will try

to detect fault in rolling element bearings, and this components usually generate fault

features in the high-frequency band, where the accelerometer technology is the most

adequate in terms of effectiveness and cost.

5.3.2 Analysis techniques

f To make raw vibration signatures informative from a fault detection and diagnosis

perspective, they should be transformed in order to enhance relevant features. In the

past years, the study of machinery fault detection has been studied thoroughly and

many features for detecting the faults both manually and automatically have been es-

tablished [167][235][236][237]. We give a short description of the most used features in

practical fault detection and diagnosis tasks.

Time domain representations

One of the main danger indicators which can be gathered from vibration data is their

amplitude. A large displacement of moving components of the machinery can lead to
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fatigue and eventually breakdown. Thus, measurements extracted from the vibration

raw signal proportional to the vibration amplitude can be very effective. Among them,

the most common are:

1. Root mean squared energy (RMS). It measures the mean squared deviation of

the raw vibration signal from the origin (equilibrium). Its expression is

RMS =

√√√√ 1

T

T∑
t=0

x2t (5.23)

where xt are the values of the raw signal and T the signal length.

2. Peak-to-peak. It measures the distance from the most positive value of the raw

vibration signal to the most negative. Recall that positive and negative values of

the signal given by the transducer correspond to the maximum displacements in

each direction.

3. Zero to peak. It measures the maximum distance from the origin (equilibrium).

This measure is proportional to the maximum deflection experienced by the sys-

tem.

Despite their simplicity, they are the standard in many systems. Among them, RMS

is the most used. These measures present limitations when incipient faults are to be

detected. In inner stages, the fault is concealed into the raw vibration signal without

showing any significant increment in the amplitude, thus becoming undetectable using

only these indicators. On the other hand, when the fault is evident, they are simple

measures to check in order to confirm it.

Frequency domain representation

As we have seen in previous sections, the frequency of vibration of a component is

an intrinsic property which is affected by its physical characteristics. It turns out

that faults in mechanical components force them to vibrate at different frequencies

depending on the nature of the fault. We cite a couple of examples:

• A fault in a tooth of a gear will produce a shock each time the tooth contacts

with its counterpart. If the machine runs at constant speed, these shocks produce

a train of impulses in the vibration signal. Thus, a representation of this signal
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(a) Fault-free state spectrum.
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(b) Faulty state spectrum.

Figure 5.11: Example of the spectrum of a healthy and faulty bearing.

in the frequency domain should show a raising peak at the periodicity of the

impacts, which is a more noticeable feature than the impacts in the time domain.

• When a ring of a bearing (see section 7.1.1) has a wedge (dangerous fault which

could lead by fatigue to a complete breakdown), each time a rolling element passes

through this wedge an impact is produced. This impact is followed by a damped

vibration at the natural frequency of the system. Thus, when regarding this

effect from the frequency domain perspective, a modulated peak at the natural

frequency of the system appears (see band under 2KHz in figure 5.11).

These two short examples show two major properties of frequency domain trans-
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formation in the context of mechanical vibrations: (a) by studying through models the

ideal behavior of the components under a fault, we can establish how it will behave in

the frequency domain; (b) due to noise and couplings of multiple mechanical effects, be-

ing able to notice a change in a signal in time domain could be very difficult, but these

abnormal effects due to faults become more apparent in frequency domain. However,

it is a well known fact that when the fault is incipient or the mechanical system is too

complex, vibration features due to faults are concealed by the vibration signature of

the rest of the system and noise. This fact usually makes incipient fault detection task

in frequency domain still a difficult duty. So the quest of finding the most appropriate

representation is still an open issue and is subject of a huge amount of literature these

days.

Since we are mostly interested in the energy of the raw vibration signal at each fre-

quency, we are interested in its power spectrum. This can be calculated though its Fast

Fourier Transform (FFT) [178]. Since the signal is sampled with fixed time intervals,

the signal is truncated at its start and end so the result can vary with the location

of the sample with respect to the waveform’s periods. Due to this fact, windowing is

performed in oder to deal with this side effect [206]. There is a huge amount of available

windows. Some of them used in vibration signal processing are: Rectangular, Hanning,

Hamming, Barlett and Blackman [206].

Advanced representations

As we have commented above, the quest for effective feature extraction schemes for

fault detection from raw vibration signals still continues. However, most of the pro-

posed transformations are still in a research stage and have not reached a standard use

among the fault detection community. Even some companies offer their own private

transformations, although these are not very detailed. There are several remarkable

examples of academic and industrial efforts in this area in recent years. Among them,

wavelet transform [193], Hilbert transform [178] and cepstrum [206] are common tech-

nologies in vibration analysis in addition to the standard ones presented overleaf.

In the last chapter, we propose a novel transformation based on recurrence time statis-

tics which presents promising results when analyzing the raw vibration signal in the

time domain. Its effectivity will be explored in combination with the EVOC algorithm

(see chapter 3) for the case of rolling element bearing fault detection.
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5.4 Rotating machine fault detection from an anomaly

detection perspective

As we have detailed in previous sections, fault detection is tackled ideally following the

next curse of action: (a) an analytical model of the machine is devised and its set of

fault explanatory parameters is extracted from that model, (b) this set of explanatory

parameters together with its alert levels is compiled as a manual for the maintenance

office and (c) the machine is periodically monitored in order to detect deviations which,

if aligned with any fault parameter, derive a machine overhaul.

This way of managing maintenance comes from the classical plant control which has

been applied since the mid past century in many areas. Unfortunately, this curse of

action finds in some real situations critical obstacles to accomplish an effective main-

tenance. First of all, market pressure makes it impossible to derive accurate analytical

models for all the models which are send to production in different plants. This means

that we will not have a fully description of the scenarios that can occur in vibrational

data. On the other hand, there are many situations, as it is the case of wind mill farms,

in which there are simply too many components and assets in the plant which make it

impossible, from the costs perspective, to manually (although based on computerized

assistants) control 24/7 all the assets which the plant depends on. Maintenance profes-

sionals are a costly asset which takes a very long time to train. In these situations, a

computer intelligent strategy is found as an invaluable solution which aims at lowering

maintenance cost and reducing unplanned breakdowns.

In order to pose a machine intelligent solution to the problem we have to set up a

framework for it. It turns out that from a ML perspective this problem can be tackled

in two ways: (a) multiclass classification and (b) anomaly detection, each one with its

advantages and inconveniences.

Multiclass classification: In this case, the aim is to construct a model able to

distinguish between each fault state and normal state. A supervised classifier is con-

structed based on the vibration captures extracted both in normal and faulty states.

This approach has been the most used in the area in the past decade [80][126][171][254][255]

and has the advantage that very accurate models can be built relying on modern state

of the art classifiers [15][31]. However, it is not a universal approach for the problem

at hand due to the following facts:
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1. Obtaining fault vibration captures for new models is a very costly process which

involves: (a) inducing a fault in very controlled conditions and (b) running several

experiments in order to cover all different possible faults and on different running

conditions.

2. In some areas, such as wind mill power generators, maintenance was not the focus

of the manufacturers. In the fist generations of machines, it was supposed that

they were going to last for 20 years without any actuations. It turns out that this

was not the case and the machines started to break down after 3 or 4 years leading

to high substitution costs. Thus, there is a large pool of machines functioning for

which we do not have data under faulty conditions and we still want to monitor

them in an economically effective way and, evidently, it is not possible to break

down them in order to obtain those faulty data records.

Anomaly detection: This perspective tries to overcome the limitations of the mul-

ticlass perspective. In this case, we only need a dataset extracted from the machine

under these normal functioning conditions. We will adopt a unsupervised approach

due to the fact that this data set will be not labelled (it would be very costly to label

tons of captures by experts, only to purge a small percentage of abnormal captures)

and could contain some abnormal captures.

In this work we will focus on the anomaly detection perspective, since it is the candi-

date approach which is the most universal of the two. It can be applied virtually in any

situation. The procedure of an automatic fault detection software from this perspective

is as follows (figure 5.12 depicts schematically the process):

1. Normal state data capture: A historic set of vibration captures under normal

conditions is necessary in order to build a model of the vibration signature of the

machine under normal conditions. In this stage there are two options: (a) expert

assessment is available or (b) there is not any human intervention in this stage.

In the fist case, an expert is available to act as a curator of the data base (i.e., he

will purge the data set of abnormal captures, thus all patterns in the dataset are

considered as ’healthy’). In the first case, a supervised approach can be taken.

In the second case, which is more general, there is no human intervention, so a

unsupervised approach (see chapter 2) is necessary since there could be a small

percentage of spurious data records in the set. Usually the machines have also a

set of working conditions which can affect the vibration signature. If available,

these variables should also be adjoined to the data in order to be included in the

model.
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2. Model training: In this stage, the raw vibration signals are transformed to de-

scriptive features able to differentiate between a normal and a faulty condition.

As we described in the previous section, the Fourier Analysis of the raw vibra-

tional signal has been found the most valuable tool in this stage. As we will

see in following chapters, the availability of knowledge about components of the

underlying machine can help to select the important features and focus further

the detection algorithm (even to an automatic diagnosis). If this information

is not available, we should consider a set of features which covers those which

are descriptive. Subsequently, a personalized detector is trained. For this task,

we could use an unsupervised anomaly detection algorithm. In the last chapter

we will apply the proposed anomaly detection techniques to real machinery fault

detection problems.

3. Monitoring: Once this model has been trained, it is included in the data flow

of the machine in order to detect any anomaly which could be a potential faulty

condition. In other words, the vibration captures of the machine are continuously

captured and analyzed by the anomaly detection algorithm. As we pointed out in

previous sections, the captures that the algorithm considers as a potential failure

must be further analyzed by a human expert in order to confirm a diagnosis and

counteractions. There is a huge gain in effectivity when an accurate fault detection

algorithm is found since the number of monitored components per human expert

increases largely. These experts do not need to revise tons of normal captures

which are automatically detected as normal by the algorithm and can focus their

effort in only a very reduced set of potential anomalies pinpointed by the system.

135



Chapter 5. Automatic fault detection in rotating machinery: theory and background

RAW Vibration


Anomaly Detection Method


Functioning V
ariables


Feature Extraction:

-Time domain


-Frequency Domain

-
Advanced Transforms


...


Vibration Pick-up


Good Condition/ Fault


Figure 5.12: Architecture of fault detector based on anomaly detection techniques
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CHAPTER6
GIDAS R⃝: An Automatic Fault Detection System

based on Vibration Signatures

Machinery maintenance based on vibration analysis has been successfully driven by

experts, following the principles of previous chapter, for years. Periodically, vibration

data is gathered from the machines, mostly during periodical revisions, and subse-

quently analyzed by experts looking for internal fault symptoms inside data. Despite

the success of this process, it presents a problem when scaled to large plants with nu-

merous machines to be monitored. Training programs for vibration experts are costly

both in investment and time and, once trained, these experts spend 80% of the time

analyzing fault-free data. When we scale the figures to modern installed plants such

as power wind mill farms, with tens or even hundreds of machines per farm with dif-

ficult access (p.e. offshore plants like the ones installed in the British north coastline)

maintenance costs become a limitation for increasing the number of assets. In the

present and the last chapter of this work we explore the transition from expert-driven

predictive maintenance to a data-driven maintenance workflow aided by ML analysis.

We aim to build a system able to: (a) distinguish between a healthy machine and a

defective one, (b) locate where the fault is present and (c) assess if in a near future

will reach an unacceptable state in order to stop it immediately. A software with these

capabilities would reduce the necessity of workforce for routine data analysis, increase

expert throughput and reduce final production costs. We break the results obtained

in these two final chapters. In the present one, GIDAS R⃝ system main properties and

its design are presented. This software was developed as part of this thesis work and

is conceived as a ML driven tool for vibration analysis in power wind mill farms. The

huge amount of machines that need to be monitored in a wind mill farm explains the

necessity of an automatic fault detection software in this plants. This software was

developed in collaboration with INDRA S.A. and renewable energy companies. Two

pilot programs of GIDAS in real production plants are explained in the last section of

this chapter.
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In the next chapter, fault detection capabilities of the ML methods presented in chap-

ters 3 and 4 are compared experimentally.

6.1 Aim and scope of the system

GIDAS R⃝ system is a prototype of a commercial automatic fault detection system based

on ML techniques which has been developed in this thesis. This system has been used

in this work as a practical workbench for the application of the algorithms presented

in the first part of the thesis to the predictive maintenance problem. The benefits of

its development have been twofold: (a) it has provided a software able to capture real

fault cases in production (some of them are detailed in the next chapter) necessary to

demonstrate the validity of the approaches proposed in this work; (b) it has provided

an opportunity of testing the acceptance of the approach in real plants. As we detailed

in previous sections, any computerized maintenance system must be embodied in a

global maintenance program which involves much more than software and hardware

components. Communication and detection abilities of the developed system must be

aligned with the traditional workflow of the maintenance office in which it is deployed.

The system was designed for tackling an anomaly-based fault detection system that

analyzes vibrational data in power wind mill farms. This environment is specially

challenging due to the numerous machines to which it should be able to adapt. Modern

power wind mill farms contain many different machines of many different designs and

all of them need to be monitored. On the other hand, this field is suitable for the

acceptance of an automatic fault detection system since the number of turbines and the

environment (off-shore, deep mountains, desserts, ...) make impossible the inspection

and management of all them in an easy and cost effective way (to put this fact in

numbers, in 2012 a cumulative power of 238 GW was installed worldwide) [57].

In the next section we present a brief description of the main components of a wind

turbine and its main points of failure. Subsequently we present the characteristics

that an automatic fault detection and monitoring system must comply in order to

be accepted for certification. These requirements will be the basis of the design of the

system described in this chapter. We close the chapter with a set of reflexions extracted

from the pilot experience.
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6.2 Modern wind turbines: concepts and design

Human inventions such as wind-powered ships, grain mills, water pumps and threshing

machines all exemplify that extraction of power from wind is an ancient endeavor.

With the evolution of mechanical insight and technology, the last decades of the 20th

century, in particular, saw the development of machines which efficiently extract power

from wind. ”Wind turbines” is now being used as a generic term for machines with

rotating blades that convert the kinetic energy of wind into useful power. Modern

turbines evolved from the early designs and can be classified as:

• Depending on the number of blades they mount they can be two or three-bladed.

The choice between both is merely a matter of a trade-off between aerodynamic

efficiency, complexity, cost, noise and aesthetics. The two and one-bladed con-

cepts have the advantage of representing a possible saving in relation to the cost

and weight of the rotor. However, their use of fewer rotor blades implies that

a higher rotational speed or a larger chord is needed to yield the same energy

output as a three-bladed turbine of a similar size. The use of one or two blades

will also result in more fluctuating loads because of the variation of the inertia.

One-bladed wind turbines are less widespread than two-bladed turbines. This is

due to the fact that they have, in addition to a higher rotational speed, more

noise and visual intrusion problems and need a counter-weight to balance the

rotor blade. The three-bladed concept is the most common concept for modern

wind turbines.

• Depending on the way rotation of the transmission is allowed by the machine

they can be classified as vertical axis and horizontal axis turbines. Figure 6.1

depicts two examples of each of them. Horizontal axis wind turbines constitute

the most common type of wind turbine in use today. In fact all grid-connected

commercial wind turbines are today designed with propeller-type rotors mounted

on a horizontal axis on top of a vertical tower. In contrast to the mode of operation

of the vertical axis turbines, the horizontal axis turbines need to be aligned with

the direction of the wind, thereby allowing the wind to flow parallel to the axis of

rotation. Insofar as concerns horizontal axis wind turbines, a distinction is made

between upwind and downwind rotors. Upwind rotors face the wind in front of

the vertical tower and have the advantage of somewhat avoiding the wind shade

effect from the presence of the tower. Upwind rotors need a yaw mechanism to

keep the rotor axis aligned with the direction of the wind. Downwind rotors are
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(a) Horizontal axis design. (b) Vertical axis design.

Figure 6.1: Examples of horizontal/vertical wind mill designs.

placed on the lee side of the tower. A great disadvantage in this design are the

fluctuations in the wind power due to the rotor passing through the wind shade

of the tower which gives rise to more fatigue loads. The vast majority of wind

turbines in operation today have upwind rotors.

Additional key turbine design considerations include wind climate, rotor type, generator

type, load and noise minimization, and control approach. Moreover, current trends,

driven by the operating regime and the market environment, involve development of

low-cost, megawatt-scale turbines and lightweight turbine concepts. Whereas turbines

operating at constant rotor speed have been dominating up to now, turbines with

variable rotor speed are becoming increasingly more common in an attempt to optimize

the energy capture, lower the loads, obtain better power quality, and enable more

advanced power control aspects. A turbine with an upwind rotor, an asynchronous

generator and an active yaw system is usually referred to as the Danish concept, which

tends to be a standard against which other concepts are evaluated.

Wind turbines are designed to produce electricity as cheap as possible, so to yield

a maximum power output at wind speeds around 15 m/s. It would not pay to design

turbines to maximize their power output at stronger winds, because such strong winds

are usually too rare. However, in the second case, it is necessary to waste part of the

excess energy to avoid damage on the wind turbine. Thus, the wind turbine needs some

sort of power control.

There are two kinds of power control in wind turbines. Stall-controlled wind turbines

have their rotor blades bolted to the hub at a fixed angle. The stall phenomenon is
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used to limit the power output when the wind speed becomes too high. On the other

hand, pitch-controlled wind turbines have blades that can be pitched out of the wind

to an angle where the blade chord is parallel to the wind direction. The power output

is monitored and whenever it becomes too high, the blades will be pitched slightly out

of the wind to reduce the produced power.

The ideal wind turbine design is not dictated by technology alone, but by a combina-

tion of technology and economy. Wind turbine manufacturers wish to optimize their

machines, so that they deliver electricity at the lowest possible cost per unit of energy.

In this context, it is not necessarily optimal to maximize the annual energy production,

if that would require a very expensive wind turbine. Since the energy input (the wind)

is free, the optimal turbine design is one with low production costs per produced kWh.

A large generator will be very efficient at high wind speeds, but inefficient at low wind

speeds. Sometimes it will be beneficial to fit a wind turbine with two generators with

different rated powers.

A study of different Danish wind turbine designs shows that the specific power per-

formance in terms of produced energy per m2 rotor area per year (kWh/m2/year) is

almost independent of the rotor size. Hence, the main consideration in the evaluation

of the cost of the turbine is the specific rotor power (kW/m2) and the specific cost

(cost/m2 rotor) together with expected service life and cost and availability.

The power being produced by any type of wind turbine can be expressed as

P =
1

2
ρV 3ACP (6.1)

where P represents output power, ρ the air density, V the free wind speed, A rotor

area and CP efficiency factor. The power coefficient CP is a product of the mechanical

efficiency νm, the electrical efficiency νe and of the aerodynamic efficiency. All three

factors are dependent on the wind speed and the produced power, respectively. The

mechanical efficiency νm is mainly determined by losses in the gearbox and is typically

0.95 to 0.97 at full load. The electrical efficiency covers losses in the generator and

electrical circuits. At full load νe = 0.97 − 0.98 is common for configurations with an

induction generator. It can be shown that the maximum possible value of the aerody-

namic efficiency is 16/27 = 0.59, which is achieved when the turbine reduces the wind

speed to one-third of the free wind speed (Betz’ law).

The produced power varies with the wind speed as can be seen from the blue graph

in Figure 6.2. The form of the graph can vary slightly for different kinds of wind mills.

Assuming constant efficiency (e.g., constant tip speed ratio) the graph basically consists

of a third degree polynomial up to the rated wind speed at which the nominal power is
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Figure 6.2: Power and efficiency curve of a wind turbine

reached. At this point the power regulation sets in, either by the blades stalling or by

pitching the blades to attain an approximately constant power. The power curve and

the power efficiency curve are often presented in the same graph, with the power and

the efficiency scales on each side of the graph as shown in figure 6.2. Figure 6.3 illus-

trates the controlled power curve of a wind turbine, in the case of 1) stall controlled,

fixed speed configuration, and 2) pitch controlled, variable speed configuration.

Figure 6.3: Examples of power curves for two types of wind turbines.

The efficiency factor CP typically reaches a maximum at a wind speed of 7-9 m/sec

and, normally, it does not exceed 50%. The electric power typically reaches the rated

power of the turbine at a wind speed of 14- 16 m/sec.
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6.3 Modern horizontal power wind mill main components

Figure 6.4 depicts the main mechanical components of a modern horizontal three blade

wind turbine. This is the most common today in the market and its components are

described hereunder.

Figure 6.4: Main components of a modern wind turbine.

Rotor Blades

Rotor blades are usually made of a matrix of fibreglass mats, which are impregnated

with a material such as polyester, hence the term glass fibre reinforced polyester, GRP.

The polyester is hardened after it has impregnated the fibre-glass. Epoxy is sometimes

used instead of polyester. The design of the outer contour of a wind turbine rotor

blade is based on aerodynamic considerations. The cross-section of the blade has a

streamlined asymmetrical shape, with the flattest side facing the wind. Once the aero-

dynamic outer contour is given, the blade is to be designed to be sufficiently strong and

stiff. The blade profile is a hollow profile usually formed by two shell structures glued

together, one upper shell on the suction side, and one lower shell on the pressure side.

To make the blade sufficiently strong and stiff, so-called webs are glued onto the shells

in the interior of the blade, thus forming a boxlike structure and crosssection (see figure

6.5). From a structural point of view, this web will act like a beam, and simple beam

theory can be applied to model the blade for structural analysis in order to determine

the overall strength of the blade.
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Figure 6.5: Section of a blade showing upper and lower shells and two webs, respectively.

It is important that the blade sections near the hub are able to resist forces and

stresses from the rest of the blade.The blade is twisted along its axis so as to enable it

to follow the change in the direction of the resulting wind along the blade, which the

blade will experience when rotating. Hence, the pitch will vary along the blade. The

pitch is the angle between the chord of the blade profile and the rotor plane.

Hub

The hub is the fixture for attaching the blades to the rotor shaft. It usually consists of

nodular cast iron components for distribution of the blade loads to the wind support

structure, i.e. ultimately to the tower. A major reason for using cast iron is the complex

shape of the hub, which makes it hard to produce in any other way. In addition, it

must be highly resistant to metal fatigue. Thus, any welded hub structure is regarded

as less feasible.

Figure 6.6: View of wind turbine hub.
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The moments and forces transmitted to the hub and tower depend on the type of

hub. Three types of hub are common: (a) hingeless rigid hub, which has cantilevered

blades and transmits all moments to the tower; (b) teetering rotor, which has two

rigidly connected blades supported by a teeter-pin joint, which can only transmit in-

plane moments to the hub and (c) articulated hub, which has free hinges in flapping and

lead-lag, so there is no mechanical restraint moment on the blades in either flapping or

lead-lag. The hingeless hub is the most common configuration for wind turbine hubs,

which is depicted in figure 6.6. Figure 6.7 and Figure 6.8 show the hub in the context

of the transmission system, in which it forms part of the link between the rotor blades

and the generator. Figure 6.7 and Figure 6.8 are also examples of two different bearing

arrangements with one and two main bearings, respectively.

MAIN BEARING


Figure 6.7: Wind turbine with main bearing integrated in the gearbox.

Main shaft

The main shaft transmits the rotational energy from the rotor hub to the gearbox or

directly to the generator. Moreover, the purpose of the main shaft is to transfer loads

to the fixed system of the nacelle. In addition to the aerodynamic loads from the ro-

tor, the main shaft is exposed to gravitational loads and reactions from bearings. The

main shaft is also subjected to torsional vibrations in the drive train. Such vibrations

will usually be of importance to possible frictional couplings like shrink fit couplings

between shaft and gear.
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Main Bearing
 Main Bearing


Figure 6.8: Wind turbine with two main bearings.

Main Bearing

The main bearing of a wind turbine supports the main shaft and transmits the reac-

tions from the rotor loads to the machine frame. On account of the relatively large

deformations in the main shaft and its supports, the spherical roller bearing type is

often used, see Figure 6.9 for an example.

Spherical roller bearings have two rows of rollers with a common sphered raceway in

the outer ring. The two inner ring raceways are inclined at an angle to the bearing axis.

The bearings are self-aligning and consequently insensitive to errors in the alignment

of the shaft relative to the housing and to shaft bending. In addition to high radial

load capacity, the bearings can accommodate axial loads in both directions.

The main bearings are mounted in bearing housings bolted to the main frame. The

quantity of bearings vary among the different types of wind turbines. Many wind tur-

bines have two bearings, each with its own flanged bearing housing. Some turbines with

two bearings use the hub as a housing. Some turbines have only one main bearing,

given that the gearbox functions as a second main bearing. Each bearing arrangement

has its own advantages and disadvantages.

Main gear

The purpose of the main gear is to act as a speed increaser and to transmit energy

between the rotor and the generator. The most common gear types used for wind

turbines can be identified and classified as follows, based on their geometrical design:

(a) spur and helical gears consist of a pair of gear wheels with parallel axes (see figure

6.10). Spur gears have cylindrical gear wheels with radial teeth parallel to the axes. In
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Figure 6.9: Spherical roller bearing, from Bonus (1999)

helical gears, the teeth are helical, i.e. they are aligned at an angle with the shaft axes.

Double-helical gears have two sets of helical teeth on each wheel. Helical gears are

sometimes referred to as spiral gears or oblique gears, (b) epicyclic or planetary gears

consist of epicyclic trains of gear wheels, i.e. gears where one or more parts, so-called

planets, travel around the circumference of another fixed or revolving part (see figure

6.11). Planetary gears, in combination with one or more parallel axis gears, form the

most commonly applied gear type for the main gear in wind turbines. Gears in which

the power is transferred from one wheel to two or more meshing wheels are referred to

as gears with a split power path. Bearings for wind turbine gears should all be rolling

element, anti-friction type bearings. Different bearing types applied in gears include:

(a) ballbearings, (b) cylindrical roller bearings, (c) spherical roller bearings, (d) tapered

roller bearings. Examples of bearings are shown in figure 6.12. Two bearings should be

used to support each gear shaft, one for support of both radial and thrust forces, the

other for support of only radial forces and free to allow for axial growth under thermal

changes. Bearing fits should be tight to prevent damage to the bearing or the housing

and to prevent spinning of inner and outer bearing races.

Mechanical brake

Mechanical brakes are usually used as a backup system for the aerodynamic braking

system of the wind turbine and/or as a parking brake, once the turbine is stopped, e.g.,

for service purposes. Mechanical brakes are sometimes also used as part of the yaw
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Figure 6.10: Examples of spur and helical gears.

Figure 6.11: Examples of planetary gear principle with outer fixed, three revolving

planets and a planet carrier in the middle.

Figure 6.12: Examples of roller bearings: Spherical bearing (left) and cylindrical

bearing (right). From SKF (1997).
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system. In a mechanical brake, brake callipers, brake discs and brake pads form cru-

cial parts. A hydraulic system is usually used for the actuation and release of the brake.

Generator

The generator is the unit of the wind turbine that transforms mechanical energy into

electric power. While the blades transfer the kinetic energy of the wind to rotational

energy in the transmission system, the generator provides the next step in the supply of

energy from the wind turbine to the electrical grid. The produced alternating current,

which is transmitted to the electrical grid, must match the frequency of the grid. The

required rotational speed of the generator’s rotor is achieved by means of the gearbox of

the wind turbine, since the wind turbine rotor itself is not allowed to rotate at this high

speed for physical reasons. Rotation of the wind turbine rotor at the high rotational

speed of the generator rotor would cause aerodynamic problems and supersonic speeds.

Noise would also be a problem, and excessive centrifugal forces would be generated.

There are two major types of generators: (a) synchronous generators and (b) asyn-

chronous generators. A synchronous generator operates at a constant speed, dictated

by the frequency of the connected grid, regardless of the magnitude of the applied

torque. The speed dictated by the frequency of the grid is also known as the syn-

chronous speed. An asynchronous generator is a generator, which allows slip, i.e. de-

viations from the rotational speed dictated by the frequency of the connected grid. In

other words, the rotational speed is allowed to vary somewhat with the applied torque.

This is the most common generator type used in wind turbines. The advantage of the

variable slip comes about when the wind turbine is operated at its rated power, at

which undesirable power fluctuations caused by changes in the wind appear. When a

wind gust hits the wind turbine rotor, the slip enables the generator speed to increase

a little in response to the gust without causing a corresponding increase in the gen-

erated power output. Thus, the slip ensures a smooth power output and at the same

time contributes to keeping the loads on blades, main shaft and gearbox down. The

variation of the operating speed with the applied torque for an asynchronous generator

is beneficial because it implies a smaller peak torque and less wear and tear on the

gearbox than for a synchronous generator. This is one of the most important reasons

for using an asynchronous generator rather than a synchronous generator in a wind

turbine, which is connected directly to the electrical grid. Traditionally, the active ma-

terials in a generator consist of magnetically conducting iron and electrically conducting

thread arranged in a coil. Permanent magnets are becoming increasingly common, and

electrical components, such as temperature sensors, are becoming integral parts of the

generator.
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Yaw system

Yaw denotes the rotation of the nacelle and the rotor about the vertical tower axis. By

yawing the wind turbine, the rotor can be positioned such that the wind hits the rotor

plane at a right angle. The yaw system provides a mechanism to yaw the turbine and

to keep the rotor axis aligned with the direction of the wind. If situations occur where

this alignment is not achieved, yaw errors are produced. The yaw error, or the yaw

angle, is defined as the angle between the horizontal projections of the wind direction

and the rotor axis. The yaw system can be either passive or active. A passive yaw

system implies that the rotor plane is kept perpendicular to the direction of the wind

by utilization of the surface pressure, which is set up by the wind and which produces a

restoring moment about the yaw axis. For upwind turbines, this usually requires a tail

vane in order to work properly. Note that a passive yaw system may pose a problem in

terms of cable twisting if the turbine keeps yawing in the same direction for a long time.

An active yaw system employs a mechanism of hydraulic or electrically driven motors

and gearboxes to yaw the turbine and keep it turned against the wind. Such active

positioning of the turbine relative to the wind is also referred to as forced yaw. Most

large horizontal axis wind turbines use forced yaw to align the rotor axis with the wind.

6.4 Automatic predictive maintenance system requirements

The expansion of wind mill power generation and the inaccuracy of initial lifetime pre-

dictions made by manufacturers in design phase has pave the way for the necessity of

electrical energy providers of assuring their assets in their wind farms. On the other

side, insurance companies saw in the wind turbines market both an opportunity and a

risk. The opportunity was clear due to the huge growth of the market impulsed by green

energy policies, but the lack of clear life expectancies prevented them of being able of

calculating their premiums. So, they started to impose as a condition the implementa-

tion of a predictive maintenance program which controlled the risk of the investment.

In this line, they created a set of requirements that a computerized fault detection

system should comply in order to be certified in the market. These requirements were

collected in different norms which were very similar in nature to the Guideline for the

Certification of Condition Monitoring Systems for Wind Turbines [152] which we will
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take as a reference. Generally speaking, the most significant requirements are:

• Mechanical systems should be monitored continuously. Manual data captures

(with portable vibration measurement devices) are not considered enough in order

to assess the lifetime of rotating machinery.

• Automatic predictive maintenance systems (APMS) do not substitute in any case

the human inspection in order to give a final diagnosis.

• The installation of an APMS should be considered an strategic step in mainte-

nance programs.

• APMS should never substitute in any case the security systems of the machinery,

in other words, they are open loop monitoring systems.

• When an APMS is installed it should never interfere with the security systems

already installed in the machinery. If any modification of the standard design of

the machine is needed, an approved certification by the manufacturer should be

obtained.

• In case an automatic diagnosis is provided, it should be certified that all signi-

ficative parameters are considered in the interpretation of the data.

• APMS should protect all data from not authorized accesses. Access policies

should be adequate and approved by the person in charge.

• APMS user interface (GUI) should be intuitive, simple and free of ambiguities in

order to be used by any person trained on Information Technologies.

• In order to detect failures of the APMS itself, supervision policies of the compo-

nents (sensors, cabling, software, communication channels, etc) should be imple-

mented.

In addition, the following characteristics should be taken into account during the

design and documentation of the system:

• APMS designed and selected components should be able to work in extreme

conditions such as off-shore, extreme temperatures, etc.

• Adequate storage devices should be used in each stage of the APMS.
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• APMS system should provide backup storage of all data captured.

• Emergency energy supplies should be available for all the components of the

APMS and reliability of data transmission should be assured.

• The number of vibration acquisition channels (vibration pick-ups) should be

adaptable to each situation.

For the alarm notification system, the norm establishes the following:

• The APMS should be able to establish normal state levels for all the systems.

Fault notifications should have at least two levels; pre-alarm and alarm.

• The APMS should provide an automatic procedure to calculate limit values, ex-

tracted from historic data and taken as base security levels. This levels should be

subject to update in order to react to changes in the operation of the machinery

(repairs, etc).

• In variable speed machinery, the systems should be able to adapt its interpretation

to velocity variations.

• APMS system should be able to automatically notify any potential anomaly to

the chief manager of the maintenance service and other related areas if necessary.

• Alarm notifications should be stored in the system as any other piece significant

of information.

• All the counteractions taken for each alarm should be documented and stored in

the system. APMS system should implement mechanisms that ensure that no

alarm is ignored.

This norm was taken as the standard for the system design since: (a) it establishes

a quality standard for all the maintenance systems in wind mill farms and (b) in the

future, the application of predictive maintenance systems in any industrial environment

will require certification norms similar to the one presented overleaf.
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6.5 System design

In this section a brief description of the GIDAS system is given. The whole system is

conceived as an information flux in which each level transforms its data input to an

enriched data output, from the raw vibration capture to an elaborated report of state

of each machine. Figure 6.13 depicts the different layers in which the system is divided

from the capture system to the visualization of the state of each machine. We give a

brief description of each level.
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Figure 6.13: Block design of the GIDAS system.

Physic layer

This first level is responsible of capturing the vibration data using a combination of

sensors and acquisition modules. Acquisition modules are real time computer systems

including reading cards to which any kind of electrical transducer can be connected.

These computers are specifically programmed in order to accomplish the task at hand.

Usually, the selection of these computers are a concern when devising a commercial

system due to their high costs. For this prototype we used a Compact RIO of National

Instruments, although the commercial version would mount a specifically devised sys-
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tem manufactured by INDRA Systems in order to reduce costs. Due to the fact that

many internal components of the wind mill produce high frequency fault symptoms,

accelerometers are the most suitable vibration pickups. In some modern machines the

accelerometers are already installed. In this case it is only needed to install signal con-

ditioners in order to adapt the signals to the acquisition system. Unfortunately, many

machines in production scenarios do not mount any sensors so new instrumentation

has to be added to the acquisition system. In this work, accelerometer model 4384

manufactured by Brüel & Kjaer were selected, giving a bandwidth of 20 KHz.

In addition to the vibration levels, it is desirable to have a reading of the velocity at

which the machine is working, since the vibration readings can be highly influenced by

the functioning regime of the machine. GIDAS mounts a tachometer in the main shaft.

All the measures will be synchronized with the reading of the tachometer.

The following are some key points that have to be carefully considered when installing

this level:

• Measure points selection. This task is key in order to correctly capture the vi-

bration signals on a faulty situation. It has to be done by the maintenance team,

ideally in collaboration with the manufacturers, previously to the installation.

• The varying characteristics of the physics of the machine and of the environment

can turn the installation phase in a challenging task. The installation of a multi-

channel acquisition system and sensors has to be done by trained personnel and

field test of measurement and communications have to be done in order to detect

any potential difficulty.

• Once all the equipment has been correctly installed, a measurement strategy

adapted to each machine has to be selected: frequency range, measure periodicity,

etc. Some of these factors can greatly endanger the ability of the system to give

relevant information.

In figure 6.14, mounting, on a real production wind mill, of the GIDAS’ acquisition

systems can be observed.

Transport layer This layer should provide a reliable communication channel between

the acquisition system and the Data Processing Centre. This task is challenging due to

the nature of the environment where the wind mills are installed. Modern machines in-

clude Ethernet connections which are available for the transmission of the raw vibration

captures, although the bandwidth is not always wide enough. Unfortunately, this is not
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(a) Acceleration pick-ups installation.

(b) Acquisition rack.

Figure 6.14: Installation of GIDAS system in a production wind mill.
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always the case, and many machines have not the possibility of easily transmitting the

data (think for example on off-shore machines, old models, deep mountain machines,

etc). Recall that costs are a concern for AMPS, who have to compensate costs with

their benefits, so an efficient solution is desired. New technologies which appeared in

the last decade such as modern Wifi connections, Wimax Networks and Power Line

Communications Networks (PLC) can help to solve this aspect. This layer, following

the guidance of the certification norms, has to ensure the reliability of the communica-

tions, so the acquisition system and all intermediate nodes should ensure, for example

through intermediate storage, that no capture is lost during the communication. It

should be recalled that losing a single capture could prevent the whole system from

detecting a critical fault.

Signal processing layer In this layer of the system, raw vibration captures taken

by the accelerometers are transformed in order to provide relevant information for

the analysis of faults. The system has been devised contemplating the possibility of

providing the processing layer in-situ in the acquisition system or at reception before

entering the data management level. All relevant signal processing techniques presented

in previous sections would be relevant for this layer. This prototype implements the

standard amplitude parameters for tendency analysis (RMS, zero-peak and peak-to-

peak value) and the power spectrum of the raw vibration signal calculated through

its FFT. These data is used by the analysis layer to detect deviations that pinpoint

potential faults in the monitored systems.

Data management layer This layer makes use of common IT technologies to provide

the system with a database where all the captures and relevant information is stored.

Specifically, a service oriented platform design was adopted using Simple Object Access

Protocol (SOAP) technologies [113]. Generally speaking, this layer is in charge of:

• Receiving all data from the signal processing layer and store it in the database.

• Manage all the information relative to the users of the system and access control.

• Provide services which cover all the information needs of the subsequent layers

described hereunder: vibration data access, machines profiles data access, report

creation, etc.

Analysis layer This layer works as an intelligent continuous real time observer of every

capture that arrives from each machine after being processed. Its design is the main
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topic of this work and has been introduced in previous sections. An anomaly detection

approach has been taken (see section 5.4). This means that this layer is not completely

autonomous since, at least, a normal state historic of each machine has to be selected

and a model has to be trained. Fault detection capabilities of the algorithms presented

in this work are reported in the next chapter. If an anomaly is detected in data, this

layer is in charge of reporting any potential fault found to the maintenance team. In

order to do this, communication channels of the next layer are used.

Presentation layer This layer communicates all relevant information to the mainte-

nance team in real time trough two channels. The first one is a user interface devised

to be installed in a main control room. Figures 6.15 and 6.16 depict some of its main

information modules. The main control application had the following characteristics,

mixing real time Artificial Intelligence behavior and plan management functionalities:

• Central management of the maintenance of all the machines.

• Access to all the historic vibration captures for all the machines monitored.

• Multi-plant management: multiple plants can be monitored from a central data

centre.

• Manual activation/deactivation of fault detection agents for each machine.

• Scheduling of the anomaly detection process for each machine: historic gathering,

model building, fault detection monitoring phase. etc.

• Access to all raw vibration signal transformations (time and frequency domain)

in order to contrast automatic fault reports.

• Fault treatment process control. A fault treatment task is triggered by an auto-

matic fault detection obtained via ML techniques (see results in the next chapter).

Following the rules of the certification norms, all the modules are designed in an in-

tuitive way in order to be accessible. All the captures are organized in order to allow

tendency analysis and real time diagnosis. In addition, following the guidance of the

certification, the system maintains secondary communication channels through email

and cell phone (optional) in case a potential fault appears.
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Figure 6.15: Main control module of GIDAS system.
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Figure 6.16: Analysis modules of GIDAS system.
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6.6 Fault Detection in production environments: Sotavento

and Production wind mill farm experiences

In order to assess the acceptance of the system in a real production environment and

test their fault detection capabilities, two pilot experiences were carried out during this

work in two wind farms in the north west of Spain:

• Sotavento: This plant is located in the county of Xermade and is made up of three

public companies which constitute 51% of its shared capital, The Galician Energy

Institute-INEGA, SODIGA GALICIA, S.R.C. Plc., The Energy Diversity and

Saving Institute (IDAE), and four private companies representing the Galician

electricity sector (Endesa, Enel Union Fenosa, Iberdrola Renewables and Enerǵıa

de Galicia, Plc. Engasa). Sotavento’s objective, according to the original idea

is as well as the commercial exploitation, the achievement of two objectives that

could be hardly raised by private enterprise: (a) being the ”showcase” of the

different wind technologies and (b) being a framework for the realization of I+D

activities. This wind farm features a line of 24 wind turbines of the 5 different

technologies. There are 9 different models of machine: Ecotecnia Model 640 (640

Kw), Gamesa Model G47 (660 Kw), Izar-Bonus Model 600 (600 Kw), Izar-Bonus

Model 1.300 (1,300 Kw), Made Model AE-46/I (600 Kw), Made Series AE-800

(800 Kw), Made Model AE-61 (1,300 Kw), Neg Micon Model NM 48/750 (750

Kw) and Neg Micon Model NM 52/900 (900 Kw). Nominal power of the farm is

17,56 MW and is connected to the public power grid via a waste line of 9 Km. This

is energy enough to supply electricity for 12.000 families and saves 68.000 barrels

of petrol, avoiding the emission of 36.000 tons of CO2 per year. Four machines of

manufacturers Neg Micon and Izar-Bonus were monitored in the context of this

work. GIDAS’ main control application was used by the technicians from the

main control station (see figure 6.17) and monitored the turbines for 8 months.

No incidence in the machines was (correctly) detected by the system during this

period.

• Production wind mill farm: This wind farm is located to the south of Sotavento

in Forcarei, Laĺın (Pontevedra). It is a fully commercial wind farm run by a

main company in the sector. It produces a nominal power of 50 MW with 75

turbines Gamesa G47/660 (Power 660 kW, diameter 47 m). One of the machines

was monitored by GIDAS and an incidence was detected by the system. The

results of the ML fault detection approach for this case will be detailed in the
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next chapter.

Figure 6.17: Sotavento’s main control station and wind farm.

These pilot experiences were an opportunity to validate the acceptance of a ML based

fault detection system in a real environment. As it was previously outlined, an APMS

has worked in conjunction with a comprehensive maintenance program which involves

a variety of human resources which the system has to communicate with. These human

resources usually have very different backgrounds, from technicians to highly qualified

engineers. The role of an APMS is twofold: (a) carry out automatically routine vi-

bration analysis emulating an expert in order to save human resources’ efforts and (b)

act as a communicating agent, both reporting potential detected faults and allowing

the coordination of the rest of human resources to manage any eventuality. In this

sense, these pilot experiences have emerged the following further key points to take

into account in the design of an automatic fault detection system:

• When reporting an alarm or potential fault, the message should be understand-

able by all the levels of the maintenance human resources. This implies that

the selected intelligent technique should be able to provide a clear assessment

of a potential fault without the necessity of understanding any of the internal

details of the algorithm. Not complying with this requirement could lead to a

low acceptance of the system as a valuable assistant on maintenance task.

• As we mentioned earlier, the system needs human intervention when building a

normal state model of a machine. Since this has to be made on a per machine way,

cumbersome models with a high number of hyper-parameters which need expert

assessment should be avoided. APMS configuration should need much less effort

than manual assessment itself in order to be accepted. If the algorithms need
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some expertise to be applied, previous training programs or an ML assistant

team should be considered if a successful deployment of the system is desired.
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CHAPTER7
Application of ML to industrial fault detection:

Rolling element bearing fault assessment

This chapter is devoted to prove experimentally that fault detection, diagnosis and

prognosis can be tackled through anomaly detection and on-line learning methods.

Specifically, we will focus on the problem of rolling element bearing fault assessment

since 80% of the problems of rotating machinery concentrate in this kind of components.

In order to do that, the answer to each of the following questions will be extracted from

the experimental results obtained from fault cases:

• Is vibration data adequate to detect and assess the condition of a mechanical

component using an anomaly detection strategy?

• Is it possible to join traditional frequency domain transformation of vibration

data and anomaly detection methods to build fault detection systems?

• Is it possible to propose alternative raw vibration feature extraction methods not

based on frequency domain transformations?

• Is it possible to come up with an algorithm able to automatically diagnose faults

in bearings?

• Is it possible to assess the evolution of the vibration level of a machine in order

to detect when this level will become unbearable?

Experimental data in this chapter was obtained by simulation, laboratory tests and

real vibration monitoring carried out by GIDAS System R⃝ (presented in the previous

chapter). These data sets are described in section 7.2. By the end of the chapter, ex-

perimental results will bring light to these questions and prove worthwhile the method-

ologies proposed in this work. First of all, in the next section we give a description of

rolling element bearing fault symptoms and how they evolve along the time.
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7.1 Rolling element bearings fault detection and diagnosis

A rolling element bearing is a mechanical device that reduces the friction between a

rotating shaft and two or more pieces connected to it. Its main components are: outer

race, inner race, rolling elements and cage (see figure 7.1). Each time a defect on a

surface of a component strikes another surface, a force impact is produced. If the rota-

tional speed of the races is known, the impact repetition rates can be determined by the

geometry of the bearing [168]. These repetition rates are called Bearing Characteristic

Frequencies.

This section describes the procedure for identifying defects in anti-friction bearings by

analyzing frequencies generated by the moving parts. Defects on bearing raceways,

rolling elements and the cage generate different frequencies. The spectrum shape and

amplitude, in addition to the time domain signal, are useful in identifying the nature,

location, combination and size of the defects. Success or failure in diagnosing bearing

defects often depends on the selection of the proper transducer. The discussion of trans-

ducer selection of previous chapter applies to this chapter. Roller bearings rotating at,

for example, 1200 Revolutions per minute (RPM) can generate harmonics in the range

of 3000 Hz or more when a fault occurs. Thus, an accelerometer should be used in this

case. In the case of very low frequency machines, generated frequencies could be under

the range of 100 Hz, so a displacement probe is more suitable. All the cases that will

be covered in this chapter belong to the group of 1200 RPM or more, so acceleration

signals are used in all cases.

7.1.1 Bearing Characteristic Frequencies

In order to understand the relationships among the different rotating elements of a

bearing, the equations describing the relative speeds must first be developed. There are

five main frequencies that a machine with a defective bearing can generate. Hereunder

we explain the motion equations which are involved in each type of fault and the

main equation that determines its descriptive frequency (see figure 7.2 for the main

identities):

• Rotating unit frequency or speed (S): This is the speed at which the moving part

mounted inside the bearing is spinning. Usually, the shaft inside the inner race
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is the moving part and the outer race is fixed on the housing. In this case, the

inner race spins at the same speed as the shaft.

• Fundamental Train Frequency (FTF): The train or cage frequency is equivalent

to the angular velocity of the individual ball centers. The linear velocity of the

balls can be expressed as:

vc =
vi + vo

2
(7.1)

The angular velocity is defined as the linear velocity vc divided by the radius r

of the trajectory. Therefore,

FTF = wc =
(vi + vo)/2

Pd/2
(7.2)

where wc is the angular velocity for the ball center or cage. Since vi = ri ∗ wi

and vo = ro ∗wo, we use these expressions to substitute vi and vo in the previous

expression. Final expression for FTF results:

FTF =
wi

(
Pd−Bdcos(ϕ)

2

)
+ wo

(
Pd+Bdcos(ϕ)

2

)
Pd

(7.3)

=
1

2

[
wi

(
1− Bdcos(ϕ)

Pd

)
+ wo

(
1 +

Bdcos(ϕ)

Pd

)]
(7.4)

It is important to note a subtlety in this equation. If the roller elements contact

the races in an angle ϕ ̸= 0, then the point of the races which is spinning is not

the base but the point of contact itself. That is the rationale under the Bdcos(ϕ)
2

term.

• Ball pass frequency of the outer race (BPFO): This is defined as the frequency

of the balls passing over a single point on the outer race. The BPFO can be

described as the number of balls multiplied by the difference between cage wc

and outer race wo frequencies or,

BPFO = Nb|wc − wo| (7.5)

where Nb is the number of rolling elements of the bearing; this expression can be

rewritten as

BPFO =

∣∣∣∣Nb

[
1

2

(
wi

(
1− Bdcos(ϕ)

Pd

)
+ wo

(
1 +

Bdcos(ϕ)

Pd

))
− wo

] ∣∣∣∣
=

∣∣∣∣Nb

[
wi

2
− wiBdcos(ϕ)

2Pd
+

wo

2
+

woBdcos(ϕ)

2Pd
− wo

] ∣∣∣∣
=

∣∣∣∣Nb

2
(wi − wo)

(
1− Bdcos(ϕ)

Pd

) ∣∣∣∣ (7.6)
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• Ball pass frequency of the inner race (BPFI): This frequency is defined as the

frequency of the balls passing over a single point on the inner race. The BPFI

can be described as the number of balls multiplied by the difference between the

frequencies of the inner race wi and the cage,

BPFI = Nb|wi − wc| (7.7)

which can be rewritten as,

BPFI =

∣∣∣∣Nb

[
wi −

1

2

(
wi(1−

Bdcos(ϕ)

Pd
) + wo

(
1 +

Bdcos(ϕ)

Pd

))] ∣∣∣∣
=

∣∣∣∣Nb

[
wi −

wi

2
+

wiBdcos(ϕ)

2Pd
− wo

2
− woBdcos(ϕ)

2Pd

] ∣∣∣∣
=

∣∣∣∣Nb

2
(wi − wo)

(
1 +

Bdcos(ϕ)

Pd

) ∣∣∣∣ (7.8)

• Ball spin frequency (BSF): The angular velocity of a ball about its center can be

expressed in two different ways. First, considering the linear velocity of a point on

the inner race in contact with the ball surface, or on the other hand, considering

the linear velocity of a point on the outer race in contact with the ball surface.

Both lead to the same expression, thus only the first option will be detailed. The

linear velocity vb of a point on the ball surface is given by,

vb = (wi − wc)ri (7.9)

where ri is the radius of the inner race. The ball angular velocity or ball spin

frequency is then,

BSF =

∣∣∣∣(wi − wc)
ri
rb

∣∣∣∣ (7.10)

where rb is the radius of the ball; using the geometrical identities of figure 7.2,

BSF =

∣∣∣∣(wi − wc)
(Pd −Bdcos(ϕ))/2

Bd/2

∣∣∣∣ (7.11)

which can be expressed as,

BSF =

∣∣∣∣ [wi −
1

2

(
wi

(
1− Bdcos(ϕ)

Pd

)
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2
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)
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The important frequency in this case is 2×BSF because a fault in the ball would

hit alternately the inner and outer race in each spin. This generates two times

the BSF because the timing for each strike is exact and occurs when the roller

rotates half a revolution.

d

d

Figure 7.1: Main geometry of a rolling element bearing

Figure 7.2: Main identities of a rolling element bearing

All of these ideal bearing frequency formulas are based on the assumption of pure

rolling contact between rollers and races. Any small deviation resulting from any slip-

ping of these surfaces would produce somewhat lower values than the ones of the above

equations. When some looseness is involved, the spectral lines at the bearing frequen-

cies can be wide-banded. The outer race frequency could not appear clear if the bearing

is loose in the housing or if the fault is not aligned with the load zone. In addition, small
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changes in the contact angle during functioning could make the generated frequencies

vary from the theoretical ones. Despite these variations in practice, the analysis of

the power spectra around these frequencies can reveal with high accuracy the nature

of the defect in many phases of it. Table 7.1 summarizes the main relations between

characteristic bearing vibration frequencies and fault diagnosis used in the traditional

spectral analysis of vibrations [236]. In the next section, the phases which can appear

for a bearing defect are described.

Figure 7.3: Impact of a fault for an outer-race fault (equivalent for an inner-race fault

with BPFI frequency) and real wear of an inner-race.

Table 7.1: Bearing Vibration Frequency Characteristics.

Bearing faults Frequencies in Power Spectrum Description

Rolling elements 2×BSF , BPFO, BPFI Modulated by 2 × BSF or

FTF .

Outer raceway BPFO Harmonics may be found.

Inner raceway BPFI
Harmonics may be found. In-

ner race faults are typically

modulated by Fs (frequency

of the shaft).

Rolling element bearing fault phases

Defects can occur in any of the parts of the bearing and will cause both medium and

high-frequency vibrations. In fact, the severity of the wear keeps changing the vibration

pattern until a final breakdown occurs, as we will see further in this section. Raceways

and rolling element defects are more easily detected than the ones in the cages. Though

there are many techniques available to detect where defects are occurring, early detec-

tion and prediction of when the bearing defect will turn into a functional failure are
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still not fully solved.

The power spectrum for bearing defects can be split into four zones, where we will

notice the changes as bearing wear progresses. These zones are:

• Zone A: machine revolutions per minute (RPM) and harmonics zone (0 - 200 Hz).

• Zone B: bearing defect frequencies zone (200 - 500 Hz).

• Zone C: bearing component natural frequencies zone (500 - 5000 Hz).

• Zone D: high-frequency-detection (HDF) zone (beyond 20 KHz).

The defects in a bearing will present changes in the power spectrum in four phases

(see figure 7.4):

• Stage 1: The first indications of bearing wear show up in the ultrasonic frequency

band which is situated in the range of approximately 20-60 KHz. These frequen-

cies should be evaluated by specialized high-frequency detection techniques such

as gSE (Spike Energy), PeakVue, etc. since the vibration pick ups are not able to

reach this band of frequencies. The high cost of these techniques motivates that

this stage is usually discarded in many practical situations.

• Stage 2: In this next stage, the fatigued raceways or balls begin to develop minute

pits. The contact of these pits with other surfaces (ball against a race pit, defec-

tive ball against the race, etc.) start to generate the ringing of the bearing com-

ponent natural frequencies that predominantly occur in the 500-5000 Hz range.

This effect consist on the periodic free vibration response of the component, as

we described in the previous chapter and was determined in the seminal paper

by McFadden [167] (see figure 7.3). Since the period of the spikes is equal to the

characteristic frequency of the domain, the effect resembles a train of impulses

which modulates in amplitude the natural frequency, which acts as the modulated

frequency. Thus, the defect appears in the power spectrum sidebands around the

natural frequency at a distance equal to the characteristic frequency correspond-

ing to the present defect (see figure 7.4). This fact can be used to diagnose the

defect in an early stage, as we will experimentally demonstrate in the following

sections. Also, high-frequency components may also double its amplitude when

compared to the readings during stage 1.
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• Stage 3: As we enter the third stage, the characteristic frequencies and their

harmonics are visible in the power spectrum. These may appear with a number

of sidebands. Wear is usually now perfectly visible on the bearing and may expand

through to the edge of the bearing raceway. The minute pits of the earlier stage

are now developing into bigger pits and their numbers also increase. This stage is

already dangerous and it is usually advised to replace the bearing at this stage.

Some studies indicate that after the third stage, the remaining bearing life can

be from 1 h to 1 % of its average life. Thus, it is desirable that a detection and

diagnosis technique would be able to anticipate the fault before it reaches this

stage, since the development of its defects will be exponential afterwards and in

a very short period, the debris from the bearing or its own breakage can cause a

fatal failure of the rest of the components.

• Stage 4: In the final phase, pits merge with each other, creating rough tracks

and spalling of the bearing raceways or/and rolling elements. The bearing is in

a severely damaged condition now. A generalized increase of all the vibration

components, even the 1x (main speed of the shaft), characterizes this phase.

Discrete bearing defect frequencies and bearing component natural frequencies

actually begin to merge into a random, broadband high-frequency “noise floor”.

By this time, the bearing will be vibrating excessively and the whole machine is

under serious danger of breakdown; it will be hot and making lots of noise. If

it is allowed to run further, the cage will break and the rolling elements will go

loose and run into each other until the machine trips on overload. It is very likely

that, if this stage is reached, there will be serious damage to the shaft and the

area around the bearing.

As it can be extracted from the description of these phases, with the transducers

used (accelerometers), fault detection in stage 2 and as early as possible is desirable

for both a human practitioner or an automatic fault detection system. If this behavior

is obtained, monitored machinery will never, in principle, reach a dangerous stage and

the component could be repaired in a cost effective way. The aim of the experiments

in this chapter is to demonstrate that this behavior could be obtained applying the

anomaly detection methodology described in the last section of chapter 5, combined

with ML anomaly detection algorithms and signal preprocessing. In order to do this,

we will use cases under different experimental settings that will be described in the

next section.
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Figure 7.4: Qualitative evolution of the power spectrum of a bearing fault.

7.2 Rolling element bearing fault assessment: study cases

Obtaining vibrations captures of faulty machines is not an easy task and few datasets

are available. Laboratory tests are very expensive to produce and monitoring actual

production machines is not very accessible due to production or even manufacturers

restrictions (manufacturer guarantee can be lost by the owner if any modification is

made). As a result, few disclosed data sets are available. Firstly, common features

of all the experimental cases to be used in this work are described. In all cases, the

bearings will be mounted in the most common configuration, and this affects the general

equations of characteristic frequencies. Namely, the outer race is always fixed to the

housing and the inner race turns freely at the shaft speed. Under this conditions, with

wi = S (angular speed of the shaft) and wo = 0, the equations of the characteristic

frequencies are (where S is the shaft speed):

FTF =
1

2
S

[(
1− Bdcos(ϕ)

Pd

)]
(7.12)

BPFO =

∣∣∣∣Nb

2
S

(
1− Bdcos(ϕ)

Pd

) ∣∣∣∣ (7.13)
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BPFI =

∣∣∣∣Nb

2
S

(
1 +

Bdcos(ϕ)

Pd

) ∣∣∣∣ (7.14)

BSF =
Pd

2Bd
S

(
1−

B2
dcos(ϕ)

2

P 2
d

)
(7.15)

When studying a specific component in the following cases, these equations will be

used in order to calculate the characteristic frequencies. In all real and laboratory

cases, accelerometers are used to capture the vibrations. This pickups limit our studies

to a band up to 10Hz - 20 kHz depending on the instrumentation of each experiment.

Mountings are described hereunder for each case. The data sets are different in their

nature and they are increasingly difficul from simulated data with low noise sources to

real life detection cases which present all the difficulties that can appear in a real fault

detection scenario.

7.2.1 Case 1: UNSW Simulator Data

In [205] researchers from the University of New South Wales (UNSW) presented a

simulation model for a gearbox test rig, in which a range of bearing faults can be

implemented. This simulator was designed to facilitate the development of diagnostic

and prognostic techniques for rolling element bearings in real systems. Faults can be

implemented under different operating conditions rather than waiting for them to oc-

cur naturally, or alternatively having them seeded in the laboratory. Even though the

modelling of the whole gearbox has to be an approximation, the simulations obtained

in [205] proved to be useful for reproducing typical fault signals from gearboxes and

to test new diagnostic algorithms. Simulated signals showed quite a similar pattern

to that observed in their actual measured counterparts. Such fault simulation is very

valuable in machine diagnostics and, for this work, it allows us to produce signals with

well-defined characteristics.

Bearing faults sometimes manifest themselves by their interaction with meshing gears,

and to simulate this it is necessary to model a whole system of gears and shafts sup-

ported by bearings. A model or an experimental test rig was built through the incorpo-

ration of a time-varying, non-linear stiffness bearing model into a previously developed

gear model. The incorporated bearing model is based on Hertzian contact theory,

which relates the raceway displacement to the bearing load, and also accounts for the

slippage between the elements. It has the capacity to model localized spalls (inner race,

outer race and rolling elements), though there is a further extension [204] in which the
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simulation of larger faults is discussed. As the interest in our work is incipient fault

detection, the version in [205] is used. Figures 7.5 and 7.6 depict respectively the actual

test rig and the diagram of the 34-DOF dynamic model that simulates the system.

Captures in normal state and subsequently under outer race fault were simulated. The

fault was increased from 0 micrometers of depth and 0 mm width to 200 micrometers

depth and 0.5 mm of width. Thanks to the capacity of controlling the fault depth and

width, this simulator will be used to assess the coherence between vibration signals and

fault severity and answer the first question raised at the beginning of the chapter on

whether vibration data is adequate to detect and assess the condition of a mechanical

component.

Figure 7.5: UNSW fault test rig photo and scheme (reproduced with permission of the

authors)

7.2.2 Case 2: Laboratory data I

In order to show the adequacy of the proposed methodology for real life fault detection,

the bearing dataset provided by the Center for Intelligent Maintenance Systems (IMS),
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Figure 7.6: 34-DOF modeling of the gearbox (reproduced with permission of the au-

thors)
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University of Cincinnati was used [141]. For obtaining the data, four bearings were

installed in one shaft. All bearings were forced, lubricated and accelerometers were

installed in each of them. Rotational speed was kept constant at 2000 rpm and a 6000lb

radial load was placed onto the shaft and bearing by a spring mechanism. On each

bearing two PCB 353B33 High Sensitivity Quartz ICP Accelerometer were installed for

a total of 8 accelerometers (one vertical Y and one horizontal X on each). All failures

occurred after exceeding designed life time of the bearings that is more than 100 million

revolutions. Figure 7.7 depicts the structure of the installation used for the experiment.

In this work two datasets of the database are used:

• Experiment a: Recording was carried out between 12/02/2004 10:32:39 and

02/19/2004 06:22:39 every 10 minutes. At the end of the test-to-failure experi-

ment an outer race failure occurred on bearing 1.

• Experiment b: Recording was carried out between 04/03/2004 09:27:46 and

04/04/2004 19:01:57 also every 10 minutes. At the end of the test-to-failure

experiment an outer race failure occurred on bearing 3.

Figure 7.7: Bearing test rig for the test-to-failure experiment: (a) photo; (b) installation

schema.

The nature of the fault induced in this experiment was slow so the expected behav-

ior of the system in this case is: (a) not to give false alarms during normal operation,

(b) early detection of a change of vibration signature when a fault appears and (c)

qualitative indication of the exponential evolution of the induced crack until the ma-

chine stops working. In addition, the two fault cases are very similar, same type of

fault on the same type of component and under the same conditions. Thus, results

on any of the two datasets can be extrapolated to the other one. These datasets are

used in the following sections to assess the accuracy of fault detection, diagnosis and

prognosis strategies.

175



Chapter 7. Application of ML to industrial fault detection: Rolling element bearing fault
assessment

7.2.3 Case 3: Laboratory data II

This third example was carried out with data obtained from the data set of rolling-

element bearings provided by the Case Western Reserve University [153]. The exper-

imental setup, shown in Fig. 7.8, consisted of a Reliance Electric 2HP IQPreAlert

induction motor connected to a dynamometer. Single point faults of 0.007, 0.014 and

0.021 inches in size were “seeded” only into the drive-end bearing of the motor using

an electrical discharge machine. An accelerometer was placed at the drive end of the

motor housing (12 o’clock position) to acquire the vibration signals from the bearing.

All signals were recorded for motor loads of 0 to 3 horsepower at a sampling frequency

of 48 kHz. The speed was held constant at 1740 RPM. Installed bearings have 9 balls, a

pitch diameter of 1.537 in., a ball diameter of 0.3126 in. and a null contact angle. With

this information and the equations presented in section 7.2, we are able to calculate

the characteristic fault frequencies (shown in Table 7.2) .

Table 7.2: Characteristic fault frequencies of 6205-2RS SKF bearing.

BPFI BPFO FTF BSF

157 Hz 104 Hz 11.6 Hz 68.5 Hz

Figure 7.8: Photography and schematic description of the experimental system.

The following faults are used in the experiments: a 0.007 inches fault in the outer

race, a 0.007 inches fault in the inner race and a 0.021 inches fault in a ball. We have

selected the smaller size faults in the rings in order to treat the most difficult incipient

fault cases. Ball faults are the ones which appear less clearly in data so bigger fault

sized had to be taken. Due to the well documented faults registered in this dataset,

it will be used in section 7.5 to test a proposed diagnosis strategy base on one-class

ν-SVM. Unfortunately, the size of the datasets does not allow us to extract relevant

conclusions for fault detection analysis, so this dataset is not used in sections devoted

to fault detection performance assessment.
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7.2.4 Case 4: Real Scenario, wind mill power turbines

This last dataset consist on a fault case occurred in a wind mill situated in the produc-

tion wind farm during the pilot installation of GIDAS software (see previous chapter).

The wind turbine was composed of a METSO PLH-310XG1 gearbox and an INDAR

NCR-400-X/4 generator with 660 KW of power and which mounted two FAG 6226/C3

bearings in input and output extremes. The machine was monitored from 11th of

March of 2010 until 11th of July of 2010 using GIDAS monitoring system when a

breakdown occurred in the machine and a reparation was needed. In this case, we used

as extra input data the revolutions per minute of the machine during the capture, as

this machine was of variable speed and the vibrational signature changes significantly

depending on this parameter. The nature of the failure was impossible to determine,

so this dataset will only be used to assess fault detection strategies accuracy in a real

production scenario.

Before continuing to the description of experimental results, we detail One Class ν-

Support Vector Machines. This algorithm was included in the first prototype of GIDAS

software and so will be used as the state-of-the art anomaly detection standard in the

following sections.

7.3 One Class ν-Support Vector Machines

One class ν-Support Vector Machines [208] [210] are intended to solve the following

problem: try to obtain a function that captures regions in input space where the

probability density support lays. In doing so, the obtained function f complies with the

following condition: given a probability density function P , if a previously unseen data

point x is generated using P , with a predefined probability level α, f takes a positive

value. In order to adjust f , we are given a set of normal data points X = {x1,x2, ...,xl}
which have been generated i.i.d. from the normal state probability distribution P which

we want to characterize. Mathematically, one-class ν-SVMs can be formulated as a
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convex optimization problem as follows:

min
w, ξi, ρ

1
2∥w∥

2 + 1
νl

∑
i ξi − ρ

subject to w · ϕ(xi) ≥ ρ− ξi

ξi ≥ 0;

(7.16)

where w ∈ F is the weight vector of the classifier hyperplane, xi ∈ Rn are the

input vectors, ξi ∈ R are slack variables, ρ ∈ R is the bias term of the classifier,

ϕ(xi) : Rn 7→ F represents a non linear function that maps vectors in input space to a

feature space F and ν ∈ (0, 1] is a parameter whose meaning will become clear later.

Due to the fact that nonzero slack variables ξi penalize the objective function, the pair

w and ρ that solve the problem will give a decision function

f(x) = sgn(w · ϕ(x)− ρ) (7.17)

that will be positive for data points similar to the examples in the training set which

represent the ”normal” support.

Using multipliers αi, βi ≥ 0, we introduce the Lagrangian of the primal in (7.16)

L(w, ξi, αi, βi) =
1
2∥w∥

2 + 1
νl

∑
i ξi − ρ

−
∑

i αi((w · ϕ(xi))− ρ+ ξi)

−
∑

i βiξi

(7.18)

Using the so called Wolfe dual of convex constrained problems [82], if we take the

derivative of the Lagrangian in (7.18) with respect to the primal variables and equal

them to zero we obtain
w =

∑
i αiϕ(xi),

αi =
1
νl − βi ≤ 1

νl ,

∑
i αi = 1

(7.19)

and subtituting them in the primal (7.16), we obtain the dual problem:

max
α

−1
2

∑
ij αiαjk(xi,xj)

subject to 0 ≤ αi ≤ 1
νl∑

i αi = 1

(7.20)
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Due to the fact that normal data points in feature space ϕ(xi) are involved in (7.20)

only in terms of their dot products, we can approximate their dot product ϕ(xi) ·ϕ(xj)

by a kernel function k(xi,xj). This so called ’kernel trick’ property of support vector

machines (SVM) methods allows us to obtain functions that approximate complex

probability density supports without the need to explicitly map normal patterns into

feature space. Common choices for k(xi,xj) are RBF, polynomial, sigmoid, etc (see

[212]). In this work we use the RBF or gaussian kernel function which has the following

form:

k(xi,xj) = e−
∥xi−xj∥

2

2σ2 (7.21)

where σ is the width of the kernel function and must be set by the user as a

hyperparameter. In the optimum, Karush-Kuhn-Tucker complementary condition and

the following are fulfilled

αi ((w · ϕ(xi))− ρ+ ξi) = 0, ∀i

βiξi = 0,∀i

βi =
1
νl − αi

(7.22)

so we can obtain ρ from any data point whose αi ∈ (0, 1
νl ) following

ρ = w · ϕi(xi) =
∑
j∈SV

αjk(xj ,xi) (7.23)

where SV is the set of data points whose corresponding αj > 0, which are called

Support Vectors. In the optimum, only a small fraction of the input data points will

have a αj > 0, which gives a sparse definition of the final function f . This is an

advantage over other methods like Parzen Density Estimators, since we define the

support of the normal distribution only in terms of a small portion of the input data

set. Thus, in kernel space, the final decision formula has the following form

f(x) = sgn

 ∑
xi∈SV

αik(xi,x)− ρ

 (7.24)

There are additional properties of one-class ν-SVMs that play an important role in

its application to fault detection problems
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Proposition 1: Assume the solution of (7.16) satisfies ρ ̸= 0. The following state-

ments hold:

1. ν is an upper bound on the fraction of outliers.

2. ν is an lower bound on the fraction of SVs.

3. Suppose the normal data were generated i.i.d. from a distribution P (x) which

does not contain discrete components. Suppose, moreover, that the kernel is

analytic and non-constant. With probability 1, asymptotically, ν equals both the

fraction of SVs and outliers.

The formal proof of this statements can be consulted in [210]. This statement has

practical implications for fault detection applications. The parameter ν that we have

to adjust in order to estimate the ”normal” model represents the estimation of the

maximum number of spurious or abnormal vibration captures that are expected to

appear in the training set, which can be estimated from past cases in order to help us

to set this hyper-parameter.

7.4 Fault detection: experimental results

In this section we explore the anomaly fault detection strategy presented in the last

section of chapter 5 when applied with both state-of-the art and anomaly detection

techniques presented in chapter 3.

7.4.1 Vibration data and fault severity coherence

In this section, the first question posed at the beginning of this chapter is treated: Is

vibration data adequate to detect and assess the condition of a mechanical component

using an anomaly detection strategy?. In order to have a positive answer to this ques-

tion, we should be able to observe a clear divergence between vibrations produced under

normal and abnormal conditions. Furthermore, a correlation between data divergence

and fault severity would also be desired. If this second property is present in vibration

data, we could ensure that if that divergence is captured by our anomaly detection

180



7.4 Fault detection: experimental results

strategy as soon as possible, fault severity would be indeed still incipient. Otherwise,

if fault severity is not positively correlated with data divergence, an anomaly detection

strategy would be invalidated for incipient fault detection.

Since we are not able to determine the conditions of machinery in laboratory and real

scenarios for each point of time, simulated data is used using the simulator of case I.

Specifically, the following simulation was conducted: (a) firstly 65 captures in normal

state and subsequently other 65 captures under outer race fault were simulated. The

fault was linearly increased from 0 micrometers of depth and 0 mm width to 200 mi-

crometers depth and 0.5 mm width. The feature vector was constructed as follows: the

Root Mean Squared (RMS) energy of the raw signal and the Power Spectrum in the

0-20kHz band (calculated using the Fast Fourier Transform (FFT)) were calculated;

subsequently, the power spectrum was divided in subbands of 1000Hz and the energy

of each subband (area under the curve of each subband of the power spectrum) was

calculated giving a feature vector of 21 features. Figures 7.9 and 7.10 represent respec-

tively the vibration power spectrum in normal state and with a 0.3 mm fault. It can

be seen the incipient activity in 15000 Hz band.

In order to assess the divergence of faulty data we have chosen to use the one-class

ν-SVM previously presented with a RBF kernel function.A normal model was trained

with a subset of the captures under normal conditions and subsequently it was used to

classify the remaining captures. Figure 7.11 shows the behavior of the one-class ν-SVM

along the fault progress, where the dot represents the point where the fault actually

started. The value of the y axis is the argument of equation 7.24. One-class ν-SVM

captures the region of the input space which normal data belongs to and the more

divergent the new data is the more negative this value becomes. It can be observed

that the SVM has a delay in detecting the fault due to the poor signal to noise ratio at

the beginning of the deviation, but once it detects the change it is able to characterize

its development. In Figure 7.12 it can be seen the ”normality likelihood” of the SVM

versus the width of the fault. As it can be observed, the sensitivity of the SVM starts

at 0.19 mm of width and from this point on, its fault characterization has a linear

correlation with the fault severity up to a 0.97 Pearson’s correlation coefficient.

Although based on a specific methodology, two main conclusions can be extracted

from this experiment: (a) when a fault is very small there is not a clear sign of it in

vibration data so a delay in the detection is expected and (b) there is a correlation

between (a) fault severity and (b) the divergence of fault state vibration captures with

respect to normal state ones. This conclusions justify the application of an anomaly
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Figure 7.9: Normal state spectrum of simulated data.
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Figure 7.10: Incipient fault spectrum of simulated data.
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Figure 7.11: Fault detection for the simulated fault growth case.
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Figure 7.12: Correlation between nomal state assessment of one-class ν-SVM and fault

width.

183



Chapter 7. Application of ML to industrial fault detection: Rolling element bearing fault
assessment

detection strategy to the fault detection problem based on vibration signatures and

highlights the necessity to explore more in depth the following aspect in order to design

such a system: improve both feature extraction and anomaly detection techniques in

order to reduce the detection delay maintaining a reduced false positive rate. These

aspects are explored in the following sections.

7.4.2 Fault detection via frequency domain transformations

Once we have brought light to the first question of this chapter, we move on to the

next step: Is it possible to join traditional frequency domain transformation of vibration

data and anomaly detection methods to build fault detection systems? In this section

we test the detection accuracy of state of the art anomaly detection algorithms and

the anomaly detection algorithm proposed in section 3.1.2.6. In this case, the anomaly

detection strategy proposed in section 5.4 is used and the feature vector consist on: (a)

the Revolutions per Minute (RPM) at which the system is working and (b) the level of

the signal and each sub-band of 1000Hz width of the power spectrum. The RPM of the

machine helps to discriminate its different normal states since vibration levels change

depending on this parameter.

We have used two real data sets: laboratory data I (case I experiment a) and real

detection scenario case (case IV). The two datasets are challenging in different ways.

The first one tracks the vibration behavior of a component from brand new conditions

to final breakdown. Delays in the detection can appear as we have seen in the previous

section. The second one is a real complex machine case, so interference from other

components and external conditions can degrade detection accuracy and increase false

positive rate. Both data sets were labeled in two classes, normal and abnormal behavior.

For the case of the laboratory data, captures were labelled as abnormal when their

abnormality becomes evident manually analyzing data and, in the second case, we

labelled the patterns as abnormal when the machine had a reported fault. These

labels are not used for training but as the reference to calculate classification errors. In

both cases, the classification accuracy can be interpreted as the ability to automatically

detect a fault in an accurate way. All models were trained with only a portion of normal

state captures and then tested with a different data set consisting on posterior normal

and abnormal captures. The proportion of the test set was 50% of normal samples

and 50% of fault samples. The mean test error for 20 runs of the best combination

of parameters in each case is given in Table 7.3 for the proposed model and the state

of the art one class ν-SVM classifier [209], Autoassociative Neural Network (AARNA)
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model [115] and the Mixture of Gaussians model (MGM) [64]. It can be noticed that

the proposed model is the most accurate in the gradual degradation case with a big

difference in comparison with one class ν-SVM classifier and the MGM while, for the

second data set, it performs slightly worse than the MGM. On average, in both data

sets it is the best method among the ones compared. These results highlight that

effective anomaly detection based on frequency domain features and anomaly detection

algorithms is possible. In addition, MCSE algorithm proposed in section 3.1.2.6 seems

to be a good candidate for this purpose.

Table 7.3: Mean test error for anomaly detection algorithms based on frequency domain

feature extraction

one class ν-SVM AARNA MGM MCSE

Case II (exp. a) 15.38% 8.39 % 26.7 % 6.84%

Case IV 3.18% 4.45 % 1.98 % 2.54%

7.4.3 Fault Detection via on-line anomaly detection

In this section we explore how vibration fault detection can be tackled in a on-line man-

ner with the OSDAD algorithm (presented in section 3.3). On-line learning algorithms

with a simple update strategy and low computational requirements are appealing due

to the recent interest on embedding in the mechanical components its own fault detec-

tion system.

In order to carry out the experimentation, two different datasets have been used: Lab-

oratory Data (Case II, experiment a) and the real fault detection scenario (Case IV).

As we previously mentioned, in the first case, a fault in a bearing evolves over time. In

the second case, a sudden breakdown happens in the monitored system and a complete

review is needed.

The OSDAD detection capabilities will be compared in this case with a state of the art

non stationary change detection algorithm presented in [14]. This algorithm, named

Computational Intelligence CUSUM (CI-CUSUM), aims at detecting a change in a

data stream without assuming any property of the underlying probability distribution

that generated the data. While in our proposed model we tackle the density support

estimation through an on-line classifier, in the CI-CUSUM a new sequence is generated

through a transformation of the original sequence. This transformation is tackled in

two steps for multidimensional data. First, the dataset features xt are mapped to a
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reduced data vector ϕ(xt) through a Principal Component Analysis (PCA) previously

calculated on an initial dataset. The number of considered eigenvectors can be empir-

ically identified by removing those eigenvalues whose sum is below a threshold. The

mean vector yt′ =
1
T

∑t+T
i=t ϕ(xt) of a window of T patterns are periodically calculated.

The size of T must be large enough to invoke the central limit theorem. This trans-

formation produces a sequence yt′ which follows a multivariate Gaussian distribution

N(µ,Σ). Afterwards, it applies a CUSUM test to this sequence. In order to do this,

it is necessary to estimate the parameters µ and Σ from an initial dataset as well as

the parameters of the CUSUM test. Since we are looking for increments in vibration

energy, once having the test parameters, the algorithm tests the appearance of a growth

in different combinations of components of the sequence yt′ . Since testing all the pos-

sible combinations of the dimensions of yt′ could end in an exponential number of tests

running, an equilibrium has to be found between number of combinations and detection

accuracy. In this work we will apply the Configuration 2 recomended in [14], where the

following hypothesis are considered: (a) all the components suffer an increase and (b)

any of the components increase separately.

In this case the following feature vector was constructed for each power spectrum: (a)

root mean square (RMS) energy of the whole raw vibration signal, and (b) the energy

of each sub-band of 200Hz width that was extracted from the power spectrum. The

parameters of the two models were selected in order to detect, in the most accurate

way, the faults in the machines.

First, the results for the laboratory data of Case II are presented. A window with

the first 200 captures of normal state was used to obtain a stable model of the on-line

algorithm. The parameters used to adjust the model were the following: σ = 0.8,

C = 0, 05, Cr = 0, 06 and qi = 1e − 4. Once the model was trained, the probability

p0 was estimated and the parameters of the CUSUM test were calculated (values of

ANOS = 500 and p1 = 1, 5 × p0 were selected). Hereafter the methodology presented

above was applied to the remaining data in order to detect possible deviations.

Figure 7.13 shows the CUSUM chart for the OSDAD algorithm. It can be observed that

OSDAD raises an alarm in sample 340 (74 hours before the breakdown happens), when

the CUSUM statistic exceeds the threshold h. This point coincides with the change

point extracted by an expert manual analysis of the captures. Thus, the OSDAD al-

gorithm demonstrates its capability to detect the fault in an incipient stage avoiding

false alarms. In Figure 7.13 the CUSUM chart for the CI-CUSUM component with its

earliest alarm is also depicted. A window size of 15 samples was used for constructing

the CI-CUSUM transformed sequence and the data used to set up the test was the same

that the data used for the proposed model. In this case, an alarm is raised in sample

405 (63 hours before the breakdown happens). It can be observed that, although the
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Figure 7.13: The Bernoulli CUSUM charts for Case II dataset.

CI-CUSUM also demonstrates a good performance, it needs more samples to detect

the deviation.

For Case IV, the first 180 captures of normal state were used to adjust the model.

The parameters used to build it were the following: σ = 1, C = 0, 09, Cr = 0, 085 and

qi = 1e− 5. Once the model was trained, the probability p0 was estimated and the pa-

rameters of the CUSUM test were calculated (values of ANOS = 500 and p1 = 1, 5×p0

were selected).

Figure 7.14 depicts the CUSUM chart for both the OSDAD algorithm and the

CI-CUSUM. Also for this case, the OSDAD algorithm demonstrates its capability to

detect sudden changes in the vibrational behavior of the machine without giving any

false alarm. The CUSUM chart for the CI-CUSUM component with the earliest alarm

is also depicted in this figure. The set up for this case was the same that the one for

Case II data. It can be observed that, also for this task, the CI-CUSUM needs more

samples to detect the deviation.

In order to assess the impact of the parameter selection on the detection capa-

bilities of the OSDAD algorithm, we have again tested its performance for different

combinations of all parameters, moving them around the optimal depicted in figure

7.14. Figure 7.15 shows, for the real scenario fault detection case, the detection delay,

in terms of number of samples after the break appears in sample 250 (assessed by an
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Figure 7.14: The Bernoulli CUSUM charts for Case IV data.
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Figure 7.15: Performance of the OSDAD algorithm for the wind mill dataset with

different combinations of parameters.

expert). There is a range around the optimal hyperparameters where the maximum

detection delay is 10 samples, which is not a dramatic loss in detection ability.
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7.4.4 Fault detection via alternative transformations

Vibration analysis has traditionally chosen to transform raw vibration signals to fre-

quency domain in order to extract informative features. Power spectrum, cepstrum,

wavelet analysis, etc. belong to this kind of transformations. In this section we aim

at answering the third question posed at the beginning of the chapter: Is it possible to

propose alternative raw vibration feature extraction methods not based on frequency do-

main transformations?. Namely, Recurrence Time Statistics, a transformation rooted

in chaos theory [89], and which has not been explored in the past for vibration anal-

ysis, is applied to the real fault detection cases. We combine this feature extraction

strategy with the EVOC method presented in section 3.2.1 and one-class ν-SVM as

base classifiers. We start with the description of the aforementioned feature extraction

strategy.

7.4.4.1 Recurrence Time Statistics

In recent years the interest in automatic fault detection research has moved towards

studying how the information in the time domain signals can be exploited for early

detection of faults. Traditional linear and nonlinear time series analysis techniques

combined with other signal detection techniques have been used in the field of bear-

ing fault detection in the past years (see for example the work in [203]). Machinery

vibration generation process (and more specifically faulty bearing vibration generation

[73]) is known to be a nonstationary dynamical process, so early bearing fault detec-

tion problem can be viewed as a change of dynamics and this has been studied for

many decades [89]. Many indexes specially designed for characterizing the dynamics

of nonlinear and chaotic systems have been devised and its applicability as features in

bearing fault detection is a source of improvements that is to be fully studied yet.

Recurrence time statistics is a method rooted in chaos theory [89]. It assumes that the

process under study is fully described by scalar time series {x(i), i = 1, 2, . . . ,M}, where
i is the time index. According to Takens’ embedding theory [228], the corresponding

m dimensional phase space can be built by constructing vectors from the time series,

Xk = [x(k), x(k + L), x(k + 2L), . . . , x(k + (m− 1)L)], where L is the time delay. The

vector sequence {Xk, k = 1, 2, . . . , N} constitutes a trajectory in the phase space with

N = M − (m − 1)L. In order to measure the time that takes the dynamical process

to return to an attractor close to the initial one (Poincaré recurrence time), recurrence

time statistics proceeds as follows:
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1. Fix an arbitrary reference point X0 in this constructed phase space, and consider

the ball centered in that point of radius r (we will see hereunder how to set this

radius value): Br(X0) = {∥Xj −X0∥ ≤ r | j ∈ [1, N ], j ̸= 0}

2. Denote the ordered subset of the trajectory that belongs to Br(X0) by S1 =

{Xt1 , Xt2 , . . . , Xti , . . . | ti ∈ [1, N ], ti+1 > ti}. These points are called Poincaré

recurrence points.

3. Calculate the Poincaré recurrence times, which are defined as {T1(i) = ti+1 −
ti, i = 1, 2, . . . }. The T1 index of this reference point X0 is the mean of the above

generated T1 set.

Finally, the overall T1 of the whole phase space is the average of the T1 indices of all

the reference points. Figure 7.16 illustrates the T1 generation of one reference point

[150].

According to Takens’ embedding theory, if the attractor’s dimension is D (may be

non-integer), then a constructed phase space, with m > 2D+1 (m should be an integer)

embedding dimension, is able to reveal the underlying dynamics. In the next section

we present a method to define the embedding dimension for vibration generation of a

rotating machinery.

Parameter Selection strategy for T1 Index: In order to apply the aforemen-

tioned recurrence time statistics to fault detection of rotational machinery in practical

scenarios we need to provide an effective way of determining the three parameters that

are involved in its calculation: delay L, embedding dimension m and radius of ball

r. Fortunately, in the realm of non-linear dynamical systems analysis, the problem of

estimating these parameters has been extensively studied and effective methods can be

used.

Delay L needs to be small enough to capture the shortest change present in the data

and large enough to generate the maximum possible independence between components

of the phase space vectors. The autocorrelation method introduced by [1] can be used

to decide L as the first zero value of the autocorrelation function.

For the case of the embedding dimensionsm of the time series generated by autonomous

dynamical systems in the absence of dynamical noise much work can be found in the

literature. The methods developed for estimating the minimum embedding dimensions

are grounded on Takens’ embedding theorem [224] and most of them use the ideas
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Figure 7.16: Recurrence Time Statistics calculation illustration.
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of the false nearest neighbors technique [44][127]. Later a number of works discussed

theoretical foundations of the delay embedding of the input-output time series [44][46].

This led to the generalization of the existing method for the case of non-autonomous

dynamical systems [42][44][224]. In this work, the method proposed by He and Asada

[100] is used since their strategy is based directly on measurement data and does not

make any assumptions about the intended model architecture or structure. It requires

only that the process behavior can be described by a smooth function, which is an

assumption that must be made in black box nonlinear system identification. An expla-

nation of this strategy’s central idea follows. In general case, the task is to determine

the number of relevant inputs of the function

y = f(ϕ1, ϕ2, ..., ϕn) (7.25)

from a set of potential inputs {ϕ1, ϕ2, ..., ϕm} that are given. If it is wrongly assumed

that the function f depends on only n−1 inputs when it actually depends on n inputs,

the data set may contain two (or more) points that are very close (in the extreme case

they can be identical) in the space spanned by the n− 1 inputs but differ significantly

in the n-th input. Because the underlying function f is supposed to be smooth, if two

points are close in the input space, their images must also be close. But when one

(or several) relevant inputs are missing, this behavior is broken, so it is possible to

conclude that those inputs are not sufficient. In [100] an index is defined based on so-

called Lipschitz quotients, which is large if one or several inputs are missing (the larger

the quotients, the more inputs are missing) and is small otherwise. Thus, using this

Lipschitz index the correct embedding dimensions can be detected at the point where

the Lipschitz index ceases to decrease. The Lipschitz quotients for the multidimensional

case can be calculated using the expression:

lnij =
|yi − yj |
∥ϕi − ϕj∥

(7.26)

where n is the number of inputs, ϕi ∈ Rn is input i and i ̸= j. The Lipschitz index is

then defined as the maximum Lipschitz quotient

ln = max
i̸=j

lnij (7.27)

As long as n is too small and thus not all relevant inputs are included, the Lipschitz

index will be large because smoothness is not longer true under that situation. As soon

as all relevant inputs are included, the value of equation 7.27 stays relatively constant.

Once the delay L and the embedding dimension m are determined, the radius can be

practically estimated in a way that the balls centered in the data samples in the T1
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index have a volume proportional to the total volume of the box that contains the

attractor

r = a

(
Γ
(
1
2n+ 1

)
V

π
n
2

) 1
n

(7.28)

where we have used the formula of the volume of an n-dimensional sphere, Γ is the

gamma function, V is the volume of a box containing the attractor of the data and

a ∈ (0, 1). In the next section it will be shown that values of a around [0.15, 0.3] exhibit

good practical results.

7.4.4.2 Proposed methodology

In this section, the global proposed methodology based on the Recurrence Time Statis-

tics of previous section and any anomaly detection algorithm is presented. As it can be

observed in figure 7.17, the process of building a fault detector based on the T1 index

is divided in three stages:

1. T1 Index hyper-parameters selection: Following the methodology in previous

section, the hyper-parameters for calculating the T1 Index are selected. In order

to do so, a base data set of vibration captures under healthy state are selected

as representative of the vibration process under normal conditions. First, the

delay L is calculated as the first null autocorrelation value of a time signal under

normal conditions. Using this L value, the dimension m is calculated embedding

this base set of captures into increasing dimensions until the Lipschitz index

ceases to decrease, taking that dimension as m. Subsequently, using these values

the volume of the attractor is estimated as the volume of the hypercube that

covers the base data set embedded under L and m values, so radius r is finally

calculated.

2. T1 Index feature extraction: In order to build a data set of normal patterns

which subsequently will be used by the anomaly detection method, each time

signal capture used in the previous section is divided into blocks, and the T1

Index is calculated for each block. This feature vector shall be called Block T1

Index (see figure 7.17). The division in blocks gives the method the ability to

detect changes in the attractor localized in time.

3. Classifier training: Using the Block T1 Index feature patterns built in the pre-

vious stages, an anomaly detection model of the normal behavior of the rotating
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Figure 7.17: Proposed method model estimation scheme.

machinery is created.

7.4.4.3 Experimental Results

In this section the experimental results for laboratory and real fault data are explored.

Laboratory data: Case II

In order to assess the capabilities of the proposed methodology in this case, the data

captures were manually inspected by an expert assessment. It was observed that there

was a point during the experiment where, using these parameters manually, it was

possible to detect that something had changed in the system. We fixed this point as

the change time for labeling the captures as normal and faulty, so we assess the ability

of the proposed model to detect a fault compared to manual human inspection using

classic fault detection strategy.

For the first data set (experiment a), eight hundred captures of normal state were used

as historic (five days and a half) and were processed using the methodology presented

in section 7.4.4.2 to automatically build the fault detection model. Afterwards, the last

6 days were automatically processed in order to detect a possible fault. For the second

data set (experiment b), four hundred captures of normal state were used as historic

(66 hours) and hereafter the trained proposed model was applied in order to detect
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possible deviations.

In Table 7.4, the results of EVOC classifier are compared with the classification accu-

racy obtained by the one-class SVM [20]. Both methods share the same human fault

assessment in order to calculate the classification accuracy. For one-class SVM, RBF

kernel [20] was used and optimal hyper-parameters were selected in the range σ ∈ [1, 40]

and ν = [0.01, 0.1], where one-class SVM showed accurate results. As it can be ob-

served, one-class SVM obtains results less accurate than the ones obtained by EVOC

(parameters were selected in the interval k ∈ [1, 10] and p = 1.5 %) , which can lead to

a lesser reliable detection system in practical situations.

Table 7.4 shows the classification accuracy obtained by the proposed method - using

both EVOC and one-class ν-SVM as base classifiers - when compared to human inspec-

tion using RMS and FFT. A change point was set when a noticeable and stable change

was detected in the vibration spectrum calculated with the FFT and the global energy

(RMS) rose up from the base line under healthy conditions. It can be observed that the

proposed methodology’s output highly agrees with the fault assessment done manually.

It is important to remark that the proposed methodology obtains the same assessment

automatically and only based on a data set of captures during the operation of the

machine when this is in a good state. So, the proposed methodology demonstrates its

capability to obtain industry-standard results and to be highly useful in practical situ-

ations when compared to other approaches [69][255][171][254][126][80] which base their

success in both: (a) using data from faulty counterexamples or (b) using a human-aided

process.

It is interesting to compare the assessment made by both the proposed model and the

human inspection based on the aforementioned features, in order to see whether the

combination of the Block T1 Index and the EVOC classifier could be more sensitive

to incipient faults than the classical approach. Figures 7.18(a) and 7.18(b) depict the

state assessment of the system during the detection phase previously explained and

used to build table 7.4 (in this figure an output ”1” means abnormal and ”0” nor-

mal state and the outputs are ordered by the time of the vibration capture until the

breakdown). It can be observed that most of the discrepancies between human and

automatic assessment are concentrated just before the fault was noticeable by human

inspection. Due to the fact that the machine was continuously working without any

other intervention, this discrepancy highlights the ability of the proposed Block T1 In-

dex and EVOC classifier to capture more subtle differences in the vibrational behavior

of a rotating machinery when an incipient fault is present. This ability can be exploited

in fault detection systems in order to reduce detection delays between the detection and

the presence of fatigue, which is very important for posterior fault management [112].
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(a) Comparison of proposed method classification and fault detection via

human inspections for Case II Data (experiment a).
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(b) Comparison of proposed method classification and fault detection via

human inspections for Case II Data (experiment b).

Figure 7.18: Comparison of proposed methodology vs. human detection

Data set Case II (Experiment a) Case II (Experiment b) Case IV

EVOC 93.00% 96.40% 94.74%

SVM 88.21% 92.81% 94.40%

Table 7.4: Classification accuracy on the experimental data sets for the proposed

methodology.
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Figure 7.19: ROC curves of the proposed methodology under different condition (TP:

true positives, FP: false negatives)
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Figure 7.20: Fault detection of the proposed method in a real scenario.

The proposed methodology has three hyper-parameters that need to be fixed in

order to build the fault detection model, the percentage of attractor a of T1 Block

parameter (see equation 7.28), and the EVOC hyper-parameters k and percentage of

outliers p which gives an output decision threshold. Figures 7.19(a) and 7.19(b) present

Receiver Operating Characteristic (ROC) curves under different conditions that depict

how the accuracy of the final model varies with these parameters. In figure 7.19(a), the

number of neighbors k was fixed to 8 and the percentage of attractor was varied into

the interval mentioned in section 7.4.4.1. It can be observed that using a value for a

into that interval leads to an accurate fault detector. In the case of k, it controls the

ability to avoid outliers in the final model. In 7.19(b), percentage of attractor a was

fixed to its optimal value for this case. It can be observed that with a value of k = 1,

we lose the ability to avoid outliers since areas close to any outlier will be considered

as part of the normal support. Since the outliers are characterized for being aisled and

far from normal support, if k is increased then EVOC starts to avoid areas in the input

space where only outliers are present until it converges to a stable model.

Real Scenario: Case IV

In order to validate the proposed methodology in a production environment, it was

applied in the following conditions: the data collected during the first 45 days of func-

tioning was used to build the model using k = 3 and p = 1% for the EVOC classifier and

a = 0.2 for the T1 parameter. The model obtained a 94.74% of classification accuracy

and a reduced number of false positives and negatives, as can be observed in figure 7.20.

If we changed the classifier to a one-class ν-SVM, classification accuracy is also high

(94.40%). High accuracy of both classification methods highlights the discrimination

capacity of the proposed feature extraction strategy.
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7.5 Fault diagnosis strategy: methodology and experi-

mental results

Up to this point we have treated the problem of fault detection. In this section we move

on to the next question of this chapter: Is it possible to come up with an algorithm able

to automatically diagnose faults in bearings?. In order to come up with an algorithm

able to tackle this task power spectrum feature extraction and one-class ν-SVM as base

classifier are used. Using the energy of different sub-bands of the normal state spectrum

as training data, a one-class ν-SVM is used in order to detect a change of behavior due

to the presence of a fault. Subsequently, using well known signal processing techniques,

the proposed system will be capable of highlighting the source of the fault and return-

ing a diagnosis.

7.5.1 Proposed method

The architecture of the proposed system is shown in Figure 7.21. The system performs

periodically the following processing:

1. A new raw vibration signal is captured from the bearing (step 1).

2. The raw vibrational signal is transformed to frequency space via FFT in the same

way as in previous sections (step 2). The energy of each sub-band is extracted

from the power spectrum of the vibration signal (step 3). In this step, a decision

about the size of the sub-band has to be made. This size is a compromise between

two requirements: (a) it should not be sensitive to noise and (b) it should be able

to accurately concentrate the diagnosis in the band where the fault is significant.

If the size of the sub-band is too narrow, the method will be very sensitive to

noise. On the other hand, too wide sub-bands would not allow us to accurately

localize the exact band where the fault is evident. In this case, we use 200Hz

sub-bands as a compromise of these two goals.

3. The sub-band energy pattern is analyzed by the one-class ν-SVM using an anomaly

detection strategy (step 4). This model has been previously trained using histor-

ical data under normal conditions.
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4. In the event that this analysis detects a fault, it is further analyzed to confirm

the fault (step 5). Otherwise, we return to step 1.

5. The frequency band of the power spectrum where the defect appears evident

is selected (step 6). This is done by selecting the most deviated sub-bands of

the input pattern, using a Sensitivity Test, and concatenating them to find the

deviated band of the spectrum.

6. Envelope analysis is utilized to highlight the characteristics of the abnormal signal

based on the band obtained in the previous step (step 7). These will be analyzed

by a knowledge-based system in order to diagnose the defective element of the

bearing (step 8).
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Figure 7.21: Architecture of the automatic bearing diagnosis system (numbers indicate

the order of the process).
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The advantages of the proposed method stem from the combination of the three

analysis steps. Each step fulfills the requirements of the subsequent step (covering

the necessary processing from raw vibrational signals to diagnosis). A knowledge-

based system utilizes the rules extracted from the bearing characteristics frequencies

presented in Table 7.1. The knowledge base needs to know which frequency is causing

the anomalous behavior in the vibration of the machine in order to discern the failure

mode. Envelope analysis is able to extract this frequency, but it needs to know whether

there is a deviation and in which sub-band it is present. These two fundamental

requirements are fulfilled by the combination of the one-class ν-SVM and the Sensitivity

Test.

In the next sections, techniques used in the main steps of the model are discussed.

Sensitivity test

If the one-class ν-SVM classifies an input pattern as an anomaly, it would be inter-

esting to determine which frequency sub-bands of the input pattern x are more deflected

with respect to the normality represented by the support vectors of the model. In this

work, a simple approximation to obtain these characteristics is devised.

Together with equation 7.21, the argument of sgn function in (7.17) transformed

by the Support Vector (SV) expansion is the following:

g(x) =
∑
j∈SV

αjk(xj ,x)− ρ (7.29)

where k(xi, xj) is the kernel function and ρ the bias of the hyperplane in feature

space. Taking the derivative of (7.29) with respect to each component i of x we obtain

the following sensitivity value,

sens(i) =

∣∣∣∣∂g(x)∂x(i)

∣∣∣∣ = 2γ
∑
j∈SV

αjk(xj ,x)|x(i)
j − x(i)| (7.30)

where γ is the width of the gaussian kernel (γ = 1
2σ2 ); this measure indicates

the components or parameters of the input vector which are more deviated from the

components of the support vectors. A ranking of the most influential parameters of the
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input pattern can be constructed with this measure. We will refer to this process as

the Sensitivity Test.

As we have already mentioned during the model description, this simple method

allows us to select the most relevant sub-bands of the input pattern and obtain the

frequency band of the vibration signal that will be employed for the enveloping process.

This band is extracted following the next principle: select the widest band that results

from concatenating the M most deviated sub-bands. In this work, we used M = 15

giving a maximum band length of 3000Hz.

Envelope analysis for bearing fault diagnosis

Each time a defect on a component strikes another part of the bearing, a series of

force impacts are produced. These impacts may excite resonances in the bearing and in

the machine. The natural resonant frequency acts as a high-frequency carrier signal that

is modulated in amplitude by a low-frequency signal (i.e., the bearing defect frequency),

resulting in high frequency components around the carrier frequency. This effect was

detailed in previous sections (see the discussion of section 5.2 and the description of

bearing’s case of section 7.1.1). Envelope analysis or demodulation is able to extract the

modulating signal from an amplitude modulated signal [95, 168, 206]. This technique

provides an important alternative to the traditional spectral analysis. The overall

process is shown in Figure 7.22.

The first step in the envelope analysis process consists on using a band-pass filter on

the raw signal, with the aim of isolating the band where the natural resonant frequency

excited by the impact frequency appears. Thus, effects of high amplitude, low frequency

vibrations and random noise outside the band are eliminated. The Sensitivity Test

explained in the previous section is responsible for selecting this frequency band.

The next step is the rectification of the filtered signal to calculate its envelope. This

can be done through Hilbert Transform [169, 252].

In the last step, Fast Fourier Transform of the rectified signal is calculated in order

to obtain the envelope power spectrum. This spectrum will contain peaks at the bearing

characteristic frequencies of the fault and its harmonics. Furthermore, the amplitude

of these peaks will increase as the fault evolves. In the last stage of the bearing failure,

the noise floor will also increase blurring the peaks. This bearing vibration diagnosis

principle has the advantage that bearing fault frequencies can be identified in early
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Figure 7.22: Signal processing steps for envelope analysis.

stages of the failure [123].

This analysis technique works very well for bearings and can also be used for diag-

nostics of other kinds of components which modulate the resonance frequency by their

characteristic frequencies - such as gearboxes, turbines and induction motors.

7.5.2 Experimental results

Two different data sets have been used to check the performance of the fault diagnosis

method proposed in the previous section: laboratory data of cases II (experiment a) and

III. In every experiment, accurate fault detection has been achieved using the following

parameters for the ν-SVM: ν = 0.01 and a Gaussian kernel with γ = 0.05. The first

parameter represents the estimation of spurious data (1%) in the normal state registry.

The second one controls the width of the distribution and has been obtained empirically.

For case II data, 200 captures of normal state were used as the training set (33

hours) and hereafter the method described above was applied in order to detect and
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Figure 7.23: (a) Example of normal state power spectrum (b) ν-SVM detection on Case

II experiment.

diagnose possible deviations. Figure 7.23 shows (a) the power spectrum of one capture

from the training set and (b) the SVM Output (argument of equation 7.17) of the ν-

SVM during this test. The dot shows the point where the system detects a change of

the behavior for the first time, 75 hours before the crack forced the machine to stop

working. This figure also shows the qualitative indication of the exponential evolution

of the failure.

Figures 7.24 and 7.25 depict respectively an incipient fault power spectrum (89

hours after the beginning of the experiment) and an advanced fault power spectrum

(120 hours) along with their corresponding frequency bands selected by the Sensitivity

Test. The two corresponding envelope spectrums are also shown in Figures 7.24 and

7.25 to demonstrate how the diagnosis system works in real-time. In both figures, the

characteristic fault frequency of the outer race can be seen (BPFO = 231 Hz, which

is very close to the value previously calculated) along with harmonics. As the failure

progresses, the amplitudes of the peaks increase, thus making the diagnosis easier and

accurate.

In order to test the diagnosis methodology proposed, four sets of data from this

experimental system were used: under good conditions, with a fault on the outer race

(aligned with the load at 6 o’clock position), with a fault on the inner race and with

a ball fault. The experimental rotating frequency is approximately 29 Hz (1740 rpm).

Data under good conditions was used as a training set (see Figure 7.26) and hereafter

the methodology was applied to the other data sets in order to detect and diagnose the
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Figure 7.24: (a) Incipient fault power spectrum and selected band. (b) Incipient fault

envelope spectrum.
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Figure 7.25: (a) Advanced fault power spectrum and selected band. (b) Advanced fault

envelope spectrum.
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Figure 7.26: Normal state power spectrum.

possible faults. A 100% accurate detection was obtained.

Figure 7.27 depicts an inner race fault power spectrum (load 1 and 0.007 inches)

along with its selected frequency band and the corresponding envelope spectrum. The

inner race fault frequency is clearly identifiable (peak at 156 Hz) as well as its harmon-

ics modulated by the shaft frequency (29 Hz). In Figure 7.28, a power spectrum of a

ball fault (load 2 and 0.021 inches) and the selected frequency band are shown. The

corresponding envelope spectrum is also depicted in Figure 7.28. In this case, there is

a peak at 2 times ball spin frequency (137 Hz), which means that there is a fault in

a rolling element. Finally, Figure 7.29 depicts (a) an outer race fault power spectrum

(load 1 and 0.007 inches) along with its selected frequency band and (b) the corre-

sponding envelope spectrum with peaks at the outer race fault frequency (peak at 106

Hz) and its harmonics. Once again, these examples demonstrate that the system can

detect anomalies that do not correspond to normal behavior and diagnose the possible

sources of the failure.
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Figure 7.27: (a) Power spectrum and selected band of an inner race defect. (b) Envelope

spectrum of the inner race defect.
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Figure 7.28: (a) Power spectrum and selected band of a ball defect. (b) Envelope

spectrum of the ball defect.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

Freq (Hz)

g

!"#"$%"&

'())*+&

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freq (Hz)

g

2xBPFO 3xBPFO

4xBPFO

5xBPFO
6xBPFO

7xBPFO

8xBPFO

BPFO (106 Hz)

Figure 7.29: (a) Power spectrum and selected band of an outer race defect. (b) Envelope

spectrum of the outer race defect.
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7.6 Fault evolution assessment: methodology and exper-

imental results

In this final section we illustrate how on-line learning methods can give an answer to the

final question posed in this chapter: Is it possible to assess the evolution of the vibration

level of a machine in order to detect when this level will become unbearable?. Vibration

practitioners can select beforehand a vibration level which is considered unbearable

for an specific machine. So, in order to raise an alarm based on the expected global

vibration level of the system in the near future we should be able to predict it. As

we have observed in previous sections, the vibration level of a machine remains more

or less stable during normal conditions until a fault appears. Once a fault is present,

fatigue of the materials unavoidably produce an increase in its size and so the increment

of the global vibration level. If we were able to predict the tendency of vibration level

and anticipate the point in the near future when this fault would become dangerous,

it would be possible for the maintenance personnel (or automatically in closed loop) to

stop the machine before its integrity is in danger. Since the nature of global vibration

levels evolve along the time, a system able to adapt to changes is desirable.

We try to experimentally check if, using the on-line learning algorithm propose in

chapter 4, it is possible to predict the global vibration level of the machinery and use

this prediction to avoid dangerous situations. The following experimental setting is

generated:

• Root Mean Square (RMS) energy of the raw vibration of Case II (experiment a)

is calculated for each capture separately. This gives us a time series of the global

vibration level of the machine. Since we are interested on the stable tendency

of the vibration of the machine, RMS signal is smoothed with a moving average

filter of length 10.

• Vibration level of 0.08 g is considered dangerous for this component, so when this

level of vibration is predicted the machine should be stopped.

• A neural node is continuously trained with the on-line algorithm presented in

chapter 4. The parameters selected for the model are λ = 0.99 (forgetting factor)

and δ = 1e − 8 (initial regularization). This model has as inputs the previous 5

samples and tries to predict the value in time t+15. Each time a new measurement

is received, the model is updated with the data available and tries to predict the

future RMS level. If this prediction reaches a value above the stablished threshold

208



7.7 Discussion

an alarm is raised.
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Figure 7.30: Global acceleration energy and prediction.

Figure 7.30 depicts both the actual RMS signal and its prediction made continuously by

our model. It can be observed that the model is able to capture the changing tendency

of the signal thanks to its continuous update. Namely, at time 884 of the experiment it

determines that the value of global vibration is going to exceed the predefined level of

0.08 g. At this point of time the machine should have been stopped. Actual vibration

level of the machine reaches that point at sample 895, so the proposed method was able

to signal almost 2 hours in advance that the machine was going to reach a dangerous

condition.

7.7 Discussion

At the beginning of this chapter we posed a set of key questions in order to evaluate the

viability of applying anomaly detection techniques to fault detection problems based on

vibration analysis. Experimental results have given us the following answers to these

questions:

• Is vibration data adequate to detect and assess the condition of a mechanical

component using an anomaly detection strategy?. In section 7.4.1 we checked the
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correlation between fault severity and data divergence from normality. Thanks

to the simulator data we were able to generate captures with a fault that grew

linearly and could observed that vibration data presented a clear correlation with

fault severity if one-class ν-SVM was used as the divergence estimator. This

first experiment gives us a hint that if a divergence is soon captured, fault width

should be still incipient and so anomaly detection strategy is coherent with the

aim of detecting faults in an incipient phase.

• Is it possible to join traditional frequency domain transformation of vibration

data and anomaly detection methods to build fault detection systems?. We have

combined frequency domain feature extraction with several state-of the art and

proposed algorithms. Overall, it seems that anomaly detection is able to detect

faults with high accuracy. Among the tested models, it seems that MCSE is the

one that gives a more accurate fault detection accuracy overall in the cases tested.

• Is it possible to propose alternative raw vibration feature extraction methods

not based on frequency domain transformations?. In section 7.4.4 a new feature

extraction strategy is proposed. This strategy obtained good experimental re-

sults when combined with on-class ν-SVM and EVOC algorithms. These results

highlight the fact that other transformations, not based on frequency domain

principles, can be also effective for fault detection problems.

• Is it possible to come up with an algorithm able to automatically diagnose faults

in bearings?. In section 7.5 we have presented an algorithm able to detect and

diagnose a bearing fault using one-class ν-SVM and envelope analysis. We have

overcome the problem of automatically select the natural frequency band by using

a sensitivity measure extracted from SVM classification rule formula when RBF

kernel is used. This algorithm can save time and costs to maintenance practi-

tioners. Fault is not only automatically detected but also adequately located so

maintenance measures can be more focused without effort.

• Is it possible to assess the evolution of the vibration level of a machine in order to

detect when this level will become unbearable?. In the last section of this chapter

a fault prognosis case has been illustrated. From the results obtained, we could

derive that an on-line learning algorithm can be used to track the tendency of

the global vibration level of a piece of machinery and signal a dangerous situation

beforehand.
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CHAPTER8
Conclusions, main contributions and future work

This work is devoted both to Machine Learning (ML) research and its application to

the field of predictive maintenance of rotating machinery based on vibration signatures.

We departed from three basic observations: (a) in predictive maintenance each machine

has to be considered individually, (b) in practice, it is only possible to use data under

normal condition to build a model and (c) it is desirable to assess the condition of the

components both in the present and in the near future. These three observations dis-

tilled the main objective of this work: to develop novel anomaly detection and on-line

learning algorithms which can tackle predictive maintenance problem in real scenarios.

First, we presented general purpose ML techniques able to deal with the aforemen-

tioned conditions. The proposed anomaly detection techniques constitute the following

contribution to the state-of-the art:

• Minimum Volume Set of Covering Ellipsoids (MSCE). One of the most common

choices in state-of-the art algorithms to capture the region of the input space

where ”normal” data resides is to assume an ellipsoid shape for this region. This

choice translates learning process into the classic Minimum Volume Covering

Ellipsoid problem, in which a minimum volume ellipsoid which covers ”normal”

data samples is built. It turns out that this choice can be very restrictive and gives

poor results in situations where, for example, we have to deal with multi-modal or

noisy data. In addition, outliers can degrade significantly the obtained model and

to purge them can be a tedious task for the practitioner. In this first proposed

algorithm we extend the classic Minimum Volume Covering Ellipsoid (MVCE)

problem to a robust algorithm which obtains a minimum volume set of covering

ellipsoids automatically avoiding outliers. The choice of a set of ellipsoids is much

more flexible for covering complex data sets and can improve anomaly detection

performance in many situations. We have shown this fact using both artificial

and vibration data of industrial machinery. It is important to note that the

proposed algorithm divides the learning process in an ellipsoid adjustment step
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and a reassignment phase. We leave open the question of extending this work to

kernel spaces using kernel minimum volume ellipsoid learning algorithms.

• Extreme Value Statistics One-class Classifier (EVOC). Nearest-neighbor based

anomaly detection algorithms have treated the problem of highlighting anomalous

patterns in a heuristic way. In this work we have tried to give a more formal

shape to the following intuition: anomalies are dissimilar to normal data and

thus they should be far apart from samples obtained under normal conditions.

Using extreme value statistics results, we have proposed a classification rule which

does not assume any property about normal data apart from reside in a metric

space. We have experimentally prove the accuracy of this rule in Euclidean space

problems. We have left as future work its application to other kinds of complex

structured data such as sequences, graphs, etc. making use of distance measures

in these spaces. We have also left open the question of how to model distances in

these metric spaces.

• On-line Stream Data Anomaly Detection (OSDAD). Most of state-of-the art

anomaly detection algorithms, and also the two previous ones, deal with the

case where a dataset of normal data is available beforehand and we train a model

in a batch manner. When data arrives as an stream, we face a very different

problem in which we want to highlight those regions of the stream where an

anomaly (or change) has occurred and continuously adapt to new scenarios. The

third proposed model tackled this on-line anomaly detection problem through

a Passive-Agressive (PA) classification algorithm applicable when dealing with a

stream of data. Two classical problems are addressed from an on line perspective:

one class classification and stream anomaly detection. A new PA formulation for

on-line one class classification is presented. From a practical perspective, the

proposed formulation has the following advantages: (a) it is able to accurately

fit the support of normal data in an on line fashion, (a) it is able to dynamically

adapt to changes in the distribution of data, (c) it can be applied in a feature

Hilbert space via kernel mapping and (d) it automatically controls the growth of

the number of support vectors. This model is combined with a CUSUM chart of

the proportion of the detected abnormal patterns giving the OSDAD algorithm,

specially designed for stream anomaly detection. Experimental results confirm

that the proposed model shows very good performance when compared to state

of the art algorithms for one class classification and stream anomaly detection.

The devised method leaves as future work the determination of the theoretical

properties of the one class classification algorithm (convergence and classification

error bounds), the design of a criteria for discarding not relevant past Support
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Vectors and its application to problems using other feature spaces.

Second block of the work was devoted to on-line learning on stream data. On-line

ML is a model of induction that learns from one instance at a time. Its goal is to

predict a correct output value for each instance (a label or a real valued property) only

based on the current model trained with data previously seen and the current input.

An on-line learning algorithm receives periodically (after each input pattern or after

a set of inputs) feedback of the correct output and, based on this information, it has

to continuously update its model based only on the last received information. In this

work we have reviewed the problematic of on-line learning in its different flavors (big

data sets, changing contexts, distributed data) and proposed a novel on-line learning

algorithm for a neural node with a non-linear output function. The proposed algorithm

is able to continuously train a neuron in a one pattern at a time manner. If some

conditions are hold, it analytically ensures to reach a global optimal model. Besides,

it covers previous state-of-the art algorithms such as classic Recursive Least Squares

(RLS) [99] as special cases and is able to tackle the aforementioned three different

scenarios of stream data learning: big data sets, changing contexts and distributed

data.

In the last part of this work we have tried to answer the question of wether ML-

based predictive maintenance is viable in real production environments. Namely, fault

detection in wind mill turbines was treated. We have developed a fault detection

software, GIDAS R⃝, which covers all processing phases from vibration measurement to

alert notification. The system was installed in the maintenance offices of some pilot

wind mill farms and integrated in its workflow. The techniques proposed in this thesis

were applied to fault detection problems and the following conclusions were obtained:

• Overall, it seems that anomaly detection is able to detect faults with high accu-

racy. Among the tested models, it seems that MCSE is the one that gives a more

accurate fault detection accuracy overall in the cases tested.

• A new feature extraction strategy based on recurrence statistics is proposed. This

strategy obtained good experimental results when combined with on-class ν-SVM

and EVOC classifier and highlights the fact that other transformations, not based

on frequency domain principles, can be also effective for fault detection problems.

• We presented an algorithm able to detect and diagnose a bearing fault using

one-class ν-SVM and envelope analysis. This algorithm can save time and costs

to maintenance practitioners. A fault is not only automatically detected but
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also located, so maintenance measures can be more focused without effort. The

same principles can be applied in future work to other kind of faults with similar

vibration signatures characteristics.

• Finally, a fault prognosis case was studied to illustrate that assessment of the

condition of components in the near future is possible via the prediction of key

parameter. For this purpose, an on-line learning algorithms can be used to track

the tendency of the global vibration level of a piece of machinery and notify a

dangerous situation beforehand.

Although promising results were obtained, the proposed ML methodology should be

validated with more fault cases in real production scenarios. Availability of new vibra-

tion databases would open this task as a future line of work.
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APPENDIX I
Resumen del trabajo

El presente trabajo de tesis se centra en la investigación en el campo del Aprendizaje

Computacional (AC) y en su aplicación a entornos industriales. Más concretamente, se

estudiará la aplicación de métodos de AC a la implementación de sistemas automáticos

de mantenimiento predictivo de maquinaria rotativa. Por una parte, el AC intenta de-

tectar patrones en conjuntos de datos que pueden haber sido originados por fenómenos

de la más variada tipoloǵıa. Por otra parte, el mantenimiento predictivo es una dis-

ciplina perteneciente al campo de la ingenieŕıa industrial que se centra en detectar la

posibilidad de aparición de roturas significativas en la maquinaria que impidan su fun-

cionamiento en el presente o en el futuro cercano. Para llevar a cabo ésta detección, se

basa en medidas f́ısicas de las condiciones de funcionamiento de sus componentes in-

ternos. En esta tesis se pone de manifiesto que estas dos disciplinas pueden beneficiase

mutuamente.

El mantenimiento predictivo de maquinaria rotativa supone un reto para el AC debido

a la naturaleza de los datos generados por ésta: (a) cada máquina tiene sus propias

particularidades y condiciones de montaje que la convierten en un caso individual -

motivo por el cual no es viable disponer de datos de fallo para cada una de ellas, con

los que construir un modelo de clasificación -, (b) las condiciones de funcionamiento de

la máquina (velocidad, carga, etc.) son cambiantes en muchos casos y generan desvia-

ciones en los datos que deben ser distinguidas de una situación de fallo.

El mantenimiento predictivo supone la revisión periódica, por parte de expertos en

la materia, de medidas f́ısicas recogidas in situ en la propia maquinaria. Este pro-

ceso genera costes de gestión de la información, recursos humanos especializados y

tecnoloǵıas de adquisición. El AC puede ayudar al mantenimiento predictivo en los

siguientes aspectos principales: (a) reducir los costes de producción de planta a través

de la automatización de actividades de revisión periódica y (b) reducir la probabilidad

de daños significativos en la maquinaria debido a la posibilidad de aumentar la frecuen-

cia de monitorización de ésta, con un incremento de costes reducido. La construcción

de sistemas automáticos de revisión de la condición supondŕıa un ahorro de costes en
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sectores tan estratégicos como la producción de enerǵıa eléctrica, transporte público,

etc. La construcción de un sistema de este tipo supone un reto tanto desde el punto de

vista de las TIC como desde el punto de vista de la Inteligencia Artificial.

El principal objetivo de esta tesis es desarrollar algoritmos novedosos en el campo del

AC capaces de abordar el problema del mantenimiento predictivo de maquinaria rota-

tiva en escenarios reales. Se proponen técnicas de propósito general dentro del campo

del AC y algoritmos espećıficos para resolver la problemática del mantenimiento pre-

dictivo automático de maquinaria. Los algoritmos propuesto son capaces de tratar las

restricciones en los datos antes mencionadas. La disponibilidad solamente de datos en

condiciones normales, o dicho de otro modo la ausencia de contraejemplos para realizar

el proceso de aprendizaje, nos obliga a la utilización de algoritmos de detección de

anomaĺıas. Éste será por tanto uno de los bloques principales del trabajo. Además, el

mantenimiento predictivo también precisa valorar cuál va a ser el estado de la máquina

en el futuro cercano de cara a tomar las contramedidas necesarias a tiempo. Esta

necesidad nos lleva al segundo bloque principal del presente trabajo también dedicado

al AC, el aprendizaje en tiempo real (on-line), que nos ayudará en esta tarea. A con-

tinuación se resumen las aportaciones principales de cada uno de los bloques de la tesis.

Algoritmos de detección de anomaĺıas

El primer bloque de la tesis se dedica a la detección de anomaĺıas o, expresado de

otro modo, al aprendizaje de modelos de clasificación en ausencia de contraejemplos.

Los algoritmos de detección de anomaĺıas han ido ganado importancia en las últimas

décadas debido a la proliferación de problemas que implican el aprendizaje de modelos

de clasificación cuando el número de datos en condiciones normales es muy abundante,

pero el número de contraejemplos es reducido o nulo. A pesar de que en esta era de

la información nos vemos sobrepasados por la disponibilidad de grandes volúmenes de

datos (cantidades que muchas veces son casi imposibles de tratar), en muchas ocasiones

sólo un porcentaje ı́nfimo de esta información, las anomaĺıas o eventos inesperados,

aportan la mayor y más valiosa información. A continuación citamos algunos ejemplos

de este hecho: se tramitan miles de pagos con tarjeta de crédito cada minuto, pero

sólo un ı́nfimo porcentaje de ellos suponen un fraude que puede acarrear pérdidas para

clientes y compañ́ıas; se realizan miles de operaciones de valores por segundo pero

sólo un pequeño porcentaje de los corredores de bolsa tienen la posibilidad de realizar

operaciones sospechosas de ser fraudulentas. No todas las anomaĺıas tienen que poseer

necesariamente connotaciones negativas: las grandes cadenas de distribución realizan

ventas a miles de clientes cada d́ıa y, dentro de estas operaciones, patrones de venta

anómalos pueden ser indicativos de cambios de tendencia en los gustos que pueden ser
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analizados y explotados para ofrecer un mejor servicio.

Desde un punto de vista abstracto, el término de detección de anomaĺıas se refiere

al problema de encontrar patrones que no están conformes con un comportamiento

esperado o normal. En términos matemáticos, contamos con un fenómeno a estudiar

que genera patrones de datos descriptivos de śı mismo {x1, x2, . . . xn} en un espacio

de entrada X. Bajo condiciones normales, estos datos son generados siguiendo una

distribución de probabilidad P (x). Esta distribución determina qué patrones son más

o menos probables bajo condiciones de normalidad y, de disponer de esta distribución,

la detección de anomaĺıas se podŕıa reducir a la comprobación de la verosimilitud de

un patrón con respecto a dicha distribución P (x). Sin embargo, la distribución real

que genera los datos bajo condiciones de normalidad P (x) es desconocida, por lo que

necesitamos construir un modelo/algoritmo, a partir de una muestra disponible, capaz

de determinar qué patrones no están conformes con las condiciones esperadas. Los

primeros estudios de la deteccin de valores at́ıpicos en conjuntos de datos se remonta a

estad́ısticos del siglo XIX. Desde ese momento, la detección de anomaĺıas ha encontrado

su aplicación en dominios tan variados como la detección de intrusiones en redes de

computadoras, la detección de tumores, detección de fraudes, etc. Esta variedad de

dominios ha hecho imposible encontrar una única estrategia adecuada para todos ellos,

por lo que la literatura al respecto ha sido muy proĺıfica. Muchas de las técnicas

propuestas han sido pensadas para un entorno de aplicación concreto. En este trabajo

se proponen tres nuevos algoritmos de detección de anomaĺıas:

• Envoltura de volumen mı́nimo a través de un conjunto de elipsoides [Minimum

Volume Set of Covering Ellipsoids (MSCE)]. A pesar de esta amplia variedad de

algoritmos de detección de anomaĺıas, casi todos comparten una caracteŕıstica

común: determinar la región del espacio de entrada a la que pertenecen los pa-

trones generados bajo condiciones de normalidad. Algunos algoritmos suponen de

antemano una forma abstracta para la región del espacio de entrada que recoge

los patrones generados bajo condiciones normales. Una de las elecciónes más uti-

lizadas en la literatura es la esfera o su generalización en un elipsoide. Esta

elección convierte el problema del aprendizaje de un modelo de detección de

anomaĺıas en el problema clásico de determinar el elipsoide de volumen mı́nimo

que cubre un conjunto de datos. Esta elección de forma puede ser muy restrictiva

y generar un clasificador con pobres resultados en la práctica si la forma de los

datos no se ajusta a la asumida (por ejemplo en el caso de datos multimodales).

El primer algoritmo propuesto extiende el citado problema en los siguientes as-

pectos: (a) se calcula un conjunto de elipsoides de volumen mı́nimo que genere
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una envoltura del conjunto de datos disponible y (b) se utiliza una función de

coste que proporciona una estimación robusta contra datos ruidosos. Gracias a

estas dos propiedades, se proporciona un algoritmo más flexible y robusto capaz

de aproximar regiones más complejas de manera más precisa.

• Clasificación de una clase basada en estad́ısticos de orden [Extreme Value Statis-

tics One-class Classifier (EVOC)]. En ciertas aplicaciones prácticas, es complejo

asumir a priori una forma de la región del espacio de entrada que alberga los

patrones generados bajo condiciones de normalidad. En el segundo algoritmo pro-

puesto se establece un criterio de decisión capaz de decidir si un patrón es anómalo

o no sin basarse directamente en la determinación de una región del espacio de

entrada. Este algoritmo pone de manifiesto que, utilizando resultados del campo

de los estad́ısticos de orden y modelando la distancia entre patrones bajo condi-

ciones de normalidad, es posible abordar la tarea de detección de anomaĺıas de un

modo efectivo. Además, este algoritmo puede ser aplicado a tipos de datos más

complejos no pertenecientes necesariamente a un espacio Eucĺıdeo (secuencias,

grafos, etc.), debido a que la estrategia de clasificación propuesta sólo requiere

disponer de una medida de distancia entre patrones.

• Detección de anomaĺıas en tiempo real [On-line Stream Data Anomaly Detec-

tion (OSDAD)]. La mayoŕıa de los algoritmos de detección de anomaĺıas exis-

tentes en la literatura tratan el problema considerando que un conjunto finito

de patrones bajo condiciones de normalidad está disponible de antemano para

construir el modelo. Una problemática diferente aparece cuando nuevos patrones

son recibidos continuamente y se desea señalizar de manera automática y en

tiempo real aquellas regiones del flujo de datos que presentan un comportamiento

anómalo. El último algoritmo propuesto está especialmente diseñado para abor-

dar este problema haciendo uso de la combinación de un algoritmo de clasificación

de una clase pasivo-agresivo y gráficos CUSUM para distribuciones de Bernouilli.

Este algoritmo es capaz de tratar en tiempo real un flujo de datos y señalizar

aquellas regiones en las que es posible encontrar un comportamiento anómalo.

Además de a espacios Eucĺıdeos, el algoritmo propuesto puede aplicarse a pa-

trones pertenecientes a espacios kernel.

Aprendizaje en tiempo real (on-line)

El segundo bloque de este trabajo se dedica al aprendizaje en tiempo real (on-line) de

redes de neuronas artificiales. En el aprendizaje en tiempo real, el modelo de los datos

se ajusta utilizando cada patrón en un único paso de actualización. El objetivo de rea-

lizar el aprendizaje de este modo es cumplir con las restricciones de ciertos escenarios
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como pueden ser: (a) restricciones de procesamiento en tiempo real, (b) contemplar

grandes bases de datos o (c) adaptarse a cambios en la distribución de los datos de

entrada y la variable a predecir. Los algoritmos de aprendizaje en tiempo real están

ganando protagonismo debido a su gran aplicabilidad en las grandes bases de datos

modernas. El modelado de consumo de contenidos web o del comportamiento de in-

dicadores de valores bursátiles en tiempo real son sólo dos ejemplos de los campos en

los que este tipo de algoritmos de Aprendizaje Computacional pueden generar un gran

impacto.

En el presente trabajo se revisa la problemática del aprendizaje en tiempo real (on-line)

aśı como los distintos contextos en los que puede aparecer (grandes conjuntos de datos,

cambios de contexto y datos distribuidos) y se propone un nuevo algoritmo de apren-

dizaje para redes de neuronas monocapa con función de salida no lineal. El algoritmo

propuesto es capaz de entrenar cada neurona procesando cada patrón una única vez.

De este modo, se reducen en gran medida los recursos de memoria y procesamiento

necesarios para realizar el aprendizaje. Además es posible demostrar que, bajo ciertas

condiciones, el algoritmo alcanza el mı́nimo global de la función de coste para todo

el conjunto de entrenamiento disponible. También se demuestra que el algoritmo pro-

puesto recoge impĺıcitamente un término de regularización que puede ser explotado en

problemas con un número insuficiente de patrones. Es destacable también que este

algoritmo abarca como casos concretos varios algoritmos de aprendizaje que ya esta-

ban presentes previamente en la literatura, como el algoritmo de Mı́nimos Cuadrados

Recursivo.

Mantenimiento predictivo basado en el análisis automático de datos

En la segunda parte de esta tesis se trata el campo del mantenimiento predictivo au-

tomático de maquinaria rotativa basado en el análisis de registros de vibración. Un

ejemplo gráfico que pone de manifiesto el impacto que un sistema software de este

tipo puede tener en los costes de producción y la seguridad de un proceso industrial

dependiente de maquinaria rotativa es el siguiente:

Un generador eólico valorado en varios millones de dólares se encuentra generando

enerǵıa eléctrica de manera continua mar adentro en la costa de Gales. Debido a la

corrosión y la fatiga de sus materiales, uno de sus componentes internos principales

está produciendo la fatiga de todo el tren de potencia. De pararse en este momento, la

reparación supondŕıa únicamente el reemplazo del componente dañado. Pero, debido

al mal tiempo, este defecto no ha podido ser detectado y en pocas horas provocará una

aveŕıa que mantendrá parado al generador durante semanas o meses y cuyo coste se
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eleva hasta cientos de miles de dólares.

Este ejemplo pone de manifiesto que un proceso de mantenimiento deficiente puede

poner en peligro la viabilidad económica de ciertos procesos de producción, como el de

la enerǵıa eólica, tanto por la indisponibilidad no programada de la maquinaria como

por los altos costes de las reparaciones. El mantenimiento predictivo es una metodoloǵıa

que establece la viabilidad de funcionamiento de maquinaria rotativa basándose en la

medida y el análisis periódico de variables que revelan el estado de sus componentes

internos. Gracias a una detección temprana de los defectos (inevitables debido a la

fatiga a la que se someten los materiales), se evitan roturas con posibles consecuencias

catastróficas y es posible la programación de actividades de reparación de la manera

menos costosa posible. El mantenimiento predictivo y las tecnoloǵıas asociadas a él se

han convertido en factores clave a la hora de extender la vida de los equipos, reducir

costes y aumentar la disponibilidad de los activos de producción.

La inspección continua de la maquinaria es, desafortunadamente, imposible en muchos

casos debido a que el incremento de los costes en recursos humanos es prohibitivo. Uno

de los factores que influyen en gran medida en dicho coste es la necesidad de inspec-

cionar continuamente capturas de datos que no presentan ningún problema. Ésta es

la razón que hace que, en la práctica, la periodicidad de las inspecciones no sea tan

frecuente como seŕıa deseable. Es en este aspecto en donde el presente trabajo pretende

dar una respuesta efectiva. El objetivo principal de la segunda parte es construir un

software que sea capaz de: (a) percibir los śıntomas de fallo interno de la maquinaria,

(b) notificarlos antes de que puedan producir una rotura desastrosa y (c) interpretar

dichos śıntomas para realizar un diagnóstico. La viabilidad de inversión en un software

de este tipo es fácilmente palpable en ciertos sectores como el de la enerǵıa eólica, que

en 2012 acumulaba una potencia instalada de 238 GW en todo el mundo. El primer

paso para construir un software de esta naturaleza es determinar las variables f́ısicas

que nos van a permitir percibir un śıntoma de fallo. El análisis de vibraciones es una de

las técnicas más efectivas a este respecto debido a su capacidad para revelar śıntomas

de fallo interno, sus reducidos costes con respecto a otros sistemas de adquisición de

datos de condición (como son el análisis de aceite, ultrasonidos, etc.) y su capacidad

para monitorizar continuamente y de manera automática cualquier tipo de maquinaria

rotativa. En segundo lugar, de cara a automatizar el proceso de detección de fallos,

un software de mantenimiento predictivo basado en vibraciones debe ser capaz de dis-

tinguir entre capturas de vibración que no revelan śıntomas de defectos de aquellas en

las que se revela algún tipo de fallo. El Aprendizaje Computacional puede dar una

respuesta efectiva a esta problemática y será un tema central en la última parte del

trabajo. Se propone la aplicación de algoritmos de detección de anomaĺıas a la clasifi-
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cación de capturas de vibración y se detalla la metodoloǵıa a utilizar para analizarlas

automáticamente utilizando tanto algoritmos ya disponibles en la literatura como los

algoritmos propuestos en la primera parte de este trabajo. Algunos de estos algoritmos

se integraron en el prototipo de software comercial GIDAS. Este software fue desar-

rollado por el autor en colaboración con la multinacional INDRA Sistemas S.A. Las

experiencias extráıdas en la aplicación del Aprendizaje Computacional al campo del

mantenimiento predictivo en plantas reales con el citado software y los casos reales de

fallos detectados in situ en condiciones de producción también son descritos.

Organización de los contenidos del trabajo

En este resumen se han introducido los temas principales que se tratan en este trabajo.

El primer bloque (algoritmos de detección de anomaĺıas) se trata en los caṕıtulos 2 y

3. El caṕıtulo 2 hace un repaso al problema de la detección de anomaĺıas, los retos

principales que plantea, los algoritmos que conforman el estado del arte aśı como los

grupos en los que éstos se pueden clasificar. El caṕıtulo 3 recoge los algoritmos de

detección de anomaĺıas que se proponen en este trabajo. A continuación, la parte

dedicada al aprendizaje en tiempo real se recoge en el caṕıtulo 4, donde se hace un

repaso a esta casúıstica de aprendizaje y se detalla el algoritmo de aprendizaje neuronal

propuesto. El caṕıtulo 5 supone el punto de inflexión del trabajo entre el AC y el

campo de aplicación concreto estudiado. En este caṕıtulo se realiza una introducción

al análisis de vibraciones y su aplicación al mantenimiento predictivo. Los conceptos

y principios estudiados en este caṕıtulo serán utilizado en secciones posteriores para

la construcción de algoritmos de detección de fallos. En el caṕıtulo 6 se presenta el

software GIDAS, el banco de trabajo utilizado para llevar los algoritmos de detección

propuestos a escenarios de producción reales, y se relata la experiencia piloto de su

instalación llevada a cabo en parques eólicos. Finalmente, en el caṕıtulo 7 se detallan

los resultados obtenidos por los algoritmos propuestos en el presente trabajo para casos

de detección de fallos en rodamientos, uno de los componentes mecánicos más habituales

en maquinaria rotativa y que acumula un alto porcentaje de las roturas de maquinaria.
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